WO2024071354A1 - 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法 - Google Patents

水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法 Download PDF

Info

Publication number
WO2024071354A1
WO2024071354A1 PCT/JP2023/035556 JP2023035556W WO2024071354A1 WO 2024071354 A1 WO2024071354 A1 WO 2024071354A1 JP 2023035556 W JP2023035556 W JP 2023035556W WO 2024071354 A1 WO2024071354 A1 WO 2024071354A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
cooling rate
steel pipe
hydrogen
Prior art date
Application number
PCT/JP2023/035556
Other languages
English (en)
French (fr)
Inventor
奈穂 井上
拓史 岡野
佳宏 西原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024503436A priority Critical patent/JPWO2024071354A1/ja
Publication of WO2024071354A1 publication Critical patent/WO2024071354A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel pipe with excellent fatigue properties in hydrogen and a manufacturing method thereof, a steel material and a manufacturing method thereof.
  • Line pipes for transporting natural gas exist as an existing energy infrastructure. These steel materials have been required to suppress the occurrence of hydrogen-induced cracking in sour environments. Meanwhile, in recent years, hydrogen has been attracting a great deal of attention worldwide as a clean energy source for building a decarbonized society. For this reason, in order to transport large amounts of hydrogen gas, the construction of a hydrogen gas transportation network that uses natural gas mixed with some hydrogen in natural gas line pipes and pressurized hydrogen gas as an alternative is being considered. The transportation pressure during operation of these pipelines is expected to be high pressure of 1 to 40 MPa, and the line pipes will be placed in a high-pressure hydrogen gas exposure environment.
  • Austenitic stainless steels such as SUS316L, which are less susceptible to hydrogen embrittlement than low-alloy steels, have traditionally been used for steel structures used in high-pressure hydrogen gas environments.
  • austenitic stainless steels such as SUS316L are expensive and have low strength, so when designed to withstand high hydrogen pressures, the wall thickness becomes thick, and the price of the hydrogen structure itself becomes expensive. For this reason, there has been a strong demand for low-cost low-alloy steels for hydrogen steel structures that can withstand high-pressure hydrogen gas environments.
  • the steel for high-pressure hydrogen environments described in Patent Document 1 is a steel for use in high-pressure hydrogen environments, and by making the Ca/S ratio less than 1.5 or 11 or more, the diffusible hydrogen concentration ratio is reduced and embrittlement due to diffusible hydrogen is suppressed.
  • Patent Document 2 claims that by using low-alloy high-strength steel adjusted to a specific composition, the reduction in area and elongation values in a 45 MPa hydrogen atmosphere are greater than those of JIS G3128SHY685NS in the air tensile strength range of 900 to 950 MPa, and that the material has excellent resistance to embrittlement in a high-pressure hydrogen environment.
  • the low-alloy high-strength steel described in Patent Document 3 is a Cr-Mo high-strength low-alloy steel that is tempered at a relatively high temperature of 560 to 580°C and has a grain size of 8.4 or more after tempering, and its tensile strength is adjusted to an extremely narrow range of 900 to 950 MPa, resulting in a low-alloy high-strength steel that exhibits excellent elongation and drawing characteristics even in a 45 MPa hydrogen atmosphere and has excellent resistance to embrittlement in a high-pressure hydrogen environment.
  • Patent Document 4 proposes a low-alloy steel for use in high-pressure hydrogen gas environments.
  • the low-alloy steel described in Patent Document 4 adds V, increases the Mo content compared to existing steels, raises the tempering temperature, and utilizes V-Mo carbides, improving the carbide morphology at the grain boundaries and significantly improving resistance to embrittlement in hydrogen environments.
  • Patent Document 5 also proposes a steel for high-pressure hydrogen gas storage containers with excellent hydrogen resistance. According to the technology described in Patent Document 5, when manufacturing steel plates, long-term stress relief annealing is performed after normalizing treatment, which causes fine, dense dispersion precipitation of MC-based carbides (Mo, V)C, improving the hydrogen resistance of the steel, including its resistance to hydrogen embrittlement.
  • MC-based carbides Mo, V
  • Patent Document 6 also proposes a steel material for storing high-pressure hydrogen.
  • the steel material described in Patent Document 6 has a metal structure mainly composed of bainite with an area fraction of 90% or more, and cementite with an average grain size of 50 nm or less and an average aspect ratio of 3 or less is dispersed and precipitated in the bainite.
  • Non-Patent Document 1 it is known that the fatigue life of materials decreases in a high-pressure hydrogen environment. In other words, if a line pipe material is designed based on a conventional line pipe for natural gas, the service life of the line pipe material will decrease.
  • the above-mentioned conventional technology can suppress the occurrence of hydrogen-induced cracking in a sour environment, it is unable to sufficiently increase the fatigue strength in hydrogen gas. In other words, there is a problem in that it is difficult to suppress the occurrence of hydrogen-induced cracking in a sour environment and also to obtain high fatigue strength in hydrogen gas, which is more likely to affect the service life.
  • the present invention aims to provide a steel pipe and a manufacturing method thereof, and a steel material and a manufacturing method thereof, which are suitable for steel structures to be used in high-pressure hydrogen gas environments, such as line pipes for 100% hydrogen gas or natural gas containing hydrogen at a partial pressure of 1 MPa or more (natural gas is a gas whose main components are hydrocarbons such as methane and ethane).
  • Natural gas containing hydrogen at a partial pressure of 1 MPa or more refers to, for example, a hydrogen concentration of 30% or less by volume fraction and a total gas pressure of 30 MPa or less.
  • crack growth rate da/dN in a hydrogen environment is 1.0 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, it is possible to design structural steel for hydrogen use within the range of plate thickness that can be produced by the manufacturing process.
  • the inventors have conducted extensive research into the conditions that various steel materials must satisfy in hydrogen gas from the above perspective, and have discovered new steel pipes and steel materials with excellent fatigue properties in hydrogen.
  • the present invention was developed based on these new findings and further studies, and has the following gist.
  • C 0.10 to 0.45%, Si: 0.01 to 2.0%, Mn: 0.3 to 2.0%, Al: 0.01 to 0.15%, N: 0.0005 to 0.008%, P: 0.015% or less, S: 0.0015% or less, O: 0.01% or less, H: 0.0010% or less, Cu: 0 to 2.5%, Ni: 0 to 2.5%, Cr: 0 to 2.5%, Mo: 0 to 2.0%, Nb: 0 to 0.5%, V: 0 to 0.5%, Ti: 0 to 0.5%, W: 0 to 2.5%, B: 0 to 0.005%, Sn: 0 to 0.3%, Sb: 0 to 0.3%, Ca: 0 to 0.01%, Mg: 0 to 0.01%, REM: 0 to 0.005%
  • the balance is Fe and unavoidable impurities, Retained austenite is 3% or less.
  • the number of carbides having a diameter of 200 nm or more is 20/10 ⁇ m2 or less
  • [2] A casting process of casting a steel material having the composition described in [1] at a casting speed of 1.8 m/min or less; A heating step of heating at 1350° C.
  • a hot rolling process in which the steel material heated in the heating process is rolled under a rolling end temperature of 820°C or higher to form a steel pipe shape
  • a cooling step in which the steel pipe obtained in the hot rolling step is held at a temperature of Ac 3 point or higher and 1000° C. or lower, and then the cooling conditions are the following group A or group B: and a tempering step of tempering the steel pipe obtained in the cooling step at 400° C. or higher and Ac 1 point or lower for less than 60 minutes.
  • Group A The steel pipe is cooled to 50°C or less at an average cooling rate of 15°C/s or more from 800°C to 550°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe, and at an average cooling rate of 15°C/s or less from 550°C to 50°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe.
  • Group B The steel pipe is cooled to 50°C or less at an average cooling rate of 10°C/s or more from 800°C to 300°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe, and an average cooling rate of 5°C/s or less from 300°C to 50°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe.
  • [3] The method for producing a steel pipe according to [2], further comprising a quenching step of reheating the steel pipe to a temperature of from Ac 3 point to 1000° C. before the tempering step, and cooling the steel pipe under the following cooling conditions: Group A or Group B.
  • Group A The steel pipe is cooled to 50°C or less at an average cooling rate of 15°C/s or more from 800°C to 550°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe, and at an average cooling rate of 15°C/s or less from 550°C to 50°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe.
  • Group B The steel pipe is cooled to 50°C or less at an average cooling rate of 10°C/s or more from 800°C to 300°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe, and an average cooling rate of 5°C/s or less from 300°C to 50°C at a position 1/4 of the wall thickness from the inner surface of the steel pipe.
  • Group A The steel material is cooled to 50°C or less at an average cooling rate of 15°C/s or more from 800°C to 550°C at a position 1/4 of the thickness from the steel surface, and at an average cooling rate of 15°C/s or less from 550°C to 50°C at a position 1/4 of the thickness from the steel surface.
  • Group B The steel material is cooled to 50°C or less at an average cooling rate of 10°C/s or more from 800°C to 300°C at a position 1/4 of the thickness from the steel surface, and an average cooling rate of 5°C/s or less from 300°C to 50°C at a position 1/4 of the thickness from the steel surface.
  • the method for producing a steel material according to [6], further comprising a quenching process in which the steel material is reheated to a temperature of from Ac 3 point to 1000° C. before the tempering process, and the cooling conditions are the following group A or group B: Group A: The steel material is cooled to 50°C or less at an average cooling rate of 15°C/s or more from 800°C to 550°C at a position 1/4 of the thickness from the steel surface, and at an average cooling rate of 15°C/s or less from 550°C to 50°C at a position 1/4 of the thickness from the steel surface.
  • Group B The steel material is cooled to 50°C or less at an average cooling rate of 10°C/s or more from 800°C to 300°C at a position 1/4 of the thickness from the steel surface, and an average cooling rate of 5°C/s or less from 300°C to 50°C at a position 1/4 of the thickness from the steel surface.
  • the present invention makes it possible to obtain steel pipes and steel materials that have extremely excellent fatigue properties in a high-pressure hydrogen gas environment, and is extremely useful in industry.
  • a method for implementing the method using steel pipes will be specifically described, followed by a second embodiment, a method for implementing the method using steel materials.
  • C 0.10 to 0.45% C is an element necessary for increasing strength. If it is less than 0.10%, the effect is insufficient. Therefore, the C content is set to 0.10% or more.
  • the C content is preferably set to 0.13% or more.
  • the C content is more preferably set to 0.15% or more, and even more preferably set to 0.18% or more.
  • quench cracks may occur during quenching, and it may cause the formation of coarse carbides, which deteriorates the fatigue properties in hydrogen. Therefore, the C content is set to 0.45% or less.
  • the C content is preferably set to 0.43% or less.
  • the C content is more preferably set to 0.40% or less, and even more preferably set to 0.38% or less.
  • Si 0.01 to 2.0% Si is contained as a deoxidizing agent in the steelmaking stage and as an element for ensuring hardenability, but if it is less than 0.01%, the effect is insufficient, so the Si content is set to 0.01% or more.
  • the Si content is preferably set to 0.1% or more.
  • the Si content is more preferably set to 0.15% or more.
  • the Si content is set to 2.0% or less.
  • the Si content is preferably set to 1.5% or less.
  • the Si content is preferably set to 1.0% or less, and more preferably set to 0.8% or less.
  • Mn 0.3 to 2.0% Mn is contained as an element to ensure hardenability, but if the content is less than 0.3%, the effect is insufficient, so the Mn content is set to 0.3% or more.
  • the Mn content is preferably 0.4% or more.
  • the Mn content is more preferably 0.5% or more.
  • the Mn content is even more preferably 0.6% or more.
  • the content exceeds 2.0%, the grain boundary strength decreases and the low-temperature toughness deteriorates.
  • the Mn content is large, the austenite stability increases, so that the specified amount of retained austenite is exceeded, and the amount of hydrogen in the steel may increase.
  • the Mn content is set to 2.0% or less.
  • the Mn content is more preferably 1.5% or less, and more preferably 1.3% or less.
  • the Mn content is most preferably 1.0% or less.
  • Al 0.01 to 0.15%
  • Al is contained as a deoxidizing agent, and at the same time, as fine precipitates of Al-based nitrides, it pins austenite grains during heating and suppresses grain coarsening, but if the content is less than 0.01%, the effect is insufficient. Therefore, the Al content is set to 0.01% or more.
  • the Al content is preferably set to 0.02% or more.
  • the Al content is more preferably set to 0.03% or more.
  • the Al content is set to 0.15% or less.
  • the Al content is preferably set to 0.13% or less.
  • the Al content is more preferably set to 0.10% or less, and even more preferably set to 0.08% or less.
  • N 0.0005 to 0.008% N is contained because it forms nitrides with Nb, Ti, Al, etc. to form fine precipitates, and pins austenite grains during heating, suppressing grain coarsening and improving low-temperature toughness. If the content is less than 0.0005%, the effect of refining the structure is not sufficiently achieved, so the N content is set to 0.0005% or more.
  • the N content is preferably 0.001% or more.
  • the N content is more preferably 0.0025% or more.
  • the N content is set to 0.008% or less.
  • the N content is preferably 0.007% or less.
  • the N content is more preferably 0.006% or less, and even more preferably 0.005% or less.
  • P 0.015% or less
  • an impurity element is prone to segregation at grain boundaries, and if it exceeds 0.015%, it reduces the bonding strength of adjacent grains and deteriorates low-temperature toughness and fatigue properties in hydrogen. Therefore, the P content is set to 0.015% or less.
  • the P content is preferably set to 0.013% or less, and more preferably set to 0.010% or less. There is no particular lower limit, but it is preferably set to 0.001% or more since it leads to increased costs.
  • S 0.0015% or less S, an impurity element, is likely to segregate at grain boundaries and also to generate MnS, a nonmetallic inclusion. If the content exceeds 0.0015%, the bonding strength of adjacent grains decreases, the amount of inclusions increases, and low-temperature toughness and fatigue properties in hydrogen deteriorate. Therefore, the S content is set to 0.0015% or less.
  • the S content is preferably set to 0.0013% or less.
  • the S content is more preferably set to 0.0010% or less, and even more preferably set to 0.0008% or less.
  • the lower limit is not particularly limited, but it is preferably set to 0.0001% or more since it leads to an increase in costs.
  • O 0.01% or less O forms oxides with Al and the like, which affects the workability of the material, so the less the better.
  • a content exceeding 0.01% increases inclusions, impairing workability.
  • fatigue properties in hydrogen also deteriorate with an increase in inclusions. Therefore, the O content is set to 0.01% or less.
  • the O content is preferably 0.009% or less.
  • the O content is more preferably 0.008% or less.
  • the O content is more preferably 0.002% or more.
  • H 0.0010% or less H may be introduced into steel materials in various processes during manufacturing, and if the amount of H introduced is large, the risk of cracking after solidification increases and fatigue crack growth is accelerated. In addition, when the amount of H introduced is large, the crack growth rate increases, so it is important to reduce the amount of hydrogen in the steel material. These effects are not a problem if the H content is 0.0010% or less, so the H content is set to 0.0010% or less. It is preferably 0.0005% or less. More preferably, the H content is 0.0002% or less. On the other hand, if the H content is less than 0.00001%, it will cause an increase in costs, so it is preferably 0.00001% or more. It is preferably 0.0001% or more. The amount of hydrogen is the amount of hydrogen remaining after forming of steel materials, steel pipes, UOE, etc.
  • the remainder of the above composition is preferably a steel composition consisting of Fe and unavoidable impurities, but depending on the desired properties, it is also preferable to appropriately contain one or more of the following, either individually or simultaneously: Cu: 0-2.5%, Ni: 0-2.5%, Cr: 0-2.5%, Mo: 0-2.0%, Nb: 0-0.5%, V: 0-0.5%, Ti: 0-0.5%, W: 0-2.5%, B: 0-0.005%, Sn: 0-0.3%, Sb: 0-0.3%, Ca: 0-0.01%, Mg: 0-0.01%, REM: 0-0.005%.
  • Cu 0 to 2.5% Cu has the effect of improving hardenability. Therefore, when Cu is contained, the Cu content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.05%, the Cu content is preferably 0.05% or more. On the other hand, if it exceeds 2.5%, hot cracks are likely to occur when the steel slab is heated. Therefore, when Cu is contained, it is set to 2.5% or less.
  • the Cu content is preferably 2.3% or less.
  • the Cu content is more preferably 2.0% or less, and even more preferably 1.8% or less.
  • Ni 0 to 2.5%
  • Ni has the effect of improving hardenability like Cu, and also has the effect of improving toughness. Therefore, when Ni is contained, the Ni content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.05%, the Ni content is preferably 0.05% or more. On the other hand, if it exceeds 2.5%, the economic efficiency is poor. Therefore, when Ni is contained, it is 2.5% or less.
  • the Ni content is preferably 2.3% or less. It is more preferably 2.0% or less, and more preferably 1.8% or less.
  • Cr 0 to 2.5% Cr is contained as an element to ensure hardenability, and when Cr is contained, the Cr content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.1%, the Cr content is preferably 0.1% or more. On the other hand, if it is contained in excess of 2.5%, the toughness is deteriorated and the economic efficiency is poor. Therefore, when Cr is contained, it is set to 2.5% or less.
  • the Cr content is preferably 2.3% or less.
  • the Cr content is more preferably 2.0% or less, even more preferably 1.8% or less, and most preferably 1.5% or less.
  • Mo 0 to 2.0% Mo has the effect of improving hardenability, so when Mo is contained, the Mo content may be 0% or more, but since the above effect is difficult to obtain at less than 0.05%, the Mo content is preferably 0.05% or more. On the other hand, a content exceeding 2.0% is less economical. Therefore, when Mo is contained, it is set to 2.0% or less.
  • the Mo content is preferably 1.8% or less.
  • the Mo content is more preferably 1.5% or less, and even more preferably 1.2% or less.
  • Nb 0 to 0.5%
  • Nb has the effect of improving hardenability, and also pins austenite grains during heating as fine precipitates of Nb-based carbonitrides, suppressing the coarsening of grains. Therefore, when Nb is contained, the Nb content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.005%, the Nb content is preferably 0.005% or more.
  • the Nb content is more preferably 0.01% or more.
  • coarse Nb carbonitrides may precipitate, which may cause deterioration of toughness. Therefore, when Nb is contained, the Nb content is 0.5% or less.
  • the Nb content is preferably 0.4% or less.
  • the Nb content is preferably 0.3% or less, and the Nb content is preferably 0.2% or less.
  • V 0 to 0.5%
  • V has the effect of improving hardenability, and also pins austenite grains during heating as fine precipitates of V-based carbides, suppressing the coarsening of grains. Therefore, when V is contained, the V content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.005%, the V content is preferably 0.005% or more. On the other hand, when the content exceeds 0.5%, coarse V carbonitrides may precipitate, which may cause deterioration of toughness. Therefore, when V is contained, the V content is 0.5% or less.
  • the V content is preferably 0.4% or less.
  • the V content is more preferably 0.3% or less, and even more preferably 0.2% or less.
  • Ti 0 to 0.5%
  • Ti has the effect of improving hardenability, and also has the effect of pinning austenite grains during heating as fine precipitates of Ti-based carbonitrides, thereby suppressing the growth of the grains. Therefore, when Ti is contained, the Ti content may be 0% or more, but since the above effect is difficult to obtain when the content is less than 0.005%, the Ti content is preferably 0.005% or more.
  • the Ti content is preferably 0.01% or more.
  • the Ti content exceeds 0.5%, coarse angular nitrides are easily formed, and the toughness is deteriorated. Therefore, when Ti is contained, the Ti content is 0.5% or less.
  • the Ti content is preferably 0.4% or less.
  • the Ti content is more preferably 0.3% or less, and even more preferably 0.2% or less.
  • W 0 to 2.5% Since W has the effect of improving hardenability, when W is contained, the W content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.05%, the W content is preferably 0.05% or more. On the other hand, if it exceeds 2.5%, the economic efficiency is poor. Therefore, when W is contained, the W content is 2.5% or less. The W content is preferably 2.3% or less. The W content is more preferably 2.0% or less, and further preferably 1.8% or less.
  • B 0 to 0.005% Since B is an element that ensures hardenability, when B is contained, the B content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.0005%, the B content is preferably 0.0005% or more. On the other hand, when it exceeds 0.005%, toughness is deteriorated. Therefore, when B is contained, the B content is 0.005% or less.
  • the B content is preferably 0.004% or less.
  • the B content is more preferably 0.003% or less, and further preferably 0.002% or less.
  • Sn 0 to 0.3%
  • Sn has the effect of increasing the corrosion resistance of the steel pipe. Therefore, when Sn is contained, the Sn content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.005%, the Sn content is preferably 0.005% or more. It is more preferable that the Sn content is 0.01% or more. On the other hand, if the content exceeds 0.3%, the high temperature ductility decreases and the possibility of cracking during casting increases. Therefore, when Sn is contained, the Sn content is 0.3% or less. It is preferable that the Sn content is 0.25% or less. The Sn content is more preferably 0.2% or less, and even more preferably 0.15% or less.
  • Sb 0 to 0.3%
  • Sb has the effect of increasing the corrosion resistance of the steel pipe. Therefore, when Sb is contained, the Sb content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.005%, the Sb content is preferably 0.005% or more.
  • the Sb content is more preferably 0.01% or more.
  • the Sb content is preferably 0.25% or less.
  • the Sb content is more preferably 0.2% or less, and even more preferably 0.15% or less.
  • Ca 0 to 0.01%
  • Ca has the effect of forming CaS and controlling the form of sulfide-based inclusions, so that instead of MnS, which is an inclusion that is easily elongated by rolling, CaS, which is a spherical inclusion that is difficult to elongate by rolling, is formed. Therefore, when Ca is contained, the Ca content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.0005%, the Ca content is preferably 0.0005% or more. It is more preferable that the Ca content is 0.001% or more. On the other hand, if the content exceeds 0.01%, the cleanliness decreases, and the material properties such as toughness deteriorate. Therefore, when Ca is contained, the Ca content is 0.01% or less. It is preferable that the Ca content is 0.005% or less. The Ca content is more preferably 0.003% or less, and even more preferably 0.002% or less.
  • Mg 0 to 0.01% Mg may be used as a hot metal desulfurization material.
  • the Mg content when Mg is contained, the Mg content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.0005%, the Mg content is preferably 0.0005% or more.
  • the Mg content is more preferably 0.001% or more.
  • a content exceeding 0.01% leads to a decrease in cleanliness. Therefore, when Mg is contained, the Mg content is 0.01% or less.
  • the Mg content is preferably 0.005% or less.
  • the Mg content is more preferably 0.004% or less, and even more preferably 0.003% or less.
  • REM 0 to 0.005% REM forms sulfides as REM (O, S) in steel, thereby reducing the amount of dissolved S at grain boundaries and improving SR cracking resistance.
  • the REM content may be 0% or more, but since the above effect is difficult to obtain if the content is less than 0.0005%, the REM content is preferably 0.0005% or more.
  • the REM content is preferably 0.005% or less.
  • the REM content is preferably 0.003% or less. It is more preferable that the REM content is 0.001% or less.
  • REM is an abbreviation for Rare Earth Metal, and is a rare earth metal.
  • the remainder other than the above-mentioned components consists of Fe and unavoidable impurity elements.
  • Retained austenite is 3% or less.
  • the amount of hydrogen in the steel increases, which may increase the hydrogen embrittlement susceptibility.
  • austenite is transformed into martensite due to stress load during use, the martensite is very hard and prone to hydrogen cracking, and cracks may occur from the martensite portion.
  • the fatigue crack growth rate is reduced by making the retained austenite 3% or less. It is preferably 2% or less, and more preferably 1% or less.
  • the retained austenite may be 0%.
  • Carbides with a diameter of 200 nm or more are 20/10 ⁇ m2 or less
  • the number of carbides with a diameter of 200 nm or more is set to 20/10 ⁇ m2 or less. It is preferably 15/10 ⁇ m2 or less. It is more preferably 10/10 ⁇ m2 or less, and even more preferably 5/10 ⁇ m2 or less.
  • the lower limit is preferably smaller, and may be 0/10 ⁇ m2.
  • the diameter refers to a value calculated by 2 ⁇ (A/2 ⁇ B/2) using the long side A and the short side B passing through the center.
  • the carbide refers to, for example, cementite, ⁇ -carbide, ⁇ -carbide, and intermetallic compounds including Fe 7 C 3 .
  • the number of carbides with a diameter of less than 200 nm is 10 pieces/ 10 ⁇ m2 or more.
  • the number of carbides with a diameter of less than 200 nm dispersed within a grain is 100 pieces/ 10 ⁇ m2 or less, because too many precipitates cause coarsening.
  • the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m in hydrogen of 1 MPa or more is 1.0 ⁇ 10 -6 m ⁇ cycle -1 or less.
  • the fatigue crack growth rate is an important parameter in the design of steel pipes used in line pipes and gas containers, and is necessary to obtain a service life that ensures the safety of destructive structural members. In destructive structural members, it is difficult to reduce the number of cracks and crack initiation points to zero, and cracks inevitably occur and grow when subjected to repeated stress.
  • the crack growth rate is small when the stress state applied to the crack tip is small, and increases as the stress state at the crack tip increases. In a hydrogen environment, hydrogen penetrates into the steel pipe, making it easier for the crack to progress.
  • the degree to which hydrogen accelerates the crack growth rate is greatly affected by the material's structure and precipitates.
  • the crack propagation rate da/dN at a stress intensity factor of 20 MPa ⁇ m is set to be 1.0 x 10 -6 m ⁇ cycle -1 or less.
  • the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m is preferably 0.9 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, more preferably 0.8 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, and even more preferably 0.7 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less.
  • the closer to the results in air, the better, and it is more preferable that the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m is 0.05 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or more.
  • the thickness of the steel pipe is not particularly limited, but it is preferable that the thickness is 5 mm or more. It is preferable that the thickness is 30 mm or less.
  • the steel pipes of the present invention include seamless steel pipes, electric resistance welded pipes, UOE steel pipes, etc., and the manufacturing method for seamless steel pipes will be specifically described below as an example.
  • the steel pipe of the present invention that has excellent fatigue properties in hydrogen gas needs only to have the above-mentioned composition and satisfy the crack growth rate requirement in hydrogen, and the manufacturing method thereof is specifically described below.
  • the steel pipe of the present invention can be produced by sequentially carrying out the following steps (1) to (3).
  • the temperature refers to the temperature at the center of the steel material or steel pipe thickness unless otherwise specified.
  • the average cooling rate refers to the temperature at 1/4 of the thickness from the inner surface of the steel pipe.
  • the temperature at the center of the thickness and the temperature at 1/4 of the thickness from the inner surface of the steel pipe are estimated from the steel pipe surface temperature measured with a radiation thermometer using heat transfer calculations that take into account the heat transfer coefficient of the steel material.
  • Casting speed 1.8 m/min or less
  • the slower the casting speed the more the hydrogen concentration and inclusions in the steel can be reduced, and this effect is more pronounced at a casting speed of 1.8 m/min or less, so the casting speed is set to 1.8 m/min or less. It is preferably 1.5 m/min or less. It is more preferably 1.0 m/min or less. It is even more preferably 0.5 m/min or less. It is most preferably 0.1 m/min or less. There is no particular lower limit, but the casting speed may be any speed greater than 0 m/min.
  • Heating step In order to perform hot rolling, the steel material having the above-mentioned composition is heated.
  • the steel material is not particularly limited, but for example, a slab or billet obtained by a normal continuous casting method can be used.
  • Heating temperature 1350°C or less If the heating temperature in the heating step exceeds 1350°C, the average grain size of the prior austenite grains becomes excessively large, and various properties deteriorate, so the heating temperature is set to 1350°C or less.
  • the heating temperature is more preferably 1300°C or less, even more preferably 1250°C or less, and most preferably 1200°C or less.
  • a lower heating temperature is preferable because it can reduce the amount of hydrogen in the steel, but if the heating temperature is too low, the finish rolling temperature decreases and rolling becomes difficult. Therefore, the heating temperature is preferably 950°C or more.
  • the heating temperature is more preferably 1000°C or more.
  • the heating time is not particularly specified, but if it is too long, there is an increased risk of increasing the amount of hydrogen introduced into the steel pipe, so it is preferably 180 minutes or less.
  • the heating time is more preferably 150 minutes or less, and even more preferably 120 minutes or less.
  • the lower limit is not particularly limited, but the heating time is preferably 30 minutes or more, and more preferably 60 minutes or more.
  • the steel material heated in the heating step is rolled into a steel pipe shape under the following conditions.
  • hot rolling including piercing rolling by a normal Mannesmann plug mill method or a Mannesmann mandrel mill method can be used.
  • Rolling end temperature 820°C or higher If the rolling end temperature is less than 820°C, the rolling load becomes excessive, and the risk of rolling trouble increases. Therefore, the rolling end temperature is set to 820°C or higher.
  • the rolling end temperature is preferably set to 850°C or higher, and more preferably set to 900°C or higher.
  • the rolling end temperature is preferably set to 1200°C or lower.
  • the rolling end temperature is more preferably set to 1150°C or lower, and even more preferably set to 1100°C or lower.
  • the steel material having the above-mentioned composition is heated to a temperature of not less than the Ac3 point and not more than 1000°C, either directly or after being processed into a steel pipe, and then cooled under the following cooling conditions of group A or group B. It is preferable to hold the steel material at the above temperature for 10 minutes or more. It is more preferable to hold the steel material at the above temperature for 15 minutes or more, and even more preferable to hold the steel material at the above temperature for 20 minutes or more. There is no particular upper limit, but it is preferable to hold the steel material at the above temperature for 60 minutes or less, and more preferable to hold the steel material at the above temperature for 45 minutes or less.
  • Heating temperature after steel pipe processing Ac 3 point or more and 1000°C or less If the heating temperature in the cooling process is less than Ac 3 point, ferrite remains in the steel after cooling, and the steel pipe strength and fatigue properties in hydrogen are reduced. Therefore, the heating temperature is Ac 3 point or more.
  • the heating temperature is preferably Ac 3 point + 30°C or more, and more preferably Ac 3 point + 50°C or more. However, for component systems in which Ac 3 point + 30°C and Ac 3 point + 50°C exceed 1000°C, the above Ac 3 point + 30°C or more and Ac 3 point + 50°C or more are not applied.
  • the heating temperature is 1000°C or less.
  • the heating temperature is preferably 950°C or less, and more preferably 900°C or less.
  • 950°C and 900°C are less than the Ac 3 point, the above 950°C or lower and 900°C or lower do not apply.
  • the steel sheet may be cooled as it is, or may be reheated after the rolling is completed and then cooled.
  • the steel sheet may be heated again to a temperature of Ac 3 point or more and 1000°C or less, and then cooled under the cooling conditions of the following group A or group B.
  • the Ac 3 point (° C.) is calculated by the following formula.
  • Ac3 (°C) 910 - 203 [C] 1/2 - 30 [Mn] + 44.7 [Si] + 700 [P] + 100 [Al] + 31.5 [Mo] - 11 [Cr] - 15.2 [Ni] - 20 [Cu] + 104 [V]
  • [M] represents the content (mass %) of element M.
  • Average cooling rate group A Cooling to 50°C or less under the condition that the average cooling rate in the range from 800°C to 550°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 15°C/s or more, and the average cooling rate from 550°C to 50°C is 15°C/s or less. If the average cooling rate from 800°C to 550°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is less than 15°C/s, the specified carbide density cannot be obtained.
  • the average cooling rate at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 15°C/s or more. From the viewpoint of suppressing the variation of the structure, it is preferable that the average cooling rate is 17°C/s or more.
  • the average cooling rate from 800° C. to 550° C. is more preferably 20° C./s or more, and most preferably 22° C./s or more.
  • the average cooling rate is preferably 50° C./s or less, more preferably 45° C./s or less, and even more preferably 40° C./s or less. Furthermore, by cooling to 50°C or less under the condition that the average cooling rate from 550°C to 50°C is 15°C/s or less, it is possible to reduce the amount of residual austenite and reduce the amount of hydrogen in the steel. For this reason, the average cooling rate from 550°C to 50°C is set to 15°C/s or less. It is more preferable that the average cooling rate from 550°C to 50°C is 12°C/s or less, and even more preferable that the average cooling rate is 10°C/s or less.
  • the average cooling rate from 550°C to 50°C is 1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination. However, water cooling or oil cooling is preferred from 800°C to 550°C, and air cooling is preferred from 550°C to 50°C.
  • Group B Cooled to 50°C or less under the condition that the average cooling rate from 800°C to 300°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 10°C/s or more, and the average cooling rate from 300°C to 50°C is 5°C/s or less. If the average cooling rate from 800°C to 300°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is less than 10°C/s, the specified carbide density cannot be obtained, and fatigue properties deteriorate. In addition, if the average cooling rate is less than 10°C/s, it becomes difficult to obtain an area ratio of martensite of 90% or more, but depending on the composition of the components, it may affect the formation of bainite.
  • the average cooling rate at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 10°C/s or more.
  • the average cooling rate from 800°C to 300°C is preferably 12°C/s or more, more preferably 15°C/s or more, and even more preferably 17°C/s or more.
  • the average cooling rate is preferably 60° C./s or less.
  • the amount of hydrogen in the steel can be reduced by cooling to 50°C or less under the condition that the average cooling rate from 300°C to 50°C is 5°C/s or less. For this reason, the average cooling rate from 300°C to 50°C is set to 5°C/s or less.
  • the average cooling rate from 300°C to 50°C is preferably set to 1°C/s or less. There is no particular restriction on the lower limit, but it is preferably set to 0.1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination. However, water cooling or oil cooling is preferred from 800°C to 300°C, and air cooling is preferred from 300°C to 50°C.
  • the heating temperature before quenching during reheating is Ac 3 point or more. Preferably, it is more than Ac 3 point.
  • the heating temperature before quenching is preferably 1000 ° C or less. More preferably, it is 980 ° C or less, and even more preferably, it is 960 ° C or less. Most preferably, it is 950 ° C or less.
  • Average cooling rate during quenching Group A or Group B below Group A: Cooled to 50°C or less under the condition that the average cooling rate in the range from 800°C to 550°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 15°C/s or more, and the average cooling rate from 550°C to 50°C is 15°C/s or less. If the average cooling rate from 800°C to 550°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is less than 15°C/s, a predetermined carbide density cannot be obtained.
  • the average cooling rate at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 15°C/s or more.
  • the average cooling rate is preferably 17°C/s or more, more preferably 20°C/s or more, and even more preferably 22°C/s or more.
  • the average cooling rate is preferably 50° C./s or less, more preferably 47° C./s or less, and even more preferably 45° C./s or less. Furthermore, by cooling to 50°C or less under the condition that the average cooling rate from 550°C to 50°C is 15°C/s or less, it is possible to reduce the amount of residual austenite and reduce the amount of hydrogen in the steel. For this reason, the average cooling rate from 550°C to 50°C is set to 15°C/s or less. The average cooling rate from 550°C to 50°C is preferably set to 12°C/s or less, and more preferably set to 10°C/s or less.
  • the average cooling rate from 550°C to 50°C is preferably set to 1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination. However, water cooling or oil cooling is preferred from 800°C to 550°C, and air cooling is preferred from 550°C to 50°C.
  • Group B Cooled to 50°C or less under the condition that the average cooling rate from 800°C to 300°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 10°C/s or more, and the average cooling rate from 300°C to 50°C is 5°C/s or less. If the average cooling rate from 800°C to 300°C at the 1/4 position of the wall thickness from the inner surface of the steel pipe is less than 10°C/s, the specified carbide density cannot be obtained, and fatigue properties deteriorate. In addition, if the average cooling rate is less than 10°C/s, it becomes difficult to obtain an area ratio of martensite of 90% or more, but depending on the composition of the components, it may affect the formation of bainite.
  • the average cooling rate at the 1/4 position of the wall thickness from the inner surface of the steel pipe is 10°C/s or more.
  • the average cooling rate is preferably 17°C/s or more, more preferably 20°C/s or more, and even more preferably 25°C/s or more.
  • the average cooling rate is preferably 60°C/s or less.
  • the amount of hydrogen in the steel can be reduced by cooling to 50°C or less under the condition that the average cooling rate from 300°C to 50°C is 5°C/s or less.
  • the average cooling rate from 300°C to 50°C is set to 5°C/s or less.
  • the average cooling rate is preferably 3°C/s or less, and more preferably 1°C/s or less. There is no particular lower limit, but it is preferably 0.1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination. However, water cooling or oil cooling is preferred from 800°C to 300°C, and air cooling is preferred from 300°C to 50°C.
  • Cooling stop temperature during quenching 50°C or less If the cooling stop temperature exceeds 50°C, the desired carbide density cannot be obtained, and further, the above transformation is not completed, so that the desired steel structure cannot be obtained after tempering. For this reason, quenching is performed to a temperature of 50°C or less.
  • the cooling stop temperature is preferably 45°C or less, and more preferably 40°C or less. Although there is no particular lower limit, the cooling stop temperature is preferably 25°C or more.
  • Tempering process Tempering temperature: 400°C or more and Ac 1 point or less
  • the tempering temperature is preferably 450°C or more, more preferably 500°C or more.
  • the tempering temperature is Ac 1 point or less. It is preferably in the range of (Ac 1 point - 30) °C or less.
  • the upper limit of the average heating rate during tempering is not particularly limited, but it is preferably 1°C/s or less. If the tempering time is too long, the carbides will coarsen and have a negative effect on hydrogen embrittlement, so it is less than 60 minutes.
  • the tempering time is preferably 50 minutes or less. If the tempering time is too short, the austenite in the steel material is not reduced and the amount of hydrogen is not reduced, so the tempering time is preferably 10 minutes or more, and more preferably 20 minutes or more.
  • the method for determining the Ac 1 point is not particularly specified.
  • Ac 1 723-14Mn+22Si-14.4Ni+23.3Cr
  • each element symbol represents the content (mass %) of each element in the steel, and elements that are not contained are represented as 0.
  • Dehydrogenation process When hydrogen is present in steel, the acceleration of fatigue crack growth is increased, and the fatigue life and fatigue stress limit in hydrogen are reduced. Therefore, dehydrogenation may be used to release the hydrogen remaining after manufacturing. Dehydrogenation can reduce the amount of hydrogen in the steel by holding it at high temperature for a certain period of time before using the product, and it is possible to obtain a steel plate with excellent fatigue resistance in a high-pressure hydrogen gas environment.
  • the holding time R (sec) is preferably determined by the following formula (A) using the plate thickness and pipe thickness t (mm) of the steel material and steel pipe, and the hydrogen diffusion coefficient D (mm 2 ⁇ sec ⁇ 1 ) in steel at room temperature.
  • the hydrogen diffusion coefficient varies depending on the contained components and metal structure, but for example, the hydrogen diffusion coefficient may be 1 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 3 mm 2 /s, and more preferably 5 ⁇ 10 ⁇ 4 mm 2 /s or less.
  • the dehydrogenation process is carried out before pipe making or welding to connect steel pipes. It is preferable that the dehydrogenation process is performed at a high temperature because the hydrogen diffusion coefficient D at high temperatures becomes small and hydrogen is quickly removed. In the case of high temperatures, the diffusion coefficient D' (diffusion coefficient at each temperature) at the temperature at which the value of D in the above formula (A) is maintained may be used for calculation.
  • the dehydrogenation process temperature is preferably 550°C or less. It is more preferable that the dehydrogenation process temperature T is 500°C or less. It is even more preferable that the dehydrogenation process temperature T is 400°C or less, and most preferably 300°C or less. In addition, since dehydrogenation at a temperature lowered below room temperature is a factor in increasing the processing time and cost, it is preferable that the dehydrogenation process temperature T is room temperature or higher. It is more preferable that the dehydrogenation process temperature T is 50°C or higher.
  • the dehydrogenation process temperature T is 100°C or higher, and most preferably 150°C or higher.
  • the dehydrogenation process temperature T mentioned here is the temperature of the atmosphere in the dehydrogenation process. Room temperature refers to 20 ⁇ 10°C.
  • At least the former can appropriately control the amount of hydrogen in the steel material at the surface layer of the steel material and steel pipe, and if the latter is also implemented, the amount of hydrogen in the steel material from the surface layer to the center of the thickness of the steel material and steel pipe can be appropriately controlled.
  • the thickness temperature, or center temperature Tc can be measured using a thermocouple or the like, or it can be predicted using the finite element method or the like.
  • scale on the steel surface inhibits dehydrogenation, it is preferable to remove the scale and then perform a dehydrogenation treatment.
  • a dehydrogenation treatment There is no restriction on the method for removing the scale, but it can be physical cleaning using a high-pressure washer, for example, or a chemical method using a scale remover.
  • a thickness of the scale to be removed There is no restriction on the thickness of the scale to be removed, but the effect of scale removal can be obtained by removing approximately 100 ⁇ m.
  • the steel material of the present invention will be specifically described below.
  • the component composition, metal structure, and crack growth rate of the steel material are the same as those described for the steel pipe, and the manufacturing method is also the same as that described for the steel pipe except for the rolling and cooling processes (casting, heating, reheating and quenching, tempering, and dehydrogenation).
  • the rolling and cooling processes are performed as follows.
  • Rolling end temperature 820°C or higher If the rolling end temperature is less than 820°C, the rolling load becomes excessive, and the risk of rolling trouble increases. Therefore, the rolling end temperature is set to 820°C or higher.
  • the rolling end temperature is preferably set to 850°C or higher, and more preferably set to 900°C or higher.
  • the rolling end temperature is preferably set to 1200°C or lower.
  • the rolling end temperature is more preferably set to 1150°C or lower, and even more preferably set to 1100°C or lower.
  • Cooling process In the cooling step, after hot rolling the steel material having the above-mentioned composition, it is heated to a temperature of the Ac3 point or more and 1000°C or less, held, and cooled under the following cooling conditions of group A or group B. It is preferable to hold the above temperature for 10 minutes or more. It is more preferable to hold the above temperature for 15 minutes or more, and even more preferable to hold the above temperature for 20 minutes or more. There is no particular upper limit, but it is preferable to hold the above temperature for 60 minutes or less, and more preferable to hold the above temperature for 45 minutes or less.
  • Heating temperature after hot rolling Ac 3 point or more and 1000°C or less If the heating temperature in the cooling process is less than Ac 3 point, ferrite remains in the steel after cooling, and the steel strength and fatigue properties are reduced. Therefore, the heating temperature is Ac 3 point or more.
  • the heating temperature is preferably Ac 3 point + 30°C or more, and more preferably Ac 3 point + 50°C or more. However, for component systems in which Ac 3 point + 30°C and Ac 3 point + 50°C exceed 1000°C, the above Ac 3 point + 30°C or more and Ac 3 point + 50°C or more are not applied.
  • the heating temperature is 1000°C or less. More preferably, it is 950°C or less, and even more preferably, it is 900°C or less. However, for component systems in which 950°C and 900°C are less than the Ac 3 point, the above 950°C or lower and 900°C or lower do not apply.
  • the steel In the cooling process here, if the temperature after rolling satisfies the heating conditions, the steel may be cooled as is, or may be reheated and cooled after rolling.
  • the Ac 3 point (° C.) is calculated by the following formula.
  • Ac3 (°C) 910 - 203 [C] 1/2 - 30 [Mn] + 44.7 [Si] + 700 [P] + 100 [Al] + 31.5 [Mo] - 11 [Cr] - 15.2 [Ni] - 20 [Cu] + 104 [V]
  • [M] represents the content (mass %) of element M.
  • Average cooling rate group A Cooling to 50°C or less under the condition that the average cooling rate in the range from 800°C to 550°C at the 1/4 position of the plate thickness from the steel surface is 15°C/s or more and the average cooling rate from 550°C to 50°C is 15°C/s or less. If the average cooling rate from 800°C to 550°C at the 1/4 position of the plate thickness from the steel surface is less than 15°C/s, a predetermined carbide density cannot be obtained.
  • the average cooling rate at the 1/4 position of the plate thickness from the steel surface is 15°C/s or more. From the viewpoint of suppressing the variation of the structure, it is preferable that the average cooling rate is 17°C/s or more. It is more preferable to set the average cooling rate at 20° C./s or more, and even more preferable to set the average cooling rate at 22° C./s or more.
  • the average cooling rate is set to 50° C./s or less, preferably 47° C./s or less, and more preferably 45° C./s or less. Furthermore, by cooling to 50°C or less under the condition that the average cooling rate from 550°C to 50°C is 15°C/s or less, it is possible to reduce the amount of retained austenite and reduce the amount of hydrogen in the steel. For this reason, the average cooling rate from 550°C to 50°C is set to 15°C/s or less. Although there is no particular lower limit, it is preferable that the average cooling rate from 550°C to 50°C is 1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination.
  • water cooling or oil cooling is preferred from 800°C to 550°C
  • air cooling is preferred from 550°C to 50°C.
  • Group B Cooled to 50°C or less under the condition that the average cooling rate from 800°C to 300°C at the 1/4 position of the plate thickness from the steel surface is 10°C/s or more, and the average cooling rate from 300°C to 50°C is 5°C/s or less. If the average cooling rate from 800°C to 300°C at the 1/4 position of the plate thickness from the steel surface is less than 10°C/s, the specified carbide density cannot be obtained, and fatigue properties deteriorate. In addition, if the average cooling rate is less than 10°C/s, it becomes difficult to obtain an area ratio of martensite of 90% or more, but depending on the composition of the components, it may affect the formation of bainite.
  • the average cooling rate at the 1/4 position of the plate thickness from the steel surface is set to 10°C/s or more. From the viewpoint of suppressing the variation of the structure, it is more preferable to set it to 12°C/s or more. It is more preferable to set the average cooling rate to 15°C/s or more, and even more preferable to set it to 17°C/s or more.
  • the average cooling rate is preferably 60°C/s or less.
  • the amount of hydrogen in the steel can be reduced by cooling to 50°C or less under the condition that the average cooling rate from 300°C to 50°C is 5°C/s or less.
  • the average cooling rate from 300°C to 50°C is set to 5°C/s or less.
  • the average cooling rate is preferably 1°C/s or less, and more preferably 0.8°C/s or less. There is no particular restriction on the lower limit, but it is preferably 0.1°C/s or more.
  • the cooling method is not particularly limited, and any method such as water cooling, oil cooling, air cooling, etc. can be used alone or in combination. However, water cooling or oil cooling is preferred from 800°C to 300°C, and air cooling is preferred from 300°C to 50°C.
  • the steel material of the present invention that has excellent fatigue properties in hydrogen gas includes various classifications such as thin plate, thick plate, and steel pipe that have the above-mentioned composition and have excellent fatigue crack growth resistance in hydrogen gas, or may be formed into a specified shape as a steel material for hydrogen pipelines.
  • Steel pipe Nos. 1 to 29 (billet Nos. A to AC) and 40 to 87 (billet Nos. AN to CI) in Tables 1-1 and 1-2 were prepared at a casting speed of 0.6 m/min, and the billets were heated to 1250°C and expanded to obtain seamless steel pipes.
  • the steel pipes were manufactured under conditions in which expansion was completed at 820°C or higher.
  • the steel pipes obtained were heated and held at 950°C for steel pipes with an Ac 3 point of 950°C or less, and at 1000°C for steel pipes with an Ac 3 point of more than 950°C, and then water-cooled under the conditions shown in Tables 2-1 and 2-2, and then tempered. Metal structure and mechanical properties were evaluated.
  • the dehydrogenation treatment was performed by holding the dehydrogenation treatment temperature T, which is the atmospheric temperature, at 50°C for 3 hours, and then allowing to cool naturally.
  • the evaluation method is as follows. The tempering temperature was adjusted arbitrarily so that the tensile strength of the material was in the range of 520 to 700 MPa.
  • billets having the composition shown in Table 2-3 steel pipe No. 88 to 101 (billet No. AO1 to BB1), were produced at various casting speeds, and the billets were heated to 1250°C and expanded to obtain seamless steel pipes.
  • the composition of billets No. AO1 to BB1 is the same as that of billets No. AO to BB shown in Table 1-2.
  • the steel pipes were produced under conditions in which expansion was completed at 820°C or higher.
  • the steel pipes obtained were heated and held at 950°C for steel pipes with an Ac 3 point of 950°C or less, and at 1000°C for steel pipes with an Ac 3 point of more than 950°C, and then water-cooled under the conditions shown in Table 2-3, and then tempered under the conditions shown in Table 2-3.
  • the metal structure and mechanical properties were evaluated.
  • the evaluation method is as follows.
  • the tempering temperature was arbitrarily adjusted so that the tensile strength of the material was in the range of 520MPa to 700MPa.
  • the dehydrogenation treatment was carried out by maintaining the dehydrogenation temperature T, which was the atmospheric temperature, at 50° C. for 3 hours and then allowing it to cool naturally.
  • test piece had a plate thickness of 10 mm or less, it was ground 0.5 mm from the surface to 2 mm, 5 mm, 8 mm, and 9 mm, respectively, and in the case of plate thicknesses other than these, a test piece with a thickness of 10 mm was taken from the position of t / 2 (t: plate thickness), and the crack propagation part was mirror-polished on both the front and back.
  • Tables 2-1, 2-2, and 2-3 The results are shown in Tables 2-1, 2-2, and 2-3.
  • the method for measuring carbides in steel is as follows. A test piece was cut from the center of the thickness of the steel material, and a cross section parallel to the thickness direction was subjected to nital etching. The carbides were observed with a SEM. Ten fields of view were randomly selected and observed at an acceleration voltage of 15 kV and a magnification of 20,000 times. The average value of the 10 fields of view is the number of carbides, and if the number of carbides with a diameter of 200 nm or more is 20/10 ⁇ m2 or less, it is indicated as Y, and if the number is more than 20/10 ⁇ m2, it is indicated as N, as shown in Tables 2-1, 2-2, and 2-3.
  • the method for measuring the amount of austenite in steel is as follows.
  • Samples for metal structure observation were taken from the longitudinal center of the steel material and steel pipe obtained as described above, and the cross section parallel to the longitudinal direction was used as the observation surface, followed by buffing and then chemical polishing to remove the surface layer by etching with picric acid, and measurements were made using X-ray diffraction measurement.
  • a Co-K ⁇ radiation source was used for the incident X-rays, and the area fraction of retained austenite was calculated from the intensity ratio of the (200), (211), and (220) planes of ferrite to the (200), (220), and (311) planes of austenite.
  • Temperature-programmed hydrogen analysis The amount of hydrogen remaining in the steel was measured using a temperature-programmed desorption analysis method, using a low-temperature temperature-programmed hydrogen analyzer (gas chromatograph type) (JTF-20AL). Temperature-programmed desorption analysis was performed in the temperature range from room temperature to 400°C at a heating rate of 200°C/h, and the sum of the measurements was taken as the amount of hydrogen.
  • the test specimens were cylindrical, 30 mm long in the longitudinal direction of the steel pipe, at a 1/4 position of the plate thickness of the steel plate and a 1/4 position from the inner surface of the steel pipe, and had a diameter of 7 ⁇ . This amount of hydrogen was measured before the steel was subjected to the high-pressure hydrogen fatigue test described in the aging section below, and is the amount of H shown in Tables 1-1 and 1-2.
  • All of the inventive examples of the present invention satisfied the condition that the fatigue crack growth rate in hydrogen gas is 1.0 ⁇ 10 ⁇ 6 m/cycle or less.
  • steel pipes No. 94 and 101 in Table 2-3 which have casting speeds outside the range of the present invention, have fatigue crack growth rates in hydrogen gas outside the range of the present invention due to the formation of coarse inclusions, and are therefore comparative examples.
  • steel pipes were manufactured under the following manufacturing conditions, and their characteristics were evaluated. Using steel pipes having the same composition as billet Nos. Q and BC shown in Tables 1-1 and 1-2 and AS1 shown in Table 2-3, the steel pipes were subjected to a cooling process under predetermined conditions, and after the cooling process (before the tempering process), the steel pipes were reheated under the conditions shown in Table 3, and then quenched.
  • the steel pipes Nos. 17A to 17C shown in Table 3 are steel pipes No. 17 shown in Tables 1-1 and 2-1 that were subjected to a reheating process.
  • Steel pipes Nos. 55A to 55C are steel pipes No.
  • Example 2 satisfied the condition that the crack growth rate da/dN in hydrogen gas be 1.0 ⁇ 10 ⁇ 6 m/cycle or less. Among them, the crack propagation characteristics were superior when the reheating and quenching processes were performed under more suitable conditions.
  • steel pipes Nos. 14D, 43D, and 97D were carried out at a dehydrogenation temperature T (atmosphere temperature) of 50° C., and the holding time tc after the plate thickness center temperature Tc reached 50° C. was set so as to satisfy the formula (A).
  • Steel pipes Nos. 14E, 43E, and 97E were carried out at a dehydrogenation temperature T (atmosphere temperature) of 50° C., and the holding time tc after the plate thickness center temperature Tc reached 50° C. did not satisfy the formula (A).
  • T atmosphere temperature
  • the dehydrogenation temperature T (atmosphere temperature) is 50° C., but neither the atmospheric temperature holding time t nor the holding time tc after the plate thickness center temperature Tc reaches 50° C. satisfies the above-mentioned formula (A).
  • dehydrogenation holding time t is Y
  • dehydrogenation treatment temperature T ambient temperature
  • holding time t satisfies formula (A)
  • dehydrogenation holding time t is N
  • dehydrogenation treatment temperature T ambient temperature
  • holding time tc at steel center temperature Tc is Y means that the holding time tc after the plate thickness center temperature Tc reaches 50°C satisfies formula (A), while “holding time tc at steel center temperature Tc is N” means that the plate thickness center temperature Tc reaches 50°C, but the holding time tc after Tc reaches 50°C does not satisfy formula (A).
  • the fatigue crack propagation characteristics were evaluated using the fatigue crack growth test described in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

100%水素ガスまたは水素分圧が1MPa以上の水素を含む天然ガス(天然ガスはメタン、エタンなどの炭化水素を主な成分とするガス)用ラインパイプ等の、高圧水素ガス環境下で使用される鋼構造物用として好適な、高圧水素ガス環境下における水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法を提供することを目的とする。  特定の成分組成、特定の組織を有し、1MPa以上の水素中の応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼管。

Description

水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法
 本発明は、水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法に関する。
 既存のエネルギーインフラとして、天然ガス輸送用ラインパイプが存在する。これらの鋼材にはサワー環境における水素誘起割れの発生の抑制が求められてきた。一方、近年では脱炭素社会構築のためのクリーンなエネルギー源として、世界的に水素が大きく注目されている。そのため、水素ガスを大量に輸送することを目的として、天然ガスラインパイプに一部水素を混合した天然ガスや、水素ガスを代替として圧送する水素ガス輸送網の構築が検討されている。これらのパイプライン運転時の輸送圧力は、1~40MPaの高圧力が想定されており、ラインパイプは、高圧力の水素ガス曝露環境に置かれることになる。このような環境で使用される鋼材には、水素が鋼中に侵入し、特性が劣化する、「水素脆化」の発生が懸念される。そのため、従来のラインパイプに要求される高靭性、耐サワー性のみならず、水素ガス環境で要求される、水素脆化への耐性を兼ね備える必要がある。
 高圧水素ガス環境下で使用される鋼構造物には、従来から、低合金鋼より水素脆化し難い、SUS316L等のオーステナイト系ステンレス鋼が利用されてきた。しかし、SUS316L等のオーステナイト系ステンレス鋼は鋼材のコストが高いことに加えて、強度が低いため、高い水素圧に耐えうるように設計すると、肉厚が厚くなり、水素用構造物自体の価格も高価となる。そのため、水素用鋼構造物向けとして、より低コストで、かつ高圧水素ガス環境にも耐えうる低合金系鋼材が強く要望されてきた。
 このような要望に対し、例えば、特許文献1に記載された高圧水素環境用鋼は、特許文献1に記載された高圧水素環境用鋼は、高圧水素環境下で使用される鋼であって、Ca/S:1.5未満または11以上とすることで、拡散性水素濃度比を低減し拡散性水素による脆化を抑制する、としている。
 特許文献2には、特定の成分組成に調整した低合金高強度鋼を用いることで、900~950MPaの大気中引張強度範囲において、JIS G3128SHY685NSよりも45MPa水素雰囲気中での絞りおよび伸び値の値が大きく、耐高圧水素環境脆化特性に優れるとしている。
 また、特許文献3に記載された低合金高強度鋼は、Cr-Mo系高強度低合金鋼であり、560~580℃という比較的高い温度で焼戻処理を行い、調質後の結晶粒度番号が8.4以上の粒度で、引張強さ:900~950MPaの極めて狭い範囲に調整することで、45MPa水素雰囲気中でも、優れた伸び、絞り特性を示す、耐高圧水素環境脆化特性に優れた低合金高強度鋼となるとしている。
 また、特許文献4には、高圧水素ガス環境用低合金鋼が提案されている。特許文献4に記載された低合金鋼は、Vを添加し、さらに既存の鋼よりもMo含有量を増加させ、焼戻温度を高めて、V-Mo系炭化物を活用することで、粒界の炭化物形態が改善され、耐水素環境脆化特性が大きく向上するとしている。
 また、特許文献5には、耐水素性に優れた高圧水素ガス貯蔵容器用鋼が提案されている。特許文献5に記載された技術によれば、鋼板製造時に、焼準処理の後に長時間の応力除去焼鈍を施すことで、MC系炭化物(Mo、V)Cが微細かつ高密度に分散析出し、鋼の耐水素脆化特性等の耐水素性が向上するとしている。
 また、特許文献6には、高圧水素貯蔵用鋼材が提案されている。特許文献6に記載された鋼材は、金属組織が面積分率90%以上のベイナイト主体組織で、ベイナイト中に平均粒径50nm以下で、平均アスペクト比3以下のセメンタイトが分散析出している鋼材が提案されている。
特開2005-2386号公報 特開2009-46737号公報 特開2009-275249号公報 特開2009-74122号公報 特開2010-37655号公報 特開2012-107332号公報
Matsunaga et al.、 Int J Hydrogen Energy、Vol.40(2015)、p.5739-5748
 ラインパイプ内の圧力は、操業時の変動や定期的なシャットダウンを行うため、ラインパイプのような構造物に繰返し応力が負荷される。そのため、ラインパイプのような鋼構造物を設計する際には、疲労破壊を考慮することが必須となる。しかし、非特許文献1に示すように高圧水素環境下では材料の疲労寿命は低下することが知られている。すなわち、従来の天然ガス用ラインパイプを基準としたラインパイプ材の設計を行った場合、ラインパイプ材の使用寿命は低下することを意味する。しかしながら、上記した従来技術では、サワー環境における水素誘起割れの発生を抑制できるが、水素ガス中の疲労強度を充分に高くすることができない、つまり、サワー環境における水素誘起割れの発生の抑制に加え、より使用寿命に影響を与えやすい水素ガス中の高い疲労強度まで得ることは困難であるという問題があった。
  本発明は、上記した従来技術の問題に鑑み、100%水素ガスまたは水素分圧が1MPa以上の水素を含む天然ガス(天然ガスはメタン、エタンなどの炭化水素を主な成分とするガス)用ラインパイプ等の、高圧水素ガス環境下で使用される鋼構造物用として好適な、高圧水素ガス環境下における水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法を提供することを目的とする。
 なお、ここでいう「高圧水素環境下における水素中の疲労特性に優れた」とは、室温(20±10℃)、圧力1MPa以上の水素ガス、または水素分圧として1MPa以上の水素を含む天然ガス(主成分はメタン、エタンなどの炭化水素)混合雰囲気の両環境下で、試験はASTM E647に準拠して、周波数:1Hz、繰返し波形:正弦波、制御方法:荷重制御、応力比:R=0.1で疲労試験を実施して求めた応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である場合をいうものとする。水素分圧として1MPa以上の水素を含む天然ガスとは、例えば水素濃度が体積分率で30%以下であり、ガス全体の圧力が30MPa以下であるものをさす。
 なお、水素環境中き裂進展速度da/dNが1.0×10-6m・cycle-1以下であれば、製造するプロセスで製造可能な板厚範囲で、水素用構造鋼の設計を行うことが可能である。
 本発明者らは、上記の観点で様々な鋼材の水素ガス中における鋼材が満足すべき条件について鋭意研究を行い、新規水素中の疲労特性に優れた鋼管および鋼材を見出した。
 本発明はかかる新たな知見に基づき、さらに検討を加えなされたものであって、以下を要旨構成とする。
[1] 質量%で、
C:0.10~0.45%、
Si:0.01~2.0%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.015%以下、
S:0.0015%以下、
O:0.01%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
Nb:0~0.5%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.3%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
残留オーステナイトが3%以下で、
径が200nm以上である炭化物が20個/10μm以下で、
1MPa以上の水素中の応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼管。
[2] 前記[1]に記載の成分組成を有する鋼素材を1.8m/min以下の鋳造速度で鋳造する鋳造工程と、
1350℃以下で加熱する加熱工程と、
前記加熱工程で加熱された鋼素材を、圧延終了温度:820℃以上の条件で圧延して鋼管形状とする熱間圧延工程と、
前記熱間圧延工程で得られた鋼管を、Ac点以上1000℃以下の温度で保持後、冷却条件が下記A群またはB群である冷却工程と、
前記冷却工程で得られた鋼管を400℃以上Ac点以下、60分未満とした条件で焼き戻しを行う焼き戻し工程と、を有する鋼管の製造方法。
A群:
800℃から550℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼管を冷却。
B群:
800℃から300℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼管を冷却。
[3] 前記焼き戻し工程前に、Ac点以上1000℃以下に再加熱し、冷却条件が下記A群またはB群である焼入れ工程を有する[2]に記載の鋼管の製造方法。
A群:
800℃から550℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼管を冷却。
B群:
800℃から300℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼管を冷却。
[4] 前記鋳造速度が1.0m/min以下である[2]または[3]に記載の鋼管の製造方法。
[5] 質量%で、
C:0.10~0.45%、
Si:0.01~2.0%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.015%以下、
S:0.0015%以下、
O:0.01%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
Nb:0~0.5%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.3%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
残留オーステナイトが3%以下で、
径が200nm以上である炭化物が20個/10μm以下で、
1MPa以上の水素中の応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼材。
[6] 前記[5]に記載の成分組成を有する鋼素材を1.8m/min以下の鋳造速度で鋳造する鋳造工程と、
1350℃以下で加熱する加熱工程と、
前記加熱工程で加熱された鋼素材を、圧延終了温度:820℃以上の条件で圧延する熱間圧延工程と、
前記熱間圧延工程で得られた鋼材を、Ac点以上1000℃以下の温度で保持後、冷却条件が下記A群またはB群である冷却工程と、
前記冷却工程で得られた鋼材を400℃以上Ac点以下、60分未満とした条件で焼き戻しを行う焼き戻し工程と、を有する鋼材の製造方法。
A群:
800℃から550℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼材を冷却。
B群:
800℃から300℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼材を冷却。
[7] 前記焼き戻し工程前に、Ac点以上1000℃以下に再加熱し、冷却条件が下記A群またはB群である焼入れ工程を有する[6]に記載の鋼材の製造方法。
A群:
800℃から550℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼材を冷却。
B群:
800℃から300℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼材を冷却。
[8] 前記鋳造速度が1.0m/min以下である[6]または[7]に記載の鋼材の製造方法。
 本発明によれば、高圧水素ガス環境下の疲労特性が極めて優れる鋼管および鋼材を得ることができ、産業上極めて有用である。
 次に、本発明を実施する方法について具体的に説明する。
 第1実施形態として鋼管の実施する方法を具体的に説明し、続いて第2実施形態として鋼材の実施する方法を具体的に説明する。
 第1実施形態
 [成分組成]
 本発明の鋼管(鋼材も含まれる)の成分組成について、その限定理由を以下に説明する。なお、以下の説明における「%」は、特に断らない限り「質量%」を表すものとする。
 C:0.10~0.45%
 Cは、強度を上昇させるために必要な元素である。0.10%未満ではその効果が不十分である。そのため、C含有量は0.10%以上とする。C含有量は0.13%以上とすることが好ましい。C含有量は、0.15%以上がより好ましく、0.18%以上がさらに好ましい。一方、0.45%を超えると焼き入れの際に焼き割れが生じることがあり、また、粗大炭化物を形成する原因になり水素中の疲労特性が劣化する。したがって、C含有量は0.45%以下とする。C含有量は0.43%以下とすることが好ましい。C含有量は、0.40%以下がより好ましく、0.38%以下がさらに好ましい。
 Si:0.01~2.0%
 Siは、製鋼段階の脱酸材および焼入れ性を確保する元素として含有するが、0.01%未満ではその効果が不十分であるため、Si含有量は0.01%以上とする。Si含有量は0.1%以上とすることが好ましい。Si含有量は、0.15%以上がより好ましい。一方、2.0%を超えると粒界が脆化し、低温靭性および水素中の疲労特性を劣化させる。従って、Si含有量は2.0%以下とする。Si含有量は1.5%以下が好ましい。Si含有量は1.0%以下とすることが好ましく、0.8%以下がさらに好ましい。
 Mn:0.3~2.0%
 Mnは、焼入れ性を確保する元素として含有するが、0.3%未満ではその効果が不十分であるため、Mn含有量は0.3%以上とする。Mn含有量は0.4%以上が好ましい。Mn含有量は0.5%以上とすることがより好ましい。Mn含有量は0.6%以上がさらに好ましい。一方、2.0%を超えて含有すると、粒界強度が低下し、低温靭性が劣化する。さらに、Mnが多いとオーステナイト安定性が増加するため、規定の残留オーステナイト量を超え、鋼中の水素量が増加する可能性がある。また、熱延後冷却(加速冷却あるいは焼入れ)時に表層部や中心偏析部の硬さが上昇するため、水素中の疲労特性が劣化する。したがって、Mn含有量は2.0%以下とする。Mn含有量は1.5%以下がより好ましく、Mn含有量は1.3%以下とすることがさらに好ましい。Mn含有量は1.0%以下がもっとも好ましい。
 Al:0.01~0.15%
 Alは、脱酸材として含有されると同時に、Al系窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する効果があるが、0.01%未満の場合にはその効果が十分でない。そのため、Al含有量は0.01%以上とする。Al含有量は0.02%以上とすることが好ましい。Al含有量は0.03%以上がより好ましい。一方、0.15%を超えて含有すると、鋼の清浄度が低下し、靭性および水素中の疲労特性が劣化する。従って、Al含有量は0.15%以下とする。Al含有量は0.13%以下とすることが好ましい。Al含有量は0.10%以下がより好ましく、0.08%以下がさらに好ましい。
 N:0.0005~0.008%
 Nは、Nb、Ti、Alなどと窒化物を形成することによって微細析出物を形成し、加熱時にオーステナイト粒をピンニングすることによって、粒の粗大化を抑制し、低温靭性を向上させる効果を有するために含有する。0.0005%未満の含有では組織の微細化効果が充分にもたらされないため、N含有量は0.0005%以上とする。N含有量は0.001%以上が好ましい。N含有量は0.0025%以上とすることがより好ましい。一方、0.008%を超える含有は固溶N量が増加するために母材および溶接熱影響部の靭性を損ない、水素中の疲労特性が劣化する。従って、N含有量は0.008%以下とする。N含有量は0.007%以下とすることが好ましい。N含有量は0.006%以下がより好ましく、0.005%以下がさらに好ましい。
 P:0.015%以下
 不純物元素であるPは、結晶粒界に偏析しやすく、0.015%を超えると隣接結晶粒の接合強度を低下させ、低温靭性、水素中の疲労特性を劣化させる。従って、P含有量は0.015%以下とする。P含有量は0.013%以下が好ましく、P含有量は0.010%以下とすることがより好ましい。下限は特に限定されるものではないが、コスト増につながることから0.001%以上とすることが好ましい。
 S:0.0015%以下
 不純物元素であるSは、結晶粒界に偏析しやすく、また、非金属介在物であるMnSを生成しやすい。0.0015%を超えると隣接結晶粒の接合強度が低下し、介在物の量が多くなり、低温靭性および水素中の疲労特性を劣化させる。従って、S含有量は0.0015%以下とする。S含有量は0.0013%以下が好ましい。S含有量は0.0010%以下とすることがより好ましく、0.0008%以下がさらに好ましい。下限は特に限定されるものではないが、コスト増につながることから0.0001%以上とすることが好ましい。
 O:0.01%以下
 Oは、Alなどと酸化物を形成することによって、材料の加工性に影響を及ぼすため少ないほど好ましい。0.01%を超える含有は介在物が増加し、加工性を損なう。また、介在物増加に伴い、水素中の疲労特性も劣化する。従って、O含有量は0.01%以下とする。O含有量は0.009%以下が好ましい。O含有量は0.008%以下とすることがより好ましい。下限は特に限定されるものではないが、コスト増につながることから0.0001%以上とすることが好ましい。O含有量は0.002%以上とすることがより好ましい。
 H:0.0010%以下
 Hは、製造中の種々の工程で鋼材中に導入される場合があり、導入量が多いと凝固後の割れ発生リスクが高まるとともに、疲労き裂進展を加速させる。また、導入量が多い状態ではき裂進展速度を増加させるため、鋼材中の水素量を低下させることが重要である。これらの影響は0.0010%以下であれば問題とならないため、H含有量は0.0010%以下とする。好ましくは0.0005%以下である。より好ましくは、H含有量は0.0002%以下である。一方、0.00001%未満とするとコスト増の要因となるため、0.00001%以上とすることが好ましい。H含有量は0.0001%以上とすることが好ましい。なお、水素量は鋼材、鋼管、UOE等の成形後の残存水素量である。
 本発明では、上記成分組成の残部はFeおよび不可避的不純物からなる鋼組成とすることが好ましいが、所望する特性に応じて更に、Cu:0~2.5%、Ni:0~2.5%、Cr:0~2.5%、Mo:0~2.0%、Nb:0~0.5%、V:0~0.5%、Ti:0~0.5%、W:0~2.5%、B:0~0.005%、Sn:0~0.3%、Sb:0~0.3%、Ca:0~0.01%、Mg:0~0.01%、REM:0~0.005%の一種または二種以上を、個別にあるいは同時に適宜含有させることが好ましい。
 Cu:0~2.5%
 Cuは、焼入れ性を向上する作用を有している。このため、Cuを含有する場合には、Cu含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Cu含有量は0.05%以上とすることが好ましい。一方、2.5%を超えると、鋼片加熱時に熱間での割れを生じやすくする。従って、Cuを含有する場合には、2.5%以下とする。Cu含有量は2.3%以下が好ましい。Cu含有量は2.0%以下とすることがより好ましく、1.8%以下がさらに好ましい。
 Ni:0~2.5%
 Niは、Cuと同様に焼入れ性を向上する作用を有しており、さらに靭性を向上する作用も有する。このため、Niを含有する場合には、Ni含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Ni含有量は0.05%以上とすることが好ましい。一方、2.5%を超えると、経済性が劣る。従って、Niを含有する場合には、2.5%以下とする。Ni含有量は2.3%以下が好ましい。2.0%以下とすることがより好ましく、1.8%以下が好ましい。
 Cr:0~2.5%
 Crは、焼入れ性を確保する元素として含有しており、Crを含有する場合には、Cr含有量は0%以上であってよいが、0.1%未満では上記効果が得られにくいため、Cr含有量は0.1%以上とすることが好ましい。一方、2.5%を超えて含有すると靭性が劣化し、経済性が劣る。従って、Crを含有する場合には、2.5%以下とする。Cr含有量は2.3%以下が好ましい。Cr含有量は2.0%以下がより好ましく、1.8%以下がさらに好ましく、1.5%以下がもっとも好ましい。
 Mo:0~2.0%
 Moは、焼入れ性を向上する作用を有するため、Moを含有する場合には、Mo含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Mo含有量は0.05%以上とすることが好ましい。一方、2.0%を超える含有は経済性が劣る。従って、Moを含有する場合には、2.0%以下とする。Mo含有量は1.8%以下が好ましい。Mo含有量は1.5%以下とすることがより好ましく、1.2%以下がさらに好ましい。
 Nb:0~0.5%
 Nbは、焼入れ性を向上する作用を有するとともに、Nb系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。このため、Nbを含有する場合には、Nb含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Nb含有量は0.005%以上とすることが好ましい。Nb含有量は0.01%以上とすることがより好ましい。一方、含有量が0.5%を超える含有は粗大なNb炭窒化物が析出して靭性の劣化を招くおそれがある。従って、Nbを含有する場合には、Nb含有量は0.5%以下とする。Nb含有量は0.4%以下が好ましい。Nb含有量は0.3%以下とすることが好ましく、Nb含有量は0.2%以下が好ましい。
 V:0~0.5%
 Vは、焼入れ性を向上する作用を有すると共に、V系炭化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。このため、Vを含有する場合には、V含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、V含有量は0.005%以上とすることが好ましい。一方、含有量が0.5%を超える含有は粗大なV炭窒化物が析出して靭性の劣化を招くおそれがある。従って、Vを含有する場合には、V含有量は0.5%以下とする。V含有量は0.4%以下が好ましい。V含有量は0.3%以下とすることがより好ましく、0.2%以下がさらに好ましい。
 Ti:0~0.5%
 Tiは、焼入れ性を向上する作用を有するとともに、Ti系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の成長を抑制する効果がある。このため、Tiを含有する場合には、Ti含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Ti含有量は0.005%以上とすることが好ましい。Ti含有量は0.01%以上とすることが好ましい。一方、含有量が0.5%を超える含有は粗大な角状の窒化物が形成されやすくなり、靭性が劣化する。従って、Tiを含有する場合には、Ti含有量は0.5%以下とする。Ti含有量は0.4%以下が好ましい。Ti含有量は0.3%以下がより好ましく、0.2%以下がさらに好ましい。
 W:0~2.5%
 Wは、焼入れ性を向上する作用を有するため、Wを含有する場合には、W含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、W含有量は0.05%以上とすることが好ましい。一方、2.5%を超えると、経済性が劣る。従って、Wを含有する場合は、W含有量は2.5%以下とする。W含有量は2.3%以下が好ましい。W含有量は2.0%以下がより好ましく、1.8%以下がさらに好ましい。
 B:0~0.005%
 Bは、焼入れ性を確保する元素であるため、Bを含有する場合には、B含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、B含有量は0.0005%以上とすることが好ましい。一方、0.005%を超えると、靭性を劣化させる。従って、Bを含有する場合には、B含有量は0.005%以下とする。B含有量は0.004%以下とすることが好ましい。B含有量は0.003%以下がより好ましく、0.002%以下がさらに好ましい。
 Sn:0~0.3%
 Snは、鋼管の耐食性を高める作用を有している。このため、Snを含有する場合には、Sn含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Sn含有量は0.005%以上とすることが好ましい。Sn含有量は0.01%以上とすることがより好ましい。一方、含有量が0.3%を超える含有は高温延性が低下し、鋳造時の割れが生じる可能性を高める。したがって、Snを含有する場合には、Sn含有量は0.3%以下とする。Sn含有量は0.25%以下とすることが好ましい。Sn含有量は0.2%以下がより好ましく、0.15%以下がさらに好ましい。
 Sb:0~0.3%
 Sbは、鋼管の耐食性を高める作用を有している。このため、Sbを含有する場合には、Sb含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Sb含有量は0.005%以上とすることが好ましい。Sb含有量は0.01%以上とすることがより好ましい。一方、含有量が0.3%を超える含有は高温延性が低下し、熱間圧延性が低下する。したがって、Sbを含有する場合には、Sb含有量は0.3%以下とする。Sb含有量は0.25%以下が好ましい。Sb含有量は0.2%以下がより好ましく、0.15%以下がさらに好ましい。
 Ca:0~0.01%
 Caは、CaSを形成し、圧延によって展伸しやすい介在物であるMnSの代わりに、圧延により展伸しにくい球状介在物であるCaSへと、硫化物系介在物の形態を制御する作用を有する。このため、Caを含有する場合には、Ca含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、Ca含有量は0.0005%以上とすることが好ましい。Ca含有量は0.001%以上とすることがより好ましい。一方、含有量が0.01%を超えて含有すると清浄度が低下するため、靭性などの材質が劣化する。したがって、Caを含有する場合には、Ca含有量は0.01%以下とする。Ca含有量は0.005%以下とすることが好ましい。Ca含有量は0.003%以下がより好ましく、0.002%以下がさらに好ましい。
 Mg:0~0.01%
 Mgは、溶銑脱硫材として使用する場合がある。このため、Mgを含有する場合には、Mg含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、Mg含有量は0.0005%以上とすることが好ましい。Mg含有量は0.001%以上とすることがより好ましい。一方、含有量が0.01%を超える含有は、清浄度の低下を招く。従って、Mgを含有する場合には、Mg含有量は0.01%以下とする。Mg含有量は0.005%以下とすることが好ましい。Mg含有量は0.004%以下がより好ましく、0.003%以下がさらに好ましい。
 REM:0~0.005%
 REMは、鋼中でREM(O、S)として硫化物を生成することによって結晶粒界の固溶S量を低減して耐SR割れ特性を改善する。このため、REMを含有する場合には、REM含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、REM含有量は0.0005%以上とすることが好ましい。一方、含有量が0.005%を超える含有は、沈殿晶帯にREM硫化物が著しく集積し、材質の劣化を招く。従って、REMを含有する場合には、REM含有量は0.005%以下とする。REM含有量は0.003%以下が好ましい。REM含有量は0.001%以下とすることがより好ましい。なお、REMとはRare Earth Metalの略、であり、希土類金属である。
 鋼板および鋼管の成分組成において、上述した成分(元素)以外の残部は、Feおよび不可避的不純物元素からなる。
 本発明の鋼管の好適な金属組織について具体的に説明する。
 残留オーステナイトが3%以下
 オーステナイトが鋼管中に残存することにより、鋼中の水素量が増加し、水素脆化感受性を増大させる場合がある。さらに、使用中の応力負荷によりオーステナイトがマルテンサイトに変態した場合、マルテンサイトが非常に硬質なため水素割れしやすく、マルテンサイト部分からき裂発生する場合がある。本発明においては、残留オーステナイトを3%以下とすることで、疲労き裂進展速度を低減した。好ましくは2%以下であり、より好ましくは1%以下である。残留オーステナイトは0%であってもよい。
 径が200nm以上である炭化物が20個/10μm以下
 本発明の鋼管において、粗大化した炭化物が所定値以上存在すると水素中の疲労特性に悪影響を及ぼす。このため、径が200nm以上である炭化物が20個/10μm以下とする。好ましくは15個/10μm以下である。より好ましくは10個/10μm以下であり、さらに好ましくは5個/10μm以下である。下限については、少ないほうがよく、0個/10μmであってもよい。ここで、径は中心を通る長辺Aと短辺Bを用い、2√(A/2×B/2)より算出された値を指す。また、炭化物とは、例えば、セメンタイト、ε-炭化物、χ-炭化物、またFeなどを含む金属間化合物を指す。
  さらに、径が200nm未満である炭化物が100nm以上の間隔で均等に粒内に分散している場合については水素中の疲労特性に悪影響は及ぼさず、強度向上に寄与するため、粒内に分散している径が200nm未満である炭化物は10個/10μm以上とすることが好ましい。上限については、析出物が多すぎると粗大化が進むという理由から粒内に分散している径が200nm未満である炭化物は100個/10μm以下とすることが好ましい。
なお、炭化物析出は後述している熱間圧延後の冷却工程および焼き戻し工程の条件が影響するため、それらの条件を制御することが重要である。
 1MPa以上の水素中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下
 疲労き裂進展速度は、ラインパイプやガス容器に用いられる鋼管の設計において重要なパラメータで、破壊構造部材の安全性を確保した使用寿命を得るために必要である。破壊構造部材においては、き裂やき裂発生個所をゼロにすることは困難で、繰り返し応力を受けるとき、き裂は不可避的に発生し、進展する。き裂進展速度はき裂先端にかかる応力状態が小さい場合は小さく、き裂先端の応力状態が増加すると大きくなる。水素環境においては、鋼管中に水素が侵入し、き裂を進みやすくする。水素によるき裂進展速度の促進度合いは材料の組織や析出物による影響が大きい。1MPa以上の水素中のき裂進展試験において、ASTM E647に準拠して、周波数:1Hz、繰返し波形:正弦波、制御方法:荷重制御、応力比:R=0.1の疲労試験を実施して求めた応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下であれば、高圧水素環境下における鋼構造物の使用寿命も十分確保できるため、1MPa以上の水素中のき裂進展試験において、応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下とする。応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが好ましくは0.9×10-6m・cycle-1以下であり、より好ましくは0.8×10-6m・cycle-1以下であり、さらに好ましくは0.7×10-6m・cycle-1以下である。下限については、大気中結果と近いほど良好と考えることができ、応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが好ましくは0.05×10-6m・cycle-1以上とすることがより好ましい。
 また、鋼管の板厚は特に限定されるものではないが、板厚は5mm以上が好ましい。板厚は30mm以下が好ましい。
 なお、本発明の鋼管とは、シームレス鋼管、電縫管、UOE鋼管などが挙げられ、以下では一例としてシームレス鋼管の製造方法を具体的に説明する。
 本発明の水素ガス中の疲労特性に優れた鋼管は、上記の成分組成を有するもので水素中のき裂進展速度が満たされればよく、その製造方法を具体的に以下で説明する。
 同様の熱履歴となるように処理を行うことにより、電縫管やUOE鋼管を製造可能であることはいうまでもない。
 本発明の鋼管は、次の(1)~(3)の工程を順次行うことによって製造することができる。
(1)鋼素材を成分調整後鋳造する工程
(2)鋳造材を加熱し、圧延して鋼管形状を得る熱間圧延・冷却(加速冷却)する工程(焼き戻し工程前に再加熱して焼入れする場合も含まれる)、
(3)上記工程で得られた鋼管を焼き戻しする工程。
 以下、各工程について説明する。なお、以下の説明における温度は、特に断らない限り、鋼素材または鋼管の板厚中央の温度とする。平均冷却速度は、鋼管の内面からの肉厚1/4位置温度を意味する。なお、板厚中央の温度と鋼管の内面からの肉厚1/4位置の温度は、放射温度計で測定した鋼管表面温度から鋼材の熱伝達係数を考慮した伝熱計算等を用いて上記温度を推定した温度である。
[鋳造工程]
 鋳造速度:1.8m/min.以下
 鋳造速度が遅いほど、鋼中の水素濃度および介在物を低減でき、その効果は1.8m/min.以下で顕著となるため、鋳造速度は1.8m/min.以下とする。好ましくは1.5m/min.以下である。より好ましくは1.0/min.以下である。さらに好ましくは0.5m/min.以下である。もっとも好ましくは0.1m/min.以下である。下限は特に限定されるものではないが、鋳造速度は0m/min.超えであればよい。
 加熱工程
 熱間圧延を行うために、上記した成分組成を有する鋼素材を加熱する。前記鋼素材としては、特に限定されないが、例えば、通常の連続鋳造法で得られるスラブやビレット等を使用することができる。
 加熱温度:1350℃以下
 加熱工程における加熱温度が1350℃を超えると、旧オーステナイト粒の平均粒径が過大となり、諸特性が劣化するため、加熱温度は1350℃以下とする。加熱温度は1300℃以下とすることがより好ましく、1250℃以下とすることがさらに好ましく、1200℃以下とすることがもっとも好ましい。一方、加熱温度は低いほど鋼中水素量を低減できるため好ましいが、低すぎると仕上げ圧延温度が低下し、圧延困難となる。そのため、加熱温度は950℃以上とすることが好ましい。加熱温度は1000℃以上とすることがより好ましい。加熱時間は特に規定しないが、長すぎると鋼管中へ導入される水素が増加するリスクが高まるため、180分以下が好ましい。加熱時間は150分以下がより好ましく、120分以下がさらに好ましい。下限は特に限定されるものではないが、加熱時間は30分以上が好ましく、60分以上がより好ましい。
 圧延工程
 上記加熱工程で加熱された鋼素材を以下の条件で圧延して鋼管形状とする。前記圧延には、通常のマンネスマン-プラグミル方式またはマンネスマン-マンドレルミル方式の、穿孔圧延を含む熱間圧延を用いることができる。
 圧延終了温度:820℃以上
 圧延終了温度が820℃未満であると、圧延荷重が過大となり、圧延トラブル発生リスクが高まる。そのため、圧延終了温度は820℃以上とする。圧延終了温度は850℃以上とすることが好ましく、900℃以上とすることがより好ましい。一方、圧延終了温度の上限は特に限定されないが、温度が高すぎると金属組織が不均一となりやすいため、圧延終了温度は1200℃以下とすることが好ましい。圧延終了温度は1150℃以下とすることがより好ましく、1100℃以下とすることがさらに好ましい。
[冷却工程(加速冷却工程)]
 冷却工程では、上述した成分組成を有する鋼材をそのまま、または鋼管に加工した後、Ac3点以上1000℃以下の温度に加熱、保持し、以下のA群またはB群の冷却条件で冷却する。前記温度で10分以上保持することが好ましい。15分以上保持することがより好ましく、20分以上保持することがさらに好ましい。上限は特に限定されるものではないが、前記温度で60分以下保持することが好ましく、45分以下保持することがより好ましい。
 鋼管加工後の加熱温度:Ac点以上1000℃以下
 冷却工程における加熱温度がAc点未満であると、冷却後、鋼中にフェライトが残存し、鋼管強度および水素中の疲労特性が低下する。そのため、加熱温度はAc点以上とする。加熱温度はAc点+30℃以上とすることが好ましく、Ac点+50℃以上とすることがより好ましい。ただし、Ac点+30℃、Ac点+50℃が1000℃を超える成分系については、上記のAc点+30℃以上、Ac点+50℃以上は適用されない。ただし、一方、前記加熱温度が1000℃より高いと、オーステナイト結晶粒が粗大化し、熱処理後の材料の衝撃吸収エネルギー値や靱性の低下を引き起こす場合がある。そのため、前記加熱温度を1000℃以下とする。加熱温度は950℃以下とすることが好ましく、900℃以下とすることがより好ましい。ただし、950℃、900℃がAc点未満の成分系については、上記の950℃以下、900℃以下は適用されない。
ここでの冷却過程は、圧延終了後の温度が本加熱条件を満足する場合には、そのまま冷却してもよいし、圧延終了後に再度過熱して冷却を実施してもよい。また、鋼板を一旦空冷で冷却した場合には、再度Ac点以上1000℃以下の温度に加熱し、加熱して下記A群またはB群の冷却条件で冷却してもよい。
なお、本発明では、Ac点(℃)を下記式により算出する。
Ac(℃)=910-203[C]1/2-30[Mn]+44.7[Si]+700[P]+100[Al]+31.5[Mo]-11[Cr]-15.2[Ni]-20[Cu]+104[V]
ただし、式中の[M]は、元素Mの含有量(質量%)をあらわす。
 平均冷却速度
A群: 鋼管内面からの肉厚1/4位置における800℃から550℃までの範囲の平均冷却速度が15℃/s以上かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下に冷却
 鋼管内面からの肉厚1/4位置における800℃から550℃までの平均冷却速度が15℃/s未満では、所定の炭化物密度を得られない。また、組織については特に限定されるものではないが、所定の水素中の疲労特性を得るために、ベイナイトまたはマルテンサイトのどちらか一方を面積率で90%以上得ることが好ましい。上記平均冷却速度が15℃/s未満では、ベイナイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはマルテンサイトの形成に影響する場合もある。このため、鋼管内面からの肉厚1/4位置での平均冷却速度は15℃/s以上とする。組織のばらつき抑制の観点からは、平均冷却速度は17℃/s以上とすることが好ましい。800℃から550℃までの平均冷却速度は20℃/s以上とすることがさらに好ましく、22℃/s以上とすることがもっとも好ましい。一方、粒径のばらつきを抑制するために、当該平均冷却速度は50℃/s以下とすることが好ましく、45℃/s以下とすることがより好ましく、40℃/s以下とすることがさらに好ましい。
さらに、かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下まで冷却することで残留オーステナイトを低減し、鋼中の水素量を低減することができる。このため、550℃から50℃までの平均冷却速度は15℃/s以下とする。550℃から50℃までの平均冷却速度は12℃/s以下とすることがより好ましく、10℃/s以下とすることがさらに好ましい。下限は特に限定されるものではないが、550℃から50℃までの平均冷却速度は1℃/s以上とすることが好ましい。
冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から550℃までは水冷もしくは油冷、550℃から50℃までは空冷が好ましい。
  B群: 鋼管内面からの肉厚1/4位置における800℃から300℃までにおける平均冷却速度が10℃/s以上かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下に冷却
 鋼管内面からの肉厚1/4位置における800℃から300℃までの平均冷却速度が10℃/s未満では、所定の炭化物密度を得られず、疲労特性の劣化が生じる。また、上記平均冷却速度が10℃/s未満では、マルテンサイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはベイナイトの形成に影響する場合もある。このため、鋼管内面からの肉厚1/4位置での平均冷却速度は10℃/s以上とする。組織のばらつき抑制の観点からは、800℃から300℃までの平均冷却速度は12℃/s以上とすることが好ましく、平均冷却速度は15℃/s以上とすることがより好ましく、17℃/s以上とすることがさらに好ましい。上限は特に限定されるものではないが、前記平均冷却速度は60℃/s以下とすることが好ましい。
さらに、かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下まで冷却することで鋼中の水素量を低減することができる。このため、300℃から50℃までの平均冷却速度が5℃/s以下とする。300℃から50℃までの平均冷却速度は1℃/s以下とすることが好ましい。下限については特に限定されるものではないが、0.1℃/s以上とすることが好ましい。
 冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から300℃までは水冷もしくは油冷、300℃から50℃までは空冷が好ましい。
[再加熱、焼入れ工程(好適条件)]
 焼入れ前の再加熱温度:Ac点以上1000℃以下
 板厚中央の温度がAc点未満では、一部未変態オーステナイトが残存するため、熱間圧延および焼入れ、後述する焼戻し後に所望の鋼組織を得ることができない。このため、再加熱時の焼入れ前加熱温度はAc点以上とする。好ましくは、Ac点超えとする。なお、初期オーステナイト粒径の過度な粗大化抑制および生産効率向上のため、前記焼入れ前加熱温度は1000℃以下とすることが好ましい。より好ましくは980℃以下であり、さらに好ましくは960℃以下である。もっとも好ましくは950℃以下である。焼入れ前の再加熱温度をAc点以上の範囲で低温側の温度とすることで、初期オーステナイト粒径を微細化することができ、水素中き裂進展速度を小さくすることが可能である。
 焼入れ時の平均冷却速度:下記A群またはB群
 A群: 鋼管内面からの肉厚1/4位置における800℃から550℃までの範囲の平均冷却速度が15℃/s以上かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下に冷却
 鋼管内面からの肉厚1/4位置における800℃から550℃までの平均冷却速度が15℃/s未満では、所定の炭化物密度を得られない。また、上記平均冷却速度が15℃/s未満では、ベイナイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはマルテンサイトの形成に影響する場合もある。このため、鋼管内面からの肉厚1/4位置での平均冷却速度は15℃/s以上とする。組織のばらつき抑制の観点からは、平均冷却速度は17℃/s以上とすることが好ましく、20℃/s以上とすることがより好ましく、22℃/s以上とすることがさらに好ましい。一方、粒径のばらつきを抑制するために、当該平均冷却速度は50℃/s以下とすることが好ましく、47℃/s以下とすることがより好ましく、45℃/s以下とすることがさらに好ましい。
さらに、かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下まで冷却することで残留オーステナイトを低減し、鋼中の水素量を低減することができる。このため、550℃から50℃までの平均冷却速度は15℃/s以下とする。550℃から50℃までの平均冷却速度は12℃/s以下とすることが好ましく、10℃/s以下とすることがより好ましい。下限は特に限定されるものではないが、550℃から50℃までの平均冷却速度は1℃/s以上とすることが好ましい。
冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から550℃までは水冷もしくは油冷、550℃から50℃までは空冷が好ましい。
 B群: 鋼管内面からの肉厚1/4位置における800℃から300℃までにおける平均冷却速度が10℃/s以上かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下に冷却
 鋼管内面からの肉厚1/4位置における800℃から300℃までの平均冷却速度が10℃/s未満では、所定の炭化物密度を得られず、疲労特性の劣化が生じる。また、上記平均冷却速度が10℃/s未満では、マルテンサイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはベイナイトの形成に影響する場合もある。このため、鋼管内面からの肉厚1/4位置での平均冷却速度は10℃/s以上とする。組織のばらつき抑制の観点からは、平均冷却速度は17℃/s以上とすることが好ましく、20℃/s以上とすることがより好ましく、25℃/s以上とすることがさらに好ましい。一方、前記平均冷却速度の上限は特に規定しないが60℃/sを超えると、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られず、水素中の疲労特性が低下するため、前記平均冷却速度は60℃/s以下とすることが好ましい。
さらに、かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下まで冷却することで鋼中の水素量を低減することができる。このため、300℃から50℃までの平均冷却速度が5℃/s以下とする。前記平均冷却速度は3℃/s以下とすることが好ましく、1℃/s以下とすることがより好ましい。下限については特に限定されるものではないが、0.1℃/s以上とすることが好ましい。
冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から300℃までは水冷もしくは油冷、300℃から50℃までは空冷が好ましい。
 焼入れ時の冷却停止温度:50℃以下
 冷却停止温度を50℃超えとすると、所望の炭化物密度が得られず、さらに上記変態が完了しないため、焼戻し後に所望の鋼組織を得ることができない。このため、50℃以下の温度まで焼入れることとする。冷却停止温度は45℃以下とすることが好ましく、40℃以下とすることがより好ましい。下限は特に限定されるものではないが、冷却停止温度は25℃以上とすることが好ましい。
 焼き戻し工程
 焼き戻し温度:400℃以上Ac点以下
 平均昇温速度が0.01℃/s以上となる条件で昇温し、焼き戻し温度を400℃以上とすることで、オーステナイト低減および鋼中の水素を低減することができ、かつ所定の炭化物密度を得ることができる。焼き戻し温度は好ましくは450℃以上であり、より好ましくは500℃以上である。一方、Ac点を超えて昇温すると、オーステナイトおよび鋼中の水素が増加する可能性がある。このため、焼き戻し温度はAc点以下とする。好ましくは、(Ac点-30)℃以下の範囲である。なお、焼き戻し時における前記平均昇温速度の上限は特に限定されるものではないが、1℃/s以下とすることが好ましい。焼き戻し時間が長すぎると炭化物が粗大化して水素脆化に悪影響を及ぼすため、60分未満とする。焼き戻し時間は、好ましくは50分以下である。焼き戻し時間が短すぎると鋼材中のオーステナイトが低減せず水素量が低減しないため、焼き戻し時間は10分以上とすることが好ましく、20分以上とすることがより好ましい。
 なお、本発明では、Ac点(℃)の求め方については特に規定しないが、例えば、
Ac=723-14Mn+22Si-14.4Ni+23.3Crとして求めることができる。なお、上記式中において各元素記号は各元素の鋼中含有量(質量%)であり、含有しない元素は0とする。
 脱水素処理工程
 鋼材中にそもそも水素が存在する場合には疲労き裂進展の加速が増大され、疲労寿命および水素中疲労限応力が低下する。そのため、製造後に残存する水素を放出させるために、脱水素処理を用いてもよい。脱水素処理は、製品使用前に高温で一定時間保持することで鋼中水素量を低減させることができ、高圧水素ガス環境下における耐疲労特性に優れた鋼板を得ることができる。
保持時間R(sec)は、鋼材および鋼管の板厚並びに管厚t(mm)、および室温における鋼中の水素拡散係数D(mm・sec-1)から、以下の式(A)とすることが好ましい。
R≧t/D・・・(A)
水素拡散係数は含有している成分や金属組織によっても変わるが、例えば、水素拡散係数は1×10-5~5×10-3mm/sを採用しても良い。より好ましくは 5×10-4mm/s以下である。
脱水素処理工程は、造管または鋼管をつなげる溶接施工前に実施する。なお、脱水素処理は高温の水素拡散係数Dが小さくなり、早く水素が抜けるため高温である方が好ましい。高温の場合は上記(A)式のDの値を保持する温度の拡散係数D’(それぞれの温度における拡散係数)を用いて計算しても良い。一方、脱水素工程の温度が高すぎる場合には材料強度が著しく低下するため、脱水素処理温度は550℃以下が好ましい。脱水素処理温度Tは500℃以下とすることがより好ましい。脱水素処理温度Tは400℃以下とすることがさらに好ましく、300℃以下とすることがもっとも好ましい。また、室温よりも温度を低下させた脱水素処理は処理時間およびコスト増の要因であるという理由から脱水素処理温度Tは室温以上とすることが好ましい。脱水素処理温度Tは50℃以上とすることがより好ましい。脱水素処理温度Tは100℃以上とすることがさらに好ましく、150℃以上とすることがもっとも好ましい。ここで述べている脱水素処理温度Tとは脱水素処理工程における雰囲気の温度である。室温とは20±10℃のことをいう。
 特に、加熱する場合、鋼材および鋼管の板厚中央の温度Tcが脱水素処理工程における雰囲気の温度(脱水素処理温度T)に到達するまでに時間を要するため、雰囲気温度において上記保持時間R(sec)を満たしていても、板厚中央が脱水素処理温度T(雰囲気温度)に達していない場合は脱水素処理が不十分となる可能性がある。そのため、板厚中央温度Tcが目標とする脱水素処理温度Tに達してからR(sec)以上保持することが好ましい。さらに、所定の水素ガス中のき裂進展速度を得るために、表層部と板厚中央の鋼材水素量を適切に調整する必要があり、そのために、脱水素処理温度Tで、(A)式で規定されたR(sec)以上保持することが好ましく、さらに板厚中央温度Tcが目標とする脱水素処理温度Tに達してから上記保持時間R(sec)以上保持することがより好ましい。言い換えると、少なくとも前者は鋼材および鋼管の表層部の鋼材水素量を適切に制御でき、後者まで実施すると鋼材および鋼管の表層部から板厚中央までの鋼材水素量を適切に制御することができる。板厚温度が板厚中央温度Tcは熱電対などをもちいて実測してもいいし、有限要素法などを用いて予測してもよい。
 さらに、鋼表面のスケールは脱水素を阻害するため、スケールを除去し脱水素処理行う方が好ましい。スケールの除去方法は問わないが、例えば高圧洗浄による物理的な洗浄でもよいし、スケール除去剤を用いた化学的な手法を用いてもよい。スケール除去の厚みは問わないが、おおよそ100μm程度除去すれればスケール除去の効果が得られる。
 第2実施形態
 以下、本発明の鋼材について具体的に説明する。鋼材の成分組成、金属組織、き裂進展速度は鋼管で説明した内容と同様であり、製造方法についても圧延工程、冷却工程以外の工程(鋳造工程、加熱工程、再加熱・焼入れ工程、焼き戻し工程、脱水素処理工程)は鋼管で説明した内容と同等の内容で実施される。圧延工程、冷却工程は下記にて実施される。
 圧延工程
 上記鋼管の製造方法で述べたような加熱工程で加熱された鋼素材を以下の条件にて熱間圧延機で熱間圧延する。
 圧延終了温度:820℃以上
 圧延終了温度が820℃未満であると、圧延荷重が過大となり、圧延トラブル発生リスクが高まる。そのため、圧延終了温度は820℃以上とする。圧延終了温度は850℃以上とすることが好ましく、900℃以上とすることがより好ましい。一方、圧延終了温度の上限は特に限定されないが、温度が高すぎると金属組織が不均一となりやすいため、圧延終了温度は1200℃以下とすることが好ましい。圧延終了温度は1150℃以下とすることがより好ましく、1100℃以下とすることがさらに好ましい。
 冷却工程(加速冷却工程)
 冷却工程では、上述した成分組成を有する鋼材を熱間圧延した後、Ac3点以上1000℃以下の温度に加熱、保持し、以下のA群またはB群の冷却条件で冷却する。前記温度で10分以上保持することが好ましい。15分以上保持することがより好ましく、20分以上保持することがさらに好ましい。上限は特に限定されるものではないが、前記温度で60分以下保持することが好ましく、45分以下保持することがより好ましい。
 熱間圧延後の加熱温度:Ac3点以上1000℃以下
 冷却工程における加熱温度がAc3点未満であると、冷却後、鋼中にフェライトが残存し、鋼材強度および疲労特性が低下する。そのため、加熱温度はAc3点以上とする。加熱温度はAc点+30℃以上とすることが好ましく、Ac点+50℃以上とすることがより好ましい。ただし、Ac点+30℃、Ac点+50℃が1000℃を超える成分系については、上記のAc点+30℃以上、Ac点+50℃以上は適用されない。一方、前記加熱温度が1000℃より高いと、オーステナイト結晶粒が粗大化し、熱処理後の材料の衝撃吸収エネルギー値や靱性の低下を引き起こす場合がある。そのため、前記加熱温度を1000℃以下とする。より好ましくは950℃以下であり、さらに好ましくは900℃以下である。ただし、950℃、900℃がAc点未満の成分系については、上記の950℃以下、900℃以下は適用されない。
ここでの冷却過程は、圧延終了後の温度が本加熱条件を満足する場合には、そのまま冷却してもよいし、圧延終了後に再度過熱して冷却を実施してもよい。また、鋼材を一旦空冷で冷却した場合には、再度Ac点以上1000℃以下の温度に加熱し、加熱して下記A群またはB群の冷却条件で冷却してもよい(この場合は焼入れという)。
なお、本発明では、Ac点(℃)を下記式により算出する。
Ac(℃)=910-203[C]1/2-30[Mn]+44.7[Si]+700[P]+100[Al]+31.5[Mo]-11[Cr]-15.2[Ni]-20[Cu]+104[V]
ただし、式中の[M]は、元素Mの含有量(質量%)をあらわす。
 平均冷却速度
A群: 鋼材表面からの板厚1/4位置における800℃から550℃までの範囲の平均冷却速度が15℃/s以上かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下に冷却
 鋼材表面からの板厚1/4位置における800℃から550℃までの平均冷却速度が15℃/s未満では、所定の炭化物密度を得られない。また、組織については特に限定されるものではないが、所定の水素中の疲労特性を得るために、ベイナイトまたはマルテンサイトのどちらか一方を面積率で90%以上得ることが好ましい。上記平均冷却速度が15℃/s未満では、ベイナイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはマルテンサイトの形成に影響する場合もある。このため、鋼材表面からの板厚1/4位置での平均冷却速度は15℃/s以上とする。組織のばらつき抑制の観点からは、平均冷却速度は17℃/s以上とすることが好ましい。20℃/s以上とすることがより好ましく、22℃/s以上とすることがさらに好ましい。一方、粒径のばらつきを抑制するために、当該平均冷却速度は50℃/s以下とする。47℃/s以下とすることが好ましく、45℃/s以下とすることがより好ましい。
さらに、かつ、550℃から50℃までの平均冷却速度が15℃/s以下の条件で50℃以下まで冷却することで残留オーステナイトを低減し、鋼中の水素量を低減することができる。このため、550℃から50℃までの平均冷却速度は15℃/s以下とする。下限は特に限定されるものではないが、550℃から50℃までの平均冷却速度は1℃/s以上とすることが好ましい。
冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から550℃までは水冷もしくは油冷、550℃から50℃までは空冷が好ましい。
  B群: 鋼材表面から板厚1/4位置における800℃から300℃までにおける平均冷却速度が10℃/s以上かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下に冷却
 鋼材表面からの板厚1/4位置における800℃から300℃までの平均冷却速度が10℃/s未満では、所定の炭化物密度を得られず、疲労特性の劣化が生じる。また、上記平均冷却速度が10℃/s未満では、マルテンサイトが面積率で90%以上を得ることが難しくなるが、成分組成によってはベイナイトの形成に影響する場合もある。このため、鋼材表面からの板厚1/4位置での平均冷却速度は10℃/s以上とする。組織のばらつき抑制の観点からは、12℃/s以上とすることがより好ましい。平均冷却速度は15℃/s以上とすることがより好ましく、17℃/s以上とすることがさらに好ましい。一方、前記平均冷却速度の上限は特に規定しないが60℃/sを超えると、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られず、水素中の疲労特性が低下するため、前記平均冷却速度は60℃/s以下とすることが好ましい。
さらに、かつ、300℃から50℃までの平均冷却速度が5℃/s以下の条件で50℃以下まで冷却することで鋼中の水素量を低減することができる。このため、300℃から50℃までの平均冷却速度が5℃/s以下とする。前記平均冷却速度は1℃/s以下とすることが好ましく、0.8℃/s以下とすることがより好ましい。下限については特に限定されるものではないが、0.1℃/s以上とすることが好ましい。
冷却方法は特に限定されず、水冷、油冷、空冷等、任意の方法を単独または組み合わせて用いることができるが、800℃から300℃までは水冷もしくは油冷、300℃から50℃までは空冷が好ましい。
 厚板の場合は実施する必要はないが、薄鋼板の場合にはコイル状に巻き取ることが好ましい。
 なお、本発明の水素ガス中の疲労特性に優れた鋼材は、上記の成分組成を有する鋼材であって水素ガス中の耐疲労き裂進展特性に優れる薄板、厚板、鋼管など種々の分類を含み、あるいは所定形状に成形した水素パイプライン用鋼材としてもよい。
 以上の条件によって、所定の水素中き裂進展速度を満たす水素中の疲労特性に優れた鋼管および鋼材が得られる。
 以下、本発明の効果を検証した実施例について、説明する。以下は、本発明の好適な一例を示すものであり、本発明は、以下の実施例によって何ら限定されるものではない。なお、以下の実施例においては、実鋼構造物用の継目無鋼管の製造方法および特性評価で検討した。
 表1-1、1-2の鋼管No.1~29(ビレットNo.A~AC)と40~87(ビレットNo.AN~CI)に示した成分組成のビレットを鋳造速度0.6m/minで作製し、前記ビレットを1250℃に加熱し、拡管して継目無鋼管を得た。前記鋼管の製造は、拡管を820℃以上で終了する条件で行った。得られた鋼管をAc点が950℃以下の鋼管については950℃で加熱保持、Ac点が950℃超えの鋼管については1000℃で加熱保持した後に、表2-1、2-2に記載の条件で水冷した後、焼戻しを行った。金属組織と機械的特性を評価した。また、表1-1、1-2の鋼材No.30~39(スラブNo.AD~AM)に示した成分組成のスラブを鋳造速度0.6m/minで作製し、1250℃に加熱後、熱間圧延機にて820℃以上で圧延を行った。得られた鋼材をAc点が950℃以下の鋼材については950℃で加熱保持、Ac点が950℃超えの鋼材については1000℃で加熱保持した後に、得られた鋼材を表2-1、2-2に記載の条件で水冷した後、焼戻しを行い、鋼管同様に、金属組織と機械的特性を評価した。焼き戻し後にNo.2、5、14、15、43、63~69については脱水素処理も実施した。脱水素処理は、雰囲気温度である脱水素処理温度Tが50℃で、3時間保持したのち、自然放冷した。評価方法は、以下の通りである。焼戻し温度は材料の引張強度が520~700MPaの範囲となる様に任意に調整した。
 さらに、表2-3の鋼管No.88~101(ビレットNo.AO1~BB1)に示した成分組成のビレットを種々の鋳造速度で作製し、前記ビレットを1250℃に加熱し、拡管して継目無鋼管を得た。ビレットNo.AO1~BB1の成分組成は、表1-2に示すNo.AO~BBの成分組成と同一である。前記鋼管の製造は、拡管を820℃以上で終了する条件で行った。得られた鋼管をAc点が950℃以下の鋼管については950℃で加熱保持、Ac点が950℃超えの鋼管については1000℃で加熱保持した後に、表2-3に記載の条件で水冷した後、表2-3に記載の条件で焼戻しを行った。金属組織と機械的特性を評価した。評価方法は、以下の通りである。焼戻し温度は材料の引張強度が520MPa~700MPaの範囲となる様に任意に調整した。脱水素処理は、雰囲気温度である脱水素処理温度Tが50℃で、3時間保持したのち、自然放冷した。
 疲労き裂伝播特性の調査は、疲労き裂進展試験により評価した。各鋼材から、荷重負荷方向が圧延方向と平行になるようASTM E 647に準拠したCT(コンパクトテンション)試験片(片側端部に切欠を有する正方形に近い試験片のこと)を採取し、周波数:1Hz、繰返し波形:正弦波、応力比:R=0.1で疲労試験を実施して求めた。クリップゲージを用いて、コンプライアンス法で疲労き裂の長さを測定して、5MPa高圧水素ガス中における疲労き裂伝播速度を求めた。室温(20±10℃)で実施した。なお試験片は、板厚が10mm以下の場合は表面から0.5mmずつ研削して各々2mm、5mm、8mm、9mmとし、これら以外の板厚の場合はt/2(t:板厚)の位置から10mm厚さの試験片を採取し、また、き裂進展部には表裏ともに鏡面研磨を施した。この際、パリス則が成り立つ安定成長領域として、応力拡大係数範囲ΔK=20(MPa・m1/2)での疲労き裂進展速度(m/cycle)を代表値として評価した。結果は表2-1、2-2、2-3に示す。
 また、鋼材の炭化物測定方法は以下に記載するとおりである。鋼材の板厚中央位置から板厚方向に平行な断面を対象として試験片を切り出し、ナイタールエッチングを実施し、SEMにて炭化物を観察した。加速電圧15kV、倍率20000倍で、ランダムに10視野選定し、観察した。10視野の平均値を炭化物の個数として、径200nm以上の炭化物が20個/10μm以下である場合はY、20個/10μm超えである場合はNと表2-1、2-2、2-3に示す。
また、鋼材のオーステナイト量測定方法は以下に記載するとおりである。
 上記に従って得られた鋼材および鋼管の長手方向中央部の板幅中央部より金属組織観察用サンプルを採取し、長手方向と平行な断面を観察対象面としてバフ研磨まで行い、その後、ピクリン酸エッチングにより表層を化学研磨により除去し、X線回折測定を用いて測定した。具体的に、入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの面積分率を算出した。
 水素昇温分析
 鋼中に残存する水素量は昇温脱離分析法を用いて、低温型昇温式水素分析装置〈ガスクロマトグラフタイプ〉(JTF-20AL)を用いた。昇温脱離分析は200℃/hの昇温速度で室温から400℃までの温度範囲で行い、その総和を水素量とした。試験体は鋼板の板厚1/4位置および鋼管の内面から1/4位置で鋼管長手方向に30mm長さで直径7Φの円柱形状である。なお、この水素量は後述している時効で説明する高圧水素疲労試験に供する前であり、表1-1、1-2に示すH量である。
 なお、鋼管も上述している鋼材と同じ方法で上記の各種試験を実施している。
 本発明の発明例は、すべて水素ガス中の疲労き裂進展速度が1.0×10-6m/cycle以下の条件を満足した。
 なお、表2-3における鋳造速度が本発明範囲外である鋼管No.94、101は、粗大な介在物が生じるため、水素ガス中の疲労き裂進展速度が本発明の範囲外となり、比較例となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
以下、本発明の効果を検証した実施例について、説明する。なお、以下の実施例において鋼管を以下の製造条件で製造し、特性評価を行った。表1-1、1-2に示すビレットNo.Q、BC、表2-3に示すAS1と同一の成分組成の鋼管用いて、所定の条件で冷却工程まで行い、冷却工程後(焼き戻し工程前)に表3の条件で再加熱し、焼き入れ工程を実施した鋼管について特性評価を行った。表3に示す鋼管No.17A~17Cは、表1-1、2-1に示す鋼管No.17に対して再加熱工程を行ったものである。また、鋼管No.55A~55Cは、表1-2、2-2に示す鋼管No.55に対して、鋼管No.92A~92Bは、表2-3に示す鋼管No.92に対して再加熱工程を行ったものである。
実施例2における発明例は、すべて水素ガス中のき裂進展速度da/dNが1.0×10-6m/cycle以下の条件を満足した。そのなかでも、再加熱および焼き入れ工程がより好適な条件で実施される方が、き裂伝播特性は優れていた。
Figure JPOXMLDOC01-appb-T000006
以下、本発明の効果を検証した実施例について、説明する。なお、以下の実施例において鋼管を以下の製造条件で製造し、特性評価を行った。表1-1、1-2に示すビレットNo.NとAQ、表2-3に示すAX1を用いて、焼き戻し工程までは表2-1、2-2で示す鋼管No.14、43、表2-3で示す鋼管No.97と同一の条件で製造し、脱水素処理条件を変化させたときの特性評価を行った。上記結果を表4に示す。
実施例1で実施している鋼管No.14、43、97の脱水素処理は、脱水素処理温度T(雰囲気温度)を50℃で保持時間を3時間として実施したが、本実施例では、鋼管No.14D、43D、97Dは脱水素処理温度T(雰囲気温度)を50℃とし、板厚中心温度Tcが50℃に到達してからの保持時間tcを(A)式が満足するように実施した。鋼管鋼管No.14E、43E、97Eは脱水素処理温度T(雰囲気温度)を50℃とし、脱水素処理温度Tが50℃で保持時間tcが上述している(A)式を満足するように行っているものの、板厚中央温度Tcが50℃に到達してからの保持時間tcは上述している(A)式を満足していない。
鋼管鋼管No.14F、97Fは、脱水素処理温度T(雰囲気温度)は50℃であるが、雰囲気温度の保持時間t、板厚中央温度Tcが50℃に到達してからの保持時間tcがともに上述している(A)式を満足していない。
 表4において、「脱水素保持時間tがY」は、脱水素処理温度T(雰囲気温度)は50℃とし、保持時間tが(A)式を満足しており、「脱水素保持時間tがN」は、脱水素処理温度T(雰囲気温度)は50℃としているが、保持時間tが(A)式を満足していない。また、「鋼材中心温度Tcにおける保持時間tcがY」は、板厚中央温度Tcが50℃に到達してからの保持時間tcが(A)式を満足しており、「鋼材中心温度Tcにおける保持時間tcがN」は、板厚中央温度Tcが50℃に到達するものの、Tcが50℃に到達してからの保持時間tcが(A)式を満足していない。
  疲労き裂伝播特性の調査は、実施例1に記載の疲労き裂進展試験により評価した。
  本発明の発明例は、すべて水素ガス中のき裂進展速度da/dNが1.0×10-6m/cycle以下の条件を満足した。そのなかでも、脱水素処理条件がより好適な条件で実施される鋼管ほど、き裂伝播特性は優れていた。
Figure JPOXMLDOC01-appb-T000007

Claims (8)

  1.  質量%で、
    C:0.10~0.45%、
    Si:0.01~2.0%、
    Mn:0.3~2.0%、
    Al:0.01~0.15%、
    N:0.0005~0.008%、
    P:0.015%以下、
    S:0.0015%以下、
    O:0.01%以下、
    H:0.0010%以下、
    Cu:0~2.5%、
    Ni:0~2.5%、
    Cr:0~2.5%、
    Mo:0~2.0%、
    Nb:0~0.5%、
    V:0~0.5%、
    Ti:0~0.5%、
    W:0~2.5%、
    B:0~0.005%、
    Sn:0~0.3%、
    Sb:0~0.3%、
    Ca:0~0.01%、
    Mg:0~0.01%、
    REM:0~0.005%
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    残留オーステナイトが3%以下で、
    径が200nm以上である炭化物が20個/10μm以下で、
    1MPa以上の水素中の応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼管。
  2.  請求項1に記載の成分組成を有する鋼素材を1.8m/min以下の鋳造速度で鋳造する鋳造工程と、
    1350℃以下で加熱する加熱工程と、
    前記加熱工程で加熱された鋼素材を、圧延終了温度:820℃以上の条件で圧延して鋼管形状とする熱間圧延工程と、
    前記熱間圧延工程で得られた鋼管を、Ac点以上1000℃以下の温度で保持後、冷却条件が下記A群またはB群である冷却工程と、
    前記冷却工程で得られた鋼管を400℃以上Ac点以下、60分未満とした条件で焼き戻しを行う焼き戻し工程と、を有する鋼管の製造方法。
    A群:
    800℃から550℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼管を冷却。
    B群:
    800℃から300℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼管を冷却。
  3.  前記焼き戻し工程前に、Ac点以上1000℃以下に再加熱し、冷却条件が下記A群またはB群である焼入れ工程を有する請求項2に記載の鋼管の製造方法。
    A群:
    800℃から550℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼管を冷却。
    B群:
    800℃から300℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼管内面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼管を冷却。
  4.  前記鋳造速度が1.0m/min以下である請求項2または3に記載の鋼管の製造方法。
  5.  質量%で、
    C:0.10~0.45%、
    Si:0.01~2.0%、
    Mn:0.3~2.0%、
    Al:0.01~0.15%、
    N:0.0005~0.008%、
    P:0.015%以下、
    S:0.0015%以下、
    O:0.01%以下、
    H:0.0010%以下、
    Cu:0~2.5%、
    Ni:0~2.5%、
    Cr:0~2.5%、
    Mo:0~2.0%、
    Nb:0~0.5%、
    V:0~0.5%、
    Ti:0~0.5%、
    W:0~2.5%、
    B:0~0.005%、
    Sn:0~0.3%、
    Sb:0~0.3%、
    Ca:0~0.01%、
    Mg:0~0.01%、
    REM:0~0.005%
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    残留オーステナイトが3%以下で、
    径が200nm以上である炭化物が20個/10μm以下で、
    1MPa以上の水素中の応力拡大係数範囲=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼材。
  6.  請求項5に記載の成分組成を有する鋼素材を1.8m/min以下の鋳造速度で鋳造する鋳造工程と、
    1350℃以下で加熱する加熱工程と、
    前記加熱工程で加熱された鋼素材を、圧延終了温度:820℃以上の条件で圧延する熱間圧延工程と、
    前記熱間圧延工程で得られた鋼材を、Ac点以上1000℃以下の温度で保持後、冷却条件が下記A群またはB群である冷却工程と、
    前記冷却工程で得られた鋼材を400℃以上Ac点以下、60分未満とした条件で焼き戻しを行う焼き戻し工程と、を有する鋼材の製造方法。
    A群:
    800℃から550℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼材を冷却。
    B群:
    800℃から300℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼材を冷却。
  7.  前記焼き戻し工程前に、Ac点以上1000℃以下に再加熱し、冷却条件が下記A群またはB群である焼入れ工程を有する請求項6に記載の鋼材の製造方法。
    A群:
    800℃から550℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以上、550℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で15℃/s以下で50℃以下まで鋼材を冷却。
    B群:
    800℃から300℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で10℃/s以上、300℃から50℃までの平均冷却速度が鋼材表面からの肉厚1/4位置で5℃/s以下で50℃以下まで鋼材を冷却。
  8.  前記鋳造速度が1.0m/min以下である請求項6または7に記載の鋼材の製造方法。

     
PCT/JP2023/035556 2022-09-29 2023-09-28 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法 WO2024071354A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024503436A JPWO2024071354A1 (ja) 2022-09-29 2023-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157172 2022-09-29
JP2022-157172 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071354A1 true WO2024071354A1 (ja) 2024-04-04

Family

ID=90478075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035556 WO2024071354A1 (ja) 2022-09-29 2023-09-28 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2024071354A1 (ja)
WO (1) WO2024071354A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056991A (ja) * 2006-08-31 2008-03-13 Nippon Steel Corp 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板およびその製造方法
WO2013191131A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 油井管用鋼及びその製造方法
WO2017047099A1 (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
WO2018074109A1 (ja) * 2016-10-17 2018-04-26 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2020137812A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
WO2022209896A1 (ja) * 2021-03-30 2022-10-06 Jfeスチール株式会社 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056991A (ja) * 2006-08-31 2008-03-13 Nippon Steel Corp 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板およびその製造方法
WO2013191131A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 油井管用鋼及びその製造方法
WO2017047099A1 (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法
WO2018074109A1 (ja) * 2016-10-17 2018-04-26 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2020137812A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
WO2022209896A1 (ja) * 2021-03-30 2022-10-06 Jfeスチール株式会社 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法

Also Published As

Publication number Publication date
JPWO2024071354A1 (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
CA2731908C (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same
JP5633664B1 (ja) 鋼材および水素用容器ならびにそれらの製造方法
CA2766028C (en) High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
KR101686257B1 (ko) 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
KR101681626B1 (ko) 높은 압축 강도를 갖는 라인파이프용 용접 강관
JP5499733B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
EP3395999A1 (en) Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor
KR101333854B1 (ko) 저온 인성이 우수한 후육 고장력 열연 강판 및 그 제조 방법
US8758528B2 (en) High-strength steel plate, method of producing the same, and high-strength steel pipe
AU2011210499B2 (en) Production method for seamless steel pipe used in line pipe, and seamless steel pipe used in line pipe
KR101664635B1 (ko) 고장력 열연 강판 및 그 제조 방법
EP3904541A1 (en) Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
JP5141073B2 (ja) X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法
KR100815717B1 (ko) 수소유기균열 저항성과 저온인성이 우수한 고강도 대구경라인파이프 강재 및 그 제조방법
JP7371604B2 (ja) 高圧水素ガス環境用鋼材の製造方法
JP2012172256A (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
WO2015151468A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP2004359973A (ja) 耐遅れ破壊特性に優れた高強度鋼板及びその製造方法
JP2006207028A (ja) 耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法
JP2010037567A (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
WO2022181164A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP4687554B2 (ja) 焼入れ部材用鋼板、焼入れ部材及びその製造方法
JP2012017522A (ja) ラインパイプ用鋼材
JP2010196157A (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
WO2024071354A1 (ja) 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024503436

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872574

Country of ref document: EP

Kind code of ref document: A1