WO2017054972A1 - Stromwandlermodul - Google Patents

Stromwandlermodul Download PDF

Info

Publication number
WO2017054972A1
WO2017054972A1 PCT/EP2016/068847 EP2016068847W WO2017054972A1 WO 2017054972 A1 WO2017054972 A1 WO 2017054972A1 EP 2016068847 W EP2016068847 W EP 2016068847W WO 2017054972 A1 WO2017054972 A1 WO 2017054972A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
current transformer
transformer module
module according
iron
Prior art date
Application number
PCT/EP2016/068847
Other languages
English (en)
French (fr)
Inventor
Martin Maier
Uwe Weiss
Wolfgang Feil
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to KR1020187006033A priority Critical patent/KR102036130B1/ko
Priority to JP2018515600A priority patent/JP6594531B2/ja
Priority to EP16756621.5A priority patent/EP3300527A1/de
Priority to CN201680045051.3A priority patent/CN107924760A/zh
Priority to US15/764,473 priority patent/US20180286564A1/en
Publication of WO2017054972A1 publication Critical patent/WO2017054972A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials

Definitions

  • the invention relates to a current transformer module comprising a printed circuit board, in which in recesses of the printed circuit board, an iron circuit is integrated.
  • a secondary circuit of such a current transformer typically comprises a ring winding, which is also called ring core.
  • the primary circuit of the current transformer is a wire which is passed through the ring winding. Due to legal requirements are in the design of the current transformer predetermined clearance and creepage distances to be met, such as between the primary and the secondary side terminal or between the primary-side terminal and the ring winding.
  • the ring winding is usually made of enameled wire, which is not considered isolated for legal requirements.
  • the wire forming the primary circuit is usually sufficiently insulated. There are certain minimum distances between the stripped, free ends of the primary circuit wire to the ring winding to comply.
  • converters consisting of mutually layered sheets with a bobbin.
  • the bobbin has the advantage that you can easily and quickly wind it. For the bobbin but you have once again tooling costs. Overall, however, the accuracy and the dynamic range in this converter are worse than the toroidal transformer.
  • the object of the present invention is to provide a current transformer module, which eliminates the disadvantages mentioned above in a simple manner.
  • a current transformer module comprising a printed circuit board, in which an iron circuit is integrated in recesses of the printed circuit board, wherein a winding forming a secondary circuit of the current transformer module is arranged with turns in or on the printed circuit board.
  • the generic term current transformer module is defined in this patent application as a modular current transformer preferably without its own housing, which is integrated with its primary and its secondary circuit in and on the circuit board.
  • the invention includes a printed circuit board on and in which the secondary windings are designed as conductor tracks.
  • the secondary windings are designed as conductor tracks.
  • recesses are provided to accommodate an iron circle can.
  • the primary windings can be realized as separate lines or as a conductor track on and in the circuit board layers.
  • the iron circuit of sheets in particular U-, E- or L-shaped, or ring band or ferromagnetic half-shells or cut strip core halves is formed.
  • Individually stacked U-plates are mutually aligned.
  • the structure offers in this way as good as no air gap.
  • the ring band offers the advantage that the magnetic flux can be optimally guided.
  • the ferromagnetic half-shells have the advantage that the two half-shells allow easy assembly and the properties of the air gap can be controlled via the overlapping surface.
  • the cut-strip core halves also allow easy assembly due to their bipartite nature. They merely have to be joined together in such a way that a closed iron circle results.
  • the iron circuit is positioned in a recess or a plurality of recesses in the printed circuit board and the secondary circuit-forming windings are performed by the iron circuit.
  • the recesses in the circuit board succeeds to fix the iron circle firmly.
  • the respective iron circle has two leg elements, which are connected to each other via a connecting portion. To one of the two leg elements, the secondary circuit is wound in and on the circuit board.
  • the secondary circuits forming windings are formed on a plurality of printed circuit board layers. To achieve a technologically meaningful number of turns, the turns must be distributed over several layers of a printed circuit board.
  • the printed circuit board layers formed with secondary circuits are formed with plated-through holes between the circuit board layers through the entire printed circuit board. This technical solution is particularly cost-effective.
  • the formed circle forming turns printed circuit board layers with vias between the layers only in partial areas of the circuit board.
  • the plated-through holes are then outside the actual winding surface.
  • the plated-through holes are arranged outside the winding surface of the secondary circuit-forming windings. This has the advantage that the winding distances do not have to be increased.
  • the current transformer module is designed for motor protection.
  • the current transformer module is designed for line protection.
  • the current transformer module is formed in a 3-phase manner, consisting of three iron circuits and three secondary circuits, which are electrically connected to one another.
  • the current transformer module according to the invention has an iron circle, which can preferably be constructed from U-shaped metal sheets, from laminated core halves, from annular band or from ferromagnetic half shells.
  • the iron circle is placed in recesses of a circuit board.
  • the recesses in the circuit board are preferably arranged opposite one another.
  • the respective embodiment of the iron circuit has two leg elements, which are connected to one another via a connecting section.
  • the leg elements of the respective iron circle are positioned in the recesses of the circuit board.
  • One at a time Leg member of the iron circuit is a secondary circuit forming winding of the current transformer module formed with a plurality of turns in the circuit board.
  • Fig. 1 shows an embodiment of an inventive
  • FIG. 2 shows a further exemplary embodiment of a current transformer module according to the invention with sectional band core halves as an iron circle;
  • FIG. 3 shows a further embodiment of a current transformer module according to the invention with a ring band as an iron circle;
  • FIG. 4 shows a further embodiment of a current transformer module according to the invention with ferromagnetic half-shells as an iron circle;
  • Fig. 5 shows the embodiment of Figure 4, wherein the ferromagnetic half shells are made of stacked sheets.
  • FIG. 7 shows a coil with plated-through holes between individual layers of a printed circuit board.
  • Fig. 1 shows an embodiment of a current transformer module according to the invention.
  • the current transformer module according to the invention has an iron circle 1, which is preferably constructed from U-shaped sheets 2.
  • the U-shaped sheets 2 have two preferably opposite leg elements 3, 4, which are connected to each other via a connecting portion 5.
  • the iron circle 1 is placed in recesses 6 of a printed circuit board 7.
  • the recesses 6 in the printed circuit board 7 are preferably arranged opposite one another.
  • the leg elements 3, 4 of the U-shaped plates are positioned in the recesses 6 of the circuit board 7, wherein the U-shaped plates 2 are preferably arranged alternately with the open side above or below the circuit board 7.
  • the arrow direction shown in Fig. 1 corresponds to the mounting direction.
  • a secondary winding 8 forming winding of the current transformer module is formed with a plurality of turns 9 in the circuit board 7.
  • the iron core 1 is designed here in the form of cut strip core halves 10.
  • the Thomasbandkernhcrun 10 are U-shaped and have two opposing leg members 3, 4 and a connecting portion 5.
  • the leg elements 3, 4 of the U-shaped cut strip core halves 10 are positioned in the recesses 6 of the printed circuit board 7, wherein the cut strip core halves 10 together give an iron circle 1.
  • a secondary winding 8 forming winding of the current transformer module is formed with a plurality of turns 9 in the circuit board 7.
  • Fig. 3 shows another embodiment of a current transformer module according to the invention with a ring band 11 as an iron circle 1.
  • the ring band 11 is wound through the recesses 6 of the circuit board 7 and thereby forms a cylinder.
  • the leg members 3, 4 and the connecting portion 5 go through this cylindrical training flowing into each other.
  • a secondary winding 8 forming winding of the current transformer Module with a plurality of turns 9 in the circuit board
  • FIG. 4 shows a further exemplary embodiment of a current transformer module according to the invention with ferromagnetic half shells 12 as an iron circuit 1.
  • the ferromagnetic half-shells 12 are U-shaped and have two opposing leg members 3, 4 and a connecting portion 5.
  • the leg elements 3, 4 of the U-shaped ferromagnetic half shells 12 are positioned in the recesses 6 of the circuit board 7, wherein the ferromagnetic half shells 12 are arranged opposite to each other, so that both above and below the circuit board 7, a connecting portion 5 of the U-shaped ferromagnetic half shells 12 is arranged.
  • Each to a leg member of the iron circle 1 is a secondary circuit
  • Fig. 5 shows the embodiment of Fig. 4, wherein the ferromagnetic half-shells 12 are made of stacked sheets.
  • FIG. 6 shows a coil 13 with turns 9 and with through contacts 14 through the complete circuit board layers 15.
  • the windings 9 must be distributed over several layers of a printed circuit board. These circuit board layers 15 must be connected to each other by means of plated-through holes 14. Since the windings 9 in the individual circuit board layers 15 preferably run alternately from the inside to the outside and then from the outside to the inside, the plated-through holes 14 are located alternately inside and outside. In this case, the inner vias 14 as little as possible board surface take, so preferably run in a line to the front of the sheet iron package.
  • FIG. 7 shows a coil 13 with turns 9 and with through contacts 14 between individual layers of a printed circuit board 7. It is preferably provided that the through-contacts 14 lie outside the actual winding surface in order not to increase the winding spacing.
  • An optimized solution in terms of installation space exists when plated through-holes 14 with an odd number to an even number are each positioned directly above one another.
  • the current transformer module according to the invention is characterized in that the complex separate application of the secondary windings to an iron circuit is eliminated, since the windings are integrated in the printed circuit board. Due to the integration of the secondary windings in the printed circuit board, no connecting leads need to be struck and these do not have to be contacted with the printed circuit board. The integration of the iron circuit in the circuit board results in a much more compact design for the current transformer module according to the invention with a smaller space requirement compared to the embodiments of the prior art. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Die Erfindung betrifft ein Stromwandlermodul aufweisend eine Leiterplatte (7), in welche in Aussparungen (6) der Leiterplatte (7) ein Eisenkreis (1) integriert ist, wobei eine einen Sekundärkreis (8) des Stromwandlermoduls bildende Wicklung mit Windungen (9) in bzw. auf der Leiterplatte (7) angeordnet ist.

Description

Beschreibung
Stromwandlermodul
Die Erfindung betrifft ein Stromwandlermodul aufweisend eine Leiterplatte, in welche in Ausnehmungen der Leiterplatte ein Eisenkreis integriert ist.
Bekannt sind Stromwandler vom Typ Ringkernwandler. Ein Sekundärkreis eines solchen Stromwandlers umfasst typischerweise eine Ringwicklung, die auch Ringkern genannt wird. Der Primärkreis des Stromwandlers ist ein Draht, der durch die Ringwicklung hindurchgeführt wird. Aufgrund gesetzlicher Erfordernisse sind bei der Ausgestaltung des Stromwandlers vorbestimmte Luft- und Kriechstrecken einzuhalten, etwa zwischen dem primär- und dem sekundärseitigen Anschluss oder zwischen dem primärseitigen Anschluss und der Ringwicklung. Die Ringwicklung besteht üblicherweise aus Lackdraht, der für die gesetzlichen Vorgaben als nicht isoliert gilt. Der den Primärkreis bildende Draht hingegen ist üblicherweise ausreichend isoliert. Es sind bestimmte Mindestabstände zwischen den abisolierten, freien Enden des Primärkreisdrahts zur Ringwicklung einzuhalten.
Neben diesen Ringkernwandlern gibt es auch Wandler, die aus wechselseitig geschichteten Blechen mit einem Spulenkörper bestehen. Der Spulenkörper hat den Vorteil, dass man ihn einfach und schnell bewickeln kann. Für den Spulenkörper hat man jedoch wieder einmalige Werkzeugkosten. Insgesamt gesehen sind aber die Genauigkeit und der Dynamikumfang bei diesem Wandler schlechter als beim Ringkernwandler.
Die oben ausgeführten Beispiele für einen Stromwandler weisen mehrere Nachteile auf. So ist es mit einem erheblichen Aufwand verbunden, die sekundären Windungen aufzubringen. Zudem müssen Anschlusslitzen angeschlagen werden, die wiederum mit der Leiterplatte kontaktiert werden müssen. Außerdem wird bei einer Trennung der Stromwandlerbaugruppe von der Leiterplatte mehr Bauraum benötigt.
Demgemäß besteht die Aufgabe der vorliegenden Erfindung darin, ein Stromwandlermodul zu schaffen, welches auf einfache Art und Weise die oben genannten Nachteile ausräumt.
Diese Aufgabe wird erfindungsgemäß durch ein Stromwandlermodul mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind der Gegenstand der abhängigen Ansprüche.
Erfindungsgemäß wird diese Aufgabe durch ein Stromwandlermodul gelöst, aufweisend eine Leiterplatte, in welche in Ausnehmungen der Leiterplatte ein Eisenkreis integriert ist, wobei eine einen Sekundärkreis des Stromwandlermoduls bildende Wicklung mit Windungen in bzw. auf der Leiterplatte angeordnet ist.
Der Oberbegriff Stromwandlermodul ist in dieser Patentanmeldung als ein modular aufgebauter Stromwandler vorzugsweise ohne eigenes Gehäuse definiert, der mit seinem Primär- und seinem Sekundärkreis in und auf der Leiterplatte integriert ist .
Die Erfindung beinhaltet eine Leiterplatte, auf und in der die Sekundärwindungen als Leiterbahnen ausgeführt sind. In der Leiterplatte sind Aussparungen vorgesehen, um einen Eisenkreis aufnehmen zu können. Die Primärwindungen können als separate Leitungen oder als Leiterbahn auf und in den Leiterplattenschichten realisiert werden.
In einer besonders vorteilhaften Ausgestaltung der Erfindung kann es vorgesehen sein, dass der Eisenkreis aus Blechen, insbesondere U-, E- oder L-förmigen, oder aus Ringband oder aus ferromagnetischen Halbschalen oder aus Schnittbandkernhälften ausgebildet ist. Einzeln gestapelte U-Bleche werden wechselseitig zueinander ausgerichtet. Der Aufbau bietet auf diese Art und Weise so gut wie keinen Luftspalt. Das Ringband bietet den Vorteil, dass der magnetische Fluss optimal geführt werden kann. Die ferromagnetischen Halbschalen weisen den Vorteil auf, dass die zwei Halbschalen eine einfache Montage ermöglichen und die Eigenschaften des Luftspalts über die überlappende Fläche gesteuert werden können. Auch die Schnittbandkernhälften ermöglichen durch ihre Zweiteiligkeit eine einfache Montage. Sie müssen lediglich so aneinander ge- fügt werden, dass sich ein geschlossener Eisenkreis ergibt.
In einer weiteren speziellen Fortführung des erfindungsgemäßen Konzepts kann es vorgesehen sein, dass der Eisenkreis in einer Aussparung oder mehreren Aussparungen in der Leiter- platte positioniert ist und die Sekundärkreis bildenden Windungen durch den Eisenkreis durchgeführt sind. Durch die Ausnehmungen in der Leiterplatte gelingt es, den Eisenkreis fest zu fixieren. Der jeweilige Eisenkreis weist zwei Schenkelelemente auf, die über einen Verbindungsabschnitt miteinander verbunden sind. Um einen der beiden Schenkelelemente ist der Sekundärkreis in und auf der Leiterplatte gewickelt.
In einer speziellen Ausgestaltung der Erfindung kann es vorgesehen sein, dass die Sekundärkreis bildenden Windungen auf einer Mehrzahl an Leiterplattenschichten ausgebildet sind. Um eine technologisch sinnvolle Anzahl an Windungen zu erreichen, müssen die Windungen auf mehrere Schichten einer Leiterplatte verteilt sein. In einer weiteren speziellen Fortführung des erfindungsgemäßen Konzepts kann es vorgesehen sein, dass die mit Sekundärkreis bildenden Windungen ausgebildeten Leiterplattenschichten mit Durchkontaktierungen zwischen den Leiterplattenschichten durch die gesamte Leiterplatte ausgebildet sind. Diese technische Lösung ist besonders kostengünstig.
In einer weiteren speziellen Fortführung des erfindungsgemäßen Konzepts kann es vorgesehen sein, dass die mit Sekundär- kreis bildenden Windungen ausgebildeten Leiterplattenschichten mit Durchkontaktierungen zwischen den Schichten nur in Teilbereichen der Leiterplatte ausgebildet sind. Um die Win- dungsabstände nicht zu vergrößern, liegen die Durchkontaktierungen dann außerhalb der eigentlichen Wicklungsfläche.
In einer weiteren speziellen Fortführung des erfindungsgemäßen Konzepts kann es vorgesehen sein, dass die Durchkontaktierungen außerhalb der Wicklungsfläche der Sekundärkreis bildenden Windungen angeordnet sind. Damit ist der Vorteil verbunden, dass die Windungsabstände nicht vergrößert werden müssen .
In einer besonders vorteilhaften Ausgestaltung der Erfindung kann es vorgesehen sein, dass das Stromwandlermodul für den Motorschutz ausgebildet ist.
In einer besonders vorteilhaften Ausgestaltung der Erfindung kann es vorgesehen sein, dass das Stromwandlermodul für den Leitungsschutz ausgebildet ist.
In einer weiteren speziellen Fortführung des erfindungsgemäßen Konzepts kann es vorgesehen sein, dass das Stromwandlermodul 3-phasig ausgebildet ist, bestehend aus drei Eisenkreisen und drei Sekundärkreisen, die elektrisch miteinander verbunden sind.
Das erfindungsgemäße Stromwandlermodul weist einen Eisenkreis auf, der vorzugsweise aus U-förmigen Blechen, aus Schnittbandkernhälften, aus Ringband oder aus ferromagnetischen Halbschalen aufgebaut sein kann. Der Eisenkreis ist in Aussparungen einer Leiterplatte platziert. Die Aussparungen in der Leiterplatte sind vorzugsweise sich gegenüberliegend angeordnet. Die jeweilige Ausführungsform des Eisenkreises weist in jeder Ausführung zwei Schenkelelemente auf, die über einen Verbindungsabschnitt miteinander verbunden sind. Die Schenkelelemente des jeweiligen Eisenkreises sind in den Aussparungen der Leiterplatte positioniert. Jeweils um ein Schenkelelement des Eisenkreises ist eine Sekundärkreis bildende Wicklung des Stromwandlermoduls mit einer Mehrzahl an Windungen in der Leiterplatte ausgebildet.
Weitere Vorteile und Ausführungen der Erfindung werden nachfolgend anhand eines Ausführungsbeispiels sowie anhand der Zeichnung näher erläutert.
Dabei zeigen schematisch:
Fig. 1 ein Ausführungsbeispiel eines erfindungsgemäßen
Stromwandlermoduls mit U-förmigen Blechen als Eisenkreis;
Fig. 2 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls mit Schnittbandkernhälften als Eisenkreis;
Fig. 3 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls mit einem Ringband als Eisenkreis;
Fig. 4 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls mit ferromagnetischen Halbschalen als Eisenkreis;
Fig. 5 das Ausführungsbeispiel nach Fig. 4, wobei die ferromagnetischen Halbschalen aus gestapelten Blechen hergestellt sind;
Fig. 6 eine Spule mit Durchkontaktierungen durch die komplette Leiterplattenschicht;
Fig. 7 eine Spule mit Durchkontaktierungen zwischen einzelnen Schichten einer Leiterplatte.
Fig. 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls. Das erfindungsgemäße Stromwandlermodul weist einen Eisenkreis 1 auf, der vorzugsweise aus U-förmigen Blechen 2 aufgebaut ist. Die U-förmigen Bleche 2 weisen zwei vorzugsweise sich gegenüberliegende Schenkelelemente 3, 4 auf, die über einen Verbindungsabschnitt 5 miteinander verbunden sind. Der Eisenkreis 1 ist in Aussparungen 6 einer Leiterplatte 7 platziert. Die Aussparungen 6 in der Leiter- platte 7 sind vorzugsweise sich gegenüberliegend angeordnet. Die Schenkelelemente 3, 4 der U-förmig ausgebildeten Bleche sind in den Aussparungen 6 der Leiterplatte 7 positioniert, wobei die U-förmigen Bleche 2 vorzugsweise abwechselnd mit der offenen Seite oberhalb bzw. unterhalb der Leiterplatte 7 angeordnet sind. Die in Fig. 1 dargestellte Pfeilrichtung entspricht dabei der Montagerichtung. Jeweils um ein Schenkelelement des Eisenkreises 1 ist eine Sekundärkreis 8 bildende Wicklung des Stromwandlermoduls mit einer Mehrzahl an Windungen 9 in der Leiterplatte 7 ausgebildet.
In Fig. 2 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls dargestellt. Der Eisenkern 1 ist hier in Form von Schnittbandkernhälften 10 ausgeführt. Die Schnittbandkernhälften 10 sind U-förmig ausgebildet und weisen zwei sich gegenüberliegende Schenkelelemente 3, 4 und einen Verbindungsabschnitt 5 auf. Die Schenkelelemente 3, 4 der U-förmig ausgebildeten Schnittbandkernhälften 10 sind in den Aussparungen 6 der Leiterplatte 7 positioniert, wobei die Schnittbandkernhälften 10 zusammen einen Eisenkreis 1 erge- ben . Jeweils um ein Schenkelelement des Eisenkreises 1 ist eine Sekundärkreis 8 bildende Wicklung des Stromwandlermoduls mit einer Mehrzahl an Windungen 9 in der Leiterplatte 7 ausgebildet . Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stromwandlermoduls mit einem Ringband 11 als Eisenkreis 1. Das Ringband 11 wird durch die Aussparungen 6 der Leiterplatte 7 gewickelt und bildet dadurch einen Zylinder aus. Die Schenkelelemente 3, 4 sowie der Verbindungsabschnitt 5 gehen durch diese zylindrische Ausbildung fließend ineinander über. Jeweils um ein Schenkelelement des Eisenkreises 1 ist eine Sekundärkreis 8 bildende Wicklung des Stromwandler- moduls mit einer Mehrzahl an Windungen 9 in der Leiterplatte
7 ausgebildet.
In Fig. 4 ist ein weiteres Ausführungsbeispiel eines erfin- dungsgemäßen Stromwandlermoduls mit ferromagnetischen Halbschalen 12 als Eisenkreis 1 dargestellt. Die ferromagnetischen Halbschalen 12 sind U-förmig ausgebildet und weisen zwei sich gegenüberliegende Schenkelelemente 3, 4 und einen Verbindungsabschnitt 5 auf. Die Schenkelelemente 3, 4 der U- förmig ausgebildeten ferromagnetischen Halbschalen 12 sind in den Aussparungen 6 der Leiterplatte 7 positioniert, wobei die ferromagnetischen Halbschalen 12 entgegengesetzt zueinander angeordnet sind, so dass sowohl oberhalb als auch unterhalb der Leiterplatte 7 ein Verbindungsabschnitt 5 der U-förmigen ferromagnetischen Halbschalen 12 angeordnet ist. Jeweils um ein Schenkelelement des Eisenkreises 1 ist eine Sekundärkreis
8 bildende Wicklung des Stromwandlermoduls mit einer Mehrzahl an Windungen 9 in der Leiterplatte 7 ausgebildet. Fig. 5 zeigt das Ausführungsbeispiel nach Fig. 4, wobei die ferromagnetischen Halbschalen 12 aus gestapelten Blechen hergestellt sind.
In Fig. 6 ist eine Spule 13 mit Windungen 9 und mit Durchkon- taktierungen 14 durch die kompletten Leiterplattenschichten 15 dargestellt. Neben einem möglichst günstigen Aufbau des Eisenkreises 1 ist es auch wichtig, die Sekundärwicklung auf der Leiterplatte 7 optimal aufzubauen. Um eine technologisch sinnvolle Anzahl an Windungen 9 zu erreichen, müssen die Win- düngen 9 auf mehrere Schichten einer Leiterplatte verteilt sein. Diese Leiterplattenschichten 15 müssen mittels Durchkontaktierungen 14 miteinander verbunden sein. Da die Windungen 9 in den einzelnen Leiterplattenschichten 15 vorzugsweise abwechselnd von innen nach außen und dann wieder von außen nach innen verlaufen, befinden sich die Durchkontaktierungen 14 abwechselnd innen und außen. Dabei sollen die inneren Durchkontaktierungen 14 möglichst wenig Platinenfläche einnnehmen, vorzugsweise also in einer Linie zur Stirnseite des Eisenblechpaketes verlaufen.
Fig. 7 zeigt eine Spule 13 mit Windungen 9 und mit Durchkon- taktierungen 14 zwischen einzelnen Schichten einer Leiterplatte 7. Dabei ist vorzugsweise vorgesehen, dass die Durch- kontaktierungen 14 außerhalb der eigentlichen Wicklungsfläche liegen, um die Windungsabstände nicht zu vergrößern. Eine optimierte Lösung hinsichtlich des Bauraums liegt dann vor, wenn Durchkontaktierungen 14 mit einer ungeraden Nummer zu einer geraden Nummer jeweils direkt übereinander positioniert sind .
Für beide in den Fig. 6 und 7 dargestellten Möglichkeiten gilt, dass es optimal ist mit einer geraden Anzahl an Leiterplattenschichten 15 zu arbeiten, da dann beide Windungsenden der durchkontaktierten Spule 13 automatisch außen zu liegen kommen .
Das erfindungsgemäße Stromwandlermodul zeichnet sich dadurch aus, dass das aufwendige separate Aufbringen der sekundären Windungen auf einen Eisenkreis entfällt, da die Windungen in der Leiterplatte integriert sind. Durch die Integration der Sekundärwindungen in die Leiterplatte müssen keine Anschlusslitzen angeschlagen werden und diese müssen auch nicht mit der Leiterplatte kontaktiert werden. Durch die Integration des Eisenkreises in die Leiterplatte ergibt sich ein deutlich kompakterer Aufbau für das erfindungsgemäße Stromwandlermodul mit einem geringeren Bedarf an Bauraum im Vergleich zu den Ausführungsbeispielen aus dem Stand der Technik. Bezugszeichenliste
1 Eisenkreis
2 U-förmiges Blech
3 Schenkelelement
4 Schenkelelement
5 Verbindungsabschnitt
6 Aussparung
7 Leiterplatte
8 Sekundärkreis
9 Windung
10 Schnittbandkernhälfte
11 Ringband
12 Halbschale
13 Spule
14 Durchkontaktierung
15 Leiterplattenschicht

Claims

Patentansprüche
Stromwandlermodul aufweisend eine Leiterplatte (7), in welche in Aussparungen (6) der Leiterplatte (7) ein Eisenkreis (1) integriert ist, wobei eine einen Sekundärkreis (8) des Stromwandlermoduls bildende Wicklung mit Windungen (9) in bzw. auf der Leiterplatte (7) angeordnet ist.
2. Stromwandlermodul nach Anspruch 1, dadurch gekennzeichnet, dass der Eisenkreis (1) aus Blechen (2), insbesondere U-, E- oder L-förmigen, oder aus Schnittbandkernhälften (10) oder aus Ringband (11) oder aus ferromag- netischen Halbschalen (12) ausgebildet ist.
3. Stromwandlermodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Eisenkreis (1) in einer Aussparung (6) oder in mehreren Ausparungen (6) in der Leiterplatte (7) positioniert ist und die Sekundärkreis (8) bildende Wicklung durch den Eisenkreis (1) durchgeführt ist.
Stromwandlermodul nach einem der Ansprüche 1 bis 3, da durch gekennzeichnet, dass die Sekundärkreis (8) bildenden Windungen (9) auf einer Mehrzahl an Leiterplattenschichten (15) der Leiterplatte (7) ausgebildet sind .
Stromwandlermodul nach Anspruch 4, dadurch gekennzeichnet, dass die mit Sekundärkreis (8) bildenden Windungen (9) ausgebildeten Leiterplattenschichten (15) mit Durchkontaktierungen (14) zwischen den Leiterplattenschichten (15) durch die gesamte Leiterplatte (7) ausgebildet sind.
Stromwandlermodul nach Anspruch 4, dadurch gekennzeichnet, dass die mit Sekundärkreis (8) bildenden Windungen (9) ausgebildeten Leiterplattenschichten (15) mit Durchkontaktierungen (14) zwischen den Leiterplattenschichten (15) nur in Teilbereichen der Leiterplattenschichten (15) der Leiterplatte (7) ausgebildet sind.
Stromwandlermodul nach Anspruch 6, dadurch gekennzeich net, dass die Durchkontaktierungen (14) außerhalb der Wicklungsfläche der Sekundärkreis (8) bildenden Windun gen (9) angeordnet sind.
8. Stromwandlermodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Stromwandlermodul für den Motorschutz ausgebildet ist.
9. Stromwandlermodul nach einem der Ansprüche 1 bis 7, da- durch gekennzeichnet, dass das Stromwandlermodul für den Leitungsschutz ausgebildet ist.
Stromwandlermodul nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Stromwandlermodul 3- phasig ausgebildet ist, bestehend aus drei Eisenkreisen (1) und drei Sekundärkreisen (8), die elektrisch miteinander verbunden sind.
PCT/EP2016/068847 2015-09-29 2016-08-08 Stromwandlermodul WO2017054972A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187006033A KR102036130B1 (ko) 2015-09-29 2016-08-08 전력 변환기 모듈
JP2018515600A JP6594531B2 (ja) 2015-09-29 2016-08-08 変流器モジュール
EP16756621.5A EP3300527A1 (de) 2015-09-29 2016-08-08 Stromwandlermodul
CN201680045051.3A CN107924760A (zh) 2015-09-29 2016-08-08 电流互感器模块
US15/764,473 US20180286564A1 (en) 2015-09-29 2016-08-08 Power converter module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015218715.2A DE102015218715A1 (de) 2015-09-29 2015-09-29 Stromwandlermodul
DE102015218715.2 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017054972A1 true WO2017054972A1 (de) 2017-04-06

Family

ID=56799418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/068847 WO2017054972A1 (de) 2015-09-29 2016-08-08 Stromwandlermodul

Country Status (7)

Country Link
US (1) US20180286564A1 (de)
EP (1) EP3300527A1 (de)
JP (1) JP6594531B2 (de)
KR (1) KR102036130B1 (de)
CN (1) CN107924760A (de)
DE (1) DE102015218715A1 (de)
WO (1) WO2017054972A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068963A1 (de) * 2016-10-12 2018-04-19 Siemens Aktiengesellschaft Verfahren zur herstellung eines leiterplattenstromwandlers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214219A1 (de) 2017-08-15 2019-02-21 Robert Bosch Gmbh Geschlitzter magnetischer Kern und Verfahren zur Herstellung eines geschlitzten magnetischen Kerns
DE102017214220A1 (de) 2017-08-15 2019-02-21 Robert Bosch Gmbh Magnetischer Kern und Verfahren zur Herstellung eines magnetischen Kerns
FR3086793B1 (fr) * 2018-09-27 2020-09-11 Schneider Electric Ind Sas Transformateur de courant electrique et appareil de mesure de courant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283051A (ja) * 1994-04-12 1995-10-27 Matsushita Electric Works Ltd 電流トランス
JPH08306296A (ja) * 1995-05-08 1996-11-22 Fuji Electric Co Ltd 零相変流器
EP0955660A1 (de) * 1998-05-08 1999-11-10 Schurter AG Elektrischer Geräteschutzschalter mit Überstrom-und Unterspannungsfunktion und Überstromsensor dafür
US6480086B1 (en) * 1999-12-20 2002-11-12 Advanced Micro Devices, Inc. Inductor and transformer formed with multi-layer coil turns fabricated on an integrated circuit substrate
JP2005101244A (ja) * 2003-09-25 2005-04-14 Hitachi Ltd プリント基板型変成器
US20070139151A1 (en) * 2005-12-19 2007-06-21 Nussbaum Michael B Amplifier output filter having planar inductor
US20080164967A1 (en) * 2006-12-20 2008-07-10 Naohiro Mashino Inductance element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH347259A (de) 1955-12-28 1960-06-30 Bbc Brown Boveri & Cie Stromwandler für Höchstspannungsanlagen
DE3722124A1 (de) 1986-08-21 1988-02-25 Siemens Ag Flachbaugruppe mit einer spule oder einem uebertrager
DE3721759A1 (de) 1987-07-01 1989-01-12 Ceag Licht & Strom Auf einer leiterplatte angebrachter transformator
JPH01209387A (ja) * 1988-02-17 1989-08-23 Nishimu Denshi Kogyo Kk 故障電流検出センサ及びそのセンサを用いた送電線の故障区間検出方法
DE4137776C2 (de) 1991-11-16 1996-11-07 Vacuumschmelze Gmbh Hochfrequenzleistungsübertrager in Multilayer-Technik
JP2000012335A (ja) * 1998-06-18 2000-01-14 Tdk Corp 通信機用トランス
JP2000021661A (ja) * 1998-06-30 2000-01-21 Omron Corp Ct型電流センサ
JP2001015365A (ja) * 1999-07-02 2001-01-19 Toko Electric Corp 変流器
US6414579B1 (en) * 1999-12-06 2002-07-02 General Electric Company Current transformer and method for correcting asymmetries therein
JP2001289884A (ja) * 2000-04-04 2001-10-19 Mitsubishi Electric Corp 電流センサ
JP2005332851A (ja) * 2004-05-18 2005-12-02 Yasuhiko Okubo ホールct用コア
JP2006100389A (ja) * 2004-09-28 2006-04-13 Hokuto Denshi Kogyo Kk 薄型コイル
ATE550670T1 (de) * 2008-07-11 2012-04-15 Lem Liaisons Electron Mec Sensor für eine hochspannungsumgebung
CN201927466U (zh) * 2010-11-30 2011-08-10 富士康(昆山)电脑接插件有限公司 磁性元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283051A (ja) * 1994-04-12 1995-10-27 Matsushita Electric Works Ltd 電流トランス
JPH08306296A (ja) * 1995-05-08 1996-11-22 Fuji Electric Co Ltd 零相変流器
EP0955660A1 (de) * 1998-05-08 1999-11-10 Schurter AG Elektrischer Geräteschutzschalter mit Überstrom-und Unterspannungsfunktion und Überstromsensor dafür
US6480086B1 (en) * 1999-12-20 2002-11-12 Advanced Micro Devices, Inc. Inductor and transformer formed with multi-layer coil turns fabricated on an integrated circuit substrate
JP2005101244A (ja) * 2003-09-25 2005-04-14 Hitachi Ltd プリント基板型変成器
US20070139151A1 (en) * 2005-12-19 2007-06-21 Nussbaum Michael B Amplifier output filter having planar inductor
US20080164967A1 (en) * 2006-12-20 2008-07-10 Naohiro Mashino Inductance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068963A1 (de) * 2016-10-12 2018-04-19 Siemens Aktiengesellschaft Verfahren zur herstellung eines leiterplattenstromwandlers

Also Published As

Publication number Publication date
EP3300527A1 (de) 2018-04-04
US20180286564A1 (en) 2018-10-04
KR20180037225A (ko) 2018-04-11
DE102015218715A1 (de) 2017-03-30
JP2018535539A (ja) 2018-11-29
JP6594531B2 (ja) 2019-10-23
KR102036130B1 (ko) 2019-10-25
CN107924760A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
DE69922094T2 (de) Transformatorkern aus amorphem Metall
DE112010005769B4 (de) Transformator
EP3300527A1 (de) Stromwandlermodul
DE102009057788A1 (de) Planartransformator
DE102016201258A1 (de) Elektrischer Spannungswandler mit mehreren Speicherdrosseln
EP3001435B1 (de) Trockentransformatorkern
DE102013220025A1 (de) Induktionsvorrichtung
DE60130572T2 (de) Induktive bauelemente
DE2748070C2 (de) Elektromagnetischer Meßwertgeber
DE102016219790A1 (de) Verfahren zur Herstellung eines Leiterplattenstromwandlers
DE102016219788B4 (de) Verfahren zur Herstellung eines Leiterplattenstromwandlers
DE102004008961B4 (de) Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel
DE4007614A1 (de) Induktives element
DE725978C (de) Anordnung der aus Flachband bestehenden Primaerwicklung von Stromwandlern mit Schenkelkern
DE2328024A1 (de) Mittelfrequenz-leistungstransformator mit einer zur starren verbindung mit einem kuehlmitteldurchflossenen induktor geeigneten sekundaerwicklung
DE2418230C3 (de) Kapazitiv gesteuerte Hochspannungswicklung aus Scheibenspulen für Transformatoren mit großen Leistungen
DE102011082170A1 (de) Stromwandler
DE102018220415A1 (de) Transformator, Gleichspannungswandler und elektrischer Kraftwagen
EP2197005A1 (de) Flüssigkeitsgekühlte Bandwicklung
DE1936125A1 (de) Wicklungsaufbau fuer Kleintransformatoren und Drosselspulen
DE102004053547B4 (de) Blechschnitt für einen geschichteten Kern eines Transformators
DE202017104925U1 (de) Transformator
DE2501510C3 (de) Wicklung für Transformatoren und Drosseln
DE3046500A1 (de) Spulenkoerper
DE3913558A1 (de) Ferrittransformator mit mindestens einer primaeren und einer sekundaeren wicklung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16756621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016756621

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187006033

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018515600

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15764473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE