WO2017057110A1 - 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法 - Google Patents

赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法 Download PDF

Info

Publication number
WO2017057110A1
WO2017057110A1 PCT/JP2016/077758 JP2016077758W WO2017057110A1 WO 2017057110 A1 WO2017057110 A1 WO 2017057110A1 JP 2016077758 W JP2016077758 W JP 2016077758W WO 2017057110 A1 WO2017057110 A1 WO 2017057110A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing fine
infrared absorbing
fine particles
infrared
resin
Prior art date
Application number
PCT/JP2016/077758
Other languages
English (en)
French (fr)
Inventor
裕史 常松
健二 福田
藤田 賢一
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201680056965.XA priority Critical patent/CN108430925B/zh
Priority to EP16851284.6A priority patent/EP3357865B1/en
Priority to US15/765,230 priority patent/US10486982B2/en
Priority to JP2017543170A priority patent/JP6697692B2/ja
Priority to KR1020187011662A priority patent/KR102553348B1/ko
Publication of WO2017057110A1 publication Critical patent/WO2017057110A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/002Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • C08K2003/2282Antimonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an antimony-containing tin oxide infrared absorbing material having a solar radiation shielding function used for vehicles, buildings, offices, ordinary houses, telephone box windows, carport roofs, show windows, lighting lamps, transparent cases, etc.
  • the present invention relates to fine particles, and a dispersion, dispersion, laminated transparent substrate, film, glass using the same, and a method for producing the same.
  • the dispersion of conductive fine particles has advantages such as excellent solar shading properties, low cost, radio wave permeability, and high weather resistance as compared with other solar shading materials.
  • antimony-containing tin oxide sometimes referred to as “ATO” in the present invention
  • ATO antimony-containing tin oxide
  • infrared-absorbing fine particles have a relatively low visible light reflectance, and thus do not give a glaring appearance to a transparent substrate.
  • the dispersion of the ATO infrared absorbing fine particles has a nearly colorless color, it has been used in window materials for vehicles and buildings that require design.
  • Patent Document 1 proposes that a solar shading glass can be obtained by applying and baking a solar shading coating liquid obtained by dispersing ATO infrared absorbing fine particles in a silazane polymer solution on glass. Yes.
  • the present applicant can form a solar radiation shielding film having an optical characteristic that a haze value is low while having high visible light transmittance and low solar radiation transmittance, and ATO infrared absorption for solar radiation shielding. Disclosed are microparticles.
  • Patent Document 3 a method for producing a solar shading material having a high visible light transmittance, a low solar transmittance, and a low haze value.
  • Patent Document 4 the present applicant exhibits optical characteristics such as high visible light transmittance, low solar transmittance, and low haze value when formed on or in a transparent substrate.
  • the physical properties of ATO infrared absorbing fine particles that can be produced are proposed.
  • Patent Document 5 when using ATO infrared absorbing fine particles to produce a solar shading dispersion for forming a solar shading dispersion, filtration cleaning of a hydroxide containing tin and antimony The product is moistened with an alcohol solution, and then dried to produce a precursor of ATO infrared absorbing fine particles, and the precursor is fired so that the fired product is not a massive strong aggregate but a medium stirring mill. It has been disclosed that ATO infrared absorbing fine particles having good pulverizability and dispersibility can be produced.
  • ATO infrared absorbing fine particles capable of exhibiting optical characteristics such as high visible light transmittance, low solar transmittance, and low haze can be produced at low cost.
  • the ATO infrared absorbing fine particles have good grindability and dispersibility in a medium stirring mill.
  • the solar shading material dispersion for forming the solar shading dispersion can be produced at a low cost, and the solar shading dispersion can be formed by a simple coating method or kneading method using the dispersion. Therefore, it was thought that the total manufacturing cost of the dispersion using the ATO infrared absorbing fine particles, the laminated transparent substrate, the film and the glass was reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-257922
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-176132
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-75510
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-83397
  • Patent Document 5 Japanese Patent Laid-Open No. 2004-83397 2008-230954 gazette
  • the present invention has been made under the above circumstances, and the problem to be solved is that it has both excellent dispersibility and solar shading properties, and can reduce the amount of ATO infrared absorbing fine particles used.
  • An object is to provide an ATO infrared absorbing fine particle, an ATO infrared absorbing fine particle dispersion, a dispersion using the same, a laminated transparent substrate, a film, glass, and a method for producing the same.
  • the present inventors have excellent dispersibility, solar shading properties, and ATO infrared absorbing fine particles capable of reducing the amount of ATO infrared absorbing fine particles used, and dispersions and dispersions using the same.
  • the body, the laminated transparent base material, the film, the glass, and their production methods were studied.
  • the ATO infrared absorbing fine particles contained in the solar shield are visible light incident through the interference effect with incident light, the light absorption / release effect due to the electronic state of the powder particles, etc. It has been thought that it interacts with infrared light and causes optical phenomena such as transmission, absorption and reflection.
  • composite oxide fine particles such as ATO infrared absorbing fine particles can be prepared with various physical properties based on the surface state and electronic state of the fine particles, depending on the conditions during production. Based on these ideas, the present inventors have studied the relationship between the ATO infrared absorbing fine particles having various physical characteristics and the solar radiation shielding function.
  • the ATO infrared absorbing fine particles have excellent dispersibility, excellent
  • the present inventors have found a phenomenon that the necessary amount of the ATO infrared absorbing fine particles having the solar radiation shielding property and the desired solar radiation shielding property can be made extremely low. Furthermore, it has been found that the green compact of the ATO infrared absorbing fine particles has a volume resistivity within a predetermined range.
  • the required amount of ATO infrared absorbing fine particles for expressing desired solar radiation shielding characteristics may be described as “high or low coloring power”.
  • the ATO infrared absorbing fine particles that may be used in a small amount to express the desired solar shading characteristics are “ATO infrared absorbing fine particles with high coloring power” (in the present invention, “ATO with high coloring power”). May be described.) Further, the present inventors have determined the antimony concentration in the antimony compound-tin compound mixture before firing of the ATO infrared absorbing fine particles, the temperature conditions for producing the precursor, and firing the precursor. By controlling the firing conditions, the crystal lattice constant in the specific range described above, the crystallite size in the specific range, and the volume resistivity in the predetermined range described above are included. It has been found that ATO infrared absorbing fine particles can be obtained, and the present invention has been completed.
  • the first invention for solving the above-described problem is ATO fine particles, wherein the crystal lattice constant a of the ATO fine particles is from 4.736 to 4.743, the crystal lattice constant c is from 3.187 to 3.192, and the crystallite size is from 5.5 nm to 10.0 nm.
  • Infrared absorbing fine particles characterized by the above.
  • the second invention is Infrared absorbing fine particles characterized in that the crystallite size is 6.0 nm or more and 9.0 nm or less.
  • the third invention is Infrared absorbing fine particles, wherein the ATO fine particles contain Sn elements in a concentration of 66.0 mass% to 70.0 mass% and Sb elements in concentrations of 8.0 mass% to 9.0 mass%.
  • the fourth invention is: The infrared-absorbing fine particles are characterized in that a value of volume resistivity measurement in the green compact of the ATO fine particles is 0.05 ⁇ ⁇ cm or more and 0.35 ⁇ ⁇ cm or less.
  • the fifth invention is: The infrared absorbing fine particles according to any one of the first to fourth inventions are dispersed in a liquid medium, and the liquid medium is water, an organic solvent, an oil or fat, a liquid resin, a liquid An infrared-absorbing fine particle dispersion characterized by being selected from plasticizers for plastics or mixtures thereof.
  • the sixth invention is: The infrared-absorbing fine particle dispersion is characterized in that the dispersed particle diameter of the infrared-absorbing fine particles contained in the infrared-absorbing fine particle dispersion is 1 nm or more and 110 nm or less.
  • the seventh invention The infrared-absorbing fine particle dispersion is characterized in that the content of the infrared-absorbing fine particles contained in the infrared-absorbing fine particle dispersion is 1% by mass or more and 50% by mass or less.
  • the eighth invention When the infrared-absorbing fine particle dispersion is diluted with the liquid medium or concentrated by removing the liquid medium so that the visible light transmittance is 70%, the solar transmittance is 40% or more and 50% or less, and the unit An infrared-absorbing fine particle dispersion comprising 5.0 g / m 2 or more and 7.0 g / m 2 or less of infrared-absorbing fine particles per projected area.
  • the ninth invention An infrared absorbing fine particle dispersion comprising the infrared absorbing fine particles according to any one of the first to fourth inventions and a thermoplastic resin.
  • the tenth invention is The thermoplastic resin is polyethylene terephthalate resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluororesin, ethylene / vinyl acetate copolymer, polyvinyl One resin selected from the resin group called acetal resin, a mixture of two or more resins selected from the resin group, or a copolymer of two or more resins selected from the resin group, An infrared-absorbing fine particle dispersion characterized by being any one of the following.
  • the eleventh invention is An infrared-absorbing fine particle dispersion comprising 0.01% by mass to 25% by mass of the infrared-absorbing fine particles.
  • the twelfth invention The infrared-absorbing fine particle dispersion is in the form of a sheet, a board or a film.
  • the thirteenth invention Wherein when the visible light transmittance of the infrared absorbing microparticle dispersion was 70%, a solar radiation transmittance of 42% or more 52% or less, the unit projected area per 5.0 g / m 2 or more 7.0 g / m 2 or less of infrared An infrared absorbing fine particle dispersion comprising absorbing fine particles.
  • the fourteenth invention is An infrared absorbing laminated transparent substrate characterized in that the infrared absorbing fine particle dispersion according to any of the ninth to thirteenth inventions is present between a plurality of transparent substrates.
  • the fifteenth invention It has a coating layer on at least one surface of a transparent substrate selected from a transparent film substrate or a transparent glass substrate, and the coating layer includes the infrared absorbing fine particles according to any one of the first to fourth inventions.
  • the sixteenth invention is The binder resin is an infrared absorbing film or an infrared absorbing glass, wherein the binder resin is a UV curable resin binder.
  • the seventeenth invention The infrared ray absorbing film or the infrared ray absorbing glass, wherein the coating layer has a thickness of 1 ⁇ m or more and 10 ⁇ m or less.
  • the eighteenth invention The transparent film base material is an infrared absorbing film characterized in that it is a polyester film.
  • the nineteenth invention Any one of the fifteenth to eighteenth inventions, wherein the content per unit projected area of the infrared absorbing fine particles contained in the coating layer is 5.0 g / m 2 or more and 7.0 g / m 2 or less. Or an infrared-absorbing glass.
  • the twentieth invention is A step in which an alcohol solution in which an antimony compound is dissolved and an alkali solution are dropped in parallel into a solution of a tin compound having a liquid temperature of 60 ° C. or higher and less than 70 ° C. to form and precipitate a hydroxide containing tin and antimony; Decanting the precipitate repeatedly, washing until the conductivity of the supernatant of the washing liquid in the decantation is 1 mS / cm or less; Adding the washed precipitate to an alcohol solution and stirring the mixture to obtain a wet processed product; and A step of drying the wet treated product to form an ATO infrared absorbing fine particle precursor; The ATO infrared absorbing fine particle precursor is heated to 700 ° C.
  • the twenty-first invention In the step of forming and precipitating a hydroxide containing tin and antimony, an alkaline solution having a liquid temperature of 60 ° C. or higher and lower than 70 ° C., a solution of 100 parts by weight of a tin compound in terms of tin (IV) oxide, and an element of antimony
  • An infrared-absorbing fine particle production method comprising parallel dropping dropwise an alcohol solution in which 9.0 to 11.0 parts by weight of an antimony compound is converted in terms of conversion.
  • the ATO infrared absorption fine particle which has the high dispersibility and the solar radiation shielding characteristic, and can use the amount of ATO infrared absorption fine particles with high coloring property (high light absorbency), the said ATO An infrared-absorbing fine particle dispersion using infrared-absorbing fine particles, an infrared-absorbing fine particle dispersion, an infrared-absorbing laminated transparent substrate, and the like can be obtained.
  • ATO infrared absorbing fine particles 2. Method for producing ATO infrared absorbing fine particles; 3. ATO infrared absorbing fine particle dispersion; 4. ATO infrared absorbing fine particle dispersion, 5. Sheet-like or film-like ATO infrared absorbing fine particle dispersion, 6. Infrared absorbing laminated transparent substrate, The infrared absorbing film and glass will be described in detail in this order.
  • ATO Infrared Absorbing Fine Particles The ATO infrared absorbing fine particles according to the present invention have a crystal lattice constant a of 4.736 to 4.743, a crystal lattice constant c of 3.187 to 3.192, and more preferably a crystal lattice constant a. Is not less than 4.738 and not more than 4.742, crystal lattice constant c is not less than 3.188 and not more than 3.191, and crystallite size is not less than 5.5 and not more than 10.0 nm, more preferably not less than 6.0 and not more than 9.0 nm. ATO infrared absorbing fine particles.
  • it is an ATO infrared absorbing fine particle containing Sn element at a concentration of 66.0 mass% to 70.0 mass% and Sb element at a concentration of 8.0 mass% to 9.0 mass%.
  • the ATO infrared absorbing fine particles are compressed into a green compact by compressing at a pressure of 37.5 Mpa or more and 39.0 Mpa or less, and the value when the volume resistivity is measured by the DC four-terminal method is 0.05 ⁇ ⁇ cm or more and 0. .35 ⁇ ⁇ cm or less is preferable.
  • An ATO infrared absorbing fine particle dispersion formed by using a dispersion in which the ATO infrared absorbing fine particles are dispersed in a solvent with a dispersed particle diameter of 1 to 110 nm exhibits desirable solar shading properties.
  • the crystal lattice constant of the above-described ATO infrared absorbing fine particles is controlled by the amount of antimony doped into the tin oxide crystal in the ATO infrared absorbing fine particles. Specifically, the crystal lattice constant decreases as the antimony doping amount decreases, and the crystal lattice constant increases as the antimony doping amount increases. That is, when the doping amount of antimony increases or decreases, the optical characteristics of the ATO infrared absorbing fine particles are affected. Therefore, the crystal lattice constant parameter can be strictly controlled by strictly controlling the antimony doping amount.
  • the crystal lattice constant of the ATO infrared-absorbing fine particles according to the present invention is within the above-mentioned specified value range, excellent solar shading characteristics and coloring power can be ensured.
  • the crystallite size of the ATO infrared fine particles is closely related to the electron density of the particles, it is important to control the crystallite size in the same manner as the crystal lattice constant described above. Specifically, when preparing an ATO infrared absorbing fine particle precursor by parallel dripping, the liquid temperature at the time of parallel dripping is kept in the range of 60 ° C. or more and less than 70 ° C. so that the particle diameter of the precursor is uniform. There must be. Also, the firing temperature when firing the precursor must be in the range of 700 ° C. or more and less than 850 ° C.
  • the crystallite size of the ATO infrared absorbing fine particles is larger than the above-mentioned lower limit of the specified value range, the electron density of the particles becomes preferable, and the coloring power of the fine particles is secured.
  • the infrared absorption characteristic is preferable by being smaller than the above-mentioned prescribed value range upper limit, and the solar radiation shielding characteristic is secured.
  • the above-mentioned crystal lattice constant and crystallite size measurement methods include powder X-ray diffraction method, single crystal structure analysis method, transmission electron beam diffraction method and the like.
  • the measurement sample is powder and the crystallite size of the measurement sample is 100 nm or less, such as the ATO infrared absorbing fine particles according to the present invention
  • the powder X-ray diffraction method which is a relatively simple measurement method, is selected. It is desirable to do.
  • the XRD pattern of a measurement sample is measured by the ⁇ -2 ⁇ method of a powder XRD apparatus, and the crystal lattice constant and the crystallite size are analyzed with high precision by analyzing the crystal lattice constant and crystallite size by analysis using the WPPF (Whole Powder Pattern Fitting) method. Child size can be measured.
  • WPPF Whole Powder Pattern Fitting
  • Concentration of contained elements is preferably 66.0 to 70.0% by mass of Sn element and 8.0 to 9.0% by mass of Sb element, more preferably 67.0 to 69.0% by mass of Sn element. It is good to do.
  • the volume resistivity value of the green compact of ATO infrared absorbing fine particles is closely related to the electron density of the fine particles.
  • the fine particles are compressed at a pressure of 37.5 to 39.0 Mpa to form a green compact, and when the volume resistivity is measured by the DC four-terminal method while the pressure is applied to the green compact, the value is 0.05. It is preferably ⁇ 0.35 ⁇ ⁇ cm, more preferably 0.10 to 0.30 ⁇ ⁇ cm.
  • the volume resistivity value of the green compact varies depending on the compacting pressure of the green compact, for example, as described above, the pressure is unified within the range of 37.5 to 39.0 MPa, and the measurement method is made uniform. It is preferable to perform comparison between samples.
  • 2 to 3 g of ATO infrared absorbing fine particles are packed in a cylinder to form a columnar sample having a diameter of 20.0 mm and a thickness of 2.5 mm to 4.0 mm.
  • the sample is loaded in the axial direction from 11.8 to 12.2 kN. Compressed at a pressure of 37.5 to 39.0 MPa to obtain a green compact, and the volume resistivity of the green compact of the ATO infrared absorbing fine particles was measured by the DC four-terminal method while the pressure was applied. At this time, the density of the green compact was 2.0 to 3.5 g / cc.
  • hydroxide which is the precursor of the microparticles
  • HCl may be added to the tin compound solution in advance.
  • the addition amount of the antimony compound to the tin compound solution is 9.0 to 11.0 parts by weight in terms of antimony elements with respect to 100 parts by weight in terms of tin (IV) oxide from the viewpoint of desired optical properties.
  • the amount is preferably 9.5 to 10.5 parts by weight. With this added amount, it is possible to produce ATO infrared absorbing fine particles in which the Sn element is 66.0 to 70.0% by mass and the Sb element is 8.0 to 9.0% by mass.
  • the tin compound and antimony compound to be used are not particularly limited, and examples thereof include tin chloride, tin nitrate, tin sulfide, antimony chloride, and antimony bromide.
  • alkaline solution used as the precipitating agent examples include aqueous solutions of ammonium hydrogen carbonate, ammonia water, sodium hydroxide, potassium hydroxide, and the like, and ammonium hydrogen carbonate and aqueous ammonia are particularly preferable.
  • the alkali concentration of the alkali solution may be not less than the chemical equivalent required for the tin compound and the antimony compound to be hydroxides, but is preferably 3 times the equivalent to the equivalent.
  • the parallel dropping time of the alcohol solution and the alkali solution or the parallel dropping time of the tin compound solution and the alcohol solution is 0.5% from the viewpoint of the particle size and productivity of the precipitated hydroxide. It is desirable that the time be not less than 60 minutes and not more than 60 minutes, preferably not more than 30 minutes.
  • the aqueous solution is continuously stirred.
  • the temperature of the aqueous solution at that time is the same as the temperature at the time of parallel dropping, and is 60 ° C. or higher and 70 ° C. or lower.
  • the reason why the liquid temperature is set to 60 ° C. or higher and lower than 70 ° C. during the continuous stirring of the aqueous solution is to precipitate a hydroxide having a uniform ratio of tin and antimony and having a relatively uniform particle size.
  • the composition of the precipitated hydroxide becomes uniform, and when the hydroxide precursor is baked later, ATO infrared absorbing fine particles having a uniform antimony doping amount can be produced. As a result, the solar shading characteristics and coloring power of the ATO infrared absorbing fine particles are ensured.
  • evaporation of a solvent is suppressed by making liquid temperature lower than 70 degreeC, and it is also suppressed that the density
  • the particle size of the precipitated hydroxide becomes uniform, and when the hydroxide precursor is subsequently fired, ATO infrared absorbing fine particles having a uniform crystallite size are produced. And coloring power is secured.
  • the duration of stirring is not particularly limited, but from the viewpoint of productivity, it is 0.5 minutes or longer, 30 minutes or shorter, preferably 15 minutes or shorter.
  • decantation is repeatedly performed on the precipitate.
  • the washing liquid in the decantation is sufficiently washed and filtered until the conductivity of the supernatant liquid is 1 mS / cm or less. If impurities such as chloride ions and sulfate ions remaining in the precipitate are 1.5% by mass or less, solid solution of antimony with respect to tin oxide is not inhibited in the firing step, and desired optical characteristics are ensured. . Therefore, it is preferable to sufficiently wash and filter until the conductivity of the supernatant of the cleaning liquid in the decantation is 1 mS / cm or less. If the electrical conductivity of the supernatant is 1 mS / cm or less, the amount of impurities remaining in the precipitate can be 1.5% by mass or less.
  • the washed precipitate is wet-treated with an alcohol solution to obtain a wet-treated product, and then dried.
  • an alcohol solution containing less than 15% by mass of one or more elements selected from Si, Al, Zr, and Ti in terms of oxides as the alcohol solution used for the wet treatment.
  • an oxide of one or more elements selected from Si, Al, Zr, and Ti is present independently in the vicinity of the antimony-containing tin oxide, and the antimony-containing tin oxide is fired during firing. This is because it suppresses the grain growth.
  • the concentration of the alcohol solution is preferably 50% by mass or more. This is because if the concentration of the alcohol solution is 50% by mass or more, it is possible to prevent the antimony-containing tin oxide fine particles from forming a massive strong aggregate.
  • the alcohol used in the alcohol solution is not particularly limited, but is preferably an alcohol having excellent solubility in water and having a boiling point of 100 ° C. or lower.
  • examples include methanol, ethanol, propanol, and tert-butyl alcohol.
  • the wet treatment may be performed by adding the filtered and washed precipitate into the alcohol solution and stirring, and the time and stirring speed at this time may be appropriately selected according to the treatment amount.
  • the amount of the alcohol solution at the time when the precipitate is put into the alcohol solution may be a liquid amount that can ensure fluidity that can easily stir the precipitate.
  • the stirring time and the stirring speed are appropriately selected on the condition that a precipitate containing a part that has been partially aggregated during filtration and washing is uniformly mixed in the alcohol solution until there is no aggregated part.
  • the temperature of the wet treatment may be usually performed at room temperature, but it is of course possible to carry out the heating while heating the alcohol so that the alcohol is not lost by evaporation if necessary.
  • the alcohol is evaporated and lost during the wet treatment, and the effect of the wet treatment is lost. After the alcohol is evaporated and lost during the wet treatment, and the wet treatment effect is lost, drying the wet treatment product results in strong agglomerates, which is not preferable.
  • the wet treated product is heat-dried while being wet with alcohol.
  • the drying temperature and drying time of the wet processed product are not particularly limited. After the wet treatment, even if the wet processed product is dried, it does not become a strong agglomerate. Therefore, the drying temperature and the drying time are appropriately selected depending on the processing amount of the wet processed product and the conditions of the processing apparatus. good. By the drying treatment, an ATO infrared absorbing fine particle precursor subjected to the wet treatment is obtained.
  • the ATO infrared absorbing fine particle precursor subjected to the wet treatment is heated to 600 ° C. or higher in an air atmosphere and baked for 1 hour to 5 hours, preferably 2 hours to 5 hours.
  • ATO infrared absorbing fine particles are produced.
  • antimony is sufficiently dissolved in the tin oxide by heating to 700 ° C. or higher, and the lattice constant a is 4.736 to 4.743% and the lattice constant c is 3.187 to 3.192%. It can be preferable.
  • the firing temperature range is preferably 700 ° C. or higher and lower than 850 ° C.
  • ATO Infrared Absorbing Fine Particle Dispersion is an ATO infrared absorbing fine particle obtained by the above production method, water, organic solvent, oil or fat, liquid resin, plasticizer for liquid plastic, or these A liquid medium of a mixed slurry selected from a mixture and an appropriate amount of a dispersant, a coupling agent, a surfactant, and the like are pulverized and dispersed by a medium stirring mill. Further, the dispersion state of the fine particles in the dispersion is good, and the dispersion particle diameter is 1 to 110 nm.
  • the content of the ATO infrared absorbing fine particles contained in the ATO infrared absorbing fine particle dispersion is 1% by mass or more and 50% by mass or less. Further, when the visible light transmittance is set to 70% by dilution with the liquid medium or removal by the removal of the liquid medium, the solar radiation transmittance is 40% or more and 50% or less, and 5.0 to 7 per unit projected area. It becomes possible to contain 0.0 g / m 2 of ATO infrared absorbing fine particles.
  • the solvent used for the ATO infrared absorbing fine particle dispersion is not particularly limited, and may be appropriately selected according to the application conditions, application environment, and appropriately added inorganic binder or resin binder of the ATO infrared absorbing fine particle dispersion. That's fine. Examples thereof include water, organic solvents, oils and fats, liquid resins, liquid plasticizers for plastics, and mixtures thereof. Furthermore, as the organic solvent, various solvents such as alcohols, ketones, hydrocarbons, glycols, and waters can be selected.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone Ester solvents such as 3-methyl-methoxy-propionate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; , N- methyl formamide, dimethylformamide, dimethylacetamide, amides such as N- methyl-2-pyrrolidone; toluene, aromatic hydro
  • chlorobenzene can be used.
  • organic solvents isopropyl alcohol, ethanol, 1-methoxy-2-propanol, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, and n-butyl acetate are particularly preferable.
  • fats and oils vegetable fats and oils or plant-derived fats and oils are preferable.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil, tung oil, eno oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, poppy oil, olive oil, coconut oil, palm oil, dehydrated castor oil
  • Non-drying oils such as are preferably used.
  • As the compound derived from vegetable oil fatty acid monoesters, ethers, and the like obtained by directly esterifying fatty acids of plant oil and monoalcohols are preferably used.
  • oils can also be used as fats and oils, such as Isopar E, Exol Hexane, Exol Heptane, Exol E, Exol D30, Exol D40, Exol D60, Exol D80, Exol D95, Exol D110, Exol D130 (or more, Exxon Mobil) is a preferred example.
  • the solvents described above can be used alone or in combination of two or more. Furthermore, you may adjust pH by adding an acid and an alkali to these solvents as needed.
  • various dispersants, surfactants, couplings are used. Addition of an agent or the like is also preferable.
  • the dispersant, the coupling agent, and the surfactant can be selected according to the use, but preferably have an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
  • These functional groups are adsorbed on the surface of the ATO infrared absorbing fine particles to prevent aggregation, and have an effect of uniformly dispersing the ATO infrared absorbing fine particles according to the present invention even in the infrared absorbing film.
  • the haze value is low while having high visible light transmittance and low solar transmittance.
  • An ATO infrared absorbing fine particle dispersion having optical properties can be formed.
  • the method for dispersing the ATO infrared absorbing fine particles in the dispersion is not particularly limited as long as the fine particles can be uniformly dispersed in the dispersion without agglomeration.
  • the dispersion method include a pulverization / dispersion treatment method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • pulverization and dispersion with a medium agitation mill such as a bead mill using a medium medium (beads, beer, Ottawa sand), a beer mill, a sand mill, a paint shaker or the like is preferable because the time required for the desired dispersed particle size is short.
  • a medium agitation mill such as a bead mill using a medium medium (beads, beer, Ottawa sand), a beer mill, a sand mill, a paint shaker or the like.
  • the ATO infrared absorbing fine particles are dispersed in the dispersion, and at the same time, the ATO infrared absorbing fine particles collide with each other and the medium media collide with the fine particles, and the like.
  • ATO infrared absorbing fine particles can be made finer and dispersed (that is, pulverized and dispersed).
  • the dispersed particle diameter is 1-110 nm, light in the visible light region having a wavelength of 380 nm-780 nm is not scattered by geometrical scattering or Mie scattering, so haze is reduced and visible light transmittance is reduced. This is preferable because it can be increased. Further, in the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced. Therefore, it is preferable that the dispersed particle diameter is 110 nm or less because the scattered light is extremely reduced and the transparency is further increased.
  • the dispersed particle size of ATO infrared absorbing fine particles means the particle size of single particles of ATO infrared absorbing fine particles dispersed in a solvent or aggregated particles in which the ATO infrared absorbing fine particles are aggregated. It can be measured with various particle size distribution meters. For example, a sample of the ATO infrared absorbing fine particle dispersion is collected, the sample is irradiated with a laser, and the Stokes diameter (hydrodynamic diameter) is obtained from the fluctuation of the scattered light of the laser scattered by the ATO infrared absorbing fine particles. It can be measured by a method based on the light scattering method. The Stokes diameter obtained by this dynamic light scattering method corresponds to the dispersed particle diameter in the present invention.
  • the ATO infrared absorbing fine particle dispersion in which the content of the ATO infrared absorbing fine particles obtained by the above production method is 1% by mass or more and 50% by mass or less is excellent in liquid stability.
  • a dispersant, a coupling agent, or a surfactant is selected, gelation of the dispersion or particle settling does not occur for more than 6 months even when placed in a constant temperature bath at a temperature of 40 ° C.
  • the dispersed particle size can be maintained in the range of 1 to 110 nm.
  • the content of the ATO infrared absorbing fine particles can be reduced as compared with other ATO fine particle production methods. That is, when the ATO infrared absorbing fine particle dispersion is diluted with the liquid medium or concentrated by removing the liquid medium to have a visible light transmittance of 70%, the solar radiation transmittance is 40% or more and 50% or less, At that time, the content of ATO infrared absorbing fine particles per unit projected area is 5.0 to 7.0 g / m 2 .
  • the “content per unit projected area” means the weight of the infrared absorbing fine particles contained in the thickness direction per unit area (m 2 ) through which light passes in the infrared absorbing fine particle dispersion according to the present invention. (G).
  • the ATO infrared absorbing fine particle dispersion may contain one or more selected from an inorganic binder and a resin binder as appropriate.
  • the kind of inorganic binder and resin binder to be included in the ATO infrared absorbing fine particle dispersion is not particularly limited, but examples of the inorganic binder include silicon, zirconium, titanium, or aluminum metal alkoxides and partial hydrolysis thereof.
  • the resin binder for the condensation polymer or organosilazane a thermoplastic resin such as an acrylic resin, a thermosetting resin such as an epoxy resin, or the like can be applied.
  • the dispersion according to the present invention is selected from the general formula XBm (where X is an alkaline earth element or a rare earth element containing yttrium).
  • the ATO infrared absorbing fine particle dispersion in which the ATO infrared absorbing fine particle dispersion is coated on a transparent substrate has a film structure in which ATO infrared absorbing fine particles are deposited on the substrate.
  • this film shows the solar radiation shielding effect as it is, it is also preferable to add one or more selected from an inorganic binder and a resin binder when the ATO infrared absorbing fine particles are dispersed in the above-described production process of the ATO infrared absorbing fine particles. It is a configuration.
  • the binder By adding the binder to the ATO infrared-absorbing fine particle dispersion, it becomes possible to control the conductivity of the manufactured ATO infrared-absorbing fine particle dispersion by adjusting the amount of the binder added, and then apply it onto the substrate. This is because the adhesiveness of the ATO infrared absorbing fine particles after curing to the base material is improved, and the hardness of the film is further improved.
  • the kind of the inorganic binder or the resin binder is not particularly limited.
  • the inorganic binder include silicon, zirconium, titanium, or aluminum metal alkoxides, partially hydrolyzed polycondensation products thereof, or organosilazanes.
  • an ultraviolet curable resin, a room temperature curable resin, a thermoplastic resin such as an acrylic resin, a thermosetting resin such as an epoxy resin, or the like can be used.
  • a coating solution containing an alkoxide containing at least one of silicon, zirconium, titanium, and aluminum and / or a partially hydrolyzed polycondensation product of the alkoxide is applied to the film, and then heated.
  • a coating solution containing an alkoxide containing at least one of silicon, zirconium, titanium, and aluminum and / or a partially hydrolyzed polycondensation product of the alkoxide is applied to the film, and then heated.
  • it is also preferable to form a multilayer film by forming an oxide coating film containing at least one of silicon, zirconium, titanium, and aluminum on the film.
  • an ATO infrared-absorbing fine particle alone or a film mainly composed of ATO infrared-absorbing fine particles is composed of an alkoxide containing at least one of silicon, zirconium, titanium, and aluminum, or a partially hydrolyzed polycondensation product thereof.
  • a coating method is convenient from the viewpoint of ease of film forming operation and cost.
  • the content is preferably 40% by mass or less in terms of oxide in the coating obtained after heating.
  • the ATO infrared absorbing fine particle dispersion according to the present invention and the coating method of the coating liquid are not particularly limited.
  • a method of applying the treatment liquid flatly and thinly and uniformly such as a spin coating method, a bar coating method, a spray coating method, a dip coating method, a screen printing method, a roll coating method, and a flow coating method, can be preferably applied.
  • any method can be used as long as the ATO infrared absorbing fine particles are uniformly dispersed in the resin. This method may be selected as appropriate. Further, it can be melt-mixed at a temperature near the melting point of the resin and then pelletized, and formed into various shapes such as a plate shape, a sheet shape, or a film shape by a known method.
  • the resin include PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, and fluorine resin.
  • the substrate heating temperature after application of the ATO infrared absorbing fine particle dispersion containing a metal alkoxide of silicon, zirconium, titanium, or aluminum and a hydrolysis polymer thereof is preferably 100 ° C. or higher. Is heated above the boiling point of the solvent in the coating solution. This is because when the substrate heating temperature is 100 ° C. or higher, the polymerization reaction of the metal alkoxide or the hydrolysis polymer of the metal alkoxide contained in the coating film can be completed. In addition, when the substrate heating temperature is 100 ° C. or higher, water or organic solvent as a solvent does not remain in the film, so that these solvents do not cause a reduction in visible light transmittance in the heated film. Because.
  • the resin When a resin binder is added to the ATO infrared absorbing fine particle dispersion, the resin may be cured according to the resin curing method.
  • the resin binder is an ultraviolet curable resin, it may be appropriately irradiated with ultraviolet rays, and if it is a room temperature curable resin, it may be left as it is after application. If this structure is taken, the application
  • the ATO infrared absorbing fine particle dispersion according to the present invention includes ATO infrared absorbing fine particles obtained by the above-described production method and a thermoplastic resin.
  • the thermoplastic resin is polyethylene terephthalate resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluorine resin, ethylene / vinyl acetate copolymer.
  • One resin selected from the resin group called polyvinyl acetal resin, a mixture of two or more resins selected from the resin group, or a co-weight of two or more resins selected from the resin group It is preferable that it is either united.
  • the ATO infrared absorbing fine particle dispersion according to the present invention contains 0.01 mass% or more and 25 mass% or less of the ATO infrared absorbing fine particles obtained by the above-described production method.
  • the ATO infrared absorbing fine particle dispersion may be in the form of a sheet, board or film.
  • the solar radiation transmittance is 42% or more and 52% or less, and ATO of 5.0 to 7.0 g / m 2 per unit projected area.
  • Infrared absorbing fine particles can be contained.
  • the infrared absorbing fine particle dispersion can be applied to various uses by processing into a sheet shape, a board shape or a film shape.
  • a method for producing the ATO infrared absorbing fine particle dispersion will be described below. After mixing the ATO infrared absorbing fine particle dispersion and the plasticizer according to the present invention, the solvent component is removed to obtain a dispersion powder or a plasticizer dispersion containing the ATO infrared absorbing fine particles.
  • the ATO infrared absorbing fine particle dispersion is preferably dried under reduced pressure. Specifically, the ATO infrared absorbing fine particle dispersion is dried under reduced pressure while stirring to separate the ATO infrared absorbing fine particle-containing composition from the solvent component. Examples of the apparatus used for the reduced-pressure drying include a vacuum agitation type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
  • the pressure value at the time of pressure reduction in the drying step is appropriately selected.
  • the removal efficiency of the solvent from the ATO infrared absorbing fine particle dispersion is improved, and the dispersion powder and the plasticizer dispersion are not exposed to high temperature for a long time. It is preferable that the ATO infrared absorbing fine particles dispersed in the plasticizer dispersion liquid do not aggregate. Furthermore, the productivity of the dispersion powder and the plasticizer dispersion is improved, and it is easy to collect the evaporated solvent, which is preferable from the environmental consideration.
  • the remaining solvent is preferably 5% by mass or less. If the remaining solvent is 5% by mass or less, bubbles are not generated when the dispersion powder or plasticizer dispersion is processed into, for example, a laminated transparent base material, and the appearance and optical characteristics are kept good. is there. Moreover, a masterbatch can be obtained by disperse
  • thermoplastic resin granules or pellets, and other additives as required, kneading with a vent type uniaxial or biaxial extruder.
  • a master batch can also be obtained by processing into a pellet by a general method of cutting a melt-extruded strand.
  • examples of the shape include a columnar shape and a prismatic shape. It is also possible to adopt a so-called hot cut method in which the molten extrudate is directly cut. In this case, it is common to take a shape close to a sphere.
  • Sheet-like or film-like ATO infrared-absorbing fine particle dispersion Sheet-like or film-like ATO infrared-absorbing fine particles according to the present invention are obtained by uniformly mixing the dispersed powder, plasticizer dispersion, or masterbatch into a transparent resin. Dispersions can be produced.
  • thermoplastic resins When producing a sheet-like or film-like ATO infrared absorbing fine particle dispersion, various thermoplastic resins can be used as the resin constituting the sheet or film. And considering that the sheet-like or film-like ATO infrared absorbing fine particle dispersion is applied to the optical filter, it is preferably a thermoplastic resin having sufficient transparency.
  • resin groups such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluorine resin, ethylene / vinyl acetate copolymer
  • a preferred resin can be selected from a resin selected from the group consisting of two or more resins selected from the resin group, or a copolymer of two or more resins selected from the resin group.
  • thermoplastic resin constituting the sheet or film alone has sufficient flexibility and adhesion to a transparent substrate.
  • thermoplastic resin is a polyvinyl acetal resin
  • a plasticizer the substance used as a plasticizer with respect to the thermoplastic resin which concerns on this invention can be used.
  • plasticizer used for an infrared absorbing film composed of a polyvinyl acetal resin a plasticizer that is a compound of a monohydric alcohol and an organic acid ester
  • a plasticizer that is an ester system such as a polyhydric alcohol organic acid ester compound
  • Examples include phosphoric acid plasticizers such as organic phosphoric acid plasticizers.
  • Any plasticizer is preferably liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • the kneaded product is obtained by a known method such as an extrusion molding method or an injection molding method.
  • a sheet-like ATO infrared-absorbing fine particle dispersion formed into a flat shape or a curved shape can be produced.
  • a known method can be used as a method for forming a sheet-like or film-like ATO infrared absorbing fine particle dispersion.
  • a calendar roll method, an extrusion method, a casting method, an inflation method, or the like can be used.
  • Infrared-absorbing laminated transparent substrate Infrared-absorbing laminated transparent substrate comprising a sheet-like or film-like ATO infrared-absorbing fine particle dispersion interposed as an intermediate layer between a plurality of transparent substrates made of a sheet glass or plastic material explain.
  • the infrared absorbing laminated transparent base material is obtained by sandwiching an intermediate layer from both sides using a transparent base material.
  • As the transparent substrate plate glass transparent in the visible light region, plate-like plastic, or film-like plastic is used.
  • the material of the plastic is not particularly limited and can be selected according to the application, polycarbonate resin, acrylic resin, polyethylene terephthalate resin, PET resin, polyamide resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, A fluororesin can be used.
  • the infrared-absorbing laminated transparent base material according to the present invention is a method in which a plurality of opposing transparent base materials that are sandwiched by the sheet- or film-shaped infrared-absorbing fine particle dispersion according to the present invention are bonded together by a known method. Can also be obtained.
  • Infrared absorbing film and infrared absorbing glass By using the above-described infrared absorbing fine particle dispersion, a coating layer containing infrared absorbing fine particles is formed on a transparent substrate selected from a substrate film or a substrate glass. Infrared absorbing glass can be manufactured.
  • the above infrared absorbing fine particle dispersion is mixed with a plastic or a monomer to prepare a coating solution, and a coating film is formed on a transparent substrate by a known method to prepare an infrared absorbing film or infrared absorbing glass. Can do.
  • the infrared absorbing film can be produced as follows. A medium resin is added to the above-described infrared absorbing fine particle dispersion to obtain a coating solution. After coating the coating liquid on the surface of the film substrate, if the solvent is evaporated and the resin is cured by a predetermined method, a coating film in which the infrared absorbing fine particles are dispersed in the medium can be formed.
  • a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, or the like can be selected according to the purpose.
  • these resins may be used alone or in combination.
  • it is particularly preferable to use a UV curable resin binder from the viewpoint of productivity, apparatus cost, and the like.
  • a binder using a metal alkoxide can be used.
  • the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. Binders using these metal alkoxides can be subjected to hydrolysis and polycondensation by heating or the like to form a coating layer made of an oxide film.
  • the infrared absorbing fine particle dispersion may be applied onto a substrate film or substrate glass, and then a coating layer may be formed by further applying a binder using a medium resin or a metal alkoxide.
  • the film base material mentioned above is not limited to a film shape, For example, a board form or a sheet form may be sufficient.
  • the film base material PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluorine resin, and the like can be used according to various purposes.
  • the infrared absorbing film is preferably a polyester film, and more preferably a PET film.
  • the surface of the film substrate is preferably subjected to a surface treatment in order to realize easy adhesion of the coating layer.
  • a surface treatment in order to realize easy adhesion of the coating layer.
  • the configuration of the intermediate layer is not particularly limited, and may be composed of, for example, a polymer film, a metal layer, an inorganic layer (for example, an inorganic oxide layer such as silica, titania, zirconia), an organic / inorganic composite layer, or the like. .
  • the method for providing the coating layer on the substrate film or the substrate glass is not particularly limited as long as the infrared absorbing fine particle dispersion can be uniformly applied to the surface of the substrate.
  • a bar coating method, a gravure coating method, a spray coating method, a dip coating method, and the like can be given.
  • a coating liquid in which the liquid concentration and additives are appropriately adjusted so as to have an appropriate leveling property is used for the purpose of the thickness of the coating film and the content of the infrared absorbing fine particles.
  • a coating film can be formed on a substrate film or substrate glass using a wire bar having a bar number that can be filled. And after removing the solvent contained in a coating liquid by drying, a coating layer can be formed on a board
  • the drying condition of the coating film varies depending on each component, the type of solvent and the use ratio, but is usually about 60 seconds to 140 ° C. for about 20 seconds to 10 minutes.
  • limiting in particular in ultraviolet irradiation For example, UV exposure machines, such as an ultrahigh pressure mercury lamp, can be used suitably.
  • the pre-process includes, for example, a substrate surface treatment process, a pre-bake (substrate pre-heating) process, and the post-process includes a post-bake (substrate post-heating) process, and can be selected as appropriate.
  • the heating temperature in the pre-bake process and / or the post-bake process is preferably 80 ° C. to 200 ° C., and the heating time is preferably 30 seconds to 240 seconds.
  • the thickness of the coating layer on the substrate film or the substrate glass is not particularly limited, but is practically preferably 10 ⁇ m or less, and more preferably 6 ⁇ m or less. If the thickness of the coating layer is 10 ⁇ m or less, in addition to exhibiting sufficient pencil hardness and scratch resistance, warping of the substrate film occurs when the coating layer is stripped of the solvent and the binder is cured. This is because the occurrence of process abnormalities such as these can be avoided.
  • Example 1 To 25 ° C. Water 340g SnCl 4 ⁇ 5H 2 O (Wako Pure Chemical Industries, Ltd., Wako special grade purity of 98% or higher) were dissolved 54.9 g, and the solution. In this solution, 12.7 ml of a methanol solution in which 4.2 g of SbCl 3 (manufactured by Wako Pure Chemical Industries, JIS special grade purity 98% or more) was dissolved (reagent special grade purity 99.8% or more, produced by Yoneyama Pharmaceutical Co., Ltd.) was added to a concentration of 16%.
  • SbCl 3 manufactured by Wako Pure Chemical Industries, JIS special grade purity 98% or more
  • a diluted NH 4 OH aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 30%) is dropped in parallel. And by the said parallel dripping, the hydroxide containing the tin and antimony which are the precursors of ATO infrared absorption fine particles was produced and precipitated.
  • the amount of antimony compound added to the tin compound solution was 9.5 parts by weight in terms of antimony element with respect to 100 parts by weight of tin (IV) oxide from the viewpoint of desired optical properties. With this added amount, it is possible to produce ATO infrared absorbing fine particles in which the Sn element is about 68% by mass and the Sb element is about 8% by mass.
  • Ammonia water was used as the alkaline solution used as the precipitating agent, and the alkali concentration was 16%, which is 1.6 times the chemical equivalent necessary for the tin compound and the antimony compound to become hydroxide.
  • the parallel dropping time of the methanol solution and the alkali solution was 25 minutes, and parallel dropping was performed until the pH of the solution reached 7.5.
  • the solution was continuously stirred for 10 minutes.
  • the temperature of the solution at that time was set to the same temperature as that at the time of parallel dropping, and was set to 65 ° C.
  • the washed precipitate was wet-treated with an anhydrous ethyl alcohol solution (manufactured by Wako Pure Chemical Industries, reagent special grade, purity 99.5% or more).
  • anhydrous ethyl alcohol solution manufactured by Wako Pure Chemical Industries, reagent special grade, purity 99.5% or more.
  • the weight ratio of [filtered precipitate: anhydrous ethyl alcohol solution] was set to a ratio of 1: 4 (the ratio of alcohol corresponds to 80%), and the filtered precipitate and the anhydrous ethyl alcohol solution Was wet-treated by stirring at room temperature for 1 hour to obtain a precursor.
  • the precursor was dried at 90 ° C. for 10 hours to obtain a dried product.
  • the ATO infrared absorbing fine particle precursor subjected to the wet treatment was heated to 700 ° C. in an air atmosphere and baked for 2 hours to produce ATO infrared absorbing fine particles according to Example 1.
  • the crystal structure of the obtained ATO infrared absorbing fine particles according to Example 1 was measured by a ⁇ -2 ⁇ method of a powder XRD apparatus (D2 Phaser manufactured by BRUKER), and analyzed by a WPPF (Whole Powder Pattern Fitting) method to obtain a crystal lattice constant. a and c and the crystallite size were calculated.
  • quantitative analysis of Sn element and Sb element was performed by ICP emission analysis (ICPE-9000 manufactured by Shimadzu Corporation). Then, the volume resistivity of the green compact of the ATO infrared absorbing fine particles was measured.
  • the ATO infrared absorbing fine particles 2 to 3 g are packed in a cylinder to form a columnar sample having a diameter of 20.0 mm and a thickness of 2.5 mm to 4.0 mm.
  • the sample is loaded in the axial direction from 11.8 to 12.2 kN and pressure 37 Compressed at 5 to 39.0 Mpa to form a green compact, and using a low resistance powder measurement system (MCP-PD51 manufactured by Mitsubishi Chemical Analytech), the ATO infrared absorbing fine particles by the DC four-terminal method in the compressed state
  • MCP-PD51 low resistance powder measurement system manufactured by Mitsubishi Chemical Analytech
  • the crystal lattice constant a of the ATO infrared absorbing fine particles according to Example 1 was 4.7404, the crystal lattice constant c was 3.190 ⁇ , and the crystallite size was 7.8 nm. Further, when the composition of the ATO infrared absorbing fine particles was examined by ICP emission analysis, the Sn concentration was 68.1% by mass and the Sb concentration was 8.2% by mass. Further, the volume resistivity value of the ATO infrared absorbing fine particles was 0.152 ⁇ ⁇ cm. The evaluation results are shown in Table 1.
  • Polymer dispersing agent 7 having 25 parts by weight of the obtained ATO infrared absorbing fine particles according to Example 1, 67.5 parts by weight of toluene (special grade purity 99.5% or more manufactured by Daishin Chemical) and a carboxyl group as a functional group 7 .5 parts by weight were mixed to prepare 30 kg slurry.
  • This slurry was put into a medium stirring mill together with the beads, and the slurry was circulated for pulverization and dispersion treatment for 5 hours.
  • the medium stirring mill used was a horizontal cylindrical annular type (manufactured by Ashizawa Corporation), and the inner wall of the vessel and the rotor (rotary stirring portion) were made of ZrO 2 .
  • beads made of YSZ Yttria-Stabilized Zirconia
  • the rotational speed of the rotor was 13 rpm / second, and the pulverization and dispersion treatment was performed at a slurry flow rate of 5 kg / min.
  • a dispersion according to Example 1 was obtained.
  • the dispersed particle diameter of the ATO infrared absorbing fine particles in the dispersion liquid obtained in Example 1 was measured using a particle diameter measuring apparatus based on the dynamic light scattering method (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.).
  • ELS-8000 manufactured by Otsuka Electronics Co., Ltd.
  • the dispersion according to Example 1 was diluted with toluene and placed in a 1 cm square glass cell to obtain a measurement sample. After dilution, a glass cell was set in the apparatus, and it was confirmed that the light amount was 5000 to 16000 cps at the time of measuring the light amount, and the dispersed particle size was measured.
  • the particle refractive index was set to 2.00, the particle shape was spherical, and the solvent refractive index was set to 1.50.
  • the dispersed particle diameter of the ATO infrared absorbing fine particles in the dispersion according to Example 1 was 105 nm.
  • the obtained dispersion according to Example 1 was diluted with toluene as a solvent. At this time, the dispersion was diluted so that the visible light transmittance of the dispersion was 60%, 70%, and 80% in the transmittance measurement described later.
  • the dilution ratio with toluene at this time is shown in Table 2.
  • the dispersion was put into a glass cell having a bottom surface of 1 cm square and a height of 5 cm, and the light transmittance of the dispersion in the glass cell was measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.). ) In the wavelength range of 300 nm to 2600 nm at intervals of 5 nm.
  • the light incident direction of the spectrophotometer was a direction perpendicular to the side surface of the glass cell.
  • the blank liquid which put only toluene of the solvent into the said glass cell is made into the baseline of the light transmittance.
  • the solar radiation transmittance was obtained from the result of transmittance measurement, that is, the transmission profile, and found to be 48.1%.
  • the content of the ATO infrared absorbing fine particles according to Example 1 per unit projected area in the glass cell was 8.7 g / m 2 when the visible light transmittance was normalized to 60%. Further, when the visible light transmittance was normalized to 70%, it was 6.0 g / m 2 . Furthermore, when the visible light transmittance was normalized to 80%, it was 3.7 g / m 2 .
  • the content of the ATO infrared absorbing fine particles is the weight of the ATO infrared absorbing fine particles contained in the thickness direction per unit area through which light passes. The evaluation results are shown in Table 2 and FIG.
  • Example 2 The ATO infrared absorbing fine particles according to Example 2 were treated in the same manner as in Example 1 except that the ATO infrared absorbing fine particle precursor subjected to the wet treatment was heated in the atmosphere and baked for 5 hours. Manufactured. The production conditions and evaluation results are shown in Table 1.
  • a dispersion liquid according to Example 2 was obtained by performing the same operation as in Example 1 using the ATO infrared absorbing fine particles according to Example 2. Evaluation similar to Example 1 was implemented to the dispersion liquid concerning the said Example 2. FIG. The evaluation results are shown in Table 2 and FIG.
  • Example 3 By performing the same operation as in Example 1 except that the amount of antimony compound added to the tin compound solution was 10.5 parts by weight in terms of antimony with respect to 100 parts by weight of tin (IV) oxide, ATO infrared absorbing fine particles according to Example 3 were produced. At this time, the usage amount of SnCl 4 .5H 2 O was 49.7 g, and the usage amount of SbCl 3 was 4.2 g. The production conditions and evaluation results are shown in Table 1.
  • a dispersion liquid according to Example 3 was obtained by performing the same operation as in Example 1 using the ATO infrared absorbing fine particles according to Example 3. Evaluation similar to Example 1 was implemented to the dispersion liquid concerning the said Example 3. FIG. The evaluation results are shown in Table 2 and FIG.
  • Example 4 The ATO infrared absorption according to Example 4 is performed in the same manner as in Example 1 except that the wet-processed ATO infrared absorption fine particle precursor is heated to 800 ° C. and calcined in the air atmosphere. Fine particles were produced. The production conditions and evaluation results are shown in Table 1.
  • a dispersion liquid according to Example 4 was obtained by performing the same operation as in Example 1 using the ATO infrared absorbing fine particles according to Example 4. Evaluation similar to Example 1 was implemented to the dispersion liquid concerning the said Example 4. FIG. The evaluation results are shown in Table 2 and FIG.
  • Example 5 The dispersion according to Example 1 before dilution with toluene was added to the polycarbonate resin so that the concentration of ATO infrared absorbing fine particles was 0.22% by weight, and then uniformly melt-mixed with a blender and a twin screw extruder. The molten mixture was extruded to a thickness of 2 mm using a T-die to obtain an infrared-absorbing fine particle dispersion according to Example 5 in which ATO infrared-absorbing fine particles were uniformly dispersed throughout the resin.
  • the haze of the obtained infrared-absorbing fine particle dispersion according to Example 5 was measured based on JISK7105 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), it was 0.5%. Further, the transmittance of the obtained infrared-absorbing fine particle dispersion according to Example 5 was measured with a spectrophotometer in the wavelength range of 200 nm to 2600 nm at intervals of 5 nm, and the visible light transmittance and the solar radiation transmittance were obtained. However, the visible light transmittance was 70.4%, and the solar radiation transmittance was 50.7%.
  • the content of ATO infrared absorbing fine particles per unit projected area of the obtained infrared absorbing fine particle dispersion was estimated from the mixing ratio of the ATO infrared absorbing fine particles and the polycarbonate resin to be 5.3 g / m 2 .
  • the evaluation results are shown in Table 3.
  • Example 6 The dispersion according to Example 1 before toluene dilution was added to polyvinyl butyral, and triethylene glycol-di-2-ethylbutyrate was added as a plasticizer thereto. At this time, the concentration of the ATO infrared absorbing fine particles is adjusted so that the visible light transmittance of the laminated transparent substrate to be prepared is 70%, the concentration of the ATO infrared absorbing fine particles is 0.64% by mass, and the polyvinyl butyral concentration is The composition for intermediate films was prepared so that it might become 71 mass%.
  • the prepared composition was kneaded with a roll and formed into a sheet having a thickness of 0.76 mm to produce an interlayer film for a laminated transparent substrate according to Example 6.
  • the produced interlayer film for laminated transparent base material is sandwiched between two 100 mm ⁇ 100 mm ⁇ about 2 mm thick clear glass substrates, heated to 80 ° C. and temporarily bonded, and then temperature 140 ° C. and pressure 14 kg / cm 2.
  • the laminated transparent base material according to Example 6 was manufactured by loading in an autoclave and performing main bonding.
  • Example 6 When the optical characteristics of the laminated transparent base material obtained in Example 6 were measured in the same manner as in Example 5, the haze was 0.4%, the visible light transmittance was 70.2%, and the solar radiation transmittance was 50.6. %Met.
  • the content of ATO infrared absorbing fine particles per unit projected area of the obtained infrared absorbing fine particle dispersion was estimated from the mixing ratio of the ATO infrared absorbing fine particles and polyvinyl butyral resin or triethylene glycol-di-2-ethylbutyrate. However, it was 5.4 g / m 2 .
  • Table 3 The evaluation results are shown in Table 3.
  • Example 7 A dispersion for forming an infrared-absorbing film was prepared by thoroughly mixing 75.0% by weight of the dispersion according to Example 1 before dilution with toluene and 25.0% by weight of the UV curable resin.
  • the prepared dispersion liquid for forming an infrared absorbing film was applied onto a PET (polyethylene terephthalate) film having a thickness of 50 ⁇ m by using a bar coater (IMC-700, manufactured by Imoto Seisakusho) to form a coating film.
  • the solvent was evaporated from the coating film by heating at 70 ° C.
  • Example 7 When the optical properties of the obtained infrared absorption film according to Example 7 were measured in the same manner as in Example 5, the haze was 0.7%, the visible light transmittance was 69.7%, and the solar radiation transmittance was 49.3%. Met. Further, the film thickness of the coating layer containing ATO infrared absorbing fine particles was measured using a high-precision micrometer (Mitutoyo MDH-25M), and it was 5.0 ⁇ m.
  • Example 8 An infrared absorbing glass according to Example 8 was obtained in the same manner as in Example 7 except that a 3 mm thick clear glass substrate was used instead of the PET (polyethylene terephthalate) film having a thickness of 50 ⁇ m.
  • the haze was 0.1%
  • the visible light transmittance was 70.0% and 48.8%.
  • the film thickness of the coating layer containing ATO infrared absorbing fine particles was measured using a high-precision micrometer (MDH-25M manufactured by Mitutoyo Corporation), and it was 5.4 ⁇ m.
  • Comparative Example 1 The amount of antimony compound added to the tin compound solution is 8.5 parts by weight in terms of antimony element with respect to 100 parts by weight of tin (IV) oxide.
  • the ATO infrared-absorbing fine particles according to Comparative Example 1 were produced by the same operation as in Example 1 except that it was heated to 900 ° C. in an air atmosphere and baked for 1 hour. At this time, the amount of SnCl 4 ⁇ 5H 2 O is 61.3 g, the amount of SbCl 3 was 4.2 g.
  • the production conditions and evaluation results are shown in Table 1.
  • Example 1 Using the ATO infrared absorbing fine particles according to Comparative Example 1, the same operation as in Example 1 was performed to obtain a dispersion according to Comparative Example 1. The same evaluation as in Example 1 was performed on the dispersion according to Comparative Example 1. The evaluation results are shown in Table 2 and FIG.
  • Comparative Example 2 The amount of antimony compound added to the tin compound solution is 8.5 parts by weight in terms of antimony element with respect to 100 parts by weight of tin (IV) oxide.
  • the ATO infrared-absorbing fine particles according to Comparative Example 2 were produced by the same operation as in Example 1 except that it was heated to 600 ° C. in an air atmosphere. At this time, the amount of SnCl 4 ⁇ 5H 2 O is 61.3 g, the amount of SbCl 3 was 4.2 g.
  • the production conditions and evaluation results are shown in Table 1.
  • Example 2 Using the ATO infrared absorbing fine particles according to Comparative Example 2, the same operation as in Example 1 was performed to obtain a dispersion according to Comparative Example 2. The same evaluation as in Example 1 was performed on the dispersion according to Comparative Example 2. The evaluation results are shown in Table 2 and FIG.
  • Comparative Example 3 By performing the same operation as in Example 1 except that the amount of antimony compound added to the tin compound solution was 13.7 parts by weight in terms of antimony elements with respect to 100 parts by weight of tin (IV) oxide, ATO infrared absorbing fine particles according to Comparative Example 3 were produced. At this time, the amount of SnCl 4 ⁇ 5H 2 O is 38.1 g, the amount of SbCl 3 was 4.2 g. The production conditions and evaluation results are shown in Table 1.
  • Example 3 Using the ATO infrared absorbing fine particles according to Comparative Example 3, the same operation as in Example 1 was performed to obtain a dispersion according to Comparative Example 3. The same evaluation as in Example 1 was performed on the dispersion according to Comparative Example 3. The evaluation results are shown in Table 2 and FIG.
  • Comparative Example 4 By performing the same operation as in Example 1 except that the amount of the antimony compound added to the tin compound solution was 4.4 parts by weight in terms of antimony with respect to 100 parts by weight of tin (IV) oxide, ATO infrared absorbing fine particles according to Comparative Example 4 were produced. At this time, the usage amount of SnCl 4 .5H 2 O was 59.3 g, and the usage amount of SbCl 3 was 2.1 g. The production conditions and evaluation results are shown in Table 1.
  • a dispersion liquid according to Comparative Example 4 was obtained by performing the same operation as in Example 1 using the ATO infrared absorbing fine particles according to Comparative Example 4. Evaluation similar to Example 1 was implemented to the dispersion liquid concerning the said comparative example 4.
  • FIG. The evaluation results are shown in Table 2 and FIG.
  • Comparative Example 5 The ATO infrared absorbing fine particles according to Comparative Example 5 were manufactured by performing the same operation as in Example 1 except that the ATO infrared absorbing fine particle precursor subjected to the wet treatment was heated to 1100 ° C. in an air atmosphere. .
  • the production conditions and evaluation results are shown in Table 1.
  • a dispersion liquid according to Comparative Example 5 was obtained by performing the same operation as in Example 1 using the ATO infrared absorbing fine particles according to Comparative Example 5. The same evaluation as in Example 1 was performed on the dispersion according to Comparative Example 5. The evaluation results are shown in Table 2 and FIG.
  • Example 6 Comparative Example 6 According to the same operation as in Example 5, except that the dispersion before dilution with toluene mixed with the polycarbonate resin was replaced with the dispersion according to Comparative Example 1 from the dispersion according to Example 1, according to Comparative Example 6. An infrared absorbing fine particle dispersion was obtained. The same evaluation as in Example 5 was performed on the dispersion according to Comparative Example 6. The evaluation results are shown in Table 3.
  • Example 6 is the same as Example 6 except that the dispersion before dilution with toluene mixed with polyvinyl butyral resin or triethylene glycol-di-2-ethylbutyrate was replaced with the dispersion according to Comparative Example 1.
  • an interlayer film for a laminated transparent substrate according to Comparative Example 7 and a laminated transparent substrate were obtained. Evaluation similar to Example 6 was implemented to the intermediate film for laminated transparent base materials and the laminated transparent base material according to Comparative Example 7. The evaluation results are shown in Table 3.
  • Comparative Example 8 Comparative Example 8 is obtained by performing the same operation as in Example 7, except that the dispersion before dilution with toluene mixed with the UV curable resin is replaced with the dispersion according to Comparative Example 1 from the dispersion according to Example 1. Such an infrared absorbing film was obtained. Evaluation similar to Example 7 was implemented to the infrared rays absorption film which concerns on the said comparative example 8. The evaluation results are shown in Table 3.
  • Comparative Example 9 A comparative example 9 is obtained by performing the same operation as in Example 8 except that the dispersion before dilution with toluene mixed with the UV curable resin is replaced with the dispersion according to Comparative Example 1 from the dispersion according to Example 1. Such infrared absorbing glass was obtained. Evaluation similar to Example 8 was implemented to the infrared rays absorption glass which concerns on the said comparative example 9. The evaluation results are shown in Table 3.

Abstract

優れた分散性と日射遮蔽特性を併せ持ち、かつ、ATO赤外線吸収微粒子の使用量を少なくすることの出来る、高着色性(高吸光性)を有するATO赤外線吸収微粒子を提供する。X線回折測定結果で解析された結晶格子定数aが4.736Å以上4.743以下、結晶格子定数cが3.187Å以上3.192Å以下、結晶子サイズが5.5nm以上10.0nm以下であるATO赤外線吸収微粒子を提供する。

Description

赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法
 本発明は、車両、ビル、事務所、一般住宅、電話ボックスの窓、カーポートの屋根、ショーウィンドー、照明用ランプ、透明ケース等に使用される日射遮蔽機能を有するアンチモン含有酸化錫赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法に関する。
 従来から、太陽光中の熱効果に大きく寄与する赤外線を除去・減少し、なおかつ可視光を透過させる日射遮蔽材料が、省エネルギー材料として注目されている。なかでも、導電性微粒子の分散体は、その他の日射遮蔽材料と比較して日射遮蔽特性に優れ、低コストであり電波透過性があり、さらに耐候性が高い等のメリットがある。なかでもアンチモン含有酸化錫(本発明において「ATO」と記載する場合がある。)赤外線吸収微粒子は、可視光反射率が比較的低いので透明基材へギラギラした外観を与えることがない。さらに、当該ATO赤外線吸収微粒子の分散体は無色に近い色をしているため、意匠性が必要な車両やビル等の窓材に使用されてきた。
 例えば、特許文献1には、ATO赤外線吸収微粒子を、シラザン重合体溶液に分散することによって得られた日射遮蔽コーティング液をガラスに塗布、焼成することによって、日射遮蔽ガラスが得られると提案されている。
 また、本出願人は、特許文献2において、高い可視光透過率と低い日射透過率とを有しながらヘイズ値が低いという光学特性を有する日射遮蔽膜を形成できる、日射遮蔽用のATO赤外線吸収微粒子を開示した。
 一方、本出願人は、特許文献3において、高い可視光透過率と低い日射透過率と低いヘイズ値とを有する日射遮蔽材料の製造方法を開示した。
 また、本出願人は、特許文献4において、透明基材上あるいは基材中に形成されたとき、高い可視光透過率と、低い日射透過率と、ヘイズ値が低いという光学特性を発揮することのできるATO赤外線吸収微粒子の物理特性を提案した。そして、当該物理特性を備えるATO赤外線吸収微粒子と、当該ATO赤外線吸収微粒子を含有し、簡便な塗布法や練り込み法で日射遮蔽分散体を形成できる日射遮蔽体形成用分散液と、この物理特性を備えるATO赤外線吸収微粒子を含有する日射遮蔽分散体とを開示した。
 さらに、本出願人は、特許文献5において、ATO赤外線吸収微粒子を用いて日射遮蔽分散体形成用の日射遮蔽材料分散液を製造しようとする際、錫とアンチモンとを含む水酸化物の濾過洗浄物をアルコール溶液で湿潤処理し、その後乾燥することによってATO赤外線吸収微粒子の前駆体を製造し、当該前駆体を焼成することにより、焼成物が塊状の強凝集体ではなく、媒体攪拌ミルでの粉砕性と分散性が良好なATO赤外線吸収微粒子を製造可能なことを開示した。
 以上のような先行技術を活用することで、高可視光透過率、低日射透過率、低ヘイズという光学特性を発揮することのできるATO赤外線吸収微粒子を低コストで製造可能となった。そして、当該ATO赤外線吸収微粒子は媒体攪拌ミルでの粉砕性と分散性が良好なものである。この結果、日射遮蔽分散体形成用の日射遮蔽材料分散液も低コストで製造可能となり、さらに該分散液を使って簡便な塗布法や練り込み法で日射遮蔽分散体を形成可能になった。従って、ATO赤外線吸収微粒子を用いた分散体、合わせ透明基材、フィルム及びガラスのトータル製造コストは削減されると考えられていた。
 特許文献1:特開平7-257922号公報
 特許文献2:特開2003-176132号公報
 特許文献3:特開2004-75510号公報
 特許文献4:特開2004-83397号公報
 特許文献5:特開2008-230954号公報
 しかしながら、本発明者らの検討によると、前記文献中のATO赤外線吸収微粒子の光学特性は、すべて、所定の可視光透過率で規格化した日射透過率(または日射遮蔽特性)による評価を実施しており、ATO赤外線吸収微粒子使用量で規格化した評価は実施されていなかった。
 そこで、本発明者らは、当該ATO赤外線吸収微粒子使用量の観点から、ATO赤外線吸収微粒子を用いた分散体、合わせ透明基材、フィルム及びガラスのトータル製造コストを検討した。
 すると、従来の技術では、可視光透過率が70%となるコーティング層を作製するには、単位投影面積あたり9.0g/m以上の量のATO赤外線吸収微粒子を含有させる必要があり、ATO赤外線吸収微粒子の使用量で規格化した場合の製造コストは、決して低いとは言えないことに想到した。
 即ち、本発明者らは、ATO分散体を、透過率の低い領域で適用したり大量生産したりする場合は、ATO赤外線吸収微粒子の必要使用量が多くなり、分散体の製造コストが高いものとなっていることを知見した。また、近年、レアメタルの希少性に伴う価値の上昇に伴い、ATOの原料費の高騰が予想されており、製造コストの低減が目下の課題となっている。
 さらに、ATO分散体をガラスやフィルム上に塗布して製造する場合は、高濃度でかつ高粘度なATO分散液が必要なため、ATO塗布膜の膜厚制御が困難であった。
 本発明は、上述の状況の下でなされたものであり、その解決しようとする課題は、優れた分散性と日射遮蔽特性を併せ持ち、かつ、ATO赤外線吸収微粒子の使用量を少なくすることの出来るATO赤外線吸収微粒子、ATO赤外線吸収微粒子分散液、およびそれを用いた分散体、合わせ透明基材、フィルム、ガラスと、その製造方法を提供することを課題とする。
 上記課題を解決する為、本発明者らは、優れた分散性、日射遮蔽特性、かつATO赤外線吸収微粒子の使用量を少なくすることの出来るATO赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラス、とそれらの製造方法について研究を行った。
 そして、日射遮蔽体に含まれているATO赤外線吸収微粒子は、入射光との干渉効果、粉体粒子の電子状態に起因する光の吸収・放出効果、などを介在して入射してくる可視光や赤外光と相互作用を行い、透過、吸収、反射などの光学現象を起こすものであることに想到した。
 一方、ATO赤外線吸収微粒子のような複合酸化物微粒子は、その製造の際の条件により、微粒子の表面状態や電子状態に基づいて、様々な物理特性を有する微粒子が調製され得ることに想到した。
 本発明者らは、これらの着想に基づき、様々な物理特性を有するATO赤外線吸収微粒子と日射遮蔽機能との関係について研究を行った。
 その結果、本発明者らは、ATOの微粒子が特定の範囲の結晶格子定数を有し、特定の範囲の結晶子サイズを有していると、当該ATO赤外線吸収微粒子は優れた分散性、優れた日射遮蔽特性を有し、所望の日射遮蔽特性を発現するためのATO赤外線吸収微粒子の必要使用量を、極めて低くすることが可能になるという現象を見出した。さらに、当該ATO赤外線吸収微粒子の圧粉体が、所定の範囲の体積抵抗率を有していることを見出した。
 尚、本発明において、所望の日射遮蔽特性を発現するためのATO赤外線吸収微粒子の必要使用量の多少を、「着色力の高低」として記載する場合がある。即ち、所望の日射遮蔽特性を発現するための必要使用量が少なくてよいATO赤外線吸収微粒子は、「着色力の高いATO赤外線吸収微粒子。」である(本発明において「高着色力のATO」と記載する場合がある。)。
 さらに、本発明者らは、当該ATO赤外線吸収微粒子の焼成前の前駆体であるアンチモン化合物-錫化合物の混合物におけるアンチモン濃度と、当該前駆体を生成させる際の温度条件と、当該前駆体を焼成する際の焼成条件とを制御することで、上述した特定の範囲の結晶格子定数を有し、特定の範囲の結晶子サイズを有し、上述した所定の範囲の体積抵抗率を有しているATO赤外線吸収微粒子を、得ることができることを知見し、本発明を完成したものである。
 すなわち、上述の課題を解決する第1の発明は、
 ATO微粒子であって、該ATO微粒子の結晶格子定数aが4.736Å以上4.743Å以下、結晶格子定数cが3.187Å以上3.192Å以下、結晶子サイズが5.5nm以上10.0nm以下であることを特徴とする赤外線吸収微粒子である。
 第2の発明は、
 前記結晶子サイズが6.0nm以上9.0nm以下であることを特徴とする赤外線吸収微粒子である。
 第3の発明は、
 前記ATO微粒子中に、Sn元素が66.0質量%以上70.0質量%以下、Sb元素が8.0質量%以上9.0質量%以下の濃度で含まれることを特徴とする赤外線吸収微粒子である。
 第4の発明は、
 前記ATO微粒子の圧粉体における体積抵抗率測定の値が0.05Ω・cm以上0.35Ω・cm以下であることを特徴とする赤外線吸収微粒子である。
 第5の発明は、
 第1から第4の発明のいずれかに記載の赤外線吸収微粒子が、液状媒体中に分散して含有されている分散液であって、前記液状媒体が水、有機溶媒、油脂、液状樹脂、液状プラスチック用可塑剤、またはこれらの混合物から選択されるものであることを特徴とする赤外線吸収微粒子分散液である。
 第6の発明は、
 前記赤外線吸収微粒子分散液に含有されている赤外線吸収微粒子の分散粒子径が1nm以上110nm以下であることを特徴とする赤外線吸収微粒子分散液である。
 第7の発明は、
 前記赤外線吸収微粒子分散液に含有されている赤外線吸収微粒子の含有量が、1質量%以上50質量%以下であることを特徴とする赤外線吸収微粒子分散液である。
 第8の発明は、
 赤外線吸収微粒子分散液を、前記液状媒体で希釈、または前記液状媒体の除去により濃縮して可視光透過率を70%としたとき、日射透過率が40%以上50%以下であり、かつ、単位投影面積あたり5.0g/m以上7.0g/m以下の赤外線吸収微粒子を含有することを特徴とする赤外線吸収微粒子分散液である。
 第9の発明は、
 第1から第4の発明のいずれかに記載の赤外線吸収微粒子と、熱可塑性樹脂とを、含むことを特徴とする赤外線吸収微粒子分散体である。
 第10の発明は、
 前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする赤外線吸収微粒子分散体である。
 第11の発明は、
 前記赤外線吸収微粒子を、0.01質量%以上25質量%以下含むことを特徴とする赤外線吸収微粒子分散体である。
 第12の発明は、
 前記赤外線吸収微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする赤外線吸収微粒子分散体である。
 第13の発明は、
 前記赤外線吸収微粒子分散体の可視光透過率が70%としたときに、日射透過率が42%以上52%以下、単位投影面積あたり5.0g/m以上7.0g/m以下の赤外線吸収微粒子を含有することを特徴とする赤外線吸収微粒子分散体である。
 第14の発明は、
 複数枚の透明基材間に、第9から第13の発明のいずれかに記載の赤外線吸収微粒子分散体が存在していることを特徴とする赤外線吸収合わせ透明基材である。
 第15の発明は、
 透明フィルム基材または透明ガラス基材から選択される透明基材の少なくとも一方の面にコーティング層を有し、前記コーティング層は第1から第4の発明のいずれかに記載の赤外線吸収微粒子を含むバインダー樹脂であることを特徴とする赤外線吸収フィルムまたは赤外線吸収ガラスである。
 第16の発明は、
 前記バインダー樹脂が、UV硬化性樹脂バインダーであることを特徴とする赤外線吸収フィルムまたは赤外線吸収ガラスである。
 第17の発明は、
 前記コーティング層の厚さが1μm以上10μm以下であることを特徴とする赤外線吸収フィルムまたは赤外線吸収ガラスである。
 第18の発明は、
 前記透明フィルム基材が、ポリエステルフィルムであることを特徴とする赤外線吸収フィルムである。
 第19の発明は、
 前記コーティング層に含まれる前記赤外線吸収微粒子の単位投影面積あたりの含有量が5.0g/m以上7.0g/m以下であることを特徴とする第15から第18の発明のいずれかに記載の赤外線吸収フィルムまたは赤外線吸収ガラスである。
 第20の発明は、
 液温60℃以上70℃未満とした錫化合物の溶液へ、アンチモン化合物を溶解したアルコール溶液と、アルカリ溶液とを並行滴下して、錫とアンチモンとを含む水酸化物を生成沈殿させる工程と、
 前記沈殿物へデカンテーションを繰り返し行い、当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで洗浄する工程と、
 前記洗浄された沈殿物をアルコール溶液中へ投入して攪拌することで湿潤処理し、湿潤処理物とする工程と、
 前記湿潤処理物を乾燥させてATO赤外線吸収微粒子前駆体とする工程と、
 前記ATO赤外線吸収微粒子前駆体を、大気雰囲気下にて700℃以上850℃未満に加熱し、1時間以上5時間以下焼成することで、ATO赤外線吸収微粒子を得る工程とを、有することを特徴とする赤外線吸収微粒子の製造方法である。
 第21の発明は、
 前記錫とアンチモンとを含む水酸化物を生成沈殿させる工程において、液温60℃以上70℃未満のアルカリ溶液に、酸化錫(IV)換算で100重量部の錫化合物の溶液と、アンチモンの元素換算で9.0重量部以上11.0重量部以下のアンチモン化合物を溶解したアルコール溶液を並行滴下することを特徴とする赤外線吸収微粒子の製造方法である。
 本発明によれば、優れた分散性と日射遮蔽特性を併せ持ち、かつ、ATO赤外線吸収微粒子の使用量を少なくすることの出来る、高着色性(高吸光性)を有するATO赤外線吸収微粒子、当該ATO赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、赤外線吸収合わせ透明基材等を得ることができる。
単位投影面積当たりのATO微粒子使用量と可視光透過率との関係を示すグラフである。
発明の実施の形態
 以下、本発明の実施の形態について、1.ATO赤外線吸収微粒子、2.ATO赤外線吸収微粒子の製造方法、3.ATO赤外線吸収微粒子分散液、4.ATO赤外線吸収微粒子分散体、5.シート状またはフィルム状のATO赤外線吸収微粒子分散体、6.赤外線吸収合わせ透明基材、7.赤外線吸収フィルム・ガラスの順で詳細に説明する。
1.ATO赤外線吸収微粒子
 本発明に係るATO赤外線吸収微粒子は、結晶格子定数aが4.736Å以上4.743Å以下、結晶格子定数cが3.187Å以上3.192以下Å、さらに好ましくは結晶格子定数aが4.738Å以上4.742Å以下、結晶格子定数cが3.188Å以上3.191Å以下であり、結晶子サイズが5.5nm以上10.0nm以下、さらに好ましくは6.0nm以上9.0nm以下であるATO赤外線吸収微粒子である。
 さらに好ましくはSn元素を66.0質量%以上70.0質量%以下、Sb元素を8.0質量%以上9.0質量%以下の濃度で含有するATO赤外線吸収微粒子である。
 そして、当該ATO赤外線吸収微粒子を、圧力37.5Mpa以上39.0Mpa以下で圧縮することにより圧粉体とし、体積抵抗率を直流四端子法により測定したときの値が0.05Ω・cm以上0.35Ω・cm以下であることが好ましい。
 当該ATO赤外線吸収微粒子を、分散粒子径を1~110nmとして溶媒中に分散した分散液を用いて形成したATO赤外線吸収微粒子分散体は、望ましい日射遮蔽特性を発揮する。
 上述したATO赤外線吸収微粒子の結晶格子定数は、ATO赤外線吸収微粒子中における酸化錫結晶へのアンチモンのドープ量によって制御される。具体的には、アンチモンのドープ量が少なくなると結晶格子定数は小さくなり、アンチモンのドープ量が多くなると結晶格子定数が大きくなる。つまり、アンチモンのドープ量が増減するとATO赤外線吸収微粒子の光学特性に影響を及ぼすことになる。従って、アンチモンのドープ量を厳密に制御することで、結晶格子定数のパラメータを厳密に制御することが出来る。
 本発明に係るATO赤外線吸収微粒子の結晶格子定数が、上述した規定値範囲内にあることで優れた日射遮蔽特性と着色力とを担保出来る。
 ATO赤外線微粒子の結晶子サイズは、粒子の電子密度と密接な関係があるので、上述した結晶格子定数と同様に制御することが重要である。具体的には、並行滴下によってATO赤外線吸収微粒子前駆体を作製する際に、該前駆体の粒子径が均一になるように、並行滴下時の液温を60℃以上70℃未満の範囲に収めなければならない。また、該前駆体を焼成する際の焼成温度も700℃以上850℃未満の範囲に収めなければならない。
 ATO赤外線吸収微粒子の結晶子サイズが、上述した規定値範囲下限より大きいことで粒子の電子密度が好ましいものとなり当該微粒子の着色力が担保される。一方、上述した規定値範囲上限より小さいことで赤外線吸収特性が好ましいものとなり日射遮蔽特性が担保される。
 上述した結晶格子定数および結晶子サイズの測定方法には、粉末X線回折法、単結晶構造解析法、透過電子線回折法などがある。尤も、本発明に係るATO赤外線吸収微粒子のように、測定試料が粉体で、かつ測定試料の結晶子サイズが100nm以下の場合は、比較的簡便な測定方法である粉末X線回折法を選択することが望ましい。例えば、粉末XRD装置のθ―2θ法で測定試料のXRDパターンを測定し、WPPF(Whole Powder Pattern Fitting)法による解析で結晶格子定数と結晶子サイズすることで、高精度に結晶格子定数および結晶子サイズを測定することが出来る。
 上述したように、ATO赤外線吸収微粒子の元素濃度は、アンチモンのドープ量と密接な関係があるため、結晶格子定数と同様にパラメータを制御することが重要である。含有元素濃度はSn元素を66.0~70.0質量%、Sb元素を8.0~9.0質量%とするのが良く、さらに好ましくはSn元素を67.0~69.0質量%とするのが良い。
 一方、ATO赤外線吸収微粒子の圧粉体における体積抵抗率の値は、当該微粒子の電子密度と密接な関係がある。当該微粒子を圧力37.5~39.0Mpaで圧縮することにより圧粉体とし、当該圧粉体へ当該圧力をかけたまま直流四端子法により体積抵抗率を測定したときの値が0.05~0.35Ω・cmであるのが好ましく、0.10~0.30Ω・cmであるとより好ましい。ただし、当該圧粉体の体積抵抗率の値は、圧粉体の成形圧力によって変動するので、例えば上述したように圧力を37.5~39.0Mpaという範囲に統一し、測定方法を一律にしてサンプル間の比較を行うことが好ましい。
 本発明では、ATO赤外線吸収微粒子2~3gを円筒に詰め、直径20.0mm、厚み2.5mm~4.0mmの円柱状のサンプルとし、当該サンプルを軸方向から荷重11.8~12.2kN、圧力37.5~39.0MPaで圧縮することにより圧粉体とし、当該圧力をかけたまま直流四端子法によりATO赤外線吸収微粒子の圧粉体の体積抵抗率を測定した。このとき当該圧粉体の密度は2.0~3.5g/ccであった。
2.ATO赤外線吸収微粒子の製造方法
 本発明に係る日射遮蔽用ATO赤外線吸収微粒子の製造方法の一例を、以下に説明する。
 まず、液温60℃以上70℃未満とした錫化合物の溶液へ、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液とを並行滴下する。または、液温60℃以上70℃未満のアルカリ溶液に、錫化合物の溶液と、アンチモン化合物を溶解したアルコール溶液を並行滴下する。
 そして、当該いずれかの並行滴下により、錫とアンチモンとを含む微粒子の前駆体である水酸化物を、生成沈殿させる。なお、当該錫化合物の溶液へ予めHClを添加しても良い。
 上記錫化合物溶液へのアンチモン化合物添加量は、所望とする光学特性の観点から、酸化錫(IV)換算で100重量部に対して、アンチモンの元素換算で9.0~11.0重量部とするのが好ましく、さらに好ましくは9.5~10.5重量部である。当該添加量であれば、Sn元素が66.0~70.0質量%、Sb元素が8.0~9.0質量%となるATO赤外線吸収微粒子が作製可能となる。尚、用いる錫化合物やアンチモン化合物は、特に限定されるものではなく、例えば塩化錫、硝酸錫、硫化錫、塩化アンチモン、臭化アンチモンなどが挙げられる。
 上記沈殿剤として用いるアルカリ溶液としては、炭酸水素アンモンニウム、アンモニア水、水酸化ナトリウム、水酸化カリウムなどの各水溶液が挙げられるが、特に、炭酸水素アンモニウムやアンモニア水が好ましい。そして、当該アルカリ溶液のアルカリ濃度は、錫化合物とアンチモン化合物とが、水酸化物となるのに必要な化学当量以上であれば良いが、当量~当量の3倍とすることが好ましい。
 前記アルコール溶液とアルカリ溶液との並行滴下時間、または、前記錫化合物の溶液とアルコ-ル溶液との並行滴下時間は、沈殿する水酸化物の粒子径と生産性との観点から、0.5分間以上であって、60分間以下、好ましくは30分間以下とすることが望ましい。
 滴下終了後も系内の均一化を図るために、水溶液の攪拌を継続して行う。そのときの水溶液の温度は、並行滴下の際の温度と同温とし、60℃以上70℃以下とする。
 水溶液の継続攪拌の際、液温を60℃以上70℃未満とするのは、錫とアンチモンの比率が均質であり、かつ粒径が比較的揃った水酸化物を沈殿させるためである。液温を60℃以上とすることで、沈殿する水酸化物の組成が均質となり、後に前記水酸化物前駆体を焼成した際に、アンチモンドープ量が均質なATO赤外線吸収微粒子が作製出来る。この結果、ATO赤外線吸収微粒子の日射遮蔽特性と着色力とが担保される。
 また、液温を70℃未満とすることで溶媒の蒸発が抑制され、系内の錫酸化物やアンチモン化合物の濃度が変化することも抑制される。この結果、沈殿する水酸化物の粒径が均一となり、後に前記水酸化物前駆体を焼成した際に、結晶子サイズが均一なATO赤外線吸収微粒子が作製され、ATO赤外線吸収微粒子の日射遮蔽特性と着色力とが担保される。
 尚、攪拌の継続時間は特に限定されないが、生産性の観点から0.5分間以上であって、30分間以下、好ましくは15分間以下が良い。
 次に、前記沈殿物へデカンテーションを繰り返し行う。当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄し、濾過する。当該沈殿物中に残留する塩素イオン、硫酸イオンなどの不純物が1.5質量%以下であれば、焼成工程において酸化錫に対するアンチモンの固溶が阻害されず、所望とする光学特性が担保される。そこで、当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄、濾過することが好ましい。当該上澄み液の導電率が1mS/cm以下であれば、当該沈殿物中に残留する不純物量を1.5質量%以下とすることができる。
 次に、洗浄された沈殿物をアルコール溶液で湿潤処理して湿潤処理物とした後、乾燥する。ここで、当該湿潤処理に用いるアルコール溶液として、Si、Al、Zr、Tiから選択された1種以上の元素を酸化物換算で15質量%未満含有するアルコール溶液を用いるのも好ましい構成である。
 当該構成の採用により、Si、Al、Zr、Tiから選択された1種以上の元素の酸化物が、アンチモン含有酸化錫の近傍に独立して存在することとなり、焼成の際にアンチモン含有酸化錫の粒成長を抑制するからである。尚、当該元素の酸化物換算での含有量が15質量%未満であれば、ATO赤外線吸収微粒子中におけるアンチモン含有酸化錫の含有割合が確保されるため、日射遮蔽特性が担保される。
 そして、得られた当該前駆体を焼成し、本発明に係るアンチモン含有酸化錫微粒子を得る。このとき、上記アルコール溶液の濃度は50質量%以上であることが好ましい。アルコール溶液の濃度が50質量%以上であれば、アンチモン含有酸化錫微粒子が塊状の強凝集体となることを回避できるからである。
 ここで、当該アルコール溶液に用いられるアルコールは特に限定されないが、水に対する溶解性に優れ、沸点100℃以下のアルコールが好ましい。例えば、メタノ-ル、エタノ-ル、プロパノ-ル、tert-ブチルアルコ-ルが挙げられる。
 当該湿潤処理は、濾過洗浄された沈殿物をアルコール溶液中へ投入して攪拌すればよく、このときの時間や攪拌速度は処理量に応じて適宜選択すればよい。沈殿物をアルコール溶液中に投入する際のアルコール溶液量は、沈殿物を容易に攪拌できる流動性を確保できる液量があれば良い。攪拌時間や攪拌速度は、濾過洗浄時に一部凝集した部分を含む沈殿物がアルコール溶液中において、凝集部が無くなるまで均一に混合されることを条件に適宜選択される。
 また、湿潤処理の温度は通常室温下で行えば良いが、必要に応じて、アルコ-ルが蒸発して失われない程度に加温しながら行うことも勿論可能である。好ましくは、アルコールの沸点以下の温度で加熱することにより、湿潤処理中にアルコールが蒸発して失われ、湿潤処理の効果がなくなってしまうことを回避できる。湿潤処理中にアルコールが蒸発して失われ、湿潤処理の効果がなくなった後、当該湿潤処理物を乾燥すると強凝集体となってしまうため、好ましくない。
 当該湿潤処理後、湿潤処理物をアルコールに湿潤した状態のまま加熱乾燥する。当該湿潤処理物の乾燥温度や乾燥時間は特に限定されるものではない。湿潤処理後であれば、当該湿潤処理物の乾燥を行っても強凝集体となることはないので、当該湿潤処理物の処理量や処理装置など条件によって乾燥温度や乾燥時間を適宜選択して良い。当該乾燥処理により、湿潤処理を受けたATO赤外線吸収微粒子前駆体を得る。
 そして、当該湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて600℃以上に加熱し、1時間~5時間、好ましくは2時間~5時間焼成することで、本発明に係るATO赤外線吸収微粒子を製造する。当該焼成の際、700℃以上に加熱することで、アンチモンを錫酸化物中へ十分に固溶させ、格子定数aを4.736~4.743Å、格子定数cを3.187~3.192Å、にすることができ好ましい。一方、当該焼成を、850℃を超えずに行うことで、ATO赤外線吸収微粒子の結晶子サイズの粗大化を回避でき、結晶子サイズが5.5~10.0nmであり、好ましくは6.0~9.0nmとなり、後述するように高着色力なATO赤外線吸収微粒子分散液もしくは分散体を得ることができ好ましい。上記の観点から、焼成温度の範囲は700℃以上850℃未満とすることが好ましい。
3.ATO赤外線吸収微粒子分散液
 本発明に係るATO赤外線吸収微粒子分散液は、上記製造方法で得られたATO赤外線吸収微粒子と、水、有機溶媒、油脂、液状樹脂、液状プラスチック用可塑剤、またはこれらの混合物から選択される混合スラリーの液状媒体、および適量の分散剤、カップリング剤、界面活性剤等を、媒体攪拌ミルで粉砕、分散させたものである。また、当該分散液中における当該微粒子の分散状態が良好で、その分散粒子径は1~110nmである。また、該ATO赤外線吸収微粒子分散液に含有されているATO赤外線吸収微粒子の含有量は、1質量%以上50質量%以下である。さらには、前記液状媒体で希釈、または前記液状媒体の除去により濃縮して可視光透過率を70%としたとき、日射透過率が40%以上50%以下、単位投影面積あたり5.0~7.0g/mのATO赤外線吸収微粒子を含有することが可能になる。
 ATO赤外線吸収微粒子分散液に用いられる溶媒は特に限定されるものではなく、ATO赤外線吸収微粒子分散液の塗布条件、塗布環境、および、適宜添加される無機バインダーや樹脂バインダーなどに合わせて適宜選択すればよい。例えば、水、有機溶媒、油脂、液状樹脂、液状のプラスチック用可塑剤、または、これらの混合物などである。さらに、有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどが使用可能である。そして、これらの有機溶媒中でも特に、イソプロピルアルコール、エタノール、1-メトキシ-2-プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチルなどが好ましい。
 油脂としては、植物油脂または植物由来油脂が好ましい。植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が好ましく用いられる。
 植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが好ましく用いられる。
 また、市販の石油系溶剤も油脂として用いることができ、アイソパーE、エクソールHexane、エクソールHeptane、エクソールE、エクソールD30、エクソールD40、エクソールD60、エクソールD80、エクソールD95、エクソールD110、エクソールD130(以上、エクソンモービル製)等を好ましい例として、挙げることができる。
 以上、説明した溶媒は、1種または2種以上を組み合わせて用いることができる。さらに、必要に応じて、これらの溶媒へ酸やアルカリを添加してpH調整してもよい。
 さらに、当該ATO赤外線吸収微粒子分散液中におけるATO赤外線吸収微粒子の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避するために、各種の分散剤、界面活性剤、カップリング剤などの添加も好ましい。当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、ATO赤外線吸収微粒子の表面に吸着して凝集を防ぎ、赤外線吸収膜中においても本発明に係るATO赤外線吸収微粒子を均一に分散させる効果を持つ。
 当該赤外線吸収微粒子分散液を、適宜な方法で透明基材上に塗布、または、基材に練り込むことで、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという光学特性を有するATO赤外線吸収微粒子分散体を形成することができる。
 ATO赤外線吸収微粒子の分散液への分散方法は、当該微粒子を分散液中において、凝集させることなく均一に分散できる方法であれば特に限定されない。当該分散方法として、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、媒体メディア(ビーズ、ビール、オタワサンド)を用いるビーズミル、ビールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散させることが所望とする分散粒子径に要する時間が短いことから好ましい。これらの装置を用いた粉砕・分散処理によって、ATO赤外線吸収微粒子の分散液中への分散と同時に、ATO赤外線吸収微粒子同士の衝突や媒体メディアの該微粒子への衝突などによる微粒子化も進行し、ATO赤外線吸収微粒子をより微粒子化して分散させることができる(すなわち、粉砕・分散処理される)。
 分散粒子径が、1~110nmであれば、幾何学散乱またはミー散乱によって波長380nm~780nmの可視光線領域の光を散乱することがないので、曇り(ヘイズ)が減少し、可視光透過率の増加を図ることが出来るので好ましい。さらに、レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上する。そこで、分散粒子径が110nm以下となると、散乱光は非常に少なくなり、より透明性が増すことになり好ましい。
 ここで、ATO赤外線吸収微粒子分散液中における、当該ATO赤外線吸収微粒子の分散粒子径について簡単に説明する。ATO赤外線吸収微粒子の分散粒子径とは、溶媒中に分散しているATO赤外線吸収微粒子の単体粒子や、当該ATO赤外線吸収微粒子が凝集した凝集粒子の粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、当該ATO赤外線吸収微粒子分散液のサンプルを採取し、当該サンプルへレーザーを照射し、ATO赤外線吸収微粒子により散乱したレーザーの散乱光のゆらぎからストークス径(流体力学的径)を求める、動的光散乱法を原理とした方法で測定することができる。この動的光散乱法で求めたストークス径が、本発明における分散粒子径にあたる。
 また、上記の製造方法で得られるATO赤外線吸収微粒子の含有量が1質量%以上50質量%以下であるATO赤外線吸収微粒子分散液は、液安定性に優れる。適切な液状媒体や、分散剤、カップリング剤、界面活性剤を選択した場合は、温度40℃の恒温槽に入れたときでも6ヶ月以上分散液のゲル化や粒子の沈降が発生せず、分散粒子径を1~110nmの範囲に維持できる。
 さらには、上記の製造方法でATO赤外線微粒子を製造した場合、他のATO微粒子製造方法と比べて、ATO赤外線吸収微粒子の含有量を少なくすることができる。すなわち、ATO赤外線吸収微粒子分散液を、前記液状媒体で希釈、または前記液状媒体の除去により濃縮して可視光透過率が70%としたときに、日射透過率が40%以上50%以下となり、そのときの単位投影面積あたりのATO赤外線吸収微粒子含有量は5.0~7.0g/mとなる。尚、「単位投影面積あたりの含有量」とは、本発明に係る赤外線吸収微粒子分散液において、光が通過する単位面積(m)あたり、その厚み方向に含有されている赤外線吸収微粒子の重量(g)である。
 当該ATO赤外線吸収微粒子分散液には、適宜、無機バインダー、樹脂バインダーから選ばれる1種以上を含有させることができる。当該ATO赤外線吸収微粒子分散液に含有させる無機バインダーや樹脂バインダーの種類は特に限定されるものではないが、無機バインダーとしては、珪素、ジルコニウム、チタン、若しくは、アルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物、または、オルガノシラザンが、樹脂バインダーとしては、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが適用できる。
 また、本発明に係るATO赤外線吸収微粒子分散体の日射遮蔽特性を向上させるために、本発明に係る分散液へ一般式XBm(但し、Xはアルカリ土類元素、またはイットリウムを含む希土類元素から選ばれた金属元素、4≦m≦6.3)で表されるホウ化物粒子や、一般式WyOz(但し、Wはタングステン、Oは酸素、2.0<z/y<3.0)で表記されるタングステン酸化物の微粒子、および/または、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物の微粒子を、所望に応じて適宜添加することも好ましい構成である。なお、このときの添加割合は、所望とする日射遮蔽特性に応じて適宜選択すればよい。
 当該ATO赤外線吸収微粒子分散液を透明基材上に被膜形成したATO赤外線吸収微粒子分散体は、基材上にATO赤外線吸収微粒子が堆積した膜の構造になる。この膜は、このままでも日射遮蔽効果を示すが、上述したATO赤外線吸収微粒子分散液の製造工程において、ATO赤外線吸収微粒子の分散時に無機バインダー、樹脂バインダーから選ばれる1種以上を添加するのも好ましい構成である。ATO赤外線吸収微粒子分散液へ当該バインダーを添加することで、製造されるATO赤外線吸収微粒子分散体において、当該バインダーの添加量の加減による導電性の制御が可能になると伴に、基材上へ塗布、硬化後におけるATO赤外線吸収微粒子の基材への密着性が向上し、さらに膜の硬度を向上させる効果があるからである。
 上記無機バインダーや樹脂バインダーの種類は特に限定されるものではないが、無機バインダーとしては、珪素、ジルコニウム、チタン、若しくは、アルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物、または、オルガノシラザンが使用でき、樹脂バインダーとしては紫外線硬化樹脂、常温硬化樹脂、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが使用できる。
 さらに、当該膜上へ、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシド、および/または、当該アルコキシドの部分加水分解縮重合物、を含有する塗布液を塗布した後、加熱することで、当該膜上へ、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含む酸化物のコーティング膜を形成し、多層膜とするのも好ましい構成である。当該構成を採ることにより、コーティングされた成分が、第1層であるATO赤外線吸収微粒子の堆積した間隙を埋めて成膜され、可視光の屈折を抑制するために、膜のヘイズ値がより低減して可視光透過率が向上し、またATO赤外線吸収微粒子の基材への結着性が向上するからである。ここで、ATO赤外線吸収微粒子単体あるいはATO赤外線吸収微粒子を主成分とする膜上に、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシドや、これらの部分加水分解縮重合物からなるコーティング膜を形成する方法としては、成膜操作の容易さやコストの観点から塗布法が便宜である。
 上記塗布法に用いるコーティング液としては、水やアルコールなどの溶媒中に、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシドや、当該アルコキシドの部分加水分解縮重合物を1種以上含むものである。その含有量は、加熱後に得られるコーティング中の酸化物換算で40質量%以下が好ましい。また、必要に応じて酸やアルカリを添加してpH調整することも好ましい。当該コーティング液を、ATO赤外線吸収微粒子を主成分とする膜上に、第2層として塗布し加熱することで、珪素、ジルコニウム、チタン、アルミニウムなどの酸化物被膜を容易に形成することが可能である。さらに加えて、本発明に係る塗布液に使用するバインダー成分またはコーティング液の成分として、オルガノシラザン溶液を用いるのも好ましい。
 本発明に係るATO赤外線吸収微粒子分散液、および前記コーティング液の塗布方法は特に限定されない。例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、処理液を平坦かつ薄く均一に塗布する方法が好ましく適用できる。
 また、例えば樹脂を基材とし、当該樹脂へ、上述したATO赤外線吸収微粒子またはATO赤外線吸収微粒子分散液を練り込むときは、当該ATO赤外線吸収微粒子が樹脂中に均一に分散する方法であれば公知の方法を適宜選択すればよい。さらに、当該樹脂の融点付近の温度で溶融混合した後ペレット化し、公知の各方式で板状、シート状、またはフィルム状、等、種々の形状に成形することが可能である。当該樹脂としては、例えばPET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂などが挙げられる。
 無機バインダーやコーティング膜として、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を含むATO赤外線吸収微粒子分散液の塗布後の基材加熱温度は、100℃以上が好ましく、さらに好ましくは塗布液中の溶媒の沸点以上で加熱を行う。これは、基材加熱温度が100℃以上であると、塗膜中に含まれる金属アルコキシドまたは当該金属アルコキシドの加水分解重合物の重合反応が完結出来るからである。また、基材加熱温度が100℃以上であると、溶媒である水や有機溶媒が膜中に残留することがないので、加熱後の膜において、これら溶媒が可視光透過率低減の原因とならないからである。
 ATO赤外線吸収微粒子分散液に樹脂バインダーを添加した場合は、それぞれの樹脂の硬化方法に従って硬化させればよい。例えば、樹脂バインダーが紫外線硬化樹脂であれば、適宜、紫外線を照射すればよく、また、常温硬化樹脂であれば塗布後そのまま放置しておけばよい。この構成を採ると、既存の窓ガラスなどへの現場での塗布が可能である。
4.ATO赤外線吸収微粒子分散体
 本発明に係るATO赤外線吸収微粒子分散体は、上述の製造方法で得られたATO赤外線吸収微粒子と、熱可塑性樹脂とを、含むことを特徴とする。また、前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることが好ましい。
 また、本発明に係るATO赤外線吸収微粒子分散体は、上述の製造方法で得られたATO赤外線吸収微粒子を0.01質量%以上25質量%以下含む。また、前記ATO赤外線吸収微粒子分散体は、シート形状、ボード形状またはフィルム形状とすることができる。さらには、前期ATO赤外線吸収微粒子分散体の可視光透過率を70%としたときに、日射透過率が42%以上52%以下、単位投影面積あたり5.0~7.0g/mのATO赤外線吸収微粒子を含有することが可能になる。赤外線吸収微粒子分散体はシート形状、ボード形状またはフィルム形状に加工することで様々な用途に適用できる。
 以下にATO赤外線吸収微粒子分散体の製造方法を説明する。
 本発明に係るATO赤外線吸収微粒子分散液と可塑剤とを混合して後、溶媒成分を除去することで、ATO赤外線吸収微粒子を含む分散粉や可塑剤分散液を得ることが出来る。ATO赤外線吸収微粒子分散液から溶媒成分を除去する方法としては、当該ATO赤外線吸収微粒子分散液を減圧乾燥することが好ましい。具体的には、ATO赤外線吸収微粒子分散液を攪拌しながら減圧乾燥し、ATO赤外線吸収微粒子含有組成物と溶媒成分とを分離する。当該減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の際の圧力値は適宜選択される。
 当該減圧乾燥法を用いることで、ATO赤外線吸収微粒子分散液からの溶媒の除去効率が向上すると伴に、分散粉や可塑剤分散液が長時間高温に曝されることがないので、分散粉や可塑剤分散液中に分散しているATO赤外線吸収微粒子の凝集が起こらず好ましい。さらに分散粉や可塑剤分散液の生産性も上がり、蒸発した溶媒を回収することも容易で、環境的配慮からも好ましい。
 当該乾燥工程後に得られた分散粉や可塑剤分散液において、残留する溶媒は5質量%以下であることが好ましい。残留する溶媒が5質量%以下であれば、当該分散粉や可塑剤分散液を、例えば合わせ透明基材に加工した際に気泡が発生せず、外観や光学特性が良好に保たれるからである。
 また、ATO赤外線吸収微粒子や分散粉を樹脂中に分散させ、当該樹脂をペレット化することで、マスターバッチを得ることが出来る。
 また、ATO赤外線吸収微粒子や前記分散粉と、熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に混合したのち、ベント式一軸若しくは二軸の押出機で混練し、一般的な溶融押出されたストランドをカットする方法によりペレット状に加工することによっても、マスターバッチを得ることが出来る。この場合、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。この場合には球状に近い形状をとることが一般的である。
5.シート状またはフィルム状のATO赤外線吸収微粒子分散体
 前記分散粉、可塑剤分散液、またはマスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート状またはフィルム状のATO赤外線吸収微粒子分散体を製造できる。
 シート状またはフィルム状のATO赤外線吸収微粒子分散体を製造する場合、当該シートやフィルムを構成する樹脂には多様な熱可塑性樹脂を用いることが出来る。そして、シート状またはフィルム状のATO赤外線吸収微粒子分散体が光学フィルタに適用されることを考えれば、十分な透明性を持った熱可塑性樹脂であることが好ましい。
 具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
 また、シート状またはフィルム状のATO赤外線吸収微粒子分散体を中間層として用いる場合であって、当該シートやフィルムを構成する熱可塑性樹脂が単独では柔軟性や透明基材との密着性を十分に有しない場合、例えば熱可塑性樹脂がポリビニルアセタール樹脂である場合は、さらに可塑剤を添加することが好ましい。
 可塑剤としては、本発明に係る熱可塑性樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された赤外線吸収フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 分散粉または可塑剤分散液またはマスターバッチと、熱可塑性樹脂と、所望に応じて可塑剤その他添加剤とを混練した後、当該混練物を、押出成形法、射出成形法等の公知の方法により、例えば、平面状や曲面状に成形されたシート状のATO赤外線吸収微粒子分散体を製造することができる。
 シート状またはフィルム状のATO赤外線吸収微粒子分散体の形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
6.赤外線吸収合わせ透明基材
 シート状またはフィルム状のATO赤外線吸収微粒子分散体を、板ガラスまたはプラスチックの材質からなる複数枚の透明基材間に、中間層として介在させて成る赤外線吸収合わせ透明基材について説明する。
 赤外線吸収合わせ透明基材は、中間層をその両側から透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が使用可能である。
 本発明にかかる赤外線吸収合わせ透明基材は、本発明に係るシート状またはフィルム状の赤外線吸収微粒子分散体を挟み込んで存在させた対向する複数枚の透明基材を、公知の方法で張り合わせ一体化することによっても得られる。
7.赤外線吸収フィルムおよび赤外線吸収ガラス
 上述した赤外線吸収微粒子分散液を用いて、基板フィルムまたは基板ガラスから選択される透明基板上へ、赤外線吸収微粒子を含有するコーティング層を形成することで、赤外線吸収フィルムまたは赤外線吸収ガラスを製造することが出来る。
 前述した赤外線吸収微粒子分散液を、プラスチックまたはモノマーと混合して塗布液を作製し、公知の方法で透明基材上にコーティング膜を形成することで、赤外線吸収フィルムまたは赤外線吸収ガラスを作製することができる。
 例えば、赤外線吸収フィルムは以下のように作製することができる。
 上述した赤外線吸収微粒子分散液に媒体樹脂を添加し、塗布液を得る。この塗布液をフィルム基材表面にコーティングした後、溶媒を蒸発させ所定の方法で樹脂を硬化させれば、当該赤外線吸収微粒子が媒体中に分散したコーティング膜の形成が可能となる。
 上記コーティング膜の媒体樹脂として、例えば、UV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。
 これらの樹脂は、単独使用であっても混合使用であっても良い。尤も、当該コーティング層用の媒体のなかでも、生産性や装置コストなどの観点からUV硬化性樹脂バインダーを用いることが特に好ましい。
 また、金属アルコキシドを用いたバインダーの利用も可能である。当該金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これら金属アルコキシドを用いたバインダーは、加熱等により加水分解・縮重合させることで、酸化物膜からなるコーティング層を形成することが可能である。
 上記方法以外に、赤外線吸収微粒子分散液を基板フィルムまたは基板ガラスの上に塗布した後、さらに媒体樹脂や金属アルコキシドを用いたバインダーを塗布してコーティング層を形成してもよい。
 尚、上述したフィルム基材は、フィルム形状に限定されることはなく、例えば、ボード状でもシート状でも良い。当該フィルム基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、ふっ素樹脂等が、各種目的に応じて使用可能である。尤も、赤外線吸収フィルムとしては、ポリエステルフィルムであることが好ましく、PETフィルムであることがより好ましい。
 また、フィルム基板の表面は、コーティング層接着の容易さを実現するため、表面処理がなされていることが好ましい。また、ガラス基板もしくはフィルム基板とコーティング層との接着性を向上させるために、ガラス基板上もしくはフィルム基板上に中間層を形成し、中間層上にコーティング層を形成することも好ましい構成である。中間層の構成は特に限定されるものではなく、例えばポリマフィルム、金属層、無機層(例えば、シリカ、チタニア、ジルコニア等の無機酸化物層)、有機/無機複合層等により構成することができる。
 基板フィルム上または基板ガラス上へコーティング層を設ける方法は、当該基材表面へ赤外線吸収微粒子分散液が均一に塗布できる方法であれればよく、特に限定されない。例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等を挙げることが出来る。
 例えばUV硬化樹脂を用いたバーコート法によれば、適度なレベリング性を持つよう液濃度及び添加剤を適宜調整した塗布液を、コーティング膜の厚み及び前記赤外線吸収微粒子の含有量を合目的に満たすことのできるバー番号のワイヤーバーを用いて基板フィルムまたは基板ガラス上に塗膜を形成することができる。そして塗布液中に含まれる溶媒を乾燥により除去したのち紫外線を照射し硬化させることで、基板フィルムまたは基板ガラス上にコーティング層を形成することができる。このとき、塗膜の乾燥条件としては、各成分、溶媒の種類や使用割合によっても異なるが、通常では60℃~140℃の温度で20秒~10分間程度である。紫外線の照射には特に制限はなく、例えば超高圧水銀灯などのUV露光機を好適に用いることができる。
 その他、コーティング層の形成の前工程または後工程において、基板とコーティング層の密着性、コーティング時の塗膜の平滑性、有機溶媒の乾燥性などを調整することもできる。前工程としては、例えば基板の表面処理工程、プリベーク(基板の前加熱)工程などがあり、後工程としては、ポストベーク(基板の後加熱)工程などが挙げられ、適宜選択することができる。プリベーク工程および/あるいはポストベーク工程における加熱温度は80℃~200℃、加熱時間は30秒~240秒であることが好ましい。
 基板フィルム上または基板ガラス上におけるコーティング層の厚みは、特に限定されないが、実用上は10μm以下であることが好ましく、6μm以下であることがより好ましい。これはコーティング層の厚みが10μm以下であれば、十分な鉛筆硬度を発揮して耐擦過性を有することに加えて、コーティング層における溶媒の揮散およびバインダーの硬化の際に、基板フィルムの反り発生等の工程異常発生を回避出来るからである。
 以下、実施例を参照しながら本発明を具体的に説明する。
(実施例1)
 25℃の水340gにSnCl・5HO(和光純薬工業製 和光特級 純度98%以上)を54.9g溶解し、溶液とする。当該溶液へ、SbCl(和光純薬工業製 JIS特級 純度98%以上)を4.2g溶解したメタノール溶液12.7ml(米山薬品工業製 試薬特級 純度99.8%以上)と、濃度16%に希釈したNHOH水溶液(和光純薬工業製 試薬特級 濃度30%)とを並行滴下する。そして、当該並行滴下により、ATO赤外線吸収微粒子の前駆体である錫とアンチモンとを含む水酸化物を、生成沈殿させた。
 上記錫化合物溶液へのアンチモン化合物添加量は、所望とする光学特性の観点から、酸化錫(IV)100重量部に対して、アンチモンの元素換算で9.5重量部とした。当該添加量であれば、Sn元素が約68質量%、Sb元素が約8質量%となるATO赤外線吸収微粒子が作製可能となる。
 上記沈殿剤として用いるアルカリ溶液としてアンモニア水を用い、アルカリ濃度は、錫化合物とアンチモン化合物とが水酸化物となるのに必要な化学当量の1.6倍当量である16%とした。
 前記メタノール溶液とアルカリ溶液との並行滴下時間は25分間とし、当該溶液のpHが7.5となるまで並行滴下を行った。滴下終了後も系内の均一化を図るために、当該溶液の攪拌を10分間継続して行った。そのときの溶液の温度は、並行滴下の際の温度と同温とし、65℃とした。
 次に、前記沈殿物へデカンテーションを繰り返し行った。当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄し、濾過した。
 次に、洗浄された沈殿物を無水のエチルアルコール溶液(和光純薬工業製 試薬特級 純度99.5%以上)で湿潤処理した。当該湿潤処理の際、[濾過した沈殿物:無水のエチルアルコール溶液]の重量比を、1:4の割合(アルコールの割合が80%相当)とし、濾過した沈殿物と無水のエチルアルコール溶液とを室温下で1時間攪拌することで湿潤処理して前駆体を得た。当該湿潤処理の完了後に、当該前駆体を90℃で10時間乾燥させ、乾燥物を得た。
 そして、当該湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて700℃に加熱し、2時間焼成することで、実施例1に係るATO赤外線吸収微粒子を製造した。
 得られた実施例1に係るATO赤外線吸収微粒子の結晶構造を、粉末XRD装置(BRUKER製 D2 Phaser)のθ―2θ法で測定し、WPPF(Whole Powder Pattern Fitting)法による解析によって、結晶格子定数aおよびcと、結晶子サイズとを算出した。また、当該ATO赤外線吸収微粒子の組成を調べるため、ICP発光分析法(島津製作所製ICPE-9000)により、Sn元素とSb元素との定量分析を行った。
 そして、当該ATO赤外線吸収微粒子の圧粉体の体積抵抗率を測定した。当該ATO赤外線吸収微粒子2~3gを円筒に詰め、直径20.0mm、厚み2.5mm~4.0mmの円柱状のサンプルとし、当該サンプルを軸方向から荷重11.8~12.2kN、圧力37.5~39.0Mpaで圧縮することにより圧粉体とし、低抵抗粉体測定システム(三菱化学アナリテック製MCP-PD51)を用いて、圧縮した状態のまま直流四端子法によりATO赤外線吸収微粒子の圧粉体の体積抵抗率の値を測定した。このとき、当該圧粉体の密度は2.8g/ccであった。
 実施例1に係るATO赤外線吸収微粒子の結晶格子定数aは4.740Å、結晶格子定数cは3.190Å、結晶子サイズは7.8nmであった。また、当該ATO赤外線吸収微粒子の組成をICP発光分析法により調べたところ、Sn濃度が68.1質量%、Sb濃度が8.2質量%となっていた。さらには、当該ATO赤外線吸収微粒子の体積抵抗率の値は0.152Ω・cmとなっていた。当該評価結果を表1に示す。
 得られた実施例1に係るATO赤外線吸収微粒子25重量部と、トルエン(大伸化学製 特級 純度99.5%以上)67.5重量部と、カルボキシル基を官能基に有する高分子分散剤7.5重量部とを混合し、30kgのスラリーを調製した。このスラリーをビーズと共に媒体攪拌ミルに投入し、スラリーを循環させて、5時間粉砕分散処理を行った。
 尚、媒体攪拌ミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)を使用し、ベッセル内壁とローター(回転攪拌部)の材質はZrOとした。また、ビーズには、直径0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。
 ローターの回転速度は13rpm/秒とし、スラリー流量5kg/分にて粉砕分散処理を行い、実施例1に係る分散液を得た。
 得られた実施例1に係る分散液におけるATO赤外線吸収微粒子の分散粒子径を、動的光散乱法を原理とした粒径測定装置(大塚電子製 ELS-8000)を用いて測定した。当該測定において、実施例1に係る分散液をトルエンで希釈し、1cm角のガラスセルに入れたものを測定試料とした。希釈後は装置にガラスセルをセットし、光量測定時において光量が5000~16000cpsになっていることを確認して、分散粒子径の測定を行った。当該測定に際し、粒子屈折率を2.00、粒子形状を球形、溶媒屈折率を1.50と設定した。
 当該測定の結果、実施例1に係る分散液におけるATO赤外線吸収微粒子の分散粒子径は105nmであった。
 得られた実施例1に係る分散液を、溶媒のトルエンで希釈した。このとき、後述する透過率測定において分散液の可視光透過率が60%、70%、80%になるように分散液を希釈した。このときのトルエンによる希釈倍率を表2に記載する。
 尚、トルエン希釈による濃度調整後、該分散液を底面1cm角、高さ5cmのガラスセルに入れ、当該ガラスセル中の分散液の光の透過率を、分光光度計(日立製作所製U-4100)により波長300nm~2600nmの範囲において5nmの間隔で測定した。当該測定において、分光光度計の光の入射方向はガラスセル側面に垂直な方向とした。ただし、当該ガラスセルに溶媒のトルエンのみを入れたブランク液を、光の透過率のベースラインとしている。
 可視光透過率が70%となるよう希釈した、実施例1に係る分散液については、透過率測定の結果、即ち透過プロファイルから日射透過率を求めたところ48.1%であった。
 ガラスセル中の単位投影面積あたりの、実施例1に係るATO赤外線吸収微粒子の含有量は、可視光透過率を60%に規格化したときは8.7g/mであった。また、可視光透過率を70%に規格化したときは6.0g/mであった。さらに、可視光透過率を80%に規格化したときは3.7g/mであった。尚、当該ATO赤外線吸収微粒子の含有量は、光が通過する単位面積あたりのその厚み方向に含有されているATO赤外線吸収微粒子の重量である。当該評価結果を表2、および、図1に示す。
(実施例2)
 湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて加熱し、5時間焼成した以外は、実施例1と同様の操作をすることで、実施例2に係るATO赤外線吸収微粒子を製造した。当該製造条件および評価結果を表1に示す。
 実施例2に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで実施例2に係る分散液を得た。
 当該実施例2に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(実施例3)
 錫化合物溶液へのアンチモン化合物添加量を、酸化錫(IV)100重量部に対して、アンチモンの元素換算で10.5重量部とした以外は、実施例1と同様の操作をすることで、実施例3に係るATO赤外線吸収微粒子を製造した。このとき、SnCl・5HOの使用量は49.7g、SbClの使用量は4.2gであった。当該製造条件および評価結果を表1に示す。
 実施例3に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで実施例3に係る分散液を得た。
 当該実施例3に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(実施例4)
 当該湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて800℃に加熱して焼成した以外は、実施例1と同様の操作をすることで、実施例4に係るATO赤外線吸収微粒子を製造した。当該製造条件および評価結果を表1に示す。
 実施例4に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで実施例4に係る分散液を得た。
 当該実施例4に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(実施例5)
 トルエン希釈前の実施例1に係る分散液を、ATO赤外線吸収微粒子の濃度が0.22重量%となるようにポリカーボネート樹脂へ添加した後、ブレンダー、二軸押し出し機で均一に溶融混合した。そして当該溶融混合物を、Tダイを用いて厚さ2mmに押し出し成形し、ATO赤外線吸収微粒子が樹脂全体に均一に分散した実施例5に係る赤外線吸収微粒子分散体を得た。
 得られた実施例5に係る赤外線吸収微粒子分散体のヘイズを、ヘイズメーター(村上色彩技術研究所製 HM-150)を用いて、JISK7105に基づき測定したところ、0.5%であった。また、得られた実施例5に係る赤外線吸収微粒子分散体の透過率を、分光光度計により波長200nm~2600nmの範囲において5nmの間隔で測定し、可視光透過率と日射透過率とを求めたところ、可視光透過率は70.4%、日射透過率は50.7%であった。また、ATO赤外線吸収微粒子とポリカーボネート樹脂の混合割合から、得られた赤外線吸収微粒子分散体の単位投影面積あたりのATO赤外線吸収微粒子含有量を見積もったところ、5.3g/mであった。当該評価結果を表3に示す。
(実施例6)
 トルエン希釈前の実施例1に係る分散液を、ポリビニルブチラールに添加し、そこへ可塑剤としてトリエチレングリコール-ジ-2-エチルブチレートを加えた。このとき、作製予定の合わせ透明基材の可視光透過率が70%になるように、ATO赤外線吸収微粒子の濃度を調整し、ATO赤外線吸収微粒子の濃度が0.64質量%、ポリビニルブチラール濃度が71質量%となるように中間膜用組成物を調製した。調製された当該組成物をロールで混練して、0.76mm厚のシート状に成形し、実施例6に係る合わせ透明基材用中間膜を作製した。作製された合わせ透明基材用中間膜を、100mm×100mm×約2mm厚のクリアガラス基板2枚の間に挟み込み、80℃に加熱して仮接着した後、温度140℃、圧力14kg/cmのオートクレーブに装填して本接着を行い、実施例6に係る合わせ透明基材を作製した。
得られた実施例6に係る合わせ透明基材の光学特性を実施例5と同様に測定したところ、ヘイズは0.4%、可視光透過率は70.2%、日射透過率は50.6%であった。また、ATO赤外線吸収微粒子とポリビニルブチラール樹脂やトリエチレングリコール-ジ-2-エチルブチレートの混合割合から、得られた赤外線吸収微粒子分散体の単位投影面積あたりのATO赤外線吸収微粒子含有量を見積もったところ、5.4g/mであった。当該評価結果を表3に示す。
(実施例7)
 トルエン希釈前の実施例1に係る分散液75.0重量%とUV硬化樹脂25.0重量%とをよく混合し、赤外線吸収フィルム形成用分散液を調製した。
 ここで、膜厚50μmのPET(ポリエチレンテレフタレート)フィルム上へ、調製した赤外線吸収フィルム形成用分散液をバーコーター(井元製作所製 IMC-700)用いて塗布し塗布膜を形成した。70℃で1分間の加熱により、この塗布膜から溶媒を蒸発させた後、高圧水銀ランプの紫外線を照射し、実施例7に係る赤外線吸収フィルムを得た。
 得られた実施例7に係る赤外線吸収フィルムの光学特性を実施例5と同様に測定したところ、ヘイズは0.7%、可視光透過率は69.7%、日射透過率は49.3%であった。また、高精度マイクロメータ(ミツトヨ製MDH-25M)を用いてATO赤外線吸収微粒子を含むコーティング層の膜厚を測定したところ、5.0μmであった。このとき、ATO赤外線吸収微粒子とUV硬化樹脂の混合割合から、得られた赤外線吸収フィルムの単位投影面積当たりのATO赤外線吸収微粒子含有量を見積もったところ、5.5g/mであった。当該評価結果を表3に示す。
(実施例8)
 膜厚50μmのPET(ポリエチレンテレフタレート)フィルムに替えて、3mm厚のクリアガラス基板を用いた以外は実施例7と同様の操作を行い、実施例8に係る赤外線吸収ガラスを得た。
 得られた実施例8に係る赤外線吸収ガラスの光学特性を実施例5と同様に測定したところ、ヘイズは0.1%、可視光透過率は70.0%、48.8%であった。また、高精度マイクロメータ(ミツトヨ製MDH-25M)を用いてATO赤外線吸収微粒子を含むコーティング層の膜厚を測定したところ、5.4μmであった。このとき、ATO赤外線吸収微粒子とUV硬化樹脂の混合割合から、得られた赤外線吸収フィルムの単位投影面積当たりのATO赤外線吸収微粒子含有量を見積もったところ、5.9g/mであった。当該評価結果を表3に示す。
(比較例1)
 錫化合物溶液へのアンチモン化合物添加量を、酸化錫(IV)100重量部に対して、アンチモンの元素換算で8.5重量部とし、さらに、該湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて900℃に加熱して、1時間焼成した以外は、実施例1と同様の操作をすることで、比較例1に係るATO赤外線吸収微粒子を製造した。このとき、SnCl・5HOの使用量は61.3g、SbClの使用量は4.2gであった。当該製造条件および評価結果を表1に示す。
 比較例1に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで比較例1に係る分散液を得た。
 当該比較例1に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(比較例2)
 錫化合物溶液へのアンチモン化合物添加量を、酸化錫(IV)100重量部に対して、アンチモンの元素換算で8.5重量部とし、さらに、該湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて600℃に加熱した以外は、実施例1と同様の操作をすることで、比較例2に係るATO赤外線吸収微粒子を製造した。このとき、SnCl・5HOの使用量は61.3g、SbClの使用量は4.2gであった。当該製造条件および評価結果を表1に示す。
 比較例2に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで比較例2に係る分散液を得た。
 当該比較例2に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(比較例3)
 錫化合物溶液へのアンチモン化合物添加量を、酸化錫(IV)100重量部に対して、アンチモンの元素換算で13.7重量部とした以外は、実施例1と同様の操作をすることで、比較例3に係るATO赤外線吸収微粒子を製造した。このとき、SnCl・5HOの使用量は38.1g、SbClの使用量は4.2gであった。当該製造条件および評価結果を表1に示す。
 比較例3に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで比較例3に係る分散液を得た。
 当該比較例3に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(比較例4)
 錫化合物溶液へのアンチモン化合物添加量を、酸化錫(IV)100重量部に対して、アンチモンの元素換算で4.4重量部とした以外は、実施例1と同様の操作をすることで、比較例4に係るATO赤外線吸収微粒子を製造した。このとき、SnCl・5HOの使用量は59.3g、SbClの使用量は2.1gであった。当該製造条件および評価結果を表1に示す。
 比較例4に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで比較例4に係る分散液を得た。
 当該比較例4に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(比較例5)
 湿潤処理を受けたATO赤外線吸収微粒子前駆体を、大気雰囲気下にて1100℃に加熱した以外は、実施例1と同様の操作をすることで、比較例5に係るATO赤外線吸収微粒子を製造した。当該製造条件および評価結果を表1に示す。
 比較例5に係るATO赤外線吸収微粒子を用い、実施例1と同様の操作をすることで比較例5に係る分散液を得た。
 当該比較例5に係る分散液へ、実施例1と同様の評価を実施した。当該評価結果を表2、および、図1に示す。
(比較例6)
 ポリカーボネート樹脂と混合するトルエン希釈前分散液を、実施例1に係る分散液から比較例1に係る分散液へ代替した以外は、実施例5と同様の操作をすることで、比較例6に係る赤外線吸収微粒子分散体を得た。
 当該比較例6に係る分散体へ、実施例5と同様の評価を実施した。当該評価結果を表3に示す。
(比較例7)
 ポリビニルブチラール樹脂やトリエチレングリコール-ジ-2-エチルブチレートと混合するトルエン希釈前分散液を、実施例1に係る分散液から比較例1に係る分散液へ代替した以外は、実施例6と同様の操作をすることで、比較例7に係る合わせ透明基材用中間膜と合わせ透明基材を得た。
 当該比較例7に係る合わせ透明基材用中間膜と合わせ透明基材へ、実施例6と同様の評価を実施した。当該評価結果を表3に示す。
(比較例8)
 UV硬化樹脂と混合するトルエン希釈前分散液を、実施例1に係る分散液から比較例1に係る分散液へ代替した以外は、実施例7と同様の操作をすることで、比較例8に係る赤外線吸収フィルムを得た。
 当該比較例8に係る赤外線吸収フィルムへ、実施例7と同様の評価を実施した。当該評価結果を表3に示す。
(比較例9)
 UV硬化樹脂と混合するトルエン希釈前分散液を、実施例1に係る分散液から比較例1に係る分散液へ代替した以外は、実施例8と同様の操作をすることで、比較例9に係る赤外線吸収ガラスを得た。
 当該比較例9に係る赤外線吸収ガラスへ、実施例8と同様の評価を実施した。当該評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(まとめ)
 表1~3の結果から明らかなように、実施例1~4に係るATO赤外線微粒子を用いると、従来の技術に係る比較例1~5のATO赤外線微粒子に比べて、同じ可視光透過率に規格化したときのATOの使用量を20%以上減らすことが出来た。
 即ち、本発明に係るATO赤外線微粒子は、優れた日射遮蔽特性を有し、さらには着色力が高いことが判明した。
 従って、ある所望値の日射遮蔽特性を発現するため、必要とされるATO赤外線吸収微粒子量を極めて低減することができ、産業上好ましいものであると言える。
 

Claims (21)

  1.  ATO微粒子であって、該ATO微粒子の結晶格子定数aが4.736Å以上4.743Å以下、結晶格子定数cが3.187Å以上3.192Å以下、結晶子サイズが5.5nm以上10.0nm以下であることを特徴とする赤外線吸収微粒子。
  2.  前記結晶子サイズが6.0nm以上9.0nm以下であることを特徴とする請求項1に記載の赤外線吸収微粒子。
  3.  前記ATO微粒子中に、Sn元素が66.0質量%以上70.0質量%以下、Sb元素が8.0質量%以上9.0質量%以下の濃度で含まれることを特徴とする請求項1または2に記載の赤外線吸収微粒子。
  4.  前記ATO微粒子の圧粉体における体積抵抗率測定の値が0.05Ω・cm以上0.35Ω・cm以下であることを特徴とする請求項1から3のいずれかに記載の赤外線吸収微粒子。
  5.  請求項1から4のいずれかに記載の赤外線吸収微粒子が、液状媒体中に分散して含有されている分散液であって、前記液状媒体が水、有機溶媒、油脂、液状樹脂、液状プラスチック用可塑剤、またはこれらの混合物から選択されるものであることを特徴とする赤外線吸収微粒子分散液。
  6.  前記赤外線吸収微粒子分散液に含有されている赤外線吸収微粒子の分散粒子径が1nm以上110nm以下であることを特徴とする請求項5に記載の赤外線吸収微粒子分散液。
  7.  前記赤外線吸収微粒子分散液に含有されている赤外線吸収微粒子の含有量が、1質量%以上50質量%以下であることを特徴とする請求項5または6に記載の赤外線吸収微粒子分散液。
  8.  赤外線吸収微粒子分散液を、前記液状媒体で希釈、または前記液状媒体の除去により濃縮して可視光透過率を70%としたとき、日射透過率が40%以上50%以下であり、かつ、単位投影面積あたり5.0g/m以上7.0g/m以下の赤外線吸収微粒子を含有することを特徴とする請求項5から7のいずれかに記載の赤外線吸収微粒子分散液。
  9.  請求項1から4のいずれかに記載の赤外線吸収微粒子と、熱可塑性樹脂とを、含むことを特徴とする赤外線吸収微粒子分散体。
  10.  前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする請求項9に記載の赤外線吸収微粒子分散体。
  11.  前記赤外線吸収微粒子を、0.01質量%以上25質量%以下含むことを特徴とする請求項9または10に記載の赤外線吸収微粒子分散体。
  12.  前記赤外線吸収微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする請求項9から11のいずれかに記載の赤外線吸収微粒子分散体。
  13.  前記赤外線吸収微粒子分散体の可視光透過率が70%としたときに、日射透過率が42%以上52%以下、単位投影面積あたり5.0g/m以上7.0g/m以下の赤外線吸収微粒子を含有することを特徴とする請求項9から12のいずれかに記載の赤外線吸収微粒子分散体。
  14.  複数枚の透明基材間に、請求項9から13のいずれかに記載の赤外線吸収微粒子分散体が存在していることを特徴とする赤外線吸収合わせ透明基材。
  15.  透明フィルム基材または透明ガラス基材から選択される透明基材の少なくとも一方の面にコーティング層を有し、前記コーティング層は請求項1から4のいずれかに記載の赤外線吸収微粒子を含むバインダー樹脂であることを特徴とする赤外線吸収フィルムまたは赤外線吸収ガラス。
  16.  前記バインダー樹脂が、UV硬化性樹脂バインダーであることを特徴とする請求項15に記載の赤外線吸収フィルムまたは赤外線吸収ガラス。
  17.  前記コーティング層の厚さが1μm以上10μm以下であることを特徴とする請求項15または16に記載の赤外線吸収フィルムまたは赤外線吸収ガラス。
  18.  前記透明フィルム基材が、ポリエステルフィルムであることを特徴とする請求項15から17のいずれかに記載の赤外線吸収フィルム。
  19.  前記コーティング層に含まれる前記赤外線吸収微粒子の単位投影面積あたりの含有量が5.0g/m以上7.0g/m以下であることを特徴とする請求項15から18のいずれかに記載の赤外線吸収フィルムまたは赤外線吸収ガラス。
  20.  液温60℃以上70℃未満とした錫化合物の溶液へ、アンチモン化合物を溶解したアルコール溶液と、アルカリ溶液とを並行滴下して、錫とアンチモンとを含む水酸化物を生成沈殿させる工程と、
     前記沈殿物へデカンテーションを繰り返し行い、当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで洗浄する工程と、
     前記洗浄された沈殿物をアルコール溶液中へ投入して攪拌することで湿潤処理し、湿潤処理物とする工程と、
     前記湿潤処理物を乾燥させてATO赤外線吸収微粒子前駆体とする工程と
     前記ATO赤外線吸収微粒子前駆体を、大気雰囲気下にて700℃以上850℃未満に加熱し、1時間以上5時間以下焼成することで、ATO赤外線吸収微粒子を得る工程とを、有することを特徴とする赤外線吸収微粒子の製造方法。
  21.  前記錫とアンチモンとを含む水酸化物を生成沈殿させる工程において、液温60℃以上70℃未満のアルカリ溶液に、酸化錫(IV)換算で100重量部の錫化合物の溶液と、アンチモンの元素換算で9.0重量部以上11.0重量部以下のアンチモン化合物を溶解したアルコール溶液を並行滴下することを特徴とする請求項20に記載の赤外線吸収微粒子の製造方法。
     
     
PCT/JP2016/077758 2015-09-30 2016-09-20 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法 WO2017057110A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680056965.XA CN108430925B (zh) 2015-09-30 2016-09-20 红外线吸收微粒及使用其的分散液、分散体、夹层透明基材、膜、玻璃及其制造方法
EP16851284.6A EP3357865B1 (en) 2015-09-30 2016-09-20 Infrared absorbing particles, and dispersion liquid, dispersion, laminated transparent substrate, film, and glass using same, and method for manufacturing same
US15/765,230 US10486982B2 (en) 2015-09-30 2016-09-20 Infrared absorbing fine particles, dispersion liquid using the same, dispersion body, laminated transparent base material, film, glass, and method for producing the same
JP2017543170A JP6697692B2 (ja) 2015-09-30 2016-09-20 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法
KR1020187011662A KR102553348B1 (ko) 2015-09-30 2016-09-20 적외선 흡수 미립자 및 이를 사용한 분산액, 분산체, 적층된 투명 기재, 필름, 유리, 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-194838 2015-09-30
JP2015194838 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057110A1 true WO2017057110A1 (ja) 2017-04-06

Family

ID=58427583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077758 WO2017057110A1 (ja) 2015-09-30 2016-09-20 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法

Country Status (7)

Country Link
US (1) US10486982B2 (ja)
EP (1) EP3357865B1 (ja)
JP (1) JP6697692B2 (ja)
KR (1) KR102553348B1 (ja)
CN (1) CN108430925B (ja)
TW (1) TWI712562B (ja)
WO (1) WO2017057110A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793119B (zh) * 2017-05-01 2023-02-21 日商可樂麗股份有限公司 人工皮革基材及粒面狀人工皮革
JP7339217B2 (ja) 2020-07-31 2023-09-05 富士フイルム株式会社 インクセット、画像記録方法、及び画像記録物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202330805A (zh) * 2022-01-19 2023-08-01 白金科技股份有限公司 有機金屬錯合物塗佈液及近紅外線吸收膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075510A (ja) * 2001-09-27 2004-03-11 Sumitomo Metal Mining Co Ltd 日射遮蔽材料の製造方法、日射遮蔽膜形成用塗布液および日射遮蔽膜並びに日射遮蔽用透明基材
JP2004083397A (ja) * 2002-07-01 2004-03-18 Sumitomo Metal Mining Co Ltd 日射遮蔽用アンチモン錫酸化物微粒子とこれを用いた日射遮蔽体形成用分散液および日射遮蔽体並びに日射遮蔽用透明基材
WO2013147033A1 (ja) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 赤外線カット材
WO2013147029A1 (ja) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 アンチモンドープ酸化錫粉末およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279042A (en) * 1975-12-26 1977-07-02 Kureha Chemical Ind Co Ltd Edible fibrous casing
JP3286071B2 (ja) 1994-03-22 2002-05-27 住友大阪セメント株式会社 疎水性アンチモン含有酸化スズ微粒子の製法、熱線遮蔽コーティング液とその製法及び熱線遮蔽ガラスとその製法
JP2003176132A (ja) 2001-09-28 2003-06-24 Sumitomo Metal Mining Co Ltd 日射遮蔽用アンチモン錫酸化物粒子および日射遮蔽膜形成用塗布液ならびに日射遮蔽膜
JP2004140283A (ja) * 2002-10-21 2004-05-13 Nisshinbo Ind Inc ディスプレイ用薄型電磁波シールド積層体及びその製造方法
JP2008230954A (ja) 2007-02-21 2008-10-02 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用アンチモン含有酸化錫微粒子の製造方法、日射遮蔽体形成用分散液、日射遮蔽体、および、日射遮蔽用基材
CN104263056B (zh) * 2014-09-25 2016-08-24 广西大学 氧化锡锑有机纳米浆料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075510A (ja) * 2001-09-27 2004-03-11 Sumitomo Metal Mining Co Ltd 日射遮蔽材料の製造方法、日射遮蔽膜形成用塗布液および日射遮蔽膜並びに日射遮蔽用透明基材
JP2004083397A (ja) * 2002-07-01 2004-03-18 Sumitomo Metal Mining Co Ltd 日射遮蔽用アンチモン錫酸化物微粒子とこれを用いた日射遮蔽体形成用分散液および日射遮蔽体並びに日射遮蔽用透明基材
WO2013147033A1 (ja) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 赤外線カット材
WO2013147029A1 (ja) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 アンチモンドープ酸化錫粉末およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BERNARDI, M.I.B ET AL.: "Deveploment of metal oxide nanoparticles by soft chemical method", CERAMICS INTERNATIONAL, vol. 35, 2009, pages 463 - 466, XP025674642 *
DAHL, I. PAUL ET AL.: "Flame Spray Pyrolysis of Electrode Materials for Energy Applications", MATER. RES. SOC. SYMP. PROC., vol. 1747, January 2015 (2015-01-01), XP055371749 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793119B (zh) * 2017-05-01 2023-02-21 日商可樂麗股份有限公司 人工皮革基材及粒面狀人工皮革
JP7339217B2 (ja) 2020-07-31 2023-09-05 富士フイルム株式会社 インクセット、画像記録方法、及び画像記録物

Also Published As

Publication number Publication date
US10486982B2 (en) 2019-11-26
CN108430925B (zh) 2020-07-07
KR102553348B1 (ko) 2023-07-07
JPWO2017057110A1 (ja) 2018-07-19
US20180282175A1 (en) 2018-10-04
EP3357865A4 (en) 2019-06-05
TW201726552A (zh) 2017-08-01
EP3357865A1 (en) 2018-08-08
CN108430925A (zh) 2018-08-21
TWI712562B (zh) 2020-12-11
KR20180064431A (ko) 2018-06-14
JP6697692B2 (ja) 2020-05-27
EP3357865B1 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
TWI726959B (zh) 複合鎢氧化物超微粒子分散體、中間膜、夾層構造體及複合鎢氧化物超微粒子分散體之製造方法
EP3712223B1 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these
WO2018020819A1 (ja) 近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散体、近赤外線吸収透明基材、近赤外線吸収合わせ透明基材
CN110683554B (zh) 六硼化物微粒的集合体、分散液、分散体、该分散体夹层透明基材、红外线吸收膜及玻璃
JP6299559B2 (ja) 熱線遮蔽粒子、熱線遮蔽粒子分散液、熱線遮蔽粒子分散体、熱線遮蔽粒子分散体合わせ透明基材、赤外線吸収透明基材、熱線遮蔽粒子の製造方法
JP5120661B2 (ja) 合わせ構造体
JPWO2017104853A1 (ja) 複合タングステン酸化物超微粒子およびその分散液
EP2221349A1 (en) Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles of zinc oxide
WO2016010156A1 (ja) 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材
WO2017057110A1 (ja) 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法
CN113316560B (zh) 表面处理红外线吸收微粒、粉末、分散液、分散体及基材
WO2017119394A1 (ja) ホウ化物粒子、ホウ化物粒子分散液、赤外線遮蔽透明基材、赤外線遮蔽光学部材、赤外線遮蔽粒子分散体、赤外線遮蔽合わせ透明基材、赤外線遮蔽粒子分散粉、及びマスターバッチ
TWI705099B (zh) 金屬微粒子之集合體、金屬微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽夾層透明基材
JP6575443B2 (ja) 熱線遮蔽フィルムおよび熱線遮蔽ガラス
TWI666352B (zh) 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材
EP4361231A1 (en) Infrared absorbing composite microparticles, infrared absorbing microparticle dispersion liquid, and infrared absorbing microparticle dispersion
JP7338237B2 (ja) 赤外線吸収ランプおよび赤外線吸収ランプカバー
TW202244006A (zh) 紅外線吸收粒子、紅外線吸收粒子分散液、紅外線吸收粒子分散體、紅外線吸收夾層透明基材、紅外線吸收透明基材
JP2021075676A (ja) 複合タングステン酸化物微粒子分散体および複合タングステン酸化物微粒子分散液
TW202402683A (zh) 複合鎢氧化物粒子、近紅外線吸收粒子分散液、及近紅外線吸收粒子分散體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543170

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15765230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011662

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016851284

Country of ref document: EP