WO2017045161A1 - 半导体激光器及其加工方法 - Google Patents

半导体激光器及其加工方法 Download PDF

Info

Publication number
WO2017045161A1
WO2017045161A1 PCT/CN2015/089774 CN2015089774W WO2017045161A1 WO 2017045161 A1 WO2017045161 A1 WO 2017045161A1 CN 2015089774 W CN2015089774 W CN 2015089774W WO 2017045161 A1 WO2017045161 A1 WO 2017045161A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
mirror layer
active layer
horizontal plane
axis
Prior art date
Application number
PCT/CN2015/089774
Other languages
English (en)
French (fr)
Inventor
陈健
胡菁
徐之光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/089774 priority Critical patent/WO2017045161A1/zh
Priority to CN201580081271.7A priority patent/CN107710529B/zh
Priority to JP2018513819A priority patent/JP2018527755A/ja
Publication of WO2017045161A1 publication Critical patent/WO2017045161A1/zh
Priority to US15/922,931 priority patent/US10879672B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation

Definitions

  • the present invention relates to the field of optical communications, and more particularly to a semiconductor laser and a method of processing the same.
  • Semiconductor lasers are key components of emission sources in fiber-optic communication systems. With the development of communication technology and the increase in the amount of information, it is necessary to provide an optical fiber communication system that realizes long-distance, high-speed transmission. At present, long-wavelength semiconductor lasers, such as Vertical-Cavity Surface-Emitting Laser (“VCSEL”), are the ideal light source for long-distance transmission fiber communication.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • Embodiments of the present invention provide a semiconductor laser and a processing method thereof, which can improve a modulation bandwidth of a semiconductor laser.
  • a semiconductor laser comprising: a resonant cavity for gaining photons entering the resonant cavity, the resonant cavity comprising an upper mirror layer and a lower mirror layer made of a semiconductor material, the upper reflection a mirror layer is located above the lower mirror layer, the projection of the upper mirror layer in the horizontal plane is all within a projection range of the lower mirror layer in the horizontal plane, part or all of the side of the upper mirror layer and the lower reflection Part or all of the side of the mirror layer constitutes a cleavage plane of the semiconductor laser, the cleavage plane is perpendicular to the horizontal plane; an active layer for emitting a light beam, the active layer being made of a semiconductor material, the active layer being located Between the upper mirror layer and the lower mirror layer, and the projection of the active layer at the horizontal plane is all within a projection range of the lower mirror layer in the horizontal plane, and an oxidation hole is disposed above the active layer.
  • the oxidation hole is for limiting a transverse mode of the light beam, wherein at least one of the upper mirror layer or the lower mirror layer is provided with at least two recesses, and the at least two recesses are cast at the horizontal plane
  • the shadow is located on the first axis, the first axis is perpendicular to the tangential direction of the cleavage plane, and the first axis is projected through the center of the active layer at the horizontal plane, or the first axis and the cleavage plane Vertically, a distance L V between the two intersections of the cleavage plane and the first axis is determined according to a wavelength ⁇ of the light beam and a free spectral width FSR, each of the at least two recesses and the cleavage
  • the shortest distance L 1 of the face is determined according to the distance L V and the radius R o of the oxidation hole such that the active layer emits a first beam that is emitted after being parallel to the first axis direction and reaching the
  • the distance L V satisfies:
  • n g is the group refractive index of the medium in the cavity of the semiconductor laser.
  • the shortest distance L 1 is satisfied:
  • a projection of the concave portion at the horizontal plane and a distance L 2 of the projection of the center of the active layer at the horizontal plane and the same concave portion satisfies:
  • R s is the single transverse mode spot radius of the semiconductor laser.
  • the radius of the oxide hole is R o > A, so that the semiconductor laser is in a multi-transverse mode state, wherein A is a preset Determining a constraint factor of the semiconductor laser in a single transverse mode state or a multi-transverse mode state, the depth H of each recess being determined according to the wavelength ⁇ to change the semiconductor laser from the multi-transverse mode state to the single transverse mode state .
  • the depth H satisfies:
  • n eff the effective refractive index of the semiconductor laser in the at least two recesses are not provided for.
  • the distance L 2 between the projection of each of the recesses and the center of the active layer at the horizontal plane is satisfied:
  • B and C are preset constraint factors determining the semiconductor laser in a single longitudinal mode state
  • V eff is a normalized frequency parameter
  • is an influence factor of the depth H of the concave portion
  • n eff is the semiconductor laser in the The effective refractive index when the at least two recesses are provided.
  • the upper mirror layer is a distributed Bragg mirror
  • the lower mirror layer is a distributed Bragg mirror
  • the semiconductor laser is Vertical cavity surface emitting laser
  • a method of processing a semiconductor laser comprising: forming a resonant cavity for gaining photons into the resonant cavity, the resonant cavity comprising an upper mirror made of a semiconductor material a layer and a lower mirror layer, the upper mirror layer being vertically above the lower mirror layer, the projection of the upper mirror layer in the horizontal plane being all within a projection range of the lower mirror layer in a horizontal plane, the upper mirror layer Part or all of the side of the lower mirror layer and part or all of the side of the lower mirror layer constitute a cleavage plane of the semiconductor laser, the cleavage plane is perpendicular to the horizontal plane; an active layer is formed for emitting a light beam, the active layer Made of a semiconductor material, the active layer is located between the upper mirror layer and the lower mirror layer, and the projection of the active layer at the horizontal plane is all within a projection range of the lower mirror layer in a horizontal plane, An oxidation hole is disposed above the active layer, the oxidation hole is disposed above the active layer,
  • the distance L V satisfies:
  • n g is the group refractive index of the medium in the cavity of the semiconductor laser.
  • the shortest distance L 1 is satisfied:
  • the projection of the concave portion at the horizontal plane and the projection of the center of the active layer at the horizontal plane by the distance L 2 and the same concave portion satisfies:
  • R s is the single transverse mode spot radius of the semiconductor laser.
  • the radius of the oxide hole is R o >A, so that the semiconductor laser is in a multi-transverse mode state, and A is a preset decision.
  • the semiconductor laser is in a single transverse mode state or a multi-transverse mode state, wherein the at least one of the upper mirror layer or the lower mirror layer processes at least two recesses, including: determining the wavelength ⁇ a depth H of the recess; according to the depth H, at least two recesses are processed in at least one of the upper mirror layer or the lower mirror layer to convert the semiconductor laser from the multi-transverse mode state to a single transverse mode state.
  • determining the depth H of the recess according to the wavelength ⁇ includes:
  • the depth H of the recess is determined, where m ⁇ 0, and m is an integer, and n eff is an effective refractive index of the semiconductor laser when the at least two recesses are not provided.
  • the distance L 2 between the projection of the concave portion at the horizontal plane and the projection of the center of the active layer at the horizontal plane satisfies:
  • B and C are preset constraint factors for determining the semiconductor laser in a single longitudinal mode state
  • n eff is an effective refractive index of the semiconductor laser when the at least two recesses are not disposed.
  • the upper mirror layer is a distributed Bragg mirror
  • the lower mirror layer is a distributed Bragg mirror
  • the semiconductor laser is Vertical cavity surface emitting laser
  • a semiconductor laser and a processing method thereof wherein at least two recesses are provided in at least one of an upper mirror layer or a lower mirror layer, and a position and a size of each recess and a partial structural size of the semiconductor laser
  • the limitation is made to cause the traveling wave of the lateral transmission in the semiconductor laser to generate photon resonance with the reflected wave, thereby increasing the modulation bandwidth of the device.
  • FIG. 1 is a schematic structural view of a semiconductor laser according to an embodiment of the present invention.
  • FIG. 2a is a schematic diagram of still another structure of a semiconductor laser in accordance with an embodiment of the present invention.
  • FIG. 2b is a schematic diagram showing still another structure of a semiconductor laser according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method of processing a semiconductor laser in accordance with an embodiment of the present invention.
  • the technical solution of the present invention can be applied to various semiconductor lasers, such as an edge-emitting laser (“EEL”), a vertical cavity surface emitting laser (VCSEL), and other semiconductor lasers.
  • EEL edge-emitting laser
  • VCSEL vertical cavity surface emitting laser
  • a semiconductor laser and a method of processing the same will be described in detail by taking a VCSEL as an example.
  • the VCSEL is merely illustrative, and the present invention is not limited thereto, and the technical solution of the present invention can also be applied to other types of semiconductor lasers.
  • FIGS. 1 and 2 are views showing the structure of a semiconductor laser 100 according to an embodiment of the present invention.
  • 1 is a cross-sectional view of the semiconductor laser 100
  • FIG. 2 (including FIGS. 2a and 2b) is a plan view of the semiconductor laser 100, wherein FIG. 2a is a plan view of the circular semiconductor laser 100, and FIG. 2b is a square semiconductor laser 100.
  • Top view As shown in FIGS. 1 and 2, the semiconductor laser 100 includes:
  • a resonant cavity 110 for gaining photons entering the resonant cavity 110, the resonant cavity 110 including an upper mirror layer 111 and a lower mirror layer 112 made of a semiconductor material, the upper mirror layer 111 being located at the lower mirror Above the layer 112, the projection of the upper mirror layer 111 in the horizontal plane is all within the projection range of the lower mirror layer 112 in the horizontal plane, the side portion of the upper mirror layer 111. Or all or part of the side of the lower mirror layer 112 constitutes a cleave plane 113 of the semiconductor laser 100, the cleavage plane 113 being perpendicular to the horizontal plane;
  • An active layer 120 for emitting a light beam the active layer 120 being made of a semiconductor material, the active layer 120 being located between the upper reflective layer mirror 111 and the lower reflective layer mirror 112, and the active layer 120 is The projection of the horizontal plane is all within the projection range of the lower mirror layer 112 in the horizontal plane.
  • an oxidation hole 130 is provided, and the oxidation hole 130 is used to limit the transverse mode of the beam.
  • At least one of the upper mirror layer 111 or the lower mirror layer 112 is provided with at least two recesses 114, the projection of the at least two recesses 114 on the horizontal plane is located on a first axis, the first axis A direction perpendicular to a tangential direction of the cleavage plane 113, and the first axis passes through a projection of a center of the active layer 120 at the horizontal plane, or the first axis is perpendicular to the cleavage plane 113, the cleavage plane 113 and
  • the distance L V between the two intersections of the first axis is determined according to the wavelength ⁇ of the light beam emitted by the semiconductor laser 100 and the free spectral width FSR, and each of the at least two recesses and the cleavage plane
  • the shortest distance L 1 is determined according to the distance L V and the radius R o of the oxidation hole 130 such that the active layer 120 is reflected after being emitted parallel to the first axis direction and
  • the lower mirror layer 112 is epitaxially grown on the substrate, and adjacent to the upper surface of the lower mirror layer 112 is an active layer 120, and an oxidation layer is disposed above the active layer 120.
  • the hole 130 for example, in the upper mirror layer 112 above the active layer 120, or in a layer of medium immediately adjacent to the upper surface of the active layer 120, is provided with the oxidation hole 130, which is emitted by the active layer 120 oxidized aperture beam 130 emitted in all directions, the aperture 130 may limit the oxidation transverse mode of the beam, which determines the pore size R o multi-transverse-mode semiconductor laser is a single transverse mode state or status.
  • the projection of the active layer 120 in the horizontal plane is all within the projection range of the lower mirror layer 112 in the horizontal plane, that is, the active layer 120 has the same size and shape as the lower mirror layer 112. Or it has a smaller size than the lower mirror layer 112.
  • the lower mirror layer 112 may be a square, the active layer 120 is circular, and the two layers have the same central axis.
  • the lower mirror layer 112 and the active layer 120 are both square and have the same Size and shape.
  • the upper mirror layer 113 is located above the active layer 120, and the projection of the upper mirror layer 113 at the horizontal plane is also within the projection range of the lower mirror layer 111 in the horizontal plane.
  • the specific shapes and dimensions of the respective layers of the semiconductor laser 100 listed above are all examples and are not limited, and the shape of the semiconductor laser 100 is not limited thereto, and may be various shapes such as a trapezoidal shape or an elliptical shape.
  • the size (for example, radius) of the above-mentioned oxide pores is merely an example and is not limited.
  • the shape of the oxide pores in the semiconductor laser is not limited to a circular shape, and may be a square shape or other shapes, and the present invention does not. Specially limited.
  • the layers in the semiconductor laser 100 are made of different semiconductor materials.
  • the upper mirror layer 111 and the lower mirror layer 112 are made of a semiconductor material having a higher reflectance (for example, 99.9%), and the upper mirror layer 111 and the lower mirror layer 112 are each made of a high refractive index. Formed by alternating epitaxial growth of a semiconductor material having a low refractive index.
  • the upper mirror layer 111 may be made of a P-type semiconductor material that provides holes
  • the lower mirror layer 112 may be made of an N-type semiconductor material that supplies electrons
  • the upper mirror layer 111 may be made of an N-type semiconductor material.
  • the lower mirror layer 112 can be made of a P-type semiconductor material.
  • Upper mirror layer 111 and lower mirror layer 112 are used to provide electrons and holes (collectively referred to as carriers), respectively.
  • the active layer 120 may be made of a very thin semiconductor material having a high optical gain, such as a Quantum Well ("QW”), so that carriers (eg, electrons and holes) are excited by current, Photons are composited at the active layer 120 and emitted.
  • QW Quantum Well
  • the upper mirror layer 111 and the lower mirror layer 112 oscillate in the resonant cavity, and the resonant cavity 110 selects photons with a certain frequency and a uniform direction to make the highest priority amplification, and other Photons in the frequency and direction are suppressed.
  • photons that do not move along the axis of the cavity quickly escape out of the cavity and are no longer in contact with the working medium.
  • the photons moving along the axis will continue to advance in the cavity, and will continuously oscillate through the reflection of the upper mirror layer 111 and the lower mirror layer 112, and will continuously generate excited radiation when encountering the excited particles during operation, and run along the axis.
  • Photon It will continue to proliferate, forming a strong beam of the same direction of propagation, frequency and phase in the cavity, that is, the laser light, emitted through the upper mirror layer 111.
  • At least one of the upper mirror layer 111 and the lower mirror layer 112 is provided with at least two recesses, the at least two recesses being on the same straight line, that is, on the first axis.
  • the first axis is perpendicular to the tangential direction of the cleavage surface 113, and the first axis is projected through the center of the active layer 120 at the horizontal plane, or the first axis is perpendicular to the cleavage surface 113.
  • the semiconductor laser when the semiconductor laser is circular, the first axis is perpendicular to the tangential direction of the cleavage plane, and is projected through the center of the active layer 120 at the horizontal plane; when the semiconductor laser is square, The first axis is perpendicular to the cleavage plane. Thus, the first axis passes perpendicularly through the sidewall of each of the at least two recesses 114.
  • the present invention achieves phase control of the light beam emitted in the direction of the first axis in the semiconductor laser 100 by limiting the position and size of the recess and the structural size of the semiconductor laser 100.
  • L V The distance between the two intersections of the cleavage plane 113 and the first axis
  • L 1 the shortest distance between each recess 114 and the cleavage plane It
  • the lateral length of the semiconductor chip is determined according to the wavelength ⁇ of the light beam emitted by the semiconductor laser 100 at the active layer 120 and the Free Spectral Range ("FSR"), and according to the distance L V and the oxide hole
  • the radius R o determines the shortest distance L 1 , which facilitates the resonance of the light beam in the semiconductor laser 100, that is, the active layer 120 in the semiconductor laser 100 is parallel to the first axis direction (hereinafter referred to as lateral direction for convenience of explanation)
  • the first light beam (which may be referred to as a light wave, which is transmitted in the form of a wave, which is transmitted as a wave), which is emitted after reaching the cleavage surface 113, generates a photon resonance with the second light beam emitted laterally from the active layer 120, thereby lifting the semiconductor laser 100 modulation bandwidth.
  • the distance L V satisfies:
  • n g is the group refractive index of the medium in the cavity of the semiconductor laser.
  • the semiconductor chip lateral length L V can be based on to make sure.
  • ⁇ , n g and FSR are all determined values, and by determining the lateral length L V of the semiconductor chip, the phase of the light wave can be controlled to achieve the effect of photon resonance.
  • the semiconductor laser for example, for a surface emitting laser, it may be circular, elliptical or the like.
  • the lateral length L V of the semiconductor chip may be a circle.
  • the diameter of the semiconductor laser; for an elliptical semiconductor laser, the lateral length L V of the semiconductor chip can be determined according to the position of the recess.
  • the lateral length L V of the semiconductor chip is The length of the elliptical minor axis, and if the recess is on the long axis of the ellipse, the semiconductor chip lateral length L V is the length of the elliptical major axis.
  • a square shape may be formed, and the semiconductor chip lateral length L V of the square semiconductor laser may be the interplanar spacing of the two parallel cleavage planes of the square semiconductor laser. It should be understood that for semiconductor lasers of different shapes and configurations, the cleavage plane is different, and the lateral length L V of the semiconductor chip is also different.
  • the specific content of the above-described cleavage plane and the shape of the semiconductor are not particularly limited. .
  • the cross-sectional view of FIG. 1 has a rectangular or square shape in a plane
  • the concave portion of the plan view of FIG. 2 is rectangular in a plane.
  • the present invention is not limited thereto, and the concave portion may be A square groove, a rectangular groove, a cylindrical groove, or the like may also be filled in the recess with a semiconductor material medium having a refractive index of less than n eff , wherein n eff is an effective refractive index of the semiconductor laser when the at least two recesses are not provided.
  • the above-described recesses (including square grooves, rectangular grooves, cylindrical grooves, and the like) and structures in which the medium is filled in the recesses may be referred to as optical structures.
  • the shortest distance L 1 may be a smaller one of a square groove, a rectangular groove or a circular groove, and the vertical distance between the projection of the horizontal plane and the two intersections of the first axis and the cleavage plane 113 respectively. value.
  • the shortest distance L 1 satisfies:
  • the shortest distance L 1 can be based on Determine, thereby controlling the phase of the light wave to achieve the effect of photon resonance.
  • the light wave when Determining the lateral length L V of the semiconductor chip and When the shortest distance L 1 is determined, it is more advantageous for the light wave to generate photon resonance in the semiconductor laser 100, that is, the first light beam emitted from the active layer 120 in the semiconductor laser 100 and reflected after reaching the cleavage surface 113
  • the second beam emitted laterally by the active layer 120 generates photon resonance, increasing the mode differential gain Modulation bandwidth and In proportion, therefore, by introducing photo feedback to generate photon resonance, the modulation bandwidth of the device can be increased.
  • the enthalpy is lowered, for example, at a rate of 10 Gb/s, the enthalpy is reduced by 25% after the introduction of the concave portion.
  • the VCSEL is merely an example and is not limited.
  • the recess in the embodiment of the present invention may also be applied to other semiconductor lasers or continuous multi-wavelength seed sources, and the present invention is not particularly limited.
  • the radius R o of the oxide hole is a certain value, and the oxide hole radius R o of the semiconductor laser 100 can be obtained by measurement or other means.
  • the semiconductor laser of the embodiment of the present invention has at least two recesses provided in at least one of the upper mirror layer or the lower mirror layer, and the position and size of each recess and the partial structure and size of the semiconductor laser.
  • the limitation is such that the traveling wave transversely transmitted in the semiconductor laser generates photon resonance with the reflected wave, thereby increasing the modulation bandwidth of the device and increasing the transmission rate.
  • the distance W 2 of the projection of each recess 114 from the horizontal plane to the center of the active layer 120 projected at the horizontal plane and the distance W between the two intersections of the same recess 114 and the first axis satisfy:
  • R s is the single transverse mode spot radius of the semiconductor laser.
  • the concave portion may be a square groove, a rectangular groove, a cylindrical groove, or the like
  • a distance between each of the at least two concave portions and two intersections of the first axis W may be the width of the square groove or the rectangular groove in the direction of the first axis, or may also be the diameter of the cylindrical groove.
  • the distance L 2 may be the intersection of the square groove, the rectangular groove or the circular groove and the like at the horizontal plane and the intersection of the first axis and the active layer respectively. The smaller of the distances at which the center is projected at the horizontal plane.
  • a semiconductor laser structure, the size determination, a single transverse mode beam radius R s is a determination value can be obtained by measuring the semiconductor laser 100 or other means of a single transverse mode beam radius R s.
  • the semiconductor chip lateral length L V is determined according to the wavelengths ⁇ and FSR of the light beam emitted from the active layer 120 in the semiconductor laser 100, and when the distance L 2 and the recess width W satisfy When R o > W + L 2 > R s , the light wave can be further restricted so that the traveling wave transversely transmitted by the active layer 120 of the semiconductor laser 100 and the reflected wave generate photon resonance.
  • the semiconductor laser of the embodiment of the present invention is provided with at least two recesses in at least one of the upper mirror layer or the lower mirror layer, and is strict in the position and size of each recess and the partial structure size of the semiconductor laser.
  • the limitation is such that the traveling wave transversely transmitted in the semiconductor laser generates photon resonance with the reflected wave, thereby improving the modulation bandwidth of the device and reducing the ripple.
  • the VCSEL in the embodiment of the present invention has a large difference in longitudinal and lateral dimensions due to its structural characteristics.
  • the device has a small longitudinal dimension and a large longitudinal mode spacing, making it easy to operate in a single longitudinal mode.
  • the lateral dimension of the device is relatively large, and the mode limitation is weak. There are multiple transverse modes, different lateral modes are different, and there is overlap between each other, and the competition between the transverse modes is strong, which seriously affects the semiconductor laser. Light power.
  • the optical power of the single mode is low, the optical power of the single mode is low, and the single mode transmission loss is small, which makes it easy to realize long-distance transmission. Therefore, it can simultaneously satisfy the high optical power and large modulation bandwidth, and the single-mode output is a long-distance high-speed optical fiber communication. The main factor.
  • the semiconductor laser 100 is placed in a multi-transverse mode by controlling the radius R o of the oxidation hole 130, and at least two recesses are provided in at least one of the upper mirror layer 111 or the lower mirror layer 112. 114, while limiting the introduction mode by controlling the position of the dimensions (e.g., the shortest distance L 1 is or a distance L 2) and the structure size (e.g., recess width W and the depth of the recess H) of the concave portion, so that the multi-transverse-mode semiconductor laser of higher-order modes are
  • the fundamental transverse mode still works normally, thereby converting from multiple transverse modes to single transverse modes.
  • the semiconductor laser can convert the multi-transverse mode into a single transverse mode by mode limitation, and the output power is much higher than that of the simple single transverse mode. .
  • the radius of the oxide hole is R o >A, so that the semiconductor laser is in a multi-transverse mode state, wherein A is a preset constraint factor determining whether the semiconductor laser is in a single transverse mode or multiple transverse modes.
  • the depth H of the recess 114 is determined according to the wavelength ⁇ to change the semiconductor laser from a multi-transverse mode to a single transverse mode.
  • the semiconductor laser when the oxide hole radius R o >2.5 ⁇ m, the semiconductor laser is a multi-transverse mode VCSEL, and when the oxidation hole radius R o ⁇ 2.5 ⁇ m, the semiconductor laser is Single transverse mode VCSEL.
  • the wavelength ⁇ of the beam emitted by the active layer 120 in the semiconductor laser 100 may be further determined.
  • the depth H of the recess thereby causing the VCSEL to operate from a multi-transverse mode state to a single transverse mode state.
  • the depth H of the concave portion directly affects the luminous efficiency of the semiconductor laser, for example, when the depth H of the concave portion is small, the loss to the high-order mode is small, and the single transverse mode cannot be realized, and when the depth H of the concave portion is large, the higher-order mode and the base are The transverse mode has a loss, and the higher output power of the single mode operation cannot be achieved.
  • the concave portion is close to the active layer, the luminous efficiency of the active layer 120 is affected. Therefore, the depth H of the concave portion needs to be strict.
  • the control is such that the traveling wave of the lateral direction of the active layer 120 in the semiconductor laser 100 and the reflected wave generate photon resonance, and the modulation bandwidth is increased to increase the light output power of the semiconductor laser.
  • the factors influencing the light output power ie, the depth H of the concave portion listed above are merely illustrative, and the present invention is not limited thereto, and factors such as the position of the concave portion also affect the light output power of the semiconductor laser.
  • the depth H satisfies:
  • n eff the effective refractive index of the semiconductor laser in the at least two recesses are not provided for.
  • the depth H of the concave portion is further controlled to satisfy Thereby, the higher order mode can be most effectively suppressed, and the semiconductor laser can be operated in a single transverse mode state.
  • the effect of photon resonance generated by the light wave emitted laterally by the active layer 120 in the semiconductor laser 100 can be optimized, the amplitude is maximized, and the light output power is maximized.
  • the radius R o of the oxidation hole, the shortest distance L 1 or the distance L 2 , and the depth H of the recess can be simultaneously controlled, and the light output power of the semiconductor laser can be improved by the cooperation between the sizes. . Changing any of these dimensions will affect the output power and will not achieve the optimum value.
  • B and C are preset constraint factors determining the semiconductor laser in a single longitudinal mode state
  • V eff is a normalized frequency parameter
  • is an influence factor of the depth H of the concave portion
  • n eff is the semiconductor laser in the The effective refractive index when the at least two recesses are provided.
  • the invention limits the lateral length L V of the semiconductor chip by limiting the structure of the multimode VCSEL, the position and size of the recess.
  • the distance L 2 and the width W of the recess satisfy R o >W+L 2 >R s , and the depth H of the recess satisfies Thereby, single mode operation, improvement of optical power and improvement of modulation bandwidth are simultaneously realized in the multimode VCSEL.
  • the single longitudinal mode state of the VCSEL may be unstable, so by controlling the normalized frequency parameter, 0.6 ⁇ V eff ⁇ 2.405, due to the shortest distance L 1 or the distance L 2 is closely related to the normalized frequency parameter V eff , ie Therefore, it is necessary to control V eff such that it satisfies 0.6 ⁇ V eff ⁇ 2.405 by controlling L 1 or L 2 .
  • the multimode VCSEL can be stably operated in a single longitudinal mode and a single transverse mode state, and thermal fluctuation can be reduced, achieving reliable operation and obtaining higher light output power.
  • two concave portions 114 symmetrically about the center of the active layer 120 are disposed in the upper mirror layer 111 or the lower mirror layer 112 of the semiconductor laser 100.
  • the number of the recesses may be set to an even number.
  • the semiconductor laser 100 may be provided with two recesses 114 that are symmetric about the center of the active layer 120.
  • the semiconductor laser 100 may be provided with a plurality of recesses 114.
  • the active layer 120 in the semiconductor laser 100 is laterally emitted to the cleavage plane 113 by limiting the position and size of the plurality of recesses 114.
  • the post-reflected first beam and the second beam laterally emitted by the active layer 120 generate photon resonance.
  • the upper mirror layer 111 is a distributed Bragg mirror
  • the lower mirror layer 112 is a distributed Bragg mirror, which is a vertical cavity surface emitting laser.
  • distributed Bragg mirrors as the upper mirror layer 111 and the lower mirror layer 112 (Distributed Bragg Reflector, abbreviated as "DBR") is merely an example and not a limitation, and the upper mirror layer 111 and the lower mirror layer 112 may also be made of other semiconductor materials such as a grating or a film material having a high refractive index difference, or Any one of the upper mirror layer 111 and the lower mirror layer 112 in the VCSEL is a DBR, and the present invention is not particularly limited.
  • DBR distributed Bragg Reflector
  • the semiconductor laser of the embodiment of the present invention introduces optical feedback and mode limitation in the semiconductor laser by introducing a concave portion and restricting the size of the semiconductor laser structure and the position and size of the concave portion, and simultaneously realizes multi-mode transfer order.
  • FIG. 3 illustrates a method 200 of processing a semiconductor laser in accordance with an embodiment of the present invention. As shown in FIG. 3, the method 200 includes:
  • a resonant cavity for gaining photon into the resonant cavity, the resonant cavity comprising an upper mirror layer and a lower mirror layer made of a semiconductor material, the upper mirror layer being located at the lower mirror Vertically above the layer, the projection of the upper mirror layer in the horizontal plane is all within the projection range of the lower mirror layer in the horizontal plane, part or all of the side of the upper mirror layer and a portion of the side of the lower mirror layer or All constituting a cleavage plane of the semiconductor laser, the cleavage plane being perpendicular to the horizontal plane;
  • an active layer for emitting a light beam the active layer being made of a semiconductor material, the active layer being located between the upper mirror layer and the lower mirror layer, and the active layer
  • the projections on the horizontal plane are all within the projection range of the lower mirror layer in the horizontal plane, and an oxidation hole is disposed above the active layer, the oxidation hole is for limiting the transverse mode of the light beam;
  • the distance L V satisfies:
  • n g is the group refractive index of the medium in the cavity of the semiconductor laser.
  • the shortest distance L 1 satisfies:
  • each recess in the center of the horizontal projection of the active layer in the horizontal projection distance L 2 and the same two points of intersection between the recessed portion and the axis of the first distance W satisfying:
  • R s is the single transverse mode spot radius of the semiconductor laser.
  • the radius of the oxide hole is R o >A, so that the semiconductor laser is in a multi-transverse mode state, wherein A is a predetermined constraint factor determining whether the semiconductor laser is in a single transverse mode or a multi-transverse mode state,
  • the at least one of the upper mirror layer or the lower mirror layer processes at least two recesses, including:
  • At least two recesses are processed in at least one of the upper mirror layer or the lower mirror layer according to the depth H to cause the semiconductor laser to have the multi-transverse mode state converted into a single transverse mode state.
  • determining the depth H of the recess according to the wavelength ⁇ includes:
  • the depth H of the recess is determined, where m ⁇ 0, and m is an integer, and n eff is an effective refractive index of the semiconductor laser when the at least two recesses are not provided.
  • the radius of the oxidation hole R o >A, the distance L 2 of the projection of the concave portion at the horizontal plane and the projection of the center of the active layer at the horizontal plane satisfies:
  • B and C are preset constraint factors for determining the semiconductor laser in a single longitudinal mode state
  • n eff is an effective refractive index of the semiconductor laser when the at least two recesses are not disposed.
  • two recesses symmetrical about a center of the active layer are disposed in the upper mirror layer or the lower mirror layer of the semiconductor laser.
  • the upper mirror layer is a distributed Bragg mirror
  • the lower mirror layer is a distributed Bragg mirror
  • the semiconductor laser is a vertical cavity surface emitting laser
  • the processing method of the semiconductor laser of the embodiment of the present invention introduces optical feedback and mode limitation in the semiconductor laser by introducing a concave portion and restricting the size of the semiconductor laser structure and the position and size of the concave portion, thereby realizing more The mode-to-mode, the optical power boost, the modulation bandwidth is increased, and the chirp is reduced, which satisfies the requirements of high-speed and long-distance transmission to a greater extent.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种半导体激光器(100)及其加工方法,能够提高调制带宽。该半导体激光器(100)包括:谐振腔(110)和有源层(120),该谐振腔(110)包括上反射镜层(111)和下反射镜层(112),在该半导体激光器(100)的上反射镜层(111)或该下反射镜层(112)中的至少一层设置有至少两个凹部(114),该至少两个凹部(114)在水平面的投影位于第一轴线上,解理面(113)与该第一轴线的两个交点之间的距离L V是根据该有源层(120)发射的光束的波长λ和自由光谱宽度FSR确定的,该至少两个凹部(114)中的任意一个凹部(114)与该解理面(113)的最短距离L 1是根据距离L V和氧化孔(130)的半径R o确定的,以使该有源层(120)在平行于第一轴线方向发射的、到达该解理面(113)后反射的第一光束与该有源层(120)在平行于该第一轴线方向发射的第二光束产生光子共振。

Description

半导体激光器及其加工方法 技术领域
本发明涉及光通信领域,并且更具体地,涉及一种半导体激光器及其加工方法。
背景技术
半导体激光器是光纤通信系统中发射光源的关键器件。随着通信技术的发展,信息量的增加,需要提供一种实现长距离、高速传输的光纤通信系统。目前,长波长半导体激光器,例如,垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称“VCSEL”),成为长距离传输光纤通信的理想光源的发射器件。
随着通信技术的普及,对调制带宽的要求也日益提高,如何提高半导体激光器的调制带宽,成为急需解决的问题。
发明内容
本发明实施例提供一种半导体激光器及其加工方法,能够提升半导体激光器的调制带宽。
第一方面,提供了一种半导体激光器,包括:谐振腔,用于使进入该谐振腔的光子增益,该谐振腔包括由半导体材料制成的上反射镜层和下反射镜层,该上反射镜层位于该下反射镜层的上方,该上反射镜层在水平面的投影全部处于该下反射镜层在该水平面的投影范围内,该上反射镜层的侧面的部分或全部与该下反射镜层的侧面的部分或全部构成该半导体激光器的解理面,该解理面与该水平面垂直;有源层,用于发射光束,该有源层由半导体材料制成,该有源层位于该上反射镜层和该下反射镜层之间,且该有源层在该水平面的投影全部处于该下反射镜层在该水平面的投影范围内,该有源层的上方设置有氧化孔,该氧化孔用于限制该光束的横模,其中,在该上反射 镜层或该下反射镜层中的至少一层设置有至少两个凹部,该至少两个凹部在该水平面的投影位于第一轴线上,该第一轴线与该解理面的切线方向垂直,且该第一轴线经过该有源层的中心在该水平面的投影,或者,该第一轴线与该解理面垂直,该解理面与该第一轴线的两个交点之间的距离LV是根据该光束的波长λ和自由光谱宽度FSR确定的,该至少两个凹部中的每个凹部与该解理面的最短距离L1是根据该距离LV和该氧化孔的半径Ro确定的,以使该有源层在平行于第一轴线方向发射的、到达该解理面后反射的第一光束与该有源层在平行于该第一轴线方向发射的第二光束产生光子共振。
结合第一方面,在第一方面的第一种实现方式中,该距离LV满足:
Figure PCTCN2015089774-appb-000001
其中,ng为该半导体激光器腔内介质的群折射率。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该最短距离L1满足:
Figure PCTCN2015089774-appb-000002
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2和同一凹部与该第一轴线的两个交点之间的距离W满足:
Ro>W+L2>Rs
其中,Rs为该半导体激光器的单横模光斑半径。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该氧化孔的半径Ro>A,以使该半导体激光器处于多横模状态,其中,A为预设的决定该半导体激光器处于单横模状态或多横模状态的约束因子,该每个凹部的深度H是根据该波长λ确定的,以使该半导体激光器由该多横模状态转为单横模状态。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,该深度H满足:
Figure PCTCN2015089774-appb-000003
其中,m≥0,且m为整数,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,该每个凹部与该有源层的中心在该水平面的投影的距离L2满足:
Figure PCTCN2015089774-appb-000004
且B<Veff<C,
其中,B、C为预设的决定该半导体激光器处于单纵模状态的约束因子,Veff为归一化频率参数,γ为该凹部的深度H的影响因子,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,该上反射镜层为分布式布拉格反射镜,该下反射镜层为分布式布拉格反射镜,该半导体激光器为垂直腔面发射激光器。
第二方面,提供了一种半导体激光器的加工方法,该加工方法包括:形成谐振腔,该谐振腔用于使进入该谐振腔的光子增益,该谐振腔包括由半导体材料制成的上反射镜层和下反射镜层,该上反射镜层位于该下反射镜层的垂直上方,该上反射镜层在水平面的投影全部处于该下反射镜层在水平面的投影范围内,该上反射镜层的侧面的部分或全部与该下反射镜层的侧面的部分或全部构成该半导体激光器的解理面,该解理面与该水平面垂直;形成有源层,用于发射光束,该有源层由半导体材料制成,该有源层位于该上反射镜层和该下反射镜层之间,且该有源层在该水平面的投影全部处于该下反射镜层在水平面的投影范围内,该有源层的上方设置有氧化孔,该氧化孔用于限制该光束的横模;在该上反射镜层或该下反射镜层中的至少一层加工至少 两个凹部,该至少两个凹部在该水平面的投影位于第一轴线上,该第一轴线与该解理面的切线方向垂直,且该第一轴线经过该有源层的中心在该水平面的投影,或者,该第一轴线与该解理面垂直,该解理面与该第一轴线的两个交点之间的距离LV是根据该光束的波长λ和自由光谱宽度FSR确定的,该至少两个凹部中的每个凹部与该解理面的最短距离L1是根据该距离LV和该氧化孔的半径Ro确定的,以使该有源层在平行于第一轴线方向发射的、到达该解理面后反射的第一光束与该有源层在平行于该第一轴线方向发射的第二光束产生光子共振。
结合第二方面,在第二方面的第一种实现方式中,该距离LV满足:
Figure PCTCN2015089774-appb-000005
其中,ng为该半导体激光器腔内介质的群折射率。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该最短距离L1满足:
Figure PCTCN2015089774-appb-000006
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2和同一凹部与该第一轴线的两个交点之间的距离W满足:
Ro>W+L2>Rs
其中,Rs为该半导体激光器的单横模光斑半径。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,该氧化孔的半径Ro>A,以使该半导体激光器处于多横模状态,A为预设的决定该半导体激光器处于单横模状态或多横模状态的约束因子,其中,该在该上反射镜层或该下反射镜层中的至少一层加工至少两个凹部,包括:根据该波长λ确定该凹部的深度H;根据该深度H在该上反射镜层或该下反射镜层中 的至少一层加工至少两个凹部,以使该半导体激光器由该多横模状态转化为单横模状态。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,该根据该波长λ确定该凹部的深度H,包括:
根据
Figure PCTCN2015089774-appb-000007
确定该凹部的深度H,其中,m≥0,且m为整数,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2满足:
Figure PCTCN2015089774-appb-000008
且B<Veff<C,
其中,B、C为预设的决定该半导体激光器处于单纵模状态的约束因子,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
结合第二方面及其上述实现方式,在第二方面的第七种实现方式中,该上反射镜层为分布式布拉格反射镜,该下反射镜层为分布式布拉格反射镜,该半导体激光器为垂直腔面发射激光器。
本发明实施例的半导体激光器及其加工方法,通过在上反射镜层或者下反射镜层中的至少一层设置至少两个凹部,并对每个凹部的位置、尺寸以及半导体激光器的部分结构尺寸进行限制,使半导体激光器内横向传输的行波与反射波产生光子共振,从而提高了器件的调制带宽。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造 性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的半导体激光器的结构示意图。
图2a是根据本发明实施例的半导体激光器的又一结构示意图。
图2b是根据本发明实施例的半导体激光器的又一结构示意图。
图3是根据本发明实施例的半导体激光器的加工方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种半导体激光器,例如:边发射激光器(Edge-Emitting Laser,简称“EEL”)、垂直腔面发射激光器VCSEL,以及其他半导体激光器等。
以下,为了方便说明和理解,以VCSEL为例,对本发明实施例的半导体激光器及其加工方法进行详细描述。VCSEL仅为示例说明,本发明并不限于此,本发明的技术方案也可以应用于其他类型的半导体激光器。
图1和图2示出了本发明实施例的半导体激光器100的结构示意图。其中,图1是该半导体激光器100的剖视图,图2(包括图2a和图2b)是该半导体激光器100的俯视图,其中,图2a是圆形半导体激光器100的俯视图,图2b是方形半导体激光器100的俯视图。如图1和图2所示,该半导体激光器100包括:
谐振腔110,用于使进入该谐振腔110的光子增益,该谐振腔110包括由半导体材料制成的上反射镜层111和下反射镜层112,该上反射镜层111位于该下反射镜层112的上方,该上反射镜层111在水平面的投影全部处于该下反射镜层112在水平面的投影范围内,该上反射镜层111的侧面的部分 或全部与该下反射镜层112的侧面的部分或全部构成该半导体激光器100的解理面113,该解理面113与该水平面垂直;
有源层120,用于发射光束,该有源层120由半导体材料制成,该有源层120位于该上反射层镜111和该下反射层镜112之间,且该有源层120在水平面的投影全部处于该下反射镜层112在水平面的投影范围内,该有源层120的上方设置有氧化孔130,所述氧化孔130用于限制该光束的横模,
其中,在该上反射镜层111或该下反射镜层112中的至少一层设置有至少两个凹部114,该至少两个凹部114在该水平面的投影位于第一轴线上,该第一轴线与该解理面113的切线方向垂直,且该第一轴线经过该有源层120的中心在该水平面的投影,或者,该第一轴线与该解理面113垂直,该解理面113与该第一轴线的两个交点之间的距离LV是根据该半导体激光器100发射的光束的波长λ和自由光谱宽度FSR确定的,该至少两个凹部中的每个凹部与该解理面的最短距离L1是根据所述距离LV和所述氧化孔130的半径Ro确定的,以使该有源层120在平行于第一轴线方向发射的、到达该解理面113后反射的第一光束与该有源层120在平行于该第一轴线方向发射的第二光束产生光子共振。
具体而言,该半导体激光器100中,下反射镜层112在衬底上外延生长,与下反射镜层112的上表面相邻的是有源层120,该有源层120的上方设置有氧化孔130,例如,在有源层120上方的上反射镜层112中,或者在该有源层120的上表面紧邻的一层介质中,设置有该氧化孔130,该有源层120发射的光束经氧化孔130向各个方向发射,该氧化孔130可以限制该光束的横模,其孔径Ro决定该半导体激光器处于多横模状态还是单横模状态。其中,该有源层120在水平面的投影全部处于该下反射镜层112在该水平面的投影范围内,也就是说,该有源层120与该下反射镜层112具有相同的尺寸与形状,或者具有比下反射镜层112较小的尺寸。例如,该下反射镜层112可以是方形,该有源层120为圆形,两层具有同一中心轴,或者,该下反射镜层 112和该有源层120都为方形,具有完全相同的尺寸与形状。与此类似,上反射镜层113位于该有源层120的上方,该上反射镜层113在该水平面的投影也处于该下反射镜层111在该水平面的投影范围内。
需要说明的是,以上列举的半导体激光器100各层的具体形状、尺寸均为示例而非限定,半导体激光器100的形状不限于此,还可以为梯形、椭圆形等各种形状。
还需要说明的是,以上列举的氧化孔的尺寸(例如,半径)仅为示例而非限定,在半导体激光器中氧化孔的形状不限于圆形,也可以为方形或者其他形状,本发明并未特别限定。
不失一般性,在本发明实施例中,该半导体激光器100中的各层由不同的半导体材料制成。上反射镜层111和下反射镜层112由具有较高的反射率(例如,99.9%)的半导体材料制成,并且,上反射镜层111和下反射镜层112都分别由具有高折射率和低折射率的半导体材料交替外延生长而形成。上反射镜层111可以由提供空穴的P型半导体材料制成,下反射镜层112可以由提供电子的N型半导体材料制成,或者,上反射镜层111可以由N型半导体材料制成,下反射镜层112可以由P型半导体材料制成。上反射镜层111和下反射镜层112分别用以提供电子和空穴(统称为载流子)。
有源层120可以由具有高光增益的很薄的半导体材料制成,如量子阱(Quantum Well,简称“QW”),以使载流子(例如,电子和空穴)在电流的激励下,在有源层120复合形成光子并发射出去。
受激发射出的光子进入谐振腔110后,在谐振腔内上反射镜层111和下反射镜层112之间振荡,谐振腔110选择频率一定、方向一致的光子做最优先的放大,而把其他频率和方向的光子加以抑制。例如,凡不沿谐振腔轴线运动的光子均很快逸出腔外,与工作介质不再接触。沿轴线运动的光子将在腔内继续前进,并经上反射镜层111和下反射镜层112的反射不断往返运行产生振荡,运行时不断与受激粒子相遇而产生受激辐射,沿轴线运行的光子 将不断增殖,在腔内形成传播方向一致、频率和相位相同的强光束,即,激光,通过上反射镜层111发射出去。
在本发明实施例的半导体激光器100中,在该上反射镜层111和下反射镜层112中的至少一层设置至少两个凹部,该至少两个凹部位于同一直线上,即第一轴线上,该第一轴线与该解理面113的切线方向垂直,且该第一轴线经过该有源层120的中心在该水平面的投影,或者,该第一轴线与该解理面113垂直。也就是说,当该半导体激光器为圆形时,该第一轴线与该解理面的切线方向垂直,并且经过该有源层120的中心在该水平面的投影;当该半导体激光器为方形时,该第一轴线与该解理面垂直。因此,该第一轴线垂直地穿过该至少两个凹部的每个凹部114的侧壁。本发明通过对该凹部的位置、尺寸以及半导体激光器100的结构尺寸的限制,实现对该半导体激光器100中沿第一轴线方向发射的光束的相位控制。其中,该解理面113与该第一轴线的两个交点之间的距离记为LV(为方便说明,以下简称半导体芯片横向长度),该每个凹部114与该解理面的最短距离记为L1(为方便说明,以下简称最短距离L1)。
通过仿真实验,根据该半导体激光器100在有源层120发射的光束的波长λ和自由光谱宽度(Free Spectral Range,简称“FSR”)确定半导体芯片横向长度,并且根据该距离LV和该氧化孔的半径Ro确定最短距离L1,有利于光束在该半导体激光器100内产生共振,即,该半导体激光器100中的有源层120在平行于第一轴线方向(为方便说明,以下简称横向)发射的、到达该解理面113后反射的第一光束(由于光以波的形式传播,也可以称为光波)与该有源层120横向发射的第二光束产生光子共振,从而提升半导体激光器100的调制带宽。
可选地,该距离LV满足:
Figure PCTCN2015089774-appb-000009
其中,ng为所述半导体激光器腔内介质的群折射率。
具体而言,该半导体芯片横向长度LV可以根据
Figure PCTCN2015089774-appb-000010
来确定。对于半导体激光器100来说,λ、ng和FSR都是确定值,通过确定半导体芯片横向长度LV,可以对光波的相位进行控制,以达到光子共振的效果。
需要说明的是,由于半导体激光器的形状、结构不同,例如,对于面发射激光器来说,可以为圆形、椭圆形等,对于圆形半导体激光器来说,该半导体芯片横向长度LV可以为圆形半导体激光器的直径;对于椭圆形半导体激光器来说,该半导体芯片横向长度LV可以根据该凹部的位置来确定,如果凹部在椭圆形的短轴上,那么该半导体芯片横向长度LV即为该椭圆形短轴的长度,而如果凹部在椭圆形的长轴上,那么该半导体芯片横向长度LV即为该椭圆形长轴的长度。又例如,对于其他类型的半导体激光器来说,还可以做成方形,该方形半导体激光器的半导体芯片横向长度LV可以为该方形半导体激光器的两平行解理面的面间距。应理解,对于不同形状、结构的半导体激光器,解理面不同,半导体芯片横向长度LV也不同,对于以上列举的解理面的确定、以及半导体的形状等具体内容,本发明并未特别限定。
还需要说明的是,图1的剖面图在一个平面内呈现的该凹部为长方形或方形,图2的俯视图在一个平面内呈现的该凹部为长方形,本发明并不限于此,该凹部可以为方形槽、长方形槽、圆柱形槽等,还可以在该凹部中填充折射率小于neff的半导体材料介质,其中,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。以上列举的凹部(包括方形槽、长方形槽、圆柱型槽等)以及在该凹部中填充介质的结构,都可以称为光学结构。
在本发明实施例中,该最短距离L1可以是方形槽、长方形槽或圆形槽等在水平面的投影与第一轴线的两个交点分别与该解理面113的垂直距离中的较小值。
可选地,该最短距离L1满足:
Figure PCTCN2015089774-appb-000011
具体而言,该最短距离L1可以根据
Figure PCTCN2015089774-appb-000012
确定,从而对光波的相位进行控制,以达到光子共振的效果。
在本发明实施例中,通过仿真实验,当根据
Figure PCTCN2015089774-appb-000013
确定半导体芯片横向长度LV,并根据
Figure PCTCN2015089774-appb-000014
确定最短距离L1时,更有利于光波在该半导体激光器100内产生光子共振,即,该半导体激光器100中的有源层120横向发射的、到达该解理面113后反射的第一光束与该有源层120横向发射的第二光束产生光子共振,增大模式差分增益
Figure PCTCN2015089774-appb-000015
而调制带宽与
Figure PCTCN2015089774-appb-000016
成正比,因此,通过引入光反馈产生光子共振,可以提升器件的调制带宽。
进一步地,在本发明实施例中,通过仿真实验,在VCSEL中引入该凹部后,啁啾降低,例如,在10Gb/s的速率下,引入凹部后啁啾降低了25%。
应理解,VCSEL仅为示例而非限定,本发明实施例中的凹部也可以应用于其他半导体激光器或者连续多波长种子光源中,本发明并未特别限定。
需要说明的是,对一个结构、尺寸确定的半导体激光器来说,氧化孔的半径Ro是确定值,可以通过测量或者其他方式获得该半导体激光器100的氧化孔半径Ro
因此,本发明实施例的半导体激光器,通过在上反射镜层或者下反射镜层中的至少一层设置至少两个凹部,并对每个凹部的位置、尺寸以及半导体激光器的部分结构、尺寸进行限制,从而使半导体激光器内横向传输的行波与反射波产生光子共振,提高器件的调制带宽,提高传输速率。
可选地,每个凹部114在该水平面的投影与该有源层120在该水平面投影的中心的距离L2和同一凹部114与该第一轴线的两个交点之间的距离W满足:
Ro>W+L2>Rs
其中,Rs为该半导体激光器的单横模光斑半径。
需要说明的是,在本发明实施例中,由于凹部可以为方形槽、长方形槽、圆柱形槽等,该至少两个凹部中的每个凹部与该第一轴线的两个交点之间的距离W(为方便理解和说明,以下简称凹部宽度W)可以为该方形槽或长方形槽在第一轴线方向的宽度,或者,也可以为该圆柱形槽的直径。
还需要说明的是,在本发明实施例中,该距离L2可以是该方形槽、长方形槽或圆形槽等在该水平面的投影与第一轴线的两个交点分别与该有源层的中心在该水平面的投影的距离中的较小值。
还需要说明的是,在本发明实施例中,由于最短距离L1、凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2(为方便说明,以下简称距离L2)、凹部宽度W和半导体芯片横向长度LV之间的关系满足L1+L2+W=LV/2,因此,当该半导体激光器100具有对称结构时(例如,圆柱形、方形等),W+L2<Ro
Figure PCTCN2015089774-appb-000017
是等价的。
还需要说明的是,对一个结构、尺寸确定的半导体激光器来说,单横模光斑半径Rs是确定值,可以通过测量或者其他方式获得该半导体激光器100的单横模光斑半径Rs
具体而言,当半导体激光器100具有对称结构时,根据该半导体激光器100中有源层120发射的光束的波长λ和FSR确定该半导体芯片横向长度LV,并且当距离L2和凹部宽度W满足Ro>W+L2>Rs时,可以进一步地限制光波,使半导体激光器100的有源层120横向传输的行波与反射波产生光子共 振。通过仿真实验可以确定,当该半导体芯片横向长度
Figure PCTCN2015089774-appb-000018
且凹部宽度W和距离L2满足Ro>W+L2>Rs时,可以使该半导体激光器100中有源层120横向传输的行波与反射波产生光子共振的效果达到最佳,振幅达到最大,从而大大提高调制带宽。
因此,本发明实施例的半导体激光器,通过在上反射镜层或者下反射镜层中的至少一层设置至少两个凹部,并对每个凹部的位置、尺寸以及半导体激光器的部分结构尺寸进行严格的限制,从而使半导体激光器内横向传输的行波与反射波产生光子共振,提高器件的调制带宽,降低啁啾。
本发明实施例中的VCSEL由于自身的结构特性,纵向和横向尺寸存在较大差别。器件的纵向尺寸较小,纵模间隔较大,易于实现在单纵模状态工作。而器件的横向尺寸则相对较大,模式限制较弱,其中存在多个横模,不同的横向模式分布不同,彼此之间存在交叠,且各横模之间竞争强烈,严重影响半导体激光器的出光功率。
由于单模的出光功率较多模的出光功率低,而单模传输损耗小,易于实现长距离传输,因此能够同时满足出光功率高、调制带宽大、单模输出是VCSEL成为长距离高速光纤通信的主要因素。
在本发明实施例中,通过控制氧化孔130的半径Ro使半导体激光器100处于多横模状态,通过在上反射镜层111或下反射镜层112中的至少一层中设置至少两个凹部114,同时通过控制该凹部的位置尺寸(例如,最短距离L1或距离L2)和结构尺寸(例如,凹部宽度W和凹部深度H)引入模式限制,使该多横模半导体激光器的高阶模被限制,基横模仍能够正常工作,从而由多横模转化为单横模。但是由于仍具有多横模的出光功率,通过对上述尺寸的限制,使得该半导体激光器即便通过模式限制使多横模转成了单横模,出光功率比单纯的单横模的出光功率高很多。
可选地,该氧化孔的半径Ro>A,以使所述半导体激光器处于多横模状 态,其中,A为预设的决定所述半导体激光器处于单横模或多横模状态的约束因子,该凹部114的深度H是根据波长λ确定的,以使所述半导体激光器由多横模状态转为单横模状态。
作为示例而非限定,在本发明实施例的VCSEL中,当氧化孔半径Ro>2.5μm时,该半导体激光器为多横模VCSEL,当氧化孔半径Ro<2.5μm时,该半导体激光器为单横模VCSEL。
在本发明实施例中,可以在确定半导体芯片横向长度LV、凹部宽度W以及最短距离L1或距离L2的基础上,进一步根据该半导体激光器100中有源层120发射的光束波长λ确定该凹部的深度H,从而使该VCSEL由多横模状态转化为单横模状态工作。
由于凹部的深度H直接影响该半导体激光器的发光效率,例如,当凹部深度H较小时,对高阶模的损耗较小,不能实现单横模,而当凹部的深度H较大时,对高阶模和基横模都有损耗,不能实现单模工作时较高的出光功率,当凹部接近有源层时,就会影响到该有源层120的发光效率,因此,需要对凹部的深度H进行严格的控制,以使该半导体激光器100中有源层120横向传输的行波与反射波产生光子共振、提高调制带宽的基础上提高该半导体激光器的出光功率。
需要说明的是,以上列举的对出光功率的影响因素(即,凹部的深度H)仅为示例性说明,本发明不限于此,凹部的位置等因素同样也会影响该半导体激光器的出光功率。
可选地,该深度H满足:
Figure PCTCN2015089774-appb-000019
其中,m≥0,且m为整数,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
具体而言,在本发明实施例中,通过在限制半导体芯片横向长度LV、凹 部宽度W以及最短距离L1或距离L2的基础上,进一步控制该凹部的深度H使其满足
Figure PCTCN2015089774-appb-000020
从而可以最有效的抑制高阶模,使该半导体激光器工作在单横模状态。
在本发明实施例中,通过仿真实验可以确定,当半导体芯片横向长度LV满足
Figure PCTCN2015089774-appb-000021
距离L2与该凹部宽度W满足Ro>W+L2>Rs,且该凹部114的深度H满足
Figure PCTCN2015089774-appb-000022
时,可以使该半导体激光器100中有源层120横向发射的光波产生光子共振的效果达到最佳,振幅达到最大,且出光功率达到最高。
因此,在本发明实施例中,可以同时控制该氧化孔的半径Ro、最短距离L1或距离L2以及凹部深度H,通过各尺寸间的配合作用,使得该半导体激光器的出光功率得以提升。而改变其中的任一个尺寸,都会影响到出光功率,从而不能达到最佳值。
可选地,且该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2满足:
Figure PCTCN2015089774-appb-000023
且B<Veff<C,
其中,B、C为预设的决定该半导体激光器处于单纵模状态的约束因子,Veff为归一化频率参数,γ为该凹部的深度H的影响因子,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
本发明通过对多模VCSEL的结构、凹部的位置和尺寸进行限制,使半导体芯片横向长度LV满足
Figure PCTCN2015089774-appb-000024
距离L2与该凹部宽度W满足 Ro>W+L2>Rs,且该凹部深度H满足
Figure PCTCN2015089774-appb-000025
从而在多模VCSEL中同时实现了单模工作、出光功率的提升和调制带宽的提升。
并且,进一步地,由于引入了凹部,可能会使该VCSEL的单纵模状态不稳定,因此通过对归一化频率参数进行控制,使0.6<Veff<2.405,由于最短距离L1或距离L2又与归一化频率参数Veff密切相关,即
Figure PCTCN2015089774-appb-000026
因此,需要通过对L1或L2的控制,来控制Veff使其满足0.6<Veff<2.405。从而可以使该多模VCSEL在单纵模、单横模状态稳定工作,并且可以减小热波动,实现可靠工作和获得较高出光功率。
应理解,以上对于预设的决定该半导体激光器处于单横模或多横模状态的约束因子A、预设的决定该半导体激光器处于单纵模状态的约束因子B和C的具体数值的列举仅为示例而非限定,对于不同类型的半导体激光器,该数值都有可能不同,本发明并未特别限定。
可选地,该半导体激光器100的上反射镜层111或下反射镜层112中设置有关于该有源层120的中心对称的两个凹部114。
在本发明实施例中,可以设置该凹部的数量为偶数个。作为示例而非限定,该半导体激光器100可以设置关于该有源层120的中心对称的两个凹部114。又例如,该半导体激光器100也可以设置多个凹部114,通过对该多个凹部114的位置、尺寸的限制,使该半导体激光器100中的有源层120横向发射的、到达该解理面113后反射的第一光束与该有源层120横向发射的第二光束产生光子共振。
需要说明的是,以上列举的凹部的位置、数量的具体内容均为示例性说明,不应对本发明构成任何限定。
可选地,该上反射镜层111为分布式布拉格反射镜,该下反射镜层112为分布式布拉格反射镜,该半导体激光器为垂直腔面发射激光器。
应理解,作为上反射镜层111和下反射镜层112的分布式布拉格反射镜 (Distributed Bragg Reflector,简称“DBR”)仅为示例而非限定,该上反射镜层111和下反射镜层112也可以为具有高折射率差的光栅或者薄膜材料等其他半导体材料制成,或者,该VCSEL中的上反射镜层111和下反射镜层112中的任意一层为DBR,本发明并未特别限定。
因此,本发明实施例的半导体激光器,通过引入凹部,并通过对半导体激光器结构尺寸的限制和凹部的位置、尺寸的限制,在半导体激光器内引入光反馈和模式限制,同时实现了多模转单模、出光功率提升、调制带宽提升、啁啾降低,更大程度地满足了高速、长距离传输的需求。
以上,结合图1和图2详细描述了本发明实施例的半导体激光器,以下,结合图3,对本发明实施例的半导体激光器的加工方法200进行详细描述。
图3示出了根据本发明实施例的半导体激光器的加工方法200。如图3所示,该方法200包括:
S210,形成谐振腔,该谐振腔用于使进入该谐振腔的光子增益,该谐振腔包括由半导体材料制成的上反射镜层和下反射镜层,该上反射镜层位于该下反射镜层的垂直上方,该上反射镜层在水平面的投影全部处于该下反射镜层在水平面的投影范围内,该上反射镜层的侧面的部分或全部与该下反射镜层的侧面的部分或全部构成该半导体激光器的解理面,该解理面与该水平面垂直;
S220,形成有源层,该有源层用于发射光束,该有源层由半导体材料制成,该有源层位于该上反射镜层和该下反射镜层之间,且该有源层在该水平面的投影全部处于该下反射镜层在水平面的投影范围内,在该有源层的上方设置有氧化孔,该氧化孔用于限制该光束的横模;
S230,在该上反射镜层或该下反射镜层中的至少一层加工至少两个凹部,该至少两个凹部在该水平面的投影位于第一轴线上,该第一轴线与该解理面的切线方向垂直,且该第一轴线经过该有源层的中心在该水平面的投影,或者,该第一轴线与该解理面垂直,该解理面与该第一轴线的两个交点之间的 距离LV是根据该光束的波长λ和自由光谱宽度FSR确定的,该至少两个凹部中的每个凹部与该解理面的最短距离L1是根据该距离LV和该氧化孔的半径Ro确定的,以使该有源层在平行于第一轴线方向发射的、到达该解理面后反射的第一光束与该有源层在平行于该第一轴线方向发射的第二光束产生光子共振。
可选地,该距离LV满足:
Figure PCTCN2015089774-appb-000027
其中,ng为该半导体激光器腔内介质的群折射率。
可选地,该最短距离L1满足:
Figure PCTCN2015089774-appb-000028
可选地,该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2和同一凹部与该第一轴线的两个交点之间的距离W满足:
Ro>W+L2>Rs
其中,Rs为该半导体激光器的单横模光斑半径。
可选地,该氧化孔的半径Ro>A,以使该半导体激光器处于多横模状态,其中,A为预设的决定该半导体激光器处于单横模或多横模状态的约束因子,
其中,该在该上反射镜层或该下反射镜层中的至少一层加工至少两个凹部,包括:
根据该波长λ确定该凹部的深度H;
根据该深度H在该上反射镜层或该下反射镜层中的至少一层加工至少两个凹部,以使该半导体激光器有该多横模状态转化为单横模状态。
可选地,该根据该波长λ确定该凹部的深度H,包括:
根据
Figure PCTCN2015089774-appb-000029
确定该凹部的深度H,其中,m≥0,且m为整数,neff 为该半导体激光器在未设置该至少两个凹部时的有效折射率。
可选地,该氧化孔的半径Ro>A,该每个凹部在该水平面的投影与该有源层的中心在该水平面的投影的距离L2满足:
Figure PCTCN2015089774-appb-000030
且B<Veff<C,
其中,B、C为预设的决定该半导体激光器处于单纵模状态的约束因子,neff为该半导体激光器在未设置该至少两个凹部时的有效折射率。
可选地,该半导体激光器的上反射镜层或下反射镜层中设置有关于该有源层的中心对称的两个凹部。
可选地,该上反射镜层为分布式布拉格反射镜,该下反射镜层为分布式布拉格反射镜,该半导体激光器为垂直腔面发射激光器。
因此,本发明实施例的半导体激光器的加工方法,通过引入凹部,并通过对半导体激光器结构尺寸的限制和凹部的位置、尺寸的限制,在半导体激光器内引入光反馈和模式限制,同时实现了多模转单模、出光功率提升、调制带宽提升、啁啾降低,更大程度地满足了高速、长距离传输的需求。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护 范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种半导体激光器,其特征在于,包括:
    谐振腔,用于使进入所述谐振腔的光子增益,所述谐振腔包括由半导体材料制成的上反射镜层和下反射镜层,所述上反射镜层位于所述下反射镜层的上方,所述上反射镜层在水平面的投影全部处于所述下反射镜层在所述水平面的投影范围内,所述上反射镜层的侧面的部分或全部与所述下反射镜层的侧面的部分或全部构成所述半导体激光器的解理面,所述解理面与所述水平面垂直;
    有源层,用于发射光束,所述有源层由半导体材料制成,所述有源层位于所述上反射镜层和所述下反射镜层之间,且所述有源层在所述水平面的投影全部处于所述下反射镜层在所述水平面的投影范围内,所述有源层的上方设置有氧化孔,所述氧化孔用于限制所述光束的横模,
    其中,在所述上反射镜层或所述下反射镜层中的至少一层设置有至少两个凹部,所述至少两个凹部在所述水平面的投影位于第一轴线上,所述第一轴线与所述解理面的切线方向垂直,且所述第一轴线经过所述有源层的中心在所述水平面的投影,或者,所述第一轴线与所述解理面垂直,所述解理面与所述第一轴线的两个交点之间的距离LV是根据所述光束的波长λ和自由光谱宽度FSR确定的,所述至少两个凹部中的每个凹部与所述解理面的最短距离L1是根据所述距离LV和所述氧化孔的半径Ro确定的,以使所述有源层在平行于第一轴线方向发射的、到达所述解理面后反射的第一光束与所述有源层在平行于所述第一轴线方向发射的第二光束产生光子共振。
  2. 根据权利要求1所述的半导体激光器,其特征在于,所述距离LV满足:
    Figure PCTCN2015089774-appb-100001
    其中,ng为所述半导体激光器腔内介质的群折射率。
  3. 根据权利要求1或2所述的半导体激光器,其特征在于,所述最短距离L1满足:
    Figure PCTCN2015089774-appb-100002
  4. 根据权利要求1或2所述的半导体激光器,其特征在于,所述每个凹部在所述水平面的投影与所述有源层的中心在所述水平面的投影的距离L2和同一凹部与所述第一轴线的两个交点之间的距离W满足:
    Ro>W+L2>Rs
    其中,Rs为所述半导体激光器的单横模光斑半径。
  5. 根据权利要求1至4中任一项所述的半导体激光器,其特征在于,所述氧化孔的半径Ro>A,以使所述半导体激光器处于多横模状态,其中,A为预设的决定所述半导体激光器处于单横模或多横模状态的约束因子,
    所述每个凹部的深度H是根据所述波长λ确定的,以使所述半导体激光器由所述多横模状态转化为单横模状态。
  6. 根据权利要求5所述的半导体激光器,其特征在于,所述深度H满足:
    Figure PCTCN2015089774-appb-100003
    其中,m≥0,且m为整数,neff为所述半导体激光器在未设置所述至少两个凹部时的有效折射率。
  7. 根据权利要求1至6中任一项所述的半导体激光器,其特征在于,所述每个凹部与所述有源层的中心在所述水平面的投影的距离L2满足:
    Figure PCTCN2015089774-appb-100004
    且B<Veff<C,
    其中,B、C为预设的决定所述半导体激光器处于单纵模状态的约束因子,Veff为归一化频率参数,γ为所述凹部的深度H的影响因子,neff为所述半导体 激光器在未设置所述至少两个凹部时的有效折射率。
  8. 根据权利要求1至7中任一项所述的半导体激光器,其特征在于,所述上反射镜层为分布式布拉格反射镜,所述下反射镜层为分布式布拉格反射镜,所述半导体激光器为垂直腔面发射激光器。
  9. 一种半导体激光器的加工方法,其特征在于,所述方法包括:
    形成谐振腔,所述谐振腔用于使进入所述谐振腔的光子增益,所述谐振腔包括由半导体材料制成的上反射镜层和下反射镜层,所述上反射镜层位于所述下反射镜层的垂直上方,所述上反射镜层在水平面的投影全部处于所述下反射镜层在所述水平面的投影范围内,所述上反射镜层的侧面的部分或全部与所述下反射镜层的侧面的部分或全部构成所述半导体激光器的解理面,所述解理面与所述水平面垂直;
    形成有源层,用于发射光束,所述有源层由半导体材料制成,所述有源层位于所述上反射镜层和所述下反射镜层之间,且所述有源层在所述水平面的投影全部处于所述下反射镜层在所述水平面的投影范围内,所述有源层的上方设置有氧化孔,所述氧化孔用于限制所述光束的横模;
    在所述上反射镜层或所述下反射镜层中的至少一层加工至少两个凹部,所述至少两个凹部在所述水平面的投影位于第一轴线上,所述第一轴线与所述解理面的切线方向垂直,且所述第一轴线经过所述有源层的中心在所述水平面的投影,或者,所述第一轴线与所述解理面垂直,所述解理面与所述第一轴线的两个交点之间的距离LV是根据所述光束的波长λ和自由光谱宽度FSR确定的,所述至少两个凹部中的每个凹部与所述解理面的最短距离L1是根据所述距离LV和所述氧化孔的半径Ro确定的,以使所述有源层在平行于第一轴线方向发射的、到达所述解理面后反射的第一光束与所述有源层在平行于所述第一轴线方向发射的第二光束产生光子共振。
  10. 根据权利要求9所述的加工方法,其特征在于,所述距离LV满足:
    Figure PCTCN2015089774-appb-100005
    其中,ng为所述半导体激光器腔内介质的群折射率。
  11. 根据权利要求9或10所述的加工方法,其特征在于,所述最短距离L1满足:
    Figure PCTCN2015089774-appb-100006
  12. 根据权利要求9或10所述的加工方法,其特征在于,所述每个凹部在所述水平面的投影与所述有源层的中心在所述水平面的投影的距离L2和同一凹部与所述第一轴线的两个交点之间的距离W满足:
    Ro>W+L2>Rs
    其中,Rs为所述半导体激光器的单横模光斑半径。
  13. 根据权利要求9至12中任一项所述的加工方法,其特征在于,所述氧化孔的半径Ro>A,以使所述半导体激光器处于多横模状态,A为预设的决定所述半导体激光器处于单横模或多横模状态的约束因子,
    其中,所述在所述上反射镜层或所述下反射镜层中的至少一层加工至少两个凹部,还包括:
    根据所述波长λ确定所述凹部的深度H;
    根据所述深度H在所述上反射镜层或所述下反射镜层中的至少一层加工至少两个凹部,以使所述半导体激光器由所述多横模状态转化为单横模状态。
  14. 根据权利要求13所述的加工方法,其特征在于,所述根据所述波长λ确定所述深度H,包括:
    根据
    Figure PCTCN2015089774-appb-100007
    确定所述深度H,其中,m≥0,且m为整数,neff为所述半导体激光器在未设置所述至少两个凹部时的有效折射率。
  15. 根据权利要求9至14中任一项所述的加工方法,其特征在于,所述每个凹部在所述水平面的投影与所述有源层的中心在所述水平面的投影的距离L2满足:
    Figure PCTCN2015089774-appb-100008
    且B<Veff<C,
    其中,B、C为预设的决定所述半导体激光器处于单纵模状态的约束因子,Veff为归一化频率参数,γ为所述凹部的深度H的影响因子,neff为所述半导体激光器在未设置所述至少两个凹部时的有效折射率。
  16. 根据权利要求9至15中任一项所述的加工方法,其特征在于,所述上反射镜层为分布式布拉格反射镜,所述下反射镜层为分布式布拉格反射镜,所述半导体激光器为垂直腔面发射激光器。
PCT/CN2015/089774 2015-09-16 2015-09-16 半导体激光器及其加工方法 WO2017045161A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/089774 WO2017045161A1 (zh) 2015-09-16 2015-09-16 半导体激光器及其加工方法
CN201580081271.7A CN107710529B (zh) 2015-09-16 2015-09-16 半导体激光器及其加工方法
JP2018513819A JP2018527755A (ja) 2015-09-16 2015-09-16 半導体レーザおよび半導体レーザの加工方法
US15/922,931 US10879672B2 (en) 2015-09-16 2018-03-16 Increased modulation bandwidth and phase control in VCSELS with recessed structures in a reflector layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089774 WO2017045161A1 (zh) 2015-09-16 2015-09-16 半导体激光器及其加工方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/922,931 Continuation US10879672B2 (en) 2015-09-16 2018-03-16 Increased modulation bandwidth and phase control in VCSELS with recessed structures in a reflector layer

Publications (1)

Publication Number Publication Date
WO2017045161A1 true WO2017045161A1 (zh) 2017-03-23

Family

ID=58288318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089774 WO2017045161A1 (zh) 2015-09-16 2015-09-16 半导体激光器及其加工方法

Country Status (4)

Country Link
US (1) US10879672B2 (zh)
JP (1) JP2018527755A (zh)
CN (1) CN107710529B (zh)
WO (1) WO2017045161A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563217B1 (ko) * 2018-10-31 2023-08-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 표면발광 레이저소자 및 이를 포함하는 발광장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム
CN101640376A (zh) * 2008-07-31 2010-02-03 佳能株式会社 表面发射激光器及阵列、其制造方法和光学装置
CN101640375A (zh) * 2008-07-31 2010-02-03 佳能株式会社 制造面发射激光器及其阵列的方法和光学设备
CN101685941A (zh) * 2008-09-26 2010-03-31 佳能株式会社 面发光激光器及其制造方法
CN103168402A (zh) * 2010-10-16 2013-06-19 佳能株式会社 表面发射激光器、表面发射激光器阵列和图像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317891B2 (ja) * 1998-03-25 2002-08-26 日本電気株式会社 光機能素子
JP3767351B2 (ja) 1999-12-17 2006-04-19 トヨタ自動車株式会社 内燃機関の可変動弁機構
JP2001284722A (ja) * 2000-03-29 2001-10-12 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
DE10026734A1 (de) * 2000-05-30 2001-12-13 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
JP2003069151A (ja) * 2001-06-12 2003-03-07 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2005277309A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
JP4687064B2 (ja) * 2004-10-22 2011-05-25 ソニー株式会社 面発光型半導体レーザ素子
JP2010186899A (ja) * 2009-02-13 2010-08-26 Fuji Xerox Co Ltd 面発光型半導体レーザ、光半導体装置、光送信装置、光空間伝送装置、光送信システム、光空間伝送システムおよび面発光型半導体レーザの製造方法
KR20120117032A (ko) * 2011-04-14 2012-10-24 전남대학교산학협력단 수직 공진 표면광 레이저

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム
CN101640376A (zh) * 2008-07-31 2010-02-03 佳能株式会社 表面发射激光器及阵列、其制造方法和光学装置
CN101640375A (zh) * 2008-07-31 2010-02-03 佳能株式会社 制造面发射激光器及其阵列的方法和光学设备
CN101685941A (zh) * 2008-09-26 2010-03-31 佳能株式会社 面发光激光器及其制造方法
CN103168402A (zh) * 2010-10-16 2013-06-19 佳能株式会社 表面发射激光器、表面发射激光器阵列和图像形成装置

Also Published As

Publication number Publication date
JP2018527755A (ja) 2018-09-20
CN107710529B (zh) 2019-12-17
US10879672B2 (en) 2020-12-29
US20180212403A1 (en) 2018-07-26
CN107710529A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP4027392B2 (ja) 垂直共振器型面発光レーザ装置
US7693203B2 (en) Single-mode photonic-crystal VCSELs
JP4621393B2 (ja) 表面発光型半導体レーザ及び表面発光型半導体レーザの製造方法
JP4968959B2 (ja) フォトニック結晶および該フォトニック結晶を用いた面発光レーザ
US9995876B2 (en) Configurable compact photonic platforms
JP5721246B1 (ja) 光変調機能付き面発光レーザ
CN110890690B (zh) 一种半导体激光相干阵列及其制备方法
JP2007234724A (ja) 垂直共振器型面発光レーザ、該垂直共振器型面発光レーザにおける二次元フォトニック結晶の製造方法
JP2014199900A (ja) 垂直キャビティ表面発光型半導体レーザ
US6845115B2 (en) Coupled resonant cavity surface-emitting laser
KR20080024719A (ko) 수직 공진형 표면 방출 레이저
Zhou et al. The future of photonic crystal surface-emitting lasers
US10008826B1 (en) Surface-emitting semiconductor laser
WO2017045161A1 (zh) 半导体激光器及其加工方法
US20130028283A1 (en) High speed vertical-cavity surface-emitting laser
US20220368113A1 (en) High speed narrow spectrum miniarray of vcsels and data transmission device based thereupon
JP2014199897A (ja) 垂直キャビティ表面発光型半導体レーザ
US10243330B2 (en) Optoelectronic device with resonant suppression of high order optical modes and method of making same
JP2008277563A (ja) 面発光レーザ
US10209445B2 (en) Method of fabricating a compact photonics platform
JP2015115367A (ja) 面発光レーザアレイ
Czyszanowski et al. Transverse mode control in high-contrast grating VCSELs
Hill Electrically pumped gap-plasmon mode semiconductor core lasers
Czyszanowski et al. Modal properties control in photonic-crystal vertical-cavity surface-emitting lasers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018513819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903851

Country of ref document: EP

Kind code of ref document: A1