WO2017056244A1 - 基板処理装置、半導体装置の製造方法及び記録媒体 - Google Patents

基板処理装置、半導体装置の製造方法及び記録媒体 Download PDF

Info

Publication number
WO2017056244A1
WO2017056244A1 PCT/JP2015/077777 JP2015077777W WO2017056244A1 WO 2017056244 A1 WO2017056244 A1 WO 2017056244A1 JP 2015077777 W JP2015077777 W JP 2015077777W WO 2017056244 A1 WO2017056244 A1 WO 2017056244A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing
processing gas
temperature
vaporizer
Prior art date
Application number
PCT/JP2015/077777
Other languages
English (en)
French (fr)
Inventor
立野 秀人
原 大介
正久 奥野
拓也 定田
塚本 剛史
昭典 田中
徹 角田
堀井 貞義
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020187006939A priority Critical patent/KR102104728B1/ko
Priority to JP2017542603A priority patent/JP6417052B2/ja
Priority to CN201580082519.1A priority patent/CN107924840B/zh
Priority to SG11201802143QA priority patent/SG11201802143QA/en
Priority to PCT/JP2015/077777 priority patent/WO2017056244A1/ja
Priority to TW105130325A priority patent/TWI626689B/zh
Publication of WO2017056244A1 publication Critical patent/WO2017056244A1/ja
Priority to US15/919,674 priority patent/US12087598B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.
  • LSI elements are separated by a method in which a gap such as a groove or a hole is formed between elements to be separated in silicon serving as a substrate, and an insulator is deposited in the gap.
  • An oxide film is often used as the insulator, and for example, a silicon oxide film (SiO film) is used.
  • the SiO film is formed by oxidation of the Si substrate itself, chemical vapor deposition (CVD), or an insulating coating method (Spin On Dielectric: SOD).
  • the embedding method by the CVD method is reaching the technical limit with respect to the embedding of the fine structure, particularly the embedding of the oxide into the void structure deep in the vertical direction or narrow in the horizontal direction.
  • SOD a coating insulating material containing an inorganic or organic component called SOG (Spin On Glass) is used. This material has been used in LSI manufacturing processes before the advent of CVD oxide films, but since the processing technology is not as fine as the processing dimensions of about 0.35 ⁇ m to 1 ⁇ m, the modification method after coating is It was permitted by performing a heat treatment at about 400 ° C.
  • polysilazane SiH 2 NH
  • PHPS perhydropolysilazane
  • Polysilazane is, for example, a material obtained by a catalytic reaction of dichlorosilane or trichlorosilane and ammonia, and is applied onto a substrate using a spin coater when forming a thin film.
  • Polysilazane is contained as an impurity such as nitrogen caused by ammonia from the process of production. Therefore, in order to remove impurities from the coating film formed using polysilazane and obtain a dense oxide film, it is necessary to add water and perform heat treatment after coating.
  • a method for adding moisture for example, a method is known in which moisture is generated by reacting hydrogen and oxygen in a heat treatment furnace. The generated moisture is taken into the polysilazane film, and heat is applied to obtain a dense oxide film. The heat treatment performed at this time is STI (Shallow Trench Isolation) for element isolation, and the maximum temperature may reach about 1000 ° C.
  • the processing gas used in the processing is also lowered to reduce the thermal load on the transistor and the like. It is desirable to do.
  • a processing gas for processing a coating film of polysilazane a vaporized gas obtained by vaporizing a liquid raw material can be used.
  • the vaporized gas source material is supplied to the coating film due to incomplete vaporization of the vaporized gas source material or reliquefaction in the processing equipment. May be. In such a case, foreign matter (particles or the like) is generated, and the characteristics of the oxide film are remarkably deteriorated.
  • the present invention can improve the characteristics of a film formed on a substrate processed with a processing gas by suppressing generation of droplets or mist of the processing gas in the processing apparatus even under low temperature conditions. Aims to provide a new technology.
  • a processing chamber that accommodates a substrate, a vaporizer that vaporizes a liquid raw material to generate a reaction gas, and sends it as a processing gas together with a carrier gas, wherein the liquid raw material is vaporized
  • a vaporization container a liquid raw material introduction part for introducing the liquid raw material into the vaporization container; a carrier gas introduction part for introducing the carrier gas into the vaporization container; and the liquid raw material introduced into the vaporization container.
  • a vaporizer comprising: a heater configured to heat; a carrier gas supply control unit configured to control a supply amount of the carrier gas supplied to the vaporizer; and the supply supplied to the vaporizer
  • a liquid source supply control unit configured to control a supply amount of the liquid source, a processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber, and the vaporizer
  • a processing gas temperature sensor for detecting the temperature of the processing gas sent into the processing gas supply pipe, and the heater is controlled based on the temperature of the processing gas detected by the processing gas temperature sensor.
  • a control unit configured to adjust the temperature.
  • the present invention it is possible to improve the characteristics of a film formed on a substrate to be processed by a processing gas by suppressing generation of droplets or mist of the processing gas in the processing apparatus even under low temperature conditions. Can do.
  • 1 is a schematic configuration diagram illustrating a configuration of a substrate processing apparatus according to an embodiment.
  • 1 is a schematic longitudinal sectional view showing a configuration of a processing furnace included in a substrate processing apparatus according to an embodiment.
  • the external view which shows the structure of the process gas heating part with which the substrate processing apparatus which concerns on one Embodiment is provided.
  • the longitudinal section schematic diagram showing the composition of the vaporizer with which the substrate processing device concerning one embodiment is provided.
  • 1 is a schematic longitudinal sectional view showing a configuration of a gas filter provided in a substrate processing apparatus according to an embodiment.
  • the schematic block diagram which shows the structure of the gas concentration meter with which the substrate processing apparatus which concerns on one Embodiment is provided.
  • the schematic block diagram which shows the structure of the furnace opening part periphery of the processing furnace with which the substrate processing apparatus which concerns on one Embodiment is provided.
  • the flowchart which shows the pre-processing process with respect to the substrate processing process which concerns on one Embodiment.
  • the flowchart which shows the substrate processing process which concerns on one Embodiment.
  • the flowchart which shows the control procedure of the process gas supply part based on process gas temperature in the substrate processing process which concerns on one Embodiment.
  • the flowchart which shows the control procedure of the process gas supply part based on the process gas pressure in the substrate processing process which concerns on one Embodiment.
  • the flowchart which shows the control procedure of the process gas supply part based on the reactive gas density
  • the substrate processing apparatus 10 is an apparatus for processing a substrate using a processing gas generated by vaporizing hydrogen peroxide (H 2 O 2 ), that is, a hydrogen peroxide solution.
  • H 2 O 2 hydrogen peroxide
  • it is an apparatus for processing a wafer 200 as a substrate made of silicon or the like.
  • the substrate processing apparatus 10 is suitable for use in processing a wafer 200 having a concavo-convex structure (void) that is a fine structure.
  • a substrate having a fine structure refers to a substrate having a structure with a high aspect ratio, such as a laterally narrow groove (concave portion) having a width of about 10 nm to 50 nm.
  • a polysilazane film which is a silicon-containing film, is filled in the microstructured groove, and the oxide film is formed by processing the polysilazane film with a processing gas.
  • a processing gas In this embodiment, an example of processing a polysilazane film with a processing gas is shown.
  • the present invention is not limited to a polysilazane film.
  • a film containing a silicon element, a nitrogen element, and a hydrogen element particularly a film having a silazane bond, or tetrasilyl
  • the present invention can also be applied to the case of processing a plasma polymerization film of amine and ammonia.
  • the processing furnace 202 includes a processing container (reaction tube) 203.
  • the processing vessel 203 is made of a heat resistant material such as quartz or silicon carbide (SiC), and is formed in a cylindrical shape having an open lower end.
  • a processing chamber 201 is formed in a cylindrical hollow portion of the processing container 203 so that wafers 200 as substrates can be accommodated by a boat 217, which will be described later, in a horizontal posture and aligned in multiple stages in the vertical direction.
  • a seal cap 219 serving as a furnace port lid that can hermetically seal (close) the lower end opening (furnace port) of the process container 203 is provided below the process container 203.
  • the seal cap 219 is configured to contact the lower end of the processing container 203 from the lower side in the vertical direction.
  • the seal cap 219 is formed in a disc shape.
  • a processing chamber 201 serving as a substrate processing space includes a processing container 203 and a seal cap 219.
  • a boat 217 as a substrate holding unit is configured to hold a plurality of wafers 200 in multiple stages.
  • the boat 217 includes a plurality of support columns 217 a that hold a plurality of wafers 200.
  • three support columns 217a are provided.
  • Each of the plurality of support columns 217a is installed between the bottom plate 217b and the top plate 217c.
  • a plurality of wafers 200 are aligned in a horizontal posture on the support column 217a and aligned in the center, and are held in multiple stages in the axial direction.
  • the top plate 217 c is formed so as to be larger than the maximum outer diameter of the wafer 200 held by the boat 217.
  • a processing gas heating unit 217d that heats the processing gas supplied into the processing container 203 is provided on the top plate 217c.
  • the top plate 217c and the processing gas heating unit 217d may be provided as separate components, or may be provided integrally (as a single component).
  • silicon carbide aluminum oxide (AlO), aluminum nitride (AlN), silicon nitride (SiN), zirconium oxide (ZrO) or the like is used as a constituent material of the columns 217a, the bottom plate 217b, the top plate 217c, and the processing gas heating unit 217d.
  • a non-metallic material with good conductivity is used.
  • a nonmetallic material having a thermal conductivity of 10 W / mK or more is preferable. If thermal conductivity is not a problem, it may be formed of quartz or the like.
  • the support column 217a, the top plate 217c, and the process gas heating unit 217d are You may form with metal materials, such as stainless steel (SUS).
  • metal materials such as stainless steel (SUS).
  • SUS stainless steel
  • a film such as ceramic or Teflon (registered trademark) may be formed on the metal.
  • a heat insulator 218 made of a heat-resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the first heating unit 207 is not easily transmitted to the seal cap 219 side. Yes.
  • the heat insulator 218 functions as a heat insulating member and also functions as a holding body that holds the boat 217.
  • the heat insulator 218 is not limited to the one in which a plurality of heat insulating plates formed in a disk shape are provided in a horizontal posture as shown in the figure, and may be a quartz cap formed in a cylindrical shape, for example. good.
  • the heat insulator 218 may be considered as one of the constituent members of the boat 217.
  • a boat elevator is provided as an elevating unit that moves the boat 217 up and down and conveys the boat 217 into and out of the processing container 203.
  • the boat elevator is provided with a seal cap 219 that seals the furnace port when the boat 217 is raised by the boat elevator.
  • a boat rotation mechanism 267 that rotates the boat 217 is provided on the side of the seal cap 219 opposite to the processing chamber 201.
  • a rotation shaft 261 of the boat rotation mechanism 267 is connected to the boat 217 through the seal cap 219, and is configured to rotate the wafer 200 by rotating the boat 217.
  • a first heating unit 207 that heats the wafer 200 and the processing gas heating unit 217 d in the processing container 203 is provided outside the processing container 203 in a concentric shape surrounding the side wall surface of the processing container 203.
  • the first heating unit 207 is supported and provided by the heater base 206.
  • the first heating unit 207 includes first to fourth heater units 207a to 207d.
  • the first to fourth heater units 207a to 207d are provided along the stacking direction of the wafers 200 in the processing container 203, respectively.
  • first to fourth temperature sensors such as thermocouples are used as temperature detectors for detecting the wafer 200 or the ambient temperature.
  • 263a to 263d are respectively provided between the processing vessel 203 and the boat 217. Note that the first to fourth temperature sensors 263a to 263d respectively indicate the temperature of the wafer 200 positioned at the center of the plurality of wafers 200 heated by the first to fourth heater units 207a to 207d, respectively. It may be provided to detect.
  • a controller 121 (to be described later) is electrically connected to the first heating unit 207 and the first to fourth temperature sensors 263a to 263d. Based on the temperature information detected by the first to fourth temperature sensors 263a to 263d so that the temperature of the wafer 200 in the processing container 203 becomes a predetermined temperature, the controller 121 first to fourth.
  • the power supply to the heater units 207a to 207d is controlled at a predetermined timing, and the temperature setting and temperature adjustment are individually performed for each of the first to fourth heater units 207a to 207d.
  • a first external temperature sensor 264a As temperature detectors for detecting the temperatures of the first to fourth heater units 207a to 207d, a first external temperature sensor 264a, a second external temperature sensor 264b, An external temperature sensor 264c and a fourth external temperature sensor 264d may be provided.
  • the first to fourth external temperature sensors 264a to 264d are connected to the controller 121, respectively.
  • it is monitored whether the temperature of each of the first to fourth heater units 207a207d is heated to a predetermined temperature. it can.
  • a processing gas supply nozzle 501a and an oxygen-containing gas supply nozzle 502a are provided between the processing container 203 and the first heating unit 207 along the side of the outer wall of the processing container 203. Is provided.
  • the processing gas supply nozzle 501 and the oxygen-containing gas supply nozzle 502a are formed of, for example, quartz having a low thermal conductivity.
  • the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a may have a double tube structure.
  • the distal ends (downstream ends) of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a are inserted airtightly into the processing container 203 from the top of the processing container 203, respectively.
  • a supply hole 501b and a supply hole 502b are provided at the tips of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a located inside the processing container 203, respectively.
  • the supply hole 501b and the supply hole 502b are configured to supply the processing gas and the oxygen-containing gas supplied into the processing container 203 toward the top plate 217c provided at the upper part of the boat 217 accommodated in the processing container 203. Has been.
  • a gas supply pipe 602c is connected to the upstream end of the oxygen-containing gas supply nozzle 502a. Further, the gas supply pipe 602c is provided with a valve 602a, a mass flow controller (MFC) 602b constituting the gas flow rate control unit, a valve 602d, and an oxygen-containing gas heating unit 602e in this order from the upstream side.
  • MFC mass flow controller
  • a gas containing at least one of oxygen (O 2 ) gas, ozone (O 3 ) gas, and nitrous oxide (NO) gas is used as the oxygen-containing gas.
  • O 2 gas is used as the oxygen-containing gas.
  • the oxygen-containing gas heating unit 602e is provided to heat the oxygen-containing gas, and can be heated to about 80 to 200 ° C., for example. Preferably, the oxygen-containing gas is heated to about 100 ° C to 170 ° C. By heating the oxygen-containing gas, heating of the processing gas supplied into the processing chamber 201 can be assisted. Further, liquefaction of the processing gas in the processing container 203 can be suppressed.
  • the oxygen-containing gas may be heated by the first heating unit 207.
  • a gas having low reactivity with respect to the wafer 200 and the film formed on the wafer 200 can be used instead of the oxygen-containing gas.
  • nitrogen (N 2 ) gas or a rare gas such as argon (Ar) gas, helium (He) gas, or neon (Ne) gas can be used.
  • at least one of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a is airtightly inserted into the processing container 203 from the lower part of the processing container 203, and extends to the top along the side of the inner wall of the processing container 203. It may be provided as follows.
  • At least one of the processing gas supply nozzle 501a and the oxygen-containing gas supply nozzle 502a is provided with one or a plurality of gas ejection holes (gas supply holes) in a section provided to extend to the top along the side of the inner wall of the processing container 203. ), And the gas may be supplied in a direction parallel to the wafer 200 from the one or more gas ejection holes.
  • a downstream end of a processing gas supply pipe 289a for supplying a processing gas is connected to an upstream end of the processing gas supply nozzle 501a. Further, from the upstream side, the processing gas supply pipe 289a has a vaporizer 100, a processing gas temperature sensor 286, a processing gas pressure sensor 287, a gas concentration meter (as a processing gas generation unit that generates a processing gas by vaporizing a liquid source. Gas concentration sensor) 500, gas filter 600, valve 289b, and gas port heater 285 are provided. In the present embodiment, a gas containing at least H 2 O 2 is used as the processing gas.
  • a pipe heater 289c constituted by a jacket heater or the like is provided around the process gas supply pipe 289a, and the process gas supply pipe 289a is heated by the pipe heater 289c.
  • the gas port heater 285 is provided at a connection portion between the processing gas supply nozzle 501a and the processing gas supply pipe 289a, and is configured to heat the processing gas passing through the connection portion. Yes.
  • the gas port heater 285 particularly has an insertion part (port part) of the processing gas supply nozzle 501a.
  • the processing gas temperature sensor 286 is constituted by, for example, a thermocouple, measures the temperature of the processing gas generated in the vaporizer 100 and flows in the processing gas supply pipe 289a, and outputs the measured temperature data to the controller 121 described later. To do.
  • the processing gas pressure sensor 287 measures the pressure of the processing gas flowing through the processing gas supply pipe 289 a and outputs the measured pressure data to the controller 121.
  • the gas concentration meter 500 measures the concentration of a specific gas contained in the processing gas flowing in the processing gas supply pipe 289a, and outputs the measured gas concentration value data to the controller 121.
  • the gas concentration meter 500 measures the concentration value of H 2 O 2 gas as a reaction gas used for substrate processing on the wafer 200 as the concentration value of a specific gas.
  • the process gas temperature sensor 286, the process gas pressure sensor 287, and the gas concentration meter 500 are provided in the immediate vicinity of the exhaust port 104 of the vaporizer 100 for the purpose of monitoring and controlling the vaporization state of the liquid raw material in the vaporizer 100. Is preferred.
  • the gas filter 600 is provided so that the processing gas flowing in the processing gas supply pipe 289a passes therethrough. The passing process gas is heated by the gas filter 600, and the liquid raw material in the droplet state or mist state contained in the process gas is vaporized.
  • the vaporizer 100 includes a liquid raw material supply unit (liquid raw material supply system) 300 for supplying a liquid raw material for processing gas (hydrogen peroxide solution in the present embodiment) to the vaporizer 100 and a carrier for the vaporizer 100.
  • a carrier gas supply unit (carrier gas supply system) for supplying gas is connected.
  • the vaporized gas of the liquid raw material generated in the vaporizer 100 is sent (discharged) to the processing gas supply pipe 289a as a processing gas together with the carrier gas.
  • the liquid source supply unit 300 includes a liquid source supply source 301, a valve 302, and a liquid flow rate controller (LMFC) 303 that controls the flow rate of the liquid source supplied to the vaporizer 100 from the upstream side.
  • the carrier gas supply unit includes a carrier gas supply pipe 601c, a carrier gas valve 601a, an MFC 601b as a carrier gas flow rate control unit, a carrier gas valve 601d, and the like.
  • O 2 gas that is an oxygen-containing gas is used as the carrier gas.
  • a gas containing at least one oxygen-containing gas in addition to O 2 gas, for example, O 3 gas, NO gas, etc.
  • the carrier gas a gas having low reactivity with respect to the wafer 200 or a film formed on the wafer 200 can be used.
  • N 2 gas or a rare gas such as Ar gas, He gas, or Ne gas can be used.
  • the processing gas supply unit may further include a processing gas supply pipe 289a, a valve 289b, a gas filter 600, a gas concentration meter 500, a processing gas temperature sensor 286, a processing gas pressure sensor 287, a vaporizer 100, and the like.
  • the oxygen-containing gas supply nozzle 501a and the supply hole 501b constitute an oxygen-containing gas supply unit.
  • the oxygen-containing gas supply unit may further include a gas supply pipe 602c, an oxygen-containing gas heating unit 602e, a valve 602d, an MFC 602b, a valve 602a, and the like.
  • the processing gas supply unit and the oxygen-containing gas supply unit constitute a gas supply unit (gas supply system).
  • FIG. 4 shows the configuration of the vaporizer 100.
  • the vaporizer 100 uses a dropping method in which a liquid material is vaporized by dropping the liquid material onto a heated member.
  • the vaporizer 100 includes a vaporization container 101 as a member to be heated, a vaporization space 102 composed of the vaporization container 101, a vaporizer heater 103 as a heating unit for heating the vaporization container 101, and a liquid raw material.
  • the generated vaporized gas is measured by a thermocouple 105 and an exhaust port 104 for exhausting (sending) the generated vaporized gas together with the carrier gas to the process gas supply pipe 289a, a thermocouple (temperature sensor) 105 for measuring the temperature of the vaporization vessel 101, and the like.
  • a temperature controller 106 for controlling the temperature of the vaporizer heater 103 based on the measured temperature, a dropping nozzle 107 as a liquid supply unit for supplying the hydrogen peroxide solution supplied from the LMFC 303 into the vaporization vessel 101, and a carrier gas
  • a carrier gas inlet 108 for supplying the carrier gas supplied from the supply pipe 601c into the vaporization vessel 101; It is configured.
  • the vaporization vessel 101 is heated by the vaporizer heater 103 so that the dropped liquid raw material is vaporized at the same time as it reaches the inner surface of the vaporization vessel 101. Further, there is provided a heat insulating material 109 that can improve the heating efficiency of the vaporization vessel 101 by the vaporizer heater 103 and can insulate the vaporizer 100 from other units.
  • the vaporization container 101 is made of quartz, SiC, or the like in order to prevent reaction with the liquid raw material.
  • the temperature of the vaporization container 101 decreases due to the temperature of the dropped liquid raw material and the heat of vaporization. Therefore, in order to prevent a temperature drop, it is desirable to be made of a material having high thermal conductivity, for example, SiC.
  • the boiling point depends concentrations of H 2 O 2.
  • concentrations of H 2 O 2 For example, in the case of hydrogen peroxide solution having a H 2 O 2 concentration of 34%, the boiling point in atmospheric pressure is approximately 106 ° C. However, in the case of hydrogen peroxide water having a concentration of 100%, the boiling point is about 150 ° C. Therefore, for example, if the hydrogen peroxide solution stored in the container is vaporized by the boiling method, as described above, the hydrogen peroxide solution in the container is not heated uniformly, so that only water (H 2 O) is given priority. Evaporates, and concentration of H 2 O 2 occurs in the hydrogen peroxide solution.
  • hydrogen peroxide is concentrated by rapidly heating the entire hydrogen peroxide solution on the heating surface at a temperature higher than the boiling point of the hydrogen peroxide solution having a boiling point higher than that of water.
  • the vaporizing heater 103 raises the temperature to a temperature higher than 106 ° C., which is the boiling point of the hydrogen peroxide solution having a concentration of 34%.
  • the vaporization vessel 101 is heated, and the hydrogen peroxide solution is dropped onto the heating surface of the vaporization vessel 101, whereby the droplets of the hydrogen peroxide solution are rapidly heated at 106 ° C.
  • the hydrogen peroxide solution is vaporized by heating the vaporization vessel 101 to a temperature higher than 150 ° C., which is the boiling point of 100% hydrogen peroxide solution. May be.
  • the hydrogen peroxide solution is heated at a temperature as low as possible while suppressing the concentration of H 2 O 2.
  • the vaporization heater 103 is heated so that the hydrogen peroxide solution is heated at a temperature lower than the boiling point of the hydrogen peroxide solution having a predetermined concentration and as low as possible without causing concentration of H 2 O 2 .
  • the temperature is controlled.
  • the gas filter 600 is provided on the outer periphery of the filter container 610 connected to the processing gas supply pipe 289 a, the filter unit 620 through which the processing gas introduced into the filter container 610 passes, and the filter container 610. And a filter heater 630 for heating the filter container 610 and the filter unit 620.
  • the filter part 620 is comprised with the porous body formed with the fluororesin.
  • the porous filter heated by the heater is generally formed of metal, but in this embodiment, H 2 O 2 gas is used as a reaction gas contained in the processing gas, and therefore the metal filter is H 2 O. May react with two gases and cause corrosion. Therefore, in this embodiment, the filter part 620 is formed of a fluororesin.
  • the processing gas flowing in the processing gas supply pipe 289a includes liquid raw materials that are in a droplet state or a mist state due to poor vaporization of the liquid raw material in the vaporizer 100 or reliquefaction in the processing gas supply pipe 289a. May be.
  • the liquid material in a droplet state or mist state contained in the processing gas introduced into the filter container 610 from the processing gas supply pipe 289a is heated and vaporized by passing through the filter unit 620 heated by the filter heater 630.
  • the filter heater 630 is controlled to have a desired temperature (for example, 50 ° C. to 200 ° C.) so as to vaporize droplets and mist in the processing gas in the filter unit 620 via, for example, the temperature controller 106. .
  • the boat 217 is provided with the processing gas heating unit 217 d that heats the processing gas supplied into the processing container 203.
  • the process gas heating unit 217d has, for example, a bowl shape as shown in FIG. 3, and the surface of the process gas heating unit 217d is directly below the supply hole 501b and the supply hole 502b, and the supply hole 501b and the supply hole 502b. It is provided so as to face. That is, the processing gas heating unit 217d, the supply hole 501b, and the supply gas are supplied so that the gas flow of the processing gas and the oxygen-containing gas introduced from the supply hole 501b and the supply hole 502b directly strikes the surface of the processing gas heating unit 217d. A hole 502b is formed.
  • the processing gas heating unit 217 d is heated by the first heating unit 207 together with the wafers 200 placed on the boat 217.
  • the processing gas supplied toward the surface of the processing gas heating unit 217d is heated by the processing gas heating unit 217d heated to a predetermined temperature by the first heating unit 207. At this time, the liquid material in the droplet state or mist state contained in the supplied processing gas is vaporized by being heated.
  • the processing gas heating unit 217d it is possible to vaporize droplets or mist in the processing container 203 immediately before the processing gas is supplied to the wafer 200. It can prevent that the liquid raw material in a state is supplied.
  • the liquid raw material in the liquid state is heated in the liquid heating section provided in the processing vessel 203. It can be considered to vaporize. However, when the liquid raw material in the liquid state is vaporized, the amount of heat required for vaporization is larger than in the case of vaporizing droplets or mist in the processing gas in the gas state. . In order to compensate for this, the liquid heating section must be heated with a larger amount of heat. In that case, it is necessary to provide a heater having a higher output (power) than the first heating unit 207 as a heater for heating the liquid heating unit. The temperature distribution in the container 203 is biased.
  • the liquid raw material is vaporized by the vaporizer 100 to generate the processing gas
  • the processing gas heating unit 217d in the processing container 203 is supplied with the processing gas (including droplets or mist) in a gas state.
  • Heat in. Accordingly, the amount of heat required for vaporizing the droplets and mist in the processing gas heating unit 217d is relatively small, and the temperature drop due to vaporization is small, so that the temperature distribution in the processing container 203 is less likely to be biased.
  • the number of wafers 200 that can be accommodated in the processing container 203 is not limited, or the decrease in the number of sheets is minimized. be able to.
  • the shape of the process gas heating unit 217d is not limited to the bowl shape, and various shapes including a surface for heating the injected gas can be employed in addition to a simple plate shape.
  • the processing gas heating unit 217d is not limited to the structure supported by the boat 217, and is provided so that the gas flow of the processing gas and the oxygen-containing gas introduced from the supply hole 501b and the supply hole 502b directly contact (contact). It only has to be done.
  • the processing gas heating unit 217d may be provided so as to be suspended from a ceiling portion in the processing container 203.
  • the top plate 217c and the processing gas heating unit 217d may be provided as separate components, or may be provided integrally (that is, as one component).
  • the processing gas heating unit 217d is not limited to the mode heated by the first heating unit 207, and is heated by another heater provided separately, for example, a lamp heater provided outside the ceiling portion of the processing vessel 203. It may be configured to be.
  • the gas concentration meter 500 includes a cell portion 540 through which the processing gas introduced from the processing gas supply pipe 289a passes, and light emission that irradiates the processing gas that passes through the cell portion 540 with light, particularly near infrared rays.
  • Unit 520 a light receiving unit 530 that receives the light emitted from light emitting unit 520 and passed through the processing gas in cell unit 540, and analyzes the spectral spectrum of the light received by light receiving unit 530 to analyze H 2 in the processing gas.
  • An analysis unit (gas concentration calculation unit) 510 that calculates the concentration of O 2 gas and the concentration of H 2 O gas is provided.
  • the analysis unit 510 is connected to the light receiving unit 530 by, for example, an optical fiber, and executes a process of analyzing a spectral spectrum of light received by the light receiving unit 530.
  • Concentration values of H 2 O 2 gas and H 2 O gas in the processing gas that has passed through 540 are calculated.
  • the H 2 O 2 gas and the concentration value data of the H 2 O gas calculated by the analysis unit 510 are output to the controller 121.
  • the analysis unit 510 is configured to calculate the concentration values of the H 2 O 2 gas and the H 2 O gas, but not the gas concentration values themselves, but the H 2 O 2 gas and the H 2 Other data indicating the concentration of 2 O gas may be calculated.
  • APC Automatic Pressure Controller
  • the inside of the processing chamber 201 is exhausted by the negative pressure generated by the vacuum pump 246.
  • the APC valve 255 is an on-off valve that can exhaust and stop the exhaust of the processing chamber 201 by opening and closing the valve. Moreover, it is also a pressure control valve which can adjust a pressure by adjusting a valve opening degree.
  • a pressure sensor 223 as a pressure detector is provided on the upstream side of the APC valve 255.
  • the processing chamber 201 is configured to be evacuated so that the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum).
  • a pressure controller 224 (see FIG. 8) is electrically connected to the pressure sensor 223 and the APC valve 255, and the pressure controller 224 is arranged in the processing chamber 201 based on the pressure detected by the pressure sensor 223.
  • the APC valve 255 is configured to be controlled at a desired timing so that the desired pressure becomes the desired pressure.
  • the exhaust part is composed of a gas exhaust pipe 231, an APC valve 255 and the like.
  • the exhaust unit may include a gas concentration meter 600, a pressure sensor 223, and the like. Further, a vacuum pump 246 may be included in the exhaust part.
  • the first heating unit 207 Since the first heating unit 207 is provided so as to heat the wafer 200 in the processing container 203 as described above, an area in which the wafer 200 is accommodated in the processing container 203 is formed by the first heating unit 207. Heated. However, the region other than the accommodation region of the wafer 200 in the processing container 203 is not easily heated by the first heating unit 207. As a result, a low temperature region is generated in a region other than the region heated by the first heating unit 207 in the processing container 203, and the gas containing H 2 O 2 is cooled and re-liquefied when passing through this low temperature region. May end up.
  • a liquid generated by re-liquefying a gas containing H 2 O 2 may be further vaporized in the processing container 203 to generate re-vaporized gas.
  • the revaporized gas is H compared to the gas used when the wafer 200 is supplied.
  • the concentration of 2 O 2 may increase. Therefore, the concentration of H 2 O 2 in the processing gas may be non-uniform in the processing container 203 in which the revaporized gas is generated.
  • the processing furnace 202 is provided with a second heating unit 280, and is configured to heat a region other than the region heated by the first heating unit 207.
  • the second heating unit 280 is provided on the outer side (outer periphery) of the lower part (around the furnace port part) of the processing vessel 203 so as to concentrically surround the side wall surface of the processing vessel 203.
  • the second heating unit 280 causes the gas containing H 2 O 2 flowing from the upper side to the lower side of the processing container 203 toward the exhaust part to flow downstream in the processing container 203 (that is, the heat insulator 218 in the processing container 203 It is comprised so that it may heat in the area
  • the second heating unit 280 includes a processing cap 203 such as a seal cap 219 that seals the lower end opening of the processing vessel 203, a heat insulator 218 disposed at the bottom of the processing vessel 203, and the bottom of the processing vessel 203.
  • the member which comprises the lower part of this is comprised so that it may heat.
  • the second heating unit 280 is disposed so as to be positioned below the bottom plate 217b.
  • the second heating unit 280 is configured by a lamp heater, for example.
  • a controller 121 described later is electrically connected to the second heating unit 280.
  • the controller 121 sends the temperature to the second heating unit 280 so that the temperature of the processing gas (that is, gas containing H 2 O 2 ) in the processing container 203 can be suppressed (for example, 100 ° C. to 300 ° C.).
  • the supply power is controlled at a predetermined timing. By heating in this way, it is possible to prevent liquefaction of the processing gas at the furnace port and adhesion of particles, impurities, etc. generated before the drying process to the furnace port.
  • the gas port heater 285 is provided in the connection portion between the processing gas supply nozzle 501a and the processing gas supply pipe 289a, and is configured to heat the processing gas passing through the connection portion. .
  • the gas port heater 285 is controlled to a desired temperature so that condensation does not occur inside the processing gas supply pipe 289a.
  • the temperature is controlled to 50 ° C. to 300 ° C.
  • an exhaust tube heater 284 is provided at a connection portion between the gas exhaust pipe 231 and the processing container 203.
  • the exhaust tube heater 284 is controlled to a desired temperature so that condensation does not occur inside the gas exhaust pipe 231.
  • the temperature is controlled to 50 ° C. to 300 ° C.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or a display is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a program recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the program recipe, the control program, and the like are collectively referred to simply as a program.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the LMFC 303, MFC 601b and 602b, the valves 601a, 601d, 602a, 602d and 302, the APC valve 255, the first heating unit 207 (207a, 207b, 207c and 207d), and the second heating. 280, first to fourth temperature sensors 263a to 263d, boat rotation mechanism 267, pressure sensor 223, pressure controller 224, temperature controller 106, process gas temperature sensor 286, process gas pressure sensor 287, gas concentration meter 500 , Vaporizer heater 103, piping heater 289c, filter heater 630, exhaust tube heater 284, gas port heater 285, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of the liquid material by the LMFC 303, adjusts the flow rate of the gas by the MFCs 601b and 602b, and opens and closes the valves 601a, 601d, 602a, 602d, 302, and 289b in accordance with the contents of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium when the term “recording medium” is used, it may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • a polysilazane coating process T20 and a pre-baking process T30 are performed on the wafer 200.
  • polysilazane coating step T20 polysilazane is applied by a coating apparatus (not shown). The thickness of the applied polysilazane is adjusted by the molecular weight of the polysilazane, the viscosity of the polysilazane solution, and the rotation speed of the coater.
  • the solvent is removed from the polysilazane applied to the wafer 200. Specifically, it is carried out by volatilization of the solvent by heating to about 70 ° C. to 250 ° C. Heating is preferably performed at about 150 ° C.
  • the wafer 200 has a concavo-convex structure which is a fine structure, is supplied so as to fill polysilazane into at least a recess (groove), and a substrate on which a polysilazane coating film which is a silicon-containing film is formed in the groove is used.
  • a gas containing H 2 O 2 which is a vaporized hydrogen peroxide solution is used as a processing gas for the wafer 200 will be described.
  • the silicon-containing film contains nitrogen and hydrogen, and in some cases, carbon and other impurities may be mixed.
  • a substrate having a fine structure has a structure with a high aspect ratio such as a deep groove (concave portion) perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 30 nm, for example.
  • a substrate has a structure with a high aspect ratio such as a deep groove (concave portion) perpendicular to a silicon substrate, or a laterally narrow groove (concave portion) having a width of about 10 nm to 30 nm, for example.
  • the wafer 200 is loaded into a processing apparatus (not shown) different from the above-described substrate processing apparatus 10 (substrate loading process T10), and the above-described polysilazane coating process is performed in the processing apparatus.
  • T20 and the pre-bake process T30 are performed, and then the wafer 200 is unloaded (substrate unloading process T40).
  • the polysilazane coating step T20 and the pre-baking step T30 may be performed in separate apparatuses.
  • a substrate processing step performed as one step of the semiconductor device manufacturing process according to the present embodiment will be described with reference to FIG.
  • Such a process is performed by the substrate processing apparatus 10 described above.
  • a gas containing H 2 O 2 is used as a processing gas, and a silicon-containing film formed on the wafer 200 as a substrate is modified (oxidized) into an SiO film.
  • the case where (modification process) is performed will be described.
  • the operation of each unit constituting the substrate processing apparatus is controlled by the controller 121.
  • Hydrogen peroxide has a higher activation energy than that of water vapor (water, H 2 O), and has a strong oxidizing power due to a large number of oxygen atoms contained in one molecule. Therefore, by using a gas containing H 2 O 2 as a processing gas, oxygen atoms can reach the deep part of the film formed in the groove of the wafer 200 (bottom part of the groove). Therefore, the degree of the modification treatment can be made more uniform between the surface portion and the deep portion of the film on the wafer 200. That is, more uniform substrate processing can be performed between the surface portion and the deep portion of the film formed on the wafer 200, and the dielectric constant and the like of the wafer 200 after the modification processing can be made uniform.
  • H 2 O 2 as a reactant is vaporized or mist (that is, H 2 O 2 in a gaseous state) is called H 2 O 2 gas or a reactive gas, and at least H 2 O 2.
  • a gas containing a gas (reactive gas) is called a processing gas, and an aqueous solution containing H 2 O 2 is called a hydrogen peroxide solution or a liquid raw material.
  • the vacuum pump 246 is controlled so that the inside of the processing container 203 has a desired pressure (degree of vacuum), and the atmosphere in the processing container 203 is evacuated. Further, an oxygen-containing gas is supplied to the processing vessel 203 from the oxygen-containing gas supply unit (supply hole 501b). Preferably, the oxygen-containing gas is supplied after being heated to 100 ° C. to 120 ° C. by the oxygen-containing gas heating unit 602e. At this time, the pressure in the processing container 203 is measured by the pressure sensor 223, and the opening degree of the APC valve 255 is feedback-controlled based on the measured pressure (pressure adjustment). For example, the pressure in the processing container 203 is adjusted to a slightly reduced pressure state (about 700 hPa to 1000 hPa).
  • the wafer 200 accommodated in the processing container 203 is heated by the first heating unit 207 so as to be a desired first temperature, for example, 40 ° C. to 100 ° C.
  • the temperatures detected by the first temperature sensor 263a, the second temperature sensor 263b, the third temperature sensor 263c, and the fourth temperature sensor 263d so that the wafer 200 in the processing container 203 has a desired temperature.
  • feedback control is performed on the power supplied to the first heater unit 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d included in the first heating unit 207 (temperature adjustment). .
  • the set temperatures of the first heater unit 207a, the second heater unit 207b, the third heater unit 207c, and the fourth heater unit 207d are all controlled to be the same temperature.
  • the second heating unit 280 is controlled so that the processing gas is at a temperature at which the processing gas is not re-liquefied in the processing container 203 (particularly below the processing container 203). For example, heating is performed at 100 ° C. to 200 ° C.
  • the boat rotation mechanism 267 is operated to start the rotation of the boat 217.
  • the rotation speed of the boat 217 is controlled by the controller 121.
  • the boat 217 is always rotated until at least the reforming process (S30) described later is completed.
  • a liquid source (hydrogen peroxide solution) is supplied from the liquid source supply unit 300 to the vaporizer 100. That is, the valve 302 is opened, and the liquid material whose flow rate is controlled by the LMFC 303 is supplied into the vaporization vessel 101 through the dropping nozzle 107. The liquid raw material supplied to the vaporizer 100 is dropped from the dropping nozzle 107 to the bottom of the inner surface of the vaporization container 101.
  • the vaporization vessel 101 is heated to a desired temperature (for example, 180 to 220 ° C.) by the vaporizer heater 103, and the dropped liquid raw material (hydrogen peroxide solution) droplet contacts the inner surface of the vaporization vessel 101. By doing so, it is instantaneously heated and evaporated to become a gas.
  • a desired temperature for example, 180 to 220 ° C.
  • valve 289b is opened, and the liquid raw material (vaporized gas) that has become a gas is used as a processing gas as an exhaust port 104, a processing gas supply pipe 289a, a gas concentration meter 500, a gas filter 600, a valve 289b, and a processing gas supply nozzle 501a. Then, the gas is supplied into the processing chamber 201 through the supply hole 501b.
  • the processing gas that passes through the gas filter 600 is heated when passing through the heated filter unit 620, and the liquid material in the droplet state or mist state contained in the processing gas is vaporized.
  • the processing gas introduced into the processing chamber 201 from the supply hole 501b is further heated by the processing gas heating unit 217d and then supplied to the wafer 200.
  • each component of the processing gas supply unit is configured based on data acquired from the processing gas temperature sensor 286, the processing gas pressure sensor 287, and the gas concentration meter 500 as described later. Control.
  • the processing container 203 is evacuated by the vacuum pump 246. That is, the APC valve 255 is opened, and the exhaust gas exhausted from the processing vessel 203 through the gas exhaust pipe 231 is exhausted by the vacuum pump 246. After a predetermined time elapses, the valve 289b is closed and the supply of the processing gas into the processing container 203 is stopped. Further, after a predetermined time has passed, the APC valve 255 is closed and the exhaust in the processing container 203 is stopped.
  • the hydrogen peroxide solution is supplied as the liquid raw material to the vaporizer 100, and the processing gas containing the H 2 O 2 gas is supplied into the processing container 203.
  • the present invention is not limited thereto.
  • a liquid containing ozone (O 3 ) or water can be used as the liquid raw material.
  • the wafer 200 is heated to a predetermined second temperature that is equal to or lower than the temperature processed in the pre-baking step T30.
  • the second temperature is higher than the first temperature described above, and is set to a temperature equal to or lower than the temperature of the prebaking step T30 described above. For example, the temperature is raised to 150 ° C. After the temperature rise, the temperature is maintained and the inside of the wafer 200 and the processing container 203 is gently dried.
  • impurities such as ammonia, ammonium chloride, carbon, hydrogen, other outgases caused by the solvent, and impurities caused by H 2 O 2 , which are by-products separated from the polysilazane film, are removed from the wafer 200. It is possible to dry the wafer 200 and remove the foreign matter source while suppressing reattachment to the substrate.
  • Post-bake process (S50) After the drying treatment step (S40) is completed, the hydrogen remaining in the SiO film is heated to a temperature higher than that in the drying treatment step and treated in an atmosphere containing at least one of nitrogen, oxygen, and argon. Can be removed, and a good SiO film with less hydrogen can be modified. Although the quality of the SiO film can be improved by performing the post-baking step S50, the manufacturing throughput may be prioritized except for the device process (for example, STI) that requires high quality oxide film quality. It is not necessary.
  • the device process for example, STI
  • the APC valve 255 is opened and the processing container 203 is evacuated to remove particles and impurities remaining in the processing container 203. it can. After evacuation, the APC valve 255 is closed and the pressure in the processing container 203 is returned to atmospheric pressure. By returning to atmospheric pressure, the heat capacity in the processing container 203 can be increased, and the wafer 200 and the processing container 203 can be heated uniformly. By uniformly heating the wafer 200 and the processing vessel 203, particles, impurities, outgas from the wafer 200, and residual impurities contained in the hydrogen peroxide solution that cannot be removed by evacuation can be removed. After the pressure in the processing chamber 203 reaches atmospheric pressure and a predetermined time has elapsed, the temperature is lowered to a predetermined temperature (for example, the insertion temperature of the wafer 200).
  • a predetermined temperature for example, the insertion temperature of the wafer 200.
  • Substrate unloading step (S70) Thereafter, the seal cap 219 is lowered by the boat elevator to open the lower end of the processing container 203, and the processed wafer 200 is carried out from the lower end of the processing container 203 to the outside of the processing container 203 while being held in the boat 217. Thereafter, the processed wafer 200 is taken out from the boat 217, and the substrate processing process according to the present embodiment is completed.
  • the temperature of the vaporization heater 103 decreases as the liquid raw material is vaporized, thereby causing poor vaporization of the liquid raw material.
  • the generated process gas contains liquid raw material droplets and mist.
  • these droplets and mist are supplied to the wafer 200, they may cause generation of particles, or may cause deterioration in the quality of the oxide film obtained by the modification process.
  • H 2 O 2 may be concentrated in the liquid raw material pool generated in the vaporization vessel 101.
  • the concentration of H 2 O 2 gas contained in the processing gas is uneven due to the concentration of H 2 O 2 , this may cause a problem that prevents stable reforming of the wafer 200.
  • the above-described problem occurs when the processing gas is reliquefied in the processing gas supply pipe 289a or the like.
  • the vaporizer is based on at least one of pressure data of the processing gas flowing in the supply pipe 289a and a concentration value of a specific gas in the processing gas flowing in the processing gas supply pipe 289a acquired by the gas concentration meter 500.
  • the user is notified that a vaporization failure has occurred or that there is a high possibility that a vaporization failure will occur.
  • the occurrence of vaporization defects is generated by controlling each configuration of the process gas supply unit based on at least one of the temperature data, the pressure data, and the concentration value of the process gas. And suppress the occurrence of reliquefaction. Specifically, the following control is executed.
  • the controller 121 when it is determined that the temperature of the acquired processing gas is lower than a predetermined temperature zone (a range from the first temperature to the second temperature) (S101), the controller 121 Then, the vaporizing heater 103 of the vaporizer 100 is controlled via the temperature controller 106 to raise the temperature of the vaporizing heater 103 by a predetermined width (S102). Thereby, the vaporization defect of the liquid raw material in the vaporizer 100 is improved or eliminated.
  • the predetermined temperature range is, for example, in the range of 150 ° C. or higher and 200 ° C. or lower. If the temperature of the processing gas is a temperature of 150 ° C.
  • the vaporization heater 103 is controlled so that the temperature of the vaporization heater 103 is in a range of, for example, 180 ° C. or more and 220 ° C. or less.
  • the H 2 O 2 gas used as the reaction gas included in the processing gas in this embodiment has a property that decomposition is promoted as the temperature increases.
  • the processing temperature for the wafer 200 in the modification processing step is a lower temperature in order to minimize thermal damage to the devices and the like formed on the wafer 200. Accordingly, when it is determined that the temperature of the acquired processing gas is higher than the predetermined temperature range (S101), the controller 121 lowers the temperature of the vaporizing heater 103 of the vaporizer 100 by a predetermined width (S103).
  • the controller 121 controls the MFC 601b that controls the flow rate of the carrier gas supplied to the vaporizer 100, and the carrier The gas supply amount may be increased by a predetermined width (S102).
  • the concentration of H 2 O 2 gas in the generated processing gas may change.
  • the concentration of the H 2 O 2 gas is constant. Therefore, it is desirable to prioritize control for changing the temperature of the vaporizing heater 103 over control for changing the carrier gas flow rate.
  • the MFC 601b is controlled so that the flow rate of the carrier gas falls within a predetermined flow rate range or less.
  • the controller 121 controls the LMFC 303 that controls the flow rate of the liquid raw material supplied to the vaporizer 100 to control the liquid.
  • the supply amount of the raw material may be decreased by a predetermined width (S102).
  • the concentration of H 2 O 2 gas in the generated processing gas and the supply amount of the H 2 O 2 gas itself change.
  • the concentration and supply amount of the H 2 O 2 gas are constant. Further, when the flow rate of the liquid raw material is changed, the temperature of the vaporizing heater 103 may also change. Therefore, it is desirable to prioritize control for changing the flow rate of the carrier gas or control for changing the temperature of the vaporizing heater 103 over control for changing the flow rate of the liquid source.
  • the controller 121 increases the supply amount of the carrier gas supplied to the vaporizer 100 by a predetermined width,
  • the supply amount of the liquid raw material supplied to the vaporizer 100 may be increased by a predetermined width (S103).
  • the temperature of the vaporization heater 103 is set to be higher than the control for changing the flow rate of the liquid source and the control for changing the flow rate of the carrier gas. It is desirable to give priority to the changing control.
  • the temperature control of the vaporizing heater 103, the supply amount control of the carrier gas, and the supply amount control of the liquid material in S102 described above may be performed independently, and two or more of these controls may be performed simultaneously or at different timings. May be implemented. Similarly, the supply amount control of the carrier gas and the supply amount control of the liquid source in S103 described above may be performed independently, or these controls may be performed simultaneously or at different timings.
  • the controller 121 prevents at least one of the pipe heater 289c, the filter heater 630, and the gas port heater 285 in order to prevent re-liquefaction of the processing gas.
  • One temperature may be controlled to increase within a predetermined range.
  • a reference pressure value corresponding to the carrier gas supply amount is previously stored as a table, and the reference pressure value corresponding to the carrier gas supply amount at each time point controlled by the MFC 601b as the carrier gas flow rate control unit is It is desirable to determine sequentially by referring to the table.
  • the state in which the pressure value of the processing gas acquired from the processing gas pressure sensor 287 is a value out of a predetermined ratio range with respect to the reference pressure value continues for a predetermined time.
  • the same processing may be executed.
  • the acquired pressure value of the processing gas is outside the range of ⁇ 0.5% to ⁇ 2% centered on the reference pressure value (that is, the range of 1% to 4% centered on the reference pressure value in the range of change).
  • the controller 121 obtains a case where the change amount or change rate of the processing gas pressure value acquired from the processing gas pressure sensor 287 per predetermined time with respect to the reference pressure value is equal to or more than a predetermined value, or is acquired.
  • the controller 121 obtains a case where the change amount or change rate of the processing gas pressure value acquired from the processing gas pressure sensor 287 per predetermined time with respect to the reference pressure value is equal to or more than a predetermined value, or is acquired.
  • the state in which the pressure value of the acquired processing gas is a value equal to or lower than a predetermined ratio (first pressure ratio) with respect to the reference pressure value for a predetermined time continues. If it is determined (S111), the controller 121 controls the vaporizing heater 103 of the vaporizer 100 via the temperature controller 106 to increase the temperature of the vaporizing heater 103 by a predetermined width (S112). For example, the state in which the acquired pressure value of the processing gas is lower than the reference pressure value by 0.5% to 2% or more (that is, 98% to 99.5% or less) is 30 seconds to 60 seconds. When it is detected that the process continues for the above, the control of S112 is performed.
  • the controller 121 controls S112. Thereby, the vaporization defect of the liquid raw material in the vaporizer 100 is improved or eliminated.
  • the vaporization heater 103 is controlled so that the temperature of the vaporization heater 103 falls within a range of, for example, 180 ° C. or more and 220 ° C. or less.
  • the vaporization failure of the liquid material occurs in the vaporizer 100
  • the vaporization failure may be improved or eliminated by increasing the flow rate of the carrier gas supplied to the vaporizer 100.
  • the controller 121 may control the MFC 601b that controls the flow rate of the carrier gas supplied to the vaporizer 100 to increase the supply amount of the carrier gas by a predetermined width (S112).
  • the concentration of H 2 O 2 gas in the generated processing gas may change.
  • the MFC 601b is controlled so that the flow rate of the carrier gas falls within a predetermined flow rate range or less.
  • the vaporization failure of the liquid material occurs in the vaporizer 100, the vaporization failure can be improved or eliminated by reducing the flow rate of the liquid material supplied to the vaporizer 100. Accordingly, when it is determined that the acquired pressure value of the processing gas continues to be a value equal to or lower than a predetermined ratio (first pressure ratio) with respect to the reference pressure value for a predetermined time (S111).
  • the controller 121 may control the LMFC 303 that controls the flow rate of the liquid material supplied to the vaporizer 100 to decrease the supply amount of the liquid material by a predetermined width.
  • the concentration of H 2 O 2 gas in the generated processing gas and the supply amount of the H 2 O 2 gas itself change. Therefore, it is desirable to prioritize control for changing the flow rate of the carrier gas or control for changing the temperature of the vaporizing heater 103 over control for changing the flow rate of the liquid source.
  • the controller 121 controls the MFC 601b that controls the flow rate of the carrier gas supplied to the vaporizer 100 to reduce the supply amount of the carrier gas by a predetermined width (S113). .
  • the LMFC 303 for controlling the flow rate of the liquid material supplied to the vaporizer 100 may be controlled to reduce the supply amount of the liquid material by a predetermined width (S113).
  • the state in which the acquired pressure value of the processing gas is 0.5% to 2% or more higher than the reference pressure value (ie, 100.5% to 102% or more) is 30 seconds to 60 seconds. If it is detected that the process continues for the above, the control in S113 is performed. In this embodiment, when the controller 121 detects that the state in which the acquired pressure value of the processing gas is higher than the reference pressure value by 1% or more continues for 30 seconds or more, the controller 121 performs the control of S113. I do.
  • the temperature control of the vaporization heater 103, the supply amount control of the carrier gas, and the liquid raw material in S112 described above are performed.
  • a predetermined ratio may be individually set according to each control.
  • the temperature control of the vaporizing heater 103, the supply amount control of the carrier gas, and the supply amount control of the liquid material in S112 may be performed independently, and two or more of these controls may be performed simultaneously or at different timings. May be implemented.
  • the supply amount control of the carrier gas and the supply amount control of the liquid source in S113 described above may be performed independently, or these controls may be performed simultaneously or at different timings.
  • the controller 121 the state in which the pressure value of the processing gas acquired from the processing gas pressure sensor 287 is a value out of a predetermined ratio range with respect to the reference pressure value continues for a predetermined time. If it is determined that the vaporization failure has occurred in the vaporizer 100, or it is highly possible that the vaporization failure will occur, the control in S112 may be executed. Further, the controller 121 obtains a case where the change amount or change rate of the processing gas pressure value acquired from the processing gas pressure sensor 287 per predetermined time with respect to the reference pressure value is equal to or more than a predetermined value, or is acquired.
  • the control in S112 may be executed on the assumption that the state is high.
  • the controller 121 prevents at least one of the pipe heater 289c, the filter heater 630, and the gas port heater 285 in order to prevent re-liquefaction of the processing gas.
  • One temperature may be controlled to increase within a predetermined range.
  • the concentration value of the reaction gas in the processing gas varies depending on conditions such as the flow rate of the carrier gas. Therefore, for example, a reference concentration value corresponding to the carrier gas supply amount is previously stored as a table, and the reference concentration value corresponding to the carrier gas supply amount at each time point controlled by the MFC 601b as the carrier gas flow rate control unit is It is desirable to determine sequentially by referring to the table.
  • the controller 121 determines that the amount of decrease in the concentration of the reaction gas in the acquired processing gas per predetermined time is a predetermined value or more, or the acquired concentration of the reaction gas in the processing gas is a predetermined value. When it is determined that the concentration value is lower than the value in the range of the predetermined concentration value, it is assumed that the vaporization failure is occurring in the vaporizer 100 or that the vaporization failure is likely to occur. May be executed.
  • the controller 121 controls the vaporization heater 103 of the vaporizer 100 via the temperature controller 106 to increase the temperature of the vaporization heater 103 by a predetermined width ( S122).
  • a predetermined width S122
  • a state in which the concentration value of the reaction gas in the acquired processing gas is 10% or more lower than the reference concentration value (that is, a value of 90% or less) continues for 30 seconds or more.
  • the controller 121 controls S122. Thereby, the vaporization defect of the liquid raw material in the vaporizer 100 is improved or eliminated.
  • the vaporization heater 103 is controlled so that the temperature of the vaporization heater 103 is in a range of, for example, 180 ° C. or more and 220 ° C. or less.
  • the controller 121 may control the MFC 601b that controls the flow rate of the carrier gas supplied to the vaporizer 100 to increase the supply amount of the carrier gas by a predetermined width (S122).
  • the concentration of H 2 O 2 gas in the generated processing gas may change.
  • the reaction gas concentration value in the obtained processing gas changes regardless of the presence or absence of vaporization failure, control based on the gas concentration value is difficult. Therefore, it is desirable to prioritize control for changing the temperature of the vaporizing heater 103 over control for changing the carrier gas flow rate.
  • the MFC 601b is controlled so that the flow rate of the carrier gas falls within a predetermined flow rate range or less.
  • the controller 121 may control the LMFC 303 that controls the flow rate of the liquid material supplied to the vaporizer 100 to decrease the supply amount of the liquid material by a predetermined width (S122).
  • the reactive gas concentration value in the processing gas is preferably within a predetermined concentration value range for stable substrate processing. Therefore, in order to suppress the occurrence of reliquefaction, the concentration value of the reaction gas in the obtained processing gas is a value equal to or higher than a predetermined ratio (second concentration ratio) with respect to the reference concentration value for a predetermined time.
  • the controller 121 controls the MFC 601b that controls the flow rate of the carrier gas supplied to the vaporizer 100 to increase the supply amount of the carrier gas by a predetermined width. (S123).
  • the supply amount of the liquid source may be decreased by a predetermined width by controlling the LMFC 303 that controls the flow rate of the liquid source supplied to the vaporizer 100 (S123).
  • the state in which the concentration value of the reaction gas in the acquired processing gas is 5% to 15% or more higher than the reference concentration value (that is, a value of 105% to 115% or more) is 30 seconds to 60 seconds. If it is detected that it continues for the above, control of S123 is performed. In the present embodiment, the state in which the concentration value of the reaction gas in the acquired processing gas is a value that is 10% or more higher than the reference concentration value (that is, a value that is 110% or more) continues for 30 seconds or more. When it is detected that the controller 121 is present, the controller 121 controls S123.
  • the temperature control of the vaporization heater 103, the supply amount control of the carrier gas, and the liquid in S122 described above may be individually set according to each control.
  • the temperature control of the vaporizing heater 103, the supply amount control of the carrier gas, and the supply amount control of the liquid source in S122 may be performed independently, and two or more of these controls may be performed simultaneously or at different timings. May be implemented.
  • the supply amount control of the carrier gas and the supply amount control of the liquid source in S123 described above may be performed independently, or these controls may be performed simultaneously or at different timings.
  • the controller 121 uses the piping heater 289c, the filter heater 630, and the gas in order to prevent re-liquefaction of the processing gas. Control may be performed so that the temperature of at least one of the port heaters 285 is increased by a predetermined width.
  • control operation is performed so that the temperature, pressure, and concentration of the vaporizing heater 103 are set so that the acquired temperature, pressure, and concentration values of the processing gas fall within a predetermined range defined by the user in the initial state of the processing gas supply start. It is desirable to apply when the gas supply amount and the liquid raw material supply amount are appropriately set.
  • the above control is started, whereby the vaporization failure in the carburetor 100 is reduced. Occurrence can be easily detected, and control for eliminating or avoiding vaporization failure is facilitated.
  • the controls shown in the above (A) to (C) may be performed independently, and two or more of these controls may be performed simultaneously or at different timings.
  • the controller 121 may perform the control shown in (A) and (B) based on the acquired temperature and pressure of the processing gas. At this time, it is preferable that the control shown in FIG.
  • the controller 121 may perform the control shown in (A) and (C) based on the acquired temperature and concentration value of the processing gas. At this time, it is preferable that the control shown in FIG.
  • the processing gas may be a gas obtained by vaporizing a solution (liquid reactant) in which a raw material (reactant) that is solid or liquid at room temperature is dissolved in a solvent. Moreover, when the vaporization point of the raw material (reactant) is different from the vaporization point of the solvent, the effect of the above-described embodiment is easily obtained. Further, the vaporized gas that is the processing gas is not limited to a gas whose concentration is increased when reliquefied, but may be a gas whose concentration decreases when reliquefied. Even with such a processing gas, the concentration of the processing gas in the processing container 203 can be made uniform. For example, water vapor (H 2 O) generated by heating water may be used.
  • H 2 O 2 gas contained in the above process gas, H 2 O 2 addition to the case molecule is a single state, that several molecules H 2 O 2 containing also be a cluster state bound is there.
  • a gas containing H 2 O 2 from hydrogen peroxide water not only when splitting into H 2 O 2 molecules alone, but also splitting into a cluster state in which several H 2 O 2 molecules are bonded.
  • a fog (mist) state in which a number of the above clusters are gathered may be used as long as the quality is acceptable in the quality of the oxide film as a processing result.
  • the water vapor supplied onto the wafer 200 is in the state of a single H 2 O molecule, It may include the case of a cluster state in which several H 2 O molecules are bonded.
  • a fog (mist) state in which a number of the above clusters are gathered may be used as long as the quality is acceptable in the quality of the oxide film as a processing result.
  • the present invention can be similarly applied when processing a wafer 200 on which a film having a silazane bond (—Si—N—) is formed.
  • the present invention can be applied to a treatment for a coating film using hexamethyldisilazane (HMDS), hexamethylcyclotrisilazane (HMCTS), polycarbosilazane, or polyorganosilazane.
  • HMDS hexamethyldisilazane
  • HMCTS hexamethylcyclotrisilazane
  • polycarbosilazane polycarbosilazane
  • polyorganosilazane polyorganosilazane
  • a silicon-containing film formed by a CVD method and not pre-baked for example, Even a silicon-containing film can be similarly oxidized by a CVD method using a silicon material such as monosilane (SiH 4 ) gas or trisilylamine (TSA) gas.
  • a method for forming a silicon-containing film by a CVD method in particular, a fluid CVD method can be used.
  • a flowable CVD method for example, a gap having a large aspect ratio is filled with a silicon-containing film, and the filled silicon-containing film can be subjected to oxidation treatment or annealing treatment in the present invention.
  • the substrate processing apparatus including the vertical processing furnace has been described.
  • the present invention is not limited thereto.
  • a substrate processing apparatus having a single-wafer type, Hot Wall type, Cold Wall type processing furnace, or a processing The present invention may be applied to a substrate processing apparatus that processes a wafer 200 by exciting a gas.
  • a processing chamber for accommodating the substrate; A vaporizer that vaporizes a liquid raw material to generate a reaction gas and delivers it as a processing gas together with a carrier gas, a vaporization container in which the liquid raw material is vaporized, and a liquid raw material that introduces the liquid raw material into the vaporization container
  • a vaporizer comprising: an introduction part; a carrier gas introduction part for introducing the carrier gas into the vaporization container; and a heater configured to heat the liquid raw material introduced into the vaporization container;
  • a carrier gas supply control unit configured to control a supply amount of the carrier gas supplied to the vaporizer;
  • a liquid source supply control unit configured to control a supply amount of the liquid source supplied to the vaporizer;
  • a processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber; A processing gas temperature sensor for detecting the temperature of the processing gas sent from the vaporizer into the processing gas supply pipe;
  • a substrate processing apparatus comprising: a control unit configured to control
  • Appendix 2 The apparatus according to appendix 1, preferably, A processing gas pressure sensor for detecting the pressure of the processing gas in the processing gas supply pipe; The control unit controls the heater based on the pressure of the processing gas detected by the processing gas pressure sensor and the temperature of the processing gas detected by the processing gas temperature sensor to control the temperature of the heater. Configured to adjust.
  • Appendix 3 The apparatus according to appendix 1, preferably, A gas concentration sensor for detecting a gas concentration of the reaction gas contained in the processing gas sent from the vaporizer into the processing gas supply pipe; The control unit controls the heater based on the gas concentration of the reaction gas detected by the gas concentration sensor and the temperature of the processing gas detected by the processing gas temperature sensor to control the temperature of the heater. Configured to adjust.
  • the apparatus controls the heater based on the temperature of the processing gas detected by the processing gas temperature sensor to adjust the temperature of the heater, and at least (a) the carrier gas supply control unit It is configured to perform control of adjusting the supply amount of the carrier gas by controlling, or (b) adjusting the supply amount of the liquid material by controlling the liquid material supply control unit. .
  • the apparatus preferably, When the temperature of the processing gas detected by the processing gas temperature sensor is lower than a predetermined temperature, the control unit at least (a) controls the heater to increase the temperature of the heater, or (b ) Either the carrier gas supply control unit is controlled to increase the supply amount of the carrier gas, or (c) the liquid source supply control unit is controlled to decrease the supply amount of the liquid source Configured to perform control.
  • the apparatus preferably, A processing gas pressure sensor for detecting the pressure of the processing gas in the processing gas supply pipe;
  • the control unit controls at least (a) the carrier gas supply control unit to adjust the supply amount of the carrier gas based on the pressure of the processing gas detected by the processing gas pressure sensor.
  • the control unit controls at least (a) the carrier gas supply control unit to adjust the supply amount of the carrier gas based on the gas concentration of the reaction gas detected by the gas concentration sensor.
  • It is configured to control whether the liquid material supply control unit is controlled to adjust the supply amount of the liquid material.
  • Appendix 8 The apparatus according to appendix 1, preferably, A gas nozzle that is provided at a downstream end of the processing gas supply pipe and supplies the processing gas into the processing chamber; A heating unit is provided in the processing chamber at a position facing the gas nozzle and configured to heat the processing gas supplied from the gas nozzle into the processing chamber.
  • the gas filter unit includes a filter made of a fluororesin and a gas filter heater that heats the filter, and the filter vaporizes droplets contained in the processing gas that passes through the filter. Heated by a gas filter heater.
  • H 2 O 2 hydrogen peroxide
  • a processing chamber for accommodating the substrate;
  • a vaporizer configured to deliver a reaction gas generated by vaporizing a liquid raw material as a processing gas together with a carrier gas;
  • a processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber;
  • a processing gas temperature sensor for detecting the temperature of the processing gas sent from the vaporizer into the processing gas supply pipe;
  • a step of processing the substrate using a substrate processing apparatus having: The step of processing the substrate comprises: Carrying the substrate into the processing chamber; Supplying the liquid raw material and the carrier gas into the vaporizer, and heating the liquid raw material with a heater to generate the processing gas; and Introducing the processing gas generated in the vaporizer into the processing chamber via the processing gas supply pipe; Adjusting the temperature of the heater based on the temperature of the processing gas detected by the processing gas temperature sensor, or a substrate processing apparatus.
  • the substrate processing apparatus includes a processing gas pressure sensor that detects a pressure of the processing gas in the processing gas supply pipe, In the step of adjusting the temperature of the heater, the temperature of the heater is adjusted based on the pressure of the processing gas detected by the processing gas pressure sensor and the temperature of the processing gas detected by the processing gas temperature sensor. To do.
  • ⁇ Appendix 14> The method according to appendix 11, preferably, In the step of adjusting the temperature of the heater, the temperature of the heater is adjusted based on the temperature of the processing gas detected by the processing gas temperature sensor, and at least (a) the carrier supplied to the vaporizer Either the gas supply amount is adjusted, or (b) the liquid raw material supply amount supplied to the vaporizer is adjusted.
  • a processing chamber for accommodating the substrate;
  • a vaporizer configured to deliver a reaction gas generated by vaporizing a liquid raw material as a processing gas together with a carrier gas;
  • a processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber;
  • a processing gas temperature sensor for detecting the temperature of the processing gas sent from the vaporizer into the processing gas supply pipe;
  • a computer-readable recording medium that records a program for controlling a substrate processing apparatus having a computer to execute a predetermined procedure for processing the substrate,
  • the predetermined procedure is: A procedure for carrying the substrate into the processing chamber; A procedure for supplying the liquid source and the carrier gas into the vaporizer and generating the processing gas by vaporizing the liquid source by heating with a heater; Introducing the processing gas generated in the vaporizer into the processing chamber via the processing gas supply pipe; Whether at least (a) the temperature of the heater is adjusted or (b) the supply amount of the carrier gas supplied to the vaporizer is adjusted based on the temperature of the processing gas detected
  • a processing chamber for accommodating the substrate; A vaporizer that vaporizes a liquid raw material to generate a reaction gas and delivers it as a processing gas together with a carrier gas, a vaporization container in which the liquid raw material is vaporized, and a liquid raw material that introduces the liquid raw material into the vaporization container
  • a vaporizer comprising: an introduction part; a carrier gas introduction part for introducing the carrier gas into the vaporization container; and a heater configured to heat the liquid raw material introduced into the vaporization container; A carrier gas supply control unit configured to control a supply amount of the carrier gas supplied to the vaporizer; A liquid source supply control unit configured to control a supply amount of the liquid source supplied to the vaporizer; A processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber; A processing gas temperature sensor for detecting the temperature of the processing gas sent from the vaporizer into the processing gas supply pipe; Based on at least the temperature of the processing gas detected by the processing gas temperature sensor,
  • control unit When the acquired temperature of the processing gas is lower than a predetermined temperature, the control unit at least (a) controls the heater to increase the temperature of the heater, or (b) controls the carrier gas supply. Or (c) controlling the liquid source supply control unit to decrease the supply amount of the liquid source.
  • ⁇ Appendix 18> The apparatus according to appendix 16, preferably, When the acquired temperature of the processing gas is higher than a predetermined temperature, the control unit at least (a) controls the heater to lower the temperature of the heater, or (b) controls the carrier gas supply. Or (c) controlling the liquid source supply control unit to increase the supply amount of the liquid source.
  • a processing chamber for accommodating the substrate; A vaporizer that vaporizes a liquid raw material to generate a reaction gas and delivers it as a processing gas together with a carrier gas, a vaporization container in which the liquid raw material is vaporized, and a liquid raw material that introduces the liquid raw material into the vaporization container
  • a vaporizer comprising: an introduction part; a carrier gas introduction part for introducing the carrier gas into the vaporization container; and a heater configured to heat the liquid raw material introduced into the vaporization container; A carrier gas supply control unit configured to control a supply amount of the carrier gas supplied to the vaporizer; A liquid source supply control unit configured to control a supply amount of the liquid source supplied to the vaporizer; A processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber; A processing gas pressure sensor for detecting the pressure of the processing gas in the processing gas supply pipe; Based on the pressure of the processing gas detected by the processing gas pressure sensor, at least (a) adjust the temperature
  • the apparatus preferably: The control unit, when the acquired pressure value of the processing gas continues to be a value equal to or less than a predetermined ratio with respect to a predetermined pressure value serving as a reference (reference pressure value) for a predetermined time, At least (a) increase the temperature of the heater by controlling the heater, (b) increase the supply amount of the carrier gas by controlling the carrier gas supply control unit, or (c) the liquid raw material Either the supply control unit is controlled to reduce the supply amount of the liquid raw material.
  • the apparatus preferably: When the pressure value of the acquired processing gas continues to be a value equal to or higher than a predetermined ratio with respect to a predetermined pressure value serving as a reference (reference pressure value) for a predetermined time, At least (a) control the carrier gas supply control unit to reduce the supply amount of the carrier gas, or (b) control the liquid source supply control unit to reduce the supply amount of the liquid source, Do one of the controls.
  • a processing chamber for accommodating the substrate; A vaporizer that vaporizes a liquid raw material to generate a reaction gas and delivers it as a processing gas together with a carrier gas, a vaporization container in which the liquid raw material is vaporized, and a liquid raw material that introduces the liquid raw material into the vaporization container
  • a vaporizer comprising: an introduction part; a carrier gas introduction part for introducing the carrier gas into the vaporization container; and a heater configured to heat the liquid raw material introduced into the vaporization container; A carrier gas supply control unit configured to control a supply amount of the carrier gas supplied to the vaporizer; A liquid source supply control unit configured to control a supply amount of the liquid source supplied to the vaporizer; A processing gas supply pipe for introducing the processing gas sent from the vaporizer into the processing chamber; A gas concentration sensor for detecting a gas concentration of the reaction gas contained in the processing gas sent from the vaporizer into the processing gas supply pipe; Acquiring the gas concentration of the reaction gas detected by
  • ⁇ Appendix 24> The apparatus according to appendix 22, preferably, When the state where the gas concentration of the acquired reaction gas is a value equal to or higher than a predetermined ratio with respect to a predetermined concentration value serving as a reference (reference concentration value) for a predetermined time, the control unit, At least (b) controlling the carrier gas supply control unit to increase the supply amount of the carrier gas, or (c) controlling the liquid source supply control unit to decrease the supply amount of the liquid source, Do one of the controls.
  • Appendix 25 The apparatus according to any one of appendices 22 to 24, preferably, A gas nozzle that is provided at a downstream end of the processing gas supply pipe and supplies the processing gas into the processing chamber; A heating unit provided in a position opposite to the gas nozzle in the processing chamber and configured to heat the processing gas supplied from the gas nozzle into the processing chamber; The gas nozzle and the heating unit are provided in the processing chamber and at a position above the region in which the substrate is accommodated.
  • the present invention it is possible to improve the characteristics of a film formed on a substrate to be processed by a processing gas by suppressing generation of droplets or mist of the processing gas in the processing apparatus even under low temperature conditions. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

基板を収容する処理室と、液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、気化容器と、液体原料導入部と、キャリアガス導入部と、液体原料を加熱するヒータと、を備える気化器と、キャリアガスの供給量を制御するキャリアガス供給制御部と、液体原料の供給量を制御する液体原料供給制御部と、処理ガスを処理室内に導入する処理ガス供給管と、気化器から処理ガス供給管内に送出された処理ガスの温度を検出する処理ガス温度センサと、処理ガス温度センサで検出された処理ガスの温度に基づいて、ヒータの温度を調整する制御部と、を有する基板処理装置が提供される。これにより、低温条件においても、処理装置内における処理ガスの液滴化やミスト化等を抑制し、処理ガスにより処理される基板上に形成される膜の品質を向上させることを可能とする。

Description

基板処理装置、半導体装置の製造方法及び記録媒体
 本発明は、基板処理装置、半導体装置の製造方法及び記録媒体に関する。
 大規模集積回路(Large Scale Integrated Circuit:以下LSI)の微細化に伴って、トランジスタ素子間の漏れ電流干渉を制御する加工技術は、技術的な困難を増してきている。LSIの素子間分離には、基板となるシリコンに、分離したい素子間に溝もしくは孔等の空隙を形成し、その空隙に絶縁物を堆積する方法によってなされている。絶縁物として、酸化膜が用いられることが多く、例えば、シリコン酸化膜(SiO膜)が用いられる。SiO膜は、Si基板自体の酸化や、化学気相成長法(Chemical Vapor Deposition:CVD)、絶縁物塗布法(Spin On Dielectric:SOD)によって形成されている。
 近年の微細化により、微細構造の埋め込み、特に縦方向に深い、あるいは横方向に狭い空隙構造への酸化物の埋め込みに対して、CVD法による埋め込み方法が技術限界に達しつつある。この様な背景を受けて、流動性を有する酸化物を用いた埋め込み方法として、例えば、SODの採用も増加傾向にある。SODでは、SOG(Spin On Glass)と呼ばれる無機もしくは有機成分を含む塗布絶縁材料が用いられている。この材料は、CVD酸化膜の登場以前よりLSIの製造工程に採用されていたが、加工技術が0.35μm~1μm程度の加工寸法であって微細でなかった故に、塗布後の改質方法は窒素雰囲気にて400℃程度の熱処理を行うことで許容されていた。しかし近年のLSIにおいては、最小加工寸法が50nm幅より小さくなっており、SOGに変わる材料として、ポリシラザン(SiHNH)(又は、パーヒドロポリシラザン:PHPSと称する)を用いることが検討されている。ポリシラザンは、例えば、ジクロロシランやトリクロロシランとアンモニアの触媒反応によって得られる材料であり、薄膜を形成する際に、スピンコーターを用いて基板上に塗布される。
 ポリシラザンは、製造時の過程から、アンモニアに起因する窒素等の不純物として含む。そのため、ポリシラザンを用いて形成された塗布膜から不純物を取り除いて、緻密な酸化膜を得る為には、塗布後に水分の添加と熱処理をおこなうことが必要である。水分の添加方法として、例えば、熱処理炉体中に水素と酸素を反応させて水分を発生させる手法が知られている。発生させた水分がポリシラザン膜中に取り込まれ、熱が付与されることによって緻密な酸化膜が得られる。このときに行う熱処理は、素子間分離用のSTI(Shallow   Trench   Isolation)の場合で、最高温度が1000℃程度に達する場合がある。
 また、ポリシラザンがLSI工程で広く用いられる一方で、トランジスタの熱負荷に対する低減要求も高まっている。熱負荷を低減したい理由として、トランジスタの動作用に打ち込んだ、ボロンやヒ素、リンなどの不純物の過剰な拡散を防止することや、電極用の金属シリサイドの凝集防止、ゲート用仕事関数金属材料の性能変動防止、メモリ素子の書き込み、読み込み繰り返し寿命の確保、などがある。従って、水分を付与する工程において、効率良く水分を付与できることは、その後におこなう熱処理における熱負荷の低減に直結する。
 また、同様に、従来のCVD法による埋め込み方法に替えて、流動性CVD(Flowable CVD)法により空隙に絶縁材料を埋め込む手法も検討されている。
WO2013/094680
WO2013/077321
 SODによりポリシラザン等の塗布膜や流動性CVD法で埋め込まれた絶縁材料から緻密な酸化膜を得るための処理では、トランジスタ等への熱負荷を低減するため、当該処理で用いる処理ガスも低温化することが望ましい。例えばポリシラザンの塗布膜を処理するための処理ガスとして、液体原料を気化させた気化ガスを用いることができる。しかしながら、低温条件においては、気化ガスの液体原料の気化が不完全であったり、処理装置内で再液化を起こしたり、等の理由により、液滴やミスト状態の気化ガス原料が塗布膜に供給される場合がある。このような場合、異物(パーティクル等)の発生原因となり、酸化膜の特性を著しく低下させることになる。
 本発明は、低温条件においても、処理装置内における処理ガスの液滴化やミスト化等の発生を抑制し、処理ガスにより処理される基板上に形成される膜の特性を向上させることが可能な技術を提供することを目的とする。
 本発明の一態様によれば、基板を収容する処理室と、液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するように構成された制御部と、を有する基板処理装置が提供される。
 本発明によれば、低温条件においても、処理装置内における処理ガスの液滴化やミスト化等の発生を抑制し、処理ガスにより処理される基板上に形成される膜の特性を向上させることができる。
一実施形態に係る基板処理装置の構成を示す概略構成図。 一実施形態に係る基板処理装置が備える処理炉の構成を示す縦断面概略図。 一実施形態に係る基板処理装置が備える処理ガス加熱部の構成を示す外観図。 一実施形態に係る基板処理装置が備える気化器の構成を示す縦断面概略図。 一実施形態に係る基板処理装置が備えるガスフィルタの構成を示す縦断面概略図。 一実施形態に係る基板処理装置が備えるガス濃度計の構成を示す概略構成図。 一実施形態に係る基板処理装置が備える処理炉の炉口部周辺の構成を示す概略構成図。 一実施形態に係る基板処理装置が備えるコントローラの概略構成図。 一実施形態に係る基板処理工程に対する事前処理工程を示すフロー図。 一実施形態に係る基板処理工程を示すフロー図。 一実施形態に係る基板処理工程における、処理ガス温度に基づく処理ガス供給部の制御手順を示すフロー図。 一実施形態に係る基板処理工程における、処理ガス圧力に基づく処理ガス供給部の制御手順を示すフロー図。 一実施形態に係る基板処理工程における、処理ガス中の反応ガス濃度値に基づく処理ガス供給部の制御手順を示すフロー図。
<本発明の一実施形態>
 以下に、本発明の好ましい実施の形態について図面を参照してより詳細に説明する。
(1)基板処理装置の構成
 まず、本実施形態にかかる半導体装置の製造方法を実施する基板処理装置10の構成例について、図1及び図2を用いて説明する。本基板処理装置10は、過酸化水素(H)を含有する液体、すなわち過酸化水素水を気化させて生成される処理ガス用いて基板を処理する装置である。例えばシリコン等からなる基板としてのウエハ200を処理する装置である。本基板処理装置10は、微細構造である凹凸構造(空隙)を有するウエハ200に対する処理に用いる場合に好適である。微細構造を有する基板とは、例えば、10nm~50nm程度の幅の横方向に狭い溝(凹部)など、アスペクト比の高い構造を有する基板をいう。本実施形態では、微細構造の溝にシリコン含有膜であるポリシラザン膜が充填されており、当該ポリシラザン膜を処理ガスにより処理することにより酸化膜を形成する。なお、本実施形態ではポリシラザン膜を処理ガスにより処理する例を示しているが、ポリシラザン膜に限らず、例えばシリコン元素と窒素元素と水素元素を含む膜、特にシラザン結合を有する膜や、テトラシリルアミンとアンモニアのプラズマ重合膜などを処理する場合にも、本発明を適用することができる。
(処理容器)
 図1に示すように、処理炉202は処理容器(反応管)203を備えている。処理容器203は、例えば石英または炭化シリコン(SiC)等の耐熱性材料により構成されており、下端が開口した円筒形状に形成されている。処理容器203の筒中空部には処理室201が形成され、基板としてのウエハ200を、後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理容器203の下部には、処理容器203の下端開口(炉口)を気密に封止(閉塞)可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、処理容器203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は円板状に形成されている。基板の処理空間となる処理室201は、処理容器203とシールキャップ219で構成される。
(基板保持部)
 基板保持部としてのボート217は、複数枚のウエハ200を多段に保持できるように構成されている。ボート217は、複数枚のウエハ200を保持する複数本の支柱217aを備えている。支柱217aは例えば3本備えられている。複数本の支柱217aはそれぞれ、底板217bと天板217cとの間に架設されている。複数枚のウエハ200が、支柱217aに水平姿勢でかつ、互いに中心を揃えた状態で整列されて菅軸方向に多段に保持されている。天板217cは、ボート217に保持されるウエハ200の最大外径よりも大きくなるように形成されている。また、天板217cの上部には、処理容器203内に供給された処理ガスを加熱する処理ガス加熱部217dが設けられている。なお、天板217cと処理ガス加熱部217dは別部品として設けられても良く、一体として(一つの部品として)設けられても良い。
 支柱217a、底板217b、天板217c、処理ガス加熱部217dの構成材料として、例えば炭化シリコン、酸化アルミニウム(AlO)、窒化アルミニウム(AlN)、窒化シリコン(SiN)、酸化ジルコニウム(ZrO)等の熱伝導性の良い非金属材料が用いられる。特に熱伝導率が10W/mK以上である非金属材料が好ましい。なお、熱伝導率が問題にならなければ、石英などで形成しても良く、また、金属によるウエハ200へ汚染が問題にならなければ、支柱217a、天板217c、処理ガス加熱部217dは、ステンレス(SUS)等の金属材料で形成しても良い。支柱217a、天板217c、処理ガス加熱部217dの構成材料として金属が用いられる場合、金属にセラミックや、テフロン(登録商標)などの被膜を形成しても良い。
 ボート217の下部には、例えば石英や炭化シリコン等の耐熱材料からなる断熱体218が設けられており、第1の加熱部207からの熱がシールキャップ219側へ伝わりにくくなるように構成されている。断熱体218は、断熱部材として機能すると共にボート217を保持する保持体としても機能する。なお、断熱体218は、図示するように円板形状に形成された断熱板が水平姿勢で多段に複数枚設けられたものに限らず、例えば円筒形状に形成された石英キャップ等であっても良い。また、断熱体218は、ボート217の構成部材の1つとして考えても良い。
(昇降部)
 処理容器203の下方には、ボート217を昇降させて処理容器203の内外へ搬送する昇降部としてのボートエレベータが設けられている。ボートエレベータには、ボートエレベータによりボート217が上昇された際に炉口を封止するシールキャップ219が設けられている。
 シールキャップ219の処理室201と反対側には、ボート217を回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸261はシールキャップ219を貫通してボート217に接続されており、ボート217を回転させることでウエハ200を回転させるように構成されている。
(第1の加熱部)
 処理容器203の外側には、処理容器203の側壁面を囲う同心円状に、処理容器203内のウエハ200及び処理ガス加熱部217dを加熱する第1の加熱部207が設けられている。第1の加熱部207は、ヒータベース206により支持されて設けられている。図2に示すように、第1の加熱部207は第1~第4のヒータユニット207a~207dを備えている。第1~第4のヒータユニット207a~207dはそれぞれ、処理容器203内でのウエハ200の積層方向に沿って設けられている。
 処理容器203内には、加熱部としての第1~第4のヒータユニット207a~207d毎に、ウエハ200又は周辺温度を検出する温度検出器として、例えば熱電対等の第1~第4の温度センサ263a~263dはそれぞれ、処理容器203とボート217との間にそれぞれ設けられている。なお、第1~第4の温度センサ263a~263dはそれぞれ、第1~第4のヒータユニット207a~207dによりそれぞれ加熱される複数枚のウエハ200のうち、その中央に位置するウエハ200の温度を検出するように設けられても良い。
 第1の加熱部207、第1~第4の温度センサ263a~263dには、それぞれ、後述するコントローラ121が電気的に接続されている。コントローラ121は、処理容器203内のウエハ200の温度が所定の温度になるように、第1~第4の温度センサ263a~263dによりそれぞれ検出された温度情報に基づいて、第1~第4のヒータユニット207a~207dへの供給電力を所定のタイミングにてそれぞれ制御し、第1~第4のヒータユニット207a~207d毎に個別に温度設定や温度調整を行うように構成されている。また、第1~第4のヒータユニット207a~207dのそれぞれの温度を検出する温度検出器として、熱電対で構成される第1の外部温度センサ264a,第2の外部温度センサ264b,第3の外部温度センサ264c,第4の外部温度センサ264dがそれぞれ設けられていてもよい。第1~第4の外部温度センサ264a~264dはそれぞれコントローラ121に接続されている。これにより、第1~第4の外部温度センサ264a~264dによりそれぞれ検出された温度情報に基づいて、第1~第4のヒータユニット207a207dのそれぞれの温度が所定の温度に加熱されているかを監視できる。
(ガス供給部(ガス供給系))
 図1、図2に示すように、処理容器203と第1の加熱部207との間には、処理容器203の外壁の側部に沿って、処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aが設けられている。処理ガス供給ノズル501と酸素含有ガス供給ノズル502aは、例えば熱伝導率の低い石英等により形成されている。処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aは二重管構造を有していてもよい。処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの先端(下流端)は、それぞれ処理容器203の頂部から処理容器203の内部に気密に挿入されている。処理容器203の内部に位置する処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの先端には、それぞれ供給孔501bと供給孔502bが設けられている。供給孔501bと供給孔502bは処理容器203内に供給される処理ガス及び酸素含有ガスを処理容器203内に収容されたボート217の上部に設けられた天板217cに向かって供給するように構成されている。
 酸素含有ガス供給ノズル502aの上流端にはガス供給管602cが接続されている。さらにガス供給管602cには、上流側から順に、バルブ602a、ガス流量制御部を構成するマスフローコントローラ(MFC)602b、バルブ602d、酸素含有ガス加熱部602e、が設けられている。酸素含有ガスは例えば、酸素(O)ガス、オゾン(O)ガス、亜酸化窒素(NO)ガスの少なくとも1つ以上を含むガスが用いられる。本実施形態では、酸素含有ガスとしてOガスを用いる。酸素含有ガス加熱部602eは、酸素含有ガスを加熱するように設けられており、例えば80~200℃程度に加熱可能となっている。好ましくは、酸素含有ガスは100℃~170℃程度に加熱される。酸素含有ガスを加熱することで、処理室201内に供給される処理ガスの加熱を補助することができる。また、処理容器203内の処理ガスの液化を抑制することができる。また、酸素含有ガスの加熱は、第1の加熱部207で行われるように構成しても良い。
 なお、酸素含有ガス供給ノズル502aから供給するガスとしては、酸素含有ガスに替えて、ウエハ200やウエハ200に形成された膜に対して反応性の低いガスを用いることもできる。たとえば、窒素(N)ガス又は、アルゴン(Ar)ガス,ヘリウム(He)ガス,ネオン(Ne)ガスなどの希ガスを用いることができる。また、処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの少なくとも一方は、処理容器203の下部から処理容器203の内部に気密に挿入され、処理容器203の内壁の側部に沿って頂部まで延びるように設けられても良い。更に、処理ガス供給ノズル501aと酸素含有ガス供給ノズル502aの少なくとも一方は、処理容器203の内壁の側部に沿って頂部まで延びるように設けられる区間に1又は複数のガス噴出孔(ガス供給孔)が設けられる構造とし、この1又は複数のガス噴出孔から、ウエハ200に対して平行な方向にガスが供給されるようにすることもできる。
 処理ガス供給ノズル501aの上流端には、処理ガスを供給する処理ガス供給管289aの下流端が接続されている。さらに処理ガス供給管289aには、上流側から、液体原料を気化させて処理ガスを生成する処理ガス生成部としての気化器100、処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計(ガス濃度センサ)500、ガスフィルタ600、バルブ289b、ガスポートヒータ285が設けられている。本実施形態では、処理ガスとしてHを少なくとも含むガスを用いる。また、処理ガス供給管289aの周囲には、ジャケットヒータ等により構成される配管ヒータ289cが設けられており、配管ヒータ289cにより処理ガス供給管289aが加熱されるように構成されている。図7に示すように、ガスポートヒータ285は、処理ガス供給ノズル501aと、処理ガス供給管289aとの間の接続部分に設けられ、接続部分を通過する処理ガスを加熱するように構成されている。なお、処理ガス供給ノズル501aが、処理容器203の下部から処理容器203の内部に挿入されるように構成される場合、ガスポートヒータ285は、特に処理ガス供給ノズル501aの挿入部(ポート部)であって、処理容器203の外側に設けるのが好適である。
 処理ガス温度センサ286は、例えば熱電対により構成されており、気化器100で生成されて処理ガス供給管289a内を流れる処理ガスの温度を測定し、測定した温度データを後述するコントローラ121へ出力する。処理ガス圧力センサ287は、処理ガス供給管289a内を流れる処理ガスの圧力を測定し、測定した圧力データをコントローラ121へ出力する。ガス濃度計500は、処理ガス供給管289a内を流れる処理ガスに含まれる特定のガスの濃度を測定し、測定したガス濃度値のデータをコントローラ121へ出力する。本実施形態では、ガス濃度計500は、ウエハ200に対する基板処理に用いられる反応ガスとしてのHガスの濃度値を、特定のガスの濃度値として測定する。処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計500は、気化器100における液体原料の気化状態を監視及び制御する目的のためには、気化器100の排気口104の直近に設けられるのが好適である。ガスフィルタ600は、処理ガス供給管289a内を流れる処理ガスが通過するように設けられる。通過する処理ガスはガスフィルタ600により加熱され、処理ガス中に含まれる液滴状態やミスト状態である液体原料が気化される。処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計500は、例えば気化器100の下流側の直近に設けることにより、気化器100における気化状態をより正確にモニタすることができる。
 気化器100には、気化器100に対して処理ガスの液体原料(本実施形態では過酸化水素水)を供給する液体原料供給部(液体原料供給系)300と、気化器100に対してキャリアガスを供給するキャリアガス供給部(キャリアガス供給系)が接続されている。気化器100において生成された液体原料の気化ガスは、キャリアガスとともに、処理ガスとして処理ガス供給管289aへ向けて送出(排出)される。
 液体原料供給部300は、上流側から、液体原料供給源301と、バルブ302と、気化器100へ供給される液体原料の流量を制御する液体流量コントローラ(LMFC)303を備えている。キャリアガス供給部は、キャリアガス供給管601c、キャリアガスバルブ601a,キャリアガス流量制御部としてのMFC601b、キャリアガスバルブ601d、などにより構成される。本実施形態では、キャリアガスとして酸素含有ガスであるOガスが用いられる。但し、キャリアガスとしては、酸素含有ガス(Oガスの他、例えばOガス、NOガス、等)を少なくとも1つ以上を含むガスを用いることができる。また、キャリアガスとして、ウエハ200やウエハ200に形成された膜に対して反応性の低いガスを用いることもできる。たとえば、Nガス又は、Arガス,Heガス,Neガスなどの希ガスを用いることができる。
ここで、少なくとも処理ガス供給ノズル501aと供給孔502aにより処理ガス供給部が構成される。処理ガス供給部には更に、処理ガス供給管289a、バルブ289b、ガスフィルタ600、ガス濃度計500、処理ガス温度センサ286、処理ガス圧力センサ287、気化器100等を含めるようにしても良い。また、少なくとも酸素含有ガス供給ノズル501aと供給孔501bにより酸素含有ガス供給部が構成される。酸素含有ガス供給部には更に、ガス供給管602c、酸素含有ガス加熱部602e、バルブ602d、MFC602b、バルブ602a等を含めるようにしても良い。また、処理ガス供給部と酸素含有ガス供給部により、ガス供給部(ガス供給系)が構成される。
(気化器)
 図4に、気化器100の構成を示す。気化器100は、加熱された部材に液体原料を滴下することで液体原料を気化する滴下法を用いている。気化器100は、加熱される部材としての気化容器101と、気化容器101で構成される気化空間102と、気化容器101を加熱する加熱部としての気化器ヒータ103と、液体原料を気化させて生じた気化ガスをキャリアガスとともに処理ガスとして処理ガス供給管289aへ排気(送出)する排気口104と、気化容器101の温度を測定する熱電対(温度センサ)105と、熱電対105により測定された温度に基づいて、気化器ヒータ103の温度を制御する温度制御コントローラ106と、LMFC303から供給される過酸化水素水を気化容器101内に供給する液体供給部としての滴下ノズル107と、キャリアガス供給管601cから供給されるキャリアガスを気化容器101内に供給するキャリアガス導入口108とで構成されている。
 気化容器101は、滴下された液体原料が気化容器101の内側表面に到達すると同時に気化するように気化器ヒータ103により加熱されている。また、気化器ヒータ103による気化容器101の加熱効率を向上させることや、気化器100と他のユニットとの断熱可能な断熱材109が設けられている。気化容器101は、液体原料との反応を防止するために、石英やSiCなどで構成されている。気化容器101は、滴下された液体原料の温度や、気化熱により温度が低下する。よって、温度低下を防止するために、熱伝導率が高い材料、例えばSiCで構成されることが望ましい。
 ここで、過酸化水素水のように沸点の異なる2つ以上の原料が混合された液体原料を加熱して気化させる場合、当該液体原料の沸点より高い温度で加熱した場合であっても、液体原料全体が均一に加熱されないことにより、当該液体原料中に含まれる沸点の低い特定の1つの原料の気化のみが先に進み、他の原料の気化が進まないことがある。その結果、加熱されている液体原料中において他の原料の濃縮が発生し、最終的に気化されたガスの濃度比率にむらが生じる可能性がある。
 より具体的には、本実施形態で用いる過酸化水素水はHO中にHを含有する為、その沸点はHの濃度によって異なる。例えば、Hの濃度が34%の過酸化水素水の場合、大気圧中の沸点はおよそ106℃である。ところが、濃度が100%の過酸化水素水の場合は、沸点がおよそ150℃である。そのため、例えば容器に溜めた過酸化水素水を沸騰法で蒸発気化させようとすると、上述の通り、容器中の過酸化水素水が均一に加熱されないことにより、水(HO)のみが優先して蒸発し、過酸化水素水中でHの濃縮が生じてしまう。
 従って、本実施形態では、水よりも高い沸点を有する過酸化水素水の沸点よりも高い温度により、加熱面上の過酸化水素水全体を速やかに加熱することにより、過酸化水素の濃縮が生じるのを防止する。より具体的には、例えばHの濃度が34%の過酸化水素水を蒸発気化させる場合、濃度が34%の過酸化水素水の沸点である106℃より高い温度まで気化ヒータ103により気化容器101を加熱し、気化容器101の加熱面に当該過酸化水素水を滴下することにより、過酸化水素水の液滴を106℃以上で速やかに加熱して気化を行う。また、Hの濃縮をより確実に防止するため、濃度100%の過酸化水素水の沸点である150℃より高い温度まで気化容器101を加熱することで過酸化水素水の気化を行ってもよい。
 しかしながら、Hは加熱する温度が高くなるほど分解が促進される性質を有しているため、過酸化水素水の加熱はHの濃縮を抑制しながらも、可能な限り低温で行う必要がある。特にHは150℃を超えると分解が促進される。従って、本実施形態では、所定の濃度の過酸化水素水の沸点より高く、且つHの濃縮が起こらない可能な限り低い温度で過酸化水素水を加熱するように、気化ヒータ103の温度が制御される。
(ガスフィルタ)
 図5に示すように、ガスフィルタ600は、処理ガス供給管289aと接続されるフィルタ容器610と、フィルタ容器610に導入された処理ガスが通過するフィルタ部620と、フィルタ容器610の外周に設けられてフィルタ容器610とフィルタ部620を加熱するフィルタヒータ630を備えている。本実施形態では、フィルタ部620をフッ素樹脂により形成された多孔体により構成している。ヒータにより加熱される多孔体フィルタは金属により形成されことが一般的であるが、本実施形態では処理ガスに含まれる反応ガスとしてHガスを用いるため、金属製のフィルタはHガスと反応して腐食などを起こすことがある。従って本実施形態ではフィルタ部620をフッ素樹脂により形成している。
 処理ガス供給管289a内を流れる処理ガス中には、気化器100における液体原料の気化不良や、処理ガス供給管289a内での再液化等により、液滴状態やミスト状態である液体原料が含まれる場合がある。処理ガス供給管289aからフィルタ容器610に導入された処理ガス中に含まれる液滴状態やミスト状態である液体原料は、フィルタヒータ630により加熱されたフィルタ部620を通過することにより加熱され気化される。特にフィルタ部を構成する多孔体の孔径サイズ以上の液滴やミストを効率的に気化させることができる。従って、ガスフィルタ600を備えることにより、処理容器203内のウエハ200に対して液滴状態やミスト状態で液体原料が供給されることをより確実に防止することができる。フィルタヒータ630は、例えば温度制御コントローラ106を介して、フィルタ部620において処理ガス中の液滴やミストを気化させるように所望の温度(例えば50℃~200℃)となるように制御されている。
(処理ガス加熱部)
 上述の通り、ボート217には、処理容器203内に供給された処理ガスを加熱する処理ガス加熱部217dが設けられている。処理ガス加熱部217dは、例えば図3に示すようなお椀型の形状を有しており、供給孔501bと供給孔502bの直下に、処理ガス加熱部217dの面が供給孔501bと供給孔502bと対向するように設けられる。すなわち、供給孔501bと供給孔502bから導入された処理ガスと酸素含有ガスのガス流が、処理ガス加熱部217dの面に向かって直接当たるように、処理ガス加熱部217d、供給孔501b及び供給孔502bが構成されている。処理ガス加熱部217dは、ボート217に載置されたウエハ200とともに第1の加熱部207により加熱される。
 処理ガス加熱部217dの面に向かって供給された処理ガスは、第1の加熱部207によって所定の温度まで加熱された処理ガス加熱部217dにより加熱される。この際、供給された処理ガス中に含まれる液滴状態、或いはミスト状態の液体原料は加熱されることにより気化される。処理ガス加熱部217dを設けることにより、処理ガスがウエハ200に供給される直前である処理容器203内において液滴或いはミストを気化させることができるので、ウエハ200に対して液滴状態、或いはミスト状態の液体原料が供給されることを防止することができる。
 なお、本実施形態のようにガス状態の処理ガス(液滴或いはミストを含む)を加熱するのではなく、液体状態のままの液体原料を処理容器203内に設けた液体加熱部において加熱して気化させることも考えられる。しかしながら、液体状態の液体原料を気化させる場合、ガス状態の処理ガス中の液滴或いはミストを気化させる場合に比べて、気化させるために必要となる熱量が大きいため、気化に伴う温度低下が大きい。これを補償するためには、液体加熱部をより多くの熱量により加熱しなければならない。その場合、液体加熱部を加熱するヒータとして、第1の加熱部207よりも出力(パワー)の大きいヒータを設ける必要があるが、このような出力の大きいヒータで液体加熱部を加熱すると、処理容器203内における温度分布に偏りが生じる。一方、処理容器203内に複数枚のウエハ200を多段に保持して基板処理を行う場合、複数枚のウエハ200間の温度分布は均一であることが望ましい。従って、液体原料を液体状態のまま処理容器203内で加熱する場合には、温度分布の偏りの発生を考慮して、液体加熱部とウエハ200の載置領域の距離を大きくとる必要がある。つまり結果として、処理容器203内に収容可能なウエハ200の枚数が大きく制限され、一度に処理可能なウエハ200の枚数が減少してしまうという問題がある。これに対して、本実施形態では、気化器100で液体原料を気化させて処理ガスを生成し、ガス状態の処理ガス(液滴或いはミストを含む)を処理容器203内の処理ガス加熱部217dにおいて加熱する。従って処理ガス加熱部217dで液滴やミストを気化させるために必要となる熱量が比較的小さく、気化に伴う温度低下が少ないため、処理容器203内における温度分布の偏りが生じにくい。結果として処理ガス加熱部217dとウエハ200の載置領域の間の距離を大きくとる必要がなく、処理容器203内に収容可能なウエハ200の枚数が制限されない、又は枚数の減少を最小限にすることができる。
 なお、処理ガス加熱部217dの形状は、お椀型の形状に限られず、単純な板状の形状の他、噴射されたガスを加熱する面を備える種々の形状を採用することができる。また、処理ガス加熱部217dは、ボート217によって支持される構造に限られず、供給孔501bと供給孔502bから導入される処理ガスと酸素含有ガスのガス流が直接当たる(接触する)ように設けられればよい。例えば処理ガス加熱部217dは、処理容器203内の天井部分から吊り下げるように設けられても良い。また、天板217cと処理ガス加熱部217dは別部品として設けられても良く、一体として(すなわち一つの部品として)設けられても良い。また、処理ガス加熱部217dは、第1の加熱部207により加熱される態様に限られず、別に設けられた他のヒータ、例えば処理容器203の天井部分の外側に設けたランプヒータ等、により加熱されるように構成されても良い。
(ガス濃度計(ガス濃度センサ))
 図6に示すように、ガス濃度計500は、処理ガス供給管289aから導入される処理ガスが通過するセル部540と、セル部540を通過する処理ガスに光線、特に近赤外線を照射する発光部520と、発光部520から照射されてセル部540内の処理ガスを通過した光線を受光する受光部530と、受光部530が受光した光線の分光スペクトルを解析して処理ガス中のHガスの濃度及び、HOガスの濃度を算出する解析部(ガス濃度算出部)510、を備えている。解析部510は受光部530と、例えば光ファイバー等で接続され、受光部530で受光した光の分光スペクトルを解析する処理を実行する。当該分析では、Hガスを通過した光に固有に現れるスペクトル成分の大きさ、及びHOガスを通過した光に固有に現れるスペクトル成分の大きさをそれぞれ評価することにより、セル部540を通過した処理ガス中のHガス及びHOガスの濃度値をそれぞれ算出する。解析部510において算出されたHガス及びHOガスの濃度値のデータは、コントローラ121へ出力される。なお、本実施形態においては、解析部510はHガス及びHOガスの濃度値を算出するよう構成されているが、ガスの濃度値そのものではなく、Hガス及びHOガスの濃度を示す他のデータを算出するように構成されていてもよい。
(排気部)
 処理容器203の下方には、処理室201内のガスを排気するガス排気管231の一端が接続されている。ガス排気管231の他端は、ガス濃度計(ガス濃度センサ)600、及び圧力調整器としてのAPC(Auto Pressure Controller)バルブ255を介して、真空ポンプ246(排気装置)に接続されている。処理室201内は、真空ポンプ246で発生する負圧によって排気される。なお、APCバルブ255は、弁の開閉により処理室201の排気および排気停止を行うことができる開閉弁である。また、弁開度の調整により圧力を調整することができる圧力調整弁でもある。
 また、圧力検出器としての圧力センサ223がAPCバルブ255の上流側に設けられている。このようにして、処理室201内の圧力が所定の圧力(真空度)となるよう、真空排気するように構成されている。圧力センサ223およびAPCバルブ255には、圧力制御コントローラ224(図8参照)が電気的に接続されており、圧力制御コントローラ224は、圧力センサ223により検出された圧力に基づいて、処理室201内の圧力が所望の圧力となるよう、APCバルブ255を所望のタイミングで制御するように構成されている。
 排気部は、ガス排気管231、APCバルブ255などで構成されている。また、排気部には、ガス濃度計600、圧力センサ223などを含めても良い。さらに、真空ポンプ246を排気部に含めても良い。
(第2の加熱部)
 第1の加熱部207は、上述したように処理容器203内のウエハ200を加熱するように設けられているため、処理容器203内のウエハ200が収容された領域は第1の加熱部207により加熱される。しかしながら、処理容器203内のウエハ200の収容領域以外の領域は、第1の加熱部207では加熱されにくい。その結果、処理容器203内の第1の加熱部207で加熱される領域以外の領域で低温領域が生じ、Hを含むガスがこの低温領域を通過する際に冷却されて再液化してしまう場合がある。
 Hを含むガスが再液化して生じた液体は、処理容器203内の底部(シールキャップ219の上面)に溜まると、シールキャップ219と反応してシールキャップ219を損傷させる場合がある。また、Hを含むガスが再液化して生じた液体が処理容器203内でさらに気化されて再気化ガスが発生する場合がある。上述したようにHとHOとの気化点が異なり、先にHOが蒸発して排気されるため、再気化ガスはウエハ200に供給される際のガスと比べてHの濃度が高くなる場合がある。従って、再気化ガスが発生した処理容器203内では、処理ガス中におけるHの濃度が不均一になる場合がある。
 そこで、図1、図2及び図7に示すように、処理炉202には第2の加熱部280が設けられ、第1の加熱部207で加熱される領域以外の領域を加熱するように構成されている。すなわち、第2の加熱部280が、処理容器203の下部(炉口部周辺)の外側(外周)に、処理容器203の側壁面を同心円状に囲うように設けられている。
 第2の加熱部280は、排気部へ向かって処理容器203の上側から下側へ流れるHを含むガスを、処理容器203内の下流側(すなわち処理容器203内の断熱体218が収容される領域)で加熱するように構成されている。また、第2の加熱部280は、処理容器203の下端開口を封止するシールキャップ219や、処理容器203の下部、処理容器203内の底部に配設される断熱体218等の処理容器203の下部を構成する部材を加熱するように構成されている。言い換えれば、ボート217が処理室201に装填された際に、底板217bよりも下方に位置するよう、第2の加熱部280を配置する。第2の加熱部280は、例えばランプヒータにより構成される。
 第2の加熱部280には、後述するコントローラ121が電気的に接続されている。コントローラ121は、処理容器203内での処理ガス(すなわちHを含むガス)の液化を抑制できるような温度(例えば100℃~300℃)となるように、第2の加熱部280への供給電力を所定のタイミングにて制御するように構成されている。この様に加熱することによって、炉口部での処理ガスの液化や、乾燥工程までに発生するパーティクルや不純物などが炉口部に付着することを防止することができる。
 また、上述の通り、処理ガス供給ノズル501aと、処理ガス供給管289aとの間の接続部分にはガスポートヒータ285が設けられ、接続部分を通過する処理ガスを加熱するように構成されている。ガスポートヒータ285は、処理ガス供給管289aの内部に結露が生じないように所望の温度に制御されている。例えば、50℃~300℃に制御される。また、ガス排気管231と、処理容器203との間の接続部分にはエキゾーストチューブヒータ284が設けられている。エキゾーストチューブヒータ284は、ガス排気管231の内部に、結露が生じないように、所望の温度に制御されている。例えば、50℃~300℃に制御される。
(制御部)
 図8に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネルやディスプレイ等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプログラムレシピ等が読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のLMFC303、MFC601b,602b、バルブ601a,601d,602a,602d,302、APCバルブ255、第1の加熱部207(207a,207b,207c,207d)、第2の加熱部280、第1~第4の温度センサ263a~263d、ボート回転機構267、圧力センサ223、圧力制御コントローラ224、温度制御コントローラ106、処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計500、気化器ヒータ103、配管ヒータ289c、フィルタヒータ630、エキゾーストチューブヒータ284、ガスポートヒータ285等に接続されている。
 CPU121aは、記憶装置121cからの制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出されたレシピの内容に沿うように、LMFC303による液体原料の流量調整動作、MFC601b、602bによるガスの流量調整動作、バルブ601a,601d,602a,602d,302、289bの開閉動作、APCバルブ255の開閉調整動作、及び第1~第4の温度センサ263a~263dに基づく第1の加熱部207の温度調整動作、第2の加熱部280の温度調整動作、真空ポンプ246の起動及び停止、ボート回転機構267の回転速度調節動作、温度制御コントローラ106を介した気化器ヒータ103、配管ヒータ289c、フィルタヒータ630、エキゾーストチューブヒータ284、ガスポートヒータ285の温度調整動作、等を制御するように構成されている。また、処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計500が取得した処理ガスのデータに基づいて、後述する制御動作を実行する。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。本明細書において、記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合が有る。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)事前処理工程
 ここで、基板としてのウエハ200に後述の改質処理が施される前に施される事前処理工程について図9を用いて説明する。図9に示すように、事前処理工程では、ウエハ200に対して、ポリシラザン塗布工程T20とプリベーク工程T30が施されている。ポリシラザン塗布工程T20では、塗布装置(不図示)により、ポリシラザンが塗布される。塗布されたポリシラザンの厚さは、ポリシラザンの分子量、ポリシラザン溶液の粘度、コーターの回転数によって調整される。プリベーク工程T30では、ウエハ200に塗布されたポリシラザンから溶剤が除去される。具体的には、70℃~250℃程度に加熱されることにより溶剤が揮発することにより行われる。加熱は好ましくは150℃程度で行われる。
 また、ウエハ200は、微細構造である凹凸構造を有し、ポリシラザンを少なくとも凹部(溝)に充填するように供給され、溝内にシリコン含有膜であるポリシラザン塗布膜が形成された基板を用いられる。このウエハ200に、処理ガスとして過酸化水素水の気化ガスであるHを含むガスを用いる例について説明する。なお、シリコン含有膜には、窒素や水素が含まれており、場合によっては、炭素や他の不純物が混ざっている可能性が有る。なお、微細構造を有する基板とは、シリコン基板に対して垂直方向に深い溝(凹部)、あるいは例えば10nm~30nm程度の幅の横方向に狭い溝(凹部)等のアスペクト比の高い構造を有する基板をいう。
 なお、本実施形態における事前処理工程では、上述の基板処理装置10とは別の処理装置(不図示)にウエハ200を搬入し(基板搬入工程T10)、当該処理装置内において上述のポリシラザン塗布工程T20とプリベーク工程T30を実施し、その後ウエハ200を搬出する(基板搬出工程T40)。但し、ポリシラザン塗布工程T20とプリベーク工程T30はそれぞれ別の装置において実施してもよい。
(3)基板処理工程
 続いて、本実施形態に係る半導体装置の製造工程の一工程として実施される基板処理工程について、図10を用いて説明する。かかる工程は、上述の基板処理装置10により実施される。本実施形態では、かかる基板処理工程の一例として、処理ガスとしてHを含むガスを用い、基板としてのウエハ200上に形成されたシリコン含有膜をSiO膜に改質(酸化)する工程(改質処理工程)を行う場合について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作は、コントローラ121により制御される。
 過酸化水素(H)は、水蒸気(水、HO)と比較すると、活性化エネルギーが高く、1分子中に含まれる酸素原子の数が多いため酸化力が強い。そのため、処理ガスとしてHを含むガスが用いられることで、ウエハ200の溝内に形成された膜の深部(溝の底部)まで酸素原子を到達させることができる。従って、ウエハ200上の膜の表面部と深部との間で改質処理の度合いをより均一にできる。すなわち、ウエハ200に形成された膜の表面部と深部との間でより均一な基板処理を行うことができ、改質処理後のウエハ200の誘電率等を均一にできる。また、改質処理工程を低温で行うことができ、ウエハ200上に形成された回路の性能劣化等を抑制することができる。なお、本実施形態においては、反応物としてのHを気化もしくはミスト化したもの(すなわち気体状態のH)をHガス又は反応ガスと呼び、少なくともHガス(反応ガス)を含むガスを処理ガスと呼び、Hを含む液体状態の水溶液を過酸化水素水又は液体原料と呼ぶ。
(基板搬入工程(S10))
 まず、予め指定された枚数のウエハ200をボート217に装填する。複数枚のウエハ200を保持したボート217を、ボートエレベータによって持ち上げて処理容器203内に搬入する。この状態で、処理炉202の開口部である炉口はシールキャップ219によりシールされた状態となる。
(圧力・温度調整工程(S20))
 処理容器203内が所望の圧力(真空度)となるように真空ポンプ246を制御して処理容器203内の雰囲気を真空排気する。また、酸素含有ガス供給部(供給孔501b)から酸素含有ガスを処理容器203に供給する。好ましくは、酸素含有ガスを酸素含有ガス加熱部602eで100℃~120℃に加熱した後に供給する。この際、処理容器203内の圧力は、圧力センサ223で測定し、この測定した圧力に基づきAPCバルブ255の開度をフィードバック制御する(圧力調整)。処理容器203内の圧力は例えば、微減圧状態(約700hPa~1000hPa)に調整される。
 処理容器203内に収容されたウエハ200が所望の第1の温度、例えば40℃から100℃となるように第1の加熱部207によって加熱する。この際、処理容器203内のウエハ200が所望の温度となるように、第1の温度センサ263a、第2の温度センサ263b、第3の温度センサ263c、第4の温度センサ263dが検出した温度情報に基づき第1の加熱部207が備える第1のヒータユニット207a、第2のヒータユニット207b、第3のヒータユニット207c、第4のヒータユニット207dへの供給電力をフィードバック制御する(温度調整)。このとき、第1のヒータユニット207a、第2のヒータユニット207b、第3のヒータユニット207c、第4のヒータユニット207dの設定温度は全て同じ温度となるように制御する。更には、処理容器203内(特に処理容器203の下方)で、処理ガスが再液化されない温度となるように、第2の加熱部280を制御する。例えば、100℃~200℃となるように加熱する。
 また、ウエハ200を加熱しつつ、ボート回転機構267を作動して、ボート217の回転を開始する。この際、ボート217の回転速度をコントローラ121によって制御する。なお、ボート217は、少なくとも後述する改質処理工程(S30)が終了するまでの間は、常に回転させた状態とする。
(改質処理工程(S30))
 ウエハ200が所定の第1温度に到達し、ボート217が所望とする回転速度に到達したら、液体原料供給部300から液体原料(過酸化水素水)を気化器100へ供給する。すなわち、バルブ302を開け、LMFC303により流量制御された液体原料を、滴下ノズル107を介して気化容器101内に供給する。気化器100に供給された液体原料は、滴下ノズル107から気化容器101の内側表面の底に滴下される。気化容器101は、気化器ヒータ103によって所望の温度(例えば180~220℃)に加熱されており、滴下された液体原料(過酸化水素水)の液滴は、気化容器101の内側表面に接触することにより瞬時に加熱されて蒸発し、気体となる。
 また、バルブ289bを開け、気体になった液体原料(気化ガス)を、処理ガスとして、排気口104、処理ガス供給管289a、ガス濃度計500、ガスフィルタ600、バルブ289b、処理ガス供給ノズル501a、供給孔501bを介して、処理室201内に供給する。ガスフィルタ600を通過する処理ガスは、加熱されたフィルタ部620を通過する際に加熱され、処理ガス中に含まれる液滴状態やミスト状態の液体原料が気化される。供給孔501bから処理室201内に導入された処理ガスは、処理ガス加熱部217dにより更に加熱された後、ウエハ200に供給される。処理ガスに含まれるHガスは、反応ガスとしてウエハ200の表面のシリコン含有膜と酸化反応することで、当該シリコン含有膜をSiO膜に改質する。本工程において処理ガスをウエハ200に供給する間、後述する通り、処理ガス温度センサ286、処理ガス圧力センサ287、ガス濃度計500から取得されるデータに基づいて、処理ガス供給部の各構成を制御する。
 また、処理容器203内に処理ガスを供給しつつ、処理容器203内を真空ポンプ246により排気する。すなわち、APCバルブ255を開け、ガス排気管231を介して処理容器203内から排気された排気ガスを、真空ポンプ246により排気する。そして所定時間経過後、バルブ289bを閉じ、処理容器203内への処理ガスの供給を停止する。また、さらに所定時間経過後、APCバルブ255を閉じ、処理容器203内の排気を停止する。
 また、本実施形態では、液体原料として過酸化水素水を気化器100に供給して、Hガスを含む処理ガスを処理容器203内に供給することを記載したが、これに限らず、液体原料として例えばオゾン(O)を含む液体や、水などを用いることもできる。
(乾燥処理工程(S40))
 改質処理工程(S30)が終了した後、ウエハ200を、プリベーク工程T30で処理された温度以下の所定の第2温度に昇温させる。第2温度は、上述の第1温度よりも高い温度であって、上述のプリベーク工程T30の温度以下の温度に設定される。例えば、150℃に昇温させる。昇温後、温度を保持して、ウエハ200と処理容器203内を緩やかに乾燥させる。このように乾燥させることにより、ポリシラザン膜から離脱した副生成物であるアンモニア、塩化アンモン、炭素、水素、他、溶媒に起因するアウトガス等の不純物とHに起因する不純物を、ウエハ200への再付着を抑制させながらウエハ200の乾燥と異物源の除去を行うことができる。
(ポストベーク工程(S50))
 乾燥処理工程(S40)が終了した後、乾燥処理工程よりも高温に昇温し、窒素と酸素とアルゴンの少なくとも1つ以上を含む雰囲気で処理することにより、SiO膜中に残存している水素を除去することができ、水素の少ない良好なSiO膜に改質することができる。ポストベーク工程S50を行うことで、SiO膜の品質を向上させることができるが、高品質の酸化膜質が要求されるデバイス工程(例えばSTI等)以外では、製造スループットを優先させる場合が有り、行わなくても良い。
(降温・大気圧復帰工程(S60))
 乾燥処理工程(S40)又はポストベーク工程(S50)が終了した後、APCバルブ255を開け、処理容器203内を真空排気することで、処理容器203内に残存するパーティクルや不純物を除去することができる。真空排気後、APCバルブ255を閉じ、処理容器203内の圧力を大気圧に復帰させる。大気圧に復帰させることで、処理容器203内の熱容量が増加させることができ、ウエハ200と処理容器203を均一に加熱することができる。ウエハ200と処理容器203を均一に加熱することで、真空排気で除去できなかったパーティクル、不純物、ウエハ200からのアウトガス、および過酸化水素水に含まれていた残留不純物を除去することができる。処理容器203内の圧力が大気圧になり、所定時間経過した後、所定の温度(例えばウエハ200の挿入温度程度)に降温させる。
(基板搬出工程(S70))
 その後、ボートエレベータによりシールキャップ219を下降させて処理容器203の下端を開口するとともに、処理済みウエハ200をボート217に保持した状態で処理容器203の下端から処理容器203の外部へ搬出する。その後、処理済みウエハ200はボート217より取り出され、本実施形態に係る基板処理工程を終了する。
(4)改質処理工程における処理ガス供給部の制御
 気化器100では、液体原料の気化に伴って気化ヒータ103の温度が低下し、これにより液体原料の気化不良が発生する。気化不良が発生すると、生成される処理ガス中に液体原料の液滴やミストが含まれることになる。これらの液滴やミストは、ウエハ200に供給されることによりパーティクルの発生原因になったり、改質処理により得らえる酸化膜の品質が低下する原因になったりする。更に、気化不良が発生すると、気化容器101内で生じる液体原料の液溜りにおいてHの濃縮が起こることがある。このHの濃縮により、処理ガスに含まれるHガスの濃度にムラが生じると、ウエハ200に対する安定した改質処理を妨げる原因になる。また、処理ガス供給管289a等において処理ガスが再液化する場合も上述の問題が生じる。
 本実施形態では、改質処理工程S30における処理ガス供給時に、処理ガス温度センサ286で取得された処理ガス供給管289a内を流れる処理ガスの温度データ、処理ガス圧力センサ287で取得された処理ガス供給管289a内を流れる処理ガスの圧力データ、ガス濃度計500で取得された処理ガス供給管289a内を流れる処理ガス中の特定のガスの濃度値の少なくとも何れか一つに基づいて、気化器100において気化不良が発生したこと、若しくは気化不良が発生する可能性が高い状態であることをユーザに通知する。また、改質処理工程S30における処理ガス供給時に、処理ガスの温度データ、圧力データ、濃度値の少なくとも何れか一つに基づいて処理ガス供給部の各構成を制御することにより、気化不良の発生や再液化の発生を抑制する。具体的には以下の制御を実行する。
(A)処理ガス温度センサ286の温度データに基づく制御
 処理ガスが供給される過程の途中において、気化器100から送出された処理ガスの温度が低下する場合、気化器100において液体原料の気化不良が発生していると推測されるか、若しくは気化不良が発生する可能性が高いことが推測される。また、処理ガスの温度低下により、処理ガス供給管289a等において処理ガスが再液化する可能性が高くなる。従って、コントローラ121では、処理ガス温度センサ286から取得された処理ガス供給管289a内における処理ガスの温度が所定の温度値又は温度帯よりも低いと判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であることを、例えば入出力装置122によりユーザに通知したり、記録装置121cにログとして記録したりする。
 更に、図11Aに示すように、取得された処理ガスの温度が所定の温度帯(第1の温度以上、第2の温度以下の範囲)よりも低いと判定した場合(S101)、コントローラ121では、気化器100の気化ヒータ103を、温度制御コントローラ106を介して制御して、気化ヒータ103の温度を所定の幅で上昇させる(S102)。これにより、気化器100における液体原料の気化不良が改善若しくは解消される。所定の温度帯は、例えば150℃以上200℃以下の範囲である。処理ガスの温度が100%Hの沸点である150℃以上の温度であれば、一般に、液体原料の気化不良は発生しておらず、また処理ガスの再液化も発生しない。また、気化ヒータ103の温度は、例えば180℃以上220℃以下の範囲となるように気化ヒータ103は制御される。
 一方、本実施形態において処理ガスに含まれる反応ガスとして用いられるHガスは、上述の通り、温度が高くなるほど分解が促進される性質を有している。また、改質処理工程におけるウエハ200に対する処理温度は、ウエハ200上に形成されたデバイス等への熱ダメージを最小限にするため、より低い温度であることが望ましい。従って、取得された処理ガスの温度が所定の温度帯よりも高いと判定した場合(S101)、コントローラ121では、気化器100の気化ヒータ103の温度を所定の幅で下降させる(S103)。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給されるキャリアガスの流量を増やすことで気化不良を改善若しくは解消される場合がある。従って、取得された処理ガスの温度が所定の温度帯よりも低いと判定した場合(S101)、コントローラ121では、気化器100へ供給されるキャリアガスの流量を制御するMFC601bを制御して、キャリアガスの供給量を所定の幅で増大させてもよい(S102)。但し、キャリアガスの流量を変化させた場合、生成される処理ガス中のHガスの濃度が変化することがある。ウエハ200に対する安定した改質処理のためには、Hガスの濃度は一定であることが望ましい。従って、キャリアガス流量を変化させる制御よりも、気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。また、キャリアガスの流量は所定流量以下の範囲となるようにMFC601bは制御される。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給される液体原料の流量を減らすことで気化不良を改善若しくは解消することができる。従って、取得された処理ガスの温度が所定の温度帯よりも低いと判定した場合(S101)、コントローラ121では、気化器100へ供給される液体原料の流量を制御するLMFC303を制御して、液体原料の供給量を所定の幅で減少させてもよい(S102)。但し、液体原料の流量を変化させた場合、生成される処理ガス中のHガスの濃度、及びHガス自体の供給量が変化する。ウエハ200に対する安定した改質処理のためには、Hガスの濃度及び供給量は一定であることが望ましい。また、液体原料の流量を変化させた場合、気化ヒータ103の温度も変化することがある。従って、液体原料の流量を変化させる制御よりも、キャリアガス流量を変化させる制御、又は気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。
 なお、取得された処理ガスの温度が所定の温度帯よりも高いと判定した場合(S101)、コントローラ121では、気化器100へ供給されるキャリアガスの供給量を所定の幅で増大させたり、気化器100へ供給される液体原料の供給量を所定の幅で増加させたりしてもよい(S103)。但し、上述の通り、Hガスの濃度及び供給量は一定であることが望ましいため、液体原料の流量を変化させる制御及びキャリアガス流量を変化させる制御よりも、気化ヒータ103の温度を変化させる制御を優先して行うことが望ましい。
 上述のS102における気化ヒータ103の温度制御、キャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、また、これらの制御の2つ以上を同時又は異なるタイミングで実施してもよい。同様に、上述のS103におけるキャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、また、これらの制御を同時又は異なるタイミングで実施してもよい。
 また、取得された処理ガスの温度が所定の温度帯よりも低い場合、処理ガスの再液化を防止するため、コントローラ121では、配管ヒータ289c、フィルタヒータ630、ガスポートヒータ285の少なくとも何れか一つの温度を所定の幅で上昇させるように制御してもよい。
(B)処理ガス圧力センサ287の圧力データに基づく制御
 処理ガスが供給される過程の途中において、気化器100から送出された処理ガス供給管289a内の処理ガスの圧力が安定していない場合、気化器100において液体原料の気化不良が発生していると推測することができる。従って、コントローラ121では、処理ガス圧力センサ287から取得された処理ガスの圧力値が、所定時間の間、基準となる所定の圧力値(基準圧力値)に対して所定の比率以下の値となる状態が継続していると判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であることを、例えば入出力装置122によりユーザに通知したり、記録装置121cにログとして記録したりする。なお、処理ガスの圧力は、処理ガスの流量や濃度等の条件によっても変動する。従って、例えばキャリアガス供給量に対応する基準圧力値を予めテーブルとして保持しておき、キャリアガス流量制御部としてのMFC601bで制御される各時点でのキャリアガス供給量に対応する基準圧力値を、当該テーブルを参照することにより逐次決定することが望ましい。
 また、コントローラ121では、処理ガス圧力センサ287から取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率の範囲を外れた値となる状態が継続していると判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であるとして、同様の処理を実行しても良い。例えば、取得された処理ガスの圧力値が、基準圧力値を中心として±0.5%~±2%の範囲(すなわち変化幅では基準圧力値を中心として1%~4%の範囲)を外れた状態が30秒~60秒以上の間継続していることが検知されると、上述の処理が行われる。また、コントローラ121は、処理ガス圧力センサ287から取得された処理ガスの圧力値の、基準圧力値に対する所定時間当たりの変化量又は変化率が、所定値以上であると判定した場合や、取得された処理ガスの圧力が基準圧力値又は基準圧力値を中心とする所定の圧力帯から外れたと判定した場合に、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であるとして、同様の処理を実行してもよい。
 更に、図11Bに示すように、取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率(第1の圧力比率)以下の値となる状態が継続していると判定した場合(S111)、コントローラ121では、気化器100の気化ヒータ103を、温度制御コントローラ106を介して制御して、気化ヒータ103の温度を所定の幅で上昇させる(S112)。例えば、取得された処理ガスの圧力値が、基準圧力値に対して0.5%~2%以上低い値(すなわち98%~99.5%以下の値)となる状態が30秒~60秒以上の間継続していることが検知されると、S112の制御が行われる。本実施形態では、取得された処理ガスの圧力値が、基準圧力値に対して1%以上低い値(すなわち99%以下の値)となる状態が30秒以上の間継続していることを検知すると、コントローラ121はS112の制御を行う。これにより、気化器100における液体原料の気化不良が改善若しくは解消される。気化ヒータ103の温度は、例えば180℃以上220℃以下の範囲内となるように気化ヒータ103は制御される。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給されるキャリアガスの流量を増やすことで気化不良を改善若しくは解消される場合がある。従って、取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率(第1の圧力比率)以下の値となる状態が継続していると判定した場合(S111)、コントローラ121では、気化器100へ供給されるキャリアガスの流量を制御するMFC601bを制御して、キャリアガスの供給量を所定の幅で増大させてもよい(S112)。但し、キャリアガスの流量を変化させた場合、生成される処理ガス中のHガスの濃度が変化することがある。また、気化不良の有無によらずに、取得される処理ガスの圧力が変化するため、処理ガスの圧力に基づく制御が難しい。従って、キャリアガス流量を変化させる制御よりも、気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。また、キャリアガスの流量は所定流量以下の範囲となるようにMFC601bは制御される。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給される液体原料の流量を減らすことで気化不良を改善若しくは解消することができる。従って、取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率(第1の圧力比率)以下の値となる状態が継続していると判定した場合(S111)、コントローラ121では、気化器100へ供給される液体原料の流量を制御するLMFC303を制御して、液体原料の供給量を所定の幅で減少させてもよい。但し、液体原料の流量を変化させた場合、生成される処理ガス中のHガスの濃度、及びHガス自体の供給量が変化する。従って、液体原料の流量を変化させる制御よりも、キャリアガス流量を変化させる制御、又は気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。
 一方、処理ガスの圧力が上昇すると、相対的に処理ガスの再液化(結露)が発生しやすくなる。従って、再液化の発生を抑制するため、取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率(第2の圧力比率)以上の値となる状態が継続していると判定した場合(S111)、コントローラ121では、気化器100へ供給されるキャリアガスの流量を制御するMFC601bを制御して、キャリアガスの供給量を所定の幅で減少させる(S113)。更に、気化器100へ供給される液体原料の流量を制御するLMFC303を制御して、液体原料の供給量を所定の幅で減少させてもよい(S113)。例えば、取得された処理ガスの圧力値が、基準圧力値に対して0.5%~2%以上高い値(すなわち100.5%~102%以上の値)となる状態が30秒~60秒以上の間継続していることが検知されると、S113の制御が行われる。本実施形態では、取得された処理ガスの圧力値が、基準圧力値に対して1%以上高い値となる状態が30秒以上の間継続していることを検知すると、コントローラ121はS113の制御を行う。
 なお、本実施形態では、S111において取得した処理ガスの圧力値が第1の圧力比率以下となる場合に、上述のS112における気化ヒータ103の温度制御、キャリアガスの供給量制御、及び液体原料の供給量制御の少なくともいずれかを行うこととしているが、各制御に応じて所定の比率を個別に設定しても良い。また、上述のS112における気化ヒータ103の温度制御、キャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、これらの制御の2つ以上を同時又は異なるタイミングで実施してもよい。同様に、上述のS113におけるキャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、また、これらの制御を同時又は異なるタイミングで実施してもよい。
 また、コントローラ121では、処理ガス圧力センサ287から取得された処理ガスの圧力値が、所定時間の間、基準圧力値に対して所定の比率の範囲を外れた値となる状態が継続していると判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であるとして、S112における制御を実行しても良い。また、コントローラ121は、処理ガス圧力センサ287から取得された処理ガスの圧力値の、基準圧力値に対する所定時間当たりの変化量又は変化率が、所定値以上であると判定した場合や、取得された処理ガスの圧力が基準圧力値又は基準圧力値を中心とする所定の圧力帯から外れたと判定した場合に、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であるとして、S112における制御を実行しても良い。
 また、取得された処理ガスの温度が所定の圧力帯よりも高い場合、処理ガスの再液化を防止するため、コントローラ121では、配管ヒータ289c、フィルタヒータ630、ガスポートヒータ285の少なくとも何れか一つの温度を所定の幅で上昇させるように制御してもよい。
(C)濃度計500の濃度値データに基づく制御
 処理ガスが供給される過程の途中において、気化器100から送出された処理ガス中の反応ガス濃度値(すなわちHガスの濃度値)が安定していない場合、気化器100において液体原料の気化不良が発生していることが推測される。従って、コントローラ121では、濃度計500から取得された処理ガス供給管289a内の処理ガス中の反応ガスの濃度値が、所定時間の間、基準となる所定の濃度値(基準濃度値)に対して所定の比率以下の値となる状態が継続していると判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であることを、例えば入出力装置122によりユーザに通知したり、記録装置121cにログとして記録したりする。なお、処理ガス中の反応ガスの濃度値は、キャリアガスの流量等の条件によっても変動する。従って、例えばキャリアガス供給量に対応する基準濃度値を予めテーブルとして保持しておき、キャリアガス流量制御部としてのMFC601bで制御される各時点でのキャリアガス供給量に対応する基準濃度値を、当該テーブルを参照することにより逐次決定することが望ましい。また、コントローラ121は、取得された処理ガス中の反応ガスの所定時間当たりの濃度低下量が所定値以上継続であると判定した場合や、取得された処理ガス中の反応ガス濃度値が所定の濃度値又は所定の濃度値の範囲の値よりも低いと判定した場合、気化器100において気化不良が発生していること、又は気化不良が発生する可能性が高い状態であるとして、同様の処理を実行しても良い。
 更に、図11Cに示すように、取得された処理ガス中の反応ガスの濃度値が、所定時間の間、基準濃度値に対して所定の比率(第1の濃度比率)以下の値となる状態が継続していると判定した場合(S121)、コントローラ121では、気化器100の気化ヒータ103を、温度制御コントローラ106を介して制御して、気化ヒータ103の温度を所定の幅で上昇させる(S122)。例えば、取得された処理ガス中の反応ガスの濃度値が、基準濃度値に対して5%~15%以上低い値(すなわち85%~95%以下の値)となる状態が30秒~60秒以上の間継続していることが検知されると、S122の制御が行われる。本実施形態では、取得された処理ガス中の反応ガスの濃度値が、基準濃度値に対して10%以上低い値(すなわち90%以下の値)となる状態が30秒以上の間継続していることを検知すると、コントローラ121はS122の制御を行う。これにより、気化器100における液体原料の気化不良が改善若しくは解消される。また、気化ヒータ103の温度は、例えば180℃以上220℃以下の範囲となるように気化ヒータ103は制御される。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給されるキャリアガスの流量を増やすことで気化不良を改善若しくは解消される場合がある。従って、取得された処理ガス中の反応ガスの濃度値が、所定時間の間、基準濃度値に対して所定の比率(第1の濃度比率)以下の値となる状態が継続していると判定した場合(S121)、コントローラ121では、気化器100へ供給されるキャリアガスの流量を制御するMFC601bを制御して、キャリアガスの供給量を所定の幅で増大させてもよい(S122)。但し、キャリアガスの流量を変化させた場合、生成される処理ガス中のHガスの濃度が変化することがある。また、気化不良の有無によらずに、取得される処理ガス中の反応ガス濃度値が変化するため、ガス濃度値に基づく制御が難しい。従って、キャリアガス流量を変化させる制御よりも、気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。また、キャリアガスの流量は所定流量以下の範囲となるようにMFC601bは制御される。
 また、気化器100において液体原料の気化不良が発生している場合、気化器100へ供給される液体原料の流量を減らすことで気化不良を改善若しくは解消することができる。従って、取得された処理ガス中の反応ガスの濃度値が、所定時間の間、基準濃度値に対して所定の比率(第1の濃度比率)以下の値となる状態が継続していると判定した場合(S121)、コントローラ121では、気化器100へ供給される液体原料の流量を制御するLMFC303を制御して、液体原料の供給量を所定の幅で減少させてもよい(S122)。但し、液体原料の流量を変化させた場合、生成される処理ガス中のHガスの濃度、及びHガス自体の供給量が変化する。従って、液体原料の流量を変化させる制御よりも、キャリアガス流量を変化させる制御、又は気化ヒータ103の温度を変化させる制御を優先して行うのが望ましい。
 一方、処理ガス中の反応ガス濃度値が上昇すると、相対的に処理ガスの再液化(結露)が発生しやすくなる。また、処理ガス中の反応ガス濃度値は、安定的な基板処理のためには、所定の濃度値の範囲内であることが望ましい。従って、再液化の発生を抑制するため、取得された処理ガス中の反応ガスの濃度値が、所定時間の間、基準濃度値に対して所定の比率(第2の濃度比率)以上の値となる状態が継続していると判定した場合(S121)、コントローラ121では、気化器100へ供給されるキャリアガスの流量を制御するMFC601bを制御して、キャリアガスの供給量を所定の幅で増大させる(S123)。更に、気化器100へ供給される液体原料の流量を制御するLMFC303を制御して、液体原料の供給量を所定の幅で減少させてもよい(S123)。例えば、取得された処理ガス中の反応ガスの濃度値が、基準濃度値に対して5%~15%以上高い値(すなわち105%~115%以上の値)となる状態が30秒~60秒以上の間継続していることが検知されると、S123の制御が行われる。本実施形態では、取得された処理ガス中の反応ガスの濃度値が、基準濃度値に対して10%以上高い値(すなわち110%以上の値)となる状態が30秒以上の間継続していることを検知すると、コントローラ121はS123の制御を行う。
 本実施形態では、S121において取得した処理ガス中の反応ガスの濃度値が第1の濃度比率以下となる場合に、上述のS122における気化ヒータ103の温度制御、キャリアガスの供給量制御、及び液体原料の供給量制御の少なくともいずれかを行うこととしているが、各制御に応じて所定の比率を個別に設定しても良い。また、上述のS122における気化ヒータ103の温度制御、キャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、これらの制御の2つ以上を同時又は異なるタイミングで実施してもよい。同様に、上述のS123におけるキャリアガスの供給量制御、及び液体原料の供給量制御は、それぞれ単独で実施しても良く、また、これらの制御を同時又は異なるタイミングで実施してもよい。
 また、取得された処理ガス中の反応ガス濃度値が所定の濃度値の範囲の値よりも高い場合、処理ガスの再液化を防止するため、コントローラ121では、配管ヒータ289c、フィルタヒータ630、ガスポートヒータ285の少なくとも何れか一つの温度を所定の幅で上昇させるように制御してもよい。
 なお、上述の制御動作は、処理ガス供給開始の初期状態において、取得される処理ガスの温度、圧力、濃度値がユーザの定める所定の範囲の値に入るように、気化ヒータ103の温度やキャリアガスの供給量や液体原料の供給量が適正に設定されている場合において適用されることが望ましい。例えば、上述の改質処理工程S30において、処理ガスの供給開始後から一定時間以上経過し、処理ガスの生成が安定してから、上述の制御を開始することにより、気化器100における気化不良の発生を検出しやすくなり、また、気化不良を解消、又は回避する制御が容易になる。
 なお、上述の(A)~(C)に示した制御は、それぞれ単独で実施されても良く、更にこれらの制御の2つ以上を同時、又は異なるタイミングで実施しても良い。例えば、コントローラ121は、取得した処理ガスの温度と圧力に基づいて(A)及び(B)に示す制御を行ってもよい。この際、(A)に示す制御を優先して実施することが好ましい。また、例えば、コントローラ121は、取得した処理ガスの温度と濃度値に基づいて(A)及び(C)に示す制御を行ってもよい。この際、(A)に示す制御を優先して実施することが好ましい。 
 本実施形態によれば、以下に示す1又は複数の効果を得ることができる。
(a)  処理ガス温度センサ286を用いて、気化器100から送出された処理ガスの温度低下を検出することにより、気化器100における液体原料の気化不良が発生していること、又は発生の可能性が高い状態であることや、処理ガスが再液化する可能性が高い状態であることを把握し、ユーザへの通知等を行うことができる。
(b) また、処理ガス温度センサ286を用いて取得した気化器100から送出された処理ガスの温度に基づいて、気化器100のパラメータ(気化ヒータ103の温度、キャリアガス流量、液体原料の流量)を制御することにより、気化器100における液体原料の気化不良を解消したり、気化不良の発生を抑制したり、又、処理ガス供給管289a内等での再液化を抑制したりすることができる。
(c) 処理ガス圧力センサ287を用いて、気化器100から送出された処理ガス供給管289a内の処理ガスの圧力低下を検出することにより、気化器100において液体原料の気化不良が発生していること、又は発生の可能性が高い状態であることを把握し、ユーザへの通知等を行うことができる。
(d) また、処理ガス圧力センサ287を用いて取得した気化器100から送出された処理ガス供給管289a内の処理ガスの圧力に基づいて、気化器100のパラメータ(気化ヒータ103の温度、キャリアガス流量、液体原料の流量)を制御することにより、気化器100における液体原料の気化不良を解消したり、気化不良の発生を抑制したりすることができる。
(e) ガス濃度計500を用いて、気化器100から送出された処理ガス中の反応ガス濃度値の低下を検出することにより、気化器100において液体原料の気化不良が発生していること、又は発生する可能性が高い状態であることを把握し、ユーザへの通知等を行うことができる。
(f) また、ガス濃度計500を用いて取得した気化器100から送出された処理ガス中の反応ガス濃度値に基づいて、気化器100のパラメータ(気化ヒータ103の温度、キャリアガス流量、液体原料の流量)を制御することにより、気化器100における液体原料の気化不良を解消したり、気化不良の発生を抑制したりすることができる。
(g) 更に、処理容器203内に処理ガス加熱部217dを設けることにより、処理ガスがウエハ200に供給される直前である処理容器203内において液滴或いはミストを気化させることができるので、ウエハ200に対して液滴状態、或いはミスト状態の液体原料が供給されることを防止することができる。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、処理ガスとしてHガスを含むガスを用いる場合について説明したがこれに限定されるものではない。すなわち、処理ガスは、常温で固体又は液体である原料(反応物)を溶媒に溶解させた溶液(液体状態の反応物)を気化させたガスであればよい。また、原料(反応物)の気化点が溶媒の気化点と異なると、上述の実施形態の効果が得られやすくなる。また、処理ガスである気化ガスは、再液化すると原料の濃度が高くなるものに限らず、再液化すると原料の濃度が低くなるものであってもよい。このような処理ガスであっても、処理容器203内での処理ガスの濃度を均一にできる。例えば、水を加熱して発生させた水蒸気(HO)を用いても良い。
 なお、上述の処理ガスに含まれるHガスは、H分子単体の状態である場合のほか、いくつかのH分子が結合したクラスタ状態である場合も含むことがある。また、過酸化水素水からHを含むガスを生成する際に、H分子単体まで分裂させる場合だけでなく、いくつかのH分子が結合したクラスタ状態まで分裂させる場合もある。また、処理結果としての酸化膜の品質において許容される範囲であれば、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い場合がある。
 また、液体原料として、水(HO)を気化させたガス(水蒸気)を処理ガスとして用いる場合、ウエハ200上に供給される水蒸気は、HO分子単体の状態である場合のほか、いくつかのHO分子が結合したクラスタ状態である場合も含むことがある。また、水を液体状態から気体状態にする際、HO分子単体まで分裂させる場合だけでなく、いくつかのHO分子が結合したクラスタ状態まで分裂させる場合もある。また、処理結果としての酸化膜の品質において許容される範囲であれば、上記のクラスタが幾つか集まってできた霧(ミスト)状態であっても良い場合がある。
 また、上述の実施形態では、ポリシラザン膜が形成されたウエハ200を処理する例を示したがこれに限るものでは無い。例えば、シラザン結合(-Si-N-)を有する膜が形成されたウエハ200を処理する場合にも同様に本発明を適用することができる。例えば、ヘキサメチルジシラザン(HMDS)、ヘキサメチルシクロトリシラザン(HMCTS)、ポリカルボシラザン、ポリオルガノシラザンを用いた塗布膜に対する処理に本発明を適用することもできる。
 また、上述では、シラザン結合を有する膜がスピンコートされ、プリベークされたウエハ200を処理する例を示したが、これに限るものでは無く、CVD法で形成されプリベークされてないシリコン含有膜、例えば、モノシラン(SiH)ガス又は、トリシリルアミン(TSA)ガスなどのシリコン原料を用いたCVD法によってシリコン含有膜であっても同様に酸化させることができる。CVD法によるシリコン含有膜の形成方法としては、特に流動性CVD法を用いることができる。流動性CVD法により、例えばアスペクト比の大きいギャップをシリコン含有膜で充填し、充填されたシリコン含有膜に対して本発明における酸化処理やアニール処理を行うことができる。
 また、上述の実施形態では、縦型処理炉を備える基板処理装置について説明したがこれに限らず、例えば、枚葉式、Hot Wall型、Cold Wall型の処理炉を有する基板処理装置や、処理ガスを励起させてウエハ200を処理する基板処理装置に本発明を適用してもよい。
<本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
<付記1>
 一態様によれば、
基板を収容する処理室と、
液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、
前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、
前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するように構成された制御部と、を有する基板処理装置が提供される。
<付記2>
 付記1に記載の装置であって、好ましくは、
前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
前記制御部は、前記処理ガス圧力センサで検出された前記処理ガスの圧力と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するよう構成される。
<付記3>
 付記1に記載の装置であって、好ましくは、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
前記制御部は、前記ガス濃度センサで検出された前記反応ガスのガス濃度と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するよう構成される。
<付記4>
 付記1に記載の装置であって、好ましくは、
前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整すると共に、少なくとも、(a)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(b)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成される。
<付記5>
 付記1に記載の装置であって、好ましくは、
前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度が所定の温度よりも低い場合、少なくとも、(a)前記ヒータを制御して前記ヒータの温度を上昇させるか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行うよう構成される。
<付記6>
 付記1に記載の装置であって、好ましくは、
前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
前記制御部は、前記処理ガス圧力センサで検出された前記処理ガスの圧力に基づいて、少なくとも、(a)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(b)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成される。
<付記7>
 付記1に記載の装置であって、好ましくは、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
前記制御部は、前記ガス濃度センサで検出された前記反応ガスのガス濃度に基づいて、少なくとも、(a)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(b)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成される。
<付記8>
 付記1に記載の装置であって、好ましくは、
前記処理ガス供給管の下流端に設けられ、前記処理室内に前記処理ガスを供給するガスノズルと、
前記処理室内であって前記ガスノズルに対向する位置に設けられ、前記ガスノズルから前記処理室内に供給される前記処理ガスを加熱するよう構成された加熱部を有する。
<付記9>
 付記1に記載の装置であって、好ましくは、
前記処理ガス供給管に接続され、前記処理ガス供給管を流れる前記処理ガスを加熱するよう構成されるガスフィルタ部を有し、
前記ガスフィルタ部は、フッ素樹脂で構成されるフィルタと、前記フィルタを加熱するガスフィルタヒータを備え、前記フィルタは、前記フィルタを通過する前記処理ガス中に含まれる液滴を気化させるように前記ガスフィルタヒータにより加熱される。
<付記10>
 付記1に記載の装置であって、好ましくは、
前記処理ガスは過酸化水素(H)ガスを反応ガスとして含む。
<付記11>
 他の態様によれば、
基板を収容する処理室と、
液体原料を気化させて生成される反応ガスを、キャリアガスとともに処理ガスとして送出するよう構成された気化器と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
を有する基板処理装置を用いて前記基板を処理する工程を有し、
前記基板を処理する工程は、
前記基板を前記処理室内に搬入する工程と、
前記気化器内に前記液体原料と前記キャリアガスを供給し、前記液体原料をヒータにより加熱することにより気化させて前記処理ガスを生成する工程と、
前記気化器内で生成された前記処理ガスを、前記処理ガス供給管を介して前記処理室内に導入する工程と、
前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する工程と、を含む半導体装置の製造方法、又は基板処理装置が提供される。
<付記12>
 付記11に記載の方法であって、好ましくは、
前記基板処理装置は、前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
前記ヒータの温度を調整する工程では、前記処理ガス圧力センサで検出された前記処理ガスの圧力と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する。
<付記13>
 付記11に記載の方法であって、好ましくは、
前記基板処理装置は、前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
前記ヒータの温度を調整する工程では、前記ガス濃度センサで検出された前記反応ガスのガス濃度と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する。
<付記14>
 付記11に記載の方法であって、好ましくは、
前記ヒータの温度を調整する工程では、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整すると共に、少なくとも、(a)前記気化器に供給する前記キャリアガスの供給量を調整するか、(b)前記気化器に供給する前記液体原料の供給量を調整するか、のいずれかを行う。
<付記15>
 他の態様によれば、
基板を収容する処理室と、
液体原料を気化させて生成される反応ガスを、キャリアガスとともに処理ガスとして送出するよう構成された気化器と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
を有する基板処理装置を制御して、前記基板を処理する所定の手順をコンピュータに実行させるプログラムを記録したコンピュータが読み取り可能な記録媒体であって、
前記所定の手順は、
前記基板を前記処理室内に搬入する手順と、
前記気化器内に前記液体原料と前記キャリアガスを供給し、前記液体原料をヒータにより加熱することにより気化させて前記処理ガスを生成する手順と、
前記気化器内で生成された前記処理ガスを、前記処理ガス供給管を介して前記処理室内に導入する手順と、
前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて少なくとも、(a)前記ヒータの温度を調整するか、(b)前記気化器に供給する前記キャリアガスの供給量を調整するか、(c)前記気化器に供給する前記液体原料の供給量を調整するか、のいずれかの制御を行う手順と、を有する。  
<付記16>
 他の態様によれば、
基板を収容する処理室と、
液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、
前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、
前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて少なくとも、(a)前記ヒータを制御して前記ヒータの温度を調整するか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成された制御部と、を有する基板処理装置、が提供される。
<付記17>
 付記16に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記処理ガスの温度が所定の温度よりも低い場合、少なくとも、(a)前記ヒータを制御して前記ヒータの温度を上昇させるか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行う。
<付記18>
 付記16に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記処理ガスの温度が所定の温度よりも高い場合、少なくとも、(a)前記ヒータを制御して前記ヒータの温度を下降させるか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を増加させるか、のいずれかの制御を行う。
<付記19>
 他の態様によれば、
基板を収容する処理室と、
液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、
前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、
前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサと、
前記処理ガス圧力センサで検出された前記処理ガスの圧力に基づいて少なくとも、(a)前記ヒータを制御して前記ヒータの温度を調整するか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成された制御部と、を有する基板処理装置、が提供される。
<付記20>
 付記19に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記処理ガスの圧力値が、所定時間の間、基準となる所定の圧力値(基準圧力値)に対して所定の比率以下の値である状態が継続した場合、少なくとも、(a)前記ヒータを制御して前記ヒータの温度を上昇させるか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行う。
<付記21>
 付記19に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記処理ガスの圧力値が、所定時間の間、基準となる所定の圧力値(基準圧力値)に対して所定の比率以上の値である状態が継続した場合、少なくとも、(a)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を減少させるか、(b)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行う。
<付記22>
 他の態様によれば、
基板を収容する処理室と、
液体原料を気化させて反応ガスを生成し、キャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、
前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、
前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、
前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサと、
前記ガス濃度センサで検出された前記反応ガスのガス濃度を取得し、取得した前記反応ガスのガス濃度に基づいて少なくとも、(a)前記ヒータを制御して前記ヒータの温度を調整するか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を調整するか、のいずれかの制御を行うように構成された制御部と、を有する基板処理装置、が提供される。
<付記23>
 付記22に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記反応ガスのガス濃度が、所定時間の間、基準となる所定の濃度値(基準濃度値)に対して所定の比率以下の値である状態が継続した場合、少なくとも、(a)前記ヒータを制御して前記ヒータの温度を上昇させるか、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行う。
<付記24>
 付記22に記載の装置であって、好ましくは、
前記制御部は、前記取得した前記反応ガスのガス濃度が、所定時間の間、基準となる所定の濃度値(基準濃度値)に対して所定の比率以上の値である状態が継続した場合、少なくとも、(b)前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるか、(c)前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるか、のいずれかの制御を行う。
<付記25>
 付記22乃至24のいずれかに記載の装置であって、好ましくは、
前記処理ガス供給管の下流端に設けられ、前記処理室内に前記処理ガスを供給するガスノズルと、
前記処理室内であって前記ガスノズルに対向する位置に設けられ、前記ガスノズルから前記処理室内に供給された前記処理ガスを加熱するよう構成された加熱部を有し、
前記ガスノズル及び前記加熱部は、前記処理室内であって、前記基板が収容される領域よりも上方の位置に設けられる。 
 本発明によれば、低温条件においても、処理装置内における処理ガスの液滴化やミスト化等の発生を抑制し、処理ガスにより処理される基板上に形成される膜の特性を向上させることができる。
 10・・・基板処理装置、 200・・・ウエハ(基板)、 203・・・処理容器、 217d・・・処理ガス加熱部、 100・・・気化器、 286・・・処理ガス温度センサ、 287・・・処理ガス圧力センサ、 500・・・ガス濃度計、 600・・・ガスフィルタ、 289a・・・処理ガス供給管、 231・・・ガス排気管、 121・・・コントローラ

Claims (19)

  1. 基板を収容する処理室と、
    液体原料を気化させて反応ガスを生成しキャリアガスとともに処理ガスとして送出する気化器であって、前記液体原料が気化される気化容器と、前記液体原料を前記気化容器内に導入する液体原料導入部と、前記キャリアガスを前記気化容器内に導入するキャリアガス導入部と、前記気化容器内に導入された前記液体原料を加熱するよう構成されたヒータと、を備える気化器と、
    前記気化器に供給される前記キャリアガスの供給量を制御するよう構成されたキャリアガス供給制御部と、
    前記気化器に供給される前記液体原料の供給量を制御するよう構成された液体原料供給制御部と、
    前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
    前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するように構成された制御部と、を有する基板処理装置。
  2. 請求項1に記載の基板処理装置であって、
    前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
    前記制御部は、前記処理ガス圧力センサで検出された前記処理ガスの圧力と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するよう構成される。
  3. 請求項1に記載の基板処理装置であって、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
    前記制御部は、前記ガス濃度センサで検出された前記反応ガスのガス濃度と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整するよう構成される。
  4. 請求項1に記載の基板処理装置であって、
    前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整すると共に、前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するように構成される。
  5. 請求項1に記載の基板処理装置であって、
    前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータを制御して前記ヒータの温度を調整すると共に、前記液体原料供給制御部を制御して前記液体原料の供給量を調整するように構成される。
  6. 請求項1に記載の基板処理装置であって、
    前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度が所定の温度よりも低い場合、前記ヒータを制御して前記ヒータの温度を上昇させるよう構成される。
  7. 請求項4に記載の基板処理装置であって、
    前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度が所定の温度よりも低い場合、前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を増加させるよう構成される。
  8. 請求項5に記載の基板処理装置であって、
    前記制御部は、前記処理ガス温度センサで検出された前記処理ガスの温度が所定の温度よりも低い場合、前記液体原料供給制御部を制御して前記液体原料の供給量を減少させるよう構成される。
  9. 請求項1に記載の基板処理装置であって、
    前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
    前記制御部は、前記処理ガス圧力センサで検出された前記処理ガスの圧力に基づいて、前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するように構成される。
  10. 請求項1に記載の基板処理装置であって、
    前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
    前記制御部は、前記処理ガス圧力センサで検出された前記処理ガスの圧力に基づいて、前記液体原料供給制御部を制御して前記液体原料の供給量を調整するよう構成される。
  11. 請求項1に記載の基板処理装置であって、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
    前記制御部は、前記ガス濃度センサで検出された前記反応ガスのガス濃度に基づいて、前記キャリアガス供給制御部を制御して前記キャリアガスの供給量を調整するよう構成される。
  12. 請求項1に記載の基板処理装置であって、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
    前記制御部は、前記ガス濃度センサで検出された前記反応ガスのガス濃度に基づいて、前記液体原料供給制御部を制御して前記液体原料の供給量を調整するよう構成される。
  13. 請求項1に記載の基板処理装置であって、
    前記処理ガスは過酸化水素ガスを反応ガスとして含む。
  14. 基板を収容する処理室と、
    液体原料を気化させて生成される反応ガスをキャリアガスとともに処理ガスとして送出するよう構成された気化器と、
    前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
    を有する基板処理装置を用いて前記基板を処理する工程を有し、
    前記基板を処理する工程は、
    前記基板を前記処理室内に搬入する工程と、
    前記気化器内に前記液体原料と前記キャリアガスを供給し、前記液体原料をヒータにより加熱することにより気化させて前記処理ガスを生成する工程と、
    前記気化器内で生成された前記処理ガスを、前記処理ガス供給管を介して前記処理室内に導入する工程と、
    前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する工程と、を含む半導体装置の製造方法。
  15. 請求項14に記載の半導体装置の製造方法であって、
    前記基板処理装置は、前記処理ガス供給管内の前記処理ガスの圧力を検出する処理ガス圧力センサを有し、
    前記ヒータの温度を調整する工程では、前記処理ガス圧力センサで検出された前記処理ガスの圧力と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する。
  16. 請求項14に記載の半導体装置の製造方法であって、
    前記基板処理装置は、前記気化器から前記処理ガス供給管内に送出された前記処理ガスに含まれる前記反応ガスのガス濃度を検出するガス濃度センサを有し、
    前記ヒータの温度を調整する工程では、前記ガス濃度センサで検出された前記反応ガスのガス濃度と、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整する。
  17. 請求項14に記載の半導体装置の製造方法であって、
    前記ヒータの温度を調整する工程では、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整すると共に、前記気化器に供給する前記キャリアガスの供給量を調整する。
  18. 請求項14に記載の半導体装置の製造方法であって、
    前記ヒータの温度を調整する工程では、前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて、前記ヒータの温度を調整すると共に、前記気化器に供給する前記液体原料の供給量を調整する。
  19. 基板を収容する処理室と、
    液体原料を気化させて生成される反応ガスをキャリアガスとともに処理ガスとして送出するよう構成された気化器と、
    前記気化器から送出された前記処理ガスを前記処理室内に導入する処理ガス供給管と、
    前記気化器から前記処理ガス供給管内に送出された前記処理ガスの温度を検出する処理ガス温度センサと、
    を有する基板処理装置を制御して、前記基板を処理する所定の手順をコンピュータに実行させるプログラムを記録したコンピュータが読み取り可能な記録媒体であって、
    前記所定の手順は、
    前記基板を前記処理室内に搬入する手順と、
    前記気化器内に前記液体原料と前記キャリアガスを供給し、前記液体原料をヒータにより加熱することにより気化させて前記処理ガスを生成する手順と、
    前記気化器内で生成された前記処理ガスを、前記処理ガス供給管を介して前記処理室内に導入する手順と、
    前記処理ガス温度センサで検出された前記処理ガスの温度に基づいて少なくとも、(a)前記ヒータの温度を調整するか、(b)前記気化器に供給する前記キャリアガスの供給量を調整するか、(c)前記気化器に供給する前記液体原料の供給量を調整するか、のいずれかの制御を行う手順と、を有する。  
PCT/JP2015/077777 2015-09-30 2015-09-30 基板処理装置、半導体装置の製造方法及び記録媒体 WO2017056244A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187006939A KR102104728B1 (ko) 2015-09-30 2015-09-30 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP2017542603A JP6417052B2 (ja) 2015-09-30 2015-09-30 基板処理装置、半導体装置の製造方法及びプログラム
CN201580082519.1A CN107924840B (zh) 2015-09-30 2015-09-30 衬底处理装置、半导体器件的制造方法及记录介质
SG11201802143QA SG11201802143QA (en) 2015-09-30 2015-09-30 Substrate treatment apparatus, method for manufacturing semiconductor device, and recording medium
PCT/JP2015/077777 WO2017056244A1 (ja) 2015-09-30 2015-09-30 基板処理装置、半導体装置の製造方法及び記録媒体
TW105130325A TWI626689B (zh) 2015-09-30 2016-09-20 基板處理裝置、半導體裝置的製造方法及記錄媒體
US15/919,674 US12087598B2 (en) 2015-09-30 2018-03-13 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077777 WO2017056244A1 (ja) 2015-09-30 2015-09-30 基板処理装置、半導体装置の製造方法及び記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/919,674 Continuation US12087598B2 (en) 2015-09-30 2018-03-13 Substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2017056244A1 true WO2017056244A1 (ja) 2017-04-06

Family

ID=58422989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077777 WO2017056244A1 (ja) 2015-09-30 2015-09-30 基板処理装置、半導体装置の製造方法及び記録媒体

Country Status (7)

Country Link
US (1) US12087598B2 (ja)
JP (1) JP6417052B2 (ja)
KR (1) KR102104728B1 (ja)
CN (1) CN107924840B (ja)
SG (1) SG11201802143QA (ja)
TW (1) TWI626689B (ja)
WO (1) WO2017056244A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026333A (ja) * 2017-07-31 2019-02-21 サントリーホールディングス株式会社 容器殺菌装置及び殺菌ガスの殺菌効果判定方法
WO2019140200A1 (en) * 2018-01-15 2019-07-18 Applied Materials, Inc. Advanced temperature monitoring system and methods for semiconductor manufacture productivity
US20200090965A1 (en) * 2018-09-14 2020-03-19 Kokusai Electric Corporation Substrate processing apparatus and manufacturing method of semiconductor device
JP2022023158A (ja) * 2017-07-31 2022-02-07 サントリーホールディングス株式会社 容器殺菌装置及び殺菌ガスの殺菌効果判定方法
US12013291B2 (en) 2020-10-14 2024-06-18 Applied Materials, Inc. Advanced temperature monitoring system with expandable modular layout design

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056188A1 (ja) * 2015-09-29 2017-04-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び記録媒体
US10363497B2 (en) * 2016-02-18 2019-07-30 Rasirc, Inc. Devices, systems, and methods for controlled delivery of process gases
US10217630B2 (en) * 2016-11-24 2019-02-26 Tokyo Electron Limited Method of forming silicon-containing film
CN109097755A (zh) * 2017-06-20 2018-12-28 华邦电子股份有限公司 工艺腔室气体检测系统及其操作方法
JP6811147B2 (ja) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 ガス供給系を検査する方法
JP6811146B2 (ja) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 ガス供給系を検査する方法
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN111095513B (zh) * 2017-08-18 2023-10-31 应用材料公司 高压高温退火腔室
US10714317B1 (en) * 2019-01-04 2020-07-14 Axcelis Technologies, Inc. Reduction of condensed gases on chamber walls via heated chamber housing for semiconductor processing equipment
EP3786321A3 (de) * 2019-08-27 2021-03-17 Albert-Ludwigs-Universität Freiburg Verfahren und vorrichtung zur herstellung einer schicht und damit versehenes substrat
JP2021048233A (ja) * 2019-09-18 2021-03-25 株式会社Kokusai Electric 原料貯留システム、基板処理装置、クリーニング方法およびプログラム
JP7203070B2 (ja) * 2020-09-23 2023-01-12 株式会社Kokusai Electric 基板処理装置、基板処理方法及び半導体装置の製造方法
KR102646484B1 (ko) * 2020-12-29 2024-03-12 세메스 주식회사 약액 공급 장치 및 이를 포함하는 기판 처리 장치
US11493909B1 (en) * 2021-04-16 2022-11-08 Taiwan Semiconductor Manufacturing Company Ltd. Method for detecting environmental parameter in semiconductor fabrication facility
JP2023046643A (ja) * 2021-09-24 2023-04-05 東京エレクトロン株式会社 ガス管理方法及び基板処理システム
CN114774884B (zh) * 2022-04-28 2024-02-27 北京北方华创微电子装备有限公司 半导体工艺炉的炉门及半导体工艺炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282242A (ja) * 1999-04-01 2000-10-10 Tokyo Electron Ltd 気化器、処理装置、処理方法、及び半導体チップの製造方法
JP2010514927A (ja) * 2006-12-26 2010-05-06 コーウィン ディーエスティー カンパニー リミテッド 薄膜蒸着装置の原料ガス供給装置及び残留ガス処理処置及びその方法
JP2013249511A (ja) * 2012-05-31 2013-12-12 Tokyo Electron Ltd 原料ガス供給装置、成膜装置、原料ガスの供給方法及び記憶媒体
WO2014021220A1 (ja) * 2012-07-30 2014-02-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997642A (en) * 1996-05-21 1999-12-07 Symetrix Corporation Method and apparatus for misted deposition of integrated circuit quality thin films
US6409839B1 (en) * 1997-06-02 2002-06-25 Msp Corporation Method and apparatus for vapor generation and film deposition
JP2002053962A (ja) * 2000-08-01 2002-02-19 Tokyo Electron Ltd 気相成長方法及び気相成長装置並びに気相成長装置用の気化器
US6701066B2 (en) * 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
JP3822135B2 (ja) * 2002-05-13 2006-09-13 日本パイオニクス株式会社 気化供給装置
US20050095859A1 (en) * 2003-11-03 2005-05-05 Applied Materials, Inc. Precursor delivery system with rate control
JP4973071B2 (ja) * 2006-08-31 2012-07-11 東京エレクトロン株式会社 成膜装置
US8146896B2 (en) * 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
US8927066B2 (en) * 2011-04-29 2015-01-06 Applied Materials, Inc. Method and apparatus for gas delivery
WO2013077321A1 (ja) 2011-11-21 2013-05-30 株式会社日立国際電気 半導体装置の製造装置、半導体装置の製造方法及び記録媒体
WO2013094680A1 (ja) 2011-12-20 2013-06-27 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および気化装置
CN104428877B (zh) * 2012-07-27 2016-12-07 株式会社日立国际电气 衬底处理装置、半导体器件的制造方法
JP6078335B2 (ja) * 2012-12-27 2017-02-08 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、気化システム、気化器およびプログラム
US10046371B2 (en) * 2013-03-29 2018-08-14 Semes Co., Ltd. Recycling unit, substrate treating apparatus and recycling method using the recycling unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282242A (ja) * 1999-04-01 2000-10-10 Tokyo Electron Ltd 気化器、処理装置、処理方法、及び半導体チップの製造方法
JP2010514927A (ja) * 2006-12-26 2010-05-06 コーウィン ディーエスティー カンパニー リミテッド 薄膜蒸着装置の原料ガス供給装置及び残留ガス処理処置及びその方法
JP2013249511A (ja) * 2012-05-31 2013-12-12 Tokyo Electron Ltd 原料ガス供給装置、成膜装置、原料ガスの供給方法及び記憶媒体
WO2014021220A1 (ja) * 2012-07-30 2014-02-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026333A (ja) * 2017-07-31 2019-02-21 サントリーホールディングス株式会社 容器殺菌装置及び殺菌ガスの殺菌効果判定方法
JP2022023158A (ja) * 2017-07-31 2022-02-07 サントリーホールディングス株式会社 容器殺菌装置及び殺菌ガスの殺菌効果判定方法
JP7271636B2 (ja) 2017-07-31 2023-05-11 サントリーホールディングス株式会社 容器殺菌装置及び殺菌ガスの殺菌効果判定方法
WO2019140200A1 (en) * 2018-01-15 2019-07-18 Applied Materials, Inc. Advanced temperature monitoring system and methods for semiconductor manufacture productivity
KR20200099213A (ko) * 2018-01-15 2020-08-21 어플라이드 머티어리얼스, 인코포레이티드 반도체 제조 생산성을 위한 진보된 온도 모니터링 시스템 및 방법들
CN111727499A (zh) * 2018-01-15 2020-09-29 应用材料公司 先进温度监测系统和用于半导体制造生产力的方法
KR102474052B1 (ko) * 2018-01-15 2022-12-02 어플라이드 머티어리얼스, 인코포레이티드 반도체 제조 생산성을 위한 진보된 온도 모니터링 시스템 및 방법들
US12068180B2 (en) 2018-01-15 2024-08-20 Applied Materials, Inc. Advanced temperature monitoring system and methods for semiconductor manufacture productivity
US20200090965A1 (en) * 2018-09-14 2020-03-19 Kokusai Electric Corporation Substrate processing apparatus and manufacturing method of semiconductor device
US10998205B2 (en) * 2018-09-14 2021-05-04 Kokusai Electric Corporation Substrate processing apparatus and manufacturing method of semiconductor device
US12013291B2 (en) 2020-10-14 2024-06-18 Applied Materials, Inc. Advanced temperature monitoring system with expandable modular layout design

Also Published As

Publication number Publication date
US12087598B2 (en) 2024-09-10
TWI626689B (zh) 2018-06-11
CN107924840B (zh) 2022-04-01
SG11201802143QA (en) 2018-04-27
US20180204742A1 (en) 2018-07-19
KR20180038536A (ko) 2018-04-16
JP6417052B2 (ja) 2018-10-31
JPWO2017056244A1 (ja) 2018-04-05
KR102104728B1 (ko) 2020-04-24
TW201724263A (zh) 2017-07-01
CN107924840A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6417052B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6457104B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP5778846B2 (ja) 気化装置、基板処理装置、及び半導体装置の製造方法
JP6038043B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6038288B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2014017638A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP6151789B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6606595B2 (ja) 気化器、基板処理装置及び半導体装置の製造方法
WO2019180906A1 (ja) 気化器、基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542603

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201802143Q

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905398

Country of ref document: EP

Kind code of ref document: A1