WO2017047099A1 - 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 - Google Patents

高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 Download PDF

Info

Publication number
WO2017047099A1
WO2017047099A1 PCT/JP2016/004256 JP2016004256W WO2017047099A1 WO 2017047099 A1 WO2017047099 A1 WO 2017047099A1 JP 2016004256 W JP2016004256 W JP 2016004256W WO 2017047099 A1 WO2017047099 A1 WO 2017047099A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
steel
steel structure
less
pressure
Prior art date
Application number
PCT/JP2016/004256
Other languages
English (en)
French (fr)
Inventor
彰英 長尾
▲高▼木 周作
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA2991018A priority Critical patent/CA2991018C/en
Priority to CN201680052940.2A priority patent/CN108026619A/zh
Priority to KR1020207009584A priority patent/KR102120616B1/ko
Priority to CN202210937419.4A priority patent/CN115449705A/zh
Priority to US15/740,086 priority patent/US20180312935A1/en
Priority to JP2016569865A priority patent/JP6299885B2/ja
Priority to AU2016322190A priority patent/AU2016322190B2/en
Priority to KR1020187006574A priority patent/KR20180038024A/ko
Priority to EP16845973.3A priority patent/EP3351650B1/en
Publication of WO2017047099A1 publication Critical patent/WO2017047099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen steel structure having excellent hydrogen embrittlement resistance in a high-pressure hydrogen environment, a hydrogen steel structure such as a hydrogen line pipe, and a method for producing the same.
  • Fuel cell vehicles run with hydrogen stored in tanks instead of gasoline, so in order to spread fuel cell vehicles, a hydrogen station that refuels instead of a gas station is required.
  • hydrogen is filled from a hydrogen accumulator, which is a container for storing hydrogen at a high pressure, into an on-vehicle hydrogen fuel tank.
  • the maximum filling pressure in the on-vehicle hydrogen tank is currently 35 MPa, but in order to make the cruising range comparable to that of a gasoline vehicle, it is desired that the maximum filling pressure be 70 MPa. And it is required to store and supply hydrogen safely in such a high-pressure hydrogen environment.
  • the pressure of the hydrogen pressure accumulator at the hydrogen station is currently 40 MPa, but when the maximum filling pressure is increased to 70 MPa, the pressure of the hydrogen pressure accumulator at the hydrogen station is required to be 80 MPa. That is, the hydrogen pressure accumulator of the hydrogen station is exposed to an 80 MPa environment.
  • Patent Document 1 discloses a high-pressure hydrogen environment that suppresses embrittlement due to diffusible hydrogen by using MnS, Ca-based inclusions, or VC as non-diffusible hydrogen as a trap site for hydrogen in steel. Steel has been proposed.
  • Patent Documents 2 and 3 describe a high-pressure hydrogen environment embrittlement resistance in which the tensile strength is controlled to an extremely narrow range of 900 to 950 MPa by performing tempering treatment at a relatively high temperature in the tempering treatment of Cr—Mo steel.
  • a low-alloy high-strength steel excellent in the above has been proposed.
  • Patent Document 4 proposes a low-alloy steel for high-pressure hydrogen environment in which hydrogen-environment embrittlement characteristics are improved by utilizing V-Mo-based carbides and increasing the tempering temperature.
  • Patent Document 5 Mo and V are added in a large amount, and by applying a long-time stress relief annealing after the normalizing treatment at the time of manufacturing the steel sheet, it is excellent in hydrogen resistance in which a large amount of (Mo, V) C is precipitated. Steel for high-pressure hydrogen gas storage containers has been proposed.
  • Patent Document 6 proposes a technique for suppressing hydrogen embrittlement by reducing the amount of hydrogen intrusion by refinement of cementite and improving the base material toughness.
  • Patent Document 7 proposes a technique for suppressing hydrogen embrittlement by suppressing the formation of coarse cementite and island martensite (MA), thereby suppressing hydrogen intrusion and ductility reduction.
  • MA coarse cementite and island martensite
  • hydrogen steel pipes such as hydrogen line pipes used in hydrogen pipelines, which are not always in a high-pressure hydrogen environment as high as hydrogen accumulators in the future, will have the same level as hydrogen accumulators in the future. It is thought that ensuring safety is required.
  • the present invention was developed in view of the above-mentioned present situation, and is a hydrogen pressure accumulator that exhibits excellent hydrogen embrittlement resistance by lowering the fatigue crack growth rate in a high-pressure hydrogen environment than conventional steel.
  • An object of the present invention is to provide a steel structure for hydrogen such as a hydrogen line pipe and an advantageous manufacturing method thereof.
  • the present inventors have carefully examined the hydrogen embrittlement resistance in high-pressure hydrogen gas of a hydrogen steel structure having various structural forms, (1) Optimizing the addition amount of V and Mo and the atomic ratio thereof; (2) Or, by optimizing the addition amount of Ti and Mo and the atomic ratio thereof, the hydrogen embrittlement resistance in high-pressure hydrogen gas can be improved as compared with the conventional materials, and as a result, We obtained knowledge that hydrogen steel structures such as hydrogen accumulators and hydrogen line pipes with excellent hydrogen embrittlement characteristics can be obtained.
  • the present invention has been completed after further studies based on the above-mentioned new findings.
  • the gist configuration of the present invention is as follows. 1. In mass%, C: 0.02 to 0.50%, Si: 0.05 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.01 % Or less, Al: 0.01 to 0.10%, N: 0.0005 to 0.008%, and O: 0.01% or less, and V and Mo are further added to V: 0.05 to 0.00.
  • a steel structure for hydrogen excellent in hydrogen embrittlement resistance in a high-pressure hydrogen gas having a steel composition and a composite fine carbide composed of V and Mo having an average particle diameter of 1 to 20 nm.
  • C 0.02 to 0.50%
  • Si 0.05 to 0.50%
  • Mn 0.5 to 2.0%
  • P 0.05% or less
  • S 0.01 %: Al: 0.01 to 0.10%
  • N 0.0005 to 0.008%
  • O 0.01% or less
  • Ti and Mo Ti: 0.02 to 0.00. 12%
  • Mo 0.02 to 0.48%
  • Ti atom number / Mo atom number in a range satisfying 0.5 to 2.0, with the balance being Fe and inevitable impurities
  • a steel structure for hydrogen that has a steel composition and is excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas in which the composite fine carbide composed of Ti and Mo has an average particle diameter of 1 to 20 nm.
  • Nd 0.005 to 1.0%
  • Ca 0.0005 to 0.005%
  • Mg 0.0005 to 0.005%
  • REM 0.0005 to 0.005% 4.
  • a method for producing a steel structure for hydrogen according to any one of 1 to 5 The steel material having the steel composition described in any one of 1 to 4 above is heated to the Ac 3 transformation point or higher, and after hot rolling, from the temperature above the Ar 3 transformation point to a cooling rate of 1 to 200 ° C./s.
  • a method for producing a steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas quenched to 250 ° C. or lower and then tempered at a temperature of 600 ° C. or higher and below the Ac 1 transformation point.
  • a method for producing a steel structure for hydrogen according to any one of 1 to 5 The steel material having the steel composition described in any one of 1 to 4 above is formed into a predetermined shape, and then heated to the Ac 3 transformation point or higher, and then the cooling rate is 0.5 to 100 ° C. from the temperature above the Ar 3 transformation point.
  • a steel structure for hydrogen such as a hydrogen accumulator or a hydrogen line pipe, which is extremely superior in hydrogen embrittlement resistance in high-pressure hydrogen gas, and is extremely useful industrially.
  • the steel structure for hydrogen of the present invention comprises V and Mo in terms of mass%, V: 0.05 to 0.30%, Mo: 0.05 to 1.13%, and the number of V atoms / Mo atoms.
  • the tempering temperature in the quenching and tempering process is set to 600 ° C. or more and the Ac 1 transformation point or less, or Ti and Mo are contained in a mass% of Ti: 0.00.
  • the tempering temperature in the quenching and tempering process is 02 to 0.12%, Mo is contained in the range of 0.02 to 0.48%, and the number of Ti atoms / the number of Mo atoms satisfies 0.5 to 2.0.
  • V and Mo are added by the quenching and tempering treatment as described above, fine precipitates mainly of (V, Mo) C composition are added as composite carbide composed of V and Mo, and Ti and Mo are added.
  • fine precipitates having a composition of (Ti, Mo) C are mainly produced as composite fine carbides composed of Ti and Mo.
  • the addition amount of V and Mo and their atomic ratio, or the addition amount of Ti and Mo and their atomic ratio fine precipitates that effectively trap hydrogen are dispersed, As a result, the hydrogen embrittlement resistance in high-pressure hydrogen gas can be improved as compared with the conventional material, and excellent hydrogen embrittlement resistance can be exhibited.
  • the hydrogen trap effect by such fine precipitates is more effective as the atomic ratio of V and Mo or the atomic ratio of Ti and Mo is closer to 1, and preferably the number of atoms of V / the number of atoms of Mo.
  • the number of Ti atoms / the number of Mo atoms is in the range of 0.75 to 1.75, and more preferably in the range of 0.9 to 1.1.
  • the size and number density of fine precipitates are also important factors for hydrogen embrittlement resistance. That is, the average particle size of the fine precipitates needs to be 1 to 20 nm, preferably 1 to 10 nm, more preferably 1 to 5 nm. If the average particle size of the fine precipitate is smaller than 1 nm, the interface area between the precipitate and the mother phase is small, and the effect of the hydrogen trap is small. On the other hand, when the average particle size of the fine precipitates exceeds 20 nm, the consistency with the parent phase is lost, resulting in inconsistent precipitation, and in this case, the effect of the hydrogen trap is reduced.
  • the number density of fine precipitates is preferably 50/100 ⁇ m 2 or more by TEM observation of the extracted replica, whereby a high hydrogen trap effect can be obtained. More preferably 50/10 [mu] m 2 or more, more preferably in the range of 50 / [mu] m 2 or more.
  • a quenching and tempering process is indispensable for the production of fine precipitates as described above, and a desired fine precipitate cannot be obtained unless the tempering temperature is set to 600 ° C. or higher and the Ac 1 transformation point or lower.
  • the addition amounts of V and Mo are 0.25 mass% and 0.45 mass%, respectively, and the number of V atoms / the number of Mo atoms: 1.0. Although it is within the specified range of V and Mo of the invention, since tempering conditions are not described, it is unclear whether fine precipitates for trapping hydrogen are generated in an appropriate size and number density.
  • the steel structure for hydrogen having excellent hydrogen embrittlement resistance in high-pressure hydrogen gas is a low strain rate tensile test (Slow Strain Rate Test: SSRT) as described later. It means a steel structure for hydrogen that does not drop significantly from the throttle in the inside, and representative examples of the structure include a hydrogen line pipe and a hydrogen pressure accumulator.
  • the hydrogen line pipe which is the steel structure for hydrogen of the present invention is a seamless type or UOE type steel pipe, and the hydrogen pressure is 5 MPa or more.
  • the hydrogen pressure accumulator which is the steel structure for hydrogen of the present invention is a pressure accumulator used in a hydrogen station or the like, for example, a type using only type 1 steel, or type 2 and type
  • a carbon fiber reinforced plastic Carbon Fiber Reinforced Plastic: CFRP
  • Type 1, Type 2, and Type 3 are the standards for compressed natural gas vehicle fuel containers, ISO 11439, ANSI / NGV, High Pressure Gas Safety Law, Container Safety Regulations, Example Standard Attachment 9, etc. It is a division about the structure.
  • the pressure of hydrogen stored is about 35 MPa or about 70 MPa.
  • C 0.02 to 0.50% C is contained in order to ensure moderate hardenability, but if it is less than 0.02%, the effect is insufficient, while if it exceeds 0.50%, the toughness of the base metal and the weld heat affected zone deteriorates. In addition, the weldability is significantly deteriorated. Therefore, the C content is limited to a range of 0.02 to 0.50%.
  • Si 0.05 to 0.50% Si is contained as a deoxidizer in the steelmaking stage and as an element for ensuring hardenability. However, if it is less than 0.05%, its effect is insufficient. On the other hand, if it exceeds 0.50%, the grain boundary becomes brittle, and the temperature is low. Degradation of toughness. Therefore, the Si content is limited to a range of 0.05 to 0.50%.
  • Mn 0.5 to 2.0% Mn is contained as an element for ensuring hardenability. However, if it is less than 0.5%, the effect is insufficient. On the other hand, if it exceeds 2.0%, the grain boundary strength is lowered and the low-temperature toughness is deteriorated. . Therefore, the amount of Mn is limited to the range of 0.5 to 2.0%.
  • P 0.05% or less P, which is an impurity element, easily segregates at the grain boundaries, and if it exceeds 0.05%, the bonding strength of adjacent crystal grains is lowered and the low-temperature toughness is degraded. Therefore, the P amount is suppressed to 0.05% or less.
  • S 0.01% or less S, which is an impurity element, easily segregates at the grain boundaries and easily generates MnS, which is a non-metallic inclusion.
  • S 0.01% or less S, which is an impurity element, easily segregates at the grain boundaries and easily generates MnS, which is a non-metallic inclusion.
  • MnS which is a non-metallic inclusion.
  • the amount of S exceeds 0.01%, the bonding strength of adjacent crystal grains decreases, the amount of inclusions increases, and the low temperature toughness deteriorates. Therefore, the amount of S is suppressed to 0.01% or less.
  • Al 0.01 to 0.10%
  • Al is not only useful as a deoxidizer, but also forms fine precipitates of Al-based nitrides, which have the effect of pinning austenite grains during heating and suppressing grain coarsening.
  • the content is less than 0.01%, the effect is not sufficient.
  • the content exceeds 0.10%, surface flaws of the steel sheet tend to occur. Therefore, the Al content is limited to a range of 0.01 to 0.10%.
  • N 0.0005 to 0.008% N forms fine precipitates by forming nitrides with Nb, Ti, Al, etc., and this improves the low temperature toughness by pinning austenite grains during heating, thereby suppressing grain coarsening Add to have.
  • the content is less than 0.0005%, the effect of refining the structure is not sufficiently brought about.
  • the content exceeds 0.008%, the amount of solute N increases. Impairs toughness. Therefore, the N content is limited to a range of 0.0005 to 0.008%.
  • O 0.01% or less O forms an oxide with Al or the like, thereby adversely affecting the workability of the material.
  • the content exceeds 0.01%, inclusions increase and workability is impaired. Therefore, the amount of O is suppressed to 0.01% or less.
  • V and Mo are V: 0.05 to 0.30%, Mo: 0.05 to 1.13%, and the number of V atoms / the number of Mo atoms is 0. .6 to 2.0 or Ti and Mo are contained in a mass% of Ti: 0.02 to 0.12%, Mo: 0.02 to 0.48%, The number of atoms / the number of Mo atoms is in a range satisfying 0.5 to 2.0.
  • the V content is in the range of 0.05 to 0.30%
  • the Mo content is in the range of 0.05 to 1.13%
  • the atomic ratio of V / Mo is 0.6 to 2.0. It is necessary to control the range. If the amount of V and Mo is less than the lower limit, the amount of fine precipitates trapping hydrogen is small and sufficient hydrogen embrittlement suppression effect cannot be obtained, while if the upper limit is exceeded, hydrogen such as low temperature toughness decreases. Problems other than brittleness arise. Further, if the ratio of the number of atoms of V / the number of atoms of Mo is less than 0.6, expensive Mo is excessive, so that the manufacturing cost is unnecessarily large. On the other hand, if it exceeds 2.0, expensive V is excessive. Therefore, there is a disadvantage in terms of manufacturing cost.
  • Ti and Mo also form fine precipitates effective for trapping hydrogen, thereby improving the hydrogen embrittlement resistance in high-pressure hydrogen gas, resulting in excellent hydrogen embrittlement resistance Can do.
  • the Ti amount is in the range of 0.02 to 0.12%
  • the Mo amount is in the range of 0.02 to 0.48%
  • the Ti atom / Mo atomic ratio is 0.5 to 2.0. It is necessary to control the range. If the amount of Ti and Mo is less than the lower limit, the amount of fine precipitates trapping hydrogen is small and sufficient hydrogen embrittlement suppression effect cannot be obtained, while if the upper limit is exceeded, hydrogen such as low temperature toughness decreases.
  • the balance of the above-described component composition is Fe and inevitable impurities.
  • the elements described below can be further appropriately contained depending on desired characteristics.
  • Cu 0.05 to 1.0% Cu has the effect
  • Ni 0.05 to 12.0% Ni not only has the effect of improving the hardenability like Cu, but also has the effect of improving toughness. However, if the content is less than 0.05%, the effect is not sufficient. On the other hand, if the content exceeds 12.0%, the hydrogen embrittlement resistance deteriorates. Therefore, when Ni is included, it is included in the range of 0.05 to 12.0%.
  • Cr 0.1 to 2.5% Cr is useful as an element for ensuring hardenability, but if its content is less than 0.1%, its effect is insufficient, while if it exceeds 2.5%, weldability deteriorates. Therefore, when Cr is contained, it is contained in the range of 0.1 to 2.5%.
  • Nb 0.005 to 0.1%
  • Nb not only has the effect of improving hardenability, but also forms fine precipitates of Nb-based carbonitrides, which have the effect of pinning austenite grains during heating and suppressing grain coarsening.
  • the content is less than 0.005%, the effect is insufficient.
  • the toughness of the weld heat affected zone is deteriorated. Therefore, when Nb is contained, it is contained in the range of 0.005 to 0.1%.
  • W 0.05-2.0% W has an effect of improving hardenability, but if its content is less than 0.05%, its effect is insufficient, while if it exceeds 2.0%, weldability deteriorates. Therefore, when W is contained, it is contained in the range of 0.05 to 2.0%.
  • B 0.0005 to 0.005%
  • B is contained as an element for ensuring hardenability. However, if the content is less than 0.0005%, the effect is insufficient, and if it exceeds 0.005%, the toughness is deteriorated. Therefore, when B is contained, it is contained in the range of 0.0005 to 0.005%.
  • Nd 0.005 to 1.0%
  • Ca 0.0005 to 0.005%
  • Mg 0.0005 to 0.005%
  • REM 0.0005 to 0.005%
  • Nd 0.005 to 1.0%
  • Nd has the effect of incorporating S as inclusions, reducing the amount of S grain boundary segregation, and improving low-temperature toughness and hydrogen embrittlement resistance. However, if the content is less than 0.005%, the effect is insufficient. On the other hand, if the content exceeds 1.0%, the toughness of the weld heat affected zone is deteriorated. Therefore, when Nd is contained, it is contained in the range of 0.005 to 1.0%.
  • Ca 0.0005 to 0.005%
  • Ca forms CaS and acts to control the form of sulfide inclusions to CaS, which is a spherical inclusion that is difficult to expand by rolling, instead of MnS, which is an inclusion that is easy to expand by rolling.
  • MnS which is an inclusion that is easy to expand by rolling.
  • the content is less than 0.0005%, the effect is not sufficient.
  • the content exceeds 0.005%, the cleanliness is lowered, and thus material deterioration such as toughness is caused. Therefore, when Ca is contained, it is contained in the range of 0.0005 to 0.005%.
  • Mg 0.0005 to 0.005%
  • Mg may be used as a hot metal desulfurization agent. However, if the content is less than 0.0005%, the effect is not sufficient. On the other hand, if the content exceeds 0.005%, the cleanliness decreases. Accordingly, when Mg is contained, it is contained in the range of 0.0005 to 0.005%.
  • REM 0.0005 to 0.005% REM has the effect of improving SR cracking resistance by reducing the amount of solid solution S at the grain boundaries by producing sulfides called REM (O, S) in steel.
  • REM sulfides
  • the content is less than 0.0005%, the effect is not sufficient.
  • REM sulfide is remarkably accumulated in the precipitation crystal zone, leading to deterioration of the material. Therefore, when REM is included, it is included in the range of 0.0005 to 0.005%.
  • REM is an abbreviation for Rare Earth Metal.
  • the matrix steel structure may be a mixed structure of bainite and martensite or a martensite structure. preferable.
  • the steel structure for hydrogen of the present invention is a steel structure for hydrogen that uses various steel materials such as thin plates, thick plates, pipes, shaped steels, and bar steels that are excellent in fatigue crack growth resistance in high-pressure hydrogen gas, Alternatively, a hydrogen steel structure formed into a predetermined shape may be used.
  • the temperature regulation in the manufacturing conditions is the center of the steel material, and the thin plate, thick plate, pipe, and shape steel are the center of the plate thickness, and the steel bar is the center of the radial direction.
  • the vicinity of the center portion has substantially the same temperature history, and is not limited to the center itself.
  • the hydrogen line pipe that is the steel structure for hydrogen of the present invention can be produced, for example, by hot rolling a steel material and then accelerating cooling or directly quenching and tempering.
  • the steel material used for manufacturing the hydrogen line pipe of the present invention is cast from molten steel adjusted to the above component composition.
  • a method for producing a slab from molten steel and a method for producing a slab by rolling the slab are not particularly specified. Steel melted by a converter method, an electric furnace method, etc., or a steel slab produced by a continuous casting / ingot-making method can be used.
  • Direct quenching and tempering After heating the steel material to the Ac 3 transformation point or higher and performing hot rolling, the steel material is quenched from a temperature above the Ar 3 transformation point to a temperature of 250 ° C. or less at a cooling rate of 1 to 200 ° C./s. Subsequently, tempering is performed at a temperature of 600 ° C. or more and the Ac 1 transformation point or less. If the heating temperature is less than the Ac 3 transformation point, a part of untransformed austenite remains, so that a desired steel structure cannot be obtained after hot rolling, quenching and tempering. Therefore, the heating temperature before hot rolling is set to Ac 3 transformation point or more.
  • start temperature of quenching after hot rolling is lower than the Ar 3 transformation point, a part of austenite transformation occurs before quenching, so that a desired steel structure cannot be obtained after quenching and tempering. For this reason, after hot rolling, cooling is started from the Ar 3 transformation point or higher and quenching is performed.
  • the cooling rate when quenching from the Ar 3 transformation point or higher is set to 1 to 200 ° C./s in order to obtain a desired structure.
  • This cooling rate is an average cooling rate at the center of the plate thickness.
  • the cooling means is not particularly limited and may be performed by water cooling or the like. Further, when quenching is stopped at a temperature exceeding 250 ° C., the bainite transformation and martensitic transformation are not completed, and thus a desired steel structure cannot be obtained after tempering. For this reason, it shall temper to the temperature of 250 degrees C or less.
  • the steel After quenching, the steel is subsequently tempered at a temperature of 600 ° C. or higher and the Ac 1 transformation point or lower. If the tempering temperature is less than 600 ° C., a desired fine precipitate cannot be obtained. On the other hand, if it exceeds the Ac 1 transformation point, it partially transforms into austenite, so that a desired steel structure cannot be obtained after tempering.
  • the hydrogen pressure accumulator which is the steel structure for hydrogen of the present invention is obtained by, for example, forming a steel material having a predetermined component composition into a predetermined shape, that is, the shape of the desired hydrogen pressure accumulator, and then reheating, quenching and tempering Can be manufactured.
  • the steel material After forming the steel material having the above composition into a predetermined shape, the steel material is heated to the Ac 3 transformation point or higher, and then the temperature from the Ar 3 transformation point to 250 ° C. at a cooling rate of 0.5 to 100 ° C./s. Quenching to the following temperature, followed by tempering at a temperature not lower than 600 ° C. and not higher than Ac 1 transformation point.
  • the steel material to be heated to the Ac 3 transformation point or higher need only have the above-described component composition, and the steel structure is not particularly required to be specified.
  • the heating temperature after forming into a predetermined shape is less than the Ac 3 transformation point, a part of untransformed austenite remains, and thus a desired steel structure cannot be obtained after quenching and tempering. Therefore, the heating temperature is set to Ac 3 transformation point or more. Further, if the start temperature of quenching after heating is lower than the Ar 3 transformation point, some transformation of austenite occurs before cooling, so that a desired steel structure cannot be obtained after quenching and tempering. For this reason, after heating, cooling is started from a temperature equal to or higher than the Ar 3 transformation point, and quenching is performed.
  • the cooling rate at the time of quenching from the Ar 3 transformation point or higher is set to 0.5 to 100 ° C./s in order to obtain a desired structure and prevent quench cracking.
  • This cooling rate is an average cooling rate at the center of the plate thickness (wall thickness of the accumulator).
  • the cooling means is not particularly limited and may be performed by oil cooling or water cooling. Further, when the above quenching, that is, cooling is stopped at a temperature exceeding 250 ° C., the desired transformation is not completed, so that a desired steel structure cannot be obtained after tempering. For this reason, it shall temper to the temperature of 250 degrees C or less.
  • the steel After quenching, the steel is subsequently tempered at a temperature of 600 ° C. or higher and the Ac 1 transformation point or lower. If the tempering temperature is less than 600 ° C., a desired fine precipitate cannot be obtained. On the other hand, if it exceeds the Ac 1 transformation point, it partially transforms to austenite, so that a desired steel structure cannot be obtained after tempering.
  • the Ac 3 transformation point (° C.), Ar 3 transformation point (° C.), and Ac 1 transformation point (° C.) are calculated according to the following equations.
  • Ac 3 854-180C + 44Si-14Mn-17.8Ni-1.7Cr
  • Ar 3 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
  • Ac 1 723-14Mn + 22Si-14.4Ni + 13.3Cr
  • each element symbol is the content (% by mass) of each element in steel.
  • the manufacturing method and characteristic evaluation of the hydrogen line pipe and the hydrogen pressure accumulator were simulated by the steel sheet manufacturing method and characteristic evaluation. Specifically, when the production method is direct quenching and tempering, the hydrogen line pipe is simulated, and when reheating and quenching and tempering, the hydrogen pressure accumulator is simulated.
  • Steels A to H having the composition shown in Table 1 were melted, cast into slabs, heated to the heating temperatures shown in Table 2, then hot-rolled, and then directly by water cooling under the conditions shown in Table 2.
  • the steel plate No. was subjected to quenching and tempering treatment. 1 to 5 were produced.
  • the steel plate was once converted into a steel plate, heated under the conditions shown in Table 2, and then quenched by oil cooling, subjected to reheating quenching and tempering, and the steel plate No. 6-10 were produced.
  • the temperature measurement of the steel plate was implemented with the thermocouple inserted in plate thickness center part.
  • the cooling rate during water cooling shown in Table 2 was 10 to 50 ° C./s, and the cooling rate during oil cooling was in the range of 1 to 50 ° C./s.
  • the evaluation method of a material characteristic is as follows. Using a round bar tensile test piece with a parallel part diameter of 5 mm with the rolling direction as the longitudinal direction (tensile direction), pulling to break at a constant displacement rate of 10 ⁇ 3 mm / s in air and 120 MPa high-pressure hydrogen gas Tests were conducted to evaluate tensile strength and drawing from atmospheric testing and drawing from hydrogen gas testing. When (throttle in 120 MPa high-pressure hydrogen gas / throttle in the atmosphere) ⁇ 100 (%) was set to 70% or more, and this target was satisfied, it was evaluated that the hydrogen embrittlement resistance was excellent. In addition, the average particle size of the precipitates of the (V, Mo) C composition and the (Ti, Mo) C composition was determined as follows.
  • Steel plate No. shown in Table 2 1 to 3 and 6 to 8 all satisfy the present invention in terms of the composition and production conditions, and the restriction in the high-pressure hydrogen gas with respect to the atmosphere is 70% or more, and the hydrogen embrittlement resistance in the high-pressure hydrogen gas is improved. It turns out that it is excellent.
  • steel plate No. In Nos. 4 and 9 the tempering temperature was lower than the lower limit of the range of the present invention and was out of the range of the present invention, so the ratio of the restriction in the high-pressure hydrogen gas to the atmosphere did not reach the target value.
  • Steel plate No. In Nos. 5 and 10 since the component composition was out of the range of the present invention, the ratio of the restriction in the high-pressure hydrogen gas to the atmosphere did not reach the target value.
  • the present invention example has a small amount of reduction in the throttle even in high-pressure hydrogen gas, has excellent hydrogen embrittlement characteristics, and has a hydrogen pressure accumulator and hydrogen line that have excellent hydrogen embrittlement resistance characteristics. It can be seen that a steel structure for hydrogen such as a pipe can be obtained.
  • the obtained fine precipitate was mainly (V, Mo) C, and the atomic ratio of V and Mo was approximately 1: 1. Furthermore, the fine precipitates in the compatible steel to which Ti and Mo were added in combination were mainly (Ti, Mo) C, and the atomic ratio of Ti and Mo was identified as approximately 1: 1.
  • steel plate No. which is an example of an invention. 1 to 3 and 6 to 8 all had average particle sizes within the scope of the present invention.
  • the tempering temperature is lower than the lower limit of the range of the present invention, and is out of the range of the present invention. In Nos.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Fuel Cell (AREA)

Abstract

質量%で、C:0.02~0.50%、Si:0.05~0.50%、Mn:0.5~2.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.10%、N:0.0005~0.008%およびO:0.01%以下を含有し、さらにVおよびMoを、V:0.05~0.30%、Mo:0.05~1.13%で、かつVの原子数/Moの原子数:0.6~2.0を満足する範囲で含有し、残部はFeおよび不可避的不純物からなる鋼組成にすると共に、VおよびMoから構成される複合微細炭化物の平均粒子径を1~20nmの範囲に制御することにより、高圧水素環境中での耐水素脆化特性に優れた水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得ることができる。

Description

高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
 本発明は、高圧水素環境中で優れた耐水素脆化特性を有する水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物およびその製造方法に関するものである。
 近年、クリーンなエネルギー源として、また、エネルギーの多様化の観点から、世界的に水素が大きく注目されている。特に、高圧水素ガスを燃料源とする燃料電池自動車に対する期待は大きく、燃料電池自動車の開発に関連した研究が世界的に広く進められており、一部では、すでに実用化試験が行われている。
 燃料電池自動車は、ガソリンの代わりに水素をタンクに積んで走行するため、燃料電池自動車の普及のためには、ガソリンスタンドに代わって燃料補給を行う水素ステーションが必要となる。水素ステーションでは、水素を高圧で貯蔵する容器である水素用蓄圧器から車載の水素燃料タンクへ水素を充填する。車載の水素タンクへの充填最高圧力は、現状では35MPaであるが、航続距離をガソリン車並とするために、充填最高圧力を70MPaとすることが望まれている。そして、このような高圧水素環境下で、水素を安全に貯蔵、供給することが要求される。
 そのため、水素ステーションの水素用蓄圧器の圧力は、現状では40MPaであるが、充填最高圧力を70MPaに上昇した場合には、水素ステーションの水素用蓄圧器の圧力は80MPaが要求される。すなわち、水素ステーションの水素用蓄圧器は80MPaの環境にさらされることになる。
 一方、低合金鋼に水素が侵入すると脆化することが知られている。水素圧が15MPa程度までであれば、十分な肉厚を有する低合金鋼が用いられているが、それ以上の圧力では使用中に水素脆性破壊を起こす危険性が高まるため、低合金鋼は使用されず、低合金鋼よりも水素脆化がし難いSUS316L鋼等のオーステナイト系ステンレス鋼等が用いられている。
 しかし、SUS316L鋼等は、鋼材のコストが高いことに加えて、強度が低いため、80MPaの水素圧に耐え得るようにするには、肉厚が非常に厚くなり、水素用蓄圧器そのものの価格も非常に高価となる。そのため、より低コストで80MPaの圧力に耐え得る水素ステーション用の水素用蓄圧器の開発が要望されている。
 上記の問題点を解決し、低合金鋼を高圧水素用蓄圧器に適用するための技術が種々検討されている。
 例えば、特許文献1には、鋼中水素のトラップサイトとして、MnSやCa系介在物、またはVCを活用して非拡散性水素とすることにより、拡散性水素による脆化を抑制する高圧水素環境用鋼が提案されている。
 特許文献2、3には、Cr-Mo鋼の調質処理において比較的高い温度で焼戻し処理を行うことで、引張強度を900~950MPaの極めて狭い範囲に制御した、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。
 特許文献4には、V-Mo系炭化物を活用し、焼戻し温度を高めることで耐水素環境脆化特性を向上させた、高圧水素環境用低合金鋼が提案されている。
 特許文献5には、MoとVを多量に添加し、鋼板製造時に焼準処理の後に長時間の応力除去焼鈍を施すことで、(Mo,V)Cを多量に析出させた耐水素性に優れた高圧水素ガス貯蔵容器用鋼が提案されている。
 特許文献6には、セメンタイトの微細化により水素侵入量を低減して母材靭性を向上させることにより水素脆化を抑制する技術が提案されている。
 特許文献7には、粗大セメンタイトおよび島状マルテンサイト(MA)の生成を抑制することにより、水素侵入と延性低下を抑制して、水素脆化を抑制する技術が提案されている。
 なお、通常の低合金鋼についての疲労き裂進展特性については、非特許文献1、2等に記載されている。
特開2005-2386号公報 特開2009-46737号公報 特開2009-275249号公報 特開2009-74122号公報 特開2010-37655号公報 特開2012-107332号公報 特開2012-107333号公報
和田洋流著:「水素エネルギーシステム」,Vol.35,No.4(2010),p.38~44 宮本泰介ら著:「日本機械学会論文集(A編)」,78巻,788号(2012),p.531~546
 特に高圧水素環境下で使用する水素用蓄圧器では、繰り返し水素の充填を行うことから、容器に繰返し応力がかかるため、長期間の使用寿命を確保することが難しかった。使用寿命を長期間化する上では、疲労き裂進展速度を低減することが重要である。
 しかしながら、上記したような従来技術では、疲労き裂進展速度を十分に低下させることはできなかった。
 また、水素用パイプラインで使用される水素用ラインパイプ等、現状では必ずしも水素用蓄圧器ほどの高圧水素環境下にはない水素用鋼構造物についても、将来は水素用蓄圧器と同程度の安全性の確保が要求されると考えられる。
 本発明は、上記の現状に鑑み開発されたもので、従来鋼より高圧水素環境中での疲労き裂進展速度を低下させることにより、優れた耐水素脆化特性を発現させた水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を、その有利な製造方法と共に提供することを目的とする。
 さて、本発明者らは、上記の目的を達成すべく、様々な組織形態を有する水素用鋼構造物の高圧水素ガス中における耐水素脆化特性を慎重に調べた結果、
(1)VおよびMoの添加量およびそれらの原子数比を適正化すること、
(2)または、TiおよびMoの添加量およびそれらの原子数比を適正化すること
によって、従来材よりも高圧水素ガス中での耐水素脆化特性を向上させることができ、その結果、耐水素脆化特性に優れた水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得ることができるとの知見を得た。
 本発明は、上記の新たな知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.02~0.50%、Si:0.05~0.50%、Mn:0.5~2.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.10%、N:0.0005~0.008%およびO:0.01%以下を含有し、さらにVおよびMoを、V:0.05~0.30%、Mo:0.05~1.13%で、かつVの原子数/Moの原子数:0.6~2.0を満足する範囲で含有し、残部はFeおよび不可避的不純物からなる鋼組成を有し、さらにVおよびMoから構成される複合微細炭化物の平均粒子径が1~20nmである高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。
2.質量%で、C:0.02~0.50%、Si:0.05~0.50%、Mn:0.5~2.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.10%、N:0.0005~0.008%およびO:0.01%以下を含有し、さらにTiおよびMoを、Ti:0.02~0.12%、Mo:0.02~0.48%で、かつTiの原子数/Moの原子数:0.5~2.0を満足する範囲で含有し、残部はFeおよび不可避的不純物からなる鋼組成を有し、さらにTiおよびMoから構成される複合微細炭化物の平均粒子径が1~20nmである高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。
3.さらに、質量%で、Cu:0.05~1.0%、Ni:0.05~12.0%、Cr:0.1~2.5%、Nb:0.005~0.1%、W:0.05~2.0%およびB:0.0005~0.005%のうちから選んだ一種または二種以上を含有する鋼組成とした前記1または2に記載の水素用鋼構造物。
4.さらに、質量%で、Nd:0.005~1.0%、Ca:0.0005~0.005%、Mg:0.0005~0.005%およびREM:0.0005~0.005%のうちから選んだ一種または二種以上を含有する鋼組成とした前記1ないし3のいずれかに記載の水素用鋼構造物。
5.前記水素用鋼構造物が、水素用蓄圧器あるいは水素用ラインパイプである前記1ないし4のいずれかに記載の水素用鋼構造物。
6.前記1ないし5のいずれかに記載の水素用鋼構造物の製造方法であって、
 前記1ないし4のいずれかに記載の鋼組成を有する鋼素材を、Ac3変態点以上に加熱し、熱間圧延後、Ar3変態点以上の温度から冷却速度:1~200℃/sで250℃以下まで焼入れ、ついで600℃以上Ac1変態点以下の温度で焼戻す、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造部の製造方法。
7.前記1ないし5のいずれかに記載の水素用鋼構造物の製造方法であって、
 前記1ないし4のいずれかに記載の鋼組成を有する鋼材を、所定形状に成形後、Ac3変態点以上に加熱し、引続きAr3変態点以上の温度から冷却速度:0.5~100℃/sで250℃以下まで焼入れ、ついで600℃以上Ac1変態点以下の温度で焼戻す、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物の製造方法。
 本発明によれば、従来よりも高圧水素ガス中の耐水素脆化特性が極めて優れる水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得ることができ、産業上極めて有用である。
 以下、本発明を具体的に説明する。
 本発明の水素用鋼構造物は、VおよびMoを、質量%で、V:0.05~0.30%、Mo:0.05~1.13%で、Vの原子数/Moの原子数が0.6~2.0を満足する範囲で含有させ、焼入れ焼戻し過程における焼戻し温度を600℃以上Ac1変態点以下とするか、またはTiおよびMoを、質量%で、Ti:0.02~0.12%、Mo:0.02~0.48%で、Tiの原子数/Moの原子数が0.5~2.0を満足する範囲で含有させ、焼入れ焼戻し過程における焼戻し温度を600℃以上Ac1変態点以下として、VおよびMo、またはTiおよびMoから構成される複合炭化物を平均粒子径が1~20nmの範囲で微細に析出させることにより得ることができる。
 上記のような焼入れ焼戻し処理により、VおよびMoを添加した場合には、VおよびMoから構成される複合炭化物として主に(V,Mo)C組成の微細析出物が、またTiおよびMoを添加した場合には、TiおよびMoから構成される複合微細炭化物として主に(Ti,Mo)C組成の微細析出物が生成する。
 このように、VおよびMoの添加量およびそれらの原子数比、またはTiおよびMoの添加量およびそれらの原子数比を適正化することによって、水素を有効にトラップする微細析出物が分散し、その結果、従来材よりも高圧水素ガス中での耐水素脆化特性を向上させることができ、優れた耐水素脆化特性を呈することができる。
 このような微細析出物による水素トラップ効果は、VとMoの原子数比、またはTiとMoの原子数比が1に近いほどより効果的であり、好ましくはVの原子数/Moの原子数またはTiの原子数/Moの原子数が0.75~1.75の範囲、より好ましくは0.9~1.1の範囲である。
 また、微細析出物のサイズおよび数密度も、耐水素脆化特性にとって重要な因子である。すなわち、微細析出物の平均粒子径は、1~20nmとする必要がある、好ましくは1~10nm、より好ましくは1~5nmの範囲である。微細析出物の平均粒子径が1nmより小さいと析出物と母相との界面積が小さく、水素トラップの効果が小さくなる。一方、微細析出物の平均粒子径が20nmを超えて大きくなると母相との整合性を失い、非整合析出となり、この場合も水素トラップの効果が小さくなる。
 他方、微細析出物の数密度は、抽出レプリカのTEM観察にて、50/100μm2以上とすることが好ましく、これにより高い水素トラップ効果を得ることができる。より好ましくは50/10μm2以上、さらに好ましくは50/μm2以上の範囲である。
 上記のような微細析出物の生成には、焼入れ焼戻しのプロセスが必須であり、焼戻し温度を600℃以上Ac1変態点以下としなければ、所望の微細析出物を得ることができない。
 なお、前掲した非特許文献2は、VおよびMoの添加量がそれぞれ0.25質量%および0.45質量%であり、かつVの原子数/Moの原子数:1.0であり、本発明のVおよびMoの規定の範囲内であるが、焼戻し条件が記載されていないため、水素をトラップする微細析出物が適切なサイズと数密度で生成しているか不明である。また、S量が0.016mass%と高く、Sの旧オーステナイト粒界への偏析によって、粒界の結合力が弱められているため、水素トラップによる水素脆化抑制の効果も小さいと推定される。
 また、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物とは、後述するような低歪み速度引張試験(Slow Strain Rate Test:SSRT)にて、水素ガス中の絞りが大気中の絞りから大きく低下しない水素用鋼構造物を意味し、代表的構造物としては、水素用ラインパイプや水素用蓄圧器が例示される。
 ここに、本発明の水素用鋼構造物である水素用ラインパイプは、シームレスタイプまたはUOEタイプの鋼管であり、水素の圧力としては5MPa以上である。
 また、本発明の水素用鋼構造物である水素用蓄圧器は、前記したように、水素ステーションなどで使用される蓄圧器であり、例えばタイプ1の鋼材のみを用いるタイプ、またはタイプ2およびタイプ3の鋼材に炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)を巻くタイプである。なお、ここでタイプ1、タイプ2、タイプ3とは、圧縮天然ガス自動車燃料容器に関する各規格、ISO11439、ANSI/NGV、高圧ガス保安法 容器保安規則例示基準別添9などに記載される容器の構造についての区分である。また、貯蔵される水素の圧力としては、35MPa程度または70MPa程度である。
 次に、本発明の水素用鋼構造物の鋼組成を、前記の範囲に限定した理由について説明する。なお、成分組成を示す%は、特に断らない限り質量%を意味する。
C:0.02~0.50%
 Cは、適度な焼入れ性を確保するために含有するが、0.02%未満ではその効果が不十分であり、一方0.50%を超えると母材および溶接熱影響部の靭性が劣化するだけでなく、溶接性が著しく劣化する。従って、C量は0.02~0.50%の範囲に限定する。
Si:0.05~0.50%
 Siは、製鋼段階の脱酸剤および焼入れ性を確保する元素として含有するが、0.05%未満ではその効果が不十分であり、一方0.50%を超えると粒界が脆化し、低温靭性を劣化させる。従って、Si量は0.05~0.50%の範囲に限定する。
Mn:0.5~2.0%
 Mnは、焼入れ性を確保する元素として含有するが、0.5%未満ではその効果が不十分であり、一方2.0%を超えて含有すると粒界強度が低下し、低温靭性が劣化する。従って、Mn量は0.5~2.0%の範囲に限定する。
P:0.05%以下
 不純物元素であるPは、結晶粒界に偏析しやすく、0.05%を超えると隣接結晶粒の接合強度を低下させ、低温靭性を劣化させる。従って、P量は0.05%以下に抑制するものとした。
S:0.01%以下
 不純物元素であるSは、結晶粒界に偏析しやすく、また非金属介在物であるMnSを生成しやすい。特にS量が0.01%を超えると隣接結晶粒の接合強度が低下し、介在物の量が多くなり、低温靭性を劣化させる。従って、S量は0.01%以下に抑制するものとした。
Al:0.01~0.10%
 Alは、脱酸剤として有用なだけでなく、Al系窒化物の微細析出物を形成し、これが加熱時にオーステナイト粒をピンニングして、粒の粗大化を抑制する効果がある。しかしながら、含有量が0.01%未満の場合にはその効果が十分でなく、一方0.10%を超えると、鋼板の表面疵が発生しやすくなる。従って、Al量は0.01~0.10%の範囲に限定する。
N:0.0005~0.008%
 Nは、Nb、Ti、Alなどと窒化物を形成することによって微細析出物を形成し、これが加熱時にオーステナイト粒をピンニングすることにより、粒の粗大化を抑制して、低温靭性を向上させる効果を有するために添加する。しかしながら、含有量が0.0005%未満の添加では組織の微細化効果が充分にもたらされず、一方0.008%を超える添加は固溶N量が増加するために、母材および溶接熱影響部の靭性を損なう。従って、N量は0.0005~0.008%の範囲に限定する。
O:0.01%以下
 Oは、Alなどと酸化物を形成することによって、材料の加工性に悪影響を及ぼす。特に含有量が0.01%を超えると介在物が増加し、加工性を損なう。従って、O量は0.01%以下に抑制するものとした。
 本発明では、上記した基本成分中に、VおよびMoを、V:0.05~0.30%、Mo:0.05~1.13%で、Vの原子数/Moの原子数が0.6~2.0を満足する範囲で含有させるか、またはTiおよびMoを、質量%で、Ti:0.02~0.12%、Mo:0.02~0.48%で、Tiの原子数/Moの原子数が0.5~2.0を満足する範囲で含有させる。
V:0.05~0.30%、Mo:0.05~1.13%、Vの原子数/Moの原子数比:0.6~2.0
 VとMoは、水素をトラップするのに有効な微細析出物を形成し、これにより高圧水素ガス中での耐水素脆化特性を向上させ、その結果、優れた耐水素脆化特性を得ることができる。
 そのためには、V量が0.05~0.30%、Mo量が0.05~1.13%の範囲で、かつVの原子数/Moの原子数比を0.6~2.0の範囲に制御する必要がある。VおよびMo量がそれぞれ下限に満たないと水素をトラップする微細析出物の生成量が少なく、十分な水素脆化抑制の効果が得られず、一方上限を超えると低温靭性が低下するなどの水素脆性以外の問題が生じる。また、Vの原子数/Moの原子数比が0.6に満たないと高価なMoが過剰なため、製造コストが必要以上に大きくなり、一方2.0を超えるとやはり高価なVが過剰なため、製造コストの面で不利が生じる。
Ti:0.02~0.12%、Mo:0.02~0.48%、Tiの原子数/Moの原子数比:0.5~2.0
 TiとMoも、水素をトラップするのに有効な微細析出物を形成し、これにより高圧水素ガス中での耐水素脆化特性を向上させ、その結果、優れた耐水素脆化特性を得ることができる。
 そのためには、Ti量が0.02~0.12%、Mo量が0.02~0.48%の範囲で、かつTiの原子数/Moの原子数比を0.5~2.0の範囲に制御する必要がある。TiおよびMo量がそれぞれ下限に満たないと水素をトラップする微細析出物の生成量が少なく、十分な水素脆化抑制の効果が得られず、一方上限を超えると低温靭性が低下するなどの水素脆性以外の問題が生じる。また、Tiの原子数/Moの原子数比が0.5に満たないと高価なMoが過剰なため、製造コストが必要以上に大きくなり、一方2.0を超えるとやはり高価なTiが過剰なため、製造コストの面で不利が生じる。
 本発明では、上記した成分組成の残部はFeおよび不可避的不純物とするが、所望する特性に応じてさらに、以下に述べる元素を適宜含有させることができる。
Cu:0.05~1.0%、Ni:0.05~12.0%、Cr:0.1~2.5%、Nb:0.005~0.1%、W:0.05~2.0%およびB:0.0005~0.005%のうちから選んだ一種または二種以上
Cu:0.05~1.0%
 Cuは、焼入れ性を向上する作用を有している。しかしながら、含有量が0.05%未満ではその効果が充分でなく、一方1.0%を超えると、鋼片加熱時や溶接時に熱間での割れが生じやすくなる。従って、Cuを含有させる場合には、0.05~1.0%の範囲で含有させるものとした。
Ni:0.05~12.0%
 Niは、Cuと同様に焼入れ性を向上する作用を有するだけでなく、靭性を向上する作用も有する。しかしながら、含有量が0.05%未満ではその効果が充分ではなく、一方12.0%を超えると、耐水素脆化特性が劣化する。従って、Niを含有させる場合には、0.05~12.0%の範囲で含有させるものとした。
Cr:0.1~2.5%
 Crは、焼入れ性を確保する元素として有用であるが、含有量が0.1%未満ではその効果が不十分であり、一方2.5%を超えて含有させると溶接性が劣化する。従って、Crを含有させる場合には、0.1~2.5%の範囲で含有させるものとした。
Nb:0.005~0.1%
 Nbは、焼入れ性を向上する作用を有するだけでなく、Nb系炭窒化物の微細析出物を形成し、これが加熱時にオーステナイト粒をピンニングして、粒の粗大化を抑制する効果がある。しかしながら、含有量が0.005%未満ではその効果が不十分であり、一方0.1%を超えると溶接熱影響部の靭性を劣化させる。従って、Nbを含有させる場合には、0.005~0.1%の範囲で含有させるものとした。
W:0.05~2.0%
 Wは、焼入れ性を向上する作用を有するが、含有量が0.05%未満ではその効果が不十分であり、一方2.0%を超えると溶接性が劣化する。従って、Wを含有させる場合には、0.05~2.0%の範囲で含有させるものとした。
B:0.0005~0.005%
 Bは、焼入れ性を確保する元素として含有させるが、含有量が0.0005%未満ではその効果が不十分であり、一方0.005%を超えると靭性を劣化させる。従って、Bを含有させる場合には、0.0005~0.005%の範囲で含有させるものとした。
 さらに、本発明では、以下に述べる元素を適宜含有させることもできる。
Nd:0.005~1.0%、Ca:0.0005~0.005%、Mg:0.0005~0.005%およびREM:0.0005~0.005%のうちから選んだ一種または二種以上
Nd:0.005~1.0%
 Ndは、Sを介在物として取り込み、Sの粒界偏析量を低減させて、低温靭性および耐水素脆性を向上させる効果を有している。しかしながら、含有量が0.005%未満ではその効果が不十分であり、一方1.0%を超えると溶接熱影響部の靭性を劣化させる。従って、Ndを含有させる場合には、0.005~1.0%の範囲で含有させるものとした。
Ca:0.0005~0.005%
 Caは、CaSを形成し、圧延によって展伸しやすい介在物であるMnSの代わりに、圧延により展伸しにくい球状介在物であるCaSへと、硫化物系介在物の形態を制御する作用を有する。しかしながら、含有量が0.0005%未満ではその効果は充分ではなく、一方0.005%を超えて含有すると清浄度が低下するため、靭性などの材質劣化を招く。したがって、Caを含有させる場合には、0.0005~0.005%の範囲で含有させるものとした。
Mg:0.0005~0.005%
 Mgは、溶銑脱硫剤として使用する場合がある。しかしながら、含有量が0.0005%未満ではその効果は充分ではなく、一方0.005%を超える含有は清浄度の低下を招く。従って、Mgを含有させる場合には、0.0005~0.005%の範囲で含有させるものとした。
REM:0.0005~0.005%
 REMは、鋼中で、REM(O、S)という硫化物を生成することによって結晶粒界の固溶S量を低減して、耐SR割れ特性を改善する効果がある。しかしながら、含有量が0.0005%未満ではその効果が充分ではなく、一方0.005%を超えると、沈殿晶帯にREM硫化物が著しく集積して、材質の劣化を招く。従って、REMを含有させる場合には、0.0005~0.005%の範囲で含有させるものとした。なお、REMとは、Rare Earth Metalの略である。
 本発明の水素用鋼構造物は、前記したような微細析出物が分散した組織とする必要があるが、母相鋼組織としては、ベイナイトおよびマルテンサイトの混合組織またはマルテンサイト組織であることが好ましい。
 次に、本発明の水素用鋼構造物である水素用ラインパイプ、水素用蓄圧器を例示して、本発明の水素用鋼構造物の好ましい製造方法について説明する。
 なお、本発明の水素用鋼構造物は、高圧水素ガス中の耐疲労き裂進展特性に優れる薄板、厚板、パイプ、形鋼および棒鋼など種々の鋼材をそのまま使用する水素用鋼構造物、あるいは所定形状に成形した水素用鋼構造物としてもよい。
 また、製造条件における温度規定は鋼材中心部のものとし、薄板、厚板、パイプ、形鋼は板厚中心、棒鋼では径方向の中心とする。但し、中心部近傍はほぼ同様の温度履歴となるので、中心そのものに限定するものではない。
 本発明の水素用鋼構造物である水素用ラインパイプは、例えば鋼素材を熱間圧延したのち、加速冷却する、あるいは直接焼入れ焼戻しすることにより製造することができる。
 本発明の水素用ラインパイプの製造に用いる鋼素材は、上記成分組成に調整された溶鋼から鋳造する。ここで、特に鋳造条件を限定する必要はなく、いかなる鋳造条件で製造された鋼素材としてもよい。溶鋼から鋳片を製造する方法や、鋳片を圧延して鋼片を製造する方法は特に規定しない。転炉法・電気炉法等で溶製された鋼や、連続鋳造・造塊法等で製造された鋼スラブが利用できる。
直接焼入れ焼戻し
 上記鋼素材を、Ac3変態点以上に加熱し、熱間圧延を行った後、Ar3変態点以上の温度から冷却速度1~200℃/sで250℃以下の温度まで焼入れ、引続き600℃以上Ac1変態点以下の温度で焼戻す。
 加熱温度がAc3変態点未満では、一部未変態オーステナイトが残存するため、熱間圧延および焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、熱間圧延前の加熱温度はAc3変態点以上とする。また、熱間圧延後の焼入れの開始温度がAr3変態点を下回るとオーステナイトの一部の変態が焼入れ前に生じてしまうため、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため熱間圧延後は、Ar3変態点以上から冷却を開始し、焼入れを行う。
 Ar3変態点以上から焼入れる際の冷却速度は、所望の組織を得るため、1~200℃/sとする。なお、この冷却速度は、板厚中心での平均冷却速度である。冷却手段は特に限定する必要はなく、水冷等により行えばよい。
 また、焼入れを250℃超えの温度で停止すると、ベイナイト変態やマルテンサイト変態が完了しないため、焼戻し後に所望の鋼組織を得ることができない。このため、250℃以下の温度まで焼入れることとする。
 焼入れ後は、引き続き600℃以上Ac1変態点以下の温度で焼戻す。焼戻し温度が600℃未満だと所望の微細析出物を得ることができず、一方Ac1変態点を超えると、一部オーステナイトに変態するため、焼戻し後に所望の鋼組織を得ることができない。
 また、本発明の水素用鋼構造物である水素用蓄圧器は、例えば所定の成分組成を有する鋼材を所定形状、すなわち所望する水素用蓄圧器の形状に成形後、再加熱焼入れ焼戻しすることにより製造することができる。
再加熱焼入れ焼戻し
 上記の成分組成を有する鋼材を、所定形状に成形後、Ac3変態点以上に加熱し、ついでAr3変態点以上の温度から冷却速度0.5~100℃/sで250℃以下の温度まで焼入れ、引続き600℃以上Ac1変態点以下の温度で焼戻す。
 ここで、Ac3変態点以上に加熱する鋼材は、上記した成分組成を有するものであれば良く、鋼組織は特に規定する必要はない。所定形状に成形後の加熱温度がAc3変態点未満では、一部未変態オーステナイトが残存するため、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、加熱温度はAc3変態点以上とする。また、加熱後の焼入れの開始温度がAr3変態点を下回るとオーステナイトの一部の変態が冷却前に生じてしまうため、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、加熱後に、Ar3変態点以上の温度から冷却を開始し、焼入れを行う。
 Ar3変態点以上から焼入れる際の冷却速度は、所望の組織を得るとともに、焼割れを防止するため、0.5~100℃/sとする。なお、この冷却速度は、板厚(蓄圧器の壁厚)中心での平均冷却速度である。冷却手段は特に限定する必要はなく、油冷や水冷等により行えばよい。
 また、上記の焼入れ、すなわち冷却を250℃超えの温度で停止すると、所望の変態が完了しないため、焼戻し後に所望の鋼組織を得ることができない。このため、250℃以下の温度まで焼入れることとする。
 焼入れ後は、引き続き600℃以上Ac1変態点以下の温度で焼戻す。焼戻し温度が600℃未満だと所望の微細析出物が得られず、一方Ac1変態点を超えると、一部オーステナイトに変態するため、焼戻し後に所望の鋼組織を得ることができない。
 なお、本発明では、Ac3変態点(℃)、Ar3変態点(℃)およびAc1変態点(℃)は、次式に従って算出するものとした。
Ac3=854-180C+44Si-14Mn-17.8Ni-1.7Cr
Ar3=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
Ac1=723-14Mn+22Si-14.4Ni+23.3Cr
 なお、上記式中において各元素記号は各元素の鋼中含有量(質量%)である。
 上述した製造条件に従って製造することにより、水素を有効にトラップする微細析出物が分散し、従来材よりも高圧水素ガス中での耐水素脆化特性を向上でき、優れた耐水素脆化特性を有する水素用鋼構造物、例えば水素用ラインパイプあるいは水素用蓄圧器などを得ることができる。
 以下、本発明の効果を検証した実施例について、説明する。なお、以下の実施例においては、水素用ラインパイプおよび水素用蓄圧器の製造方法および特性評価を、鋼板の製造方法および特性評価でシミュレイトした。具体的には、製造方法が直接焼入れ焼戻しの場合は水素用ラインパイプをシミュレイトした場合であり、再加熱焼入れ焼戻しの場合は水素用蓄圧器をシミュレイトした場合である。
 表1に示す成分組成になる鋼A~Hを溶製し、スラブに鋳造したのち、表2に示す加熱温度に加熱後、熱間圧延し、ついで表2に示す条件での水冷により、直接焼入れ焼戻し処理を施して鋼板No.1~5を製造した。
 また、スラブに鋳造後、一旦鋼板とし、この鋼板を表2に示す条件にて、加熱後、油冷により焼入れを行う、再加熱焼入れ焼戻しを施して鋼板No.6~10を製造した。
 なお、鋼板の温度測定は、板厚中心部に挿入した熱電対によって実施した。また、表2に示す水冷の際の冷却速度は10~50℃/s、油冷の際の冷却速度は1~50℃/sの範囲内であった。
 得られた各鋼板について、引張強さ、大気中の絞り、120MPa高圧水素ガス中における絞り、それらの絞りの比、さらには(V,Mo)C組成の析出物や(Ti,Mo)C組成の析出物の平均粒子径について調べた結果を、表2に併記する。
 なお、材料特性の評価法は次のとおりである。
 圧延方向を長手方向(引張方向)とする平行部径5mmの丸棒引張試験片を用い、大気中および120MPa高圧水素ガス中にて、10-3mm/sの一定の変位速度で破断まで引張試験を行い、大気中試験から引張強さおよび絞りを、また水素ガス中試験から絞りを評価した。
 (120MPa高圧水素ガス中の絞り/大気中の絞り)×100(%)が、70%以上を目標とし、この目標を満足する場合、耐水素脆化特性に優れる評価した。
 また、(V,Mo)C組成や(Ti,Mo)C組成の析出物の平均粒子径については次のようにして求めた。
 薄膜TEM-EDXまたは抽出レプリカTEM-EDXによって分析して確認された(V,Mo)C析出物および(Ti,Mo)C析出物それぞれ50個について、TEM写真を用いて、粒子径(円相当径:直径)を測定し、その平均値を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示した鋼板No.1~3、6~8はいずれも、成分組成および製造条件が本発明を満足し、大気中に対する高圧水素ガス中の絞りは70%以上であり、高圧水素ガス中の耐水素脆化特性に優れていることが判る。
 一方、鋼板No.4,9は、焼戻し温度が、本発明範囲の下限より低く、本発明範囲から外れていたため、大気中に対する高圧水素ガス中の絞りの比が目標値に達していない。鋼板No.5,10は、成分組成が本発明範囲の範囲から外れていたため、大気中に対する高圧水素ガス中の絞りの比が目標値に達していない。
 上記の結果から明らかなように、本発明例は、高圧水素ガス中でも絞りの低下量が小さく、水素脆化特性に優れるものであり、耐水素脆化特性に優れる水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得られることがわかる。
 また、VおよびMoを複合添加した適合鋼中の微細析出物を薄膜TEM-EDXによって分析した結果、得られた微細析出物は主に(V,Mo)Cであり、VとMoの原子比はほぼ1:1であった。さらに、TiおよびMoを複合添加した適合鋼中の微細析出物は主に(Ti,Mo)Cであり、TiとMoの原子比はほぼ1:1と同定された。
 そして、発明例である鋼板No.1~3、6~8は、いずれも本発明の範囲内の平均粒子径となっていた。これに対し、焼戻し温度が、本発明範囲の下限より低く、本発明範囲から外れている鋼板No.4,9は、(V,Mo)C微細析出物および(Ti,Mo)C微細析出物がほとんど観察されなかった。なお、成分組成が本発明の範囲から外れている鋼板No.5,10に関しては、本発明の範囲内の平均粒子径が観察された。

Claims (7)

  1.  質量%で、C:0.02~0.50%、Si:0.05~0.50%、Mn:0.5~2.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.10%、N:0.0005~0.008%およびO:0.01%以下を含有し、さらにVおよびMoを、V:0.05~0.30%、Mo:0.05~1.13%で、かつVの原子数/Moの原子数:0.6~2.0を満足する範囲で含有し、残部はFeおよび不可避的不純物からなる鋼組成を有し、さらにVおよびMoから構成される複合微細炭化物の平均粒子径が1~20nmである高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。
  2.  質量%で、C:0.02~0.50%、Si:0.05~0.50%、Mn:0.5~2.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.10%、N:0.0005~0.008%およびO:0.01%以下を含有し、さらにTiおよびMoを、Ti:0.02~0.12%、Mo:0.02~0.48%で、かつTiの原子数/Moの原子数:0.5~2.0を満足する範囲で含有し、残部はFeおよび不可避的不純物からなる鋼組成を有し、さらにTiおよびMoから構成される複合微細炭化物の平均粒子径が1~20nmである高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。
  3.  さらに、質量%で、Cu:0.05~1.0%、Ni:0.05~12.0%、Cr:0.1~2.5%、Nb:0.005~0.1%、W:0.05~2.0%およびB:0.0005~0.005%のうちから選んだ一種または二種以上を含有する鋼組成とした請求項1または2に記載の水素用鋼構造物。
  4.  さらに、質量%で、Nd:0.005~1.0%、Ca:0.0005~0.005%、Mg:0.0005~0.005%およびREM:0.0005~0.005%のうちから選んだ一種または二種以上を含有する鋼組成とした請求項1ないし3のいずれかに記載の水素用鋼構造物。
  5.  前記水素用鋼構造物が、水素用蓄圧器あるいは水素用ラインパイプである請求項1ないし4のいずれかに記載の水素用鋼構造物。
  6.  請求項1ないし5のいずれかに記載の水素用鋼構造物の製造方法であって、
     請求項1ないし4のいずれかに記載の鋼組成を有する鋼素材を、Ac3変態点以上に加熱し、熱間圧延後、Ar3変態点以上の温度から冷却速度:1~200℃/sで250℃以下まで焼入れ、ついで600℃以上Ac1変態点以下の温度で焼戻す、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造部の製造方法。
  7.  請求項1ないし5のいずれかに記載の水素用鋼構造物の製造方法であって、
     請求項1ないし4のいずれかに記載の鋼組成を有する鋼材を、所定形状に成形後、Ac3変態点以上に加熱し、引続きAr3変態点以上の温度から冷却速度:0.5~100℃/sで250℃以下まで焼入れ、ついで600℃以上Ac1変態点以下の温度で焼戻す、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物の製造方法。
PCT/JP2016/004256 2015-09-17 2016-09-16 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 WO2017047099A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2991018A CA2991018C (en) 2015-09-17 2016-09-16 Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same
CN201680052940.2A CN108026619A (zh) 2015-09-17 2016-09-16 高压氢气中的耐氢脆化特性优异的氢用钢结构物及其制造方法
KR1020207009584A KR102120616B1 (ko) 2015-09-17 2016-09-16 고압 수소 가스 중의 내수소 취화 특성이 우수한 수소용 강 구조물 및 그 제조 방법
CN202210937419.4A CN115449705A (zh) 2015-09-17 2016-09-16 高压氢气中的耐氢脆化特性优异的氢用钢结构物及其制造方法
US15/740,086 US20180312935A1 (en) 2015-09-17 2016-09-16 Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same
JP2016569865A JP6299885B2 (ja) 2015-09-17 2016-09-16 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
AU2016322190A AU2016322190B2 (en) 2015-09-17 2016-09-16 Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same
KR1020187006574A KR20180038024A (ko) 2015-09-17 2016-09-16 고압 수소 가스 중의 내수소 취화 특성이 우수한 수소용 강 구조물 및 그 제조 방법
EP16845973.3A EP3351650B1 (en) 2015-09-17 2016-09-16 Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015184334 2015-09-17
JP2015-184334 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047099A1 true WO2017047099A1 (ja) 2017-03-23

Family

ID=58288549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004256 WO2017047099A1 (ja) 2015-09-17 2016-09-16 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法

Country Status (8)

Country Link
US (1) US20180312935A1 (ja)
EP (1) EP3351650B1 (ja)
JP (1) JP6299885B2 (ja)
KR (2) KR102120616B1 (ja)
CN (2) CN115449705A (ja)
AU (1) AU2016322190B2 (ja)
CA (2) CA3077926C (ja)
WO (1) WO2017047099A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090069A (ja) * 2017-11-10 2019-06-13 新日鐵住金株式会社 高圧水素用ニッケル鋼材
CN111566246A (zh) * 2018-01-11 2020-08-21 罗伯特·博世有限公司 用于与氢气接触的部件
WO2024071354A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法
WO2024071353A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法
WO2024171518A1 (ja) * 2023-02-14 2024-08-22 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板、その製造方法および水素輸送鋼管
WO2024185593A1 (ja) * 2023-03-07 2024-09-12 Jfeスチール株式会社 高圧水素容器用高強度継目無鋼管およびその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702251A (zh) * 2016-11-24 2017-05-24 安徽瑞研新材料技术研究院有限公司 一种快开式可控温的高压氢气环境的材料及其制备方法
CN111083928B (zh) * 2018-08-20 2020-11-20 日本制铁株式会社 钢板及其制造方法
US20220064770A1 (en) * 2018-12-26 2022-03-03 Jfe Steel Corporation Steel material for high-pressure hydrogen gas environment, steel structure for high-pressure hydrogen gas environment, and methods for producing steel material for high-pressure hydrogen gas environment
DE102019217369A1 (de) * 2019-11-11 2021-05-12 Robert Bosch Gmbh Umwandlungsträge Stahllegierung, Verfahren zur Herstellung der umwandlungsträgen Stahllegierung und Wasserstoffspeicher mit einer Komponente aus der umwandlungsträgen Stahllegierung
KR102402238B1 (ko) 2020-08-07 2022-05-26 주식회사 포스코 수소 취화 저항성 및 충격 인성이 우수한 강재 및 이의 제조방법
WO2022092316A1 (ja) * 2020-11-02 2022-05-05 臼井国際産業株式会社 高圧水素配管用鋼管およびそれを用いた高圧水素配管
EP4032999B1 (de) * 2021-01-20 2024-04-24 Poppe & Potthoff GmbH Wasserstoffverteilsystem und bauteile mit niedrigem gewicht
US11680466B2 (en) 2021-02-08 2023-06-20 TerraH2 LLC Hydrogen storage and recovery with fracture monitoring
CN113005393B (zh) * 2021-03-17 2023-09-01 淮安方圆锻造有限公司 一种采油井用的井口压盖热处理系统及其制备方法
CN113061815B (zh) * 2021-03-24 2022-04-26 宝武集团鄂城钢铁有限公司 一种800MPa级全截面冲击性能稳定的调质态高强钢及其生产方法
CN113252452B (zh) * 2021-06-01 2023-05-23 中国石油大学(华东) 一种高压掺氢天然气环境中测量不同高度位置氢气浓度的实验方法
CN114150234A (zh) * 2021-12-07 2022-03-08 中国科学院金属研究所 一种耐温高强度阀体用钢材料及其制备方法
KR20230172297A (ko) 2022-06-15 2023-12-22 현대자동차주식회사 수소 취화 저항성 및 강도가 우수한 합금강 및 이의 제조방법
WO2024133917A1 (en) * 2022-12-22 2024-06-27 Tenaris Connections B.V. Steel composition, manufacturing method, steel article and uses hereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173160A (ja) * 2013-03-12 2014-09-22 Nippon Steel & Sumitomo Metal 高圧水素ガス用低合金鋼および高圧水素用蓄圧器
JP5633664B1 (ja) * 2013-03-29 2014-12-03 Jfeスチール株式会社 鋼材および水素用容器ならびにそれらの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507528B1 (ja) * 1970-03-30 1975-03-26
JPS52133294A (en) * 1976-05-01 1977-11-08 Nippon Bunko Kogyo Kk Pumping system and liquid transfer process for liquid chromatography
US4394189A (en) * 1981-05-08 1983-07-19 Lone Star Steel Company High performance tubulars for critical oil country applications and improved process for their preparation
US4354882A (en) * 1981-05-08 1982-10-19 Lone Star Steel Company High performance tubulars for critical oil country applications and process for their preparation
JP4031068B2 (ja) * 1996-06-27 2008-01-09 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度ボルト用鋼
US7416617B2 (en) * 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
JP2004176172A (ja) * 2002-10-01 2004-06-24 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度継目無鋼管およびその製造方法
JP2005002386A (ja) 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd 高圧水素環境用鋼、鋼管およびその製造方法
JP5277648B2 (ja) * 2007-01-31 2013-08-28 Jfeスチール株式会社 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JP5094272B2 (ja) 2007-08-21 2012-12-12 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法
JP4251229B1 (ja) * 2007-09-19 2009-04-08 住友金属工業株式会社 高圧水素ガス環境用低合金鋼および高圧水素用容器
JP5201625B2 (ja) 2008-05-13 2013-06-05 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
JP5353501B2 (ja) * 2008-07-09 2013-11-27 新日鐵住金株式会社 耐水素性に優れた常温高圧水素ガス貯蔵鋼製容器およびその製造方法
KR101084915B1 (ko) 2009-05-26 2011-11-17 김기주 양돈용 액상 급이기
MX360965B (es) * 2009-11-30 2018-11-23 Nippon Steel & Sumitomo Metal Corp Placa de acero de alta resistencia con resistencia a la tracción final de 900 mpa o mas, excelente en resistencia a la fragilizacion por hidrógeno y método de producción de la misma.
JP5849609B2 (ja) 2010-10-28 2016-01-27 Jfeスチール株式会社 高圧水素貯蔵用鋼材
KR20120107333A (ko) 2011-03-21 2012-10-02 김동임 자동차용 변속기의 회전력을 이용한 변속기어
JP5924058B2 (ja) * 2011-10-03 2016-05-25 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP6235221B2 (ja) * 2013-03-28 2017-11-22 Jfeスチール株式会社 低温靭性および耐水素脆性を有する耐磨耗厚鋼板およびその製造方法
JP6007847B2 (ja) * 2013-03-28 2016-10-12 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法
JP5928394B2 (ja) * 2013-03-29 2016-06-01 Jfeスチール株式会社 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173160A (ja) * 2013-03-12 2014-09-22 Nippon Steel & Sumitomo Metal 高圧水素ガス用低合金鋼および高圧水素用蓄圧器
JP5633664B1 (ja) * 2013-03-29 2014-12-03 Jfeスチール株式会社 鋼材および水素用容器ならびにそれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI MARUTA ET AL.: "Effect of Small Addition of V and Mo on Fatigue Crack Growth Behavior of Carbon Steel in Hydrogen Gas", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS M&M ZAIRYO RIKIGAKU CONFERENCE, 2011, pages OS2211, XP009505538 *
See also references of EP3351650A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090069A (ja) * 2017-11-10 2019-06-13 新日鐵住金株式会社 高圧水素用ニッケル鋼材
CN111566246A (zh) * 2018-01-11 2020-08-21 罗伯特·博世有限公司 用于与氢气接触的部件
US12024761B2 (en) 2018-01-11 2024-07-02 Robert Bosch Gmbh Component for contacting hydrogen
WO2024071354A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法
WO2024071353A1 (ja) * 2022-09-29 2024-04-04 Jfeスチール株式会社 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法
WO2024171518A1 (ja) * 2023-02-14 2024-08-22 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板、その製造方法および水素輸送鋼管
JP7541651B1 (ja) 2023-02-14 2024-08-29 Jfeスチール株式会社 水素輸送鋼管用高強度鋼板、その製造方法および水素輸送鋼管
WO2024185593A1 (ja) * 2023-03-07 2024-09-12 Jfeスチール株式会社 高圧水素容器用高強度継目無鋼管およびその製造方法

Also Published As

Publication number Publication date
CA2991018A1 (en) 2017-03-23
EP3351650A1 (en) 2018-07-25
CA2991018C (en) 2021-03-30
CN115449705A (zh) 2022-12-09
KR20180038024A (ko) 2018-04-13
EP3351650B1 (en) 2021-05-19
CN108026619A (zh) 2018-05-11
AU2016322190A1 (en) 2018-02-08
CA3077926C (en) 2021-10-26
KR20200038327A (ko) 2020-04-10
KR102120616B1 (ko) 2020-06-08
EP3351650A4 (en) 2018-08-29
CA3077926A1 (en) 2017-03-23
AU2016322190B2 (en) 2019-05-23
JPWO2017047099A1 (ja) 2017-09-14
JP6299885B2 (ja) 2018-03-28
US20180312935A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6299885B2 (ja) 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
JP6989004B2 (ja) 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
JP5713152B2 (ja) 水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
KR101730432B1 (ko) 강재 및 수소용 용기 그리고 그들의 제조 방법
JP5928394B2 (ja) 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP4251229B1 (ja) 高圧水素ガス環境用低合金鋼および高圧水素用容器
KR101681626B1 (ko) 높은 압축 강도를 갖는 라인파이프용 용접 강관
KR101664635B1 (ko) 고장력 열연 강판 및 그 제조 방법
JP7371604B2 (ja) 高圧水素ガス環境用鋼材の製造方法
JP5842537B2 (ja) 高圧水素貯蔵容器用高強度鋼材
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP6202065B2 (ja) 水素用鋼構造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016569865

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15740086

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2991018

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016322190

Country of ref document: AU

Date of ref document: 20160916

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006574

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016845973

Country of ref document: EP