WO2017061190A1 - セルロース誘導体およびその用途 - Google Patents

セルロース誘導体およびその用途 Download PDF

Info

Publication number
WO2017061190A1
WO2017061190A1 PCT/JP2016/075137 JP2016075137W WO2017061190A1 WO 2017061190 A1 WO2017061190 A1 WO 2017061190A1 JP 2016075137 W JP2016075137 W JP 2016075137W WO 2017061190 A1 WO2017061190 A1 WO 2017061190A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose
chain organic
organic group
acid
Prior art date
Application number
PCT/JP2016/075137
Other languages
English (en)
French (fr)
Inventor
緑 志村
修吉 田中
清彦 當山
位地 正年
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017544412A priority Critical patent/JP6819602B2/ja
Priority to US15/766,116 priority patent/US10982009B2/en
Publication of WO2017061190A1 publication Critical patent/WO2017061190A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/02Rendering cellulose suitable for esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • the present invention relates to a cellulose derivative, a resin composition containing the cellulose derivative, and a molded body obtained by molding the cellulose derivative.
  • the present invention also relates to a method for producing the cellulose derivative.
  • Bioplastics made from plants can contribute to oil depletion countermeasures and global warming countermeasures, and in addition to general products such as packaging, containers, and fibers, they are also being used in durable products such as electronic devices and automobiles.
  • cellulose which is a main component of wood and vegetation, is representative, and various bioplastics using this have been developed and commercialized.
  • durability stress resistance, water resistance, etc.
  • cellulose pulp obtained by chemically separating lignin or hemicellulose from wood or the like with a chemical is known. Or since cotton is substantially made of cellulose, it can be used as it is.
  • Such cellulose is a polymer in which ⁇ -glucose is polymerized, but has many hydroxyl groups and therefore has a strong intermolecular force due to hydrogen bonding. Therefore, it is hard and brittle, has no thermoplasticity, and has low solvent solubility except for special solvents. Furthermore, since it has many hydroxyl groups which are hydrophilic groups, water absorption is high and water resistance is low.
  • Patent Document 1 a cellulose derivative in which at least a part of hydrogen atoms of a hydroxyl group of cellulose is substituted with an aliphatic acyl group having 2 to 4 carbon atoms and an aliphatic acyl group having 5 to 20 carbon atoms is synthesized. Yes. It is described that this cellulose derivative has good impact resistance and breaking elongation in addition to thermoplasticity and water resistance and is suitable for molding processing.
  • Patent Document 2 shows a mixed fatty acid ester of cellulose obtained by substituting a hydroxyl group of cellulose with an acetyl group and an acyl group having 3 or more carbon atoms, and this cellulose derivative film has excellent physical properties. It is described that it can be produced by a solvent cast method.
  • Non-Patent Document 1 describes that by combining an acetyl group and a 2-ethylhexanoyl group, a material having thermoplasticity and an excellent balance of rigidity / impact resistance / heat resistance can be provided.
  • a cellulose modification method that introduces a long-chain organic group having a larger number of carbon atoms in addition to a short-chain organic group such as an acetyl group
  • the degree of substitution of the long-chain organic group is increased in order to give good thermoplasticity.
  • the elasticity modulus of a cellulose derivative tends to fall under the influence of the high flexibility and steric hindrance of long-chain organic groups.
  • the long-chain organic group should be introduced uniformly into the cellulose chain with a degree of substitution as low as possible.
  • the cellulose resin according to Patent Document 1 described above is excellent in impact resistance, water resistance, and elongation at break. However, for example, modification of characteristics is required in application to applications requiring high elastic modulus.
  • the cellulose resin according to Patent Document 2 has a high equilibrium water content, and for example, modification of characteristics is required in application to applications requiring water resistance.
  • An object of this invention is to provide the cellulose derivative excellent in thermoplasticity, water resistance, and intensity
  • At least a part of the hydrogen atoms of the hydroxyl group of cellulose is substituted by a short chain organic group (acetyl group) having 2 carbon atoms, a medium chain organic group having 3 to 5 carbon atoms, and a long chain organic group having 6 to 30 carbon atoms as follows.
  • a cellulose derivative substituted with is provided.
  • DS SH represents the degree of substitution of the short chain organic group
  • DS ME represents the degree of substitution of the medium chain organic group
  • DS LO represents the degree of substitution of the long chain organic group.
  • a cellulose derivative excellent in thermoplasticity, water resistance, and strength (elastic modulus, impact strength) can be provided.
  • a medium-chain organic group is used in combination, thereby exhibiting a high elastic modulus and good thermoplasticity.
  • a cellulose derivative characterized by being excellent in impact resistance and a method for producing the same are provided.
  • the medium chain organic group has a carbon number between the acetyl group and the long chain organic group, and in order to increase the affinity between the short chain organic group and the long chain organic group, each organic group is introduced homogeneously in the cellulose. Seem.
  • Cellulose is a linear polymer of ⁇ -glucose represented by the following formula (1), and each glucose unit except the terminal has three hydroxy groups. These hydroxy groups can be substituted with short, medium and long chain organic groups.
  • Cellulose is a main component of vegetation and is obtained by separating other components such as lignin from vegetation. In addition to those obtained in this manner, cotton or pulp having a high cellulose content can be purified or used as it is.
  • the degree of polymerization of cellulose is preferably in the range of 50 to 5000, more preferably 100 to 3000, as the degree of glucose polymerization. If the degree of polymerization is too low, the strength, heat resistance, etc. of the produced resin may not be sufficient. On the other hand, if the degree of polymerization is too high, the melt viscosity of the produced resin becomes too high, which may hinder molding.
  • Cellulose may be mixed with chitin or chitosan having a similar structure, and when mixed, it is preferably 30% by mass or less, preferably 20% by mass or less, and preferably 10% by mass or less based on the entire mixture. Further preferred.
  • Cellulose derivative In one embodiment of the present invention, at least some of the hydrogen atoms of the hydroxyl groups of the cellulose are short chain organic groups having 2 carbon atoms (acetyl groups), medium chain organic groups having 3 to 5 carbon atoms, and 6 carbon atoms. Cellulose derivatives substituted with ⁇ 30 long-chain organic groups at the following substitution degrees are provided.
  • DS SH represents the degree of substitution of the short chain organic group
  • DS ME represents the degree of substitution of the medium chain organic group
  • DS LO represents the degree of substitution of the long chain organic group.
  • the short chain organic group is an acetyl group. It can be obtained by reacting a hydroxyl group in cellulose with a short-chain reagent such as acetic acid, acetic anhydride or acetyl chloride.
  • the number of hydroxyl groups substituted with short-chain organic groups per glucose unit of cellulose (hydroxyl substitution degree) (average value), that is, the substitution degree (DS SH ) (average value) increases the interaction of cellulose molecular chains, From the viewpoint of obtaining a high elastic modulus, it is 0.7 or more, preferably 0.9 or more, and more preferably 0.95 or more.
  • DS SH is 1.5 or less, preferably 1.3 or less, from the viewpoint of sufficiently securing the degree of substitution (DS ME , DS LO ) of the medium chain organic group and the long chain organic group.
  • the substitution degree DS of the cellulose derivative can be measured by dissolving in deuterated chloroform (CDCl 3 ) and 1 H-NMR. In a cellulose derivative insoluble in CDCl 3 , measurement can be performed after further acetylation or propionylation of the residual hydroxyl group of the cellulose derivative.
  • the medium chain organic group is a linking group formed by a reaction between a hydroxyl group in cellulose and a medium chain reactant.
  • the medium chain reactant is a compound having at least one functional group capable of reacting with a hydroxyl group in cellulose, such as a carboxyl group, a carboxylic acid halide group or a carboxylic acid anhydride group, an isocyanate group, a chloroformate group, or an acrylic group.
  • the hydrocarbon compound which has group is mentioned. Specific examples include aliphatic monocarboxylic acids, acid halides or acid anhydrides thereof, aliphatic monoisocyanates, aliphatic monochloroformates, acrylic acid esters, and methacrylic acid esters.
  • the medium chain organic group has a carbon number in the range of 3 to 5, preferably 3 to 4 carbon atoms, and more preferably 3 carbon atoms.
  • the medium chain reactant for introducing these specifically, as the aliphatic monocarboxylic acid, propionic acid, isopropionic acid, butanoic acid, isobutanoic acid, t-butanoic acid, pentanoic acid, isopentylic acid, Examples thereof include aliphatic monocarboxylic acids having 2-methylbutyryl group, 3-methylbutyryl group and the like, and propionic acid, isopropionic acid, butanoic acid, isobutanoic acid, and t-butanoic acid are preferable, and propionic acid is more preferable.
  • Examples of the aliphatic monoisocyanate include those in which an isocyanate group is bonded to an aliphatic hydrocarbon having a linear or branched side chain.
  • Examples of the aliphatic monochloroformate include those in which a chloroformate group is bonded to an aliphatic hydrocarbon having a linear or branched side chain.
  • the medium chain organic group is preferably an acyl group having 3 or 4 carbon atoms, and particularly preferably a propionyl group.
  • the degree of substitution of the medium chain organic group per glucose unit of cellulose (DS ME ) (average value) is 0.5 or more in terms of obtaining the effect of increasing the affinity between the short chain organic group and the long chain organic group, 0.7 or more is preferable and 1.0 or more is more preferable.
  • DS ME is 2.0 or less, preferably 1.5 or less, from the viewpoint of sufficiently ensuring the degree of substitution (DS LO ) of the long-chain organic group.
  • the long chain organic group is a linking group formed by a reaction between a hydroxyl group in cellulose and a long chain reagent.
  • the long-chain reactant is a compound having at least one functional group capable of reacting with a hydroxyl group in cellulose, such as a carboxyl group, a carboxylic acid halide group or a carboxylic acid anhydride group, an isocyanate group, a chloroformate group, or an acrylic group.
  • the hydrocarbon compound which has group is mentioned.
  • At least one compound selected from monocarboxylic acids such as aliphatic monocarboxylic acids, aromatic monocarboxylic acids, and alicyclic monocarboxylic acids, acid halides or acid anhydrides thereof, aliphatic monoisocyanates , At least one compound selected from aromatic monoisocyanate and alicyclic monoisocyanate, at least one compound selected from aliphatic monochloroformate, aromatic monochloroformate and alicyclic monochloroformate, acrylic ester, methacrylic ester Examples include acid esters.
  • the long-chain organic group has a carbon number in the range of 6 to 30, preferably 9 to 30, and more preferably 12 to 30 because a thermoplastic effect can be obtained with a small amount.
  • the long chain organic group may be one kind or may be substituted two or more kinds.
  • Examples of the aliphatic monocarboxylic acid as the long-chain reactant include fatty acids having linear or branched side chains.
  • Examples of the fatty acid include saturated fatty acids and unsaturated fatty acids, and saturated fatty acids are preferable from the viewpoint of thermal stability.
  • Aromatic monocarboxylic acids include those in which a carboxyl group is directly bonded to an aromatic ring, and those in which a carboxyl group is bonded to an aromatic ring via an alkylene group (for example, a methylene group or an ethylene group) (an aliphatic carboxylic acid group is bonded to the aromatic ring). Are combined).
  • Alicyclic monocarboxylic acids include those in which a carboxyl group is directly bonded to an aliphatic ring, and those in which a carboxyl group is bonded to an aliphatic ring via an alkylene group (for example, a methylene group or an ethylene group). In which a group carboxylic acid group is bonded).
  • aliphatic monoisocyanate examples include those in which an isocyanate group is bonded to an aliphatic hydrocarbon having a linear or branched side chain.
  • Aromatic monoisocyanates include those in which an isocyanate group is directly bonded to an aromatic ring, and those in which an isocyanate group is bonded to an aromatic ring via an alkylene group (for example, a methylene group or an ethylene group) (an aliphatic isocyanate group is bonded to an aromatic ring).
  • alkylene group for example, a methylene group or an ethylene group
  • Alicyclic monoisocyanates include those in which an isocyanate group is directly bonded to an aliphatic ring, and those in which an isocyanate group is bonded to an aliphatic ring via an alkylene group (for example, a methylene group or an ethylene group) (an aliphatic ring is aliphatic. And those having an isocyanate group bonded thereto).
  • alkylene group for example, a methylene group or an ethylene group
  • an aliphatic ring is aliphatic.
  • Examples of the aliphatic monochloroformate include those in which a chloroformate group is bonded to an aliphatic hydrocarbon having a linear or branched side chain.
  • Aromatic monochloroformates include those in which a chloroformate group is directly bonded to an aromatic ring, and those in which a chloroformate group is bonded to an aromatic ring via an alkylene group (for example, methylene group, ethylene group). Group having a chloroformate group bonded thereto).
  • Alicyclic monochloroformates include those in which a chloroformate group is directly bonded to an aliphatic ring, and those in which a chloroformate group is bonded to an aliphatic ring via an alkylene group (for example, a methylene group or an ethylene group). And an aliphatic chloroformate group bonded to an aromatic ring).
  • the long chain organic group is preferably an acyl group having 12 to 30 carbon atoms, and particularly preferably a stearyl group.
  • DS LO Number of hydroxyl groups substituted with long-chain organic groups per glucose unit of cellulose (hydroxyl substitution degree) (average value)), that is, substitution degree (DS LO ) (average value is 0.1 or more, 0.2 or when the preferred .DS LO is too low, the improving effect of the thermoplastic and water resistance due to long-chain organic groups are not sufficiently obtained. Also, DS LO is less than 0.5, 0.4 And more preferably 0.3 or less If the DS LO is too high, the elastic modulus of the cellulose derivative decreases.
  • the DS of short chain, medium chain and long chain organic groups can be set to an optimum value depending on the structure of the organic group and the physical properties required for the cellulose derivative.
  • the number of hydroxyl groups remaining per glucose unit of the cellulose derivative (hydroxyl residual degree, DS OH ) (average value) is preferably 0.6 or less, more preferably 0.5 or less. 0.4 or less is more preferable.
  • the sum DS SH + DS ME + DS LO of the short chain, medium chain, and long chain is 2.4 ⁇ DS SH + DS ME + DS LO ⁇ 3. It becomes.
  • the number average molecular weight (Mn) of the cellulose derivative of this embodiment is, for example, preferably 10,000 or more, more preferably 20,000 or more, and preferably 200,000 or less, more preferably 100,000. It is as follows.
  • the weight average molecular weight (Mw) is, for example, preferably 10,000 or more, more preferably 20,000 or more, and preferably 200,000 or less, more preferably 100,000 or less.
  • the molecular weight distribution (Mw / Mn) is, for example, preferably 1.1 or more, more preferably 1.4 or more, and preferably 4.0 or less, more preferably 3.5 or less.
  • the molecular weight can be measured (calibrated with a polystyrene standard sample) by gel permeation chromatography (GPC) using chloroform as a solvent, for example. In a cellulose derivative insoluble in chloroform, the measurement can be performed after further acetylating or propionylating the residual hydroxyl group of the cellulose derivative.
  • an activation treatment (pretreatment step) can be performed before the reaction step for introducing each organic group into cellulose.
  • the cellulose and the solvent are brought into contact with each other by a wet method such as a method of spraying an activated solvent having affinity for cellulose onto the cellulose or a method of immersing cellulose in the activated solvent (immersion method). And swell the cellulose. This makes it easier for the reactants to enter between the cellulose molecular chains (when using a solvent or a catalyst, it tends to enter with them), so that the reactivity of the cellulose is improved.
  • the activating solvent is, for example, water; acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid and other carboxylic acids; methanol, ethanol, propanol, isopropanol and other alcohols; N , N-dimethylformamide, N, N-dimethylacetamide, formamide, ethanolamine, pyridine, nitrogen-containing compounds such as N-methylpyrrolidone; sulfoxide compounds such as dimethyl sulfoxide, etc., and combinations of two or more of these can be used .
  • water, acetic acid, propionic acid, dimethylformamide, dimethylacetamide, pyridine, N-methylpyrrolidone, dimethylsulfoxide can be used.
  • the activating solvent contains a carboxylic acid
  • an acyl group having a corresponding number of carbon atoms may be introduced, and treatment with a corresponding short-chain, medium-chain, or long-chain reactant in the subsequent step becomes unnecessary.
  • the amount of the activation solvent used can be set to, for example, 10 parts by mass or more, preferably 20 parts by mass or more, and more preferably 30 parts by mass or more with respect to 100 parts by mass of cellulose.
  • cellulose When cellulose is immersed in an activating solvent, it can be set to, for example, 1 or more times, preferably 5 or more times, and more preferably 10 or more times by weight with respect to cellulose. 300 times or less is preferable, 100 times or less is more preferable, and 50 times or less is more preferable from the point of the burden of removal of the activated solvent after pre-processing, material cost reduction, etc.
  • the temperature of the activation treatment can be appropriately set within a range of 0 to 100 ° C., for example. From the viewpoint of activation efficiency and energy cost reduction, 10 to 40 ° C is preferable, and 15 to 35 ° C is more preferable.
  • the time for the activation treatment can be appropriately set within a range of, for example, 0.1 hour to 72 hours. From the viewpoint of performing sufficient activation and reducing the processing time, 0.1 to 24 hours are preferable, and 0.5 to 3 hours are more preferable.
  • excess activated solvent can be removed by a solid-liquid separation method such as suction filtration.
  • the activation solvent contained in cellulose can be replaced with the solvent used during the reaction after the activation treatment.
  • the solvent replacement treatment can be performed by similarly immersing the activated cellulose by changing the activation solvent in the immersion method of the activation treatment described above to the solvent (reaction solvent) used during the reaction.
  • Each organic group is introduced into cellulose or cellulose subjected to the above activation treatment.
  • the above-mentioned short-chain reactant, medium-chain reactant, long-chain reactant, and, if necessary, a solvent and a catalyst are added to cellulose, and cellulose and short-chain reactant, medium-chain reactant and long-chain reactant are added.
  • the chain reaction agent can be reacted in a solid-liquid heterogeneous system. At that time, heating and stirring can be performed as necessary.
  • the reactive functional groups of the short chain reagent, the medium chain reagent and the long chain reagent are preferably the same.
  • the reactant is an acid anhydride
  • a mixed acid anhydride asymmetric acid anhydride of two organic acids selected from a short chain organic acid, a medium chain organic acid and a long chain organic acid is used. You can also
  • cellulose in this reaction step, cellulose can be immersed in a reaction solution containing a short chain reagent, a medium chain reagent, and a long chain reagent, and the reaction can be performed in a state where the cellulose is swollen.
  • a reaction solution containing a short chain reagent, a medium chain reagent, and a long chain reagent, and the reaction can be performed in a state where the cellulose is swollen.
  • each of the reactants easily enters between the cellulose molecular chains, so that the reactivity is improved.
  • the amount of the reaction solvent used can be set to, for example, 1 or more times, preferably 5 or more times, more preferably 10 or more times by weight with respect to cellulose. 300 times or less is preferable, 100 times or less is more preferable, 50 times or less is further more preferable, and 30 times or less is especially preferable from the point of the burden of the reaction solution removal after reaction, material cost reduction, etc.
  • the reaction temperature is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher from the viewpoint of reaction efficiency.
  • 200 degreeC or less is preferable from viewpoints of suppression of a decomposition reaction, energy cost reduction, etc., 150 degreeC or less is more preferable, and 100 degreeC or less is more preferable.
  • the reaction time is preferably 0.5 hours or more from the viewpoint of sufficiently proceeding the reaction, more preferably 1 hour or more, preferably 24 hours or less, more preferably 12 hours or less from the viewpoint of improving the efficiency of the production process, etc. More preferred is a time or less.
  • a solvent having high affinity with the cellulose derivative of the product can be used.
  • a solvent can be appropriately selected according to the amount of residual hydroxyl group in the cellulose derivative, the hydrophobicity of the organic group, the amount introduced, and the type of the functional group of the organic reactant.
  • the reaction solvent is preferably an aprotic solvent, and particularly preferably a proton affinity solvent that forms a hydrogen bond with a hydroxyl group of cellulose.
  • Examples of the solvent having high affinity as described above include heterocyclic compounds, ethers, amides, ketones, esters, polar halogenated hydrocarbons, carbonates, nitro compounds, nitriles, and organic sulfur compounds.
  • Examples of the heterocyclic compound include cyclic ethers (dioxane, tetrahydrofuran, dioxolane and the like) and heteroarenes (pyridine, quinoline and the like).
  • ethers having high affinity include acyclic ethers having a plurality of ether structure parts such as 1,2-dimethoxyethane and diethylene glycol dimethyl ether in addition to the above cyclic ethers, ethers having aryl groups such as methylphenyl ether and diphenyl ether, etc. Is mentioned.
  • the amide include N-methylpyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide.
  • the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • ester examples include methyl formate, methyl acetate, ethyl acetate, butyl acetate, and methyl cellosolve acetate.
  • polar halogenated hydrocarbons include chloroform, methylene chloride, dichloroethane, propylene chloride, and tetrachloroethane.
  • carbonate examples include propylene carbonate and butylene carbonate.
  • nitro compound include nitromethane and nitropropane.
  • nitriles examples include acetonitrile and benzonitrile.
  • organic sulfur compound examples include sulfoxide compounds such as dimethyl sulfoxide. Also, two or more of these solvents can be mixed and used. By using a solvent as described above, a good swelling state of the cellulose derivative is formed, thereby reducing the influence of steric hindrance and increasing the reactivity of the reactant. During the reaction, the same or different solvent may be added as appropriate.
  • a catalyst When using a catalyst, it can be appropriately selected and used according to the kind of the short chain reagent, the medium chain reagent and the long chain reagent.
  • the reactant is a carboxylic acid or a carboxylic anhydride
  • an acid catalyst, a base catalyst, or a metal catalyst can be used.
  • the acid catalyst include inorganic acids (sulfuric acid, perchloric acid, hydrochloric acid, etc.) and organic acids (methanesulfonic acid, toluenesulfonic acid, etc.).
  • Examples of the base catalyst include pyridine derivatives (dimethylaminopyridine (DMAP), 4-pyrrolidinopyridine, etc.), imidazoles (1-methylimidazole, 1,2-dimethylimidazole, etc.), amidines (diazabicycloundecene). (DBU), diazabicyclononene, etc.). From the viewpoint of reactivity, sulfuric acid, perchloric acid, DMAP and DBU are preferred.
  • metal catalysts include metal chlorides such as iron, aluminum, indium, zirconium, zinc, cobalt, nickel and copper (iron chloride, aluminum chloride, indium chloride, zirconium oxychloride, zinc chloride, cobalt chloride, chloride) Nickel, copper chloride, etc.), metal nitrates, metal sulfates, metal organic acid salts (metal acetates, etc.).
  • an organometallic catalyst or a base catalyst can be used.
  • the organometallic catalyst include tin octylate and dibutyltin dilaurate.
  • the base catalyst include triethylenediamine and trimethylaminoethylpiperazine.
  • the amount of the short chain reagent, medium chain reagent and long chain reagent used is, for example, 1.1 to 10 equivalents, preferably 1.3 to 5.0 equivalents based on the hydroxyl group of cellulose. In consideration of the reactivity of the short-chain, medium-chain, and long-chain organic reactants, the amount used can be appropriately set.
  • an acid anhydride is used as a reactant, it is not necessary that all of the short chain, medium chain, and long chain reactants are acid anhydrides, and a mixture of carboxylic acid and acid anhydride may be used. These carboxylic acids can also be used in the reaction.
  • a carboxylic acid for example, acetic acid
  • mixed acid anhydride for example, medium chain acid anhydride and long chain carboxylic acid
  • the reaction proceeds in the esterification step and the aging step, and short chain, medium chain, and long chain organic groups are introduced into the cellulose.
  • the sulfuric acid catalyst When sulfuric acid is used as the reaction catalyst, the sulfuric acid catalyst is removed by a known method. Under the present circumstances, in order to improve the thermal stability of a cellulose derivative and to suppress a hydrolysis, it can heat-process with a well-known prescription. In particular, it is preferable to inactivate sulfate groups by adding salts or compounds of alkaline earth metals (calcium, magnesium, strontium, barium, etc.) within a range that does not impair the physical properties of cellulose.
  • alkaline earth metals calcium, magnesium, strontium, barium, etc.
  • the cellulose derivative as a product can be precipitated in a poor solvent and easily recovered by a normal solid-liquid separation process.
  • a poor solvent water, methanol, ethanol, isopropyl alcohol (IPA), acetone, hexane and the like are used, and water, methanol, and a mixed solution of water and methanol are particularly preferable.
  • the solid content obtained by the solid-liquid separation treatment can be washed as necessary and dried by an ordinary method.
  • the cellulose derivative according to an embodiment of the present invention has a good strength (high elastic modulus, high impact strength), thermoplasticity and water resistance by adding a short chain, a medium chain, and a long chain organic group at a specific ratio. It is possible to provide a resin composition that provides a molded article that can exhibit properties.
  • thermoplastic resins used for ordinary thermoplastic resins can be applied to the resin composition containing a cellulose derivative according to an embodiment of the present invention.
  • thermoplasticity and elongation at break can be further improved by adding a plasticizer.
  • plasticizers examples include phthalate esters such as dibutyl phthalate, diaryl phthalate, diethyl phthalate, dimethyl phthalate, di-2-methoxyethyl phthalate, ethyl phthalyl ethyl glycolate, and methyl phthalyl ethyl glycolate; Tartrate esters such as dibutyl tartrate; adipates such as dioctyl adipate and diisononyl adipate; polyhydric alcohol esters such as triacetin, diacetyl glycerol, tripropionitrile glycerol and glycerol monostearate; triethyl phosphate, triphenyl phosphate, Phosphate esters such as tricresyl phosphate; dibasic fatty acid esters such as dibutyl adipate, dioctyl adipate, dibutyl azelate, dioctyl
  • plasticizers include cyclohexanedicarboxylic acid esters such as dihexylcyclohexanedicarboxylate, dioctylcyclohexanedicarboxylate, and di-2-methyloctylcyclohexanedicarboxylate; trimexates such as dihexyl trimellitic acid, diethylhexyl trimellitic acid, and dioctyl trimellitic acid Mellitic acid esters; pyromellitic acid esters such as dihexyl pyromellitic acid, diethylhexyl pyromellitic acid, and dioctyl pyromellitic acid.
  • an inorganic or organic granular or fibrous filler can be added as necessary.
  • a filler By adding a filler, strength and rigidity can be further improved.
  • the filler include mineral particles (talc, mica, calcined diatomaceous earth, kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flakes, milled fiber, wollastonite ( Or wollastonite), boron-containing compounds (boron nitride, boron carbide, titanium boride, etc.), metal carbonates (magnesium carbonate, heavy calcium carbonate, light calcium carbonate, etc.), metal silicates (calcium silicate, silicic acid, etc.) Aluminum, magnesium silicate, magnesium aluminosilicate, etc.), metal oxide (magnesium oxide, etc.), metal hydroxide (aluminum hydroxide, calcium hydroxide, magnesium hydroxide, etc.), metal s
  • organic fibers natural fibers, papers, etc.
  • inorganic fibers glass fibers, asbestos fibers, carbon fibers, silica fibers, silica / alumina fibers, wollastonite, zirconia fibers, potassium titanate fibers) Etc.
  • metal fibers can be used alone or in combination of two or more.
  • a flame retardant can be added to the resin composition of this embodiment as necessary. By adding a flame retardant, flame retardancy can be imparted.
  • the flame retardant include metal hydrates such as magnesium hydroxide, aluminum hydroxide, and hydrotalcite, basic magnesium carbonate, calcium carbonate, silica, alumina, talc, clay, zeolite, brominated flame retardant, three Examples thereof include antimony oxide, phosphoric acid flame retardants (aromatic phosphate esters, aromatic condensed phosphate esters, etc.), compounds containing phosphorus and nitrogen (phosphazene compounds), and the like. These flame retardants can be used alone or in combination of two or more.
  • the impact resistance improver can be added to the resin composition of this embodiment as necessary.
  • the impact resistance can be improved by adding an impact resistance improver.
  • the impact resistance improver include rubber components and silicone compounds.
  • the rubber component include natural rubber, epoxidized natural rubber, and synthetic rubber.
  • the silicone compound include organic polysiloxanes formed by polycondensation such as alkyl siloxane and alkyl phenyl siloxane, or the side chain or terminal of the organic polysiloxane is polyether, methyl styryl, alkyl, higher fatty acid ester, alkoxy.
  • Modified silicone compounds modified with fluorine, amino group, epoxy group, carboxyl group, carbinol group, methacryl group, mercapto group, phenol group and the like. These impact modifiers can be used alone or in combination of two or more.
  • the silicone compound is preferably a modified silicone compound (modified polysiloxane compound).
  • This modified silicone compound has a main chain composed of repeating units of dimethylsiloxane, and a part of the side chain or terminal methyl group is an amino group, an epoxy group, a carbinol group, a phenol group, a mercapto group, Organic containing at least one group selected from carboxyl group, methacryl group, long chain alkyl group, aralkyl group, phenyl group, phenoxy group, alkylphenoxy group, long chain fatty acid ester group, long chain fatty acid amide group, and polyether group Mono-modified polydimethylsiloxane having a structure substituted with a substituent is preferred.
  • the modified silicone compound can improve the affinity for the aforementioned cellulose derivative, improve the dispersibility in the cellulose derivative, and obtain a resin composition having excellent impact resistance. .
  • additives that are applied to ordinary resin compositions such as a colorant, an antioxidant, and a heat stabilizer may be added to the resin composition of this embodiment.
  • a general thermoplastic resin may be added to the resin composition of this embodiment as necessary.
  • polyester can be added, and a linear aliphatic polyester can be suitably used.
  • linear aliphatic polyester (Y) the following linear aliphatic polyesters (Y1) and (Y2) are preferable, and examples thereof include polybutylene succinate, polybutylene succinate adipate, and polycaprolactone. .
  • R 23 represents a divalent aliphatic group, and the carbon number thereof is 1 to 12, preferably 2 to 8, and more preferably 2 to 4.
  • R 24 represents a divalent aliphatic group, and the carbon number thereof is 2 to 12, preferably 2 to 8, and more preferably 2 to 4.
  • R 25 represents a divalent aliphatic group, and the carbon number thereof is 2 to 10, preferably 2 to 8, and more preferably 2 to 4.
  • (Y2) A linear aliphatic polyester comprising a ring-opening polymer of a cyclic ester.
  • the linear aliphatic polyester (Y1) can be obtained, for example, by a condensation reaction of an aliphatic diol with at least one selected from the group consisting of aliphatic dicarboxylic acids, acid anhydrides and diesters thereof.
  • the aliphatic dicarboxylic acid has, for example, 3 to 12 carbon atoms, preferably 3 to 9 carbon atoms, and more preferably 3 to 5 carbon atoms.
  • the aliphatic carboxylic acid is, for example, alkanedicarboxylic acid, and specific examples thereof include malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid and the like. Any one kind of the aliphatic dicarboxylic acid may be used, or two or more kinds may be used in combination.
  • the aliphatic diol has, for example, 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the aliphatic diol is, for example, alkylene glycol, and specific examples thereof include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, Examples thereof include 1,10-decanediol and 1,12-dodecanediol.
  • linear aliphatic diols having 2 to 6 carbon atoms are preferable, and ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, and 1,6-hexanediol are particularly preferable. Any one kind of the aliphatic diol may be used, or two or more kinds may be used in combination.
  • the linear aliphatic polyester (Y2) is a linear aliphatic polyester obtained by ring-opening polymerization of a cyclic ester.
  • the cyclic ester include lactones having 2 to 12 carbon atoms, and specific examples include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, and ⁇ -valerolactone. Any one kind of the cyclic ester may be used, or two or more kinds may be used in combination.
  • the number average molecular weight of the linear aliphatic polyester (Y) is not particularly limited, and is preferably 10,000 or more, more preferably 20,000 or more, and preferably 200,000 or less, more Preferably it is 100,000 or less.
  • Y The number average molecular weight of the linear aliphatic polyester
  • the number average molecular weight for example, a measurement value by GPC (calibrated with a polystyrene standard sample) relating to a 0.1% chloroform solution of the sample can be adopted.
  • the impact resistance can be improved by adding a thermoplastic resin having excellent flexibility such as a thermoplastic polyurethane elastomer (TPU) to the resin composition of the embodiment of the present invention.
  • a thermoplastic resin having excellent flexibility such as a thermoplastic polyurethane elastomer (TPU)
  • the addition amount of such a thermoplastic resin (particularly TPU) is preferably 1% by mass or more, preferably 5% by mass or more with respect to the total composition containing the cellulose derivative of the present embodiment example, from the viewpoint of obtaining a sufficient addition effect. Is more preferable.
  • thermoplastic polyurethane elastomer (TPU) suitable for improving the impact resistance those prepared using a polyol, a diisocyanate, and a chain extender can be used.
  • the polyol include polyester polyol, polyester ether polyol, polycarbonate polyol, and polyether polyol.
  • polyester polyol examples include aliphatic dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, etc.), aromatic dicarboxylic acids (phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.), and alicyclic dicarboxylic acids.
  • Polyvalent carboxylic acids such as acids (hexahydrophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, etc.) or their acid esters or acid anhydrides, ethylene glycol, 1,3-propylene glycol, 1,2-propylene Glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,3-octane Diols, polyhydric alcohols such as 1,9-nonanediol or Polyester polyols obtained by dehydration condensation reaction of a mixture of these; polylactone diols obtained by ring-opening polymerization of lactones monomer ⁇ - caprolactone, and the like.
  • acids hexahydrophthalic acid, hexahydr
  • polyester ether polyol examples include aliphatic dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, etc.), aromatic dicarboxylic acids (phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.), alicyclic Polycarboxylic acids such as dicarboxylic acids (hexahydrophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, etc.) or their acid esters or anhydrides, and diethylene glycol or alkylene oxide adducts (propylene oxide adducts, etc.) And a compound obtained by a dehydration condensation reaction with a glycol or the like or a mixture thereof.
  • aliphatic dicarboxylic acids succinic acid, adipic acid, sebacic acid, azelaic acid, etc.
  • aromatic dicarboxylic acids
  • polycarbonate polyol examples include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6
  • One or more polyhydric alcohols such as hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, and diethylene carbonate
  • Polycarbonate polyol obtained by reacting with dimethyl carbonate, diethyl carbonate or the like. Further, it may be a copolymer of polycaprolactone polyol (PCL) and polyhexamethylene carbonate (PHL).
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and the like obtained by polymerizing cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran, and copolyethers thereof.
  • Examples of the diisocyanate used for forming TPU include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6- Hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate Methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate Doo (hydrogenated MDI; HMDI) or the like.
  • a low molecular weight polyol can be used as a chain extender used for forming TPU.
  • the low molecular weight polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 -Aliphatic polyols such as hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, 1,4-cyclohexanedimethanol, glycerin; Aromatic glycols such as 1,4-dimethylolbenzene, bisphenol A, ethylene oxide or propylene oxide adducts of bisphenol A are listed.
  • thermoplastic polyurethane elastomer TPU
  • TPU thermoplastic polyurethane elastomer
  • a cellulose derivative dispersed in a solvent such as an organic solvent and various additives and a thermoplastic resin are mixed, and if necessary, a coagulation solvent is added and various additives are added.
  • a solvent such as an organic solvent and various additives and a thermoplastic resin
  • the cellulose derivative according to the embodiment described above can be used as a base resin of a molding material (resin composition).
  • a molding material using the cellulose derivative as a base resin is suitable for a molded body such as a casing such as an exterior for an electronic device.
  • the base resin means the main component in the molding material and means that other components can be contained within a range that does not interfere with the function of this main component.
  • the content ratio of this main component is specified. Not what you want.
  • the cellulose derivative occupies 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more in the composition.
  • the obtained filtrate was dispersed in 90 mL of acetic acid, stirred for 24 hours, and suction filtered to remove acetic acid.
  • the dispersion in acetic acid and the removal of acetic acid were performed twice. As a result, activated cellulose was obtained.
  • a cellulose derivative was synthesized by the following method. First, 31.6 g of stearic acid and 28.5 mL of propionic anhydride were put into a three-necked flask and reacted at 100 ° C. for 1 hour in a nitrogen atmosphere to synthesize acid anhydrides of stearic acid and propionic acid. Then, 250 mL of 1,4-dioxane was added thereto, the temperature of the reaction solution was lowered to 50 ° C., and then the cellulose activated by the above acetic acid and a mixed solution of 120 ⁇ L of perchloric acid and 50 mL of 1,4-dioxane were added. In addition, the mixture was stirred at 50 ° C.
  • the mixture was stirred at 50 ° C. After 2 hours, the reaction solution was transferred from the three-necked flask to a beaker, and 1.5 L of water was added dropwise to stop the reaction. The solid deposited by dropping was suction filtered, and the filtrate was washed with methanol and further washed with water. Then, the objective cellulose derivative (C3) was obtained by making it dry under reduced pressure at 100 degreeC.
  • the solid precipitated by dropping was suction filtered, and the filtrate was washed twice with isopropyl alcohol, once with ethanol, and further washed once with water. Then, the objective cellulose derivative (C7) was obtained by making it dry under reduced pressure at 100 degreeC.
  • Example 1 The cellulose derivative (C1) was kneaded at 180 ° C. and injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 110 ° C. to obtain a molded body.
  • the molded body was used to evaluate impact strength, bending strength, and water absorption.
  • Example 2 The cellulose derivative (C2) was kneaded at 160 ° C. and injection molded at a cylinder temperature of 170 ° C. and a mold temperature of 80 ° C. to obtain a molded body.
  • the molded body was used to evaluate impact strength, bending strength, and water absorption.
  • Example 3 The cellulose derivative (C3) was kneaded at 160 ° C. and injection molded at a cylinder temperature of 170 ° C. and a mold temperature of 110 ° C. to obtain a molded body. The molded body was used to evaluate impact strength, bending strength, and water absorption.
  • Example 4 The cellulose derivative (C4) was kneaded at 160 ° C. and injection molded at a cylinder temperature of 170 ° C. and a mold temperature of 80 ° C. to obtain a molded body. The molded body was used to evaluate impact strength, bending strength, and water absorption.
  • Example 5 The cellulose derivative (C5) was kneaded at 160 ° C. and injection molded at a cylinder temperature of 170 ° C. and a mold temperature of 80 ° C. to obtain a molded body. The molded body was used to evaluate impact strength, bending strength, and water absorption.
  • CAP482-20 commercially available cellulose acetate propionate (trade name “CAP482-20”, manufactured by Eastman Chemical Co., Ltd., hereinafter abbreviated as CAP) was used. Injection molding was performed at a cylinder temperature of 220 ° C. and a mold temperature of 110 ° C., and injection molding was performed.
  • kneading mixing of a cellulose derivative, the formation method, and the evaluation method of the physical property are shown.
  • Kneading method Using a kneader (manufactured by Thermo Electron Corporation, trade name: HAAKE MiniLab Rheomex CTW5), 7.5 g of the cellulose derivative was kneaded. At that time, the number of rotations of the screw was set to 60 rpm, and the raw materials were charged from the supply port of the kneader and kneaded for 3 minutes.
  • the obtained molded body was subjected to a bending test (maximum bending stress, elongation at break, bending elastic modulus measurement) in accordance with JIS K7171.
  • Table 1 shows the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained cellulose derivative, and Table 2 shows the evaluation results.
  • the cellulose derivatives (Examples 1 to 5) in which the three components of short chain, medium chain, and long chain organic groups were introduced in a specific DS range, impact strength, bending
  • the properties both showed high values, low water absorption, and excellent water resistance.
  • the molding temperature was 200 ° C. or less, and good thermoplasticity was exhibited.
  • Comparative Example 1 is a cellulose resin that does not contain a long-chain organic group and into which a short-chain organic group and a medium-chain organic group are introduced.
  • the impact strength and bending properties are good due to the introduction of the short-chain organic group and the medium-chain organic group, but since the long-chain organic group is not introduced, the molding temperature is as high as 220 ° C., and the thermoplasticity and water resistance are low.
  • Comparative Example 2 is a cellulose resin that does not contain a medium chain organic group and into which a short chain organic group and a long chain organic group are introduced. Although the water resistance was improved by the introduction of the long-chain organic group, the molding temperature was as high as 210 ° C. and the thermoplasticity was low.
  • Comparative Example 3 is a cellulose derivative that does not contain a short-chain organic group and into which a medium-chain organic group and a long-chain organic group are introduced.
  • the introduction of medium chain organic groups and long chain organic groups increased the flexibility of cellulose, improved impact strength and thermoplasticity, and improved water resistance.
  • the short chain organic group is not included, the interaction between the cellulose molecular chains is weakened, so that the maximum bending stress and the bending elastic modulus are lowered.
  • Example 6 To 90 parts of the cellulose derivative (C2), 10 parts of polybutylene succinate adipate (PBSA; Bionore 3001, Showa Denko Co., Ltd.) is added as an additive, kneaded at 160 ° C, and the cylinder temperature of the molding machine is 170 ° C. Injection molding was performed at a mold temperature of 80 ° C. to obtain a transparent molded body. The molded body was used to evaluate impact strength, bending characteristics, and water absorption. The results are shown in Table 3.
  • PBSA polybutylene succinate adipate
  • Example 6 by adding PBSA as an additive to the cellulose derivative (C2), a resin composition having improved impact strength while maintaining high bending stress, bending elastic modulus, water resistance and thermoplasticity. was obtained (comparison with Example 2).
  • thermoplasticity As described above, a cellulose derivative excellent in thermoplasticity, water resistance, and strength (elastic modulus, impact strength) is provided by adding three components of short chain, medium chain and long chain to cellulose with a specific degree of substitution. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性、耐水性、強度(弾性率、衝撃強度)に優れたセルロース誘導体を提供するため、セルロースに、短鎖有機基(アセチル基)、炭素数3~5の中鎖有機基、炭素数6~30の長鎖有機基を以下の範囲の置換度DSで導入したセルロース誘導体を用いる。 短鎖有機基 0.7≦DSSH≦1.5 中鎖有機基 0.5≦DSME≦2.0 長鎖有機基 0.1≦DSLO<0.5 2.4≦DSSH+DSME+DSLO≦3

Description

セルロース誘導体およびその用途
 本発明は、セルロース誘導体、該セルロース誘導体を含む樹脂組成物及び該セルロース誘導体を成形して得られる成形体に関する。また本発明は当該セルロース誘導体の製造方法に関する。
 植物を原料とするバイオプラスチックは、石油枯渇対策や温暖化対策に寄与できるため、包装、容器、繊維などの一般製品に加え、電子機器、自動車等の耐久製品への利用も開始されている。
 しかし、通常のバイオプラスチック、例えば、ポリ乳酸、ポリヒドロキシアルカネート、デンプン変性物などは、いずれもデンプン系材料、すなわち可食部を原料としている。そのため、将来の食料不足への懸念から、非可食部を原料とする新しいバイオプラスチックの開発が求められている。
 非可食部の原料としては、木材や草木の主要成分であるセルロースが代表的であり、これを利用した種々のバイオプラスチックが開発され、製品化されている。しかし、製品化されたセルロース樹脂の耐久性(強度、耐熱性、耐水性など)は十分でないため、用途が限定されている。
 セルロースとしては、木材等からリグニンやヘミセルロースを薬剤によって化学的に分離したパルプが知られている。または、綿はほぼセルロースでできているため、このまま用いることができる。このようなセルロースは、β-グルコースが重合した高分子であるが、多くの水酸基を有するために、水素結合による強力な分子間力を持つ。そのため、硬くて脆く、熱可塑性もなく、また、特殊な溶媒を除き、溶媒溶解性も低い。さらに、親水性基である水酸基を多く有するため吸水性が高く、耐水性が低い。
 このようなセルロースを改質するため、種々の検討が行われている。
 セルロースを改質する方法としては、セルロースの水酸基の水素原子をアセチル基などの短鎖有機基で置換する方法が知られている。この方法によれば、水酸基の数を低減できるため、セルロースの分子間力を下げることができる。ただし、アセチル基のような短鎖有機基だけでは熱可塑性や耐水性は不十分であるため、短鎖有機基に加えて、より炭素数の多い長鎖有機基をセルロースに導入することで、長鎖有機基が疎水性の内部可塑剤として機能し、熱可塑性や耐水性が改良される。
 例えば、特許文献1では、セルロースの水酸基の水素原子の少なくとも一部が、炭素数2~4の脂肪族アシル基及び炭素数5~20の脂肪族アシル基で置換されたセルロース誘導体が合成されている。このセルロース誘導体は、熱可塑性や耐水性に加えて、良好な耐衝撃性、破断伸度を有し、成形加工に適していることが記載されている。
 特許文献2には、セルロースの水酸基をアセチル基および炭素原子数が3以上のアシル基で置換して得られたセルロースの混合脂肪酸エステルが示され、このセルロース誘導体のフィルムは優れた物性を有し、ソルベントキャスト法で製造できることが記載されている。
 非特許文献1には、アセチル基と2-エチルヘキサノイル基を組み合わせることで、熱可塑性を有し、剛性/耐衝撃性/耐熱性のバランスに優れた材料が提供できると記載されている。
特開2010-121121号公報 特開2002-265639号公報
FUJIFILM RESEACH & DEVELOPMENT No.57-2012
 アセチル基のような短鎖有機基に加えて、より炭素数の多い長鎖有機基を導入するセルロースの改質方法において、良好な熱可塑性を付与するために長鎖有機基の置換度を上げると、長鎖有機基の高い柔軟性や立体障害の影響を受け、セルロース誘導体の弾性率は低下する傾向にある。高い弾性率を保ちつつセルロースに良好な熱可塑性を付与するには、長鎖有機基をなるべく低い置換度で均質にセルロース鎖へ導入するのが良いと考えられる。しかし、長鎖有機基は立体障害が大きく極性が低いことから、セルロースの水酸基との反応性が短鎖有機基に比べて非常に低い。従って、セルロースに短鎖有機基と長鎖有機基を導入すると、セルロースの水酸基は短鎖有機基と優先して反応するため、セルロース内で短鎖有機基と長鎖有機基の偏在が起こり、その結果、良好な熱可塑性を付与するには長鎖置換基を必要以上に導入しなければならず、高い弾性率との両立は困難であった。
 上述の特許文献1によるセルロース樹脂は、耐衝撃性、耐水性、破断伸度に優れているが、例えば高弾性率を要する用途への適用において特性の改質が求められる。特許文献2によるセルロース樹脂は平衡含水率が高く、例えば耐水性を要する用途への適用において特性の改質が求められる。
 本発明は、熱可塑性、耐水性、強度(弾性率、衝撃強度)に優れたセルロース誘導体を提供することを目的とする。
 本発明の一形態によれば、
 セルロースの水酸基の水素原子の少なくとも一部が、炭素数2の短鎖有機基(アセチル基)、炭素数3~5の中鎖有機基および炭素数6~30の長鎖有機基により下記置換度で置換されたセルロース誘導体が提供される。
    0.7≦DSSH≦1.5
    0.5≦DSME≦2.0
    0.1≦DSLO<0.5
   2.4≦DSSH+DSME+DSLO≦3
(DSSHは前記短鎖有機基の置換度、DSMEは前記中鎖有機基の置換度、DSLOは前記長鎖有機基の置換度を示す。)
 本発明の一形態によれば、熱可塑性、耐水性、強度(弾性率、衝撃強度)に優れたセルロース誘導体を提供することができる。
 本発明の一形態によれば、短鎖有機基(アセチル基)、長鎖有機基に加えて、中鎖有機基を併用することで、高弾性率と良好な熱可塑性を示し、耐水性や耐衝撃性にも優れることを特徴とするセルロース誘導体およびその製造方法が提供される。中鎖有機基はアセチル基と長鎖有機基の間の炭素数を有し、短鎖有機基と長鎖有機基の親和性を高めるため、セルロース内で各有機基が均質に導入されると思われる。これらのセルロース誘導体は、電子機器、自動車等の耐久製品に利用することができる。
 以下、本発明について、実施形態例を参照して詳細を述べる。
 [セルロース]
 セルロースは、下記式(1)で示されるβ-グルコースの直鎖状重合物であり、末端を除く各グルコース単位は三つのヒドロキシ基を有している。これらのヒドロキシ基を、短鎖、中鎖および長鎖有機基で置換することができる。
Figure JPOXMLDOC01-appb-C000001
 セルロースは、草木類の主成分であり、草木類からリグニン等の他の成分を分離処理することによって得られる。このように得られたものの他、セルロース含有量の高い綿やパルプを精製してあるいはそのまま用いることができる。
 セルロースの重合度は、グルコース重合度として、50~5000の範囲が好ましく、100~3000がより好ましい。重合度が低すぎると、製造した樹脂の強度、耐熱性などが十分でない場合がある。逆に、重合度が高すぎると、製造した樹脂の溶融粘度が高くなりすぎて成形に支障をきたす場合がある。
 セルロースには、類似の構造のキチンやキトサンが混合されていてもよく、混合されている場合は、混合物全体に対して30質量%以下が好ましく、20質量%以下が好ましく、10質量%以下がさらに好ましい。
[セルロース誘導体]
 本発明の一実施形態例では、上記のセルロースの水酸基の水素原子の少なくとも一部が、炭素数2の短鎖有機基(アセチル基)、炭素数3~5の中鎖有機基および炭素数6~30の長鎖有機基により下記置換度で置換されたセルロース誘導体が提供される。
    0.7≦DSSH≦1.5
    0.5≦DSME≦2.0
    0.1≦DSLO<0.5
   2.4≦DSSH+DSME+DSLO≦3
(DSSHは前記短鎖有機基の置換度、DSMEは前記中鎖有機基の置換度、DSLOは前記長鎖有機基の置換度を示す。)
[短鎖有機基]
 短鎖有機基はアセチル基である。セルロース中の水酸基と、酢酸、無水酢酸またはアセチルクロライドなどの短鎖反応剤を反応させて得られる。
 セルロースのグルコース単位あたりの短鎖有機基で置換された水酸基の個数(水酸基置換度)(平均値)、すなわちの置換度(DSSH)(平均値)は、セルロース分子鎖の相互作用を高め、高い弾性率を得る点から、0.7以上であり、0.9以上が好ましく、0.95以上がより好ましい。また、中鎖有機基および長鎖有機基の置換度(DSME、DSLO)を十分に確保する点から、DSSHは1.5以下であり、1.3以下が好ましい。
 なお、セルロース誘導体の置換度DSは、重水素化クロロホルム(CDCl)に溶解し、H-NMRによって測定することができる。CDClに不溶のセルロース誘導体においては、セルロース誘導体の残存水酸基をさらにアセチル化もしくはプロピオニル化してから測定を行うことができる。
[中鎖有機基]
 中鎖有機基は、セルロース中の水酸基と中鎖反応剤が反応することでできた結合基である。当該中鎖反応剤は、セルロース中の水酸基と反応できる官能基を少なくとも一つ持つ化合物であり、例えばカルボキシル基、カルボン酸ハライド基またはカルボン酸無水物基、イソシアネート基、クロロホーメート基、またはアクリル基を有する炭化水素化合物が挙げられる。具体的には、脂肪族モノカルボン酸、その酸ハロゲン化物又はその酸無水物、脂肪族モノイソシアネート、脂肪族モノクロロホーメート、アクリル酸エステル、メタクリル酸エステルが挙げられる。
 この中鎖有機基は、炭素数3~5の範囲であり、炭素数3~4であることが好ましく、炭素数3であることがより好ましい。これらを導入するための中鎖反応剤としては、具体的には、脂肪族モノカルボン酸としては、プロピオン酸、イソプロピオン酸、ブタン酸、イソブタン酸、t-ブタン酸、ペンタン酸、イソペンチル酸、2-メチルブチリル基、3-メチルブチリル基などを有する脂肪族モノカルボン酸が挙げられ、プロピオン酸、イソプロピオン酸、ブタン酸、イソブタン酸、t-ブタン酸、が好ましく、プロピオン酸がさらに好ましい。脂肪族モノイソシアネートとしては、直鎖状の又は分岐した側鎖をもつ脂肪族炭化水素にイソシアネート基が結合したものが挙げられる。脂肪族モノクロロホーメートとしては、直鎖状の又は分岐した側鎖をもつ脂肪族炭化水素にクロロホーメート基が結合したものが挙げられる。中鎖有機基としては炭素数3または4のアシル基であることが好ましく、プロピオニル基であることが特に好ましい。
 セルロースのグルコース単位あたりの中鎖有機基の置換度(DSME)(平均値)は、短鎖有機基と長鎖有機基の親和性を高める効果を得る点から、0.5以上であり、0.7以上が好ましく、1.0以上がより好ましい。また、長鎖有機基の置換度(DSLO)を十分に確保する点から、DSMEは2.0以下であり、1.5以下が好ましい。
[長鎖有機基]
 長鎖有機基は、セルロース中の水酸基と長鎖反応剤が反応することでできた結合基である。当該長鎖反応剤は、セルロース中の水酸基と反応できる官能基を少なくとも一つ持つ化合物であり、例えばカルボキシル基、カルボン酸ハライド基またはカルボン酸無水物基、イソシアネート基、クロロホーメート基、またはアクリル基を有する炭化水素化合物が挙げられる。具体的には、脂肪族モノカルボン酸、芳香族モノカルボン酸、脂環族モノカルボン酸等のモノカルボン酸から選ばれる少なくとも一種の化合物、その酸ハロゲン化物又はその酸無水物、脂肪族モノイソシアネート、芳香族モノイソシアネート、脂環族モノイソシアネートから選ばれる少なくとも一種の化合物、脂肪族モノクロロホーメート、芳香族モノクロロホーメート、脂環族モノクロロホーメートから選ばれる少なくとも一種の化合物、アクリル酸エステル、メタクリル酸エステルが挙げられる。
 この長鎖有機基は、炭素数6~30の範囲であり、炭素数9~30であることが好ましく、少量で熱可塑効果を得られることから炭素数12~30であることがより好ましい。長鎖有機基は1種であっても2種以上置換していてもよい。長鎖反応剤の脂肪族モノカルボン酸としては、直鎖状の又は分岐した側鎖をもつ脂肪酸が挙げられる。この脂肪酸として、飽和脂肪酸および不飽和脂肪酸が挙げられるが、熱安定性の観点から飽和脂肪酸であることが好ましい。芳香族モノカルボン酸としては、芳香環にカルボキシル基が直接結合したもの、芳香環にアルキレン基(例えばメチレン基、エチレン基)を介してカルボキシル基が結合したもの(芳香環に脂肪族カルボン酸基が結合したもの)が挙げられる。脂環族モノカルボン酸としては、脂肪族環にカルボキシル基が直接結合したもの、脂肪族環にアルキレン基(例えばメチレン基、エチレン基)を介してカルボキシル基が結合したもの(脂肪族環に脂肪族カルボン酸基が結合したもの)が挙げられる。脂肪族モノイソシアネートとしては、直鎖状の又は分岐した側鎖をもつ脂肪族炭化水素にイソシアネート基が結合したものが挙げられる。芳香族モノイソシアネートとしては、芳香環にイソシアネート基が直接結合したもの、芳香環にアルキレン基(例えばメチレン基、エチレン基)を介してイソシアネート基が結合したもの(芳香環に脂肪族イソシアネート基が結合したもの)が挙げられる。脂環族モノイソシアネートとしては、脂肪族環にイソシアネート基が直接結合したもの、脂肪族環にアルキレン基(例えばメチレン基、エチレン基)を介してイソシアネート基が結合したもの(脂肪族環に脂肪族イソシアネート基が結合したもの)が挙げられる。脂肪族モノクロロホーメートとしては、直鎖状の又は分岐した側鎖をもつ脂肪族炭化水素にクロロホーメート基が結合したものが挙げられる。芳香族モノクロロホーメートとしては、芳香環にクロロホーメート基が直接結合したもの、芳香環にアルキレン基(例えばメチレン基、エチレン基)を介してクロロホーメート基が結合したもの(芳香環に脂肪族クロロホーメート基が結合したもの)が挙げられる。脂環族モノクロロホーメートとしては、脂肪族環にクロロホーメート基が直接結合したもの、脂肪族環にアルキレン基(例えばメチレン基、エチレン基)を介してクロロホーメート基が結合したもの(脂肪族環に脂肪族クロロホーメート基が結合したもの)が挙げられる。長鎖有機基としては炭素数12~30のアシル基であることが好ましく、ステアリル基であることが特に好ましい。
 セルロースのグルコース単位あたりの長鎖有機基に置換された水酸基の個数(水酸基置換度)(平均値))、すなわち置換度(DSLO)(平均値は、0.1以上であり、0.2以上が好ましい。DSLOが低すぎると、長鎖有機基による熱可塑性や耐水性の改良効果が十分に得られない場合がある。また、DSLOは0.5未満であり、0.4以下が好ましく、0.3以下がより好ましい。DSLOが高すぎると、セルロース誘導体の弾性率が低下する。
 短鎖、中鎖および長鎖有機基のDSは、有機基の構造とセルロース誘導体に要求される物性とに応じて、最適な値とすることができる。
[セルロース誘導体中の水酸基の残存量]
 水酸基の量が多いほど、セルロース誘導体の最大強度や耐熱性が大きくなる傾向がある一方で、吸水性が高くなる傾向がある。水酸基の変換率(置換度)が高いほど、吸水性が低下し、可塑性や破断歪みが増加する傾向がある一方で、最大強度や耐熱性が低下する傾向がある。これらの傾向と短鎖、中鎖、長鎖有機基の反応条件を考慮して、水酸基の変換率を適宜設定することができる。
 耐水性を十分に確保する観点からは、セルロース誘導体のグルコース単位あたりの残存する水酸基の個数(水酸基残存度、DSOH)(平均値)は、0.6以下が好ましく、0.5以下がより好ましく、0.4以下がさらに好ましい。
 セルロース誘導体のグルコース単位あたりの水酸基は3個であるので、短鎖、中鎖、長鎖の総和DSSH+DSME+DSLOは2.4<DSSH+DSME+DSLO≦3
となる。
 各有機基の置換度をまとめると、以下のとおりになる。
  短鎖有機基 0.7≦DSSH≦1.5
  中鎖有機基 0.5≦DSME≦2.0
  長鎖有機基 0.1≦DSLO<0.5
  2.4<DSSH+DSME+DSLO≦3
[セルロース誘導体の分子量]
 本実施形態例のセルロース誘導体の数平均分子量(Mn)は、例えば、10,000以上が好ましく、より好ましくは20,000以上であり、また、200,000以下が好ましく、より好ましくは100,000以下である。また、重量平均分子量(Mw)は、例えば、10,000以上が好ましく、より好ましくは20,000以上であり、また、200,000以下が好ましく、より好ましくは100,000以下である。また、分子量分布(Mw/Mn)は、例えば、1.1以上が好ましく、より好ましくは1.4以上であり、また、4.0以下が好ましく、より好ましくは3.5以下である。この範囲の数平均分子量、重量平均分子量、分子量分布とすることにより、強度、熱可塑性、成型性等が向上する。分子量は、例えば、クロロホルムを溶媒とし、ゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン標準試料で較正)することができる。クロロホルムに不溶のセルロース誘導体においては、セルロース誘導体の残存水酸基をさらにアセチル化もしくはプロピオニル化してから測定を行うことができる。
 以下、本実施形態例の製造方法を詳述する。
[セルロースの活性化]
 セルロースに各有機基を導入するための反応工程の前に、セルロースの反応性を上げるために、活性化処理(前処理工程)を行うことができる。
 活性化処理は、例えば、セルロースに親和する活性化溶媒をセルロースに対して噴霧する方法、あるいはセルロースを活性化溶媒に浸漬する方法(浸漬法)などの湿式法で、セルロースと当該溶媒とを接触させ、セルロースを膨潤させる。これにより、セルロース分子鎖間に反応剤が浸入しやすくなるため(溶媒や触媒を用いている場合はこれらとともに浸入しやすくなるため)、セルロースの反応性が向上する。ここで、活性化溶媒は、例えば、水;酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸などのカルボン酸;メタノール、エタノール、プロパノール、イソプロパノールなどのアルコール;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、エタノールアミン、ピリジン、N-メチルピロリドンなどの含窒素化合物;ジメチルスルホキシド等のスルホキシド化合物が挙げられ、これらの2種以上を組み合わせて使用できる。特に好ましくは、水、酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、ピリジン、N-メチルピロリドン、ジメチルスルホキシドを使用できる。なお、活性化溶媒がカルボン酸を含む場合、相当する炭素数のアシル基が導入されることがあり、後工程での相当する短鎖、中鎖、長鎖反応剤による処理が不要となる場合がある。特に、水でセルロースを膨潤させ、水を除去した後、酢酸で処理してセルロースの水酸基の一部をアセチル基に変換することが好ましい。
 活性化溶媒の使用量は、セルロース100質量部に対して例えば10質量部以上、好ましくは20質量部以上、より好ましくは30質量部以上に設定できる。セルロースを活性化溶媒に浸漬する場合は、セルロースに対して質量で例えば1倍以上、好ましくは5倍以上、より好ましくは10倍以上に設定することができる。前処理後の活性化溶媒の除去の負担や材料コスト低減等の点から300倍以下が好ましく、100倍以下がより好ましく、50倍以下がさらに好ましい。
 活性化処理の温度は、例えば0~100℃の範囲で適宜設定できる。活性化の効率やエネルギーコスト低減の観点から10~40℃が好ましく、15~35℃がより好ましい。
 活性化処理の時間は、例えば0.1時間~72時間の範囲で適宜設定できる。十分な活性化を行い且つ処理時間を抑える観点から、0.1時間~24時間が好ましく、0.5時間~3時間がより好ましい。
 活性化処理後、過剰な活性化溶媒は吸引濾過などの固液分離方法により除去することができる。
 有機基を導入する反応時に溶媒を用いる場合は、活性化処理後、セルロースに含まれる活性化溶媒を反応時に用いる溶媒に置換することができる。例えば、上記の活性化処理の浸漬法における活性化溶媒を反応時に用いる溶媒(反応溶媒)に変更して、活性化したセルロースを同様に浸漬することで溶媒の置換処理を行うことができる。
[有機基の導入]
 セルロース、あるいは上記の活性化処理を行ったセルロースに対して、各有機基を導入する。この反応工程では、セルロースに対し、前述の短鎖反応剤、中鎖反応剤、長鎖反応剤、および必要に応じて溶媒、触媒を加え、セルロースと短鎖反応剤、中鎖反応剤および長鎖反応剤とを固液不均一系で反応させることができる。その際、必要に応じて加熱や撹拌を行うことができる。短鎖反応剤、中鎖反応剤および長鎖反応剤の反応性官能基は、同種のものとすることが好ましい。なお、上記反応剤が酸無水物である場合、短鎖有機酸、中鎖有機酸および長鎖有機酸から選択される2種の有機酸の混合酸無水物(非対称酸無水物)を利用することもできる。
 この反応工程では、セルロースを、短鎖反応剤、中鎖反応剤および長鎖反応剤を含む反応液に浸漬し、セルロースを膨潤させた状態で反応を行うことができる。これにより、セルロース分子鎖間に各反応剤が浸入しやすくなるため、反応性が向上する。
 反応溶媒の使用量は、セルロースに対して質量で例えば1倍以上、好ましくは5倍以上、より好ましくは10倍以上に設定することができる。反応後の反応溶液除去の負担や材料コスト低減等の点から300倍以下が好ましく、100倍以下がより好ましく、50倍以下がさらに好ましく、30倍以下が特に好ましい。
 反応温度は、反応効率等の点から10℃以上が好ましく、20℃以上がより好ましく、30℃以上がさらに好ましい。分解反応の抑制やエネルギーコスト低減等の観点から200℃以下が好ましく、150℃以下がより好ましく、100℃以下がさらに好ましい。
 反応時間は、十分に反応を進行させる観点から0.5時間以上が好ましく、1時間以上がより好ましく、製造プロセスの効率化等の観点から24時間以下が好ましく、12時間以下がより好ましく、4時間以下がさらに好ましい。
 反応溶媒を使用する場合は、生成物のセルロース誘導体との親和性が高い溶媒を用いることができる。このような溶媒としては、セルロース誘導体における残留水酸基の量や、有機基の疎水性、導入量、有機反応剤の官能基の種類に応じて、適宜選択することができる。反応溶媒としては、非プロトン性溶媒が好ましく、特に、セルロースの水酸基と水素結合を形成するプロトン親和性溶媒が好ましい。
 以上のような親和性の高い溶媒としては、例えば、ヘテロ環式化合物、エーテル、アミド、ケトン、エステル、極性ハロゲン化炭化水素、カーボネート、ニトロ化合物、ニトリル、有機硫黄化合物などが挙げられる。ヘテロ環式化合物としては、環状エーテル(ジオキサン、テトラヒドロフラン、ジオキソランなど)、ヘテロアレーン(ピリジン、キノリンなど)が挙げられる。親和性の高いエーテルとしては、上記の環状エーテルの他に1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテルなどの複数のエーテル構造部分を有する非環状エーテル、メチルフェニルエーテル、ジフェニルエーテルなどのアリール基を有するエーテルなどが挙げられる。アミドとしては、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。ケトンとしては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。エステルとしては、蟻酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルセロソルブアセテートが挙げられる。極性ハロゲン化炭化水素としては、クロロホルム、塩化メチレン、ジクロロエタン、塩化プロピレン、テトラクロルエタンが挙げられる。カーボネートとしては、プロピレンカーボネート、ブチレンカーボネートなどが挙げられる。ニトロ化合物としては、ニトロメタン、ニトロプロパンが挙げられる。ニトリルとしては、アセトニトリル、ベンゾニトリルが挙げられる。有機硫黄化合物としては、ジメチルスルホキシド等のスルホキシド化合物が挙げられる。また、これらの溶媒の2種類以上を混合して用いることもできる。上述のような溶媒を使用することで、セルロース誘導体の良好な膨潤状態が形成され、これにより立体障害の影響が小さくなり、反応剤の反応性を上げることができる。反応途中において、適宜同種あるいは別種の溶媒を追加してもよい。
 触媒を使用する場合は、短鎖反応剤、中鎖反応剤および長鎖反応剤の種類に応じて適宜選択して使用することができる。例えば、反応剤がカルボン酸やカルボン酸無水物である場合、酸触媒、塩基触媒、金属系触媒を用いることができる。酸触媒としては、例えば、無機酸(硫酸、過塩素酸、塩酸など)、有機酸(メタンスルホン酸、トルエンスルホン酸など)が挙げられる。塩基触媒としては、例えば、ピリジン誘導体(ジメチルアミノピリジン(DMAP)、4-ピロリジノピリジンなど)、イミダゾール類(1-メチルイミダゾール、1,2-ジメチルイミダゾールなど)、アミジン類(ジアザビシクロウンデセン(DBU)、ジアザビシクロノネンなど)が挙げられる。反応性の観点からは、硫酸、過塩素酸、DMAPおよびDBUが好ましい。金属系触媒としては、例えば、鉄、アルミニウム、インジウム、ジルコニウム、亜鉛、コバルト、ニッケル、銅などの金属の塩化物(塩化鉄、塩化アルミニウム、塩化インジウム、オキシ塩化ジルコニウム、塩化亜鉛、塩化コバルト、塩化ニッケル、塩化銅など)、前記金属の硝酸塩、前記金属の硫酸塩、前記金属の有機酸塩(前記金属の酢酸塩など)が挙げられる。
 反応剤がイソシアネート基を官能基として有する場合、有機金属触媒や塩基触媒を用いることができる。有機金属触媒としては、例えば、オクチル酸スズ、ジブチルスズジラウレートが挙げられる。塩基触媒としては、例えば、トリエチレンジアミン、トリメチルアミノエチルピペラジンが挙げられる。
 短鎖反応剤、中鎖反応剤および長鎖反応剤の使用量は、例えば、セルロースの水酸基に対して1.1~10当量、好ましくは1.3~5.0当量である。短鎖、中鎖、長鎖有機反応剤の反応性を考慮して、使用量を適宜設定することができる。また、反応剤として酸無水物を使用する場合は、短鎖、中鎖、長鎖反応剤すべてが酸無水物である必要はなく、カルボン酸と酸無水物の混合物でも良いし、活性化溶媒のカルボン酸を反応に利用することもできる。例えば、セルロースの活性化時に活性化溶媒としてカルボン酸(例えば、酢酸)を使用し、セルロース内に活性化溶媒が残存した状態で混合酸無水物(例えば中鎖酸無水物と長鎖カルボン酸)との反応を行うことで、エステル化工程および熟成工程にて反応が進行し、セルロースに短鎖、中鎖および長鎖有機基が導入される。
 反応触媒に硫酸を用いた場合、公知の手法により硫酸触媒が除かれる。この際、セルロース誘導体の熱安定性を向上させ加水分解を抑制するために、公知の処方で耐熱処理を行うことができる。特に、アルカリ土類金属(カルシウム、マグネシウム、ストロンチウム、バリウムなど)の塩や化合物をセルロースの物性を損なわない範囲で添加し、硫酸基を不活性化するのが好ましい。
 [生成物の回収]
 生成物であるセルロース誘導体は貧溶媒にて沈殿させ、通常の固液分離処理で容易に回収することができる。貧溶媒として、水、メタノール、エタノール、イソプロピルアルコール(IPA)、アセトン、ヘキサン等が用いられ、特に、水、メタノール、水とメタノールの混合溶液が好ましい。
 固液分離処理により得た固形分は、必要に応じて洗浄し、通常の方法で乾燥することができる。
 [樹脂組成物]
 本発明の一実施形態例に係るセルロース誘導体は、短鎖、中鎖、長鎖有機基を特定の割合で付加したことにより、良好な強度(高弾性率、高衝撃強度)、熱可塑性および耐水性を示しうる成形体を与える樹脂組成物が提供できる。
 [添加剤]
 本発明の一実施形態例に係るセルロース誘導体を含有する樹脂組成物には、通常の熱可塑性樹脂に使用する各種の添加剤を適用できる。例えば、可塑剤を添加することで、熱可塑性や破断時の伸びを一層向上できる。このような可塑剤としては、フタル酸ジブチル、フタル酸ジアリール、フタル酸ジエチル、フタル酸ジメチル、フタル酸ジ-2-メトキシエチル、エチルフタリル・エチルグリコレート、メチルフタリル・エチルグリコレート等のフタル酸エステル;酒石酸ジブチル等の酒石酸エステル;アジピン酸ジオクチル、アジピン酸ジイソノニル等のアジピン酸エステル;トリアセチン、ジアセチルグリセリン、トリプロピオニトリルグリセリン、グリセリンモノステアレートなどの多価アルコールエステル;リン酸トリエチル、リン酸トリフェニル、リン酸トリクレシルなどのリン酸エステル;ジブチルアジペート、ジオクチルアジペート、ジブチルアゼレート、ジオクチルアゼレート、ジオクチルセバケート等の二塩基性脂肪酸エステル;クエン酸トリエチル、クエン酸アセチル・トリエチル、アセチルクエン酸トリブチル等のクエン酸エステル;エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;ヒマシ油およびその誘導体;o-ベンゾイル安息香酸エチル等の安息香酸エステル;セバシン酸エステル、アゼライン酸エステル等の脂肪族ジカルボン酸エステル;マレイン酸エステル等の不飽和ジカルボン酸エステル;その他、N-エチルトルエンスルホンアミド、トリアセチン、p-トルエンスルホン酸o-クレジル、トリプロピオニンなどが挙げられる。中でも特に、アジピン酸ジオクチル、アジピン酸ベンジル-2ブトキシエトキシエチル、リン酸トリクレジル、リン酸ジフェニルクレジル、リン酸ジフェニルオクチルなどの可塑剤を添加すると、熱可塑性や破断時の伸びだけでなく、耐衝撃性も効果的に向上させることができる。
 その他の可塑剤として、シクロヘキサンジカルボン酸ジヘキシル、シクロヘキサンジカルボン酸ジオクチル、シクロヘキサンジカルボン酸ジ-2-メチルオクチル等のシクロヘキサンジカルボン酸エステル;トリメリット酸ジヘキシル、トリメリット酸ジエチルヘキシル、トリメリット酸ジオクチル等のトリメリット酸エステル;ピロメリット酸ジヘキシル、ピロメリット酸ジエチルヘキシル、ピロメリット酸ジオクチル等のピロメリット酸エステルが挙げられる。
 本実施形態例の樹脂組成物には、必要に応じて、無機系もしくは有機系の粒状または繊維状の充填剤を添加できる。充填剤を添加することによって、強度や剛性を一層向上できる。充填剤としては、例えば、鉱物質粒子(タルク、マイカ、焼成珪藻土、カオリン、セリサイト、ベントナイト、スメクタイト、クレイ、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト(またはウォラストナイト)など)、ホウ素含有化合物(窒化ホウ素、炭化ホウ素、ホウ化チタンなど)、金属炭酸塩(炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウムなど)、金属珪酸塩(珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウムなど)、金属酸化物(酸化マグネシウムなど)、金属水酸化物(水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなど)、金属硫酸塩(硫酸カルシウム、硫酸バリウムなど)、金属炭化物(炭化ケイ素、炭化アルミニウム、炭化チタンなど)、金属窒化物(窒化アルミニウム、窒化ケイ素、窒化チタンなど)、ホワイトカーボン、各種金属箔が挙げられる。繊維状の充填剤としては、有機繊維(天然繊維、紙類など)、無機繊維(ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ウォラストナイト、ジルコニア繊維、チタン酸カリウム繊維など)、金属繊維などが挙げられる。これらの充填剤は、単独で又は二種以上組み合わせて使用できる。
 本実施形態例の樹脂組成物には、必要に応じて、難燃剤を添加できる。難燃剤を添加することによって、難燃性を付与できる。難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイトのような金属水和物、塩基性炭酸マグネシウム、炭酸カルシウム、シリカ、アルミナ、タルク、クレイ、ゼオライト、臭素系難燃剤、三酸化アンチモン、リン酸系難燃剤(芳香族リン酸エステル類、芳香族縮合リン酸エステル類など)、リンと窒素を含む化合物(フォスファゼン化合物)などが挙げられる。これらの難燃剤は、単独で又は二種以上組み合わせて使用できる。
 本実施形態例の樹脂組成物には、必要に応じて、耐衝撃性改良剤を添加できる。耐衝撃性改良剤を添加することによって、耐衝撃性を向上できる。耐衝撃性改良剤としては、ゴム成分やシリコーン化合物を挙げられる。ゴム成分としては、天然ゴム、エポキシ化天然ゴム、合成ゴムなどが挙げられる。また、シリコーン化合物としては、アルキルシロキサン、アルキルフェニルシロキサンなどの重縮合によって形成された有機ポリシロキサン、もしくは、前記有機ポリシロキサンの側鎖または末端をポリエーテル、メチルスチリル、アルキル、高級脂肪酸エステル、アルコキシ、フッ素、アミノ基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、メルカプト基、フェノール基などで変性した変性シリコーン化合物などが挙げられる。これらの耐衝撃性改良剤は、単独で又は二種以上組み合わせて使用できる。
 このシリコーン化合物としては、変性シリコーン化合物(変性ポリシロキサン化合物)が好ましい。この変性シリコーン化合物としては、ジメチルシロキサンの繰り返し単位から構成される主鎖を持ち、その側鎖または末端のメチル基の一部が、アミノ基、エポキシ基、カルビノール基、フェノール基、メルカプト基、カルボキシル基、メタクリル基、長鎖アルキル基、アラルキル基、フェニル基、フェノキシ基、アルキルフェノキシ基、長鎖脂肪酸エステル基、長鎖脂肪酸アミド基、ポリエーテル基から選ばれる少なくとも1種類の基を含む有機置換基で置換された構造を有するモノ変性ポリジメチルシロキサンが好ましい。変性シリコーン化合物は、このような有機置換基を有することによって、前述のセルロース誘導体に対する親和性が改善され、セルロース誘導体中の分散性が向上し、耐衝撃性に優れる樹脂組成物を得ることができる。
 このような変性シリコーン化合物は、通常の方法に従って製造されるものを用いることができる。
 本実施形態例の樹脂組成物には、必要に応じて、着色剤、酸化防止剤、熱安定剤など、通常の樹脂組成物に適用される添加剤を添加してもよい。
 本実施形態例の樹脂組成物には、必要に応じて、一般的な熱可塑性樹脂を添加してもよい。
 熱可塑性樹脂として、ポリエステルを添加することができ、直鎖状脂肪族ポリエステルを好適に用いることができる。この直鎖状脂肪族ポリエステル(Y)としては、下記(Y1)及び(Y2)の直鎖状脂肪族ポリエステルが好ましく、例えば、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリカプロラクトン等が挙げられる。
 (Y1)下記式(VI)及び式(VII)の少なくとも一方の繰り返し単位を含む直鎖状脂肪族ポリエステル
 -(CO-R23-COO-R24-O-)-   (VI)
 -(CO-R25-O-)-          (VII)
 前記式(VI)中、R23は、二価脂肪族基を表し、その炭素数は、1~12であり、好ましくは2~8であり、より好ましくは2~4である。またR24は、二価脂肪族基を表し、その炭素数は、2~12であり、好ましくは2~8であり、より好ましくは2~4である。
 前記式(VII)中、R25は、二価脂肪族基を表し、その炭素数は、2~10であり、好ましくは2~8であり、より好ましくは2~4である。
 (Y2)環状エステルの開環重合物からなる直鎖状脂肪族ポリエステル。
 前記直鎖状脂肪族ポリエステル(Y1)は、例えば、脂肪族ジカルボン酸、その酸無水物及びそのジエステル体からなる群から選択された少なくとも一種と、脂肪族ジオールとの縮合反応により得られる。
 前記脂肪族ジカルボン酸は、例えば、炭素数3~12であり、好ましくは炭素数3~9であり、より好ましくは炭素数3~5である。この脂肪族カルボン酸は、例えば、アルカンジカルボン酸であり、具体例として、例えば、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸等があげられる。前記脂肪族ジカルボン酸は、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記脂肪族ジオールは、例えば、炭素数2~12であり、好ましくは炭素数2~8であり、より好ましくは炭素数2~6である。この脂肪族ジオールは、例えば、アルキレングリコールであり、具体例として、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール及び1,12-ドデカンジオール等があげられる。中でも、炭素数2~6の直鎖型脂肪族ジオールが好ましく、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましい。前記脂肪族ジオールは、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記直鎖状脂肪族ポリエステル(Y2)は、環状エステルが開環重合した直鎖状脂肪族ポリエステルである。この環状エステルは、例えば、炭素数2~12のラクトンがあげられ、具体例として、例えば、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン及びδ-バレロラクトン等があげられる。前記環状エステルは、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記直鎖状脂肪族ポリエステル(Y)の数平均分子量は、特に制限されず、例えば、10,000以上が好ましく、より好ましくは20,000以上であり、また、200,000以下が好ましく、より好ましくは100,000以下である。前記脂肪族ポリエステルは、その分子量を前記範囲に設定することで、例えば、より分散性に優れ、より均一な成形体を得ることができる。
 前記数平均分子量は、例えば、試料のクロロホルム0.1%溶液に関する、GPCによる測定値(ポリスチレン標準試料で較正)を採用できる。
 本発明の実施形態例の樹脂組成物には、熱可塑性ポリウレタンエラストマー(TPU)などの柔軟性に優れる熱可塑性樹脂を添加することにより、耐衝撃性を向上できる。このような熱可塑性樹脂(特にTPU)の添加量は、十分な添加効果を得る点から、本実施形態例のセルロース誘導体を含む組成物全体に対して1質量%以上が好ましく、5質量%以上がより好ましい。
 耐衝撃性向上に好適な熱可塑性ポリウレタンエラストマー(TPU)は、ポリオール、ジイソシアネート、および鎖延長剤を用いて調製されるものを用いることができる。
 このポリオールとしては、ポリエステルポリオール、ポリエステルエーテルポリオール、ポリカーボネートポリオール、ポリエーテルポリオールが挙げられる。
 上記のポリエステルポリオールとしては、脂肪族ジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸等)、芳香族ジカルボン酸(フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等)、脂環族ジカルボン酸(ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等)等の多価カルボン酸又はこれらの酸エステルもしくは酸無水物と、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,3-オクタンジオール、1,9-ノナンジオール等の多価アルコール又はこれらの混合物との脱水縮合反応で得られるポリエステルポリオール;ε-カプロラクトン等のラクトンモノマーの開環重合で得られるポリラクトンジオール等が挙げられる。
 上記のポリエステルエーテルポリオールとしては、脂肪族ジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸等)、芳香族ジカルボン酸(フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等)、脂環族ジカルボン酸(ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等)等の多価カルボン酸又はこれらの酸エステルもしくは酸無水物と、ジエチレングリコールもしくはアルキレンオキサイド付加物(プロピレンオキサイド付加物等)等のグリコール等又はこれらの混合物との脱水縮合反応で得られる化合物が挙げられる。
 上記のポリカーボネートポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール等の多価アルコールの1種または2種以上と、ジエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等とを反応させて得られるポリカーボネートポリオールが挙げられる。また、ポリカプロラクトンポリオール(PCL)とポリヘキサメチレンカーボネート(PHL)との共重合体であってもよい。
 上記のポリエーテルポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテルをそれぞれ重合させて得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等、及び、これらのコポリエーテルが挙げられる。
 TPUの形成に用いられるジイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(水素添加MDI;HMDI)等が挙げられる。これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)を好適なものとして用いることができる。
 TPUの形成に用いられる鎖延長剤としては、低分子量ポリオールが使用できる。この低分子量ポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、グリセリン等の脂肪族ポリオール;1,4-ジメチロールベンゼン、ビスフェノールA、ビスフェノールAのエチレンオキサイドもしくはプロピレンオキサイド付加物等の芳香族グリコールが挙げられる。
 これらの材料から得られる熱可塑性ポリウレタンエラストマー(TPU)に、シリコーン化合物が共重合されていると、さらに優れた耐衝撃性を得ることができる。
 これらの熱可塑性ポリウレタンエラストマー(TPU)は、単独で用いても、組み合わせて用いてもよい。
 本発明の実施形態例によるセルロース誘導体に各種添加剤や熱可塑性樹脂を添加した樹脂組成物の調製方法については、特に限定はなく、例えばセルロース誘導体と各種添加剤や熱可塑性樹脂をハンドミキシングや、公知の混合機、例えばタンブラーミキサー、リボンブレンダー、単軸や多軸混合押出機、混練ニーダー、混練ロール等のコンパウンディング装置で溶融混合し、必要に応じ適当な形状に造粒等を行うことができる。また別の好適な調製方法として、有機溶媒等の溶剤に分散させた、セルロース誘導体と各種添加剤や熱可塑性樹脂を混合し、さらに必要に応じて、凝固用溶剤を添加して各種添加剤と樹脂の混合組成物を得て、その後、溶剤を蒸発させる方法がある。
 以上に説明した実施形態例によるセルロース誘導体は、成形用材料(樹脂組成物)のベース樹脂として用いることができる。当該セルロース誘導体をベース樹脂として用いた成形用材料は、電子機器用外装などの筺体などの成形体に好適である。
 ここでベース樹脂とは、成形用材料中の主成分を意味し、この主成分の機能を妨げない範囲で他の成分の含有を許容することを意味し、特にこの主成分の含有割合を特定するものではない。本実施形態例では当該セルロース誘導体を組成物中の50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上を占めることを包含するものである。
 以下、具体例を挙げて本発明の実施形態例を更に詳しく説明する。
[セルロース誘導体の合成]
[合成例1]
 セルロースの反応性を上げるために酢酸で活性化処理を行い、その後、無水プロピオン酸とステアリン酸を反応させることで、セルロース誘導体を得た。
 まずは、以下の方法でセルロースの活性化処理を行った。セルロース(日本製紙ケミカル製、製品名:KCフロック、銘柄:W-50GK)6.0g(吸着水分を除く重量)を、90mLの純水に分散させた。この分散液を24時間撹拌し、吸引ろ過することによって純水を除去した。得られたろ過物を90mLの酢酸に分散し、24時間撹拌後吸引ろ過することによって酢酸を除去した。この酢酸への分散と酢酸の除去は2回行った。これにより、活性化処理セルロースを得た。
 次に、以下の方法でセルロース誘導体を合成した。まず、ステアリン酸31.6g、無水プロピオン酸28.5mLを3口フラスコに投入し、窒素雰囲気下、100℃で1時間反応させてステアリン酸とプロピオン酸の酸無水物を合成した。そして、ここに1,4-ジオキサン250mLを加え、反応溶液の温度を50℃まで下げた後、上記の酢酸で活性化処理したセルロースおよび過塩素酸120μLと1,4-ジオキサン50mLの混合溶液を加え、50℃で撹拌した。2時間後に3口フラスコから反応溶液をビーカーに移し、貧溶媒としてメタノール/水混合溶液(メタノール:水=1:1vol)を1.5L滴下することで反応を停止した。滴下により析出した固体を吸引ろ過し、ろ過物をイソプロピルアルコールで洗浄し、さらに水で洗浄した。その後、100℃で減圧乾燥させることにより、目的のセルロース誘導体(C1)を得た。
 セルロース誘導体(C1)に置換された短鎖(アセチル基)、中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=1.19,プロピオニル基(DSME)=1.49,ステアリル基(DSLO)=0.14であった。
[合成例2]
 酸無水物をステアリン酸63.2g、無水プロピオン酸28.5mLで合成した以外は、実施例1と同様にセルロースの活性化およびセルロース誘導体(C2)の合成を行った。
 セルロース誘導体(C2)に置換された短鎖(アセチル基)、中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=0.95,プロピオニル基(DSME)=1.38,ステアリル基(DSLO)=0.26であった。
[合成例3]
 セルロースの活性化は合成例1と同様に行った。
 セルロース誘導体の合成は、まず、ステアリン酸63.2g、無水プロピオン酸28.5mLを3口フラスコに投入し、窒素雰囲気下、100℃で1時間反応させてステアリン酸とプロピオン酸の酸無水物を合成した。そして、ここに1,4-ジオキサン250mLを加え、反応溶液の温度を50℃まで下げた後、上記の酢酸で活性化処理したセルロースおよび過塩素酸120μLと1,4-ジオキサン50mLの混合溶液を加え、50℃で撹拌した。2時間後に3口フラスコから反応溶液をビーカーに移し、水を1.5L滴下することで反応を停止した。滴下により析出した固体を吸引ろ過し、ろ過物をメタノールで洗浄し、さらに水で洗浄した。その後、100℃で減圧乾燥させることにより、目的のセルロース誘導体(C3)を得た。
 セルロース誘導体(C3)に置換された短鎖(アセチル基)、中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=1.28,プロピオニル基(DSME)=1.43,ステアリル基(DSLO)=0.26であった。
[合成例4]
 酸無水物をステアリン酸94.7g、無水プロピオン酸28.5mLで合成した以外は、実施例1と同様にセルロースの活性化およびセルロース誘導体(C4)の合成を行った。
 セルロース誘導体(C4)に置換された短鎖(アセチル基)、中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=0.72,プロピオニル基(DSME)=1.41,ステアリル基(DSLO)=0.38であった。
[合成例5]
 酸無水物をステアリン酸189g、無水プロピオン酸28.5mLで合成した以外は、実施例1と同様にセルロースの活性化およびセルロース誘導体(C5)の合成を行った。
 セルロース誘導体(C5)に置換された短鎖(アセチル基)、中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=0.91,プロピオニル基(DSME)=1.04,ステアリル基(DSLO)=0.48であった。
[合成例6]
 セルロースの活性化は合成例1と同様に行った。
 セルロース誘導体の合成は、まず、ステアリン酸189g、無水酢酸21.1mLを3口フラスコに投入し、窒素雰囲気下、100℃で1時間反応させてステアリン酸と酢酸の酸無水物を合成した。そして、ここに1,4-ジオキサン550mLを加え、反応溶液の温度を50℃まで下げた後、上記の酢酸で活性化処理したセルロースおよび過塩素酸240μLと1,4-ジオキサン50mLの混合溶液を加え、50℃で撹拌した。2時間後に3口フラスコから反応溶液をビーカーに移し、貧溶媒のメタノール/水混合溶液(メタノール:水=1:1vol)を1.5L滴下することで反応を停止した。滴下により析出した固体を吸引ろ過し、ろ過物をイソプロピルアルコールで3回洗浄し、さらに水で1回洗浄した。その後、100℃で減圧乾燥させることにより、目的のセルロース誘導体(C6)を得た。
 セルロース誘導体(C6)に置換された短鎖(アセチル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、アセチル基(DSSH)=2.60,ステアリル基(DSLO)=0.40であった。
[合成例7]
 セルロース6.0g(吸着水分を除く重量)を、90mLの純水に分散させた。この分散液を24時間撹拌し、20分間吸引ろ過することによって純水を除去した。得られたろ過物を90mLのプロピオン酸に分散し、24時間撹拌後20分間吸引ろ過することによってプロピオン酸を除去した。このプロピオン酸への分散とプロピオン酸の除去は2回行った。これにより、活性化処理セルロースを得た。
 次に、ステアリン酸63.1g、無水プロピオン酸28.5mLを3口フラスコに投入し、窒素雰囲気下、100℃で1時間反応させてステアリン酸とプロピオン酸の酸無水物を合成した。そして、ここに1,4-ジオキサン250mLを加え、反応溶液の温度を50℃まで下げた後、上記のプロピオン酸で活性化処理したセルロースおよび過塩素酸120μLと1,4-ジオキサン50mLの混合溶液を加え、50℃で撹拌した。2時間後に3口フラスコから反応溶液をビーカーに移し、メタノール/水混合溶液(メタノール:水=1:1vol)を1.5L滴下することで反応を停止した。滴下により析出した固体を吸引ろ過し、ろ過物をイソプロピルアルコールで2回、エタノールで1回洗浄し、さらに水で1回洗浄した。その後、100℃で減圧乾燥させることにより、目的のセルロース誘導体(C7)を得た。
 セルロース誘導体(C7)に置換された中鎖(プロピオニル基)および長鎖(ステアリル基)有機基のDSは、H-NMRにより求めた。それぞれのDSは、プロピオニル基(DSME)=2.45,ステアリル基(DSLO)=0.43であった。
[成形体の製造および評価]
 合成したセルロース誘導体を用いて下記の通り成形体を作製し、その物性の評価を行った。
[実施例1]
 セルロース誘導体(C1)を180℃で混練、成型機のシリンダー温度190℃、金型温度110℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[実施例2]
 セルロース誘導体(C2)を160℃で混練、成型機のシリンダー温度170℃、金型温度80℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[実施例3]
 セルロース誘導体(C3)を160℃で混練、成型機のシリンダー温度170℃、金型温度110℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[実施例4]
 セルロース誘導体(C4)を160℃で混練、成型機のシリンダー温度170℃、金型温度80℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[実施例5]
 セルロース誘導体(C5)を160℃で混練、成型機のシリンダー温度170℃、金型温度80℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[比較例1]
 セルロース誘導体は、市販のセルロースアセテートプロピオネート(商品名「CAP482-20」、イーストマンケミカル社製、以下CAPと略す)を用いた。成型機のシリンダー温度220℃、金型温度110℃で射出成型し、射出成型を行い、評価に用いた。
[比較例2]
 セルロース誘導体(C6)を210℃で混練、成型機のシリンダー温度210℃、金型温度110℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
[比較例3]
 セルロース誘導体(C7)を160℃で混練、成型機のシリンダー温度170℃、金型温度80℃で射出成型し、成形体を得た。その成形体を用いて、衝撃強度、曲げ強度、吸水率を評価した。
 以下に、セルロース誘導体の混練、成形方法およびその物性の評価方法を示す。
[混練方法]
 混練機(Thermo Electron Corporation製、商品名:HAAKE MiniLab Rheomex CTW5)を使用して、セルロース誘導体7.5gを混錬した。その際、スクリューの回転数を60rpmに設定し、原料を混練機の供給口から投入後、3分間混練した。
[成形方法]
 射出成形機(Thermo Electron Corporation製、商品名:HAAKE MiniJet II)を使用し、上記のセルロース誘導体を用いて、厚み:2.5mm、幅:13mm、長さ:80mmの成形体を作製した。
[衝撃強度]
 得られた成形体について、JIS K7110に準拠してノッチ付アイゾット衝撃強度を測定した。
[曲げ特性]
 得られた成形体について、JIS K7171に準拠して曲げ試験(最大曲げ応力、破断伸び、曲げ弾性率測定)を行った。
[耐水性]
 得られた成形体について、JIS K7209に準拠して吸水率測定を行った。
 得られたセルロース誘導体について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)を表1に、評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および表2に示すとおり、短鎖、中鎖および長鎖有機基の3成分が特定のDSの範囲で導入されたセルロース誘導体(実施例1~実施例5)については、衝撃強度、曲げ特性(最大曲げ応力、曲げ弾性率)がともに高い値を示し、吸水率も低く耐水性に優れていた。また、成型温度がいずれも200℃以下であり、良好な熱可塑性を示した。
 一方、比較例1は長鎖有機基を含まず、短鎖有機基と中鎖有機基が導入されたセルロース樹脂である。短鎖有機基と中鎖有機基の導入により衝撃強度と曲げ特性は良好であるが、長鎖有機基が導入されていないため、成形温度は220℃と高く、熱可塑性および耐水性は低かった。比較例2は中鎖有機基を含まず、短鎖有機基と長鎖有機基が導入されたセルロース樹脂である。長鎖有機基の導入により耐水性は向上するものの、成形温度は210℃と高く、熱可塑性は低かった。また、得られた成形体は非常に脆く、衝撃強度は脆いため測定不可、曲げ特性も低かった。これは、中鎖有機基を含まないため短鎖有機基と長鎖有機基の親和性が低下し、セルロース内で長鎖有機基が偏在して導入された結果、長鎖有機基の可塑化効果が十分に発揮されず、長鎖有機基の偏在が衝撃強度や曲げ強度にも影響を及ぼしたと思われる。比較例3では短鎖有機基を含まず、中鎖有機基と長鎖有機基が導入されたセルロース誘導体である。中鎖有機基と長鎖有機基の導入によりセルロースの柔軟性が高まり、衝撃強度、熱可塑性は向上し、耐水性も向上した。しかし、短鎖有機基を含まないとセルロース分子鎖の相互作用が弱まるため、最大曲げ応力および曲げ弾性率は低下した。
[実施例6]
 セルロース誘導体(C2)90部に、添加剤としてポリブチレンサクシネートアジペート(PBSA;ビオノーレ3001、昭和電工株式会社製商品名)を10部添加し、160℃で混練、成型機のシリンダー温度170℃、金型温度80℃で射出成型し、透明な成形体を得た。その成形体を用いて、衝撃強度、曲げ特性、吸水率を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例6に示すとおり、セルロース誘導体(C2)に添加剤としてPBSAを添加することで、高い曲げ応力、曲げ弾性率、耐水性および熱可塑性を維持しつつ、衝撃強度がより向上した樹脂組成物が得られた(実施例2との比較)。
 以上より、セルロースに短鎖、中鎖および長鎖の3成分を特定の置換度で付加することで、熱可塑性、耐水性、強度(弾性率、衝撃強度)に優れたセルロース誘導体を提供することができる。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年10月9日に出願された日本出願特願2015-200886を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  セルロースの水酸基の水素原子の少なくとも一部が、炭素数2の短鎖有機基(アセチル基)、炭素数3~5の中鎖有機基および炭素数6~30の長鎖有機基により下記置換度で置換されたセルロース誘導体。
        0.7≦DSSH≦1.5
        0.5≦DSME≦2.0
        0.1≦DSLO<0.5
       2.4≦DSSH+DSME+DSLO≦3
    (DSSHは前記短鎖有機基の置換度、DSMeは前記中鎖有機基の置換度、DSLOは前記長鎖有機基の置換度を示す。)
  2.  前記中鎖有機基が炭素数3または4のアシル基であることを特徴とする請求項1に記載のセルロース誘導体。
  3.  前記長鎖有機基が炭素数12~30のアシル基であることを特徴とする請求項2に記載のセルロース誘導体。
  4.  前記中鎖有機基がプロピオニル基、長鎖有機基がステアリル基であることを特徴とする請求項1から3いずれに記載のセルロース誘導体。
  5.  請求項1から4いずれ1項に記載のセルロース誘導体を含有する樹脂組成物。
  6.  前記セルロース誘導体を50質量%以上含有する請求項5に記載の樹脂組成物。
  7.  請求項5または6に記載の樹脂組成物を成形してなる成形体。
  8.  セルロースに親和する活性化溶媒を接触させてセルロースを膨潤させる活性化処理工程と、
     前記短鎖有機基、中鎖有機基および長鎖有機基を導入する反応剤と活性化処理されたセルロースとを反応させる反応工程と
    を含む請求項1から4のいずれか1項に記載のセルロース誘導体の製造方法。
  9.  前記短鎖有機基、中鎖有機基および長鎖有機基を導入する反応剤が、カルボン酸またはカルボン酸無水物である請求項8に記載のセルロース誘導体の製造方法。
  10.  前記活性化処理がセルロースを水に浸漬した後、水を除去する工程と、酢酸に浸漬した後、酢酸を除去する工程とを含み、該活性化処理されたセルロースを、ステアリン酸と無水プロピオン酸を混合比を調整して反応させて得られたステアリン酸とプロピオン酸の混合無水物と反応させる請求項8または9に記載のセルロース誘導体の製造方法。
PCT/JP2016/075137 2015-10-09 2016-08-29 セルロース誘導体およびその用途 WO2017061190A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017544412A JP6819602B2 (ja) 2015-10-09 2016-08-29 セルロース誘導体およびその用途
US15/766,116 US10982009B2 (en) 2015-10-09 2016-08-29 Cellulose derivative and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015200886 2015-10-09
JP2015-200886 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061190A1 true WO2017061190A1 (ja) 2017-04-13

Family

ID=58487522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075137 WO2017061190A1 (ja) 2015-10-09 2016-08-29 セルロース誘導体およびその用途

Country Status (3)

Country Link
US (1) US10982009B2 (ja)
JP (1) JP6819602B2 (ja)
WO (1) WO2017061190A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217503A1 (ja) * 2016-06-17 2017-12-21 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
WO2018221663A1 (ja) * 2017-06-01 2018-12-06 日本電気株式会社 セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
WO2019049196A1 (ja) * 2017-09-05 2019-03-14 株式会社ダイセル 混合脂肪酸セルロースエステル及び混合脂肪酸セルロースエステルの製造方法
WO2019117315A1 (ja) * 2017-12-15 2019-06-20 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品、並びにセルロース系樹脂組成物の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572903B2 (ja) 2014-10-30 2019-09-11 日本電気株式会社 セルロース誘導体を含む成形体用樹脂組成物、成形体および筐体
WO2019167641A1 (ja) * 2018-03-01 2019-09-06 日本電気株式会社 セルロース系樹脂、成形用材料及び成形体、並びにセルロース系樹脂の製造方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219444A (ja) * 2004-02-09 2005-08-18 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006028346A (ja) * 2004-07-16 2006-02-02 Fuji Photo Film Co Ltd セルロースアシレートフィルムおよびその製造方法、並びに、延伸セルロースアシレートフィルム
JP2006052329A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006052330A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd セルロースアシレートフィルム及びその製造方法
JP2006169304A (ja) * 2004-12-14 2006-06-29 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006205708A (ja) * 2004-12-28 2006-08-10 Fuji Photo Film Co Ltd セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム並びに画像表示装置
WO2006132367A1 (ja) * 2005-06-10 2006-12-14 Fujifilm Corporation セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2006341393A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp セルロースアシレート樹脂フィルムの製造方法
JP2007030351A (ja) * 2005-07-27 2007-02-08 Fujifilm Holdings Corp 熱可塑性樹脂フィルム及びその製造方法
JP2007056144A (ja) * 2005-08-24 2007-03-08 Fujifilm Corp セルロースエステル樹脂組成物
JP2007056118A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 樹脂組成物及びその製造方法
JP2007090753A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp 熱可塑性樹脂フィルム及びその製造方法
JP2007137028A (ja) * 2005-11-22 2007-06-07 Fujifilm Corp 熱可塑性樹脂フィルム及びその製造方法
JP2007169594A (ja) * 2005-11-22 2007-07-05 Fujifilm Corp セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2007169588A (ja) * 2005-11-22 2007-07-05 Fujifilm Corp セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008007746A (ja) * 2006-05-30 2008-01-17 Fujifilm Corp 熱可塑性樹脂組成物、熱可塑性樹脂フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008050562A (ja) * 2005-12-21 2008-03-06 Fujifilm Corp セルロースアシレート粒体およびその製造方法、セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008056890A (ja) * 2006-05-30 2008-03-13 Fujifilm Corp セルロースアシレート組成物、セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008095027A (ja) * 2006-10-13 2008-04-24 Fujifilm Corp セルロースフィルム、光学補償シート、偏光板および液晶表示装置
US20090115100A1 (en) * 2005-11-08 2009-05-07 Fujifilm Corporation Method for producing thermoplastic film
WO2010047351A1 (ja) * 2008-10-22 2010-04-29 富士フイルム株式会社 セルロース誘導体、樹脂組成物、セルロース誘導体からなる成型体、及びこの成型体から構成される電気電子機器用筺体
WO2013180278A1 (ja) * 2012-05-31 2013-12-05 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2015025761A1 (ja) * 2013-08-23 2015-02-26 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2015060122A1 (ja) * 2013-10-25 2015-04-30 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265639A (ja) 2001-03-14 2002-09-18 Fuji Photo Film Co Ltd セルロースアシレートフイルム
JP2002265636A (ja) * 2001-03-12 2002-09-18 Fuji Photo Film Co Ltd セルロースアシレートフイルム及びその製造方法
JP2005104148A (ja) * 2003-09-11 2005-04-21 Fuji Photo Film Co Ltd セルロースアシレートフィルム及び溶液製膜方法
JP4636263B2 (ja) 2005-05-27 2011-02-23 富士フイルム株式会社 熱可塑性フィルムの製造方法
WO2014046678A1 (en) * 2012-09-24 2014-03-27 Celanese Acetate Llc Substituted cellulose ester adhesives and methods and articles relating thereto

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219444A (ja) * 2004-02-09 2005-08-18 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006028346A (ja) * 2004-07-16 2006-02-02 Fuji Photo Film Co Ltd セルロースアシレートフィルムおよびその製造方法、並びに、延伸セルロースアシレートフィルム
JP2006052329A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006052330A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd セルロースアシレートフィルム及びその製造方法
JP2006169304A (ja) * 2004-12-14 2006-06-29 Fuji Photo Film Co Ltd セルロースアシレートフィルム
JP2006205708A (ja) * 2004-12-28 2006-08-10 Fuji Photo Film Co Ltd セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム並びに画像表示装置
JP2006341393A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp セルロースアシレート樹脂フィルムの製造方法
WO2006132367A1 (ja) * 2005-06-10 2006-12-14 Fujifilm Corporation セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2007030351A (ja) * 2005-07-27 2007-02-08 Fujifilm Holdings Corp 熱可塑性樹脂フィルム及びその製造方法
JP2007056118A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 樹脂組成物及びその製造方法
JP2007056144A (ja) * 2005-08-24 2007-03-08 Fujifilm Corp セルロースエステル樹脂組成物
JP2007090753A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp 熱可塑性樹脂フィルム及びその製造方法
US20090115100A1 (en) * 2005-11-08 2009-05-07 Fujifilm Corporation Method for producing thermoplastic film
JP2007137028A (ja) * 2005-11-22 2007-06-07 Fujifilm Corp 熱可塑性樹脂フィルム及びその製造方法
JP2007169588A (ja) * 2005-11-22 2007-07-05 Fujifilm Corp セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2007169594A (ja) * 2005-11-22 2007-07-05 Fujifilm Corp セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008050562A (ja) * 2005-12-21 2008-03-06 Fujifilm Corp セルロースアシレート粒体およびその製造方法、セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008007746A (ja) * 2006-05-30 2008-01-17 Fujifilm Corp 熱可塑性樹脂組成物、熱可塑性樹脂フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008056890A (ja) * 2006-05-30 2008-03-13 Fujifilm Corp セルロースアシレート組成物、セルロースアシレートフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP2008095027A (ja) * 2006-10-13 2008-04-24 Fujifilm Corp セルロースフィルム、光学補償シート、偏光板および液晶表示装置
WO2010047351A1 (ja) * 2008-10-22 2010-04-29 富士フイルム株式会社 セルロース誘導体、樹脂組成物、セルロース誘導体からなる成型体、及びこの成型体から構成される電気電子機器用筺体
WO2013180278A1 (ja) * 2012-05-31 2013-12-05 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2015025761A1 (ja) * 2013-08-23 2015-02-26 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2015060122A1 (ja) * 2013-10-25 2015-04-30 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217503A1 (ja) * 2016-06-17 2017-12-21 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
US11149133B2 (en) 2016-06-17 2021-10-19 Nec Corporation Cellulose resin composition, molded body and product using same
WO2018221663A1 (ja) * 2017-06-01 2018-12-06 日本電気株式会社 セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
JPWO2018221663A1 (ja) * 2017-06-01 2020-04-02 日本電気株式会社 セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
US11572416B2 (en) 2017-06-01 2023-02-07 Nec Corporation Cellulose resin, molding material, molded body, and method for producing cellulose resin
WO2019049196A1 (ja) * 2017-09-05 2019-03-14 株式会社ダイセル 混合脂肪酸セルロースエステル及び混合脂肪酸セルロースエステルの製造方法
WO2019117315A1 (ja) * 2017-12-15 2019-06-20 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品、並びにセルロース系樹脂組成物の製造方法
JPWO2019117315A1 (ja) * 2017-12-15 2020-12-03 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品、並びにセルロース系樹脂組成物の製造方法
US11434350B2 (en) 2017-12-15 2022-09-06 Nec Corporation Cellulose resin composition, molded body and product using same, and a method for producing cellulose resin composition
JP7143860B2 (ja) 2017-12-15 2022-09-29 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品、並びにセルロース系樹脂組成物の製造方法

Also Published As

Publication number Publication date
US10982009B2 (en) 2021-04-20
US20180291117A1 (en) 2018-10-11
JPWO2017061190A1 (ja) 2018-07-26
JP6819602B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6819602B2 (ja) セルロース誘導体およびその用途
JP6277955B2 (ja) セルロース誘導体の製造方法
JP6572903B2 (ja) セルロース誘導体を含む成形体用樹脂組成物、成形体および筐体
JP5853697B2 (ja) セルロース系樹脂およびその製造方法
JP6947037B2 (ja) セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
JP6528684B2 (ja) セルロース誘導体の製造方法、セルロース誘導体、成形用樹脂組成物および成形体
JP5846120B2 (ja) セルロース系樹脂
JP5786861B2 (ja) セルロース系樹脂組成物
JP5928448B2 (ja) セルロース系樹脂およびその製造方法
WO2012137623A1 (ja) セルロース系樹脂およびその製造方法
WO2020013232A1 (ja) パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
JP2012219112A (ja) セルロース系樹脂およびその製造方法
JP6791376B2 (ja) セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
WO2017217502A1 (ja) セルロース誘導体、セルロース系樹脂組成物、成形体及びこれを用いた製品
JP6274107B2 (ja) セルロース誘導体の製造方法およびセルロース系樹脂組成物の製造方法
WO2019167641A1 (ja) セルロース系樹脂、成形用材料及び成形体、並びにセルロース系樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853344

Country of ref document: EP

Kind code of ref document: A1