WO2019028957A1 - 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法 - Google Patents

一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法 Download PDF

Info

Publication number
WO2019028957A1
WO2019028957A1 PCT/CN2017/100666 CN2017100666W WO2019028957A1 WO 2019028957 A1 WO2019028957 A1 WO 2019028957A1 CN 2017100666 W CN2017100666 W CN 2017100666W WO 2019028957 A1 WO2019028957 A1 WO 2019028957A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
phosphate
hydrochloric acid
calcium sulfate
producing
Prior art date
Application number
PCT/CN2017/100666
Other languages
English (en)
French (fr)
Inventor
李进
王佳才
邹建
吴生平
侯隽
黄恒
张希阳
Original Assignee
川恒生态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川恒生态科技有限公司 filed Critical 川恒生态科技有限公司
Publication of WO2019028957A1 publication Critical patent/WO2019028957A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention belongs to the technical field of feed and fertilizer, and particularly relates to a method for producing calcium phosphate salt and high-purity calcium sulfate by using hydrochloric acid and phosphate rock, especially medium and low grade phosphate rock.
  • Calcium phosphate salt can be used as fertilizer grade calcium phosphate salt, widely used in agricultural production, mainly used as raw material for compound fertilizer, and can also be directly applied to farmland; calcium phosphate salt can be used as feed grade calcium phosphate salt, suitable for Animals such as livestock and poultry, aquatic products, etc. are feed additives used to supplement calcium and phosphorus nutrition of livestock and poultry and aquatic animals.
  • Patent CN105921259A discloses a method for producing feed grade dihydrogen phosphate by using medium and low grade mixed phosphate rock, which seems to use medium and low grade phosphate rock as raw material, but actually the medium and low grade calcium magnesium phosphate rock
  • the inhibitor and the collector are sequentially added to the slurry, and the flotation is reversed to obtain a phosphate concentrate which is further reacted with sulfuric acid.
  • most of the existing processes for producing calcium phosphate salt first convert calcium in phosphate rock into phosphogypsum (calcium sulfate with high impurity) as industrial waste, and the storage and digestion of phosphogypsum is a difficult point in the industry.
  • phosphogypsum calcium sulfate with high impurity
  • the present invention provides a method for producing phosphorus using hydrochloric acid and phosphate rock.
  • a method of calcium acid salt and calcium sulfate. The method includes the following steps:
  • step B the filtrate obtained in step A is added with sulfuric acid to carry out a reaction, and filtered to obtain calcium sulfate and a filtrate;
  • step B The filtrate obtained in step B is dechlorinated, defluorinated and dehydrated by heating to obtain a calcium phosphate salt.
  • the sulfuric acid is controlled to be added in an amount such that the excess calcium is completely converted into calcium sulfate; or the sulfuric acid is added in an amount such that the excess calcium is completely converted. It is calcium sulfate; the excess calcium refers to the calcium remaining after the conversion of phosphoric acid and calcium to calcium phosphate salt in the filtrate obtained in step A.
  • step B when the amount of sulfuric acid added is not enough to completely convert excess calcium into calcium sulfate, it is necessary to add phosphoric acid to the filtrate obtained in step B.
  • the finely refined slurry is mixed, and the fine slurry is further subjected to heating dechlorination, defluorination and dehydration.
  • the amount of phosphoric acid added is controlled so that the remaining excess calcium is completely converted into calcium phosphate salt.
  • step B adding excess phosphoric acid to completely convert the remaining excess calcium into dihydrogen phosphate Calcium, after desulfurization, defluorination and dehydration by step C fine slurry, then adding phosphoric acid neutralizer to convert the remaining phosphoric acid into calcium dihydrogen phosphate.
  • the phosphoric acid neutralizing agent is at least one of lime, calcium carbonate, calcium phosphate or decalcified tricalcium phosphate.
  • sulfuric acid is added to carry out the reaction while maintaining the temperature at 60 to 100 ° C.
  • the mass concentration of the hydrochloric acid is 5% or more.
  • the hydrochloric acid has a mass concentration of 20 to 30%.
  • the reaction temperature is from room temperature to 80 °C.
  • the mass concentration of the sulfuric acid is 50 to 98%.
  • the sulfuric acid has a mass concentration of 50 to 60%.
  • the heating dechlorination, defluorination and dehydration are carried out by vacuum concentration, oven drying, atomization, disc or cylinder. Implementation.
  • the hydrogen chloride gas recovery generated in steps B and C is used for recycling in step A.
  • the method of the invention is applicable not only to high-grade phosphate rock and phosphorus concentrate, but also has the effect of removing impurities and purifying in process step A, and is particularly suitable for low-grade phosphate rock, thereby eliminating the process investment for the selective treatment of raw material phosphate rock; Due to the high price of low-grade phosphate reserves, the process has significant cost advantages.
  • the calcium in the calcium phosphate salt prepared by the method of the invention is basically all derived from the calcium of the phosphate rock, the phosphorus in the calcium phosphate salt may all be derived from the phosphate rock, and the phosphorus source may be reasonably adjusted according to the production needs; the calcium phosphate in the product
  • the salt has high purity, low free acid, and the subsequent products are not easy to agglomerate, and the quality is excellent. It meets the requirements of GBT22548-2008 for feed grade calcium dihydrogen phosphate and GBT22549-2008 for feed grade monocalcium phosphate; and by-product high purity calcium sulfate; Save resources and reduce costs.
  • the phosphorus in the calcium phosphate salt prepared by the method of the invention may all be derived from phosphate rock, and the phosphorus source may be reasonably adjusted according to the production needs.
  • the P 2 O 5 in the calcium phosphate salt is not obtained by obtaining phosphoric acid by using sulfuric acid, so that the phosphogypsum which is difficult to handle is not produced, and the discharge of industrial waste is reduced, and the implementation is The process has extremely high social and economic benefits.
  • Step C of the method of the invention is dechlorination, defluorination and dehydration by heating, and the four processes of dechlorination, defluorination, dehydration and product production are completed in one process, the production efficiency is improved, and the high-efficiency production of calcium phosphate salt is realized. At the same time, no defluorination agent is needed for chemical defluorination, which optimizes the process and saves costs.
  • the hydrochloric acid produced by the method of the invention can be closed and recycled, reduce tail gas emissions, does not cause environmental pollution, and reduces consumption of other production factors, and has extremely high economic and environmental benefits.
  • Figure 1 is a schematic diagram of the process flow of the method of the present invention
  • A hydrochloric acid and phosphate rock reaction, filtering to obtain filter residue and filtrate; filter residue is discarded or used for other purposes, the filtrate is further processed, at this time the filtrate mainly contains Ca 2+ , Cl - , H + , phosphate, etc.;
  • step B the filtrate obtained in step A is added with sulfuric acid to carry out a reaction, and filtered to obtain high-purity calcium sulfate and a filtrate;
  • step B The filtrate obtained in step B is dechlorinated, defluorinated and dehydrated by heating to obtain a calcium phosphate salt.
  • the calcium phosphate salt refers to calcium monohydrogen phosphate, calcium dihydrogen phosphate or monocalcium phosphate.
  • the phosphate rock used is a phosphate concentrate, a high-middle and low-grade phosphate rock, and the active component is Ca 5 F(PO 4 ) 3 . It is generally accepted in the industry that P 2 O 5 is in the middle grade phosphate rock in 24-28%, low-grade phosphate rock in 18-24%, and high-grade phosphate rock in 28%.
  • the raw material phosphate rock is decomposed by hydrochloric acid, and the content of impurity ions such as Al 3+ , Fe 3+ and Mg 2+ in the filtrate can be reduced due to the high content of Cl ⁇ and F ⁇ , so that most of the impurities enter the filter residue and obtain The higher purity filtrate, therefore, the method of the present invention does not require the addition of an additional purification step to obtain high purity calcium sulfate and a quality acceptable calcium phosphate product.
  • the amount of hydrochloric acid is not particularly limited, but if the amount of hydrochloric acid is too high, the equipment load is increased, and the hydrochloric acid recovery is not favorable, and the raw materials are wasted at the same time; if the amount of hydrochloric acid is too low, the decomposed phosphate rock may be incomplete.
  • the decomposition of the phosphate rock by hydrochloric acid is easy, and the normal concentration of hydrochloric acid is 20 to 30%, and the phosphate rock can be completely decomposed in a few minutes. Therefore, the concentration of the hydrochloric acid in the step A hydrochloric acid decomposition, the reaction temperature, and the reaction time are not particularly limited.
  • Low hydrochloric acid concentration can also decompose phosphate rock, but it is necessary to prolong the reaction time and / or increase the reaction temperature, and the amount of hydrochloric acid is increased, which is not conducive to the later dechlorination, defluorination, dehydration, increase equipment load and increase energy consumption;
  • the lower the reaction temperature the higher the concentration of hydrochloric acid is required and/or the reaction time is prolonged; however, the concentration of hydrochloric acid, the reaction temperature, and the reaction time only affect the reaction efficiency, and have no effect on the quality of the obtained product itself. From the viewpoints of efficiency, economy, and the like, it is preferred that the mass concentration of hydrochloric acid is 5% or more. Further, the mass concentration of hydrochloric acid is 20 to 30%.
  • the reaction temperature is room temperature, and the reaction temperature may be adjusted according to actual production requirements, such as controlling the reaction temperature to room temperature to 80 ° C.
  • a sufficient reaction can be judged by a decomposition rate of 95% or more. If the reaction is insufficient, the waste of the raw material phosphate ore may be affected, which affects the yield, but has no effect on the quality of the obtained product itself.
  • step B of the method the purpose of adding sulfuric acid is to precipitate excess calcium in the filtrate obtained in the step A, which is the calcium remaining after the conversion of the phosphoric acid and calcium into the calcium phosphate salt in the filtrate obtained in the step A.
  • step B When additional sulfuric acid is added, the phosphoric acid and calcium in the filtrate of step A itself do not form calcium phosphate salt.
  • only part of the calcium is removed by theoretical calculation, and the remaining calcium is required to react with sulfuric acid to form calcium sulfate.
  • the filtrate obtained in step A contains 3 mol of phosphoric acid and 5 mol of calcium chloride.
  • 3 mol of phosphoric acid needs to consume 3 mol of calcium, and 2 mol of calcium remains.
  • 2 mol of calcium is an excess of calcium, it is necessary to add 2 mol of sulfuric acid to react with an excess of 2 mol of calcium, so that the product obtained in step C is monohydrogen phosphate.
  • step C When the product is calcium dihydrogen phosphate, 3 mol of phosphoric acid needs to consume 1.5 mol of calcium, and then 3.5 mol of calcium remains, where 3.5 mol of calcium is excessive calcium, then 3.5 mol of sulfuric acid needs to be added to react with an excess of 3.5 mol of calcium.
  • the product obtained in step C is calcium dihydrogen phosphate. If a mixture of the two is desired, then an amount of sulfuric acid between 2 and 3.5 mol can be added.
  • the amount of calcium sulfate produced can be controlled according to the actual plant demand for calcium sulfate, that is, the amount of sulfuric acid added is controlled.
  • the amount of sulfuric acid added may not completely convert excess calcium into calcium sulfate, and then the phosphoric acid is added to react with the excess calcium to form calcium phosphate salt, thereby avoiding excessive calcium in the product, thereby producing A quality qualified calcium phosphate product.
  • step B since the reaction of calcium chloride and phosphoric acid to form a calcium phosphate salt and hydrochloric acid is a reaction of a strong acid to a strong acid, it is a reversible reaction. Therefore, when the product is calcium dihydrogen phosphate, if the ratio of phosphoric acid to calcium ion is only based on theory Calculating just complete reaction may result in incomplete reaction, resulting in unqualified calcium dihydrogen phosphate product. Therefore, in order to ensure the product is qualified in the actual production, in step B, if adding phosphoric acid, it is necessary to add excess phosphoric acid to completely convert the remaining excess calcium into calcium dihydrogen phosphate, and then desulfurize and deduct the finely adjusted slurry in step C.
  • a phosphoric acid neutralizer is added to convert the remaining phosphoric acid to calcium dihydrogen phosphate. Or the amount of sulfuric acid added is higher than the theoretical calculation, so that the remaining calcium in the filtrate is relatively less and the phosphoric acid is relatively more.
  • the phosphoric acid neutralizing agent is at least one of lime, calcium carbonate, calcium phosphate or decalcified tricalcium phosphate.
  • the concentration of sulfuric acid is not particularly limited. However, when the concentration of sulfuric acid is too low, the dosage needs to be increased, the reaction rate is lowered, and the desulfurization, defluorination, dehydration, the equipment load and the energy consumption are increased, so the concentration of sulfuric acid is preferably 50 to 98%. . More preferably, it is 50-60%.
  • step B of the above method the addition of sulfuric acid can release heat, and the higher the concentration of sulfuric acid, the more heat is released, and the amount of water introduced is small; the separation by heat preservation can prevent product precipitation, increase the yield of calcium phosphate salt and the purity of calcium sulfate, and reduce subsequent Step energy consumption.
  • step B of the above method when sulfuric acid is added to react with calcium ions to form calcium sulfate, a small amount of intermediate may be generated. If the temperature is slightly lower, the intermediate will be resolved, which may result in a decrease in the yield of the calcium phosphate salt. Therefore, this step can also be carried out at a temperature of 60 to 100 ° C. If the step is not kept warm, only the yield of the calcium phosphate salt is lowered, and there is no effect on the quality of the calcium phosphate salt.
  • the heating dechlorination, defluorination, and dehydration methods are not particularly limited as long as the water, hydrogen chloride, and hydrogen fluoride in the system can be removed, and the reaction can be carried out to the right.
  • Conventional methods such as crystallization, disc, and cylinder can be used, and the heating temperature and time are determined according to different heating methods and without decomposing the calcium phosphate salt.
  • the step C of the method of the invention in the dechlorination, defluorination and dehydration, the above reaction is promoted to the right due to the reduction of hydrogen chloride, which is equivalent to one heating step, simultaneously achieving dechlorination, defluorination, dehydration and promoting product formation.
  • the purpose is different from the conventional chemical method of adding fluorine to remove defluorination agent, which not only has simple operation and saves steps, but also saves the use of a large number of defluorination agents, saves raw materials, and obtains a calcium phosphate salt product with excellent performance.
  • the relatively small amount of hydrogen chloride produced in the step B of the method of the invention and the relatively large amount of hydrogen chloride produced in the step C can be recovered for the decomposition of the phosphate rock in the step A, thereby realizing the recycling of the hydrogen chloride and saving the cost.
  • A. Mix the medium grade phosphate rock with the mass concentration of 21% hydrochloric acid by CaO..HCl 1..2.1, that is, weigh 5000g of medium grade phosphate rock, 13221g of 21% hydrochloric acid, and carry out acid hydrolysis reaction at 35 °C for 1h.
  • the slurry is filtered and washed with 1500 g of clear water three times to obtain a filtrate and a filter residue; after the test, the filtrate index obtained in the step A is 7.84% of P 2 O 5 and 8.73% of Ca;
  • step B The filtrate obtained in step B is subjected to high-temperature atomization dechlorination, defluorination and drying in an atomization tower to control the atomization air inlet temperature of 340 ° C and the exhaust gas temperature of 130 ° C.
  • fluorine and chlorine are carried away with evaporation of water vapor.
  • a white, powdery, and highly mobile calcium dihydrogen phosphate product is obtained, and the exhaust gas is recovered by using a washing tower and discharged to the standard.
  • A. Mix the phosphate concentrate with the mass concentration of 30% hydrochloric acid by CaO..HCl 1..1.8, that is, weigh 5000g of phosphate concentrate, 9077g of 30% hydrochloric acid, and carry out acid hydrolysis reaction at 60 °C for 0.5h.
  • the slurry is filtered and washed with 1500 g of clear water three times to obtain a filtrate and a filter residue; after the test, the filtrate index obtained in the step A is 10.80% of P 2 O 5 and 11.16% of Ca;
  • step B The filtrate obtained in step B is dechlorinated, defluorinated and dried in a disc drying device, and the heating temperature is controlled at 80 ° C. During the heating process, fluorine and chlorine are carried away with evaporation of water vapor to obtain white, powdery and highly mobile phosphoric acid. Monohydrogen calcium After washing with a washing tower, the discharge is up to standard.
  • A. Mix the medium grade phosphate rock with the mass concentration of 25% hydrochloric acid and CaO..HCl 1..2.3, that is, weigh 5000g of medium grade phosphate rock, 12160g of 25% hydrochloric acid, and carry out acid hydrolysis reaction at 40 °C for 0.5h. , the slurry is filtered,
  • the filtrate and the filter residue were obtained by washing three times with 1500 g of clear water; after testing, the filtrate index obtained in the step A was 8.81% of P 2 O 5 and 9.82% of Ca;
  • Fine-tuning slurry is dechlorinated, defluorinated and dried by a negative pressure concentrating device, and the temperature of the slurry is controlled to 90 ° C, and the degree of vacuum is -0.06 MPa.
  • fluorine and chlorine are carried away with evaporation of water vapor to obtain white, powdery,
  • the fluidity of the monocalcium phosphate, the exhaust gas is absorbed by the lye and reaches the standard discharge.
  • the main components of the phosphate rock used in this example are shown in Table 10 below.
  • the main components of the phosphoric acid used are shown in Table 11 below:
  • A. Mix the medium grade phosphate rock with the mass concentration of 10% hydrochloric acid by CaO..HCl 1..2.4, that is, weigh 5000g of medium grade ore, 23610.9g of 10% hydrochloric acid, and carry out acid hydrolysis reaction at 30 °C. h, the slurry is filtered, washed with 1500g of water for three times, and then washed with water to obtain filtrate and filter residue; after testing, the filtrate index obtained in step A is 7.12% of P 2 O 5 and 8.02% of Ca;
  • step B The refined slurry obtained in step B is subjected to atomization dechlorination, defluorination and drying through an atomization tower, and the atomization inlet air temperature is controlled at 350 ° C and the exhaust gas temperature is 100 ° C.
  • fluorine and chlorine are carried away with evaporation of water vapor.
  • the white, powdery, and highly mobile calcium dihydrogen phosphate is obtained, and the tail gas is recovered by using a washing tower and discharged to the standard.
  • the main components of the phosphate rock used in this example are as follows:
  • A. Mix low-grade phosphate rock with 21% hydrochloric acid molar ratio CaO..HCl 1..2, that is, weigh 5000g of low grade ore, 14665.2g of 21% hydrochloric acid, and carry out acid hydrolysis reaction at 30 °C. h, the slurry is filtered, 1500g of clear water three times to obtain the filtrate and the filter residue; after testing, the filtrate index obtained in step A: P 2 O 5 is 5.11%, Ca is 9.12%;
  • step B The filtrate obtained in step B is subjected to atomization dechlorination, defluorination and drying in an atomization tower to control the atomization inlet air temperature of 300 ° C and the exhaust gas temperature of 110 ° C.
  • fluorine and chlorine are carried away with evaporation of water vapor.
  • the exhaust gas is recovered by the washing tower and discharged to the standard.
  • the invention is not only simple in operation, energy saving, high utilization rate of raw materials, but also prepared.
  • the product quality is excellent and meets the requirements for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fertilizers (AREA)

Abstract

提供一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法,包括以下步骤:A.盐酸与磷矿反应,过滤得滤渣和滤液;B.步骤A所得滤液中加入硫酸进行反应,过滤得硫酸钙和滤液;C.步骤B所得滤液经加热脱氯、脱氟、脱水,即得磷酸钙盐。该方法以磷矿特别是中低品位磷矿为原料,步骤简便,成本低廉,同时联产高纯硫酸钙。

Description

一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法 技术领域
本发明属于饲料及肥料技术领域,具体涉及一种利用盐酸与磷矿尤其是中低品位磷矿生产磷酸钙盐及高纯硫酸钙的方法。
背景技术
磷酸钙盐可用作肥料级磷酸钙盐,广泛适用于农业生产中,主要用作配置复混肥的原料,也可直接施用于农田;磷酸钙盐可用作饲料级磷酸钙盐,适用于畜禽、水产等动物,是一种用于补充畜禽、水产动物钙磷营养的饲料添加剂。
行业内普遍认为P2O5在24%-28%为中品位磷矿,18%-24%为低品位磷矿。中国磷矿资源比较丰富,已探明资源总量仅次于摩洛哥,位居世界第二位。中国磷矿资源总体上具有以下几个主要特征:储量较大,分布集中;中低品位矿多,富矿少,中国磷矿品位较差,P2O5平均含量在17%左右,富矿仅占磷矿石总量的约8.5%,因此中国大部分的磷矿必须经过选矿富集后才能满足磷酸和高浓度磷复合肥生产的需求;难选矿多,易选矿少,在中国磷矿储量中,沉积型磷块盐(胶磷矿)多,占全国总储量的85%,其中大部分为中低品位矿石,同时中国磷矿90%是高镁磷矿,其矿石中有用矿物的粒度细,和脉石结合紧密,不易分离,中国磷矿石世界上难选的磷矿石之一。
目前生产饲料级或肥料磷酸钙盐的方法多为先使用硫酸与磷精矿反应生成湿法磷酸,湿法磷酸经过预处理、脱氟净化,再与碳酸钙等钙源反应生成磷酸钙盐料浆,经高温雾化烘干得到合格产品。该工艺流程复杂,成本高,对磷矿原料的适应性差。专利CN105921259A公开了一种利用中低品位混合磷矿石生成饲料级磷酸二氢该的方法,看似采用中低品位磷矿作为原料,然而实际上还是将该中低品位钙镁质磷矿石矿浆中依次加入抑制剂和捕收剂,反浮选,制得磷精矿再进一步与硫酸反应。同时现有生产磷酸钙盐的工艺大多先将磷矿中的钙转化成磷石膏(杂质很高的硫酸钙)作为工业废弃物而排除掉,磷石膏的堆存和消化是本行业的难点,已经影响到本行业的可持续发展,而在后续生产磷酸钙盐的过程中又需要加入大量的碳酸钙等作为钙源,从而造成了资源的极大浪费。
发明内容
针对现有技术制备磷酸钙盐存在的问题,本发明提供了一种利用盐酸和磷矿生产磷 酸钙盐及硫酸钙的方法。该方法包括以下步骤:
A、盐酸与磷矿反应,过滤得滤渣和滤液;
B、步骤A所得滤液中加入硫酸进行反应,过滤得硫酸钙和滤液;
C、步骤B所得滤液经加热脱氯、脱氟、脱水,即得磷酸钙盐。
具体的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,控制硫酸的加入量为使过量的钙完全转化为硫酸钙;或者硫酸的加入量不能使过量的钙完全转化为硫酸钙;所述过量的钙是指步骤A所得滤液中磷酸与钙转化为磷酸钙盐后剩余的钙。
具体的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,当控制硫酸的加入量不能使过量的钙完全转化为硫酸钙时,则需在步骤B所得滤液中加入磷酸混合得精调料浆,精调料浆再进行加热脱氯、脱氟、脱水。
具体的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,控制磷酸的加入量为使剩余的过量的钙完全转化为磷酸钙盐。
其中,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法中,当磷酸钙盐为磷酸二氢钙时,步骤B中,加入过量的磷酸使剩余的过量的钙完全转化为磷酸二氢钙,经步骤C精调料浆加热脱氯、脱氟、脱水后,再加入磷酸中和剂使剩余的磷酸转化为磷酸二氢钙。所述磷酸中和剂为石灰、碳酸钙、磷酸钙或脱氟磷酸三钙中的至少一种。
优选的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,加入硫酸进行反应同时保温,保温温度为60~100℃。
优选的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤A中,所述磷矿与盐酸按摩尔比计CaO︰HCl=1︰0.8~3。
进一步的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤A中,所述磷矿与盐酸按摩尔比计CaO︰HCl=1︰1.6~2.4。
具体的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤A中,所述盐酸的质量浓度在5%以上。
进一步的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤A中,所述盐酸的质量浓度为20~30%。
其中,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤A中,所述反应温度为室温~80℃。
其中,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,所述硫酸的质量浓度为50~98%。
优选的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤B中,所述硫酸的质量浓度为50~60%。
优选的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法步骤C中,所述加热脱氯、脱氟、脱水采用负压浓缩、烘箱干燥、雾化、圆盘或圆筒中任意一种实现。
优选的,上述利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法中,步骤B、C产生的氯化氢气体回收用于步骤A中循环使用。
本发明方法具有以下有益效果:
1、本发明方法不但适用于高品位磷矿和磷精矿,由于工艺步骤A具有除杂提纯的作用特别适用于中低品位磷矿,省去了对原料磷矿精选处理的工序投资;由于中低品位磷矿储量大价格低,因此本工艺具有显著的成本优势。
2、本发明方法制备得到的磷酸钙盐中的钙基本全部来源于磷矿的钙,磷酸钙盐中的磷可以全部来源于磷矿,也可以根据生产需要合理调整磷来源;产品中磷酸钙盐纯度高,游离酸低,后续产品不易结块,质量优异,满足GBT22548-2008对饲料级磷酸二氢钙和GBT22549-2008对饲料级磷酸一氢钙的要求;同时副产高纯硫酸钙;节约资源,降低成本。
本发明方法制备得到的磷酸钙盐中的磷可以全部来源于磷矿,也可以根据生产需要合理调整磷来源。当磷酸钙盐中的磷全部来源于磷矿时,磷酸钙盐中的P2O5没有通过硫酸制取磷酸获得,从而不产生难以处理的磷石膏,减少了工业废弃物的排放,实施本工艺具有极高的社会效益和经济效益。
3、本发明方法步骤C通过加热脱氯、脱氟、脱水,一个工序过程完成了脱氯、脱氟、脱水以及促进产品生产四个目的,提升了生产效率,实现了磷酸钙盐的高效生产;同时无需外加脱氟剂进行化学脱氟,优化了流程,节约了成本。
4、本发明方法产生的盐酸能够封闭循环回收利用,减少尾气排放,不会造成环境污染,同时减少了对其它生产要素的消耗,具有极高的经济效益和环保效益。
5、副产高纯硫酸钙,石膏品位≥95%,符合《天然石膏国家标准》(GB/T-5483-2008)特级石膏指标,其纯度远高于硫酸法磷酸中产生的磷石膏,用途更广,附加值较高。
附图说明
图1本发明方法的工艺流程示意图
具体实施方式
一种利用盐酸和磷矿(尤其是中低品位磷矿)生产磷酸钙盐及高纯硫酸钙的方法, 该方法包括以下步骤:
A、盐酸与磷矿反应,过滤得滤渣和滤液;滤渣弃除或另作它用,滤液进行下一步处理,此时滤液中主要含有Ca2+、Cl-、H+、磷酸根等;
B、步骤A所得滤液中加入硫酸进行反应,过滤得高纯硫酸钙和滤液;
C、步骤B所得滤液经加热脱氯、脱氟、脱水,即得磷酸钙盐。
本发明方法中,所述磷酸钙盐是指磷酸一氢钙、磷酸二氢钙或磷酸一二钙。
本发明方法中,所述采用的磷矿为磷精矿、高中低品位磷矿均可,有效成分均为Ca5F(PO4)3。行业内普遍认为P2O5在24~28%为中品位磷矿,18~24%为低品位磷矿,高于28%为高品位磷矿。
上述方法步骤A中,采用盐酸分解原料磷矿,由于Cl-、F-含量高,可降低滤液中Al3+、Fe3+、Mg2+等杂质离子含量,使杂质大部分进入滤渣,获得纯度较高的滤液,因此本发明方法后续不需要加入额外纯化步骤,就能够获得高纯度的硫酸钙和质量合格的磷酸钙盐产品。
上述方法步骤A中,对盐酸用量无特别限定,但是如盐酸用量过高,会增大设备负荷,也不利于后期盐酸回收,同时浪费原料;如盐酸用量过低,会造成分解磷矿不完全,分解率低,造成磷矿浪费。所以,优选的,按摩尔比计,磷矿中的钙按CaO计,控制磷矿与盐酸CaO︰HCl=1︰0.8~3。进一步优选的,CaO︰HCl=1︰1.6~2.4。
上述方法步骤A中,盐酸分解磷矿很容易进行,在常温下,盐酸质量浓度为20~30%,一般几分钟就能够完全分解磷矿。所以,步骤A盐酸分解磷矿对盐酸的浓度、反应温度、反应时间都没有特别限定。低盐酸浓度也能分解磷矿,但需要延长反应时间和/或升高反应温度,且盐酸用量增大,不利于后期加热脱氯、脱氟、脱水,增大设备负荷,增加能耗;同样,反应温度越低,则需要使用高浓度盐酸和/或延长反应时间;但盐酸浓度、反应温度、反应时间仅影响反应效率,对所得产品本身的品质没有影响。从效率、经济等方面考虑,优选盐酸的质量浓度在5%以上。进一步的,盐酸的质量浓度为20~30%。优选反应温度室温即可,也可根据实际生产需要对反应温度进行一定调整,如控制反应温度为室温~80℃。
本发明方法中以分解率达到95%以上即可判断充分反应,如反应不够充分,可能会造成原料磷矿的浪费,影响产率,但对所得产品本身的品质没有影响。
上述方法步骤B中,加入硫酸的目的是沉淀步骤A所得滤液中过量的钙,所述过量的钙是指步骤A所得滤液中磷酸与钙转化为磷酸钙盐后剩余的钙。实际上,步骤B 中额外加入硫酸时,本身存在步骤A滤液中的磷酸与钙并未生成磷酸钙盐,此处只是通过理论计算将该部分钙刨除,剩余的钙即为需要外加硫酸与其进行反应生成硫酸钙。
例如,从理论计算量来看,假设经测定,步骤A所得滤液中含有3mol磷酸和5mol氯化钙,当产品为磷酸一氢钙时,3mol磷酸需要消耗3mol钙,则还剩余2mol钙,此处的2mol钙即为过量的钙,则需要加入2mol硫酸与过量的2mol钙反应,从而步骤C所得产物为磷酸一氢钙。当产品为磷酸二氢钙时,3mol磷酸需要消耗1.5mol钙,则还剩余3.5mol钙,此处的3.5mol钙则为过量的钙,则需要加入3.5mol硫酸与过量的3.5mol钙反应,从而步骤C所得产物为磷酸二氢钙。如果欲得两者混合物,那么加入2与3.5mol之间的硫酸量即可。如果外加硫酸低于2mol,即硫酸不足,则会导致产品中钙偏高,磷不足,无法达到国家标准;如果外加硫酸高于3.5mol,即硫酸过量,则会导致产品收率偏低;如果超过5mol,则无法得到磷酸钙盐。需要说明的是:上述数据均是理论计算量,在实际的操作和反应过程中,可能会存在一定偏差,实际上只要保证制备得到的产品磷酸钙盐质量合格即可。
此外,可根据实际工厂对硫酸钙的需要来控制生产的硫酸钙的量,即控制硫酸的加入量。当对硫酸钙需要较低时,加入的硫酸量也可不完全使过量的钙转化为硫酸钙,然后加入磷酸与剩余的过量的钙反应生成磷酸钙盐,避免产品中钙过高,从而制得质量合格的磷酸钙盐产品。
进一步的,由于氯化钙与磷酸反应生成磷酸钙盐和盐酸的反应为中强酸制强酸的反应,为可逆反应,所以,当产品为磷酸二氢钙时,若磷酸与钙离子比例仅仅根据理论计算刚好完全反应,可能导致反应不彻底,造成磷酸二氢钙产品不合格。所以,实际生产中为了保证产品合格,步骤B中,如加入磷酸,则需加入过量的磷酸使剩余的过量的钙完全转化为磷酸二氢钙,经步骤C中精调料浆加热脱氯、脱氟、脱水后,加入磷酸中和剂使剩余的磷酸转化为磷酸二氢钙。或者加入硫酸的量比理论计算量高一些,则使滤液中剩余的钙相对少一些、磷酸相对多一些。所述磷酸中和剂为石灰、碳酸钙、磷酸钙或脱氟磷酸三钙中的至少一种。
上述方法步骤B中,对于硫酸浓度无特别限定。但是,当硫酸浓度过低,则用量需增大,反应速率降低,同时不利于后期加热脱氯、脱氟、脱水,增大设备负荷,增加能耗,所以优选硫酸质量浓度为50~98%。进一步优选为50~60%。
上述方法步骤B中,加入硫酸可释放热量,硫酸浓度越高,热量释放越多,引入水量少;保温分离可防止产品析出,提高磷酸钙盐的收率和硫酸钙的纯度,同时减少后续 步骤能耗。
上述方法步骤B中,加入硫酸与钙离子反应生成硫酸钙时,可能会有少量的中间体产生,如温度稍低,中间体会解析出,从而会导致磷酸钙盐的产率有所降低。所以,该步骤还可以进行保温,温度为60~100℃。如该步骤不保温,只是降低了磷酸钙盐的产率,而对磷酸钙盐的质量没有影响。
上述方法步骤C中,所述的加热脱氯、脱氟、脱水方式无特别限定,只要能够使体系中的水、氯化氢、氟化氢除去,从而使反应向右进行即可,采用负压浓缩、雾化、圆盘、圆筒等常规方式均可,至于加热温度和时间根据不同的加热方式和不使磷酸钙盐分解而定。本发明方法步骤C在脱氯、脱氟、脱水时,由于氯化氢的减少,促进了上述反应向右进行,相当于一个加热步骤一步同时达到了脱氯、脱氟、脱水以及促进产品生成四个目的,有别于常规加入脱氟剂除去氟的化学方式,不仅操作简单、节约步骤,而且省去了大量脱氟剂的使用,节约原料,且获得了性能优异的磷酸钙盐产品。
本发明方法步骤B产生的相对少量氯化氢、步骤C产生的相对大量氯化氢能够回收用于步骤A中分解磷矿,从而实现了氯化氢的循环使用,节约了成本。
本发明方法涉及的主要的反应方程式如下:
磷矿分解:Ca5F(PO4)3+10HCl→3H3PO4(酸解)+5CaCl2+HF↑
产品为磷酸一氢钙时的化学方程式:
5CaCl2+3H3PO4(酸解)+2H2SO4(外加)→3CaHPO4+2CaSO4(过滤)+10HCl
产品为磷酸二氢钙时的化学方程式:
5CaCl2+3H3PO4(酸解)+3.5H2SO4(外加)→1.5Ca(H2PO4)2+3.5CaSO4(过滤)+10HCl
产品为磷酸一二钙时的化学方程式:
CaCl2+H3PO4(酸解)+H2SO4(外加)→CaHPO4+Ca(H2PO4)2+CaSO4(过滤)+HCl
实施例1
本实施例所采用磷矿主要成分见下表1:
表1
原料名称 P2O5 MgO% CaO% Fe2O3 Al2O3
中品位磷矿 26.32% 1.78% 40.98% 1.73% 1.53%
A、将中品位磷矿与质量浓度为21%的盐酸按摩尔比CaO︰HCl=1︰2.1混合,即称取中品位磷矿5000g,21%盐酸13221g,35℃条件下进行酸解反应1h,料浆经过滤、1500g清水分三次洗涤得到滤液与滤渣;经检测,步骤A所得滤液指标:P2O5为7.84%、 Ca为8.73%;
B、设定生成磷酸二氢钙产品的磷和钙的摩尔比P2O5/Ca=1.1︰1,根据步骤A所得滤液中P2O5和Ca的量,计算过量Ca的量,即取5000g步骤A所得滤液,需要加入98%硫酸量为840.3g,保温80℃搅拌30min,经过滤、洗涤得硫酸钙滤饼和滤液;
C、步骤B所得滤液在雾化塔中经高温雾化脱氯、脱氟、干燥,控制雾化进风温度340℃、尾气温度130℃,雾化过程中氟、氯随水汽蒸发带走,得到白色、粉状、流动性佳的磷酸二氢钙产品,尾气使用洗涤塔进行回收后达标排放。
本实施例所得产品磷酸二氢钙的主要成分见下表2:
表2
P总% P水% Ca% F% Cl% 水份% pH值
24.58 23.11 14.55 0.08 0.32 未检出 3.82
本实施例所得硫酸钙的主要成分(质量百分比)见下表3:
表3
Figure PCTCN2017100666-appb-000001
实施例2
本实施例所采用磷矿主要成分见下表4:
表4
原料名称 P2O5 MgO% CaO% Fe2O3 Al2O3
磷精矿 31.96% 0.62% 46.42% 0.88% 0.81%
A、将磷精矿与质量浓度为30%的盐酸按摩尔比CaO︰HCl=1︰1.8混合,即称取磷精矿5000g,30%盐酸9077g,60℃条件下进行酸解反应0.5h,料浆经过滤、1500g清水分三次洗涤得到滤液与滤渣;经检测,步骤A所得滤液指标:P2O5为10.80%、Ca为11.16%;
B、设定生成磷酸一氢钙产品的磷和钙的摩尔比P2O5/Ca=1︰2,根据步骤A所得滤液中P2O5和Ca的量,计算过量Ca的量,即取5000g步骤A所得滤液,需要加入50%硫酸量为1243.8g,保温80℃搅拌30min,经过滤、洗涤得硫酸钙滤饼和滤液;
C、步骤B所得滤液在圆盘干燥设备中进行脱氯、脱氟、干燥,控制加热温度80℃,加热过程中氟、氯随水汽蒸发带走,得到白色、粉状、流动性佳的磷酸一氢钙,尾气使 用洗涤塔进行回收后达标排放。
本实施例所得产品磷酸一氢钙的主要成分见下表5:
表5
P总% P枸% Ca% F% Cl% 水份%
17.2 15.9 21.86 0.13 0.88 0.6
本实施例所得硫酸钙的主要成分(质量百分比)见下表6:
表6
Figure PCTCN2017100666-appb-000002
实施例3
本实施例所采用磷矿原料主要成分见下表7:
表7
原料名称 P2O5 MgO% CaO% Fe2O3 Al2O3
中品位磷矿 26.32% 1.78% 40.98% 1.73% 1.53%
A、将中品位磷矿与质量浓度为25%盐酸按摩尔比CaO︰HCl=1︰2.3混合,即称取中品位磷矿5000g,25%盐酸12160g,40℃条件下进行酸解反应0.5h,料浆经过滤、
1500g清水分三次洗涤得到滤液与滤渣;经检测,步骤A所得滤液指标:P2O5为8.81%、Ca为9.82%;
B、设定生成磷酸一二钙产品的磷和钙的摩尔比P2O5/Ca=1︰1.5,根据步骤A所得滤液中P2O5和Ca的量,计算过量Ca的量,即取5000g步骤A所得滤液,需要加入75%硫酸量为996.04g,保温80℃搅拌30min,经过滤、洗涤得硫酸钙滤饼和滤液;
C、精调料浆经负压浓缩装置进行脱氯、脱氟、干燥,控制料浆温度90℃,真空度-0.06MPa,浓缩过程中氟、氯随水汽蒸发带走,得到白色、粉状、流动性佳的磷酸一二钙,尾气使用碱液吸收后达标排放。
本实施例所得产品磷酸一二钙的主要成分见下表8:
表8
P总% P水% Ca% F% Cl% 水份% pH值
21.75 10.95 18.24 0.11 0.46 0.51 3.76
本实施例所得硫酸钙的主要成分(质量百分比)见下表9:
表9
Figure PCTCN2017100666-appb-000003
实施例4
本实施例所采用磷矿主要成分见下表10,所采用磷酸主要成分见下表11:
表10
原料名称 P2O5 MgO% CaO% Fe2O3 Al2O3
中品位磷矿 25.32% 1.98% 40.25% 1.83% 1.63%
表11
原料名称 P2O5 H3PO4 CaO% MgO% Fe2O3 Al2O3
湿法磷酸 42.16 57.48 0.10 2.09 0.44 0.37
A、将中品位磷矿与质量浓度为10%的盐酸按摩尔比CaO︰HCl=1︰2.4混合,即称取中品位矿5000g,10%盐酸23610.9g,30℃条件下进行酸解反应1.5h,料浆经过滤、1500g清水分三次洗涤后洗水得到滤液与滤渣;经检测,步骤A所得滤液指标:P2O5为7.12%、Ca为8.02%;
B、设定生成磷酸二氢钙产品的磷和钙的摩尔比P2O5/Ca=1︰0.85,根据步骤A所得滤液中P2O5和Ca的量,计算过量Ca的量,根据过量的Ca含量按Ca:H2SO4=1︰0.8计算,取5000g步骤A所得滤液,需要加入98%硫酸量为789.36g,保温80℃搅拌30min,经过滤、洗涤得硫酸钙滤饼和滤液;测定该滤液中Ca过量121g,加入42.16%湿法磷酸510g,调节滤液中摩尔比P2O5/Ca=1︰0.85,得精调料浆;
C、步骤B所得精调料浆经雾化塔进行雾化脱氯、脱氟、干燥,控制雾化进风温度350℃、尾气温度100℃,雾化过程中氟、氯随水汽蒸发带走,得到白色、粉状、流动性佳的磷酸二氢钙,尾气使用洗涤塔进行回收后达标排放。
本实施例所得产品磷酸二氢钙的主要成分见下表12:
表12
P总% P水% Ca% F% Cl% 水份% pH值
23.34 22.58 14.45 0.11 0.65 0.78 3.45
本实施例所得硫酸钙的主要成分(质量百分比)见下表13:
表13
Figure PCTCN2017100666-appb-000004
实施例5
本实施例所采用磷矿主要成分下表14:
表14
原料名称 P2O5 MgO% CaO% Fe2O3 Al2O3
低品位磷矿 18.82% 1.98% 47.25% 2.83% 1.83%
A、将低品位磷矿与质量浓度为21%的盐酸按摩尔比CaO︰HCl=1︰2混合,即称取低品位矿5000g,21%盐酸14665.2g,30℃条件下进行酸解反应0.5h,料浆经过滤、1500g清水分三次洗涤得到滤液与滤渣;经检测,步骤A所得滤液指标:P2O5为5.11%、Ca为9.12%;
B、设定生成磷酸二氢钙产品的磷和钙的摩尔比P2O5/Ca=1︰1,根据步骤A所得滤液中P2O5和Ca的量,计算过量Ca的量,根据过量的Ca含量按Ca:H2SO4=1︰1计算,即取5000g步骤A所得滤液,需要加入98%硫酸量为960.11g,保温80℃搅拌30min,经过滤、洗涤得硫酸钙滤饼和滤液;
C、步骤B所得滤液在雾化塔中进行雾化脱氯、脱氟、干燥,控制雾化进风温度300℃、尾气温度110℃,雾化过程中氟、氯随水汽蒸发带走,得到白色、粉状、流动性佳的磷酸二氢钙,尾气使用洗涤塔进行回收后达标排放。
本实施例所得产品磷酸二氢钙的主要成分见下表15:
表15
P总% P水% Ca% F% Cl% 水份% pH值
23.84 22.68 14.55 0.14 0.55 0.34 3.50
本实施例所得硫酸钙的主要成分(质量百分比)见下表16:
表16
Figure PCTCN2017100666-appb-000005
综上可以看出,本发明不仅操作简单、节约能耗、原料利用率高,而且制备得到的 产品质量优异,满足使用要求。

Claims (12)

  1. 利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:包括以下步骤:
    A、盐酸与磷矿反应,过滤得滤渣和滤液;
    B、步骤A所得滤液中加入硫酸进行反应,过滤得硫酸钙和滤液;
    C、步骤B所得滤液经加热脱氯、脱氟、脱水,即得磷酸钙盐。
  2. 根据权利要求1所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤B中,控制硫酸的加入量为使过量的钙完全转化为硫酸钙;或者控制硫酸的加入量不能使过量的钙完全转化为硫酸钙;所述过量的钙是指步骤A所得滤液中磷酸与钙转化为磷酸钙盐后剩余的钙。
  3. 根据权利要求2所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤B中,当控制硫酸的加入量不能使过量的钙完全转化为硫酸钙时,则需在步骤B所得滤液中加入磷酸混合得精调料浆,精调料浆再进行加热脱氯、脱氟、脱水。
  4. 根据权利要求3所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:控制磷酸的加入量为使剩余的过量的钙完全转化为磷酸钙盐。
  5. 根据权利要求4所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:当磷酸钙盐为磷酸二氢钙时,步骤B中,加入过量的磷酸使剩余的过量的钙完全转化为磷酸二氢钙,经步骤C精调料浆加热脱氯、脱氟、脱水后,再加入磷酸中和剂使剩余的磷酸转化为磷酸二氢钙。
  6. 根据权利要求1~5任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤B中,加入硫酸进行反应同时保温,保温温度为60~100℃。
  7. 根据权利要求1~6任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤A中,所述磷矿与盐酸按摩尔比计CaO︰HCl=1︰0.8~3;优选为1︰1.6~2.4。
  8. 根据权利要求1~7任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤A中,所述盐酸的质量浓度在5%以上;优选为20~30%。
  9. 根据权利要求1~8任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤A中,所述反应温度为室温~80℃。
  10. 根据权利要求1~9任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤B中,所述硫酸的质量浓度为50~98%;优选50~60%。
  11. 根据权利要求1~10任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤C中,所述加热脱氯、脱氟、脱水采用负压浓缩、烘箱干燥、雾化、圆盘或圆筒中任意一种实现。
  12. 根据权利要求1~11任一项所述的利用盐酸和磷矿生产磷酸钙盐及硫酸钙的方法,其特征在于:步骤B、C产生的氯化氢气体回收用于步骤A中循环使用。
PCT/CN2017/100666 2017-08-08 2017-09-06 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法 WO2019028957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710672106.XA CN109384210A (zh) 2017-08-08 2017-08-08 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法
CN201710672106.X 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019028957A1 true WO2019028957A1 (zh) 2019-02-14

Family

ID=65273199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100666 WO2019028957A1 (zh) 2017-08-08 2017-09-06 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法

Country Status (2)

Country Link
CN (1) CN109384210A (zh)
WO (1) WO2019028957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979414A (zh) * 2021-12-08 2022-01-28 昆明云盘山农牧科技有限公司 一种利用低品位磷矿制备饲料级磷酸氢钙的生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803589A (zh) * 2006-01-25 2006-07-19 四川省犍为明丰化工有限公司 磷矿盐酸回收法生产饲料级磷酸氢钙和工业级磷酸的方法
CN102303852A (zh) * 2011-04-19 2012-01-04 江苏瑞和化肥有限公司 一种湿法磷酸联产石膏晶须的方法
CN102874779A (zh) * 2012-08-18 2013-01-16 湖北沃裕化工有限公司 利用中低品位磷矿生产磷铵且无固废排放的新方法
CN106044732A (zh) * 2016-06-05 2016-10-26 禄丰天宝磷化工有限公司 一种双酸解磷矿制作磷酸氢钙的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1015840A3 (fr) * 2003-12-24 2005-10-04 Ecophos Procede d'attaque de minerai de phosphate.
CN102417169B (zh) * 2011-08-15 2013-11-20 武善东 一种含镁磷矿的酸解方法
CN105819415B (zh) * 2016-04-01 2018-08-24 龚家竹 一种盐酸制取饲料磷酸氢钙的磷矿全资源利用的生产方法
CN106517124B (zh) * 2016-11-09 2019-02-01 武汉工程大学 一种低品位胶磷矿绿色生产高品质过磷酸钙联产氯化镁的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803589A (zh) * 2006-01-25 2006-07-19 四川省犍为明丰化工有限公司 磷矿盐酸回收法生产饲料级磷酸氢钙和工业级磷酸的方法
CN102303852A (zh) * 2011-04-19 2012-01-04 江苏瑞和化肥有限公司 一种湿法磷酸联产石膏晶须的方法
CN102874779A (zh) * 2012-08-18 2013-01-16 湖北沃裕化工有限公司 利用中低品位磷矿生产磷铵且无固废排放的新方法
CN106044732A (zh) * 2016-06-05 2016-10-26 禄丰天宝磷化工有限公司 一种双酸解磷矿制作磷酸氢钙的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979414A (zh) * 2021-12-08 2022-01-28 昆明云盘山农牧科技有限公司 一种利用低品位磷矿制备饲料级磷酸氢钙的生产工艺
CN113979414B (zh) * 2021-12-08 2023-08-08 昆明云盘山农牧科技有限公司 一种利用低品位磷矿制备饲料级磷酸氢钙的生产工艺

Also Published As

Publication number Publication date
CN109384210A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN109836177B (zh) 一种利用盐酸和磷矿生产磷酸钙盐及高纯石膏的方法
CN102963874B (zh) 用湿法净化磷酸和硫酸钾生产工业级磷酸二氢钾的方法
CN103496685B (zh) 连续生产饲料级磷酸氢钙的方法
WO2008061473A1 (fr) Procédé d'acidolyse de phosphorite
CN101337657A (zh) 混酸分解磷矿联产磷酸二氢钾、磷酸氢钙和复肥的方法
CN111086977B (zh) 一种利用萃余酸制备mcp、mdcp的方法
CN104744175A (zh) 利用磷钾伴生矿生产氮磷钾复合肥的方法
CN115340078A (zh) 一种利用磷矿与硫酸亚铁制备磷酸铁的方法
CN103991882A (zh) 利用湿法磷酸液相中的氟制备氟化钾的方法
CN103466579A (zh) 湿法磷酸生产全水溶磷酸一铵的方法
CN106800283B (zh) 粉状消防级磷酸一铵的生产方法
CN107827113B (zh) 一种工业磷酸一铵中和渣浆中氟的回收方法
CN107473775B (zh) 回收磷酸浓缩渣酸中磷和氟并联产低氟水溶肥的方法
WO2019100499A1 (zh) 利用盐酸和磷矿生产磷酸钙盐及高纯石膏的方法
CN103864039B (zh) 脱氟磷酸联产工业级磷酸二氢铵和饲料级磷酸钙盐的方法
CN110217769B (zh) 一种生产硝酸铵钙副产饲料级dcp的方法
WO2019028957A1 (zh) 一种利用盐酸与磷矿生产磷酸钙盐及硫酸钙的方法
CN105293459A (zh) 湿法磷酸生产全水溶磷酸一铵及联产磷酸镁铵的方法
CN111533099B (zh) 一种水溶性磷酸一铵的生产方法
CN111517832B (zh) 中低品位磷矿中P、Ca的分离方法及生产肥料的方法
CN103803517B (zh) 高硅磷矿生产磷酸副产低硅磷石膏的方法
WO2019028958A1 (zh) 一种利用盐酸与磷矿生产磷酸钙盐的方法
CN105732154A (zh) 利用钾长石生产钾肥的方法
CN108975374B (zh) 利用磷石膏制备硝酸钙的方法和硝酸钙
CN108328590B (zh) 制备磷酸钙盐并联产工业磷酸一铵的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921344

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921344

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17921344

Country of ref document: EP

Kind code of ref document: A1