WO2017045520A1 - 一种湿法磷酸副产α半水石膏的生产方法 - Google Patents

一种湿法磷酸副产α半水石膏的生产方法 Download PDF

Info

Publication number
WO2017045520A1
WO2017045520A1 PCT/CN2016/096941 CN2016096941W WO2017045520A1 WO 2017045520 A1 WO2017045520 A1 WO 2017045520A1 CN 2016096941 W CN2016096941 W CN 2016096941W WO 2017045520 A1 WO2017045520 A1 WO 2017045520A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
acid
phosphoric acid
mixed
slurry
Prior art date
Application number
PCT/CN2016/096941
Other languages
English (en)
French (fr)
Inventor
胡兆平
陈宏坤
姚华龙
刘永秀
李成志
张西兴
Original Assignee
金正大生态工程集团股份有限公司
金正大诺泰尔化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金正大生态工程集团股份有限公司, 金正大诺泰尔化学有限公司 filed Critical 金正大生态工程集团股份有限公司
Priority to RU2018113281A priority Critical patent/RU2688514C1/ru
Priority to US15/760,851 priority patent/US10745278B2/en
Priority to LTEP16845634.1T priority patent/LT3351506T/lt
Priority to CA2998908A priority patent/CA2998908C/en
Priority to EP16845634.1A priority patent/EP3351506B1/en
Publication of WO2017045520A1 publication Critical patent/WO2017045520A1/zh
Priority to SA518391134A priority patent/SA518391134B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/228Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen one form of calcium sulfate being formed and then converted to another form
    • C01B25/229Hemihydrate-dihydrate process
    • C01B25/2295Hemihydrate-dihydrate process the conversion being performed in one or more vessels different from those used for reaction after separation of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/2204Arrangements of vessels used in reacting phosphate-containing material in wet process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/223Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen only one form of calcium sulfate being formed
    • C01B25/226Hemihydrate process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another

Definitions

  • the invention belongs to the technical field of a production method of wet process phosphoric acid, in particular to a method for producing ⁇ -hemihydrate gypsum by-product of wet process phosphoric acid.
  • wet-process phosphoric acid generally refers to a sulfuric acid method of wet-process phosphoric acid, that is, phosphoric acid produced by decomposing phosphate rock with sulfuric acid. More than 80% of the phosphoric acid in China is produced by the wet-process two-aqueous process.
  • the dihydrate process has the characteristics of simple process, mature technology and strong adaptability to ore types. It is especially suitable for medium and low grade ores and is dominant in the production of wet process phosphoric acid. However, there are still some insurmountable defects in the process of dihydrate process.
  • the by-produced phosphogypsum is subject to many restrictions due to its high phosphorus content, and only a small part is used to produce low-grade and low-quality gypsum building materials and cement.
  • the coagulant, most of the phosphogypsum is discarded and stored, causing serious pollution and waste. Therefore, the conventional wet-process phosphoric acid process needs to be further improved to reduce the phosphorus content in the phosphogypsum and thus to be converted into a more valuable product.
  • the Chinese Patent Publication No. CN103626143A discloses a method for producing a by-product of phosphoric acid by-product in a wet process by first stirring a phosphate rock (pulp) and phosphoric acid at 45 ° C to 70 ° C to form a mixed slurry containing solid impurities; After continuous or intermittent precipitation, a mixed solution of phosphoric acid and calcium phosphate salt and a thick slurry containing solid impurities are separated; under stirring, sulfuric acid is added to react with the separated mixed solution of phosphoric acid and calcium phosphate, and the precipitate is separated and separated to obtain phosphoric acid and white. plaster.
  • the invention obtains the product phosphoric acid and white gypsum without the formation of phosphogypsum, eliminates the pollution of the gypsum gypsum stack to the atmosphere, soil and groundwater, and the by-product dihydrate white gypsum has high purity and high whiteness value.
  • the invention still needs to discharge the acid insoluble matter residue, which is difficult to handle, and the produced dihydrate white gypsum needs to be dehydrated or crystallized to be used as a ⁇ -gypsum or alpha-gypsum product with a relatively high added value.
  • CN102001636A discloses a method for producing a wide concentration of phosphoric acid and clean gypsum by a medium and low grade phosphate rock wet process, which provides a semi-aqueous-dihydrate process method, by-product high quality building half.
  • Water gypsum or functional dihydrate gypsum enables better development and utilization of low-grade phosphate rock.
  • the invention still needs to discharge solid waste residue and dihydrate gypsum equivalent to the amount of clean gypsum, which is difficult to use.
  • Chinese Patent Publication No. CN1421385 discloses a method for producing a hemihydrate-dihydrate phosphoric acid.
  • the invention divides the sulfuric acid into two places by controlling the precipitation rate of calcium in the reaction tank; a part of sulfuric acid is added to the mixed acidifier and mixed with the dilute phosphoric acid, and then added to the second reaction tank; another part of sulfuric acid is added to the dilute phosphoric acid tank,
  • the alpha hemihydrate gypsum is first prepared, and then the alpha hemihydrate gypsum is converted into dihydrate gypsum.
  • the by-product gypsum of the invention is still dihydrate gypsum which is difficult to directly use.
  • CN 103086335A discloses a method for producing a phosphoric acid co-produced ⁇ -hemihydrate gypsum by a dihydrate-semi-water wet process phosphoric acid process, and a wet-process phosphoric acid concentration ⁇ (P 2 O 5 ) produced by a two-water process.
  • the phosphoric acid concentration ⁇ (P 2 O 5 ) produced by the semi-aqueous process is 10% to 15%
  • the co-produced semi-aqueous phosphogypsum crystal water is 5% ⁇ 7%
  • the mass percentage of free P 2 O 5 in gypsum is less than 0.4%
  • its crystal form is ⁇ -hemihydrate phosphogypsum.
  • the method can not control the aspect ratio of ⁇ -hemihydrate gypsum under the condition of dihydrate-semi-water transcrystallization. Although ⁇ -hemihydrate gypsum products can be produced, the ⁇ -hemihydrate gypsum product has low strength, the application of the product is limited, and the phosphorus in the product The content is still high.
  • the problems existing in the prior art are: first, it is still necessary to discharge waste such as acid insoluble matter; second, the by-product gypsum is dihydrate, and it is necessary to be processed to become ⁇ -hemihydrate gypsum or ⁇ -hemihydrate gypsum. The higher value of the product; the third is that the obtained alpha hemihydrate gypsum product has low strength and high phosphorus content, which limits its high-end application.
  • the present invention provides a method for producing ⁇ -hemihydrate gypsum by-product of wet process phosphoric acid in view of the deficiencies of the prior art.
  • the method eliminates the discharge of phosphogypsum and acid-insoluble matter through process innovation, reduces the phosphorus content in gypsum, improves the utilization rate of phosphorus, and obtain ⁇ -hemihydrate gypsum products which can be directly applied to building materials industry. .
  • a method for producing ⁇ -hemihydrate gypsum by-product of wet process phosphoric acid comprising the following steps:
  • step S2) separating the mixed slurry A obtained in step S1) from 0 to 2/3 of the volume for solid-liquid separation to obtain clear liquid B and solid C;
  • the solid-liquid mass ratio of the phosphate rock to the dilute sulfuric acid in the step S1) is 1: (2-10).
  • the temperature of the extraction reaction in the step S1) is 30 ° C to 95 ° C; the extraction reaction time is 15 to 60 min.
  • the crystallizing agent is a water-soluble phosphate, a water-soluble sulfate, a water-soluble nitrate, a water-soluble citrate, a water-soluble alkylbenzenesulfonate, a water-soluble alkyl fatty acid salt or a water-soluble organic
  • a carboxylate the water-soluble phosphate, a water-soluble sulfate, a water-soluble nitrate, a water-soluble citrate, a water-soluble alkylbenzenesulfonate, a water-soluble alkyl fat
  • the acid salt and the water-soluble organic carboxylate each independently contain one or more of Al 3+ , Fe 3+ , Mg 2+ , K + , Na + and NH 4 + .
  • the temperature of the crystal transformation reaction in the step S3) is 60 ° C to 130 ° C; the time of the crystal transformation reaction is 1.5 to 7.5 h.
  • the liquid-solid mass ratio of the solid C and the remaining mixed slurry mixed with the dilute sulfuric acid in the step S3) is (2-6):1.
  • the mass fraction of phosphoric acid in the liquid phase after mixing the solid C and the remaining mixed slurry with the dilute sulfuric acid in step S3) is 16% to 25% in terms of P 2 O 5 , and the mass of sulfuric acid in terms of H 2 SO 4 The score is 8% to 12%.
  • a method for producing ⁇ -hemihydrate gypsum by-product of wet-process phosphoric acid comprises the following steps:
  • the mixed slurry A obtained in the step (1) is separated from the volume of 0 to 2/3 to carry out solid-liquid separation to obtain the clear liquid B and the solid C, and the clear liquid B is sent to the acid storage as the finished phosphoric acid, and the solid C and The remaining mixed slurry is transferred together to the crystallizing tank;
  • the whole system is made into some circulation system by the step (2), and the phosphoric acid formed in the step (1) is excessive in the subsequent crystal transformation process, and not only the partial phosphoric acid product is obtained through the step (2), but also the product is ensured.
  • the smoothness of the phosphorus cycle of the entire system is ensured.
  • the fineness of the phosphate rock in the step (1) is 80 to 100 mesh, and the content of phosphorus pentoxide in the phosphate rock is 10% to 40% by mass.
  • the mass concentration of the dilute sulfuric acid in the step (1) and the step (3) is 20% to 40%, and further preferably, the mass concentration of the dilute sulfuric acid is 20% to 35%.
  • the mass fraction of sulfate ions in the mixed slurry A in the step (1) is less than 1%.
  • the liquid-solid mass ratio of the mixed acid solution and the slurry after decalcification in the step (3) is 2 to 6:1, that is, the solid C, and the remaining mixed slurry is mixed with the diluted sulfuric acid added.
  • the liquid-solid mass ratio is 2-6:1; wherein the liquid phosphoric acid accounts for 16% to 25% of the mixed acid in terms of P 2 O 5 , and the sulfuric acid accounts for 8%-12 in the mixed acid of H 2 SO 4 . %; further preferably, the liquid-solid mass ratio of the mixed acid solution and the slurry after decalcification in the step (3) is 3 to 5:1, wherein the liquid phosphoric acid accounts for 18% to 23% of the mixed acid in terms of P 2 O 5 . %, sulfuric acid accounts for 9% to 10% of the mixed acid in terms of H 2 SO 4 .
  • the crystallizing agent in the step (3) refers to a water-soluble phosphate, sulfate, nitric acid containing Al 3+ , Fe 3+ , Mg 2+ , K + , Na + , NH 4 + ions.
  • a salt, a citrate, an alkylbenzenesulfonate, an alkyl fatty acid salt or an organic carboxylate is included in the step (3).
  • the crystallizing agent added in the step (3) is a combination of sodium citrate, iron sulfate, sodium lignin sulfonate; or a combination of sodium nitrate, magnesium sulfate, sodium dodecyl sulfate; or phosphoric acid a combination of sodium, aluminum sulfate, sodium lignin sulfonate; or a combination of ammonium nitrate, magnesium sulfate, sodium chloride.
  • the crystallizer combination is one of the following by mass ratio:
  • the total amount of the crystallizing agent added in the step (3) is from 0.1% to 1.0% by mass of the mixed slurry.
  • the temperature of the hot water in the step (4) is from 80 ° C to 90 ° C.
  • the drying temperature in the step (4) is from 110 ° C to 180 ° C, and further preferably, the drying temperature is from 110 ° C to 130 ° C.
  • the steam generated in the dilution process in the step (5) is introduced into the crystal cell in the step (3) to provide the heat of reaction.
  • a method for producing ⁇ -hemihydrate gypsum by-product of wet-process phosphoric acid comprises the following steps:
  • the mixed slurry A obtained in the step (1) is separated from the volume of 1/6 by a filter to carry out solid-liquid separation to obtain a clear liquid B and a solid C, and the separated clear liquid B is sent as a finished phosphoric acid into the acid storage. Solid C is transferred to the crystallizer along with the remaining mixed slurry;
  • the principle of the invention is that the phosphate rock powder is firstly decomposed by the mixed acid of sulfuric acid and phosphoric acid, so that the calcium ions in the phosphate rock are all formed into dihydrate gypsum, the crystallizing agent is added, the condition is controlled in the sulfur-phosphorus mixed acid solution, and the ⁇ -half water is directly prepared. plaster.
  • the invention relates to a chemical reaction formula:
  • the crystal transformation condition of the invention is in a mixed acid solution in the presence of phosphoric acid and sulfuric acid.
  • the environment of the strong acid solution can dissolve the dihydrate gypsum, and the water molecules are discharged during the recombination process to form a new one.
  • the crystal nucleus and can make the small crystal nucleus dissolve, the large crystal nucleus grows again, which is the generality of the same crystal growth.
  • the compounding crystallizer of the present invention can promote the crystal form of gypsum to grow in the desired hexagonal short column direction, and wash with a solvent such as ethanol or water without changing the crystal shape which has been formed. It can maintain its original shape in the water for a long time, and has the same characteristics as the ⁇ -water gypsum produced by the hydrothermal method.
  • the ⁇ -hemihydrate gypsum of the invention can be dried into gypsum powder or directly added with water without a drying step to form gypsum products such as gypsum board, gypsum block and gypsum component.
  • the invention uses the washing liquid to dilute the concentrated sulfuric acid, on the one hand, the washing liquid is recycled and utilized to avoid the generation of the waste liquid, on the other hand, the steam generated by the dilution heat of the concentrated sulfuric acid is fully utilized, and the steam is introduced into the crystal changing tank to maintain the rotation required.
  • the invention can produce ⁇ -semi-water gypsum products which can be directly applied to the building materials industry, and can realize industrialized continuous large-scale production, and solves the problem that the phosphogypsum caused by the conventional wet-process phosphoric acid is difficult to handle.
  • Phosphogypsum produced by the conventional wet-process phosphoric acid has high phosphorus content, and the present invention reduces the phosphorus content in the by-produced ⁇ -hemihydrate gypsum to less than 0.1%, thereby improving the utilization ratio of phosphorus in the phosphate rock.
  • ⁇ -hemihydrate gypsum prepared by the invention can be controlled, and ⁇ -hemihydrate gypsum with different aspect ratios can be prepared by adjusting the formula of the crystal conversion agent, which can be applied to different market demands.
  • the invention fully utilizes the steam generated by the dilution heat of concentrated sulfuric acid to realize the recycling of the dilution heat, thereby saving the production cost, saving energy and reducing emissions.
  • All the components in the phosphate rock powder of the invention can be fully utilized, and no environmental pollutants such as waste water and waste phosphogypsum are produced.
  • the extraction process of the invention does not require precipitation stratification, which greatly shortens the reaction and aging in the extraction tank. The time required to increase production efficiency.
  • FIG. 1 is a schematic view showing the process flow of a method for producing ⁇ -hemihydrate gypsum by-product of wet-process phosphoric acid according to the present invention.
  • the chemical reagents used in the examples of the present invention are all commercially available, and the reagent concentration and the mineral component content are all mass percentages.
  • Example 1 The phosphate rock collection site is phosphorus in Guizhou; the phosphorus pentoxide content in the phosphate rock is about 32%.
  • a method for producing ⁇ -hemihydrate gypsum by-product of wet process phosphoric acid the steps are as follows:
  • the phosphate rock powder and the dilute sulfuric acid with a mass concentration of 20% are first added to the extraction tank at a solid-liquid mass ratio of 1:4.
  • the fineness of the phosphate rock powder is 100 mesh, and the phosphorus pentoxide content in the phosphate rock is 32. %, under continuous stirring, the extraction bath temperature was controlled at 80 ° C for extraction reaction for 30 minutes to obtain a mixed slurry A.
  • the mixed slurry A obtained in the step (1) is separated from the volume of 1/6 by a filter to carry out solid-liquid separation to obtain a clear liquid B and a solid C, and the separated clear liquid B is sent as a finished phosphoric acid into the acid storage. Solid C is transferred to the crystallizer along with the remaining mixed slurry.
  • the mixed acid slurry D obtained in the step (3) is subjected to solid-liquid separation to obtain a solid E and a filtrate F, and the solid E is washed with hot water at 85 ° C to obtain a washing liquid H and a solid G, and the solid G is dried by a drying fan.
  • the drying temperature is 110 ° C, which is ⁇ -hemihydrate gypsum.
  • the product phosphoric acid was detected by the quinoxalyl ketone gravimetric method at a concentration of 27% by weight.
  • the product alpha hemihydrate gypsum P 2 O 5 content was 0.06 wt%.
  • the product ⁇ -water gypsum meets the industry standard of JC/T 2038-2010. It has a hexagonal short column shape under a 200x optical microscope, the aspect ratio is 1-2, the measured 2h flexural strength is 9.5MPa, and the dry flexural strength is 17MPa.
  • the dry compressive strength is 95 MPa, the initial setting time is 8 min, and the final setting time is 17 min.
  • Example 2 The phosphate rock collection site is Guizhou Lufa; the phosphorus pentoxide content in the phosphate rock is 27%.
  • a method for producing ⁇ -hemihydrate gypsum by-product of wet process phosphoric acid the steps are as follows:
  • the mixed slurry A obtained in the step (1) is separated into a volume of 2/3 by a filter to carry out solid-liquid separation to obtain a clear liquid B and a solid C, and the separated clear liquid B is sent as a finished phosphoric acid into the acid storage. Solid C is transferred to the crystallizer along with the remaining mixed slurry.
  • the mixed acid slurry D obtained in the step (3) is subjected to solid-liquid separation by a belt filter to obtain a solid E and a filtrate F, and the solid E is washed with hot water at 90 ° C to obtain a washing liquid H and a solid G, and a solid G Drying by a drying fan, the drying temperature is 110 ° C, which is ⁇ -hemihydrate gypsum;
  • the product phosphoric acid liquid was detected by the quinoxalyl ketone gravimetric method at a concentration of 22% by weight.
  • the product alpha hemihydrate gypsum P 2 O 5 content was 0.08 wt%.
  • the product ⁇ -hemihydrate gypsum meets the industry standard of JC/T 2038-2010. It has a hexagonal short column shape under a 200x optical microscope, and the aspect ratio is 2 ⁇ 3.
  • the 2h flexural strength is 8.0MPa and the dry bending strength is 15MPa.
  • the dry compressive strength is 75 MPa, the initial setting time is 9 min, and the final setting time is 18 min.
  • gypsum powder having an aspect ratio of ⁇ 10 or less can be obtained by the present invention. It can be seen that the form of ⁇ -hemihydrate gypsum prepared by the invention can be controlled, and ⁇ -water gypsum powder with different aspect ratios can be prepared by adjusting the formula of the crystal conversion agent, which is suitable for different market demands.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

提供一种湿法磷酸副产α半水石膏的生产方法。该方法先将磷矿粉和部分稀硫酸加入到萃取槽中,进行萃取反应,得到的混合料浆分离出的清液作为成品磷酸送入酸库,分离出的固体与剩下的混合料浆一起转移到转晶槽中。向转晶槽中加入硫酸和转晶剂,在60℃~130℃下进行转晶反应1.5~7.5小时,得到的混酸料浆进行固液分离,固体可烘干成石膏粉,也可不经过烘干步骤直接加水制成石膏板、石膏砌块、石膏构件等石膏制品。该方法可以消除磷石膏和酸不溶物的排放,降低石膏中磷的含量,提高了磷的利用率,充分利用浓硫酸的稀释热,节能减排。

Description

一种湿法磷酸副产α半水石膏的生产方法
本申请要求于2015年9月18日提交中国专利局、申请号为201510595367.7、发明名称为“一种湿法磷酸副产α半水石膏的生产方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于一种湿法磷酸的生产方法技术领域,具体说,涉及一种湿法磷酸副产α半水石膏的生产方法。
背景技术
通常所称的“湿法磷酸”实际上是指硫酸法湿法磷酸,即用硫酸分解磷矿生产得到的磷酸。我国80%以上的磷酸都采用湿法磷酸二水法流程生产。二水法流程具有工艺简单、技术成熟、对矿石种类适应性强的特点,特别适用于中低品位矿石,在湿法磷酸生产中居于统治地位。但是,二水法流程至今仍存在着一些难以克服的缺陷,副产出的磷石膏因为磷含量高,受到许多限制,仅一小部分用于生产低档和低质量的石膏建材产品及水泥用缓凝剂,大部分磷石膏丢弃堆存,造成严重的污染和浪费。所以,传统湿法磷酸工艺有待于进一步改进,使磷石膏中磷含量降低,从而转变为使用价值更高的产品。
公开号为CN103626143A的中国专利公布了湿法生产磷酸副产白石膏的方法,是先把磷矿粉(浆)和磷酸于45℃~70℃搅拌反应,生成含有固体杂质的混合料浆;再经连续或间歇沉淀,分离得到磷酸和磷酸钙盐混合溶液及含固体物杂质的稠浆;搅拌下,加硫酸与分离的磷酸和磷酸钙盐混合溶液反应,沉淀分层,分离得到磷酸和白石膏。该发明得到产品磷酸和白石膏,没有磷石膏生成,消除了磷石膏堆放对大气、土壤及地下水的污染,并且副产二水白石膏纯度高、白度值高。但是该发明仍然要排出酸不溶物废渣难以处理,而且生成的二水白石膏需要脱水或转晶,才能作为附加值比较高的β石膏或α石膏产品。公开号为CN102001636A的中国专利公开了一种利用中低品位磷矿湿法生产宽浓度磷酸和洁净石膏的方法,该发明提供了一种半水-二水工艺方法,副产高质量的建筑半水石膏或功能性二水石膏,使中低品位的磷矿得以更好的开发利用。但是该发明仍然需要排出与洁净石膏量相当的固体废渣与二水石膏,难以利用。
公开号为CN1421385的中国专利公开了一种半水-二水磷酸的生产方法。该发明通过控制反应槽中钙的析出率,将硫酸分为两处加入;一部份硫酸加入混酸器与稀磷酸混合后加入到第二反应槽;另一部份硫酸加入到稀磷酸槽,先制得α半水石膏,然后将α半水石膏转化反应成二水石膏。该发明副产石膏仍为难以直接利用的二水石膏。公开号为CN 103086335A的中国专利公开了一种二水-半水湿法磷酸工艺生产磷酸联产α-半水石膏的方法,二水工艺生产出的湿法磷酸浓度ω(P2O5)为35%~39%,半水工艺生产出的磷酸浓度ω(P2O5)为10%~15%,作为二水部分的返酸,联产的半水磷石膏结晶水在5%~7%,石膏中游离P2O5的质量百分数小于0.4%,其晶型为α-半水磷石膏。该方法二水-半水转晶条件下无法控制α半水石膏长径比,虽然能产出α半水石膏产品,但是α半水石膏产品强度低,产品的应用受到限制,而且产品中磷含量仍然偏高。
综上,现有技术存在的问题是,一是仍需要排放酸不溶物等废弃物;二是副产的石膏为二水物,要后续加工才能成为α半水石膏或β半水石膏等附加值较高的产品;三是得到的α半水石膏产品强度低且磷含量偏高,限制了其高端应用。
发明内容
本发明针对现有技术的不足,提供一种湿法磷酸副产α半水石膏的生产方法。该方法在传统湿法磷酸的基础上,通过工艺创新消除磷石膏和酸不溶物的排放,降低石膏中磷的含量,提高磷的利用率,得到可直接应用于建材行业的α半水石膏产品。
本发明的技术方案如下:
一种湿法磷酸副产α半水石膏的生产方法,包括如下步骤:
S1)将磷矿粉与稀硫酸混合进行萃取反应,得到混合浆料A;
S2)将步骤S1)中得到的混合浆料A分出体积的0~2/3进行固液分离,得到清液B与固体C;
S3)将所述固体C及余下的混合浆料与稀硫酸混合,再加入转晶剂,加热进行转晶反应,得到混合料浆D;
S4)将步骤S3)中得到的混合料浆D过滤,得到α半水石膏。
优选的,所述步骤S1)中磷矿粉与稀硫酸的固液质量比为1:(2~10)。
优选的,所述步骤S1)中萃取反应的温度为30℃~95℃;萃取反应的时间为15~60min。
优选的,所述转晶剂为水溶性磷酸盐、水溶性硫酸盐、水溶性硝酸盐、水溶性柠檬酸盐、水溶性烷基苯磺酸盐、水溶性烷基脂肪酸盐或水溶性有机羧酸盐中的一种或几种复配;所述水溶性磷酸盐、水溶性硫酸盐、水溶性硝酸盐、水溶性柠檬酸盐、水溶性烷基苯磺酸盐、水溶性烷基脂肪酸盐与水溶性有机羧酸盐各自独立地含有Al3+、Fe3+、Mg2+、K+、Na+与NH4 +中的一种或几种。
优选的,所述步骤S3)中转晶反应的温度为60℃~130℃;转晶反应的时间为1.5~7.5h。
优选的,所述步骤S3)中固体C及余下的混合浆料与稀硫酸混合后的液固质量比为(2~6):1。
优选的,步骤S3)中固体C及余下的混合浆料与稀硫酸混合后的液相中磷酸以P2O5计的质量分数为16%~25%,硫酸以H2SO4计的质量分数为8%~12%。
优选的,一种湿法磷酸副产α半水石膏的生产方法,包括如下步骤:
(1)先将磷矿粉和稀硫酸按固液质量比1:2~10加入到萃取槽中,将萃取槽温度控制在30℃~95℃下进行萃取反应15~60分钟,得到混合料浆A;
(2)将步骤(1)中得到的混合料浆A分出体积的0~2/3进行固液分离得清液B和固体C,清液B作为成品磷酸送入酸库,固体C与剩下的混合料浆一起转移到转晶槽中;
(3)向转晶槽中加入稀硫酸,控制脱钙后液相磷酸中液固比以及P2O5和H2SO4的含量,得混合后料浆,然后加入转晶剂,维持转晶槽温度在60℃~130℃条件下进行转晶反应1.5~7.5小时,得到混酸料浆D;
(4)将步骤(3)中得到的混酸料浆D进行固液分离,得到固体E和滤液F,用热水洗涤固体E,得到洗液H和固体G,将固体G干燥后即得α半水石膏;
(5)将步骤(4)的滤液F导入步骤(1)萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释浓硫酸,被稀释的硫酸溶液用于步骤(1)中萃取工序和步骤(3)中转晶工序。
在本发明中,通过步骤(2)使整个体系成为一些循环系统,步骤(1)中生成的磷酸在后续转晶过程中是过量的,通过步骤(2)不仅得到了部分磷酸产品,还保证了整个体系的磷循环的顺畅。
根据本发明优选的,所述步骤(1)中磷矿粉细度为80~100目,磷矿粉中五氧化二磷含量为质量分数10%~40%。
根据本发明优选的,所述步骤(1)和步骤(3)中稀硫酸质量浓度为20%~40%,进一步优选的,稀硫酸质量浓度为20%~35%。
根据本发明优选的,所述步骤(1)中混合料浆A中硫酸根离子的质量分数小于1%。
根据本发明优选的,所述步骤(3)中脱钙后混酸溶液和渣浆的液固质量比为2~6:1,即固体C、剩下的混合料浆与加入的稀硫酸混合后的液固质量比为2~6:1;其中液体磷酸以P2O5计占混酸的质量分数为16%~25%,硫酸以H2SO4计占混酸的质量分数为8%~12%;进一步优选的,步骤(3)中脱钙后混酸溶液和渣浆的液固质量比为3~5:1,其中液体磷酸以P2O5计占混酸的质量分数为18%~23%,硫酸以H2SO4计占混酸的质量分数为9%~10%。
根据本发明优选的,所述步骤(3)中转晶剂是指含有Al3+、Fe3+、Mg2+、K+、Na+、NH4 +离子的水溶性磷酸盐、硫酸盐、硝酸盐、柠檬酸盐、烷基苯磺酸盐、烷基脂肪酸盐或有机羧酸盐中的一种或几种复配。
进一步优选的,步骤(3)中加入的转晶剂为柠檬酸钠、硫酸铁、木质磺酸钠的组合;或者为硝酸钠、硫酸镁、十二烷基磺酸钠的组合;或者为磷酸钠、硫酸铝、木质磺酸钠的组合;或者为硝酸铵、硫酸镁、氯化钠的组合。
更进一步优选,所述转晶剂组合按质量比为下列之一:
a.柠檬酸钠:硫酸铁:木质磺酸钠=1.00:1.50~2.00:0.30~0.90;
b.硝酸钠:硫酸镁:十二烷基磺酸钠=1.00:1.50~2.00:0.30~0.90;
c.磷酸钠:硫酸铝:木质磺酸钠=1.00:1.50~2.00:0.40~0.90;
d.硝酸铵:硫酸镁:氯化钠=1.00:1.60~2.20:0.50~0.80。
根据本发明优选的,所述步骤(3)中加入的转晶剂总含量占混合后料浆质量的0.1%~1.0%。
根据本发明优选的,所述步骤(4)中热水的温度为80℃~90℃。
根据本发明优选的,所述步骤(4)中的干燥温度为110℃~180℃,进一步优选的,干燥温度为110℃~130℃。
根据本发明优选的,所述步骤(5)中稀释过程中产生的蒸汽导入步骤(3)中转晶槽中提供反应热量。
更进一步优选的,一种湿法磷酸副产α半水石膏的生产方法,包括如下步骤:
(1)先将磷矿粉和质量浓度为20%稀硫酸按固液质量比1:4加入到萃取槽中,磷矿粉细度为100目,磷矿中五氧化二磷含量为32%,在不断搅拌下,将萃取槽温度控制在80℃下进行萃取反应30分钟,得到混合料浆A;
(2)将步骤(1)中得到的混合料浆A分出体积的1/6经过滤机进行固液分离得清液B和固体C,分离出的清液B作为成品磷酸送入酸库,固体C与剩下的混合料浆一起转移到转晶槽中;
(3)向转晶槽中加入质量浓度为20%稀硫酸,控制脱钙后混酸溶液和渣浆的液固质量比为6:1,其中液体磷酸中P2O5的浓度占混酸的质量分数为20%,硫酸以H2SO4计占混酸的质量分数为9%,得混合后料浆;然后加入转晶剂硫酸铁占混合后料浆质量的0.23%、柠檬酸钠占混合后料浆质量的0.12%以及木质磺酸钠占混合后料浆质量的0.08%,维持转晶槽温度在110℃条件下进行转晶反应3小时,得到混酸料浆D;
(4)将步骤(3)中得到的混酸料浆D进行固液分离,得到固体E和滤液F,用85℃热水洗涤固体E,得到洗液H和固体G,固体G经干燥风机干燥,干燥温度为110℃,即为α半水石膏;
(5)将步骤(4)的滤液F导入步骤(1)萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释浓硫酸,被稀释的硫酸溶液分为两部分,分别用于步骤(1)中萃取反应、步骤(3)中转晶反应;稀释过程中产生的蒸汽导入转晶槽中提供反应热量。
本发明的原理是先用硫酸和磷酸的混酸分解磷矿粉反应,使磷矿中钙离子全部生成二水石膏,加入转晶剂,在硫磷混酸溶液中控制条件,直接制取α半水石膏。
本发明涉及到的化学反应式:
Ca5F(PO4)3+7H3PO4→5Ca(H2PO4)2+HF↑
Ca(H2PO4)2+H2SO4+2H2O=2H3PO4+CaSO4·2H2O
CaSO4·2H2O→CaSO4·1/2H2O
本发明的转晶条件是在磷酸和硫酸存在的混酸溶液中,在一定的温度和转晶剂的条件下,强酸溶液环境能让二水石膏溶解,水分子重新组合过程中被排出,形成新的晶核,并能让细小晶核溶解,大晶核再长大,这是同种晶体生长的通性。在强酸条件下,本发明复配的转晶剂能促使石膏的结晶形态向着所希望的六角短柱状方向生长,用乙醇或水等溶剂洗涤,也不会改变已生成的结晶形状。并能在水中长时间保持原有的形态,与水热法生成的α半水石膏有完全相同的特性。
本发明α半水石膏既可以经过烘干成石膏粉,也可以不经过烘干步骤直接加水制成石膏板、石膏砌块、石膏构件等石膏制品。
本发明将洗液用来稀释浓硫酸,一方面洗液回收利用避免废液的产生,另一方面充分利用浓硫酸的稀释热产生的蒸汽,将蒸汽导入转晶槽中维持转晶所需的温度和热量,实现稀释热的回收利用,据实际生产计算,年产量10万吨的半水石膏生产线,利用浓硫酸的稀释热可节约成本60多万元。
本发明具有的有益效果:
1.本发明较传统湿法磷酸可生产出能直接应用于建材行业的α半水石膏产品,并且能实现工业化连续大规模生产,解决了传统湿法磷酸造成的磷石膏难处理的问题。
2.传统湿法磷酸副产出的磷石膏含磷高,而本发明使副产出的α半水石膏中磷的含量降低到0.1%以下,提高了磷矿中磷的利用率。
3.本发明制备的α半水石膏形态可以控制,通过调整转晶剂的配方可以制备不同长径比的α半水石膏,可以适用不同的市场需求。
4.本发明充分利用浓硫酸的稀释热产生的蒸汽,实现稀释热的回收利用,节约了生产成本,节能减排。
5.本发明磷矿粉中所有成分可全部资源化利用,无废水、废弃物磷石膏等环境污染物产出。
6.本发明萃取过程不需要沉淀分层,大大缩短了萃取槽中反应以及陈化 需要的时间,提高了生产效率。
附图说明
图1为本发明湿法磷酸副产α半水石膏生产方法的工艺流程示意图。
具体实施方式
为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例采用的化学试剂均为市购,试剂浓度及矿物成分含量均为质量百分比。
实施例1、磷矿采集地点为贵州开磷;磷矿中五氧化二磷含量约为32%。
一种湿法磷酸副产α半水石膏的生产方法,步骤如下:
(1)先将磷矿粉和质量浓度为20%的稀硫酸按固液质量比1:4加入到萃取槽中,磷矿粉细度为100目,磷矿中五氧化二磷含量为32%,在不断搅拌下,将萃取槽温度控制在80℃下进行萃取反应30分钟,得到混合料浆A。
(2)将步骤(1)中得到的混合料浆A分出体积的1/6经过滤机进行固液分离得清液B和固体C,分离出的清液B作为成品磷酸送入酸库,固体C与剩下的混合料浆一起转移到转晶槽中。
(3)向转晶槽中加入质量浓度为20%的稀硫酸,控制脱钙后混酸溶液和渣浆的液固质量比为6:1,其中液体磷酸中P2O5的浓度占混酸的质量分数为20%,硫酸以H2SO4计占混酸的质量分数为9%;得混合后料浆,然后加入转晶剂硫酸铁占混合后料浆质量的0.23%、柠檬酸钠占混合后料浆质量的0.12%以及木质磺酸钠占混合后料浆质量的0.08%,维持转晶槽温度在110℃条件下进行转晶反应3小时,得到混酸料浆D。
(4)将步骤(3)中得到的混酸料浆D进行固液分离,得到固体E和滤液F,用85℃热水洗涤固体E,得到洗液H和固体G,固体G经干燥风机干燥,干燥温度为110℃,即为α半水石膏。
(5)将步骤(4)的滤液F导入步骤(1)萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释质量分数97%的浓硫酸,被稀释的硫酸溶液分为两部分,分别用于步骤(1)中萃取反应、步骤(3)中转晶反应;稀释过程中产生的蒸汽导入转晶槽中提供反应热量。
检测结果:
产品磷酸用喹钼柠酮重量法检测,浓度为27wt%。产品α半水石膏P2O5含量0.06wt%。产品α半水石膏符合JC/T 2038-2010的行业标准,在200倍光学显微镜下呈六角短柱状,长径比为1~2,测得2h抗折强度9.5MPa,干抗折强度17MPa,干抗压强度为95MPa,初凝时间8min,终凝时间17min。
实施例2、磷矿采集地点为贵州路发;磷矿中五氧化二磷含量为27%。
一种湿法磷酸副产α半水石膏的生产方法,步骤如下:
(1)先将磷矿粉和质量浓度为30%稀硫酸按固液质量比1:3加入到萃取槽中,磷矿粉细度为100目,磷矿中五氧化二磷含量为27%,在不断搅拌下,将萃取槽温度控制在70℃下进行萃取反应50分钟,得到混合料浆A。
(2)将步骤(1)中得到的混合料浆A分出体积的2/3经过滤机进行固液分离得清液B和固体C,分离出的清液B作为成品磷酸送入酸库,固体C与剩下的混合料浆一起转移到转晶槽中。
(3)向转晶槽中加入质量浓度为30%稀硫酸,控制脱钙后混酸溶液和渣浆的液固质量比为5:1,其中液体磷酸中P2O5的浓度占混酸的质量分数为20%,硫酸以H2SO4计占混酸的质量分数为12%,得混合后料浆;然后加入转晶剂硫酸铝占混合后料浆质量的0.25%、柠檬酸钠占混合后料浆质量的0.09%以及木质磺酸钠占混合后料浆质量的0.06%,维持转晶槽温度在100℃条件下进行转晶反应2小时,得到混酸料浆D。
(4)将步骤(3)中得到的混酸料浆D经皮带过滤机进行固液分离,得到固体E和滤液F,用90℃热水洗涤固体E,得到洗液H和固体G,固体G经干燥风机干燥,干燥温度为110℃,即为α半水石膏;
(5)将步骤(4)的滤液F导入萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释浓硫酸,被稀释的硫酸溶液分为两部分,分别用于步骤(1)中萃取反应、步骤(3)中转晶反应;稀释过程中产生的蒸汽导入转晶槽中提供反应热量。
检测结果:
产品磷酸液体用喹钼柠酮重量法检测,浓度为22wt%。产品α半水石膏P2O5含量0.08wt%。产品α半水石膏符合JC/T 2038-2010的行业标准,在200 倍光学显微镜下呈六角短柱状,长径比为2~3,测得2h抗折强度8.0MPa,干抗折强度15MPa,干抗压强度为75MPa,初凝时间9min,终凝时间18min。
实施例3
同实施例1所述一种湿法磷酸副产α半水石膏的生产方法,不同之处在于使用的转晶剂组分和含量不同,如表1所示:
表1转晶剂组分、含量以及得到产品的性能
Figure PCTCN2016096941-appb-000001
Figure PCTCN2016096941-appb-000002
由上表可知:通过本发明可以制得长径比<10以下的石膏粉。由此可见,本发明制备的α半水石膏形态可以控制,通过调整转晶剂的配方可以制备不同长径比的α半水石膏粉,用来适用不同的市场需求。
实施例4
由实施例1~3实际生产工艺过程中检测蒸汽量,每生产1吨α半水石膏所产生的蒸汽量(t)得到表2:
表2实施例1~3采用浓硫酸稀释槽蒸汽回收利用工艺产生的蒸汽结果
Figure PCTCN2016096941-appb-000003
由表2可知,采用硫酸稀释槽蒸汽回收利用工艺,每生产1吨α半水石膏可平均产生0.0426吨蒸汽,年生产量10万吨的α半水石膏生产线,按每吨蒸汽150元的价格计算,可创造63.90万元的经济效益。

Claims (17)

  1. 一种湿法磷酸副产α半水石膏的生产方法,其特征在于,包括如下步骤:
    S1)将磷矿粉与稀硫酸混合进行萃取反应,得到混合浆料A;
    S2)将步骤S1)中得到的混合浆料A分出体积的0~2/3进行固液分离,得到清液B与固体C;
    S3)将所述固体C及余下的混合浆料与稀硫酸混合,再加入转晶剂,加热进行转晶反应,得到混合料浆D;
    S4)将步骤S3)中得到的混合料浆D过滤,得到α半水石膏。
  2. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤S1)中磷矿粉与稀硫酸的固液质量比为1:(2~10)。
  3. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤S1)中萃取反应的温度为30℃~95℃;萃取反应的时间为15~60min。
  4. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述转晶剂为水溶性磷酸盐、水溶性硫酸盐、水溶性硝酸盐、水溶性柠檬酸盐、水溶性烷基苯磺酸盐、水溶性烷基脂肪酸盐或水溶性有机羧酸盐中的一种或几种复配;所述水溶性磷酸盐、水溶性硫酸盐、水溶性硝酸盐、水溶性柠檬酸盐、水溶性烷基苯磺酸盐、水溶性烷基脂肪酸盐与水溶性有机羧酸盐各自独立地含有Al3+、Fe3+、Mg2+、K+、Na+与NH4 +中的一种或几种。
  5. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤S3)中转晶反应的温度为60℃~130℃;转晶反应的时间为1.5~7.5h。
  6. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤S3)中固体C及余下的混合浆料与稀硫酸混合后的液固质量比为(2~6):1。
  7. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,步骤S3)中固体C及余下的混合浆料与稀硫酸混合后的液相中磷酸以P2O5 计的质量分数为16%~25%,硫酸以H2SO4计的质量分数为8%~12%。
  8. 如权利要求1所述的湿法磷酸副产α半水石膏的生产方法生产方法,其特征在于,包括如下步骤:
    (1)先将磷矿粉和稀硫酸按固液质量比1:2~10加入到萃取槽中,将萃取槽温度控制在30℃~95℃下进行萃取反应15~60分钟,得到混合料浆A;
    (2)将步骤(1)中得到的混合料浆A分出体积的0~2/3进行固液分离得清液B和固体C,清液B作为成品磷酸送入酸库,固体C与剩下的混合料浆一起转移到转晶槽中;
    (3)向转晶槽中加入稀硫酸,控制脱钙后液相磷酸中液固比以及P2O5和H2SO4的含量,得混合后料浆,然后加入转晶剂,维持转晶槽温度在60℃~130℃条件下进行转晶反应1.5~7.5小时,得到混酸料浆D;
    (4)将步骤(3)中得到的混酸料浆D进行固液分离,得到固体E和滤液F,用热水洗涤固体E,得到洗液H和固体G,将固体G干燥后即得α半水石膏;
    (5)将步骤(4)的滤液F导入步骤(1)萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释浓硫酸,被稀释的硫酸溶液用于步骤(1)中萃取工序和步骤(3)中转晶工序。
  9. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(1)中磷矿粉细度为80~100目,磷矿粉中五氧化二磷含量为质量分数10%~40%。
  10. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(1)和步骤(3)中稀硫酸质量浓度为20%~40%,进一步优选的,稀硫酸质量浓度为20%~35%。
  11. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(1)中混合料浆A中硫酸根离子的质量分数小于1%。
  12. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(3)中脱钙后混酸溶液和渣浆的液固质量比为2~6:1,其中液体磷酸以P2O5计占混酸的质量分数为16%~25%,硫酸以H2SO4计占混酸的质量分数为8%~12%;进一步优选的,步骤(3)中脱钙后混酸溶液和渣浆的液固 质量比为3~5:1,其中液体磷酸以P2O5计占混酸的质量分数为18%~23%,硫酸以H2SO4计占混酸的质量分数为9%~10%。
  13. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(3)中转晶剂是指含有Al3+、Fe3+、Mg2+、K+、Na+、NH4+离子的水溶性磷酸盐、硫酸盐、硝酸盐、柠檬酸盐、烷基苯磺酸盐、烷基脂肪酸盐或有机羧酸盐中的一种或几种复配。
  14. 如权利要求13所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,步骤(3)中加入的转晶剂为柠檬酸钠、硫酸铁、木质磺酸钠的组合;或者为硝酸钠、硫酸镁、十二烷基磺酸钠的组合;或者为磷酸钠、硫酸铝、木质磺酸钠的组合;或者为硝酸铵、硫酸镁、氯化钠的组合;所述步骤(3)中加入的转晶剂总含量占混合后料浆质量的0.1%~1.0%;所述转晶剂组合按质量比为下列之一:
    a.柠檬酸钠:硫酸铁:木质磺酸钠=1.00:1.50~2.00:0.30~0.90;
    b.硝酸钠:硫酸镁:十二烷基磺酸钠=1.00:1.50~2.00:0.30~0.90;
    c.磷酸钠:硫酸铝:木质磺酸钠=1.00:1.50~2.00:0.40~0.90;
    d.硝酸铵:硫酸镁:氯化钠=1.00:1.60~2.20:0.50~0.80。
  15. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(4)中热水的温度为80℃~90℃;所述步骤(4)中的干燥温度为110℃~180℃,进一步优选的,干燥温度为110℃~130℃。
  16. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,所述步骤(5)中稀释过程中产生的蒸汽导入步骤(3)中转晶槽中提供反应热量。
  17. 如权利要求8所述的湿法磷酸副产α半水石膏的生产方法,其特征在于,包括如下步骤:
    (1)先将磷矿粉和质量浓度为20%稀硫酸按固液质量比1:4加入到萃取槽中,磷矿粉细度为100目,磷矿中五氧化二磷含量为32%,在不断搅拌下,将萃取槽温度控制在80℃下进行萃取反应30分钟,得到混合料浆A;
    (2)将步骤(1)中得到的混合料浆A分出体积的1/6经过滤机进行固液分离得清液B和固体C,分离出的清液B作为成品磷酸送入酸库,固体C与 剩下的混合料浆一起转移到转晶槽中;
    (3)向转晶槽中加入质量浓度为20%稀硫酸,控制脱钙后混酸溶液和渣浆的液固质量比为6:1,其中液体磷酸中P2O5的浓度占混酸的质量分数为20%,硫酸以H2SO4计占混酸的质量分数为9%,得混合后料浆;然后加入转晶剂硫酸铁占混合后料浆质量的0.23%、柠檬酸钠占混合后料浆质量的0.12%以及木质磺酸钠占混合后料浆质量的0.08%,维持转晶槽温度在110℃条件下进行转晶反应3小时,得到混酸料浆D;
    (4)将步骤(3)中得到的混酸料浆D进行固液分离,得到固体E和滤液F,用85℃热水洗涤固体E,得到洗液H和固体G,固体G经干燥风机干燥,干燥温度为110℃,即为α半水石膏;
    (5)将步骤(4)的滤液F导入步骤(1)萃取槽继续萃取磷矿粉;洗液H导入硫酸稀释槽中用以稀释浓硫酸,被稀释的硫酸溶液分为两部分,分别用于步骤(1)中萃取反应、步骤(3)中转晶反应;稀释过程中产生的蒸汽导入转晶槽中提供反应热量。
PCT/CN2016/096941 2015-09-18 2016-08-26 一种湿法磷酸副产α半水石膏的生产方法 WO2017045520A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2018113281A RU2688514C1 (ru) 2015-09-18 2016-08-26 Способ производства фосфорной кислоты с получением в качестве побочного продукта альфа-полуводного гипса мокрым способом
US15/760,851 US10745278B2 (en) 2015-09-18 2016-08-26 Method for producing phosphoric acid and by-producing alpha-hemihydrate gypsum by wet-process
LTEP16845634.1T LT3351506T (lt) 2015-09-18 2016-08-26 Fosforo rūgšties gamybos būdas ir alfa hemihidrato gipso kaip šalutinio produkto gamybos būdas naudojant šlapiąjį procesą
CA2998908A CA2998908C (en) 2015-09-18 2016-08-26 Method for producing phosphoric acid and by-producing alpha-hemihydrate gypsum by wet-process
EP16845634.1A EP3351506B1 (en) 2015-09-18 2016-08-26 Method for producing phosphoric acid and by-producing alpha-hemihydrate gypsum by wet-process
SA518391134A SA518391134B1 (ar) 2015-09-18 2018-03-18 طريقة لإنتاج حمض فوسفوريك وإنتاج فرعي لجبس نصف هيدرات-ألفا بعملية-رطبة

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510595367.7A CN105253867B (zh) 2015-09-18 2015-09-18 一种湿法磷酸副产α半水石膏的生产方法
CN201510595367.7 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017045520A1 true WO2017045520A1 (zh) 2017-03-23

Family

ID=55093871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096941 WO2017045520A1 (zh) 2015-09-18 2016-08-26 一种湿法磷酸副产α半水石膏的生产方法

Country Status (8)

Country Link
US (1) US10745278B2 (zh)
EP (1) EP3351506B1 (zh)
CN (1) CN105253867B (zh)
CA (1) CA2998908C (zh)
LT (1) LT3351506T (zh)
RU (1) RU2688514C1 (zh)
SA (1) SA518391134B1 (zh)
WO (1) WO2017045520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448276A (zh) * 2022-08-16 2022-12-09 四川龙蟒磷化工有限公司 一种电池正极材料前驱体及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105253867B (zh) * 2015-09-18 2017-10-17 金正大生态工程集团股份有限公司 一种湿法磷酸副产α半水石膏的生产方法
CN105776303A (zh) * 2016-01-30 2016-07-20 瓮福(集团)有限责任公司 一种α型半水石膏的生产方法
CN106185853B (zh) * 2016-07-19 2018-03-16 中化化肥有限公司成都研发中心 生产饲料级湿法净化磷酸联产高纯度高白度半水石膏的方法
CN106348266B (zh) * 2016-08-25 2019-02-12 贵州川恒化工股份有限公司 半水工艺制备磷酸联产石膏粉的方法
CN108083746A (zh) * 2017-12-06 2018-05-29 诺弗斯绝热材料有限公司 一种面层用高强度自流平材料及其制备方法
CN109748252A (zh) * 2019-03-19 2019-05-14 济南大学 一种利用中低品位磷矿可控酸解制备半水湿法磷酸的方法
CN110510589A (zh) * 2019-09-10 2019-11-29 湖北祥云(集团)化工股份有限公司 一种湿法磷酸生产方法及生产系统
CN110510590A (zh) * 2019-10-08 2019-11-29 中化重庆涪陵化工有限公司 一种稳定高效的湿法磷酸生产系统及工艺
CN110902665B (zh) * 2019-12-12 2022-11-15 昆明川金诺化工股份有限公司 一种提高半水磷酸浓度和洗涤率的方法
CN111533154B (zh) * 2020-04-21 2023-06-02 贵州大学 一种硝酸分解磷矿酸解液除钙副产α高强石膏的方法
CN111559754B (zh) * 2020-04-21 2023-06-06 贵州大学 一种硝酸分解磷矿酸解液除钙副产α型建筑石膏的方法
CN113120875B (zh) * 2021-04-25 2022-12-30 云南云天化股份有限公司 一种低杂质湿法磷酸及高品质α-半水石膏的生产方法
CN113651300A (zh) * 2021-08-16 2021-11-16 四川绵竹市盘龙矿物质有限责任公司 一种高钙磷比磷矿用于湿法磷酸净化提高磷收率的方法
CN114477116B (zh) * 2022-01-24 2023-11-28 上海弗鲁克科技发展有限公司 一种使用高剪切反应器制备磷酸的方法
CN114275803A (zh) * 2022-01-28 2022-04-05 贵州大学 硝酸磷肥工艺冷冻酸解液深度除钙副产α高强石膏的方法
CN114644324A (zh) * 2022-04-28 2022-06-21 临沂盛丰干燥设备有限公司 一种高强磷石膏粉及其生产方法
CN115448351A (zh) * 2022-08-29 2022-12-09 浙江博明环保节能科技有限公司 一种α半水石膏的制备方法
CN116553848A (zh) * 2023-03-14 2023-08-08 云南省生态环境科学研究院 一种半原位转晶制备α高强石膏的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303852A (zh) * 2011-04-19 2012-01-04 江苏瑞和化肥有限公司 一种湿法磷酸联产石膏晶须的方法
CN103086335A (zh) * 2013-02-05 2013-05-08 瓮福(集团)有限责任公司 一种二水-半水湿法磷酸工艺生产磷酸联产a-半水石膏的方法
CN104355560A (zh) * 2014-10-21 2015-02-18 金正大生态工程集团股份有限公司 一种α-高强石膏粉的生产方法
CN105253867A (zh) * 2015-09-18 2016-01-20 金正大生态工程集团股份有限公司 一种湿法磷酸副产α半水石膏的生产方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653826A (en) * 1967-09-21 1972-04-04 Nissan Chemical Ind Ltd Process for the production of phosphoric acid at a high concentration and a gypsum by-product of improved quality
JPS5230959B2 (zh) 1972-11-25 1977-08-11
US4196172A (en) 1976-07-07 1980-04-01 Occidental Petroleum Corporation Hemihydrate type phosphoric acid process
US4501724A (en) * 1984-02-01 1985-02-26 Goers Associates Inc. Method for the wet process manufacture of phosphoric acid
DE3583209D1 (de) 1984-11-05 1991-07-18 Prayon Dev Sa Kontinuierliches verfahren zur herstellung von phosphorsaeure und von calciumsulfat.
JPS63144107A (ja) 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc 高濃度燐酸−半水石こうスラリ−の濾過方法
CN1091424C (zh) 1998-09-08 2002-09-25 新疆工学院 磷矿浆减水晶形调节剂的使用方法
CN1340457A (zh) 2000-09-01 2002-03-20 山东鲁北企业集团总公司 一种磷酸生产工艺
CN1176011C (zh) 2002-12-25 2004-11-17 云南红磷化工有限责任公司 一种半水—二水磷酸的生产方法
CN1314840C (zh) 2004-06-14 2007-05-09 青岛科技大学 在磷酸中制造石膏晶须的方法
CN100396599C (zh) 2004-12-14 2008-06-25 自贡鸿鹤化工股份有限公司 盐酸法生产磷酸联产石膏的方法
US7771851B2 (en) 2005-08-26 2010-08-10 United States Gypsum Company Gypsum-containing products containing alpha hemihydrate
CN102001636B (zh) * 2010-09-26 2012-07-25 四川大学 利用中低品位磷矿湿法生产宽浓度磷酸和洁净石膏的方法
CN102126737A (zh) 2011-01-20 2011-07-20 山东金正大生态工程股份有限公司 利用硫酸氢钾生产硝硫基复合肥副产石膏的方法
CN103332664B (zh) 2013-06-22 2015-08-26 瓮福(集团)有限责任公司 一种半水法湿法磷酸生产工艺
CN103626143A (zh) * 2013-11-29 2014-03-12 晏明朗 生产湿法磷酸副产白石膏的方法
CN104211105A (zh) 2014-09-25 2014-12-17 瓮福(集团)有限责任公司 一种磷石膏生产方法
CN104628274A (zh) 2014-12-03 2015-05-20 昆明理工大学 一种磷石膏制备高强α半水石膏的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303852A (zh) * 2011-04-19 2012-01-04 江苏瑞和化肥有限公司 一种湿法磷酸联产石膏晶须的方法
CN103086335A (zh) * 2013-02-05 2013-05-08 瓮福(集团)有限责任公司 一种二水-半水湿法磷酸工艺生产磷酸联产a-半水石膏的方法
CN104355560A (zh) * 2014-10-21 2015-02-18 金正大生态工程集团股份有限公司 一种α-高强石膏粉的生产方法
CN105253867A (zh) * 2015-09-18 2016-01-20 金正大生态工程集团股份有限公司 一种湿法磷酸副产α半水石膏的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351506A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448276A (zh) * 2022-08-16 2022-12-09 四川龙蟒磷化工有限公司 一种电池正极材料前驱体及其制备方法

Also Published As

Publication number Publication date
EP3351506A1 (en) 2018-07-25
EP3351506B1 (en) 2020-09-30
RU2688514C1 (ru) 2019-05-21
SA518391134B1 (ar) 2021-12-08
CN105253867A (zh) 2016-01-20
LT3351506T (lt) 2020-12-10
EP3351506A4 (en) 2019-03-27
CA2998908C (en) 2020-06-16
CN105253867B (zh) 2017-10-17
US20180257938A1 (en) 2018-09-13
US10745278B2 (en) 2020-08-18
CA2998908A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2017045520A1 (zh) 一种湿法磷酸副产α半水石膏的生产方法
CN105174760B (zh) 一种二水石膏制备α半水石膏的方法
RU2690358C1 (ru) Способ производства экстракционной фосфорной кислоты с полученем в качестве побочного продукта альфа-полуводного гипса и альфа-полуводного гипса с высокой степенью чистоты и высокой степенью белизны
CN102603219B (zh) 利用磷石膏制备高活性半水石膏胶凝材料及石膏制品的工艺
CN102925956B (zh) 以磷石膏为主要原料制备半水硫酸钙晶须的方法
CN109290060A (zh) 一种磷矿浮选尾矿的再加工方法及磷矿浮选方法
CN103011642B (zh) 一种利用电石泥渣改性磷石膏用于常压水热法制备高强α型半水石膏的方法
CN104928758B (zh) 一种用于生产无水死烧型硫酸钙晶须的混合添加剂及方法
CN104005086A (zh) 一种磷石膏制备二水硫酸钙晶须的方法
CN105859167A (zh) 一种由磷石膏制备高白、高纯无水硫酸钙的方法
CN105236778B (zh) 一种湿法磷酸副产高纯度高白度α半水石膏及有机无机复混肥的生产方法
CN109292744B (zh) 一种中品位磷矿生产湿法磷酸及α半水磷石膏的方法
CN102557719A (zh) 一种石膏板的生产方法
CN105133003B (zh) 一种湿法磷酸副产α半水石膏晶须的生产方法
CN109748252A (zh) 一种利用中低品位磷矿可控酸解制备半水湿法磷酸的方法
CN111392702B (zh) 一种半水二水工艺制备浓磷酸和石膏粉的方法
CN105154979A (zh) 一种生产湿法磷酸副产α 半水石膏晶须和高纯度高白度α 半水石膏晶须的方法
CN107399755A (zh) 一种脱硫石膏制备高白度短柱状α‑半水石膏的方法
CN106629806A (zh) 一种利用红土镍矿湿法工艺废液生产二水石膏的方法
CN113443614A (zh) 一种二水-半水湿法浸提磷酸工艺中二水硫酸钙转化α-半水硫酸钙的方法
CN103803517B (zh) 高硅磷矿生产磷酸副产低硅磷石膏的方法
CN113148968A (zh) 一种湿法磷加工生产α-半水石膏的方法
CN115074815B (zh) 一种以卤水制盐副产物为原料常温制备二水硫酸钙晶须的方法
WO2019028957A1 (zh) 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法
CN115716721A (zh) 一种利用磷石膏直接制备无水石膏的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2998908

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15760851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201803964

Country of ref document: UA

Ref document number: 2018113281

Country of ref document: RU

Ref document number: 2016845634

Country of ref document: EP