WO2017052278A1 - 리튬 이차전지용 음극활물질 및 그 제조방법 - Google Patents

리튬 이차전지용 음극활물질 및 그 제조방법 Download PDF

Info

Publication number
WO2017052278A1
WO2017052278A1 PCT/KR2016/010678 KR2016010678W WO2017052278A1 WO 2017052278 A1 WO2017052278 A1 WO 2017052278A1 KR 2016010678 W KR2016010678 W KR 2016010678W WO 2017052278 A1 WO2017052278 A1 WO 2017052278A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
active material
negative electrode
electrode active
based composite
Prior art date
Application number
PCT/KR2016/010678
Other languages
English (en)
French (fr)
Inventor
김현철
이용주
김은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL16849003T priority Critical patent/PL3355388T3/pl
Priority to CN201680033946.5A priority patent/CN107735888B/zh
Priority to EP16849003.5A priority patent/EP3355388B1/en
Priority to US15/576,992 priority patent/US11075369B2/en
Publication of WO2017052278A1 publication Critical patent/WO2017052278A1/ko
Priority to US17/354,060 priority patent/US20210313557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery including a silicon-based composite, and a method of manufacturing the same.
  • Lithium secondary batteries which are in the spotlight as power sources of recent portable small electronic devices, exhibit high energy density by showing a discharge voltage two times higher than that of a battery using an alkaline aqueous solution using an organic electrolyte solution.
  • the positive electrode active material of the lithium secondary battery is composed of lithium and a transition metal having a structure capable of intercalating lithium, such as LiCoO 2 , LiMn 2 O 4 , LiNi 1 - x Co x O 2 (0 ⁇ x ⁇ 1), and the like.
  • Oxides are mainly used, and various types of carbon-based materials including artificial graphite, natural graphite, and hard carbon capable of inserting and desorbing lithium have been applied as anode active materials.
  • graphite is mainly used as a negative electrode material of a lithium secondary battery, graphite has a small capacity per unit mass of 372 mAh / g, and it is difficult to increase the capacity of a lithium secondary battery.
  • the material which forms intermetallic compound with lithium such as silicon, tin, and these oxides, is promising, for example.
  • these materials cause a change in the crystal structure when absorbing and storing lithium, causing a problem of expansion of the volume.
  • silicon the maximum amount of lithium absorbed and stored, Li 4 . Converted to 4 Si, volume expansion by filling occurs, in which case the rate of volume increase by filling can expand up to about 4.12 times the volume of silicon prior to volume expansion.
  • the present invention has been made to solve the above problems, both of the negative electrode active material for lithium secondary battery and the method of manufacturing the same, in particular, both aspects of volume expansion and capacity improvement that can improve the initial efficiency and life characteristics of the lithium secondary battery
  • This is to provide a negative electrode active material including the silicon-based composite considered.
  • SiO a (a is represented by 0 ⁇ a ⁇ 1), a silicon-based composite comprising amorphous silicon; And a carbon coating layer distributed on the surface of the silicon-based composite.
  • the silicon-based composite may further include crystalline silicon having a grain size of 10 nm or less.
  • amorphous silicon may be included in more than 90% by weight.
  • the carbon coating layer may have a thickness of 0.003 to 3.0 ⁇ m.
  • the average particle diameter of the negative electrode active material may be 0.1 to 20 ⁇ m.
  • the average particle diameter of the negative electrode active material may be 0.5 to 10 ⁇ m.
  • a method for producing a phosphorous anode active material is provided.
  • the silicon-based composite may further include crystalline silicon having a grain size of 10 nm or less.
  • the carbon coating layer may include one or more selected from the group consisting of natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon fibers and carbon black.
  • MCMB mesocarbon microbeads
  • the content of the carbon coating layer may be 1 to 50% by weight of the total weight of the negative electrode active material.
  • the heat treatment may include thermal reduction of the silicon-based precursor using a metal reducing agent under an inert atmosphere.
  • the heat treatment may be performed at a temperature of 350 to 600 ° C.
  • the heat treatment may be performed in a rotary tube furnace.
  • the metal reducing agent may include any one selected from the group consisting of Ti, Al, Mg, Ca, Be, Sr, Ba, and combinations thereof.
  • the molar ratio of the silicon-based precursor to the metal reducing agent may be 1: 0.001 to 1: 1.
  • the preparing of the silicon-based composite may include removing the reduced impurities by using an aqueous acid solution.
  • the acid aqueous solution may include one or more selected from the group consisting of hydrochloric acid, nitric acid and sulfuric acid.
  • the impurity may include one or more materials selected from the group consisting of metal oxides, metal silicides, and metal silicates, and the metal may include Ti, Al, Mg, Ca, Be, It may be any one selected from the group consisting of Sr, Ba and combinations thereof.
  • a negative electrode for a lithium secondary battery including the negative electrode active material described above is provided.
  • a lithium secondary battery including the above-described negative electrode is provided.
  • the negative electrode active material according to the present specification includes an amorphous or small crystalline silicon-based composite, and when applied to the lithium secondary battery, initial capacity and efficiency may be improved.
  • the negative electrode active material according to the present specification is easy to control the growth of silicon crystals by reducing the silicon precursor after forming the carbon coating layer, and prevents the reducing agent from reacting only on the surface of the silicon precursor to the inside It can be reduced uniformly and can easily control the oxygen content in the silicon-based composite, which can improve the life characteristics of the secondary battery due to the improved swelling characteristics, and the initial capacity and efficiency due to the reduced oxygen content have.
  • Example 1 is an image taken with a scanning electron microscope (SEM) of the surface of the silicon-based composite of Example 1 prepared according to the present specification.
  • Figure 2 is an image taken with a scanning electron microscope (SEM) of the internal cross section of the silicon-based composite of Example 1 prepared according to the present specification.
  • the heat reduction reaction was performed for 12 hours, and after 12 hours, the chamber temperature was reduced to room temperature to collect the product in the reaction vessel to prepare a silicon-based composite.
  • MgO and the like which were reduced by using HCl (1N) were removed to obtain a silicon-based composite including crystalline silicon having only a crystal size of 10 nm or less, and x of SiOx was Reduced to about 0.6.
  • the silicon-based composite having the carbon coating layer prepared as the negative electrode active material, acetylene black as the conductive material, and polyvinylidene fluoride as the binder were mixed in a weight ratio of 95: 1: 4, and these were mixed with N-methyl- as a solvent.
  • a slurry was prepared by mixing in 2-pyrrolidone. The prepared slurry was coated on one surface of a copper current collector to a thickness of 30 ⁇ m, dried and rolled, and then punched to a predetermined size to prepare a negative electrode.
  • a coin-type half cell (2016 R-type half cell) was prepared in a helium-filled glove box using the negative electrode, the lithium counter electrode, the microporous polyethylene separator, and the electrolyte.
  • the electrolyte 1 M LiPF 6 was dissolved in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 50:50.
  • a silicon-based composite including only amorphous silicon was obtained by setting the temperature of the thermal reduction reaction at 570 ° C., except that a negative electrode was manufactured, and thus a secondary battery was manufactured in the same manner as in Example 1.
  • a silicon-based composite was prepared in the same manner as in Example 1, except that the carbon coating layer was not formed.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared silicon-based composite was used as a negative electrode active material.
  • a silicon-based composite was prepared in the same manner as in Example 1, except that the silicon-based composite was prepared by forming a carbon coating layer after reducing SiO.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared silicon-based composite was used as a negative electrode active material.
  • a silicon-based composite was prepared in the same manner as in Example 1, except that the temperature of the thermal reduction reaction was set at 750 ° C.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared silicon-based composite was used as a negative electrode active material.
  • the half cells prepared in 25 were charged and discharged once at 0.1 C at 0 V to 1.5 V. The initial discharge capacity, initial charge capacity, and coulomb efficiency were measured.
  • Example 1 As in Example 1, it can be seen that the efficiency of the battery is improved by imparting conductivity of the silicon-based composite by the carbon coating layer.
  • Example 1 can control the reduction rate according to the reduction of SiO after forming the carbon coating layer, it can be uniformly reduced to the inside of SiO, it is possible to easily control the crystalline Si and crystalline SiO 2 It was confirmed from the increase in the life characteristics and the decrease in the swelling phenomenon.
  • SiO a (a is a silicon-based composite represented by 0 ⁇ a ⁇ 1); And a carbon coating layer distributed on the surface of the silicon-based composite.
  • the silicon-based material has a problem in that the cracking, chemical pulverization, etc. of the particles easily occur due to a large volume change (swelling) generated during charging and discharging, thereby rapidly decreasing the life characteristics.
  • the Si is not solely a silicon-based negative active material include, the development of silicon-based anode active material present in the Si and SiO 2 compartment state in the particles, with a lithium-containing amorphous SiO 2 and the electrolyte By-products such as Li 2 O were generated according to the reaction, and thus there was a problem of lowering the initial discharge capacity and initial efficiency by the by-products.
  • the negative electrode active material according to the present specification may include a carbon coating layer distributed on the surface of the silicon-based composite.
  • a carbon coating layer distributed on the surface of the silicon-based composite.
  • the negative electrode active material according to the present specification includes a silicon-based composite and a carbon coating layer, and the silicon of the silicon-based composite may be amorphous, and the carbon coating layer may have a form of a layer formed to surround the surface of the silicon-based composite. have.
  • the silicon included in the silicon-based composite is a lithium ions desorbed from the positive electrode active material when the silicon-based composite is used as a negative electrode active material, and can be occluded and released substantially to cause an electrochemical reaction, and the crystal characteristic may be amorphous. And, it may be crystalline, which is because when the crystalline silicon oxide is reduced by a heat source ring using a metallic gas described later, the reduced silicon may be reduced to crystalline silicon, may be reduced to amorphous silicon.
  • amorphous silicon may exist as the main, ideally, only amorphous silicon may exist, and only the amorphous silicon may be controlled by controlling the temperature of heat treatment reduction. Can be.
  • the silicon-based composite may further include crystalline silicon, in which case the size of the crystal grains may be 10 nm or less.
  • the crystal size may be determined by X-ray diffraction (XRD) analysis or electron microscopy (SEM, TEM).
  • XRD X-ray diffraction
  • SEM electron microscopy
  • the crystalline silicon grain size may be in the above range can be thermally reduced even at low temperatures, even by a metal reducing agent having a high reducibility by forming a carbon coating layer allows uniform reduction of the silicon-based composite as a whole. This may be due to the fact that the growth of silicon can be controlled appropriately.
  • the silicon-based composite may be controlled in an amount of about 10% by weight or less based on the total weight of silicon in the silicon-based composite, and preferably in an amount of 5% by weight or less. It may be preferable to include only amorphous silicon, but in actual mass production, such control is not perfect, and even though crystalline silicon is included, the amount may be controlled to 10 wt% or less, and the size of the grain may be controlled to 10 nm or less. This can achieve the desired purpose.
  • the negative electrode active material according to the present specification may further include crystalline silicon oxide in the silicon-based composite. Since the silicon-based composite is a composite of silicon and silicon oxide, the silicon-based composite may further include silicon oxide. Among the silicon oxides, however, by not including amorphous silicon oxide, the reaction between the amorphous silicon oxide and lithium contained in the electrolyte solution can be excluded and the volume growth problem can be prevented by appropriately suppressing the crystal growth of the crystalline silicon. It may be.
  • the silicon-based composite may be represented by SiO a (a is 0 ⁇ a ⁇ 1).
  • the silicon-based composite may express 1- (a / 2) :( a / 2) as a ratio of silicon and silicon oxide contained in the silicon-based composite, and y may correspond to a silicon (Si) element included in the silicon-based composite.
  • Si silicon
  • the ratio of silicon oxide to silicon is higher than that of silicon, and the swelling phenomenon of the negative electrode active material may be lowered to some extent, but the initial discharge capacity of the lithium secondary battery may be reduced. It may be lowered may be an active material deviating from the target negative electrode active material in the present specification, when the content of oxygen is small and the range of a is 0 to 1, the amount of swelling of the negative electrode active material, that is, the volume expansion problem and the initial discharge capacity It can provide the cathode active material optimized in terms of.
  • the silicon-based composite When the silicon-based composite is manufactured in a state in which a carbon coating layer is formed on the surface, electrical conductivity is given to the silicon-based composite due to the carbon coating layer, thereby providing an initial efficiency, lifespan characteristics, and battery of the secondary battery including the silicon-based composite. Capacity characteristics can be improved.
  • the carbon coating layer may have a thickness of 0.003 ⁇ m to 3.0 ⁇ m.
  • the carbon coating layer may be too thin to improve the electrical conductivity, and may not effectively play a role of inhibiting crystal growth during reduction of the silicon-based composite.
  • the carbon coating layer may be so thick that the size of the negative electrode active material may be too large, and may inhibit the occlusion and release of lithium ions, but may decrease the capacity and initial efficiency.
  • the average particle diameter of the negative electrode active material including the silicon-based composite having a carbon coating layer may be 0.1 to 20 ⁇ m, preferably 0.5 to 10 ⁇ m. If the particle size of the negative electrode active material is less than 0.1 ⁇ m, the electrode density may be reduced. If the particle size of the negative electrode active material is more than 20 ⁇ m, the rate characteristic may be lowered, or the life characteristics may be reduced due to volume expansion.
  • silicon particles generally used as a negative electrode active material is accompanied by a very complicated crystal change in the reaction to electrochemically occlude and release the lithium atom.
  • the composition and crystal structure of the silicon particles are Si (crystal structure: Fd3m), LiSi (crystal structure: I41 / a), Li 2 Si (crystal structure: C2 / m), Li 7 Si 2 (Pbam), Li 22 S i5 (F23) and the like.
  • the volume of the silicon particles expands to about four times.
  • the reaction between the silicon-based composite and the lithium atom according to an embodiment of the present invention may be performed while maintaining the crystal structure of the silicon-based composite. It can have the advantage that
  • a method for manufacturing the above-described negative electrode active material is provided.
  • the negative electrode active material manufacturing method may include forming a carbon coating layer on a silicon-based precursor represented by SiO x (x is 0 ⁇ x ⁇ 2); Heat-treating the silicon-based precursor in which the carbon coating layer is formed; And removing the oxidized metal oxide to prepare a silicon-based composite represented by SiO a (a is 0 ⁇ a ⁇ 1) having a carbon coating layer disposed on a surface thereof, wherein the silicon-based composite includes amorphous silicon. It is to include.
  • the forming of the carbon coating layer on the silicon based precursor may be a step of forming a coating layer by wrapping the surface of the silicon based precursor with a carbon based material before reducing the silicon based precursor as a raw material.
  • the silicon-based precursor represented by SiO x (x is 0 ⁇ x ⁇ 2), which is a raw material, may include a material in which crystalline silicon and crystalline silicon oxide are complexed as described above. Mixed materials can be applied as raw materials.
  • the carbon coating layer formed on the surface of the silicon precursor as a coating layer for example, graphite such as natural graphite, artificial graphite, carbon fibers such as mesocarbon microbeads (MCMB), carbon nanotubes, carbon nanofibers, Ketjen Carbon black such as black, denka black, acetylene black, or a mixture thereof may be included, and any carbon source capable of imparting a carbon coating to the surface of the silicon-based precursor is not particularly limited and may be applied.
  • Formation of the carbon coating layer as described above can be achieved by dispersing a carbon precursor in a solvent such as tetrahydrofuran (THF), alcohol, or the like, adding it to the silicon-based precursor, drying and heat treatment, and supplying an acetylene gas.
  • a solvent such as tetrahydrofuran (THF), alcohol, or the like
  • any carbon coating method conventionally used in the art may be used without particular limitation.
  • the content of the carbon coating layer may be 1 to 50% by weight of the total weight of the negative electrode active material.
  • a uniform coating layer may not be formed, and thus conductivity may be lowered.
  • the carbon coating layer is more than 50% by weight, the carbon coating layer may be too thick to increase the size of the negative electrode active material. Rather, capacity reduction and initial efficiency can be reduced.
  • electrical conductivity is appropriately applied to the silicon-based composite as described above, thereby improving initial efficiency, lifespan characteristics, and battery capacity characteristics of the secondary battery including the silicon-based composite.
  • the method of manufacturing a negative electrode active material may reduce the silicon precursor after forming the carbon coating layer, thereby controlling the reaction rate, and preventing the reducing agent from reacting only on the surface of the silicon precursor. Accordingly, the reduction may be uniformly performed to the inside of the silicon-based precursor, and it is possible to easily control the oxygen content in the silicon-based composite to be produced, and the carbon coating layer may be a barrier layer to determine silicon crystals. It can also play a role in controlling growth.
  • the heat treatment may include reducing the silicon-based precursor coated on the surface of the carbon coating layer by heating under specific conditions, and specifically, the heat treatment may be inert. Under the atmosphere, thermal reduction of the silicon-based precursor using a metal reducing agent may be included.
  • the thermal reduction of the silicon precursor may be performed by thermally reducing the silicon precursor using a metallic powder or a metallic gas containing a metal reducing agent in an inert atmosphere.
  • oxygen is locally released in the form of a metal oxide by the metal in the silicon-based precursor, so that local reduction occurs.
  • the content of oxygen decreases as the silicon precursor is reduced, and as a result, a silicon-based composite in which silicon, mainly silicon, an unreduced silicon oxide remaining, and a silicon oxide in which reoxidation has occurred can be manufactured.
  • the prepared silicon may include crystalline ones, may be mostly amorphous, or may be a mixture thereof, but ideally amorphous.
  • the remaining silicon oxide may be crystalline.
  • the metal reducing agent for example, Ti, Al, Mg, Ca, Be, Sr, Ba or a combination thereof may be applied, heat reduction may be performed using a powder or gas of these metals, the metal reducing agent As long as it has sufficient reducing power to separate / desorb oxygen from the silicon-based precursor described above, it can be used without limitation in the kind, preferably magnesium (Mg) may be used.
  • Mg magnesium
  • the heat treatment may be performed at a temperature of 350 to 650 °C, preferably may be carried out at 500 to 600 °C. If the temperature of the heat treatment is less than 350, the temperature may be low, and it may be difficult to cause a reduction reaction. If the temperature of the heat treatment is greater than 650 ° C., the crystals of silicon may grow significantly, and the crystal properties may be deformed.
  • the thermal reduction when the thermal reduction is performed by performing heat treatment at a low temperature of 350 to 650 ° C., the crystal growth of silicon may be prevented to some extent as the temperature is low, and the thermal reduction reaction is performed using a metal reducing agent having a strong reducing power at a low temperature.
  • the amount of oxygen in the silicon-based composite to be produced can be easily controlled, and finally, a silicon-based composite having a high proportion of silicon, that is, SiO a (0 ⁇ a ⁇ 1) can be produced, and the temperature is controlled. Through this, ultimately amorphous silicon can be produced.
  • the heat reduction may be performed while flowing an inert gas
  • the inert gas that may be used herein may be, for example, Ar, N 2 , Ne, He, Kr, or a mixed gas thereof.
  • the heat treatment may include reacting a metal reducing agent, for example, a metallic powder containing magnesium or a reactant mixed with a metallic gas and a silicon precursor in a reactor, for example, between Mg, a silicon precursor and a metal reducing agent.
  • a metal reducing agent for example, a metallic powder containing magnesium or a reactant mixed with a metallic gas and a silicon precursor in a reactor, for example, between Mg, a silicon precursor and a metal reducing agent.
  • a metal reducing agent for example, a metallic powder containing magnesium or a reactant mixed with a metallic gas and a silicon precursor in a reactor, for example, between Mg, a silicon precursor and a metal reducing agent.
  • the amount of oxygen in the finally produced silicon-based composite may be controlled by controlling the ratio of the silicon-based precursor and the metal reducing agent in the heat treatment step.
  • the molar ratio of the silicon-based precursor to the metal reducing agent may be 1: 0.001 to 1: 1.
  • the greater the amount of the metal reducing agent the greater the amount of silicon precursor can be reduced, thereby controlling the amount of the metal reducing agent used for thermal reduction, thereby easily controlling the ratio of silicon and silicon oxide contained in the silicon-based composite to be produced. In addition, it is possible to increase the proportion of silicon in the silicon-based composite.
  • the initial capacity may be increased, and the efficiency may also be improved.
  • the reduction reaction is performed with the carbon coating layer formed, it is possible to easily control the crystal size of the crystalline material in SiO a , and there is an advantage that the reduction can be uniformly performed to the inside.
  • the metal reducing agent may include Mg. Accordingly, the stoichiometric reaction of the silicon-based precursor with the reducing agent Mg is as follows:
  • the metal may reduce the silicon oxide as a reducing agent, and thus the metal may be oxidized to generate a metal oxide, and the silicon oxide may be reduced to generate silicon.
  • the reducing agent other metallic reducing agents other than Mg may be used, and in this case, reduction of the silicon-based precursor is caused by a reaction similar to the above scheme.
  • the preparing of the silicon-based composite may include removing impurities using an aqueous acid solution.
  • hydrochloric acid nitric acid, sulfuric acid, and the like may be used as the acid aqueous solution, and preferably, an aqueous hydrochloric acid solution may be used, and about 0.1 to 10 N may be used. If hydrochloric acid is used below 0.1 N, impurities may not be completely removed, and when used in excess of 10 N, manufacturing efficiency may decrease. Impurities to be removed may be MgO, Mg 2 Si, Mg 2 SiO 4 and the like, and may vary depending on the type of metal used as the metal reducing agent.
  • a silicon-based composite including amorphous silicon, crystalline silicon, and crystalline silicon oxide may be obtained through general washing and drying steps.
  • the silicon-based composite prepared by reducing SiO may include crystalline silicon, amorphous silicon, and crystalline silicon oxide.
  • the negative electrode active material including the silicon-based composite may exclude the reaction between the amorphous silicon oxide and lithium included in the electrolyte, and may improve initial efficiency and capacity characteristics of the secondary battery.
  • a lithium secondary battery comprising a negative electrode active material prepared by the negative electrode active material manufacturing method.
  • the lithium secondary battery includes a positive electrode including a positive electrode active material; Separator; A negative electrode including the negative electrode active material; And an electrolyte, and the negative electrode active material may be prepared as a negative electrode.
  • a negative electrode may be manufactured by mixing and stirring a binder and a solvent, a conductive agent and a dispersant, and then applying a slurry to a negative electrode active material according to an embodiment of the present invention, and then applying the same to a current collector and compressing the same. .
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor Fonned EPDM, styrene butyrene rubber (SBR), fluororubber, various copolymers, and the like.
  • PVDF-co-HEP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HEP polyvinylidene fluoride-hexafluoropropylene cop
  • N-methyl-2-pyrrolidone, acetone, water and the like can be used as the solvent.
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • a positive electrode active material, a conductive agent, a binder, and a solvent are mixed to prepare a slurry, which is then directly coated on a metal current collector, or cast on a separate support, and the positive electrode active material film peeled from the support is made of metal.
  • the positive electrode may be manufactured by laminating the current collector.
  • the separator is a conventional porous polymer film used as a conventional separator, for example, polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the prepared porous polymer films may be used alone or in a lamination thereof.
  • Conventional porous nonwovens may be used, such as but not limited to high melting point glass fibers, polyethylene terephthalate fibers, and the like.
  • the lithium salt that may be included as an electrolyte may be used without limitation so long as those used in the electrolyte for secondary batteries, for example, F ⁇ , Cl -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3 ) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2
  • any organic solvent included in the electrolyte may be used without limitation as long as they are conventionally used, and typically propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl Carbonate, methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite and tetrahydrofuran 1 or more types can be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well, such as dimethyl carbonate and diethyl.
  • a low viscosity, low dielectric constant linear carbonate such as carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the electrolyte stored according to one embodiment of the present invention may further include an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • a separator is disposed between the positive electrode and the negative electrode to form a battery structure, and the battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then injected with an electrolyte to complete the secondary battery.
  • the battery structure is stacked in a bi-cell structure, and then impregnated in the electrolyte, and the resultant is placed in a pouch to seal the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 SiOa (a는 0<a<1)로 표시되고, 비정질의 규소계 복합체; 및 상기 규소계 복합체의 표면에 분포된 탄소 코팅층;을 포함하는 음극활물질에 관한 것으로, 탄소 코팅층을 형성한 상태에서 금속환원제를 이용한 열환원을 통하여 제조되는 규소계 복합체 내의 결정질 실리콘의 결정 성장이 억제되고, 복합체 내 실리콘의 비율이 큰 음극활물질 및 이의 제조방법을 제공한다.

Description

리튬 이차전지용 음극활물질 및 그 제조방법
관련출원과의 상호인용
본 출원은 2015년 09월 24일자 한국 특허 출원 제10-2015-0135473호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 규소계 복합체를 포함하는 리튬 이차전지용 음극활물질과, 이를 제조하는 방법에 관한 것이다.
최근의 휴대용 소형 전자기기의 전원으로서 각광받고 있는 리튬 이차전지는 유기 전해액을 사용하여 기존의 알칼리 수용액을 사용한 전지보다 2배 이상의 높은 방전 전압을 보임으로써 높은 에너지 밀도를 나타내는 전지이다.
리튬 이차전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 - xCoxO2(0 < x < 1) 등과 같이, 리튬의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물을 주로 사용하고 있으며, 음극활물질로는 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연 및 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다.
리튬 이차 전지의 음극 재료로서는 흑연이 주로 이용되고 있지만, 흑연은 단위 질량당 용량이 372 mAh/g로 작고, 리튬 이차 전지의 고용량화가 어렵다.
흑연보다도 고용량을 나타내는 음극재로서는, 예를 들면 실리콘, 주석 및 이들의 산화물 등의 리튬과 금속간 화합물을 형성하는 재료가 유망하다. 그러나 이들 재료는 리튬을 흡수 저장할 때에 결정구조의 변화를 야기시켜 체적이 팽창하는 문제점이 있다. 실리콘의 경우 리튬을 최대량 흡수 저장하면, Li4 . 4Si로 전환되어, 충전에 의한 부피 팽창이 이루어지며, 이 경우 충전에 의한 체적 증가율은 부피 팽창 전 실리콘의 부피에 비해 약 4.12배까지 팽창할 수 있다.
따라서 이러한 실리콘 등 음극재의 고용량화를 위한 많은 연구가 되어 왔다. 그러나, 충방전시 Si, Sn 또는 Al 등의 금속이 리튬과 반응하여 부피 팽창 및 수축이 발생되어 전지의 사이클 특성이 저하되는 문제가 있다.
Si 및 SiO2가 나노도메인을 가지는 SiO와 같은 비탄소계 소재를 사용하는 경우, 탄소계 소재에 비하여 고용량 특성 및 Si 대비 부피 팽창에 대한 억제가 가능하다는 장점이 있어 많은 연구를 하고 있으나, Li과 O와 반응에 의하여 생겨나는 부산물이 비가역 반응을 나타내기 때문에 초기 효율이 저하된다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하고자 한 것으로, 리튬 이차전지의 초기 효율 및 수명 특성을 향상시킬 수 있는 리튬 이차전지용 음극활물질 및 그 제조방법, 구체적으로는 부피 팽창과 용량 향상의 양 측면이 모두 고려된 규소계 복합체를 포함하는 음극활물질을 제공하기 위함이다.
상기 해결하고자 하는 과제를 달성하기 위하여, 본 명세서의 일 실시예에 따르면, SiOa (a는 0<a<1)로 표시되고, 비정질 실리콘을 포함하는 규소계 복합체; 및 상기 규소계 복합체의 표면에 분포된 탄소 코팅층;을 포함하는 음극활물질이 제공된다.
본 명세서의 다른 일 실시예에 따르면, 상기 규소계 복합체는 결정립의 크기가 10 nm 이하인 결정질 실리콘을 더 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 규소계 복합체 중 실리콘의 총 중량에 대하여, 비정질 실리콘은 90 중량% 이상 포함되는 것일 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 탄소 코팅층의 두께는 0.003 내지 3.0 ㎛일 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 음극활물질의 평균 입경은 0.1 내지 20 ㎛일 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 음극활물질의 평균 입경은 0.5 내지 10 ㎛ 일 수 있다.
상기 해결하고자 하는 과제를 달성하기 위하여, 본 명세서의 일 실시예에 따르면, SiOx (x는 0<x<2)로 표시되는 규소계 전구체에 탄소 코팅층을 형성하는 단계; 상기 탄소 코팅층이 형성된 규소계 전구체를 열처리 하는 단계; 및 불순물을 제거하여, 표면에 탄소 코팅층이 분포된 SiOa (a는 0<a<1)로 표시되는 규소계 복합체를 제조하는 단계;를 포함하고, 상기 규소계 복합체는 비정질 실리콘을 포함하는 것인 음극활물질의 제조방법이 제공된다.
본 명세서의 다른 일 실시예에 따르면, 상기 규소계 복합체는 결정립의 크기가 10 nm 이하인 결정질 실리콘을 더 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 탄소 코팅층은 천연 흑연, 인조 흑연, 메조카본 마이크로비즈(MCMB), 탄소섬유 및 카본블랙으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 탄소 코팅층의 함량은 음극활물질 총 중량의 1 내지 50 중량%일 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 열처리 하는 단계는, 불활성 분위기하에서, 금속환원제를 이용하여 규소계 전구체를 열환원(thermal reduction)시키는 단계를 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 열처리는 온도 350 내지 600℃에서 수행될 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 열처리는 회전 관상로에서 수행될 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 금속환원제는 Ti, Al, Mg, Ca, Be, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 규소계 전구체 대 금속환원제의 몰비는 1:0.001 내지 1:1 일 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 규소계 복합체를 제조하는 단계는, 산 수용액을 이용하여 환원된 불순물을 제거하는 단계를 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 산 수용액은 염산, 질산 및 황산으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
본 명세서의 다른 일 실시예에 따르면, 상기 불순물은 금속 산화물, 금속 규소화물 및 금속 규산화물로 이루어진 군에서 선택된 1 이상의 물질을 포함할 수 있고, 상기 금속은 Ti, Al, Mg, Ca, Be, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.
상기 해결하고자 하는 과제를 달성하기 위하여, 본 명세서의 일 실시예에 따르면, 전술한 음극활물질을 포함하는 리튬 이차전지용 음극이 제공된다.
상기 해결하고자 하는 과제를 달성하기 위하여, 본 명세서의 일 실시예에 따르면, 전술한 음극을 포함하는 리튬 이차전지가 제공된다.
본 명세서에 따른 음극활물질은, 비정질 또는 결정 크기가 작은 결정질의 규소계 복합체를 포함함으로써, 이를 리튬 이차전지에 적용할 경우, 초기 용량 및 효율이 개선될 수 있다.
또한, 본 명세서에 따른 음극활물질은, 상기 탄소 코팅층을 형성한 후에 규소계 전구체를 환원함에 따라 실리콘의 결정 성장을 제어하기가 용이하고, 환원제가 규소계 전구체의 표면에서만 반응하는 것을 방지하여 내부까지 균일하게 환원 될 수 있으며, 규소계 복합체 내의 산소 함유량을 용이하게 제어할 수 있어, 스웰링 특성 개선으로 인한 이차전지의 수명 특성 향상과, 산소 함유량 감소로 인한 초기 용량 및 효율 개선의 효과를 가져올 수 있다.
도 1은 본 명세서에 따라 제조된 실시예 1의 규소계 복합체의 표면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 2는 본 명세서에 따라 제조된 실시예 1의 규소계 복합체의 내부 단면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 3은 비교예 1의 규소계 복합체의 표면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 4는 비교예 2의 규소계 복합체의 표면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
실시예
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
실시예 1
1. 탄소 코팅층이 형성된 SiO의 제조
SiOx(x=1) 분말 100g을 회전 관상로에 투입하고, 아르곤 가스를 0.5L/분으로 흘려준 후 온도를 5/분의 속도로 1000℃까지 승온시켰다. 회전 관상로를 30 rpm/분의 속도로 회전시키면서 아르곤 가스를 1.8L/분, 아세틸렌 가스를 0.5L/분으로 흘려주며 5 시간 동안 열처리하여 탄소 코팅층이 형성된 SiOx(x=1)를 제조하였다. 이때의 탄소 코팅층의 탄소 함량은 SiOx(x=1)에 대해 10 중량%였다.
2. 규소계 복합체의 제조
상기 제조된 탄소 코팅층이 형성된 SiOx(x=1) 100g 및 금속 환원제로서 Mg 파우더를 41g 혼합 후 열환원 챔버의 반응 용기 안에 수납하고, 이어 상기 챔버의 온도를 600℃로 승온하였다. 이후, 불활성 가스는 Ar을 사용하였고, 이를 약 800 sccm 유량으로 공급하였다. 또한, 상기 반응 용기는 회전 관상로를 사용하여 반응을 하였다.
12시간 동안 열환원 반응을 수행하였고, 12시간 경과 후 챔버 온도를 상온으로 감온하여, 반응 용기 내의 생성물을 포집하여 규소계 복합체를 제조하였다. 제조된 규소계 복합체에서 HCl(1N)을 이용하여 환원된 MgO 등을 제거하여, 결정 크기가 10 nm 이하의 결정만 존재하는 결정질 실리콘을 포함하는 규소계 복합체를 얻었고, 이 때의 SiOx의 x는 약 0.6으로 감소되었다.
3. 음극의 제조
음극 활물질로 상기 제조된 탄소 코팅층이 형성된 규소계 복합체, 도전재로 아세틸렌 블랙 및 바인더로 폴리비닐리덴플루오라이드를 사용하여, 이들을 95:1:4의 중량비로 혼합하였고, 이들을 용매인 N-메틸-2-피롤리돈에 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 구리 집전체의 일면에 30 ㎛의 두께로 코팅하고, 건조 및 압연한 후 일정 크기로 펀칭하여 음극을 제조하였다.
4. 리튬 이차전지의 제조
상기 음극과 리튬 대극, 미세다공성 폴리에틸렌 세퍼레이터 및 전해질을 사용하여 헬륨 충진된 글로브 박스에서 코인 타입의 반쪽 셀(2016 R-type half cell)을 제조하였다. 상기 전해질은 에틸렌 카보네이트 및 디메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1 M LiPF6를 용해시킨 것을 사용하였다.
실시예 2
열환원 반응의 온도를 570℃로 하여 비정질인 실리콘만을 포함하는 규소계 복합체를 얻었고, 이를 이용하여 음극을 제조한 것 외에는 상기 실시예 1과 동일하게 이차전지를 제조하였다.
비교예 1
1. 규소계 복합체의 제조
탄소 코팅층을 형성하지 않은 것을 제외하고는, 실시예 1과 동일하게 하여 규소계 복합체를 제조하였다.
2. 이차전지의 제조
상기 제조된 규소계 복합체를 음극 활물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2
1. 규소계 복합체의 제조
SiO를 환원한 후 탄소 코팅층을 형성하여 규소계 복합체를 제조한 것을 제외하고는, 실시예 1과 동일하게 하여 규소계 복합체를 제조하였다.
2. 이차전지의 제조
상기 제조된 규소계 복합체를 음극 활물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 3
1. 규소계 복합체의 제조
열환원 반응의 온도를 750℃로 한 것을 제외하고는, 실시예 1과 동일하게 하여 규소계 복합체를 제조하였다.
2. 이차전지의 제조
상기 제조된 규소계 복합체를 음극 활물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예 1: 모폴로지(morphology) 관찰
상기 실시예 1과, 비교예 1 및 2에서 제조된 규소계 복합체의 표면 및 내부의 모폴로지를 확인하기 위하여 주사전자현미경을 이용하여 관찰하였고, 그 결과를 도 1 내지 4에 나타내었다.
상기 실시예 1과 비교예 1 및 2의 규소계 복합체의 표면을 나타낸 도 1, 3 및 4를 참조하면, 비교예 1 및 2의 경우(도 3 및 4), 환원시 탄소 코팅층의 부재로 인하여 표면이 표면 구조가 상당히 거칠다는 점을 확인할 수 있으나, 탄소 코팅층을 형성한 후 환원 반응을 수행한 실시예 1(도 1)의 경우에는 외부 표면이 상당히 매끄러운 형상을 갖고 있음을 확인할 수 있다. 또한, 실시예 2의 내부 구조를 관찰한 도 2를 참조하면, 표면의 형상과 유사하게 매끄러운 형상을 갖고 있음을 확인할 수 있다.
이를 통하여, 탄소 코팅층을 형성하지 않고 반응시킨 비교예 1 및 2의 경우에는 표면에서만 급격하게 환원이 일어나고 결정 성장이 이루어져 환원 후 금속이 제거된 잔상으로 인하여 거친 표면 형상을 갖게 된 것으로 유추할 수 있고, 또한 내부는 거의 환원되지 않았을 것을 알 수 있다. 즉, 환원 반응시 탄소 코팅의 부재로 인하여 규소계 복합체가 전체적으로 균일하게 환원되지 않음을 상기 도 1과 도 3 및 4의 비교를 통하여 알 수 있으며, 도 1 및 2의 실시예 1의 경우에는, Si 및 금속 산화물의 결정 성장이 억제되고 외부 및 내부가 전체적으로 균일하게 환원이 일어났음을 확인할 수 있었다. 또한, 실리콘이 비정질인 실시예 2의 경우에도 실시예 1과 거의 동일한 모폴로지를 가질 것이라는 점을 유추할 수 있다.
실험예 2: 이차전지의 성능 평가
1. 초기 방전용량, 초기효율 측정
상기 실시예 1 및 2, 비교예 1 및 2에서 제조된 코인 타입의 반쪽 셀의 초기 방전용량을 알아보기 위해, 25에서 제조한 반쪽 셀을 0 V 내지 1.5 V에서, 0.1 C로 1회 충방전을 실시하여, 초기 방전 용량, 초기 충전 용량, 쿨롱 효율을 측정하였다.
상기의 방법으로 측정한 초기 방전용량, 초기 효율 및 수명특성의 측정 결과를 하기 표 1에 나타내었다.
2. 수명 특성 및 두께변화(Swelling)의 측정
상기 실시예 1 및 2, 비교예 1 및 2에서 제조된 코인 타입의 반쪽 셀을 초기 충방전한 후, 동일 전압영역에서 0.5 C-rate로 충방전을 49회 실시하고, 최초 두께 및 마지막 충방전 후의 두께 변화를 측정하여 증가율을 하기 표 1에 나타내었다.
Si 결정크기 초기 방전용량(mAh/g) 초기 효율(%) 수명 특성(%) Swelling (%)
실시예 1 10 2260 83 70 187
실시예 2 - 2258 83 70 180
비교예 1 45 2290 79 40 240
비교예 2 46 2255 83 50 230
비교예 3 34 2257 83 57 210
초기 효율(%): (첫번째 사이클 방전 용량/첫번째 사이클 충전 용량) x 100
수명 특성: (49번째 사이클 방전 용량/첫번째 사이클 방전 용량) x 100
Swelling(%): {(최종두께-초기두께) 초기두께} x 100
상기 표 1에 나타난 바와 같이, 실시예 1 및 2와 비교예 1 및 2의 초기 방전용량 및 스웰링을 측정하여 비교한 결과, 탄소코팅층이 형성되지 않은 규소계 복합체를 포함한 비교예 1의 이차전지에 비해 탄소 코팅층이 형성된 규소계 복합체를 포함한 실시예 1 및 2의 이차전지는 초기 효율이 4% 더 증가하였고, 수명특성은 30% 가량 더 향상되었다. 반면, 스웰링 현상은 50 내지 60% 더 감소하여 전지의 안전성이 향상되었음을 확인할 수 있다.
한편, 실시예 1 및 2와 비교예 2를 비교한 결과, SiO를 환원한 후 탄소 코팅층을 형성한 비교예 2의 이차전지에 비해, 탄소 코팅층 형성 후 SiO를 환원한 실시예 1 및 2의 이차전지는 수명특성이 약 20% 더 증가하였고, 스웰링 현상은 40 내지 50% 더 감소하여 전지의 안전성이 향상되었음을 확인 하였다.
또한, 상기 비교예 3과 같이, 탄소 코팅층을 우선적으로 형성한 이후에 열환원 반응을 수행하더라도 반응 온도를 적절하게 제어하지 못하는 경우, 실리콘의 결정이 크게 성장하였음을 확인할 수 있고, 그에 따라 스웰링 특성이나 수명 특성이 상당히 저하됨을 확인하였다.
상기 실시예 1과 같이, 탄소 코팅층에 의해 규소계 복합체의 도전성이 부여됨으로써 전지의 효율이 향상되었음을 알 수 있다. 또한, 실시예 1은 탄소 코팅층을 형성한 후 SiO를 환원함에 따라 환원 속도의 제어가 가능함으로써, SiO의 내부까지 균일하게 환원될 수 있으며, 결정성 Si 및 결정성 SiO2를 용이하게 제어할 수 있다는 것을 수명특성 증가 및 스웰링 현상이 감소한 것으로부터 확인하였다.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하였지만, 본 발명은 이와 같이 설명된 그대로의 구성 및 작용에만 국한되는 것은 아니며, 기술적 사상의 범주를 일탈함 없이 본 발명에 대해 다수의 적절한 변형 및 수정이 가능함을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변형 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서의 일 실시예에 따르면, SiOa (a는 0<a<1)로 표시되는 규소계 복합체; 및 상기 규소계 복합체의 표면에 분포된 탄소 코팅층;을 포함하는 음극활물질이 제공된다.
일반적으로, 규소계 물질은 충방전 중에 발생하는 큰 부피변화(스웰링)로 인해 입자의 갈라짐(cracking), 화학 분쇄(pulverization) 등이 쉽게 발생하여 수명특성이 급격히 감소되는 문제가 있다.
이를 해결하기 위해, Si가 단독으로 포함된 규소계 음극활물질이 아니라, 입자 내에 Si와 SiO2가 구획된 상태로 존재하는 규소계 음극활물질이 개발되었으나, 비정질 SiO2와 전해액에 포함된 리튬과의 반응에 따른 Li2O 등의 부산물이 생성되어 부산물에 의한 초기 방전용량 및 초기 효율을 저하 등의 문제가 있었다.
이에, 산화수가 낮은 규소계 음극활물질, 즉 SiOm (m<1)로 표시되는 음극활물질에 대한 개발이 이루어지고 있으나, 현재 알려진 바로는 합성 과정에서 Si를 추가 투입하여 SiOm을 제조하는 방법이 사용되고 있는데, 이 과정 중에는 Si의 결정이 크게 성장하여 종국적으로는 수명 특성이 저하되는 문제점이 있으며, 합성에 따른 제조 비용이 크게 증가된다는 문제도 안고 있었다.
본 명세서에 따른 음극활물질은 상기 규소계 복합체의 표면에 분포된 탄소 코팅층을 포함할 수 있다. 이와 같은 탄소 코팅층을 형성함으로써, 규소계 전구체(SiOx)를 환원시킬 때, 반응 속도의 제어가 가능하며, 환원제가 결정질 실리콘 산화물의 표면에서만 반응하는 것을 방지할 수 있다. 이에 의해, 상기 결정질 실리콘 산화물의 내부까지 균일하게 환원 될 수 있으며, 결정질 실리콘 및 결정질 실리콘 산화물의 비율을 용이하게 제어할 수 있다.
본 명세서에 따른 음극활물질은 규소계 복합체 및 탄소 코팅층을 포함하며, 상기 규소계 복합체의 실리콘은 비정질인 것일 수 있으며, 상기 탄소 코팅층은 규소계 복합체의 표면을 감싸도록 형성된 층의 형태를 이루고 있을 수 있다.
상기 규소계 복합체에 포함되는 실리콘은 상기 규소계 복합체가 음극활물질로 사용되는 경우에, 양극 활물질로부터 탈리된 리튬이온이 흡장 방출되어 실질적으로 전기화학적 반응을 일으킬 수 있는 것이며, 결정 특성은 비정질일 수도 있고, 결정질일 수도 있으며, 이는 후술하는 금속성 가스를 이용한 열원환에 의하여 결정질 실리콘 산화물이 환원되는 경우, 환원된 실리콘은 결정질 실리콘으로 환원될 수도 있고, 비정질 실리콘으로 환원될 수도 있기 때문이다. 다만, 본 명세서에 따른 음극활물질에 포함된 규소계 복합체의 경우, 비정질 실리콘이 메인으로 존재할 수 있으며, 이상적으로는 비정질 실리콘만 존재할 수 있고, 열처리 환원의 온도 조절을 통해서 비정질 실리콘만 존재하도록 제어할 수 있다.
경우에 따라서는, 상기 규소계 복합체는 결정질인 실리콘을 더 포함할 수 있고, 이 경우 상기 결정립의 크기는 10 nm 이하인 것일 수 있다. 이 때 결정 크기는 X-선 회절(XRD) 분석 또는 전자현미경(SEM, TEM)으로 알 수 있다. 후술할 내용이지만, 상기 결정질 실리콘의 결정립 크기가 상기 범위일 수 있는 것은 저온으로도 열환원이 가능하고, 탄소 코팅층을 형성함으로써 환원성이 강한 금속 환원제에 의하더라도 규소계 복합체 전체적으로 균일한 환원이 가능케 되며, 실리콘의 성장이 적절하게 제어될 수 있다는 점에 기인할 수 있다.
상기 규소계 복합체에 결정질 실리콘이 포함되는 경우에는 규소계 복합체 중 실리콘의 총 중량에 대하여 약 10 중량% 이하의 양으로 제어될 수 있고, 바람직하게는 5 중량% 이하의 양으로 제어될 수 있다. 비정질의 실리콘만을 포함시키는 경우가 바람직할 수 있으나, 실제 양산시 이와 같은 제어가 완벽하지 않아 결정질 실리콘이 포함되더라도 그 양은 10 중량% 이하로 제어될 수 있고, 결정립의 크기도 10 nm 이하로 제어될 수 있으며, 이에 목적하는 바를 달성할 수 있다.
본 명세서에 따른 음극활물질은, 규소계 복합체에 결정질 실리콘 산화물을 더 포함할 수 있다. 상기 규소계 복합체는 실리콘과 실리콘 산화물의 복합체이므로 실리콘 산화물을 더 포함할 수 있다. 다만, 실리콘 산화물 중에서도, 비정질의 실리콘 산화물은 포함시키지 않음으로써, 비정질 실리콘 산화물과 전해액에 포함된 리튬과의 반응을 배제할 수 있으며, 결정질 실리콘의 결정 성장을 적절하게 억제하여 부피 팽창 문제를 방지할 수도 있다.
상기 규소계 복합체는 SiOa (a는 0<a<1)로 표시될 수 있다. 상기 규소계 복합체는 그에 포함된 실리콘 및 실리콘 산화물을 비율로서 1-(a/2):(a/2)로 표현할 수 있고, 상기 y는 상기 규소계 복합체 내에 포함된 실리콘(Si) 원소에 대한 산소(O) 원소의 개수비로서, 0<a<1일 수 있다.
구체적으로, a가 1 이상인 경우에는 그렇지 않은 경우에 비하여, 실리콘 보다 실리콘 산화물의 비율이 많은 것으로서, 음극활물질의 스웰링(swelling) 현상을 어느 정도 낮출 수는 있으나, 상기 리튬 이차전지의 초기 방전 용량 저하될 수 있어 본 명세서에서 목적하는 음극활물질에 벗어나는 활물질일 수 있으며, 산소의 함량이 적어 a의 범위가 0 내지 1일 경우에는 음극활물질의 스웰링, 즉 부피팽창 문제와 초기 방전용량의 확보 양 측면에서 최적화 된 음극활물질을 제공할 수 있다.
상기 규소계 복합체가, 표면에 탄소 코팅층이 형성된 상태로 제조되는 경우에는, 이러한 탄소 코팅층으로 인해 규소계 복합체에 전기 전도성이 부여됨으로써 상기 규소계 복합체가 포함된 이차전지의 초기 효율, 수명 특성 및 전지 용량 특성을 향상시킬 수 있다.
상기 탄소 코팅층의 두께는 0.003 ㎛ 내지 3.0 ㎛일 수 있다. 상기 탄소 코팅층의 두께가 0.003 ㎛ 미만일 경우, 탄소 코팅층이 너무 얇아 전기 전도성 향상이 미미할 수 있으며, 규소계 복합체의 환원시 결정 성장 억제라는 역할을 효율적으로 하지 못할 우려가 있고, 3.0 ㎛을 초과하는 경우, 탄소 코팅층이 너무 두꺼워져 음극활물질의 크기가 너무 커질 수 있고, 리튬 이온의 흡장 및 방출을 저해할 수 있으며, 오히려 용량 감소 및 초기효율이 감소할 수 있다.
본 명세서의 일 실시예에 따른 탄소 코팅층이 형성된 규소계 복합체를 포함하는 음극활물질의 평균 입경은 0.1 내지 20 ㎛일 수 있으며, 바람직하게는 0.5 내지 10 ㎛ 인 것이 적절하다. 상기 음극활물질의 입경이 0.1 ㎛ 미만이면 전극 밀도가 감소할 수 있으며, 20 ㎛를 초과하면 율속 특성이 저하되거나, 부피 팽창에 의해 수명 특성이 저하될 우려가 있다.
한편, 일반적으로 음극활물질로 사용되는 실리콘 입자는 리튬 원자를 전기화학적으로 흡장하고 방출하는 반응에서 매우 복잡한 결정변화를 수반한다. 리튬 원자를 전기화학적으로 흡장하고 방출하는 반응이 진행됨에 따라 실리콘 입자의 조성과 결정구조는 Si(결정구조: Fd3m), LiSi(결정구조: I41/a), Li2Si(결정구조: C2/m), Li7Si2(Pbam), Li22Si5(F23) 등으로 변화한다. 또한, 복잡한 결정구조의 변화에 따라 실리콘 입자의 부피는 약 4 배 가까이 팽창하는데, 본 발명의 일 실시예에 따른 규소계 복합체와 리튬 원자와의 반응은 규소계 복합체의 결정구조를 유지하면서 진행될 수 있다는 이점을 가질 수 있다.
본 명세서의 다른 일 실시예에 따르면, 전술한 음극활물질 제조하기 위한 제조방법을 제공한다.
상기 음극활물질의 제조방법은, SiOx (x는 0<x<2)로 표시되는 규소계 전구체에 탄소 코팅층을 형성하는 단계; 상기 탄소 코팅층이 형성된 규소계 전구체를 열처리 하는 단계; 및 산화된 금속산화물을 제거하여, 표면에 탄소 코팅층이 분포된 SiOa (a는 0<a<1)로 표시되는 규소계 복합체를 제조하는 단계;를 포함하고, 상기 규소계 복합체는 비정질 실리콘을 포함하는 것이다.
본 명세서의 일 실시예에 따르면, 상기 규소계 전구체에 탄소 코팅층을 형성하는 단계는 원료물질인 규소계 전구체를 환원시키기 전에 규소계 전구체의 표면을 탄소계 물질로 감싸서 코팅층을 형성하는 단계일 수 있다.
원료물질인 상기 SiOx (x는 0<x<2)로 표시되는 규소계 전구체는, 전술한 바와 같이 결정질 실리콘과 및 결정질 실리콘 산화물이 복합체를 이루고 있는 물질을 포함할 수 있으며, 상기 두 물질이 혼합된 물질이 원료로서 적용될 수 있다.
또한, 상기 규소계 전구체의 표면에 코팅층으로서 형성되는 탄소 코팅층은, 예컨대, 천연 흑연, 인조 흑연 등의 흑연류, 메조카본 마이크로비즈(MCMB), 탄소나노튜브, 탄소나노파이버 등의 탄소섬유, 케첸블랙, 덴카블랙, 아세틸렌블랙 등의 카본블랙, 또는 이들의 혼합물 등을 포함할 수 있으며, 규소계 전구체의 표면에 탄소 코팅을 부여할 수 있는 탄소원이라면 특별히 제한되지 않고 적용이 가능하다.
상기와 같은 탄소 코팅층의 형성은 탄소 전구체를 용매, 예컨대 테트라하이드로퓨란(THF), 또는 알코올 등에 분산시키고, 이를 상기 규소계 전구체에 가한 후 건조 및 열처리 함으로써 달성할 수 있으며, 아세틸렌 가스를 공급하여 수행될 수 있으나, 당업계에서 통상적으로 사용되는 탄소 코팅 방법이라면 특별한 제한 없이 사용될 수 있다.
상기 탄소 코팅층의 함량은 음극활물질 총 중량의 1 내지 50 중량%일 수 있다. 상기 탄소 코팅층이 1 중량% 미만으로 코팅되는 경우에는 균일한 코팅층이 형성되지 않아 도전성이 저하될 수 있으며, 50 중량%를 초과하는 경우에는 탄소 코팅층이 너무 두꺼워져 음극활물질의 크기가 너무 커질 수 있고, 오히려 용량 감소 및 초기효율이 감소할 수 있다. 적절하게 상기 코팅량을 조절할 경우에는 전술한 바와 같이 규소계 복합체에 전기 전도성이 적절하게 부여됨으로써 상기 규소계 복합체가 포함된 이차전지의 초기 효율, 수명 특성 및 전지 용량 특성을 향상시킬 수 있다.
본 명세서의 일 실시예에 따른 음극활물질의 제조방법은 상기 탄소 코팅층을 형성한 후에 규소계 전구체를 환원하기 때문에 반응 속도의 제어가 가능할 수 있으며, 환원제가 규소계 전구체의 표면에서만 반응하는 것을 방지할 수 있고, 이에 따라, 상기 규소계 전구체의 내부까지 균일하게 환원이 수행될 수 있으며, 생성되는 규소계 복합체 내에서의 산소 함유량을 용이하게 제어할 수 있으며, 탄소 코팅층은 배리어 층으로써, 실리콘의 결정 성장을 제어해 주는 역할도 할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 열처리 하는 단계는, 탄소 코팅층이 표면에 코팅된 규소계 전구체를 특정 조건하에서 열을 가함으로써 환원을 일으키는 단계일 수 있고, 구체적으로, 상기 열처리 하는 단계는 불활성 분위기하에서, 금속환원제를 이용하여 규소계 전구체를 열환원(thermal reduction)시키는 단계를 포함할 수 있다.
상기 규소계 전구체를 열환원 하는 것은, 불활성 분위기에서 규소계 전구체를 금속환원제를 포함하는 금속성 파우더 또는 금속성 가스를 이용하여 열환원 하는 공정이 수행되는 것일 수 있다. 상기 열환원에 의하여 규소계 전구체 내에서 금속에 의해 금속산화물의 형태로 산소가 국부적으로 빠져나가게 됨으로써, 국부적 환원이 발생하게 된다.
즉, 규소계 전구체가 환원되면서 산소의 함량이 감소하게 되고, 결과적으로 실리콘, 주로 실리콘과, 환원되지 않고 잔존하는 실리콘 산화물, 그리고 재산화가 일어난 실리콘 산화물이 서로 복합되어 있는 규소계 복합체가 제조될 수 있는 것이다. 전술한 바와 마찬가지로, 상기 제조된 실리콘은 결정질인 것을 포함할 수 있으며, 비정질이 대부분일 수 있고, 또는 이들이 혼재하는 혼합물일 수 있으나, 이상적으로는 비정질일 수 있다. 또한, 상기 잔존하는 실리콘 산화물은 결정질인 것일 수 있다.
상기 금속환원제는, 예컨대, Ti, Al, Mg, Ca, Be, Sr, Ba 또는 이들의 조합등이 적용될 수 있고, 이 금속들의 파우더 또는 가스를 이용하여 열환원이 수행될 수 있고, 상기 금속환원제는 전술한 규소계 전구체로부터 산소를 분리/이탈 시키기에 충분한 환원력을 갖추고 있으면 그 종류에 제한 없이 사용할 수 있으나, 바람직하게는 마그네슘(Mg)이 사용될 수 있다.
한편, 상기 열처리는 온도 350 내지 650℃에서 수행되는 것일 수 있고, 바람직하게는 500 내지 600℃에서 수행될 수 있다. 열처리의 온도가 350 미만이면 온도가 낮아 환원반응이 일어나기 어려울 수 있고, 650℃를 초과하면 실리콘의 결정이 크게 성장할 우려가 있고, 결정 특성이 변형될 가능성이 있다.
이와 같이 350 내지 650℃의 저온에서 열처리를 수행함으로써 열환원을 수행할 경우에는 저온임에 따라 실리콘의 결정 성장이 어느 정도 방지될 수 있으며, 저온에서 강한 환원력을 갖는 금속환원제를 이용하여 열환원 반응을 진행함으로써, 제조되는 규소계 복합체 내의 산소량을 용이하게 제어할 수 있고, 최종적으로는 실리콘의 비율이 높은 규소계 복합체, 즉 SiOa (0<a<1)를 제조할 수 있고, 온도의 조절을 통해서 궁극적으로는 결정이 없는 비정질의 실리콘이 제조될 수 있다.
또한, 상기 열환원은 불활성 가스를 흘려주면서 수행될 수 있으며, 여기서 사용될 수 있는 불활성 가스는, 예컨대 Ar, N2, Ne, He, Kr, 또는 이들의 혼합 가스 등이 적용될 수 있다.
상기 열처리 하는 단계는 금속환원제, 예를 들면 마그네슘을 포함하는 금속성 파우더 또는 금속성 가스와 규소계 전구체를 혼합한 반응물을 반응로에서 반응시키는 것일 수 있고, 예를 들면 규소계 전구체와 금속환원제인 Mg간 접촉 면적을 극대화하여, 균일한 반응을 유지하기 위해, 회전 관상로(Rotary kiln)에서 수행될 수 있다.
본 명세서에 따른 음극활물질의 제조방법은 열처리 하는 단계에서 상기 규소계 전구체와 금속환원제의 비율을 조절함으로써 최종적으로 생성되는 규소계 복합체 내의 산소량을 제어할 수 있다. 규소계 복합체의 산소량 제어를 위해서는, 상기 규소계 전구체 대 금속환원제의 몰비는 1:0.001 내지 1:1인 것일 수 있다.
금속 환원제의 양이 많을수록 많은 양의 규소계 전구체를 환원시킬 수 있기 때문에, 열환원에 사용되는 금속환원제의 양을 제어함으로써, 제조되는 규소계 복합체에 포함된 실리콘 및 실리콘 산화물의 비율을 용이하게 제어할 수 있는 것이며, 나아가서는 규소계 복합체 내에서 실리콘의 비율을 더 크게 할 수도 있는 것이다.
이처럼, 산소의 함량이 감소되어 규소계 복합체인 SiOa에서 a의 범위가 1 미만이 될 경우에는 초기 용량을 증대시킬 수 있고, 효율도 함께 향상될 수 있다. 나아가, 이러한 환원반응이 탄소 코팅층이 형성된 채로 수행될 경우에는 SiOa 내 결정질 물질의 결정 크기를 용이하게 제어할 수 있고, 내부까지 균일하게 환원을 수행할 수 있다는 장점이 있다.
일 예로, 상기 금속환원제로 Mg을 포함할 수 있다. 이에 따라, 규소계 전구체와 환원제인 Mg의 화학양론적인 반응(stoichiometric reaction)은 다음과 같다:
[반응식 1]
2Mg + SiO2 Si + 2MgO
즉, 상기 반응식 1에서와 같이, 금속은 환원제로서 실리콘 산화물을 환원시키고, 그에 따라 금속은 산화되어 금속산화물을 생성하고, 실리콘 산화물은 환원되어 실리콘을 생성할 수 있다. 나아가, 환원제로서, Mg 외의 다른 금속성 환원제가 사용될 수 있고, 이 경우에도 상기 반응식과 유사한 반응에 의하여 규소계 전구체의 환원이 일어나게 된다.
본 명세서의 일 실시예에 따르면, 상기 규소계 복합체를 제조하는 단계는, 산 수용액을 이용하여 불순물을 제거하는 단계를 포함하는 것일 수 있다.
상기 산 수용액은 예를 들어, 염산, 질산, 황산 등이 사용될 수 있으며, 바람직하게는 염산 수용액이 사용될 수 있고, 약 0.1 내지 10 N로 사용될 수 있다. 염산이 0.1 N 미만으로 사용되면 불순물이 완전히 제거되지 않을 수 있으며, 10 N 초과로 과량 사용되면 제조효율이 떨어질 수 있다. 제거 되는 불순물로는 MgO, Mg2Si, Mg2SiO4 등일 수 있으며, 금속환원제로 사용되는 금속의 종류에 따라 달라질 수 있다.
상기 규소계 복합체에서 금속산화물을 포함하는 불순물을 제거한 후에는, 일반적인 세척 및 건조 단계를 거쳐, 비정질 실리콘, 결정질 실리콘 및 결정질 실리콘 산화물을 포함하는 규소계 복합체를 얻을 수 있다.
전술한 바와 같이, SiO를 환원하여 제조된 규소계 복합체는 결정질 실리콘, 비정질 실리콘 및 결정질 실리콘 산화물을 포함할 수 있다. 상기 규소계 복합체를 포함하는 음극활물질은, 비정질 실리콘 산화물과 전해액에 포함된 리튬과의 반응을 배재할 수 있으며, 이차전지의 초기 효율 및 용량 특성을 향상시킬 수 있다.
본 발명의 또 다른 일실시예에 있어서, 상기 음극활물질 제조방법에 의해 제조된 음극활물질을 포함하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는 양극 활물질을 포함하는 양극; 분리막; 상기 음극 활물질을 포함하는 음극; 및 전해질을 포함하며, 상기 음극 활물질은 음극으로 제조될 수 있다. 예를 들면, 본 발명의 일실시예에 따른 음극 활물질에 바인더와 용매, 필요에 따라 도전제와 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 용매로는 N-메틸-2-피롤리돈, 아세톤, 물 등을 사용할 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
상술한 음극 제조와 마찬가지로, 양극 활물질, 도전제, 결합제 및 용매를 혼합하여 슬러리를 제조한 후 이를 금속 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 양극 활물질 필름을 금속 집전체에 라미네이션하여 양극을 제조할 수 있다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y 는 0 - 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y = 0.01 - 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - yMyO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y = 0.01 - 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 분리막은 종래 분리막으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서 사용되는 전해질에 있어서, 전해질로 포함될 수 있는 리튬염은 이차전지용 전해질에 통상적으로 사용되는 것들이면 제한없이 사용될 수 있으며, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
본 발명의 일 실시예에서 사용되는 전해질에 있어서, 전해질에 포함되는 유기 용매로는 통상적으로 사용되는 것들이면 제한없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌카보네이트 및 프로필렌카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명의 일실시예에 따라 저장되는 전해질은 통상의 전해질에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
양극과 음극 사이에 분리막을 배치하여 전지 구조체를 형성하고, 상기 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 이차전지가 완성된다. 또는 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 전해질에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 이차전지가 완성된다.

Claims (19)

  1. SiOa (a는 0<a<1)로 표시되는 규소계 복합체; 및
    상기 규소계 복합체의 표면에 분포된 탄소 코팅층;을 포함하고,
    상기 규소계 복합체는 비정질 실리콘을 포함하는 것인 음극활물질.
  2. 제1항에 있어서,
    상기 규소계 복합체는 결정립의 크기가 10 nm 이하인 결정질 실리콘을 더 포함하는 것인 음극활물질.
  3. 제1항에 있어서,
    상기 규소계 복합체는 결정질 실리콘 산화물을 더 포함하는 것인 음극활물질.
  4. 제2항에 있어서,
    상기 규소계 복합체 중 실리콘의 총 중량에 대하여 상기 결정질 실리콘은 10 중량% 이하로 포함되는 것인 음극활물질.
  5. 제1항에 있어서,
    상기 탄소 코팅층의 두께는 0.003 내지 3.0 ㎛인 것인 음극활물질.
  6. 제1항에 있어서,
    상기 음극활물질의 평균 입경은 0.1 내지 20 ㎛인 것인 음극활물질.
  7. 제1항에 있어서,
    상기 음극활물질의 평균 입경은 0.5 내지 10 ㎛ 인 것인 음극활물질.
  8. SiOx (x는 0<x<2)로 표시되는 규소계 전구체에 탄소 코팅층을 형성하는 단계;
    상기 탄소 코팅층이 형성된 규소계 전구체를 열처리 하는 단계; 및
    불순물을 제거하여, 표면에 탄소 코팅층이 분포된 SiOa (a는 0<a<1)로 표시되는 규소계 복합체를 제조하는 단계;를 포함하고,
    상기 규소계 복합체는 비정질 실리콘을 포함하는 것인 음극활물질의 제조방법.
  9. 제8항에 있어서,
    상기 규소계 복합체는 결정립의 크기가 10 nm 이하인 결정질 실리콘을 더 포함하는 것인 음극활물질의 제조방법.
  10. 제8항에 있어서,
    상기 탄소 코팅층은 천연 흑연, 인조 흑연, 메조카본 마이크로비즈(MCMB), 탄소섬유 및 카본블랙으로 이루어진 군으로부터 선택되는 1 종 이상을 포함하는 것인 음극활물질의 제조방법.
  11. 제8항에 있어서,
    상기 탄소 코팅층의 함량은 음극활물질 총 중량의 1 내지 50 중량%인 것인 음극활물질의 제조방법.
  12. 제8항에 있어서,
    상기 열처리 하는 단계는, 불활성 분위기하에서, 금속환원제를 이용하여 규소계 전구체를 열환원(thermal reduction)시키는 단계를 포함하는 것인 음극활물질의 제조방법.
  13. 제8항에 있어서,
    상기 열처리는 온도 350 내지 650℃에서 수행되는 것인 음극활물질의 제조방법.
  14. 제8항에 있어서,
    상기 열처리는 회전 관상로에서 수행되는 것인 음극활물질의 제조방법.
  15. 제12항에 있어서,
    상기 금속환원제는 Ti, Al, Mg, Ca, Be, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인 음극활물질의 제조방법.
  16. 제12항에 있어서,
    상기 규소계 전구체 대 금속환원제의 몰비는 1:0.001 내지 1:1인 것인 음극활물질의 제조방법.
  17. 제8항에 있어서,
    상기 규소계 복합체를 제조하는 단계는, 산 수용액을 이용하여 불순물을 제거하는 단계를 포함하는 것인 음극활물질의 제조방법.
  18. 제8항에 있어서,
    상기 산 수용액은 염산, 질산 및 황산으로 이루어진 군에서 선택된 1 종 이상을 포함하는 것인 음극활물질의 제조방법.
  19. 제8항에 있어서,
    상기 불순물은 금속 산화물, 금속 규소화물 및 금속 규산화물로 이루어진 군에서 선택된 1 이상의 물질을 포함하고,
    상기 금속은 Ti, Al, Mg, Ca, Be, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인 음극활물질의 제조방법.
PCT/KR2016/010678 2015-09-24 2016-09-23 리튬 이차전지용 음극활물질 및 그 제조방법 WO2017052278A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16849003T PL3355388T3 (pl) 2015-09-24 2016-09-23 Materiał czynny anody dla akumulatora litowego oraz sposób jego wytwarzania
CN201680033946.5A CN107735888B (zh) 2015-09-24 2016-09-23 锂二次电池用负极活性材料及其制备方法
EP16849003.5A EP3355388B1 (en) 2015-09-24 2016-09-23 Anode active material for lithium secondary battery and method for producing same
US15/576,992 US11075369B2 (en) 2015-09-24 2016-09-23 Negative electrode active material for lithium secondary battery and method of preparing the same
US17/354,060 US20210313557A1 (en) 2015-09-24 2021-06-22 Negative electrode active material for lithium secondary battery and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150135473 2015-09-24
KR10-2015-0135473 2015-09-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/576,992 A-371-Of-International US11075369B2 (en) 2015-09-24 2016-09-23 Negative electrode active material for lithium secondary battery and method of preparing the same
US17/354,060 Division US20210313557A1 (en) 2015-09-24 2021-06-22 Negative electrode active material for lithium secondary battery and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2017052278A1 true WO2017052278A1 (ko) 2017-03-30

Family

ID=58386629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010678 WO2017052278A1 (ko) 2015-09-24 2016-09-23 리튬 이차전지용 음극활물질 및 그 제조방법

Country Status (6)

Country Link
US (2) US11075369B2 (ko)
EP (1) EP3355388B1 (ko)
KR (1) KR101971498B1 (ko)
CN (1) CN107735888B (ko)
PL (1) PL3355388T3 (ko)
WO (1) WO2017052278A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276677A (zh) * 2020-01-13 2020-06-12 湖州金灿新能源科技有限公司 一种碳纳米材料/非晶碳/氧化亚硅复合材料及其制备方法
EP3726628A4 (en) * 2017-12-12 2021-09-08 Btr New Material Group Co., Ltd. NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND ITS PREPARATION PROCESS
US11569495B2 (en) * 2018-01-30 2023-01-31 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium ion secondary battery including the negative electrode

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873071B2 (en) * 2014-11-27 2020-12-22 Lg Chem, Ltd. Silicon-based negative electrode active material and method for preparing the same
KR101971498B1 (ko) * 2015-09-24 2019-04-23 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
CN111357137B (zh) * 2017-11-24 2022-06-03 株式会社Lg新能源 锂二次电池用负极活性材料及其制备方法
JP7230073B2 (ja) * 2019-12-30 2023-02-28 シャンハイ シャンシャン テック カンパニー,リミティド シリコン系負極材料及びその製造方法、リチウムイオン電池
CN114005965A (zh) * 2020-07-28 2022-02-01 深圳格林德能源集团有限公司 一种石墨烯/碳包覆硅基负极及其制备方法
CN112563502A (zh) * 2020-12-07 2021-03-26 广东凯金新能源科技股份有限公司 一种高首效多元包覆硅基复合材料、其制备方法及其应用
CN113213483B (zh) 2021-04-14 2022-07-19 三峡大学 一种用于锂离子电池负极材料的非晶硅粉制备方法
KR20230085257A (ko) * 2021-12-06 2023-06-14 오씨아이 주식회사 이차전지용 음극재 및 그 제조 방법
WO2024014897A1 (ko) * 2022-07-13 2024-01-18 주식회사 엘지에너지솔루션 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240101470A (ko) * 2022-12-23 2024-07-02 주식회사 엘지에너지솔루션 리튬 이차전지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139631A (ko) * 2012-11-09 2012-12-27 주식회사 엘지화학 고용량 전극활물질
KR101280546B1 (ko) * 2010-12-14 2013-07-01 한양대학교 산학협력단 탄소/실리콘 복합나노입자 및 그 제조방법
KR20130118191A (ko) * 2012-04-19 2013-10-29 주식회사 엘지화학 규소계 음극 활물질 및 이를 포함하는 이차전지
KR101345708B1 (ko) * 2013-07-19 2013-12-27 주식회사 드림그리너스 이차전지용 실리콘 산화물계 음극 활물질 및 그의 제조방법
KR20150050504A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
CN100547830C (zh) * 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
KR101451801B1 (ko) * 2007-02-14 2014-10-17 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR101375328B1 (ko) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
JP5659696B2 (ja) 2009-12-24 2015-01-28 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
KR102106151B1 (ko) 2010-08-03 2020-04-29 맥셀 홀딩스 가부시키가이샤 비수 이차 전지용 부극 및 비수 이차 전지
JPWO2013146569A1 (ja) * 2012-03-30 2015-12-14 日本電気株式会社 リチウム二次電池及びその製造方法
JP5686441B2 (ja) 2012-04-19 2015-03-18 エルジー・ケム・リミテッド ケイ素系正極活物質及びこれを含む二次電池
KR101560454B1 (ko) * 2012-10-16 2015-10-15 주식회사 엘지화학 규소 산화물―탄소 복합체 및 이의 제조방법
CN104937752A (zh) * 2012-12-20 2015-09-23 尤米科尔公司 用于可再充电电池的负极材料,以及其生产方法
US9831491B2 (en) 2013-02-19 2017-11-28 Lg Chem, Ltd. Si/C composite, method of preparing the same, and anode active material for lithium secondary battery including the Si/C composite
US10020491B2 (en) * 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
EP2989671B8 (en) * 2013-04-27 2019-03-20 Shanghai Jiaotong University SiOx/Si/C COMPOSITE MATERIAL AND PROCESS OF PRODUCING THEREOF, AND ANODE FOR LITHIUM ION BATTERY COMPRISING SAID COMPOSITE MATERIAL
CN103531760B (zh) 2013-10-28 2015-07-08 北京化工大学 一种蛋黄-蛋壳结构多孔硅碳复合微球及其制备方法
CN105849948B (zh) 2013-12-25 2018-10-26 三洋电机株式会社 非水电解质二次电池用负极活性物质以及使用该负极活性物质的非水电解质二次电池
US20160329562A1 (en) * 2014-12-16 2016-11-10 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery containing negative electrode active material
WO2016141032A1 (en) * 2015-03-02 2016-09-09 Eocell Ltd. Silicon-silicon oxide-lithium composite material having nano silicon particles embedded in a silicon:silicon lithium silicate composite matrix, and a process for manufacture thereof
KR101971498B1 (ko) * 2015-09-24 2019-04-23 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280546B1 (ko) * 2010-12-14 2013-07-01 한양대학교 산학협력단 탄소/실리콘 복합나노입자 및 그 제조방법
KR20130118191A (ko) * 2012-04-19 2013-10-29 주식회사 엘지화학 규소계 음극 활물질 및 이를 포함하는 이차전지
KR20120139631A (ko) * 2012-11-09 2012-12-27 주식회사 엘지화학 고용량 전극활물질
KR101345708B1 (ko) * 2013-07-19 2013-12-27 주식회사 드림그리너스 이차전지용 실리콘 산화물계 음극 활물질 및 그의 제조방법
KR20150050504A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355388A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726628A4 (en) * 2017-12-12 2021-09-08 Btr New Material Group Co., Ltd. NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND ITS PREPARATION PROCESS
US11967708B2 (en) 2017-12-12 2024-04-23 Btr New Material Group Co., Ltd. Lithium ion battery negative electrode material and preparation method therefor
US11569495B2 (en) * 2018-01-30 2023-01-31 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium ion secondary battery including the negative electrode
CN111276677A (zh) * 2020-01-13 2020-06-12 湖州金灿新能源科技有限公司 一种碳纳米材料/非晶碳/氧化亚硅复合材料及其制备方法
CN111276677B (zh) * 2020-01-13 2022-09-20 湖州金灿新能源科技有限公司 一种碳纳米材料/非晶碳/氧化亚硅复合材料的制备方法

Also Published As

Publication number Publication date
US20180151868A1 (en) 2018-05-31
KR101971498B1 (ko) 2019-04-23
EP3355388A1 (en) 2018-08-01
EP3355388A4 (en) 2018-09-26
US11075369B2 (en) 2021-07-27
EP3355388B1 (en) 2020-07-29
US20210313557A1 (en) 2021-10-07
CN107735888A (zh) 2018-02-23
CN107735888B (zh) 2020-12-29
KR20170036637A (ko) 2017-04-03
PL3355388T3 (pl) 2020-11-16

Similar Documents

Publication Publication Date Title
WO2017052278A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2017052281A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2013081245A1 (ko) 안전성과 안정성이 향상된 리튬 이차 전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2015065095A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021112323A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014204278A1 (ko) 리튬 이차전지용 고용량 전극 활물질 및 이를 사용한 리튬 이차전지
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2019143047A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2021096204A1 (ko) 비가역 첨가제, 상기 비가역 첨가제를 포함하는 양극재, 상기 양극재를 포함하는 리튬 이차전지
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021066580A1 (ko) 음극활물질, 음극활물질의 제조방법, 이를 포함하는 음극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE