WO2017056746A1 - 半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法 - Google Patents

半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法 Download PDF

Info

Publication number
WO2017056746A1
WO2017056746A1 PCT/JP2016/073501 JP2016073501W WO2017056746A1 WO 2017056746 A1 WO2017056746 A1 WO 2017056746A1 JP 2016073501 W JP2016073501 W JP 2016073501W WO 2017056746 A1 WO2017056746 A1 WO 2017056746A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cleaning
semiconductor substrate
forming composition
polymer
Prior art date
Application number
PCT/JP2016/073501
Other languages
English (en)
French (fr)
Inventor
康巨 鄭
裕史 松村
嘉夫 滝本
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020187007979A priority Critical patent/KR20180059442A/ko
Priority to JP2017542997A priority patent/JP6721837B2/ja
Publication of WO2017056746A1 publication Critical patent/WO2017056746A1/ja
Priority to US15/934,258 priority patent/US20180211828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2065Polyhydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers

Definitions

  • the present invention relates to a film forming composition for cleaning a semiconductor substrate and a method for cleaning a semiconductor substrate.
  • Japanese Patent Application Laid-Open No. 7-74137 discloses a method for removing particles on a substrate surface by supplying a coating solution to the substrate surface to form a thin film and then peeling it off with an adhesive tape or the like. According to this method, it is said that minute particles and particles between patterns can be removed with a high removal rate while reducing the influence on the semiconductor substrate. However, in this method, it is necessary to physically peel the thin film from the surface of the substrate, and there are problems that the process is complicated and that removal is difficult when a part of the thin film remains in the pattern.
  • a processing liquid for forming a film on a substrate surface is supplied, solidified or cured, and then all of the processing liquid solidified or cured by a removing liquid is dissolved.
  • a substrate cleaning apparatus and a substrate cleaning method for removing particles are disclosed.
  • a topcoat liquid is described as a non-limiting example of the processing liquid, but there is no detailed description as to which processing liquid is suitable.
  • the present invention has been made based on the above circumstances, and in the process of forming a film on the surface of a semiconductor substrate to remove foreign matter on the surface of the substrate, the particles on the substrate surface can be efficiently removed and formed. It is an object of the present invention to provide a film forming composition for cleaning a semiconductor substrate and a method for cleaning a semiconductor substrate, which can easily remove the deposited film from the substrate surface.
  • the invention made in order to solve the above problems is a compound having a polar group, a group represented by the following formula (i) (hereinafter also referred to as “group (i)”) or a combination thereof having a molecular weight of 300 or more (hereinafter referred to as “group (i)”). , “[A] compound”) and a solvent (hereinafter also referred to as “[B] solvent”).
  • group (i) a compound having a polar group
  • group (i) a group represented by the following formula (hereinafter also referred to as “group (i)”
  • group (i) a group represented by the following formula (hereinafter also referred to as “group (i)”
  • group (i) a combination thereof having a molecular weight of 300 or more
  • group (i) “[A] compound”
  • [B] solvent hereinafter also referred to as “[B] solvent”.
  • R 1 is a group that dissociates by heating or the action of an acid.
  • Another invention made in order to solve the above problems includes a step of forming a semiconductor substrate cleaning film on the surface of the semiconductor substrate by coating the semiconductor substrate cleaning film forming composition, and the semiconductor substrate cleaning film.
  • a method for cleaning a semiconductor substrate comprising a removing step.
  • the “polar group” means a group containing at least one hetero atom, and excludes a group corresponding to the group (i).
  • the film forming composition for cleaning a semiconductor substrate of the present invention in the process of forming a film on the substrate surface and removing foreign matter on the substrate surface, particles on the substrate surface can be efficiently removed, and the formed film is used as the substrate. It can be easily removed from the surface. Further, according to the method for cleaning a semiconductor substrate of the present invention, particles on the substrate surface can be efficiently removed while easily removing the formed film from the substrate surface. Therefore, the film forming composition for cleaning a semiconductor substrate and the method for cleaning a semiconductor substrate of the present invention can be suitably used in the manufacturing process of a semiconductor element, which is expected to be further miniaturized and increased in aspect ratio.
  • FIG. 1A is an explanatory diagram of a method for cleaning a semiconductor substrate using the film forming composition for cleaning a semiconductor substrate of the present invention.
  • FIG. 1B is an explanatory diagram of a semiconductor substrate cleaning method using the semiconductor substrate cleaning film forming composition of the present invention.
  • FIG. 1C is an explanatory diagram of a semiconductor substrate cleaning method using the semiconductor substrate cleaning film forming composition of the present invention.
  • the film forming composition for cleaning a semiconductor substrate according to the present invention (hereinafter also simply referred to as “cleaning film forming composition”) is a film forming composition used for cleaning a semiconductor substrate.
  • cleaning film forming composition By forming a film on the surface of the semiconductor substrate using the cleaning film forming composition and removing the film, particles adhering to the surface of the substrate, particularly between patterns, and the like can be efficiently removed.
  • the cleaning film-forming composition contains a [A] compound and a [B] solvent.
  • [A] When the compound has a molecular weight of 300 or more and contains a polar group and / or group (i), the cleaning film-forming composition exhibits appropriate wetting and spreading properties with respect to the substrate surface and is formed. Has an affinity for the removal liquid and an appropriate dissolution rate, and it is presumed that it is quickly removed while enclosing particles on the surface of the substrate and realizes high removal efficiency.
  • R 1 in the formula (i) is dissociated by heating to generate a polar group. Further, it is presumed that separation of the particles from the substrate is promoted by volatilization of the dissociated group, and higher removal efficiency is realized.
  • the cleaning film-forming composition may further contain [C] a thermal acid generator.
  • the cleaning film-forming composition contains a [C] thermal acid generator, the film to be formed can be more easily removed from the substrate surface. This is because, for example, the [C] thermal acid generator in the film to be formed generates acid by heating, promotes dissociation of R 1 in the group (i), and efficiently generates a polar group. Therefore, it is presumed that the affinity for the film removal solution and the dissolution rate are further improved, and higher removal efficiency is realized.
  • the cleaning film-forming composition may further contain [D] a surfactant.
  • [D] a surfactant When the cleaning film-forming composition contains the [D] surfactant, removal of the formed film from the substrate surface is further facilitated.
  • the cleaning film-forming composition containing [D] surfactant particularly when the substrate is a patterned substrate such as a wiring groove (trench) or a plug groove (via), It is presumed that the embedding property of the cleaning film forming composition on the substrate surface is further improved and higher removal efficiency is realized.
  • the cleaning film-forming composition may contain other optional components in addition to the components [A] to [D] as long as the effects of the present invention are not impaired.
  • each component will be described.
  • the compound [A] is a compound having a molecular weight of 300 or more having a polar group, a group (i), or a combination thereof.
  • the compound may have one or more polar groups and / or groups (i).
  • a compound can be used individually by 1 type or in mixture of 2 or more types.
  • the molecular weight is, for example, a weight average molecular weight (Mw).
  • a polar group is a group containing at least one heteroatom.
  • the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a halogen atom are preferable, and an oxygen atom, a nitrogen atom and a sulfur atom are more preferable from the viewpoint that the polar group becomes more polar.
  • Examples of the polar group include groups having active hydrogen such as hydroxy group, carboxy group, amino group, imino group (—NH—), sulfo group, sulfate group, sulfanyl group, and phosphate group; A group having one heteroatom such as a carbonyl group, a thiocarbonyl group, an ether group or a thioether group; And a group having two or more heteroatoms such as a sulfonyl group and an amide group (—CO—NH—).
  • the polar group is preferably a group having active hydrogen and a group having two or more heteroatoms from the viewpoint of improving the removal efficiency of the cleaning film-forming composition, and is preferably a hydroxy group, a carboxy group, an amide group or an amino group.
  • a sulfonyl group and a sulfo group are preferable, a hydroxy group and a carboxy group are more preferable, and a hydroxy group is further preferable.
  • the group (i) is a group represented by the following formula (i).
  • R 1 is a group that dissociates by heating or the action of an acid.
  • R 1 of the group (i) is heated or at a lower temperature or room temperature than when no acid is present, for example, when an acid such as that generated from a [C] thermal acid generator described later acts as a catalyst for the dissociation reaction. Dissociate. As a result, a carboxy group, a hydroxy group and the like which are polar groups are generated from the group (i).
  • the lower limit of the temperature at which R 1 dissociates is preferably 50 ° C, more preferably 80 ° C, more preferably 110 ° C, and particularly preferably 140 ° C.
  • 300 degreeC is preferable, 270 degreeC is more preferable, 240 degreeC is further more preferable, and 220 degreeC is especially preferable.
  • R 1 examples include a secondary or tertiary monovalent hydrocarbon group, a monovalent hydrocarbon group-substituted silyl group, and the like.
  • the “secondary hydrocarbon group” refers to a hydrocarbon group in which a carbon atom serving as a bond is bonded to one hydrogen atom.
  • the “tertiary hydrocarbon group” refers to a hydrocarbon group in which a carbon atom serving as a bond is not bonded to a hydrogen atom.
  • Examples of the secondary hydrocarbon group include alkyl groups such as i-propyl group, sec-butyl group, sec-pentyl group; Alkenyl groups such as ethenyl group, 1-propen-1-yl group, 1-buten-3-yl group; A chain hydrocarbon group such as an alkynyl group such as a 1-butyn-3-yl group and a 1-pentyn-4-yl group; A cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group; An alicyclic hydrocarbon group such as a cycloalkenyl group such as a 1-cyclopenten-1-ylethane-1-yl group; Examples thereof include aromatic hydrocarbon groups such as aralkyl groups such as 1-phenylethane-1-yl group, 1-phenylpropan
  • Examples of the tertiary hydrocarbon group include alkyl groups such as a t-butyl group, a t-pentyl group, and a t-hexyl group; An alkenyl group such as a propen-2-yl group and a 1-buten-2-yl group; Chain hydrocarbon groups such as alkynyl groups such as ethynyl group, propyn-1-yl group, butyn-1-yl group; 1-methylcyclopropan-1-yl group, 1-ethylcyclobutan-1-yl group, 1-methylcyclopentan-1-yl group, 1-ethylcyclohexane-1-yl group, 2-ethylnorbornan-2-yl A cycloalkyl group such as a 2-methyladamantan-2-yl group; An alicyclic hydrocarbon group such as a cycloalkenyl group such as a cyclopenten-1-yl group, a cyclohe
  • the lower limit of the carbon number of the secondary and tertiary monovalent hydrocarbon groups is preferably 2, more preferably 3, and even more preferably 4.
  • the upper limit of the carbon number is preferably 20, more preferably 10, and still more preferably 8.
  • Examples of the monovalent hydrocarbon group-substituted silyl group include a silyl group in which three monovalent hydrocarbon groups are bonded.
  • As a minimum of carbon number of a monovalent hydrocarbon group substitution silyl group 1 is preferred, 2 is more preferred, and 3 is still more preferred.
  • the upper limit of the carbon number is preferably 20, more preferably 10, and still more preferably 8.
  • R 1 is preferably a tertiary monovalent hydrocarbon group or a monovalent hydrocarbon group-substituted silyl group from the viewpoint of dissociating at a more appropriate temperature and increasing the volatility of the dissociated group.
  • a chain hydrocarbon group, a tertiary alicyclic hydrocarbon group, and a hydrocarbon-substituted silyl group having at least one methyl group are more preferred, a tertiary alkyl group, a tertiary cycloalkyl group, and at least 2 More preferred are hydrocarbon-substituted silyl groups having a number of methyl groups, particularly preferred are t-butyl, t-pentyl, trimethylsilyl, t-butyldimethylsilyl and phenyldimethylsilyl, and more preferred is t-butyl. Particularly preferred.
  • the site of the [A] compound to which the group (i) is bonded is not particularly limited, and examples thereof include a methylene chain, an aromatic ring, a carbonyl group, a thiocarbonyl group, a sulfonyl group, a sulfoxy group, and a phospho group.
  • an aromatic ring, a carbonyl group, and a sulfonyl group are preferable, a carbonyl group and a sulfonyl group are more preferable, and a carbonyl group is more preferable from the viewpoint of further improving the removal efficiency.
  • the lower limit of the content of the group (i) relative to the sum of the polar group and the group (i) in the compound is preferably 10 mol%, more preferably 30 mol%, still more preferably 50 mol%, and more preferably 80 mol%. % Is particularly preferred, 90 mol% is more particularly preferred, and 95 mol% is most preferred. As an upper limit of the said content rate, it is 100 mol% normally, and 99 mol% is preferable. [A] By making the content rate of group (i) in a compound into the said range, the removal efficiency of the said film forming composition for washing
  • [A] compound examples include a polymer (hereinafter also referred to as “[A1] polymer”), a low molecular compound (hereinafter also referred to as “[A2] low molecular compound”), and the like.
  • Polymer refers to a compound having a repeating unit.
  • Low molecular compound means a compound which is not a polymer and has a molecular weight of 3,000 or less.
  • the cleaning film-forming composition contains the [A1] polymer as the [A] compound, whereby the film-forming property is improved, and as a result, the removal efficiency can be further increased.
  • Examples of the [A1] polymer include a cyclic polymer (hereinafter also referred to as “[A1a] cyclic polymer”), a chain polymer (hereinafter also referred to as “[A1b] chain polymer”), and the like. Can be mentioned.
  • the “cyclic polymer” refers to a polymer in which the ends of the main chain are bonded to each other to form a ring.
  • the “chain polymer” refers to a polymer in which the ends of the main chain are not bonded to each other.
  • “Main chain” refers to the longest chain of atoms in a polymer.
  • the lower limit of Mw of the polymer is 300, 500 is preferable, 800 is more preferable, and 1,000 is more preferable.
  • the upper limit of Mw is preferably 50,000, more preferably 10,000, and even more preferably 5,000.
  • the cleaning film-forming composition uses the [A1a] cyclic polymer as the [A] compound, so that the substrate is a patterned substrate such as a wiring groove (trench) or a plug groove (via). It is estimated that the embedding property to the substrate surface is improved and higher removal efficiency is realized.
  • the calixarene is an aromatic ring to which a hydroxy group is bonded, or a cyclic polymer in which a heteroaromatic ring to which a hydroxy group is bonded is cyclically bonded via a hydrocarbon group, or this hydroxy group, aromatic ring, heteroaromatic ring and Some or all of the hydrogen atoms of the hydrocarbon group are substituted. That is, the calixarene usually has a hydroxy group which is a polar group, and the group (i) or a group containing the group (i) can be introduced using this hydroxy group.
  • the calixarene having a hydroxy group that is a polar group can be obtained by, for example, subjecting a phenolic hydroxy group-containing compound represented by the following formula (1) to an aldehyde.
  • aldehydes include compounds represented by the following formula (2).
  • the compound represented by following formula (2) is formaldehyde, paraformaldehyde may be used, and when it is acetaldehyde, paraaldehyde may be used.
  • Y is a hydrocarbon group having 1 to 10 carbon atoms.
  • q is an integer of 0 to 7.
  • p is an integer of 1 to 4. However, 1 ⁇ p + q ⁇ 6 is satisfied.
  • k is 0 or 1.
  • X represents a substituted or unsubstituted k-valent hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
  • j is 1 or 2.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by Y include those having 1 to 10 carbon atoms among the monovalent hydrocarbon groups exemplified as R 1 above. Among these, a hydrocarbon group having 1 to 5 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • P is preferably an integer of 1 to 3, more preferably 2 or 3.
  • q is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the j-valent hydrocarbon group having 1 to 30 carbon atoms represented by X include the monovalent hydrocarbon groups exemplified as R 1 above when j is 1, and when j is 2, And a group obtained by removing one hydrogen atom from the hydrocarbon group.
  • Examples of the substituent of the hydrocarbon group include a hydroxy group, a halogen atom, and an oxo group ( ⁇ O).
  • J is preferably 1.
  • X is preferably a hydrogen atom, a chain hydrocarbon group, and a substituted and unsubstituted aromatic hydrocarbon group, a hydrogen atom, a monovalent chain hydrocarbon group, and a substituted and unsubstituted monovalent aromatic hydrocarbon. More preferably a hydrogen atom, an alkyl group and a hydroxy-substituted phenyl group, and particularly preferably a hydrogen atom, a methyl group, a 4-hydroxyphenyl group and a 3,4-dihydroxyphenyl group.
  • a calixarene having the group (i) can be obtained by substituting the hydrogen atom of the hydroxy group of the obtained calixarene with a group exemplified as the R 1 or a group containing the group (i).
  • the group that replaces the hydrogen atom of the hydroxy group of calixarene is preferably a group containing group (i), more preferably a carbonylalkyl group to which group (i) is bonded, and a carbonylmethyl group to which group (i) is bonded. Further preferred is a t-butoxycarbonylmethyl group.
  • calixarene examples include a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (5), and the like.
  • R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • m is an integer of 4 to 12.
  • Y, k, p, and q are synonymous with the above formula (1).
  • X is synonymous with the case where j in the above formula (2) is 1.
  • the upper limit of m is preferably 8, more preferably 6, and even more preferably 4 from the viewpoint of further improving the embedding property of the cleaning film-forming composition into the patterned substrate surface.
  • R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • n is 2 or 3.
  • Y, k, p, and q are synonymous with the above formula (1).
  • X is synonymous with j in the above formula (2) being 2.
  • R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • Y, k, p, and q are synonymous with the above formula (1).
  • X is synonymous with j in the above formula (2) being 2.
  • calixarene examples include compounds represented by the following formulas.
  • R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • Cyclodextrins are those in which D-glucose forms a cyclic structure with ⁇ 1 ⁇ 4 bonds.
  • the cyclodextrin has a hydroxy group that is a polar group, and a group containing the group (i) or the group (i) can be introduced using the hydroxy group.
  • cyclodextrin examples include ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin and the like. Among these, ⁇ -cyclodextrin is preferable from the viewpoint of further improving the embedding property in a patterned substrate.
  • the lower limit of Mw of the cyclic polymer is 300, preferably 350, more preferably 400, still more preferably 500, and particularly preferably 600.
  • the upper limit of Mw is preferably 3,000, more preferably 2,500, still more preferably 2,000, and particularly preferably 1,500.
  • chain polymer [A1b] chain polymer) [A1b]
  • chain polymer examples include addition polymers such as acrylic resin, styrene resin and vinyl alcohol resin, and condensation polymers such as phenol resin.
  • the acrylic resin is a polymer having a repeating unit derived from acrylic acid, an acrylic ester or a substituted product thereof, that is, — [C (R A ) (R B ) —C (R C ) (COOR D ). ] As a repeating unit.
  • R A , R B and R C are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R D is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the organic group represented by RD includes a polar group and / or group (i).
  • Examples of the monomer having a polar group that forms an acrylic resin include hydroxy group-containing esters such as hydroxyethyl (meth) acrylate and hydroxyethyl crotonate; Carboxy group-containing esters such as (meth) acrylic acid and (iso) crotonic acid; Amide group-containing esters such as (meth) acrylamide and (iso) crotonamide; Amino group-containing esters such as aminoethyl (meth) acrylate and aminoethyl (iso) crotonate; Sulfonyl group-containing esters such as methylsulfonylethyl (meth) acrylate and methylsulfonylethyl (iso) crotonate; Examples include sulfo group-containing esters such as sulfoethyl (meth) acrylate and sulfoethyl (iso) crotonate.
  • Examples of the monomer having a group (i) that forms an acrylic resin include t-butyl (meth) acrylate, t-amyl (meth) acrylate, t-butyl (iso) crotonate, and (iso) crotonic acid.
  • tertiary alkyl esters such as t-amyl; Examples thereof include silyl esters such as trimethylsilyl (meth) acrylate, t-butyldimethylsilyl (meth) acrylate, and phenyldimethylsilyl (meth) acrylate.
  • the styrene resin is a polymer having a repeating unit derived from styrene or substituted styrene, that is,-[C (R A ) (R B ) -C (R C ) (Ar D -R E )]-is repeated. It is a polymer having as a unit.
  • R A , R B and R C are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Ar D is an arenediyl group having 6 to 20 carbon atoms.
  • R E is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the organic groups represented by R E comprises a polar group and / or a group (i).
  • Examples of the monomer having a polar group that forms a styrene resin include hydroxy group-containing vinyl aromatic compounds such as hydroxystyrene, hydroxyvinylnaphthalene, hydroxymethylstyrene, and hydroxymethylvinylnaphthalene; Carboxy group-containing vinyl aromatic compounds such as carboxystyrene and carboxyvinylnaphthalene; Sulfonyl group-containing vinyl aromatic compounds such as methylsulfonylstyrene and methylsulfonylvinylnaphthalene; And sulfo group-containing vinyl aromatic compounds such as sulfostyrene and sulfovinylnaphthalene.
  • hydroxy group-containing vinyl aromatic compounds such as hydroxystyrene, hydroxyvinylnaphthalene, hydroxymethylstyrene, and hydroxymethylvinylnaphthalene
  • Carboxy group-containing vinyl aromatic compounds such as carboxys
  • Examples of the monomer having a group (i) that forms a styrene resin include tertiary alkyl group-containing vinyl aromatic compounds such as t-butoxystyrene, t-amyloxystyrene, t-butoxyvinylnaphthalene, and t-amyloxyvinylnaphthalene.
  • Group compounds examples include silyloxy group-containing vinyl aromatic compounds such as trimethylsilyloxystyrene, t-butyldimethylsilyloxystyrene, phenyldimethylsilyloxystyrene, trimethylsilyloxyvinylnaphthalene, t-butyldimethylsilyloxyvinylnaphthalene, and phenyldimethylsilyloxyvinylnaphthalene. It is done.
  • silyloxy group-containing vinyl aromatic compounds such as trimethylsilyloxystyrene, t-butyldimethylsilyloxystyrene, phenyldimethylsilyloxystyrene, trimethylsilyloxyvinylnaphthalene, t-butyldimethylsilyloxyvinylnaphthalene, and phenyldimethylsilyloxyvinylnaphthalene. It is done.
  • the vinyl alcohol resin is a polymer having — [C (R F ) (R G ) —C (R H ) (OR I )] — as a repeating unit.
  • R F , R G and R H are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R I is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the organic group represented by R I comprises a polar group and / or a group (i).
  • the vinyl alcohol resin in which R I is a hydrogen atom has a hydroxy group as a polar group.
  • Such a vinyl alcohol resin can be obtained by hydrolyzing a polymer formed using a carboxylic acid alkenyl ester as a monomer.
  • Examples of monomers having a group (i) that form a vinyl alcohol resin include alkenyloxycarbons such as t-butyl vinyloxyacetate, t-amyl vinyloxyacetate, t-butyl 1-propenyloxyacetate, and t-amyl 1-propenyloxyacetate.
  • Acid tertiary esters Alkenyloxycarboxylic acids such as trimethylsilyl vinyloxyacetate, t-butyldimethylsilyl vinyloxyacetate, phenyldimethylsilyl vinyloxyacetate, trimethylsilyl 1-propenyloxyacetate, t-butyldimethylsilyl 1-propenyloxyacetate, phenyldimethylsilyl 1-propenyloxyacetate Examples thereof include silyl esters.
  • the phenol resin is a polymer obtained by reacting a compound having a phenolic hydroxyl group with an aldehyde or divinyl compound using an acidic catalyst or an alkaline catalyst.
  • the phenol resin has a repeating unit derived from a compound having a phenolic hydroxyl group and an aldehyde or divinyl compound.
  • a phenol resin usually has a hydroxy group which is a polar group.
  • a polar group and / or group (i) can be introduce
  • Examples of the compound having a phenolic hydroxyl group include monophenols such as phenol, cresol, xylenol, pt-butylphenol, p-octylphenol, 1-naphthol and 2-naphthol; Examples include resorcinol, bisphenol A, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, diphenols such as fluorene-9,9-diphenol, and the like.
  • aldehyde examples include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, propionaldehyde, benzaldehyde and the like.
  • divinyl compound examples include divinylbenzene, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorborna-2-ene, ⁇ -pinene, limonene, and 5-vinylnorbornadiene.
  • the chain polymer may have a repeating unit other than the repeating unit containing the polar group and / or the group (i).
  • [A1b] As the lower limit of the content ratio of the repeating unit containing a polar group and / or group (i) in the chain polymer, [A1b] 10 mol% is based on all repeating units constituting the chain polymer. Preferably, 50 mol% is more preferable, 70 mol% is more preferable, 90 mol% is especially preferable, and 100 mol% is further especially preferable. [A1b] By setting the content ratio of the repeating unit containing the polar group and / or group (i) in the chain polymer within the above range, the removal efficiency of the cleaning film-forming composition can be further improved.
  • the lower limit of Mw of the [A1b] chain polymer is preferably 500, more preferably 800, and even more preferably 1,000.
  • the upper limit of Mw is preferably 50,000, more preferably 10,000, even more preferably 5,000, and particularly preferably 3,000.
  • the low molecular weight compound is not a polymer and is a compound having a molecular weight of 3,000 or less.
  • the cleaning film-forming composition contains the [A2] low-molecular compound as the [A] compound, so that the substrate is a patterned substrate such as a wiring groove (trench) or a plug groove (via). It is presumed that the embeddability to the substrate surface is further improved and higher removal efficiency is realized.
  • the lower limit of the molecular weight of the low molecular weight compound is preferably 350, more preferably 400, still more preferably 500, and particularly preferably 600.
  • the upper limit of the molecular weight is preferably 2,000, more preferably 1,500, still more preferably 1,200, and particularly preferably 1,000.
  • the film-forming composition for cleaning is presumed to achieve higher removal efficiency as a result of improving the film-forming property by setting the molecular weight of the [A2] low-molecular compound in the above range.
  • the lower limit of the number of polar groups and groups (i) in the low molecular weight compound is preferably 2, and more preferably 3.
  • the upper limit of the number is preferably 10, and more preferably 6.
  • the cleaning film-forming composition further improves the film-forming property by setting the number of polar groups and groups (i) in the [A2] low-molecular compound in the above range, and as a result, further higher removal efficiency. It is speculated that it can be realized.
  • Examples of the low molecular weight compound include compounds in which a polar group, a group (i), or a group containing these groups is bonded to a ring such as an aromatic ring, an aromatic heterocyclic ring, an alicyclic ring, or an aliphatic heterocyclic ring. Can be mentioned.
  • Examples of the [A2] low-molecular compound having a polar group include polar group-containing aromatic compounds such as trimesic acid tri (hydroxybutyl) and 1,2,3-tri (hydroxybutoxy) benzene; Examples include pentoses such as ribose and deoxyribose; monosaccharides such as hexose such as glucose, fructose, galactose, and mannose.
  • Examples of the [A2] low molecular weight compound having the group (i) include aromatic compounds having the group (i) such as tri-t-butyl trimesate and 1,2,3-tri (t-butoxycarbonylmethoxy) benzene; The compound etc. which substituted a part or all of the hydrogen atom of the hydroxy group which the said monosaccharide has with the group containing group (i) are mentioned.
  • the lower limit of the content of the [A] compound is preferably 0.1% by mass, more preferably 0.5% by mass, and further preferably 1% by mass.
  • 50 mass% is preferable, 30 mass% is more preferable, and 15 mass% is further more preferable.
  • the lower limit of the content of the compound [A] relative to the total solid content in the cleaning film-forming composition is preferably 30% by mass, more preferably 40% by mass, and even more preferably 50% by mass.
  • 100 mass% is preferable, 98 mass% is more preferable, and 96 mass% is further more preferable.
  • Total solid content refers to the sum of components other than [B] solvent.
  • the removability of the film from the substrate surface can be further enhanced by setting the content of the [A] compound in the above range.
  • [B] Solvent can be used as long as it dissolves or disperses the [A] compound, but a solvent capable of dissolving the [A] compound is preferable.
  • the [B] solvent preferably dissolves the [C] thermal acid generator.
  • cleaning adds [D] surfactant
  • Examples of the solvent include polar organic solvents such as alcohol solvents, ether solvents, ketone solvents, amide solvents, and ester solvents; hydrocarbon solvents; water and the like.
  • alcohol solvents include ethanol, isopropyl alcohol, amyl alcohol, 4-methyl-2-pentanol, cyclohexanol, 3,3,5-trimethylcyclohexanol, furfuryl alcohol, benzyl alcohol, diacetone alcohol, and the like.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether and diisoamyl ether, cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, and aromatic ring-containing ether solvents such as diphenyl ether and anisole. Etc.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone.
  • Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone
  • cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, and acetonyl Acetone, acetophenone, etc. are mentioned.
  • amide solvents include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, Examples thereof include chain amide solvents such as N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monovalent alcohol carboxylate solvents such as ethyl acetate, butyl acetate, benzyl acetate, cyclohexyl acetate, ethyl lactate, ethyl 3-methoxypropionate, monocarboxylates of alkylene glycol monoalkyl ethers, Polyhydric alcohol partial ether carboxylate solvents such as monocarboxylates of dialkylene glycol monoalkyl ethers, cyclic ester solvents such as butyrolactone, carbonate solvents such as diethyl carbonate, polyvalent carboxyls such as diethyl oxalate and diethyl phthalate Examples include acid alkyl ester solvents.
  • monovalent alcohol carboxylate solvents such as ethyl acetate, butyl acetate, benzyl acetate, cyclohexyl acetate, ethyl lactate, ethyl 3-methoxyprop
  • hydrocarbon solvents examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, Aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di -Aromatic hydrocarbon solvents such as iso-propyl benzene and n-amyl naphthalene.
  • Aliphatic hydrocarbon solvents such as cyclohex
  • polar organic solvents and water are preferred.
  • polar organic solvents include alcohols, dihydric alcohol ethers, polyhydric alcohol alkyl ether solvents, cyclic ketone solvents, monohydric alcohol carboxylate solvents, cyclic ester solvents, polyhydric alcohol partial ether carboxylate solvents.
  • alkyl ether solvents of polyhydric alcohols are preferred, alkyl ethers of alcohols and polyhydric alcohols are more preferred, 4-methyl-2-pentanol, diisoamyl ether, propylene glycol monoethyl ether, ethyl lactate, 3-methoxypropion More preferred are acid methyl, butyrolactone and propylene glycol monomethyl ether acetate.
  • the upper limit of the content of water in the [B] solvent is preferably 20% by mass, more preferably 10% by mass, further preferably 5% by mass, particularly 2% by mass. preferable.
  • the solubility of the compound [A] in the solvent and the appropriate film wetting and spreading property for the substrate surface are improved.
  • the detergency by the film-forming composition for cleaning can be improved.
  • 0.1 mass% is preferred, 0.5 mass% is more preferred, and 1 mass% is still more preferred.
  • the cleaning film-forming composition As a minimum of content of a solvent, 50 mass% is preferred, 80 mass% is more preferred, and 90 mass% is still more preferred. As an upper limit of the said content, 99.9 mass% is preferable, 99.5 mass% is more preferable, 99.0 mass% is further more preferable. [B] By setting the content of the solvent between the above lower limit and the upper limit, the cleaning film-forming composition further improves the cleaning properties for the substrate.
  • the cleaning film-forming composition may contain one or more [B] solvents.
  • the cleaning film-forming composition may contain a [C] thermal acid generator.
  • [C] The thermal acid generator generates an acid by heating, and by adding this component, dissociation of R 1 in formula (i) is promoted, and a polar group is efficiently generated. Therefore, it is presumed that the affinity for the removal liquid and the dissolution rate in the cleaning film-forming composition are further improved and higher removal efficiency is realized.
  • thermal acid generator examples include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and other alkyl esters of organic sulfonic acid.
  • Thermal acid generators include sulfonium salts, iodonium salts, benzothiazonium salts, ammonium salts, onium salts such as phosphonium salts, and the like.
  • Sulfonimide compounds bis (4-tert-butylphenyl) iodonium nonafluoro-n-butanesulfonate, triethylammonium nonafluoro-n-butans Honeto, like salts of organic sulfonic acids such as compounds represented by the following formula (6-2).
  • the thermal acid generator is preferably an iodonium salt or an ammonium salt of an organic sulfonic acid among these onium salts, more preferably an ammonium salt of an organic sulfonic acid, particularly represented by the following formula (6-3). Are preferred.
  • R 11 is an alkyl group having 1 to 15 carbon atoms.
  • R 12 to R 14 are each independently an alkyl group having 1 to 10 carbon atoms.
  • R 15 is a hydroxyalkyl group having 1 to 5 carbon atoms.
  • x is an integer of 1 to 3. When x is 2 or more, the plurality of R 11 may be the same or different.
  • the number of carbon atoms of the alkyl group represented by R 11 is preferably 3 to 15, and more preferably 3 to 12.
  • the alkyl group may be linear or branched, but is preferably linear.
  • a dodecyl group is particularly preferable.
  • x is preferably 1.
  • the bonding position of R 11 in the benzene ring is not particularly limited. However, in consideration of availability, it is preferable that the bonding position is at least in the para position with respect to the bonding position of —SO 3 — .
  • the number of carbon atoms of the alkyl group represented by R 12 to R 14 is preferably 1 to 5.
  • the alkyl group may be linear or branched. As this alkyl group, a methyl group is preferable.
  • the hydroxyalkyl group represented by R 15 may be linear or branched, but is preferably linear. Among these, — (CH 2 ) mOH [wherein, m is an integer of 1 to 4. ] Is preferred, and —CH 2 CH 2 OH is particularly preferred.
  • the lower limit of the content of the [C] thermal acid generator is 0.1 mass with respect to 100 parts by mass of the [A] compound. Part is preferable, 0.5 part by weight is more preferable, 1 part by weight is further more preferable, and 3 parts by weight is particularly preferable. As an upper limit of the said content, 20 mass parts is preferable, 10 mass parts is more preferable, 7 mass parts is further more preferable, and 5 mass parts is especially preferable.
  • surfactant for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, Nonionic surfactants such as polyethylene glycol distearate are exemplified.
  • the lower limit of the content of [D] surfactant is preferably 0.001% by mass, and more preferably 0.01% by mass.
  • the upper limit of the content is preferably 2% by mass, more preferably 1% by mass, and still more preferably 0.1% by mass.
  • the cleaning film-forming composition may contain other optional components other than the components [A] to [D].
  • other optional components include a crosslinking agent and a crosslinking accelerator.
  • the cleaning film-forming composition may contain one or more other optional components.
  • the upper limit of the content of other optional components is preferably 20 parts by mass with respect to 100 parts by mass of component [A], and 10 parts by mass. More preferred. As a minimum of the above-mentioned content, it is 0.1 mass part, for example.
  • the cleaning film-forming composition contains, for example, a predetermined ratio of [A] compound and [B] solvent, [C] thermal acid generator, [D] surfactant and other optional components contained as necessary.
  • the obtained mixed solution can be prepared by, for example, filtering through a filter having a pore size of about 0.1 to 5 ⁇ m.
  • the lower limit of the solid content concentration of the cleaning film-forming composition is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 2% by mass.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 20% by mass, and particularly preferably 15% by mass.
  • the semiconductor substrate cleaning method includes a step of forming a semiconductor substrate cleaning film (hereinafter also referred to as “film (I)”) on the surface of the semiconductor substrate by coating the cleaning film forming composition (hereinafter referred to as “film (I)”). And a step of removing the film (I) (hereinafter also referred to as “removing step”).
  • film (I) a semiconductor substrate cleaning film
  • removing step a step of removing the film (I)
  • the above-mentioned cleaning film forming composition can be applied to substrates made of various materials.
  • Examples of applicable substrates include silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, titanium substrates and other metal or semi-metal substrates; silicon nitride substrates, alumina substrates, dioxide substrates Examples include a silicon substrate, a tantalum nitride substrate, and a ceramic substrate such as titanium nitride. Among these, a silicon substrate, a silicon nitride substrate, and a titanium nitride substrate are preferable, and a silicon substrate is more preferable.
  • the above-described cleaning film-forming composition is used as a processing liquid for forming the film (I) on the wafer W.
  • a film forming process is performed. That is, the cleaning film-forming composition is applied onto the wafer W to form a coating film of the cleaning film-forming composition.
  • the coating method include rotational coating (spin coating), cast coating, roll coating, and the like.
  • the coating film is heated (baked) and / or depressurized to efficiently remove part or all of the solvent contained in the coating film, thereby solidifying the solid content contained in the coating film and / Or curing can be accelerated.
  • solidification means solidification
  • curing means that the molecules are linked to each other to increase the molecular weight (for example, crosslinking or polymerization).
  • the film (I) is formed.
  • particles adhering to the pattern or the like are taken into the film (I) and efficiently separated from the pattern or the like (see FIG. 1B).
  • 50 ° C is preferred, 80 ° C is more preferred, 110 ° C is still more preferred, and 140 ° C is especially preferred.
  • the upper limit of the heating temperature is preferably 300 ° C., more preferably 270 ° C., further preferably 240 ° C., and particularly preferably 220 ° C.
  • the lower limit of the heating time is preferably 5 seconds, more preferably 10 seconds, and even more preferably 30 seconds.
  • the upper limit of the heating time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
  • a removal process is performed. That is, the film (I) is completely removed from the wafer W by supplying a removal liquid for dissolving the film (I) onto the film (I). As a result, the particles are removed from the wafer W together with the film (I).
  • a removing liquid water, an organic solvent, an alkaline aqueous solution, or the like can be used. Water and an alkaline aqueous solution are preferable, and an alkaline aqueous solution is more preferable.
  • an alkaline aqueous solution an alkaline developer, a mixture of an aqueous ammonia solution, a hydrogen peroxide solution, and water can be used. Known alkali developers can be used.
  • aqueous solution containing at least one of ammonia, tetramethylammonium hydroxide (TMAH), and choline examples include thinner, isopropyl alcohol (IPA), 4-methyl-2-pentanol (MIBC), toluene, acetate esters, alcohols, glycols (such as propylene glycol monomethyl ether).
  • organic solvents include thinner, isopropyl alcohol (IPA), 4-methyl-2-pentanol (MIBC), toluene, acetate esters, alcohols, glycols (such as propylene glycol monomethyl ether).
  • the removal of the film (I) may be performed by sequentially using different kinds of removing liquids such as first supplying water as a removing liquid onto the film (I) and then supplying an alkali developer. By sequentially using different types of removal liquids, the film removability can be further improved.
  • a zeta potential having the same polarity (here, minus) is generated on the surface of the wafer W or pattern and the surface of the particle as shown in FIG. 1C.
  • the particles separated from the wafer W or the like are repelled from the wafer W or the like by being charged to a zeta potential having the same polarity as that of the wafer W or the like. Thereby, reattachment of particles to the wafer W or the like is prevented.
  • the particles can be removed with a weaker force compared to the conventional particle removal using physical force, pattern collapse can be suppressed. Further, since particle removal is performed without using a chemical action, erosion of the underlying film due to an etching action or the like can be suppressed. Further, particles having a small particle diameter and particles entering a gap between patterns, which have been difficult to remove by a substrate cleaning method using physical force, can be easily removed.
  • the cleaning film forming composition supplied to the wafer W is finally all removed from the wafer W. Therefore, the cleaned wafer W is in a state before the cleaning film forming composition is applied, specifically, a state in which the circuit forming surface is exposed.
  • the above-described cleaning method can be performed by various known apparatuses and methods.
  • a substrate cleaning apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-99583 can be given.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the obtained polymer were measured using a Tosoh GPC column (G2000HXL: 2, G3000HXL: 1, G4000HXL: 1), flow rate: 1.0 mL / Minute, elution solvent: tetrahydrofuran, sample concentration: 1.0% by mass, sample injection amount: 100 ⁇ L, column temperature: 40 ° C., detector: gel permeation chromatography using monodisperse polystyrene as a standard under differential refractometer analysis conditions (GPC). The degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
  • the mixture was washed with a methanol / water mixed solution (500 g each) and dried under reduced pressure at 60 ° C. overnight to obtain a polymer (A1a-1a) as a powdery pale yellow solid (yield: 93. 3 g, yield: 60%).
  • the polymer (A1a-1a) is a compound in which all R X are hydrogen atoms in the following formula (A1a-1).
  • the protection rate in the polymer (A1a-1) (the ratio in which the hydrogen atom of the phenolic hydroxyl group in the polymer (A1a-1a) was substituted with the t-butoxycarbonylmethyl group, That is, the ratio of the hydrogen atom of R X or the t-butoxycarbonylmethyl group to the t-butoxycarbonylmethyl group in the following formula (A1a-1) was 85%.
  • R X each independently represents a hydrogen atom or a t-butoxycarbonylmethyl group.
  • a polymer (A1a-2a) was obtained in the same manner as in Production Example 1 except that pyrogallol was used instead of resorcinol and 3,4-dihydroxybenzaldehyde was used instead of paraaldehyde in Production Example 1. (Rate: 45%). Further, from this polymer (A1a-2a), a polymer (A1a-2) was obtained in the same manner as in Production Example 1 (yield: 30%). The protection rate in the polymer (A1a-2) was 83%.
  • a polymer (A1a-3a) was obtained in the same manner as in Production Example 1 except that pyrogallol was used instead of resorcinol in Production Example 1 (yield: 53%). Further, from this polymer (A1a-3a), a polymer (A1a-3) was obtained in the same manner as in Production Example 1 (yield: 42%). The protection rate in the polymer (A1a-3) was 86%.
  • a polymer (A1a-4) was obtained in the same manner as in Production Example 1 except that 4-hydroxybenzaldehyde was used instead of paraaldehyde in Production Example 1 (total yield: 32%).
  • the protection rate in the polymer (A1a-4) was 85%.
  • a polymer (A1a-5) was obtained in the same manner as in Production Example 1 except that 3,4-dihydroxybenzaldehyde was used instead of paraaldehyde in Production Example 1 (total yield: 29%).
  • the protection rate in the polymer (A1a-5) was 83%.
  • the polymerization reaction solution was cooled to room temperature, poured into 300 g of methanol, and the precipitated solid was separated by filtration. The solid separated by filtration was washed twice with 60 mL of methanol, filtered, and dried under reduced pressure at 50 ° C. for 15 hours to obtain a polymer (A1b-1) which is a homopolymer of t-butyl acrylate ( Yield: 15.7 g, yield: 79%).
  • Mw of the polymer (A1b-1) was 2,460, and Mw / Mn was 1.87.
  • a polymer (A1b-2) which is a homopolymer of t-butyl crotonate was prepared in the same manner as in Production Example 6 except that t-butyl crotonate was used instead of t-butyl acrylate in Production Example 6. Obtained (yield: 68%). Mw of the polymer (A1b-2) was 1,980, and Mw / Mn was 1.65.
  • a polymer (A1b-3) which is a homopolymer of t-butyl vinyloxyacetate was obtained in the same manner as in Production Example 6 except that t-butyl vinyloxyacetate was used instead of t-butyl acrylate in Production Example 6. (Yield: 70%). Mw of the polymer (A1b-3) was 2,110, and Mw / Mn was 1.71.
  • a polymer (A1b-6) was prepared in the same manner as in Production Example 10 except that 2,7-naphthalenediol was used in place of m-cresol, 2,3-xylenol and 3,4-xylenol in Production Example 10. (Yield: 54%) was obtained. Mw of the polymer (A1b-6) was 6,700. The protection rate in the polymer (A1b-6) was 82%.
  • Production Example 12 In Production Example 10, 2-naphthol and 9,9-bis (4-hydroxyphenyl) fluorene were used in a mass ratio of 40:60 instead of m-cresol, 2,3-xylenol and 3,4-xylenol. Otherwise in the same manner as in Production Example 10, a polymer (A1b-7) was obtained (yield: 51%). Mw of the polymer (A1b-7) was 5,200. The degree of protection in the polymer (A1b-7) was 84%.
  • Production Example 14 In Production Example 1, except that 36.5 g of p-chloromethylstyrene was used in place of the tert-butyl bromoacetate for the substitution reaction of the hydrogen atom of the hydroxy group of the polymer (A1a-1a), Production Example 1 In the same manner as described above, a polymer (CA1-1) was obtained (yield: 57%). As a result of 1 H-NMR analysis, the protection ratio in the polymer (CA1-1) (the ratio of the hydrogen atom of the phenolic hydroxyl group in the polymer (A1a-1a) substituted with the p-vinylphenylmethyl group) is 100%.
  • B-1 Propylene glycol monomethyl ether acetate
  • B-2 Isopropanol
  • B-3 ⁇ -butyrolactone
  • B-4 Ethyl lactate
  • C-1 Bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-1))
  • C-2 Triethylammonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-2))
  • Example 1 [A] 100 parts by mass of (A1a-1) as a polymer and 2,000 parts by mass of (B-1) as a [B] solvent were mixed to obtain a uniform solution. This solution was filtered through a membrane filter having a pore size of 0.1 ⁇ m to prepare a cleaning film-forming composition (J-1).
  • Examples 2 to 16 and Comparative Example 1 The cleaning film-forming compositions (J-2) to (J-16) and (CJ-1) were prepared in the same manner as in Example 1 except that the components having the types and contents shown in Table 1 were used. Prepared. “-” In Table 1 indicates that the corresponding component was not used.
  • a resin film (film (I)) of each composition was formed on a silicon wafer on which silica particles having a particle diameter of 40 nm were previously attached by spin coating.
  • the wafer on which the resin film was formed was immersed in a removing solution to remove the resin film.
  • the heating temperature and the heating time shown in Table 2 below were performed before immersing the wafer on which the resin film was formed in the removal liquid.
  • the film removability is “A” when the removal of all the resin films is completed within 20 seconds from the start of immersion in the removal liquid, and “B” when the removal is completed within 1 minute after exceeding 20 seconds.
  • a sample which was not completely removed within 1 minute was determined as “C”. Further, the number of silica particles remaining on the wafer after the removing step was analyzed using a dark field defect apparatus (“KLA2800” manufactured by KLA-TENCOR). The particle removability is “S” when the removal rate of silica particles is 90% or more, “A” when 60% or more and less than 90%, and “B” when 30% or more and less than 60%. Those less than 30% were judged as “C”.
  • the film-forming composition for cleaning according to the present invention forms a film on the surface of the substrate and removes the film in the semiconductor substrate cleaning method. It turns out that it is excellent in both.
  • the film forming composition for cleaning a semiconductor substrate of the present invention in the process of forming a film on the substrate surface and removing foreign matter on the substrate surface, particles on the substrate surface can be efficiently removed, and the formed film is used as the substrate. It can be easily removed from the surface. Further, according to the method for cleaning a semiconductor substrate of the present invention, particles on the substrate surface can be efficiently removed while easily removing the formed film from the substrate surface. Therefore, the film forming composition for cleaning a semiconductor substrate and the method for cleaning a semiconductor substrate of the present invention can be suitably used in the manufacturing process of a semiconductor element, which is expected to be further miniaturized and increased in aspect ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本発明は、極性基、下記式(i)で表される基又はこれらの組み合わせを有する分子量300以上の化合物と、溶媒とを含有する半導体基板洗浄用膜形成組成物である。下記式(i)中、Rは、加熱又は酸の作用により解離する基である。上記極性基は、ヒドロキシ基、カルボキシ基、アミド基、アミノ基、スルホニル基、スルホ基又はこれらの組み合わせが好ましい。上記化合物として重合体を含み、上記重合体の重量平均分子量が300以上50,000以下であることが好ましい。上記重合体が環状の重合体であり、上記環状の重合体の重量平均分子量が300以上3,000以下であることが好ましい。―O―R (i)

Description

半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法
 本発明は、半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法に関する。
 半導体基板の製造工程では、パターンを形成した基板の表面に付着するパーティクル等の汚染物質を除去するために洗浄が行われている。近年では、形成されるパターンの微細化、高アスペクト比化が進んでいる。液体や気体を用いた洗浄では、基板表面の近傍やパターン間を液体や気体が流れ難いため、微小なパーティクルや上記パターン間に付着するパーティクルを除去することは困難である。
 特開平7-74137号公報には、基板表面に塗布液を供給して薄膜を形成した後、粘着テープ等で剥離することによって基板表面のパーティクルを除去する方法が開示されている。この方法によれば、半導体基板への影響を低減しつつ、微小なパーティクルやパターン間のパーティクルを高い除去率で除去できるとされている。しかし、この方法では基板表面から薄膜を物理的に引き剥がす必要があり、工程が煩雑である、薄膜の一部がパターン内に残った場合に除去が困難であるといった問題がある。
 特開2014-99583号公報には、基板表面に膜を形成するための処理液を供給し、固化又は硬化させた後、除去液によって固化又は硬化した処理液の全てを溶解させることにより基板表面のパーティクルを除去するための基板洗浄装置及び基板洗浄方法が開示されている。発明の詳細な説明には処理液の非限定的な例としてトップコート液が記載されているが、どのような処理液が適しているかについては詳細な記載はない。
特開平7-74137号公報 特開2014-99583号公報
 本発明は以上のような事情に基づいてなされたものであり、半導体基板の表面に膜を形成して基板表面の異物を除去するプロセスにおいて、基板表面のパーティクルを効率よく除去でき、かつ形成された膜を基板表面から容易に除去することができる半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法を提供することを目的とする。
 上記課題を解決するためになされた発明は、極性基、下記式(i)で表される基(以下、「基(i)」ともいう)又はこれらの組み合わせを有する分子量300以上の化合物(以下、「[A]化合物」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する半導体基板洗浄用膜形成組成物である。
Figure JPOXMLDOC01-appb-C000002
(式(i)中、Rは、加熱又は酸の作用により解離する基である。)
 上記課題を解決するためになされた別の発明は、半導体基板表面に、当該半導体基板洗浄用膜形成組成物の塗工により半導体基板洗浄用膜を形成する工程、及び上記半導体基板洗浄用膜を除去する工程を備える半導体基板の洗浄方法である。
 ここで、「極性基」とは、少なくとも1個のヘテロ原子を含む基をいい、基(i)に該当する基を除くものとする。
 本発明の半導体基板洗浄用膜形成組成物によれば、基板表面に膜を形成して基板表面の異物を除去するプロセスにおいて、基板表面のパーティクルを効率よく除去でき、かつ形成された膜を基板表面から容易に除去することができる。また、本発明の半導体基板の洗浄方法によれば、形成される膜を基板表面から容易に除去しつつ、基板表面のパーティクルを効率よく除去することができる。従って、本発明の半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法は、今後ますます微細化、高アスペクト比化が進行すると予想される半導体素子の製造工程において好適に用いることができる。
図1Aは、本発明の半導体基板洗浄用膜形成組成物を用いる半導体基板の洗浄方法の説明図である。 図1Bは、本発明の半導体基板洗浄用膜形成組成物を用いる半導体基板の洗浄方法の説明図である。 図1Cは、本発明の半導体基板洗浄用膜形成組成物を用いる半導体基板の洗浄方法の説明図である。
<半導体基板洗浄用膜形成組成物>
 本発明に係る半導体基板洗浄用膜形成組成物(以下、単に「洗浄用膜形成組成物」ともいう)は、半導体基板を洗浄するために用いられる膜形成組成物である。当該洗浄用膜形成組成物を用いて半導体基板の表面に膜を形成し、この膜を除去することによって、基板の表面、特にパターン間等に付着したパーティクル等を効率よく除去することができる。
 当該洗浄用膜形成組成物は、[A]化合物と、[B]溶媒とを含有する。[A]化合物が分子量300以上であり、かつ極性基及び/又は基(i)を含むことにより、当該洗浄用膜形成組成物が基板表面に対する適度な濡れ広がり性を示すとともに、形成された膜は除去液に対する親和性と適度な溶解速度とを有しており、基板表面のパーティクルを包み込んだ状態で速やかに除去され、高い除去効率を実現するものと推測される。特に、[A]化合物が基(i)を有する場合、加熱することで式(i)中のRが解離して極性基が生成されるため、膜の除去液に対する親和性と溶解速度とが向上し、更に、解離した基の揮発により、パーティクルの基板からの剥離が促進され、さらに高い除去効率を実現するものと推測される。
 当該洗浄用膜形成組成物は、さらに、[C]熱酸発生剤を含有することができる。当該洗浄用膜形成組成物が[C]熱酸発生剤を含有することにより、形成される膜の基板表面からの除去がさらに容易となる。これは、例えば形成される膜中の[C]熱酸発生剤が加熱することで酸を発生し、基(i)中のRの解離を促進して、効率的に極性基が生成されるため、膜の除去液に対する親和性と溶解速度とがさらに向上し、さらに高い除去効率を実現するものと推測される。
 当該洗浄用膜形成組成物は、さらに、[D]界面活性剤を含有することができる。当該洗浄用膜形成組成物が[D]界面活性剤を含有することにより、形成される膜の基板表面からの除去がさらに容易となる。このように[D]界面活性剤を含有する洗浄用膜形成組成物によれば、特に例えば基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、当該洗浄用膜形成組成物の基板表面に対する埋め込み性がさらに向上し、さらに高い除去効率を実現するものと推測される。
 さらに、当該洗浄用膜形成組成物は[A]~[D]成分以外に、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。以下、各成分について説明する。
<[A]化合物>
 [A]化合物は、極性基、基(i)又はこれらの組み合わせを有する分子量300以上の化合物である。[A]化合物は、極性基及び/又は基(i)を1個又は2個以上有していてもよい。[A]化合物は1種単独で又は2種以上を混合して用いることができる。[A]化合物が重合体の場合、分子量とは例えば重量平均分子量(Mw)である。
(極性基)
 極性基は、少なくとも1個のヘテロ原子を含む基である。ヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。ヘテロ原子としては、極性基がより高極性となる観点から、酸素原子、窒素原子、硫黄原子、リン原子及びハロゲン原子が好ましく、酸素原子、窒素原子及び硫黄原子がより好ましい。
 極性基としては、例えば
 ヒドロキシ基、カルボキシ基、アミノ基、イミノ基(-NH-)、スルホ基、硫酸基、スルファニル基、リン酸基等の活性水素を有する基;
 カルボニル基、チオカルボニル基、エーテル基、チオエーテル基等の1個のヘテロ原子を有する基;
 スルホニル基、アミド基(-CO-NH-)等の2個以上のヘテロ原子を有する基などが挙げられる。
 極性基としては、当該洗浄用膜形成組成物の除去効率の向上の観点から、活性水素を有する基及び2個以上のヘテロ原子を有する基が好ましく、ヒドロキシ基、カルボキシ基、アミド基、アミノ基、スルホニル基及びスルホ基が好ましく、ヒドロキシ基及びカルボキシ基がより好ましく、ヒドロキシ基がさらに好ましい。
(基(i))
 基(i)は、下記式(i)で表される基である。
Figure JPOXMLDOC01-appb-C000003
 上記式(i)中、Rは、加熱又は酸の作用により解離する基である。
 基(i)のRは、加熱により、又は例えば後述する[C]熱酸発生剤から生じる等の酸が解離反応の触媒として働くことにより、酸が存在しない場合よりも低い温度若しくは室温で解離する。その結果、基(i)から極性基であるカルボキシ基、ヒドロキシ基等を生じる。
 Rが解離する温度の下限としては、50℃が好ましく、80℃がより好ましく、110℃がより好ましく、140℃が特に好ましい。上記温度の上限としては、300℃が好ましく、270℃がより好ましく、240℃がさらに好ましく、220℃が特に好ましい。Rが解離する温度を上記範囲とすることで、加熱処理をした場合において解離した基の揮発をより促進することができ、その結果、除去効率をより向上させることができる。
 Rとしては、例えば2級又は3級の1価の炭化水素基、1価の炭化水素基置換シリル基等が挙げられる。「2級の炭化水素基」とは、結合手となる炭素原子が1つの水素原子と結合している炭化水素基をいう。「3級の炭化水素基」とは、結合手となる炭素原子が水素原子と結合していない炭化水素基をいう。
 2級の炭化水素基としては、例えば
 i-プロピル基、sec-ブチル基、sec-ペンチル基等のアルキル基;
 エテニル基、1-プロペン-1-イル基、1-ブテン-3-イル基等のアルケニル基;
 1-ブチン-3-イル基、1-ペンチン-4-イル基等のアルキニル基などの鎖状炭化水素基;
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等のシクロアルキル基;
 1-シクロペンテン-1-イルエタン-1-イル基等のシクロアルケニル基などの脂環式炭化水素基;
 1-フェニルエタン-1-イル基、1-フェニルプロパン-1-イル基、1-ナフチルエタン-1-イル基等のアラルキル基などの芳香族炭化水素基などが挙げられる。
 3級の炭化水素基としては、例えば
 t-ブチル基、t-ペンチル基、t-ヘキシル基等のアルキル基;
 プロペン-2-イル基、1-ブテン-2-イル基等のアルケニル基;
 エチニル基、プロピン-1-イル基、ブチン-1-イル基等のアルキニル基などの鎖状炭化水素基;
 1-メチルシクロプロパン-1-イル基、1-エチルシクロブタン-1-イル基、1-メチルシクロペンタン-1-イル基、1-エチルシクロヘキサン-1-イル基、2-エチルノルボルナン-2-イル基、2-メチルアダマンタン-2-イル基等のシクロアルキル基;
 シクロペンテン-1-イル基、シクロヘキセン-1-イル基、ノルボルネン-2-イル基等のシクロアルケニル基などの脂環式炭化水素基;
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 2-フェニルプロパン-2-イル基、2-ナフチルプロパン-2-イル基等のアラルキル基などの芳香族炭化水素基などが挙げられる。
 2級及び3級の1価の炭化水素基の炭素数の下限としては、2が好ましく、3がより好ましく、4がさらに好ましい。上記炭素数の上限としては、20が好ましく、10がより好ましく、8がさらに好ましい。
 1価の炭化水素基置換シリル基としては、例えば3つの1価の炭化水素基が結合したシリル基等が挙げられる。1価の炭化水素基置換シリル基の炭素数の下限としては、1が好ましく、2がより好ましく、3がさらに好ましい。上記炭素数の上限としては、20が好ましく、10がより好ましく、8がさらに好ましい。
 Rとしては、より適度な温度で解離し、かつ解離した基の揮発性が高くなる観点から、3級の1価の炭化水素基及び1価の炭化水素基置換シリル基が好ましく、3級の鎖状炭化水素基、3級の脂環式炭化水素基及び少なくとも1個のメチル基を有する炭化水素基置換シリル基がより好ましく、3級のアルキル基、3級のシクロアルキル基及び少なくとも2個のメチル基を有する炭化水素基置換シリル基がさらに好ましく、t-ブチル基、t-ペンチル基、トリメチルシリル基、t-ブチルジメチルシリル基及びフェニルジメチルシリル基が特に好ましく、t-ブチル基がさらに特に好ましい。
 基(i)が結合する[A]化合物の部位としては特に限定されないが、例えばメチレン鎖、芳香環、カルボニル基、チオカルボニル基、スルホニル基、スルホキシ基、ホスホ基等が挙げられる。これらの中で、除去効率をより高める観点から、芳香環、カルボニル基及びスルホニル基が好ましく、カルボニル基及びスルホニル基がより好ましく、カルボニル基がさらに好ましい。
 [A]化合物としては、基(i)を有する化合物が好ましい。
 [A]化合物における極性基と基(i)との合計に対する基(i)の含有率の下限としては、10モル%が好ましく、30モル%がより好ましく、50モル%がさらに好ましく、80モル%が特に好ましく、90モル%がさらに特に好ましく、95モル%が最も好ましい。上記含有率の上限としては、通常100モル%であり、99モル%が好ましい。[A]化合物における基(i)の含有率を上記範囲とすることで、当該洗浄用膜形成組成物の除去効率をより向上させることができる。
 [A]化合物としては、例えば重合体(以下、「[A1]重合体」ともいう)、低分子化合物(以下、「[A2]低分子化合物」ともいう)等が挙げられる。「重合体」とは、繰り返し単位を有する化合物をいう。「低分子化合物」とは、重合体でなく、かつ分子量が3,000以下の化合物をいう。
[[A1]重合体]
 当該洗浄用膜形成組成物は、[A]化合物として[A1]重合体を含有することで、膜形成性が向上し、その結果、除去効率をさらに高めることができる。
 [A1]重合体としては、例えば環状の重合体(以下、「[A1a]環状重合体」ともいう)、鎖状の重合体(以下、「[A1b]鎖状重合体」ともいう)等が挙げられる。「環状の重合体」とは、重合体の主鎖の末端同士が互いに結合して環を形成しているものをいう。「鎖状の重合体」とは、重合体の主鎖の末端同士が互いに結合していないものをいう。「主鎖」とは、重合体が有する原子鎖のうち、最も長いものをいう。
 [A1]重合体のMwの下限としては、300であり、500が好ましく、800がより好ましく、1,000がさらに好ましい。上記Mwの上限としては、50,000が好ましく、10,000がより好ましく、5,000がさらに好ましい。[A1]重合体のMwを上記範囲とすることで、基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、基板表面に対する埋め込み性がさらに向上し、さらに高い除去効率を実現するものと推測される。
([A1a]環状重合体)
 [A1a]環状重合体としては、例えばカリックスアレーン、シクロデキストリン等が挙げられる。当該洗浄用膜形成組成物は、[A]化合物として[A1a]環状重合体を用いることで、基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、基板表面に対する埋め込み性が向上し、より高い除去効率を実現するものと推測される。
(カリックスアレーン)
 カリックスアレーンは、ヒドロキシ基が結合する芳香環又はヒドロキシ基が結合するヘテロ芳香環が炭化水素基を介して複数個環状に結合した環状の重合体、又はこのヒドロキシ基、芳香環、ヘテロ芳香環及び炭化水素基が有する水素原子の一部又は全部が置換されたものである。すなわち、カリックスアレーンは、通常、極性基であるヒドロキシ基を有し、また、このヒドロキシ基を用いて、基(i)又は基(i)を含む基を導入することができる。
 極性基であるヒドロキシ基を有するカリックスアレーンは、例えば下記式(1)で表されるフェノール性ヒドロキシ基含有化合物とアルデヒド類とを縮合反応させることにより得ることができる。アルデヒド類としては、下記式(2)で表される化合物が挙げられる。なお、下記式(2)で表される化合物がホルムアルデヒドである場合はパラホルムアルデヒド、アセトアルデヒドである場合はパラアルデヒドを用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、Yは、炭素数1~10の炭化水素基である。qは、0~7の整数である。pは、1~4の整数である。但し、1≦p+q≦6を満たす。kは、0又は1である。
 上記式(2)中、Xは、置換若しくは非置換の炭素数1~30のk価の炭化水素基又は水素原子である。jは、1又は2である。
 Yで表される炭素数1~10の炭化水素基としては、例えば上記Rとして例示した1価の炭化水素基のうち、炭素数1~10のもの等が挙げられる。これらの中で、炭素数1~5の炭化水素基が好ましく、炭素数1~5のアルキル基がより好ましい。
 pとしては、1~3の整数が好ましく、2及び3がより好ましい。qとしては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。
 Xで表される炭素数1~30のj価の炭化水素基としては、jが1の場合は、上記Rとして例示した1価の炭化水素基等が挙げられ、jが2の場合は、この炭化水素基から1個の水素原子を除いた基等が挙げられる。上記炭化水素基の置換基としては、例えばヒドロキシ基、ハロゲン原子、オキソ基(=O)等が挙げられる。
 jとしては、1が好ましい。Xとしては、水素原子、鎖状炭化水素基並びに置換及び非置換の芳香族炭化水素基が好ましく、水素原子、1価の鎖状炭化水素基並びに置換及び非置換の1価の芳香族炭化水素基がより好ましく、水素原子、アルキル基及びヒドロキシ置換フェニル基がさらに好ましく、水素原子、メチル基、4-ヒドロキシフェニル基及び3,4-ジヒドロキシフェニル基が特に好ましい。
 上記得られたカリックスアレーンのヒドロキシ基の水素原子を、上記Rとして例示した基又は基(i)を含む基で置換することにより、基(i)を有するカリックスアレーンを得ることができる。カリックスアレーンのヒドロキシ基の水素原子を置換する基としては、基(i)を含む基が好ましく、基(i)が結合したカルボニルアルキル基がより好ましく、基(i)が結合したカルボニルメチル基がさらに好ましく、t-ブトキシカルボニルメチル基が特に好ましい。
 カリックスアレーンとしては、例えば下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式(3)中、Rは、水素原子又は炭素数1~30の1価の有機基である。mは、4~12の整数である。Y、k、p及びqは、上記式(1)と同義である。Xは、上記式(2)におけるjが1の場合と同義である。
 上記mの上限としては、当該洗浄用膜形成組成物のパターン化された基板表面に対する埋め込み性をより向上させる観点から、8が好ましく、6がより好ましく、4がさらに好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記式(4)中、Rは、水素原子又は炭素数1~30の1価の有機基である。nは、2又は3である。Y、k、p及びqは、上記式(1)と同義である。Xは、上記式(2)におけるjが2の場合と同義である。
Figure JPOXMLDOC01-appb-C000007
 上記式(5)中、Rは、水素原子又は炭素数1~30の1価の有機基である。Y、k、p及びqは、上記式(1)と同義である。Xは、上記式(2)におけるjが2の場合と同義である。
 カリックスアレーンとしては、例えば下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式中、Rは、水素原子又は炭素数1~30の1価の有機基である。
(シクロデキストリン)
 シクロデキストリンは、D-グルコースがα1→4結合で環状構造を形成したものをいう。シクロデキストリンは、極性基であるヒドロキシ基を有し、また、このヒドロキシ基を用いて、基(i)又は基(i)を含む基を導入することができる。
 シクロデキストリンとしては、例えばα-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等が挙げられる。これらの中で、パターン化された基板への埋め込み性をより向上させる観点から、α-シクロデキストリンが好ましい。
 [A1a]環状重合体のMwの下限としては、300であり、350が好ましく、400がより好ましく、500がさらに好ましく、600が特に好ましい。上記Mwの上限としては、3,000が好ましく、2,500がより好ましく、2,000がさらに好ましく、1,500が特に好ましい。[A1a]環状重合体のMwを上記範囲とすることで基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、基板表面に対する埋め込み性がさらに向上し、さらに高い除去効率を実現するものと推測される。
([A1b]鎖状重合体)
 [A1b]鎖状重合体としては、例えばアクリル樹脂、スチレン樹脂、ビニルアルコール樹脂等の付加重合体、フェノール樹脂等の縮合重合体などが挙げられる。
(アクリル樹脂)
 アクリル樹脂は、アクリル酸、アクリル酸エステル又はこれらの置換体に由来する繰り返し単位を有する重合体であり、すなわち、-[C(R)(R)-C(R)(COOR)]-を繰り返し単位として有する重合体である。R、R及びRは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基である。Rは、水素原子又は炭素数1~30の1価の有機基である。Rで表される有機基は、極性基及び/又は基(i)を含む。
 アクリル樹脂を形成する極性基を有する単量体としては、例えば
 (メタ)アクリル酸ヒドロキシエチル、クロトン酸ヒドロキシエチル等のヒドロキシ基含有エステル;
 (メタ)アクリル酸、(イソ)クロトン酸等のカルボキシ基含有エステル;
 (メタ)アクリルアミド、(イソ)クロトンアミド等のアミド基含有エステル;
 (メタ)アクリル酸アミノエチル、(イソ)クロトン酸アミノエチル等のアミノ基含有エステル;
 (メタ)アクリル酸メチルスルホニルエチル、(イソ)クロトン酸メチルスルホニルエチル等のスルホニル基含有エステル;
 (メタ)アクリル酸スルホエチル、(イソ)クロトン酸スルホエチル等のスルホ基含有エステルなどが挙げられる。
 アクリル樹脂を形成する基(i)を有する単量体としては、例えば
 (メタ)アクリル酸t-ブチル、(メタ)アクリル酸t-アミル、(イソ)クロトン酸t-ブチル、(イソ)クロトン酸t-アミル等の3級アルキルエステル;
 (メタ)アクリル酸トリメチルシリル、(メタ)アクリル酸t-ブチルジメチルシリル、(メタ)アクリル酸フェニルジメチルシリル等のシリルエステルなどが挙げられる。
(スチレン樹脂)
 スチレン樹脂は、スチレン又は置換スチレンに由来する繰り返し単位を有する重合体であり、すなわち、-[C(R)(R)-C(R)(Ar-R)]-を繰り返し単位として有する重合体である。R、R及びRは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基である。Arは、炭素数6~20のアレーンジイル基である。Rは、水素原子又は炭素数1~30の1価の有機基である。Rで表される有機基は、極性基及び/又は基(i)を含む。
 スチレン樹脂を形成する極性基を有する単量体としては、例えば
 ヒドロキシスチレン、ヒドロキシビニルナフタレン、ヒドロキシメチルスチレン、ヒドロキシメチルビニルナフタレン等のヒドロキシ基含有ビニル芳香族化合物;
 カルボキシスチレン、カルボキシビニルナフタレン等のカルボキシ基含有ビニル芳香族化合物;
 メチルスルホニルスチレン、メチルスルホニルビニルナフタレン等のスルホニル基含有ビニル芳香族化合物;
 スルホスチレン、スルホビニルナフタレン等のスルホ基含有ビニル芳香族化合物などが挙げられる。
 スチレン樹脂を形成する基(i)を有する単量体としては、例えば
 t-ブトキシスチレン、t-アミルオキシスチレン、t-ブトキシビニルナフタレン、t-アミルオキシビニルナフタレン等の3級アルキル基含有ビニル芳香族化合物;
 トリメチルシリルオキシスチレン、t-ブチルジメチルシリルオキシスチレン、フェニルジメチルシリルオキシスチレン、トリメチルシリルオキシビニルナフタレン、t-ブチルジメチルシリルオキシビニルナフタレン、フェニルジメチルシリルオキシビニルナフタレン等のシリルオキシ基含有ビニル芳香族化合物などが挙げられる。
(ビニルアルコール樹脂)
 ビニルアルコール樹脂は、-[C(R)(R)-C(R)(OR)]-を繰り返し単位として有する重合体である。R、R及びRは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基である。Rは、水素原子又は炭素数1~30の1価の有機基である。Rで表される有機基は、極性基及び/又は基(i)を含む。
 Rが水素原子であるビニルアルコール樹脂は、極性基としてヒドロキシ基を有する。このようなビニルアルコール樹脂は、カルボン酸アルケニルエステルを単量体として形成した重合体を加水分解することにより得られる。
 ビニルアルコール樹脂を形成する基(i)を有する単量体として
 ビニルオキシ酢酸t-ブチル、ビニルオキシ酢酸t-アミル、1-プロペニルオキシ酢酸t-ブチル、1-プロペニルオキシ酢酸t-アミル等のアルケニルオキシカルボン酸3級エステル;
 ビニルオキシ酢酸トリメチルシリル、ビニルオキシ酢酸t-ブチルジメチルシリル、ビニルオキシ酢酸フェニルジメチルシリル、1-プロペニルオキシ酢酸トリメチルシリル、1-プロペニルオキシ酢酸t-ブチルジメチルシリル、1-プロペニルオキシ酢酸フェニルジメチルシリル等のアルケニルオキシカルボン酸シリルエステルなどが挙げられる。
(フェノール樹脂)
 フェノール樹脂は、フェノール性水酸基を有する化合物と、アルデヒド又はジビニル化合物等とを酸性触媒又はアルカリ性触媒等を用いて反応させて得られる重合体である。フェノール樹脂は、フェノール性水酸基を有する化合物とアルデヒド又はジビニル化合物とに由来する繰り返し単位を有する。フェノール樹脂は、通常、極性基であるヒドロキシ基を有する。また、このヒドロキシ基の水素原子を置換することにより、フェノール樹脂に極性基及び/又は基(i)を導入することができる。
 フェノール性水酸基を有する化合物としては、例えば
 フェノール、クレゾール、キシレノール、p-t-ブチルフェノール、p-オクチルフェノール、1-ナフトール、2-ナフトール等のモノフェノール;
 レゾルシノール、ビスフェノールA、1,5-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、フルオレン-9,9-ジフェノール等のジフェノールなどが挙げられる。
 アルデヒドとしては、例えばホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド、ベンズアルデヒド等が挙げられる。ジビニル化合物としては、例えばジビニルベンゼン、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニルノルボルナ-2-エン、α-ピネン、リモネン、5-ビニルノルボルナジエン等が挙げられる。
 [A1b]鎖状重合体は、極性基及び/又は基(i)を含む繰り返し単位以外の他の繰り返し単位を有していてもよい。
 [A1b]鎖状重合体における極性基及び/又は基(i)を含む繰り返し単位の含有割合の下限としては、[A1b]鎖状重合体を構成する全繰り返し単位に対して、10モル%が好ましく、50モル%がより好ましく、70モル%がさらに好ましく、90モル%が特に好ましく、100モル%がさらに特に好ましい。[A1b]鎖状重合体における極性基及び/又は基(i)を含む繰り返し単位の含有割合を上記範囲とすることで、当該洗浄用膜形成組成物の除去効率をより向上させることができる。
 [A1b]鎖状重合体のMwの下限としては、500が好ましく、800がより好ましく、1,000がさらに好ましい。上記Mwの上限としては、50,000が好ましく、10,000がより好ましく、5,000がさらに好ましく、3,000が特に好ましい。[A1b]鎖状重合体のMwを上記範囲とすることで基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、基板表面に対する埋め込み性がさらに向上し、さらに高い除去効率を実現するものと推測される。
[[A2]低分子化合物]
 [A2]低分子化合物は、重合体ではなく、かつ分子量が3,000以下の化合物である。当該洗浄用膜形成組成物は、[A]化合物として[A2]低分子化合物を含有することで、基板が配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板である場合において、基板表面に対する埋め込み性がより向上し、より高い除去効率を実現するものと推測される。
 [A2]低分子化合物の分子量の下限としては、350が好ましく、400がより好ましく、500がさらに好ましく、600が特に好ましい。上記分子量の上限としては、2,000が好ましく、1,500がより好ましく、1,200がさらに好ましく、1,000が特に好ましい。当該洗浄用膜形成組成物は、[A2]低分子化合物の分子量を上記範囲とすることで、膜形成性がより向上し、その結果、より高い除去効率を実現するものと推測される。
 [A2]低分子化合物中の極性基及び基(i)の数の下限としては、2が好ましく、3がより好ましい。上記数の上限としては、10が好ましく、6がより好ましい。当該洗浄用膜形成組成物は、[A2]低分子化合物中の極性基及び基(i)の数を上記範囲とすることで、膜形成性がさらに向上し、その結果、さらに高い除去効率を実現できるものと推測される。
 [A2]低分子化合物としては、例えば芳香環、芳香族複素環、脂環、脂肪族複素環等の環に、極性基、基(i)又はこれらの基を含む基が結合した化合物等が挙げられる。
 極性基を有する[A2]低分子化合物としては、例えば
 トリメシン酸トリ(ヒドロキシブチル)、1,2,3-トリ(ヒドロキシブトキシ)ベンゼン等の極性基含有芳香族化合物;
 リボース、デオキシリボース等の五炭糖;グルコース、フルクトース、ガラクトース、マンノース等の六炭糖などの単糖類が挙げられる。
 基(i)を有する[A2]低分子化合物としては、例えば
 トリメシン酸トリt-ブチル、1,2,3-トリ(t-ブトキシカルボニルメトキシ)ベンゼン等の基(i)を有する芳香族化合物;
 上記単糖類が有するヒドロキシ基の水素原子の一部又は全部を基(i)を含む基で置換した化合物等が挙げられる。
 [A]化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましい。
 当該洗浄用膜形成組成物中の全固形分に対する[A]化合物の含有量の下限としては、30質量%が好ましく、40質量%がより好ましく、50質量%がさらに好ましい。上記含有量の上限としては、100質量%が好ましく、98質量%がより好ましく、96質量%がさらに好ましい。「全固形分」とは、[B]溶媒以外の成分の総和をいう。
 [A]化合物の含有量を上記範囲とすることで、膜の基板表面からの除去性をさらに高めることができる。
<[B]溶媒>
 [B]溶媒は、[A]化合物を溶解又は分散するものであれば用いることができるが、[A]化合物を溶解するものが好ましい。また、当該洗浄用膜形成組成物が[C]熱酸発生剤を含有する場合、[B]溶媒は[C]熱酸発生剤を溶解するものが好ましい。また、当該洗浄用膜形成組成物が[D]界面活性剤を添加する場合、[B]溶媒は[D]界面活性剤を溶解するものが好ましい。
 [B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒等の極性有機溶媒;炭化水素系溶媒;水等が挙げられる。
 アルコール系溶媒の例としては、エタノール、イソプロピルアルコール、アミルアルコール、4-メチル-2-ペンタノール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、フルフリルアルコール、ベンジルアルコール、ジアセトンアルコール等の炭素数1~18の1価のアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~12の2価のアルコールやこれらの部分エーテルなどが挙げられる。
 エーテル系溶媒の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジイソアミルエーテル等のジアルキルエーテル系溶媒、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。
 ケトン系溶媒の例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒の例としては、N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
 エステル系溶媒の例としては、酢酸エチル、酢酸ブチル、酢酸ベンジル、酢酸シクロヘキシル、乳酸エチル、3-メトキシプロピオン酸エチル等の1価アルコールカルボキシレート系溶媒や、アルキレングリコールモノアルキルエーテルのモノカルボキシレート、ジアルキレングリコールモノアルキルエーテルのモノカルボキシレート等の多価アルコール部分エーテルカルボキシレート系溶媒、ブチロラクトン等の環状エステル系溶媒、ジエチルカーボネート等のカーボネート系溶媒、シュウ酸ジエチル、フタル酸ジエチル等の多価カルボン酸アルキルエステル系溶媒が挙げられる。
 炭化水素系溶媒の例としては、n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
 これらの中で、極性有機溶媒及び水が好ましい。極性有機溶媒としては、アルコール、2価アルコールのエーテル、多価アルコールのアルキルエーテル系溶媒、環状ケトン系溶媒、1価アルコールカルボキシレート系溶媒、環状エステル系溶媒、多価アルコール部分エーテルカルボキシレート系溶媒及び多価アルコールのアルキルエーテル系溶媒が好ましく、アルコール及び多価アルコールのアルキルエーテルがより好ましく、4-メチル-2-ペンタノール、ジイソアミルエーテル、プロピレングリコールモノエチルエーテル、乳酸エチル、3-メトキシプロピオン酸メチル、ブチロラクトン及びプロピレングリコールモノメチルエーテルアセテートがさらに好ましい。
 [B]溶媒が水を含む場合、[B]溶媒中の水の含有率の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましく、2質量%が特に好ましい。[B]溶媒中の水の含有率を上記上限以下とすることで、[A]化合物の溶媒への溶解性と当該洗浄用膜形成組成物が基板表面に対する適度な濡れ広がり性を向上させることができ、その結果当該洗浄用膜形成組成物による洗浄性を向上させることができる。上記水の含有率の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。
 [B]溶媒の含有量の下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。上記含有量の上限としては、99.9質量%が好ましく、99.5質量%がより好ましく、99.0質量%がさらに好ましい。[B]溶媒の含有量を上記下限と上限との間とすることで、当該洗浄用膜形成組成物は、基板に対する洗浄性がより向上する。当該洗浄用膜形成組成物は、[B]溶媒を1種又は2種以上含有していてもよい。
<[C]熱酸発生剤>
 当該洗浄用膜形成組成物は、[C]熱酸発生剤を含有していてもよい。[C]熱酸発生剤は、加熱により酸を発生するものであり、この成分を添加することによって、式(i)中のRの解離を促進して、効率的に極性基が生成されるため、当該洗浄用膜形成組成物中の除去液に対する親和性と溶解速度がさらに向上し、さらに高い除去効率を実現するものと推測される。
 [C]熱酸発生剤としては、例えば2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、その他の有機スルホン酸のアルキルエステル等が挙げられる。また、[C]熱酸発生剤としては、スルホニウム塩、ヨードニウム塩、ベンゾチアゾニウム塩、アンモニウム塩、ホスホニウム塩等のオニウム塩等も挙げられる。具体的には、例えば、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルベンジルスルホニウムヘキサフルオロアンチモネート、3-ベンジルベンゾチアゾリウムヘキサフルオロアンチモネート等のフッ化金属化合物の塩;下記式(6-1)で表される化合物等のスルホンイミド化合物;ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、トリエチルアンモニウムノナフルオロ-n-ブタンスルホネート、下記式(6-2)で表される化合物等の有機スルホン酸の塩などが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 [C]熱酸発生剤としては、これらのオニウム塩の中でも、有機スルホン酸のヨードニウム塩及びアンモニウム塩が好ましく、有機スルホン酸のアンモニウム塩がより好ましく、特に、下記式(6-3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
 
 上記式(6-3)中、R11は、炭素数1~15のアルキル基である。R12~R14は、それぞれ独立して、炭素数1~10のアルキル基である。R15は、炭素数1~5のヒドロキシアルキル基である。xは、1~3の整数である。xが2以上の場合、複数のR11は同一でも異なっていてもよい。
 上記R11で表されるアルキル基の炭素数としては、3~15が好ましく、3~12がより好ましい。また、このアルキル基は、直鎖状でも分岐状であってもよいが、直鎖状が好ましい。このアルキル基としては、ドデシル基が特に好ましい。上記式(6-3)におけるxとしては1が好ましい。なお、ベンゼン環におけるR11の結合位置は特に限定されないが、入手の容易さ等を考慮すると、少なくとも、-SO の結合位置に対してパラ位に結合していることが好ましい。
 上記R12~R14で表されるアルキル基の炭素数としては、1~5が好ましい。また、このアルキル基は、直鎖状でも分岐状であってもよい。このアルキル基としては、メチル基が好ましい。上記R15で表されるヒドロキシアルキル基としては、直鎖状でも分岐状であってもよいが、直鎖状が好ましい。これらの中でも、-(CH)mOH[式中、mは1~4の整数である。]で表される基が好ましく、特に、-CHCHOHが好ましい。
 当該洗浄用膜形成組成物が[C]熱酸発生剤を含有する場合、[C]熱酸発生剤の含有量の下限としては、[A]化合物100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、3質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、7質量部がさらに好ましく、5質量部が特に好ましい。[C]熱酸発生剤の含有量を上記範囲とすることで、効率的に式(i)中のRの解離を促進して、効率的に極性基が生成され、除去液に対する親和性と溶解速度がさらに向上し、さらに高い除去効率を実現するものと推測される。[C]熱酸発生剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<[D]界面活性剤>
 [D]界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤などが挙げられる。
 当該洗浄用膜形成組成物が[D]界面活性剤を含有する場合、[D]界面活性剤の含有量の下限としては、0.001質量%が好ましく、0.01質量%がより好ましい。上記含有量の上限としては、2質量%が好ましく、1質量%がより好ましく、0.1質量%がさらに好ましい。
<その他の任意成分>
 当該洗浄用膜形成組成物は、上記[A]~[D]成分以外のその他の任意成分を含有していてもよい。その他の任意成分としては、例えば架橋剤、架橋促進剤等が挙げられる。当該洗浄用膜形成組成物は、その他の任意成分をそれぞれ1種又は2種以上含有していてもよい。当該洗浄用膜形成組成物がその他の任意成分を含有する場合、その他の任意成分の含有量の上限としては、[A]成分100質量部に対して、20質量部が好ましく、10質量部がより好ましい。上記含有量の下限としては、例えば0.1質量部である。
<洗浄用膜形成組成物の調製方法>
 当該洗浄用膜形成組成物は、例えば[A]化合物及び[B]溶媒、必要に応じて含有される[C]熱酸発生剤、[D]界面活性剤及びその他の任意成分を所定の割合で混合し、好ましくは、得られた混合液を、例えば孔径0.1~5μm程度のフィルター等で濾過することで調製することができる。当該洗浄用膜形成組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、2質量%が特に好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。
<半導体基板の洗浄方法>
 当該半導体基板の洗浄方法は、半導体基板表面に、当該洗浄用膜形成用組成物の塗工により半導体基板洗浄用膜(以下、「膜(I)」ともいう)を形成する工程(以下、「膜形成工程」ともいう)、及び上記膜(I)を除去する工程(以下、「除去工程」ともいう)を備える。
 上述の洗浄用膜形成組成物を用いて基板表面に膜(I)を形成することにより、基板表面の異物を効率よく除去することができる。さらに、形成される膜(I)は基板表面から容易に除去できる。このため、上述の洗浄用膜形成組成物は様々な材質からなる基板に対し適用することができる。適用可能な基板の例として、シリコン基板、アルミニウム基板、ニッケル基板、クロム基板、モリブデン基板、タングステン基板、銅基板、タンタル基板、チタン基板等の金属又は半金属基板;窒化ケイ素基板、アルミナ基板、二酸化ケイ素基板、窒化タンタル基板、窒化チタン等のセラミック基板等が挙げられる。これらの中で、シリコン基板、窒化ケイ素基板及び窒化チタン基板が好ましく、シリコン基板がより好ましい。
 本発明に係る洗浄用膜形成組成物を基板洗浄に適用する方法の一例を、図面を参照しながらより詳細に説明する。
 図1Aに示すように、本適用例では、ウェハW上に膜(I)を形成するための処理液として、上述の洗浄用膜形成組成物を用いる。まず、膜形成工程を行う。すなわち、洗浄用膜形成組成物をウェハW上に塗工し、洗浄用膜形成組成物の塗工膜を形成する。塗工方法としては、例えば、回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。次に塗工膜を加熱(ベーク)及び/又は減圧することにより、塗工膜に含まれる溶媒の一部又は全部を効率的に除去することで、塗工膜に含まれる固形分の固化及び/又は硬化を促進させることができる。ここでいう「固化」とは、固体化することを意味し、「硬化」とは、分子同士が連結して分子量が増大すること(たとえば架橋や重合等)を意味する。このようにして、膜(I)が形成される。この際、パターン等に付着したパーティクルは、膜(I)に取り込まれてパターン等から効率的に引き離される(図1B参照)。上記固化及び/又は硬化のための加熱の温度の下限としては、50℃が好ましく、80℃がより好ましく、110℃がさらに好ましく、140℃が特に好ましい。上記加熱の温度の上限としては、300℃が好ましく、270℃がより好ましく、240℃がさらに好ましく、220℃が特に好ましい。上記加熱の時間の下限としては、5秒が好ましく、10秒がより好ましく、30秒がさらに好ましい。上記加熱の時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。加熱の温度及び時間を上記範囲とすることで、加熱処理により解離した基の揮発をより促進することができ、その結果、除去効率をより向上させることができる。形成される膜(I)の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。
 次に、除去工程を行う。すなわち、膜(I)を溶解させる除去液を膜(I)上に供給することによって、ウェハWから膜(I)を全て除去する。この結果、パーティクルは、膜(I)とともにウェハWから除去される。除去液としては水、有機溶媒、アルカリ性水溶液等を用いることができ、水及びアルカリ性水溶液が好ましく、アルカリ性水溶液がより好ましい。アルカリ性水溶液としては、アルカリ現像液、アンモニア水溶液と過酸化水素水と水との混合物等を用いることができる。アルカリ現像液は公知のものを用いることができる。具体例として、アンモニア、テトラメチルアンモニウムヒドロキシド(TMAH:TetraMethyl Ammonium Hydroxide)及びコリンのうちの少なくとも1つを含む水溶液等が挙げられる。有機溶媒としては、例えばシンナー、イソプロピルアルコール(IPA)、4-メチル-2-ペンタノール(MIBC)、トルエン、酢酸エステル類、アルコール類、グリコール類(プロピレングリコールモノメチルエーテル等)などを用いることができる。また、膜(I)の除去は、除去液としてまず水を膜(I)上に供給し、次いでアルカリ現像液を供給するなど、異なる種類の除去液を順次用いて行ってもよい。異なる種類の除去液を順次用いることで、膜除去性をより向上させることができる。
 アルカリ現像液等の除去液を供給することにより、ウェハWやパターンの表面とパーティクルの表面とには、図1Cに示すように、同一極性(ここでは、マイナス)のゼータ電位が生じる。ウェハW等から引き離されたパーティクルは、ウェハW等と同一極性のゼータ電位に帯電することで、ウェハW等と反発し合うようになる。これにより、パーティクルのウェハW等への再付着が防止される。
 このように、本適用例では、従来の物理力を利用したパーティクル除去と比較して弱い力でパーティクルを除去することができるため、パターン倒れを抑制することができる。また、化学的作用を利用することなくパーティクル除去を行うため、エッチング作用等による下地膜の侵食を抑えることもできる。さらに、物理力を利用した基板洗浄方法では除去が困難であった、粒子径が小さいパーティクルやパターンの隙間に入り込んだパーティクルも容易に除去することができる。
 ウェハWに対して供給される洗浄用膜形成組成物は、最終的にはウェハWから全て取り除かれる。したがって、洗浄後のウェハWは、洗浄用膜形成組成物を塗布する前の状態、具体的には、回路形成面が露出した状態となる。
 上述の洗浄方法は公知の様々な装置、方法によって行うことができる。好適な装置の例として、特開2014-99583号公報に開示された基板洗浄装置を挙げることができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 得られた重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、東ソー製GPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
<[A]重合体の合成>
 下記手順に従い、[A]重合体を合成した。
[製造例1]
 温度計、コンデンサー及びマグネチックスターラーを備えた1,000mL3口フラスコに、窒素雰囲気下、レゾルシノール125.0g(1.14mol)、エタノール100g、濃塩酸42.1g及び水126.6gを仕込み、室温にて溶解させた。得られた溶液を90℃に加温し、パラアルデヒド50.0g(0.38mol)を15分かけて滴下した後、6時間反応させた。反応後、フラスコ釜を溶液温度が室温になるまで冷却した。その後、析出してきた固形物を、ろ過にてエタノール溶液を除去することにより回収した。メタノール/水混合溶液(各500g)を用いて掛け流し洗浄を行い、60℃で一晩減圧乾燥し、粉末状の淡黄色固体である重合体(A1a-1a)を得た(収量:93.3g、収率:60%)。重合体(A1a-1a)は、下記式(A1a-1)において、全てのRが水素原子である化合物である。
 次に、温度計、コンデンサー及びマグネチックスターラーを備えた500mL3口フラスコに、窒素雰囲気下、N,N-ジメチルアセトアミド200mL、炭酸カリウム27.2g及び上記合成した重合体(A1a-1a)10.0gを混合し、マグネチックスターラーにより攪拌しながら溶解させた。得られた溶液を80℃に加温し、ブロモ酢酸tert-ブチル39.4gを30分かけて滴下した後、6時間反応させた。反応終了後、この反応溶液を、酢酸14mLを添加した水2Lに加えた。上澄み液を除去し、残った高粘性物を最少量のアセトンに溶解させ、500mLの水に投入し再沈殿を行った。得られた高粘性物を60℃で一晩減圧乾燥し、下記式(A1a-1)で表される重合体(A1a-1)10.9g(収率:60%)を得た。得られた重合体(A1a-1)のMwは1,200であった。なお、H-NMR分析を行ったところ、重合体(A1a-1)における保護率(重合体(A1a-1a)におけるフェノール性水酸基の水素原子がt-ブトキシカルボニルメチル基で置換された割合、すなわち、下記式(A1a-1)におけるRの水素原子又はt-ブトキシカルボニルメチル基のうち、t-ブトキシカルボニルメチル基である割合)は85%であった。
Figure JPOXMLDOC01-appb-C000011
 上記式(A1a-1)中、Rは、それぞれ独立して、水素原子又はt-ブトキシカルボニルメチル基である。
[製造例2]
 製造例1において、レゾルシノールの代わりにピロガロールを用い、パラアルデヒドの代わりに3,4-ジヒドロキシベンズアルデヒドを用いた以外は、製造例1と同様にして、重合体(A1a-2a)を得た(収率:45%)。また、この重合体(A1a-2a)から製造例1と同様にして重合体(A1a-2)を得た(収率:30%)。重合体(A1a-2)における保護率は83%であった。
[製造例3]
 製造例1において、レゾルシノールの代わりにピロガロールを用いた以外は、製造例1と同様にして、重合体(A1a-3a)を得た(収率:53%)。また、この重合体(A1a-3a)から製造例1と同様にして重合体(A1a-3)を得た(収率:42%)。重合体(A1a-3)における保護率は86%であった。
[製造例4]
 製造例1において、パラアルデヒドの代わりに4-ヒドロキシベンズアルデヒドを用いた以外は、製造例1と同様にして、重合体(A1a-4)を得た(総収率:32%)。重合体(A1a-4)における保護率は85%であった。
[製造例5]
 製造例1において、パラアルデヒドの代わりに3,4-ジヒドロキシベンズアルデヒドを用いた以外は製造例1と同様にして、重合体(A1a-5)を得た(総収率:29%)。重合体(A1a-5)における保護率は83%であった。
[製造例6]
 アクリル酸t-ブチル20gを2-ブタノン40gに溶解させ、さらにラジカル重合開始剤としてのアゾビスイソブチロニトリル(AIBN)1.28g(単量体に対して5モル%)を溶解させ、単量体溶液を調製した。次に、2-ブタノン20gを入れた200mL三口フラスコを窒素雰囲気下で撹拌しながら80℃に加熱し、調製した単量体溶液を3時間かけて滴下した。滴下終了後、さらに3時間、80℃で加熱することにより重合反応を行った。重合反応終了後、重合反応液を室温に冷却し、メタノール300g中に投入して析出した固体を濾別した。濾別した固体をメタノール60mLで2回洗浄し、濾別した後、減圧下、50℃で15時間乾燥させ、アクリル酸t-ブチルのホモポリマーである重合体(A1b-1)を得た(収量:15.7g、収率:79%)。重合体(A1b-1)のMwは2,460、Mw/Mnは1.87であった。
[製造例7]
 製造例6において、アクリル酸t-ブチルの代わりにクロトン酸t-ブチルを用いた以外は、製造例6と同様にして、クロトン酸t-ブチルのホモポリマーである重合体(A1b-2)を得た(収率:68%)。重合体(A1b-2)のMwは1,980、Mw/Mnは1.65であった。
[製造例8]
 製造例6において、アクリル酸t-ブチルの代わりにビニルオキシ酢酸t-ブチルを用いた以外は製造例6と同様にして、ビニルオキシ酢酸t-ブチルのホモポリマーである重合体(A1b-3)を得た(収率:70%)。重合体(A1b-3)のMwは2,110、Mw/Mnは1.71であった。
[製造例9]
 製造例6において、アクリル酸t-ブチルの代わりに1-プロペニルオキシ酢酸t-ブチルを用いた以外は製造例6と同様にして、1-プロペニルオキシ酢酸t-ブチルのホモポリマーである重合体(A1b-4)を得た(収率:58%)。重合体(A1b-4)のMwは2,470、Mw/Mnは1.86であった。
[製造例10]
 m-クレゾール、2,3-キシレノール、3,4-キシレノールを60:30:10の質量比で混合し、これにホルマリンを加え、シュウ酸触媒を用いてプロピレングリコールモノメチルエーテルを反応溶媒として使用して、100℃で6時間加熱後、反応生成物を乳酸エチルに溶解させ、水を混合し、有機層を回収することで重合体(A1b-5a)を得た(収率:61%)。重合体(A1b-5a)のMwは8,000であった。この重合体(A1b-5a)から製造例1と同様にして重合体(A1b-5)を得た。重合体(A1b-5)における保護率は79%であった。
[製造例11]
 製造例10において、m-クレゾール、2,3-キシレノール及び3,4-キシレノールの代わりに、2,7-ナフタレンジオールを用いた以外は製造例10と同様にして、重合体(A1b-6)を得た(収率:54%)。重合体(A1b-6)のMwは6,700であった。重合体(A1b-6)における保護率は82%であった。
[製造例12]
 製造例10において、m-クレゾール、2,3-キシレノール及び3,4-キシレノールの代わりに、2-ナフトール及び9,9-ビス(4-ヒドロキシフェニル)フルオレンを40:60の質量比で用いた以外は製造例10と同様にして、重合体(A1b-7)を得た(収率:51%)。重合体(A1b-7)のMwは5,200であった。重合体(A1b-7)における保護率は84%であった。
[製造例13]
 製造例1において、重合体(A1a-1)の代わりにα-シクロデキストリン(和光純薬工業社)を用いた以外は製造例1と同様にして、α-シクロデキストリンのヒドロキシ基の一部をt-ブトキシカルボニルメチル基に置換した重合体(A1a-6)を得た(収率:38%)。重合体(A1a-6)における保護率(α-シクロデキストリン中のヒドロキシ基の水素原子がt-ブトキシカルボニルメチル基で置換された割合)は59%であった。
[製造例14]
 製造例1において、重合体(A1a-1a)のヒドロキシ基の水素原子の置換反応を、ブロモ酢酸tert-ブチルの代わりに、36.5gのp-クロロメチルスチレンを用いた以外は、製造例1と同様にして、重合体(CA1-1)を得た(収率:57%)。なお、H-NMR分析を行ったところ重合体(CA1-1)における保護率(重合体(A1a-1a)におけるフェノール性水酸基の水素原子がp-ビニルフェニルメチル基で置換された割合)は100%であった。
<洗浄用膜形成組成物の調製>
 洗浄用膜形成組成物の調製に用いた[A]成分以外の成分について以下に示す。
([B]溶媒)
 B-1:プロピレングリコールモノメチルエーテルアセテート
 B-2:イソプロパノール
 B-3:γ-ブチロラクトン
 B-4:乳酸エチル
([C]熱酸発生剤)
 C-1:ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート(下記式(C-1)で表される化合物)
 C-2:トリエチルアンモニウムノナフルオロ-n-ブタンスルホネート(下記式(C-2)で表される化合物)
Figure JPOXMLDOC01-appb-C000012
([D]界面活性剤)
 D-1:ポリフローNo.75(共栄社化学社)
 D-2:メガファックF171(DIC社)
[実施例1]
 [A]重合体としての(A1a-1)100質量部及び[B]溶媒としての(B-1)2,000質量部を混合し、均一溶液とした。この溶液を孔径0.1μmのメンブランフィルターで濾過して、洗浄用膜形成組成物(J-1)を調製した。
[実施例2~16及び比較例1)
 下記表1に示す種類及び含有量の各成分を用いた以外は、実施例1と同様にして、洗浄用膜形成組成物(J-2)~(J-16)及び(CJ-1)を調製した。表1中の「-」は、該当する成分を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000013
(粒子除去性及び膜除去性の評価)
 予め粒径40nmのシリカ粒子を付着させたシリコンウェハ上に、スピンコート法により各組成物の樹脂膜(膜(I))を形成した。樹脂膜が形成されたウェハを除去液中に浸し、樹脂膜を除去した。加熱処理を行う場合には、下記表2に示す加熱温度及び加熱時間で、樹脂膜が形成されたウェハを除去液中に浸す前に実施した。膜除去性は、除去液への浸漬開始から20秒以内に全ての樹脂膜の除去が完了したものを「A」と、20秒を超えて1分以内に完了したものを「B」と、1分以内に除去が完了しなかったものを「C」と判定した。また、除去工程後にウェハ上に残存したシリカ粒子数を暗視野欠陥装置(KLA-TENCOR社の「KLA2800」)を用いて分析した。粒子除去性は、シリカ粒子の除去率が90%以上のものを「S」と、60%以上90%未満のものを「A」と、30%以上60%未満のものを「B」と、30%未満のものを「C」と判定した。
(評価例1~20及び比較評価例1~3)
 ウェハとしてシリコンウェハを用い、下記表2に示すように、洗浄用膜形成組成物として組成物(J-1)~(J-16)又は比較用組成物(CJ-1)を、除去液として、除去液A(28質量%アンモニア水溶液/30質量%過酸化水素水/水を1/8/60の質量比で混合した液)又は除去液B(2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液)をそれぞれ用い、上述の評価方法に従って粒子除去性及び膜除去性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 各評価例と各比較評価例との比較より、本発明に係る洗浄用膜形成組成物は、基板表面に膜を形成してこれを除去する半導体基板の洗浄方法において、粒子除去性及び膜除去性にともに優れることがわかる。
 本発明の半導体基板洗浄用膜形成組成物によれば、基板表面に膜を形成して基板表面の異物を除去するプロセスにおいて、基板表面のパーティクルを効率よく除去でき、かつ形成された膜を基板表面から容易に除去することができる。また、本発明の半導体基板の洗浄方法によれば、形成される膜を基板表面から容易に除去しつつ、基板表面のパーティクルを効率よく除去することができる。従って、本発明の半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法は、今後ますます微細化、高アスペクト比化が進行すると予想される半導体素子の製造工程において好適に用いることができる。
W ウェハ

 

Claims (11)

  1.  極性基、下記式(i)で表される基又はこれらの組み合わせを有する分子量300以上の化合物と、
     溶媒と
    を含有する半導体基板洗浄用膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(i)中、Rは、加熱又は酸の作用により解離する基である。)
  2.  上記化合物が、上記式(i)で表される基を有する請求項1に記載の半導体基板洗浄用膜形成組成物。
  3.  上記極性基が、ヒドロキシ基、カルボキシ基、アミド基、アミノ基、スルホニル基、スルホ基又はこれらの組み合わせである請求項1に記載の半導体基板洗浄用膜形成組成物。
  4.  上記化合物として重合体を含み、上記重合体の重量平均分子量が300以上50,000以下である請求項1、請求項2又は請求項3に記載の半導体基板洗浄用膜形成組成物。
  5.  上記重合体が環状の重合体であり、上記環状の重合体の重量平均分子量が300以上3,000以下である請求項4に記載の半導体基板洗浄用膜形成組成物。
  6.  上記溶媒が、水、極性有機溶媒又はこれらの組み合わせである請求項1から請求項5のいずれか1項に記載の半導体基板洗浄用膜形成組成物。
  7.  上記極性有機溶媒が、アルコール、多価アルコールのアルキルエーテル又はこれらの組み合わせである請求項6に記載の半導体基板洗浄用膜形成組成物。
  8.  上記溶媒中の水の含有量が20質量%以下である請求項6又は請求項7に記載の半導体基板洗浄用膜形成組成物。
  9.  熱酸発生剤をさらに含有する請求項1から請求項8のいずれか1項に記載の半導体基板洗浄用膜形成組成物。
  10.  上記化合物の含有量が0.1質量%以上50質量%以下である請求項1から請求項9のいずれか1項に記載の半導体基板洗浄用膜形成組成物。
  11.  半導体基板表面に、請求項1から請求項10のいずれか1項に記載の半導体基板洗浄用膜形成組成物の塗工により半導体基板洗浄用膜を形成する工程、及び
     上記半導体基板洗浄用膜を除去する工程
    を備える半導体基板の洗浄方法。
     
     
PCT/JP2016/073501 2015-09-30 2016-08-09 半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法 WO2017056746A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187007979A KR20180059442A (ko) 2015-09-30 2016-08-09 반도체 기판 세정용 막 형성 조성물 및 반도체 기판의 세정 방법
JP2017542997A JP6721837B2 (ja) 2015-09-30 2016-08-09 半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法
US15/934,258 US20180211828A1 (en) 2015-09-30 2018-03-23 Composition for forming film for use in cleaning semiconductor substrate, and cleaning method for semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-195126 2015-09-30
JP2015195126 2015-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/934,258 Continuation US20180211828A1 (en) 2015-09-30 2018-03-23 Composition for forming film for use in cleaning semiconductor substrate, and cleaning method for semiconductor substrate

Publications (1)

Publication Number Publication Date
WO2017056746A1 true WO2017056746A1 (ja) 2017-04-06

Family

ID=58423209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073501 WO2017056746A1 (ja) 2015-09-30 2016-08-09 半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法

Country Status (5)

Country Link
US (1) US20180211828A1 (ja)
JP (1) JP6721837B2 (ja)
KR (1) KR20180059442A (ja)
TW (1) TWI704219B (ja)
WO (1) WO2017056746A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190278A1 (ja) * 2017-04-13 2018-10-18 Jsr株式会社 半導体基板洗浄用組成物
JP2019062171A (ja) * 2017-09-22 2019-04-18 株式会社Screenホールディングス 基板洗浄方法および基板洗浄装置
CN109872960A (zh) * 2017-12-05 2019-06-11 株式会社斯库林集团 基板处理方法以及基板处理装置
CN109904093A (zh) * 2017-12-11 2019-06-18 株式会社斯库林集团 基板处理方法和基板处理装置
JP2019212889A (ja) * 2018-05-31 2019-12-12 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2020189683A1 (ja) * 2019-03-19 2020-09-24 Jsr株式会社 組成物及び基板の処理方法
US11020776B2 (en) 2017-09-22 2021-06-01 SCREEN Holdings Co., Ltd. Substrate cleaning method and substrate cleaning apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646279A (zh) 2017-01-05 2023-08-25 株式会社斯库林集团 基板清洗装置及基板清洗方法
JP6951229B2 (ja) * 2017-01-05 2021-10-20 株式会社Screenホールディングス 基板洗浄装置および基板洗浄方法
JP2020096115A (ja) * 2018-12-14 2020-06-18 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 基板洗浄液、これを用いる洗浄された基板の製造方法およびデバイスの製造方法
JP7116676B2 (ja) * 2018-12-14 2022-08-10 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR20210035623A (ko) 2019-09-24 2021-04-01 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR102130713B1 (ko) 2019-12-30 2020-08-05 (주)에프피에이 미세입자 세정용 냉각입자 생성장치 및 그 구동방법
KR20210089472A (ko) 2020-01-08 2021-07-16 동우 화인켐 주식회사 고분자 화합물 및 이를 포함하는 반도체 기판 세정용 조성물
KR20210117774A (ko) 2020-03-20 2021-09-29 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20210119165A (ko) 2020-03-24 2021-10-05 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20210119731A (ko) 2020-03-25 2021-10-06 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20210120211A (ko) 2020-03-26 2021-10-07 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20220032958A (ko) 2020-09-08 2022-03-15 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20220032960A (ko) 2020-09-08 2022-03-15 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20220032959A (ko) 2020-09-08 2022-03-15 동우 화인켐 주식회사 반도체 기판 세정용 조성물
KR20220032957A (ko) 2020-09-08 2022-03-15 동우 화인켐 주식회사 반도체 기판 세정용 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774137A (ja) * 1993-07-05 1995-03-17 Dainippon Screen Mfg Co Ltd 基板表面のパーティクル除去方法及びその装置
JPH09326380A (ja) * 1996-06-06 1997-12-16 Toagosei Co Ltd 基材表面上のパーティクルの除去方法
JPH11101970A (ja) * 1997-09-29 1999-04-13 Advanced Display Inc 基板洗浄方法
WO2004012012A1 (ja) * 2002-07-30 2004-02-05 Hitachi, Ltd. 電子装置の製造方法
JP2010237563A (ja) * 2009-03-31 2010-10-21 Jsr Corp 感放射線性樹脂組成物
JP2012174775A (ja) * 2011-02-18 2012-09-10 Fujitsu Ltd 化合物半導体装置の製造方法及び洗浄剤
WO2014038680A1 (ja) * 2012-09-10 2014-03-13 Jsr株式会社 レジスト下層膜形成用組成物及びパターン形成方法
JP2014123704A (ja) * 2012-11-26 2014-07-03 Tokyo Electron Ltd 基板洗浄システム、基板洗浄方法および記憶媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703401B2 (en) * 2011-06-01 2014-04-22 Jsr Corporation Method for forming pattern and developer
JP5586734B2 (ja) 2012-08-07 2014-09-10 東京エレクトロン株式会社 基板洗浄装置、基板洗浄システム、基板洗浄方法および記憶媒体
JP5977727B2 (ja) * 2013-11-13 2016-08-24 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体
JP6426936B2 (ja) * 2014-07-31 2018-11-21 東京エレクトロン株式会社 基板洗浄方法および記憶媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774137A (ja) * 1993-07-05 1995-03-17 Dainippon Screen Mfg Co Ltd 基板表面のパーティクル除去方法及びその装置
JPH09326380A (ja) * 1996-06-06 1997-12-16 Toagosei Co Ltd 基材表面上のパーティクルの除去方法
JPH11101970A (ja) * 1997-09-29 1999-04-13 Advanced Display Inc 基板洗浄方法
WO2004012012A1 (ja) * 2002-07-30 2004-02-05 Hitachi, Ltd. 電子装置の製造方法
JP2010237563A (ja) * 2009-03-31 2010-10-21 Jsr Corp 感放射線性樹脂組成物
JP2012174775A (ja) * 2011-02-18 2012-09-10 Fujitsu Ltd 化合物半導体装置の製造方法及び洗浄剤
WO2014038680A1 (ja) * 2012-09-10 2014-03-13 Jsr株式会社 レジスト下層膜形成用組成物及びパターン形成方法
JP2014123704A (ja) * 2012-11-26 2014-07-03 Tokyo Electron Ltd 基板洗浄システム、基板洗浄方法および記憶媒体

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018190278A1 (ja) * 2017-04-13 2020-05-14 Jsr株式会社 半導体基板洗浄用組成物
JP7140110B2 (ja) 2017-04-13 2022-09-21 Jsr株式会社 半導体基板洗浄用組成物
WO2018190278A1 (ja) * 2017-04-13 2018-10-18 Jsr株式会社 半導体基板洗浄用組成物
US11053457B2 (en) 2017-04-13 2021-07-06 Jsr Corporation Cleaning composition for semiconductor substrate
JP2019062171A (ja) * 2017-09-22 2019-04-18 株式会社Screenホールディングス 基板洗浄方法および基板洗浄装置
US11020776B2 (en) 2017-09-22 2021-06-01 SCREEN Holdings Co., Ltd. Substrate cleaning method and substrate cleaning apparatus
JP7008489B2 (ja) 2017-12-05 2022-01-25 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2019102698A (ja) * 2017-12-05 2019-06-24 株式会社Screenホールディングス 基板処理方法および基板処理装置
US11404292B2 (en) 2017-12-05 2022-08-02 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
CN109872960A (zh) * 2017-12-05 2019-06-11 株式会社斯库林集团 基板处理方法以及基板处理装置
CN109872960B (zh) * 2017-12-05 2023-06-30 株式会社斯库林集团 基板处理方法以及基板处理装置
JP2019106428A (ja) * 2017-12-11 2019-06-27 株式会社Screenホールディングス 基板処理方法および基板処理装置
US11101147B2 (en) 2017-12-11 2021-08-24 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
CN109904093A (zh) * 2017-12-11 2019-06-18 株式会社斯库林集团 基板处理方法和基板处理装置
JP7013221B2 (ja) 2017-12-11 2022-01-31 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN109904093B (zh) * 2017-12-11 2023-08-29 株式会社斯库林集团 基板处理方法和基板处理装置
JP2019212889A (ja) * 2018-05-31 2019-12-12 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7227757B2 (ja) 2018-05-31 2023-02-22 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2020189683A1 (ja) * 2019-03-19 2020-09-24 Jsr株式会社 組成物及び基板の処理方法

Also Published As

Publication number Publication date
US20180211828A1 (en) 2018-07-26
KR20180059442A (ko) 2018-06-04
TWI704219B (zh) 2020-09-11
JPWO2017056746A1 (ja) 2018-07-19
JP6721837B2 (ja) 2020-07-15
TW201712112A (zh) 2017-04-01

Similar Documents

Publication Publication Date Title
WO2017056746A1 (ja) 半導体基板洗浄用膜形成組成物及び半導体基板の洗浄方法
KR102120145B1 (ko) 레지스트 하층막 형성용 조성물 및 패턴 형성 방법
KR101820263B1 (ko) 반사방지 코팅 조성물 및 이의 공정
CN108885396B (zh) 正性工作光敏材料
KR102054065B1 (ko) 레지스트 하층막 재료, 패턴 형성 방법, 및 레지스트 하층막 형성 방법
JP7212449B2 (ja) 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
KR101942137B1 (ko) 포지티브 감광성 재료
JP5165273B2 (ja) フォトレジスト組成物
WO2017014284A1 (ja) 新規化合物及びその製造方法
EP3326997A1 (en) New (meth)acryloyl compound and production method for same
KR101605451B1 (ko) 노볼락 수지 블렌드를 포함하는 포토레지스트
JP7021438B2 (ja) 処理剤及び基板の処理方法
KR20170057536A (ko) 포토레지스트 도포장비 세정용 씬너 조성물
WO2018056277A1 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7196389B2 (ja) 半導体用レジスト下層膜形成組成物、レジスト下層膜、レジスト下層膜の形成方法及びパターニング基板の製造方法
TWI770264B (zh) 組成物、膜、膜的形成方法及圖案化基板的製造方法
KR102011579B1 (ko) 레지스트 다층막이 부착된 기판 및 패턴 형성 방법
JP2009031349A (ja) 液晶素子製造用ポジ型ホトレジスト組成物およびレジストパターン形成方法
EP3587385A1 (en) Compound, resin, composition, pattern forming method and purification method
WO2020130094A1 (ja) 基板処理膜形成用組成物及び半導体基板の洗浄方法
WO2020189683A1 (ja) 組成物及び基板の処理方法
CN116107161A (zh) 一种i线光刻胶及其制备方法和应用
TW202014440A (zh) 多層抗蝕劑製程用底層膜形成組成物及圖案形成方法
CN116203797A (zh) 一种i线光刻胶及其制备方法和应用
CN116107162A (zh) 一种i线光刻胶及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007979

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017542997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850923

Country of ref document: EP

Kind code of ref document: A1