WO2017059658A1 - 一种长径比均匀的银纳米线的制备方法 - Google Patents

一种长径比均匀的银纳米线的制备方法 Download PDF

Info

Publication number
WO2017059658A1
WO2017059658A1 PCT/CN2016/076284 CN2016076284W WO2017059658A1 WO 2017059658 A1 WO2017059658 A1 WO 2017059658A1 CN 2016076284 W CN2016076284 W CN 2016076284W WO 2017059658 A1 WO2017059658 A1 WO 2017059658A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
silver nanowires
reaction
aspect ratio
preparation
Prior art date
Application number
PCT/CN2016/076284
Other languages
English (en)
French (fr)
Inventor
李璐
刘碧桃
金容�
陈善勇
闫恒庆
关有为
Original Assignee
重庆文理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆文理学院 filed Critical 重庆文理学院
Priority to US15/763,119 priority Critical patent/US20190054540A1/en
Priority to KR1020187009450A priority patent/KR102071814B1/ko
Priority to EP16852969.1A priority patent/EP3360628B1/en
Priority to JP2018516800A priority patent/JP6732897B2/ja
Publication of WO2017059658A1 publication Critical patent/WO2017059658A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Definitions

  • the invention relates to a method for preparing silver nanowires, in particular to a method for preparing silver nanowires with uniform aspect ratio.
  • silver nanowires Based on high specific surface area, conductivity and thermal conductivity, silver nanowires have broad application prospects for silver nanowires, especially as an alternative material for ITO applications in solar energy, OLED, flexible and large-size touch screen displays, conductive polymers and In the field of composite materials, as well as electrode printing ink additives. Therefore, the preparation of silver nanowires has become a research hotspot for researchers. At present, there are many literatures and patent reports on the preparation methods and applications of silver nanowires. For example, Advanced Materials (2002) 14, 883, the founder of silver nanowires prepared by polyol reduction, uses Pt as a seed crystal, ethylene glycol. Reduction of silver nitrate to prepare high aspect ratio silver nanowires.
  • the polyol reduction method is combined with the hydrothermal method to introduce a small amount of a metal halide such as sodium chloride, ferric chloride or copper chloride and a Ag ion to form a colloid as a seed crystal to prepare a silver nanowire.
  • a metal halide such as sodium chloride, ferric chloride or copper chloride
  • a Ag ion to form a colloid as a seed crystal to prepare a silver nanowire.
  • the combination of polyol method and microwave method can rapidly prepare silver nanowires, but the long diameter of silver nanowires is relatively uneven and contains a large amount of impurities.
  • the object of the present invention is to provide a simple and easy to control, cost-effective method for preparing silver nanowires having a uniform aspect ratio.
  • a method for preparing silver nanowires characterized in that the following steps are performed:
  • the silver nitrate is dissolved in glycerol, configured as a solution A;
  • the above reaction time in the reaction vessel is from 9 to 10 hours.
  • step (1) 0.16 g to 0.32 g of silver nitrate is dissolved in 20 ml of glycerin at room temperature to prepare a solution A.
  • step (2) 5 g to 7 g of polyvinylpyrrolidone is dissolved in 80 ml of glycerin at room temperature to prepare a solution B.
  • step (4) More preferably, in the above step (4), 2.5 ml to 10 ml of ultrapure water is added to the solution C, and the mixture is uniformly mixed into the solution D.
  • the preparation method of the invention has the advantages of simple operation, easy control and low cost, and is very suitable for large-scale industrial production.
  • the obtained silver nanowires have a uniform aspect ratio, and the transparent conductive film based on the silver nanowires has a high transparency of 90-91%; a diameter of 30-40 nm and a length of 10-20 ⁇ m, and the aspect ratio silver nanowires.
  • the electric resistance is small, the conductivity is improved, the particles are not contained, and the purity is high.
  • Example 1 is a scanning electron microscope (SEM) image of a silver nanowire synthesized in Example 1 of the present invention
  • Example 2 is a graph showing the transmittance of a conductive film made of silver nanowires synthesized in Example 1 of the present invention.
  • 0.16 g of silver nitrate was dissolved in 20 ml of glycerol at room temperature to prepare a solution A; 5 g of polyvinylpyrrolidone was dissolved in 80 ml of glycerol at room temperature to prepare a solution B; and the solution A and the solution B were uniformly mixed.
  • Forming solution C adding 5 ml of ultrapure water in solution C, mixing uniformly into solution D, and finally transferring solution D to the reaction kettle and placing it in an oven having a set temperature of 160 ° C, and ending the reaction after a certain period of time;
  • FIG. 1 is a silver nanowire synthesized in the first embodiment. Scanning electron microscope (SEM) image.
  • the silver nanowire prepared in the above Example 1 was formulated into a 1 g/L silver nanowire slurry, and 500 ⁇ L of the slurry was uniformly coated on a transparent film of A4 paper size to prepare a transparent conductive film with a square resistance of 42 ohm/sq. . Then, the transparent conductive film is measured by an ultraviolet-visible spectrophotometer, and the visible light wavelength is At 550 nm, the transmittance of the transparent conductive film was 90.8%, see Fig. 2.
  • 0.16 g of silver nitrate was dissolved in 20 ml of glycerol at room temperature to prepare a solution A; 5 g of polyvinylpyrrolidone was dissolved in 80 ml of glycerol at room temperature to prepare a solution B; and the solution A and the solution B were uniformly mixed.
  • Forming solution C adding 2.5 ml of ultrapure water in solution C, mixing and forming into solution D, finally transferring the solution D to the reaction kettle and placing it in an oven having a set temperature of 160 ° C, and ending the reaction after a certain period of time;
  • the Ag nanowire mother liquor in the reaction vessel was centrifuged twice with alcohol to obtain a precipitate having a diameter of 30 to 40 nm, and a silver nanowire having a length of 10 to 20 ⁇ m was dispersed in isopropyl alcohol.
  • 0.32 g of silver nitrate was dissolved in 20 ml of glycerol at room temperature to prepare a solution A; 7 g of polyvinylpyrrolidone was dissolved in 80 ml of glycerol at room temperature to prepare a solution B; and the solution A and the solution B were uniformly mixed.
  • Forming solution C adding 10 ml of ultrapure water in solution C, mixing and forming into solution D, finally transferring the solution D to the reaction kettle and placing it in an oven having a set temperature of 160 ° C, and ending the reaction after a certain period of time;
  • the Ag nanowire mother liquor in the reaction vessel was centrifuged twice with alcohol to obtain a precipitate having a diameter of 30 to 40 nm, and a silver nanowire having a length of 10 to 20 ⁇ m was dispersed in isopropyl alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种长径比均匀的银纳米线的制备方法,将硝酸银在一定温度下溶解于丙三醇中,配置成溶液A;将聚乙烯吡咯烷酮(PVP)在一定温度下溶解于丙三醇中,配置成溶液B;将溶液A和溶液B混合均匀成溶液C;再添加一定量的介质在溶液C中,混合均匀成溶液D,最后将溶液D转移至反应釜中放在已设定温度的烘箱中,反应一定时间后结束反应。将反应物离心分离2次得到沉淀物银纳米线。该方法加入介质,可以提高离子在反应溶液中的运动速度,得到长径比均匀、有节点的银纳米线,制备方法简单易操作,且实验稳定,可适于工业生产。

Description

一种长径比均匀的银纳米线的制备方法 技术领域
本发明涉及银纳米线的制备方法,特别是一种长径比均匀的银纳米线的制备方法。
背景技术
银纳米线基于高比表面积,导电性,导热性这些性质,赋予银纳米线广阔的应用前景,尤其是作为ITO替代材料应用于太阳能、OLED、柔性及大尺寸触摸屏显示等领域,导电高分子和复合材料领域,以及电极印刷油墨添加剂等。因此,银纳米线的盐法制备成为科研人员的研究热点。目前,银纳米线的制备方法及应用的文献和专利报道有很多,如多元醇法还原制备银纳米线的创始人夏幼男(Advanced Materials(2002)14,883)以Pt为晶种,乙二醇还原硝酸银制备高长径比的银纳米线。多元醇还原法与水热法相结合,引入少量的氯化钠、氯化铁、氯化铜等金属卤化物与Ag离子生成胶体作为晶种,制备银纳米线。多元醇法和微波法结合能快速制备银纳米线,但是银纳米线的长径比较不均匀,且含大量的杂质,如中国专利申请号200810019828.6大批量制备银纳米线的方法,中国专利申请号:201010559335.9一种阳离子控制微波法制备线径可控银纳米线的方法,制备的银纳米线长度小于30μm,且长径比不均匀。中国专利CN 1843670A报道用丙三醇与水或乙醇或异丙醇等的复合溶剂还原制备银纳米线,获得长5~200μm,直径70~90nm的银纳米线。银纳米线的制备方法虽然已经报道很多,但是得到长径比均匀,且不存在其他颗粒或杂质的银纳米线的制备方较少,因此发明一种工艺稳定,控制因素少,简单快速、大量制备Ag纳米线的方法及其重要。
发明内容
本发明的目的在于提供一种简单易控制、成本经济的长径比均匀的银纳米线的制备方法。
本发明目的通过如下技术方案实现:
一种银纳米线的制备方法,其特征在于,按如下步骤进行:
(1)、将硝酸银溶解于丙三醇中,配置成溶液A;
(2)、将聚乙烯吡咯烷酮溶解于丙三醇中,配置成溶液B;
(3)、将溶液A和溶液B混合均匀成溶液C;
(4)、添加超纯水介质在溶液C中,混合均匀成溶液D,最后将溶液D转移 至反应釜中在150℃±10℃反应,将反应物离心分离制得银纳米线,制得的银纳米线纯度高、长径比均匀。
优选地,上述在反应釜中的反应时间为9-10小时。
为了进一步提高银纳米线的纯度、长径比更均匀,优选地,上述步骤(1)中是将0.16g~0.32g硝酸银在室温下溶解于20ml丙三醇中,配置成溶液A。
进一步优选地,上述步骤(2)中是将5g~7g聚乙烯吡咯烷酮在室温下溶解于80ml丙三醇中,配置成溶液B。
更优选,上述步骤(4)中是添加2.5ml~10ml的超纯水在溶液C中,混合均匀成溶液D。
进一步,上述离心分离次数为2次。
本发明具有如下有益效果:
本发明制备方法步骤操作简单、易于控制,成本低廉,非常适合大规模工业化生产。制得的银纳米线长径比均匀、基于银纳米线的透明导电薄膜的透明度高、可达90-91%;直径可达30~40nm、长10~20μm,该长径比的银纳米线电阻小、利于导电性能提高;不含颗粒、纯度高。
附图说明
图1是本发明实施例1合成的银纳米线扫描电子显微镜(SEM)图;
图2是利用本发明实施例1合成的银纳米线制成的导电薄膜透过率测试图。
具体实施方式
下面结合具体实施例对本发明技术作进一步说明。
实施例1
将0.16g硝酸银在室温下溶解于20ml丙三醇中,配置成溶液A;将5g聚乙烯吡咯烷酮在室温下溶解于80ml丙三醇中,配置成溶液B;将溶液A和溶液B混合均匀成溶液C;添加5ml的超纯水在溶液C中,混合均匀成溶液D,最后将溶液D转移至反应釜中放在已设定温度160℃的烘箱中,反应一定时间后结束反应;
将反应釜中Ag纳米线母液用酒精稀释离心分离2次得到沉淀物直径30~40nm,长10~20μm的银纳米线分散在异丙醇中,图1是本实施例1合成的银纳米线扫描电子显微镜(SEM)图。
将以上实施例1制得的银纳米线配制成1g/L的银纳米线浆料,取500μL浆料均匀涂布在A4纸大小的透明薄膜上制备成透明导电薄膜,方阻为42ohm/sq。再将透明导电薄膜用紫外-可见光分光光度计测薄膜的透过率,可见光波长在 550nm处,透明导电薄膜的透过率为90.8%,参见图2。
实施例2
将0.16g硝酸银在室温下溶解于20ml丙三醇中,配置成溶液A;将5g聚乙烯吡咯烷酮在室温下溶解于80ml丙三醇中,配置成溶液B;将溶液A和溶液B混合均匀成溶液C;添加2.5ml的超纯水在溶液C中,混合均匀成溶液D,最后将溶液D转移至反应釜中放在已设定温度160℃的烘箱中,反应一定时间后结束反应;
将反应釜中Ag纳米线母液用酒精稀释离心分离2次得到沉淀物直径30~40nm,长10~20μm的银纳米线分散在异丙醇中。
实施例3
将0.32g硝酸银在室温下溶解于20ml丙三醇中,配置成溶液A;将7g聚乙烯吡咯烷酮在室温下溶解于80ml丙三醇中,配置成溶液B;将溶液A和溶液B混合均匀成溶液C;添加10ml的超纯水在溶液C中,混合均匀成溶液D,最后将溶液D转移至反应釜中放在已设定温度160℃的烘箱中,反应一定时间后结束反应;
将反应釜中Ag纳米线母液用酒精稀释离心分离2次得到沉淀物直径30~40nm,长10~20μm的银纳米线分散在异丙醇中。

Claims (7)

  1. 一种银纳米线的制备方法,其特征在于,按如下步骤进行:
    (1)、将硝酸银溶解于丙三醇中,配置成溶液A;
    (2)、将聚乙烯吡咯烷酮溶解于丙三醇中,配置成溶液B;
    (3)、将溶液A和溶液B混合均匀成溶液C;
    (4)、添加超纯水介质在溶液C中,混合均匀成溶液D,最后将溶液D转移至反应釜中在150℃±10℃反应,将反应物离心分离制得银纳米线。
  2. 如权利要求1所述的制备方法,其特征在于:所述在反应釜中的反应时间为9-10小时。
  3. 如权利要求1或2所述的制备方法,其特征在于:所述步骤(1)中是将0.16g~0.32g硝酸银在室温下溶解于20ml丙三醇中,配置成溶液A。
  4. 如权利要求3所述的制备方法,其特征在于:所述步骤(2)中是将5g~7g聚乙烯吡咯烷酮在室温下溶解于80ml丙三醇中,配置成溶液B。
  5. 如权利要求4所述的制备方法,其特征在于:所述步骤(4)中是添加2.5ml~10ml的超纯水在溶液C中,混合均匀成溶液D。
  6. 如权利要求1或2所述的制备方法,其特征在于:所述离心分离次数为2次。
  7. 如权利要求5所述的制备方法,其特征在于:所述离心分离次数为2次。
PCT/CN2016/076284 2015-10-09 2016-03-14 一种长径比均匀的银纳米线的制备方法 WO2017059658A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/763,119 US20190054540A1 (en) 2015-10-09 2016-03-14 Preparation method for silver nanowires with uniform aspect ratio
KR1020187009450A KR102071814B1 (ko) 2015-10-09 2016-03-14 종횡비가 균일한 은 나노와이어의 제조방법
EP16852969.1A EP3360628B1 (en) 2015-10-09 2016-03-14 Uniform aspect ratio silver nanowires preparation method
JP2018516800A JP6732897B2 (ja) 2015-10-09 2016-03-14 アスペクト比が均一な銀ナノワイヤの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510645800.3 2015-10-09
CN201510645800.3A CN105081351B (zh) 2015-10-09 2015-10-09 一种均匀的高长径比银纳米线的制备方法

Publications (1)

Publication Number Publication Date
WO2017059658A1 true WO2017059658A1 (zh) 2017-04-13

Family

ID=54563189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076284 WO2017059658A1 (zh) 2015-10-09 2016-03-14 一种长径比均匀的银纳米线的制备方法

Country Status (6)

Country Link
US (1) US20190054540A1 (zh)
EP (1) EP3360628B1 (zh)
JP (1) JP6732897B2 (zh)
KR (1) KR102071814B1 (zh)
CN (1) CN105081351B (zh)
WO (1) WO2017059658A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081351B (zh) * 2015-10-09 2017-09-26 重庆文理学院 一种均匀的高长径比银纳米线的制备方法
WO2017062028A1 (en) 2015-10-09 2017-04-13 Intel IP Corporation Architecture for wireless network access
CN105537613B (zh) * 2015-12-25 2017-10-31 蚌埠玻璃工业设计研究院 一种微波辅助水热制备长银纳米线的方法
CN105921766A (zh) * 2016-06-14 2016-09-07 吕振瑞 一种宏量制备单分散银纳米线的方法
CN107645829B (zh) * 2017-10-16 2020-07-10 广东天承科技有限公司 一种电路板导电液及其制备方法和应用
CN108687358B (zh) * 2018-05-24 2021-03-19 首都师范大学 一种制备复合型银纳米线的方法
CN108436105B (zh) * 2018-06-07 2023-06-20 乐凯华光印刷科技有限公司 一种超长纳米银线分散液及其制备方法
CN109622984A (zh) * 2018-12-07 2019-04-16 陕西煤业化工技术研究院有限责任公司 一种超纯超细银纳米线的制备方法
CN110280781B (zh) * 2019-08-07 2022-10-25 上海渝芝实业有限公司 一种高性能的大长径比纳米银线,及其制备方法
CN113953524A (zh) * 2021-10-12 2022-01-21 浙江工业大学 一种新型多元醇溶剂热法纳米银胶的合成
CN114433865A (zh) * 2022-01-27 2022-05-06 昆明贵研新材料科技有限公司 一种高纯度银纳米线的合成方法
CN114734049A (zh) * 2022-03-14 2022-07-12 上海大学 一种利用硼氢化钠制备超小尺寸纳米银的方法
CN115870510A (zh) * 2022-11-29 2023-03-31 德清县浙工大莫干山研究院 一种水分辅助制备超细银纳米线的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071526A (ko) * 2009-12-21 2011-06-29 (주)켐스 은 나노와이어 및 그 제조방법 및 이를 이용한 투명도전막
CN103100724A (zh) * 2013-02-21 2013-05-15 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN103170645A (zh) * 2013-03-27 2013-06-26 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN104607655A (zh) * 2015-03-06 2015-05-13 苏州大学 一种银纳米线的制备方法
CN104785794A (zh) * 2015-05-12 2015-07-22 重庆文理学院 一种长径比均匀的银纳米线制备方法
CN105081348A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种常压一锅法制备无颗粒高纯度银纳米线的方法
CN105081351A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种均匀的高长径比银纳米线的制备方法
CN105081350A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种新型长径比均匀的有节点银纳米线的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040650A (ja) * 2004-07-26 2006-02-09 Mitsui Mining & Smelting Co Ltd 銀ペースト及びその銀ペーストの製造方法
CN100379511C (zh) * 2006-04-26 2008-04-09 云南大学 用复合溶剂还原制备银纳米线的方法
TWI543873B (zh) * 2009-08-24 2016-08-01 坎畢歐科技公司 用於改良由金屬奈米結構所製得透明導體之濁度的金屬奈米結構純化
US9080255B2 (en) * 2011-03-31 2015-07-14 The Hong Kong University Of Science And Technology Method of producing silver nanowires in large quantities
CN102211205A (zh) * 2011-05-18 2011-10-12 山东大学 一种制备系列高纯度银纳米材料的方法
CN102259190A (zh) * 2011-06-16 2011-11-30 浙江科创新材料科技有限公司 一种快速大批量制备高长径比纳米银线的方法
WO2014138749A1 (en) * 2013-03-08 2014-09-12 Innova Dynamics, Inc. Production of nanostructures
JP2015034279A (ja) * 2013-04-10 2015-02-19 デクセリアルズ株式会社 透明導電膜形成用インク組成物、透明導電膜、透明電極の製造方法、及び画像表示装置
KR102147841B1 (ko) * 2013-08-14 2020-08-26 삼성디스플레이 주식회사 은 나노와이어 제조방법
WO2015025792A1 (ja) * 2013-08-22 2015-02-26 昭和電工株式会社 透明電極及びその製造方法
JP6466070B2 (ja) * 2014-03-05 2019-02-06 株式会社東芝 透明導電体およびこれを用いたデバイス
CN104607653B (zh) * 2015-02-09 2016-09-07 济宁利特纳米技术有限责任公司 一种通过双氧水在多元醇还原法中调控银纳米棒长度的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071526A (ko) * 2009-12-21 2011-06-29 (주)켐스 은 나노와이어 및 그 제조방법 및 이를 이용한 투명도전막
CN103100724A (zh) * 2013-02-21 2013-05-15 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN103170645A (zh) * 2013-03-27 2013-06-26 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN104607655A (zh) * 2015-03-06 2015-05-13 苏州大学 一种银纳米线的制备方法
CN104785794A (zh) * 2015-05-12 2015-07-22 重庆文理学院 一种长径比均匀的银纳米线制备方法
CN105081348A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种常压一锅法制备无颗粒高纯度银纳米线的方法
CN105081351A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种均匀的高长径比银纳米线的制备方法
CN105081350A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种新型长径比均匀的有节点银纳米线的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360628A4 *

Also Published As

Publication number Publication date
KR20180049011A (ko) 2018-05-10
KR102071814B1 (ko) 2020-01-30
JP6732897B2 (ja) 2020-07-29
EP3360628A4 (en) 2019-07-24
EP3360628A1 (en) 2018-08-15
US20190054540A1 (en) 2019-02-21
CN105081351B (zh) 2017-09-26
JP2018532048A (ja) 2018-11-01
CN105081351A (zh) 2015-11-25
EP3360628B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2017059658A1 (zh) 一种长径比均匀的银纳米线的制备方法
Coskun et al. Optimization of silver nanowire networks for polymer light emitting diode electrodes
JP6735342B2 (ja) 新規のアスペクト比が均一でノードを有する銀ナノワイヤの製造方法
KR20120021451A (ko) 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
JP6599245B2 (ja) 銀ナノワイヤを含む透明導電性膜
WO2020248655A1 (zh) 一种图案化AgNWs/PEDOT:PSS复合导电网格薄膜的制备方法
CN105081348B (zh) 一种常压一锅法制备无颗粒高纯度银纳米线的方法
WO2016124005A1 (zh) 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
Han et al. Preparation of MoSe2 nano-islands array embedded in a TiO2 matrix for photo-regulated resistive switching memory
CN103236324A (zh) 一种基于还原氧化石墨烯的柔性透明导电薄膜的制备方法
JP2016156000A (ja) 銀ナノワイヤを含む組成物
WO2019109711A1 (zh) 柔性透明导电电极
KR101319259B1 (ko) 투명 전극 형성용 은 나노와이어 수용성 잉크 조성물 및 이를 이용한 투명 전극 형성방법
CN108376588A (zh) 一种银纳米线与氧化镍复合透明导电薄膜制备方法
CN109246870B (zh) 一种全印制低压柔性的高性能图案化加热器件的制备方法
Yan et al. Electrically sintered silver nanowire networks for use as transparent electrodes and heaters
Mohamadbeigi et al. Improving the multi-step fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency
CN105583409A (zh) 一种复合纳米铜线的制备方法
Sun et al. Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition
JP2011070968A (ja) 導電性ペースト及び導体パターン
JP5941977B2 (ja) 透明導電膜複合材および透明導電膜
Zhu et al. Synthesis of monodisperse colloidal TiO2 microspheres and performance of their dye-sensitized solar cells
Tran et al. Enhancement of electrical and thermal properties of silver nanowire transparent conductive electrode by Ag coating
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
CN102398892A (zh) 氧化锌纳米线的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018516800

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187009450

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE