WO2017038865A1 - ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物 - Google Patents

ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物 Download PDF

Info

Publication number
WO2017038865A1
WO2017038865A1 PCT/JP2016/075463 JP2016075463W WO2017038865A1 WO 2017038865 A1 WO2017038865 A1 WO 2017038865A1 JP 2016075463 W JP2016075463 W JP 2016075463W WO 2017038865 A1 WO2017038865 A1 WO 2017038865A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyrotaxane
bis
side chain
hydroxyl group
Prior art date
Application number
PCT/JP2016/075463
Other languages
English (en)
French (fr)
Inventor
康智 清水
森 力宏
百田 潤二
山本 博將
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2017538070A priority Critical patent/JP6767371B2/ja
Priority to US15/757,062 priority patent/US10494488B2/en
Priority to EP16841895.2A priority patent/EP3345954B1/en
Priority to MX2018002693A priority patent/MX2018002693A/es
Priority to CN201680050984.1A priority patent/CN107922605B/zh
Publication of WO2017038865A1 publication Critical patent/WO2017038865A1/ja
Priority to US16/598,010 priority patent/US11578174B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7678Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/778Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/102Photochromic filters

Definitions

  • the present invention relates to a novel polyrotaxane, a process for producing the same, and an optical composition containing the polyrotaxane.
  • the polyrotaxane has a cyclic molecule, and is arranged at both ends of the linear molecule that pierces through the cyclic molecule and prevents the separation of the cyclic molecule and the linear molecule. It has a specific structure with a blocking group.
  • the cyclic molecule can move relatively on a linear molecule, it has various properties, particularly excellent mechanical properties, and various application developments are expected, such as contact lenses.
  • Patent Document 1 On the other hand, most of optical materials use plastic lenses, which are lighter than inorganic lenses, are hard to break, and can be dyed. One of these is the field of spectacle lenses.
  • the spectacle lens is required to have many functions such as transparency, excellent cocoon durability, easy dyeability, and resin strength that can withstand cocoon processing. Lens resin materials have been developed and used.
  • One type of the spectacle lens is a photochromic spectacle lens.
  • a photochromic eyeglass lens is a lens that quickly colors and functions as sunglasses when exposed to light containing ultraviolet rays such as sunlight, and fades and is normally transparent indoors without such light irradiation. In recent years, the demand has increased.
  • photochromic compounds are generally used in combination with plastic materials, and specifically, the following means are known.
  • C Bonding two optical sheets with an adhesive layer formed of an adhesive resin in which a photochromic compound is dispersed. This method is called a binder method.
  • optical materials such as optical articles to which photochromic properties are imparted.
  • the kneading method described above has the advantage that a photochromic plastic lens can be produced in large quantities at low cost using a glass mold, and many photochromic plastic lenses are currently produced by this method. .
  • the kneading method requires strength of the lens substrate, it is necessary to increase the mechanical strength of the matrix resin in which the photochromic compound is dispersed. For this reason, it is difficult to develop excellent photochromic properties. That is, since the degree of molecular freedom of the photochromic compound present in the matrix resin is reduced, the photochromic reversible reaction is impaired.
  • Patent Document 2 describes a method of adding a photochromic compound to a monomer composition containing an isocyanate monomer and a thiol monomer.
  • Patent Document 3 discloses a photochromic curable composition containing a specific (meth) acryl polymerizable monomer and a photochromic compound.
  • photochromic lenses formed by polymerizing and curing these compositions are unsatisfactory in terms of photochromic properties, although they have high mechanical strength.
  • Patent Document 4 discloses a method of forming a photochromic coating layer by applying a photochromic curable composition onto a plastic lens by spin coating and photocuring (this laminating method is also known as a coating method). be called).
  • Patent Document 5 uses a member such as an elastomer gasket, an adhesive tape, or a spacer to secure a gap between the plastic lens and the glass mold, and a photochromic curable composition is poured into the gap to polymerize and cure.
  • a method for forming a photochromic layer (hereinafter also referred to as a two-stage polymerization method) is shown.
  • Patent Document 6 discloses a method for producing a laminated sheet in which a transparent carbonate sheet is bonded with a polyurethane resin adhesive layer containing a photochromic compound (binder method).
  • Patent Document 7 discloses a laminating method in which a photochromic urethane curable composition comprising a polyol and an isocyanate is applied on a plastic lens by spin coating or the like and thermally cured to form a photochromic coating layer. Even in the method, a sufficient color density cannot be ensured.
  • Patent Document 8 has a complex molecular structure composed of an axial molecule and a plurality of cyclic molecules that include the axial molecule, and a hydroxyl group is included in a part of the cyclic molecule.
  • a photochromic composition comprising a polyrotaxane having a side chain, a polyisocyanate monomer, and a photochromic compound is disclosed.
  • the photochromic composition contains a polyrotaxane, thereby having high mechanical strength due to urethane bonding and excellent photochromic properties (color density and fading due to the presence of free space formed by bonding the polyrotaxane to a part of polyurethane. Speed) (see Patent Document 8).
  • Patent Document 8 describes the evaluation result that it is a level with almost no problem with moldability (optical distortion and cloudiness). However, when more accurate evaluation was performed, moldability sometimes became insufficient. Further, when the same evaluation was carried out for various lens shapes, particularly in the case of a thick lens, there was a room for improvement because the problem of moldability became particularly significant.
  • an object of the present invention is to obtain an optical article with reduced appearance defects such as white turbidity and optical distortion at the time of manufacturing a lens base material.
  • a photochromic compound is added, in addition to it, good photochromic properties and mechanical properties
  • An object of the present invention is to provide an optical composition capable of forming a photochromic cured product having strength, a method for producing the same, and a novel polyrotaxane used in the optical composition.
  • the inventors of the present invention made extensive studies to solve the above problems. As a result, it was found that when the polymerizable group that reacts with the iso (thio) cyanate group of the polyrotaxane is a primary hydroxyl group, the reactivity with the ishi (thio) cyanate group is too high, so that defects are likely to occur. . Further, it has been found that in many cases where defects occur, the pKa of the compound having a hydroxyl group corresponding to the organic group having a hydroxyl group is less than 6 or 14 or more.
  • the reactivity of polyrotaxane to iso (thio) cyanate is obtained by using a novel polyrotaxane having a secondary or tertiary hydroxyl group in the side chain introduced into the cyclic molecule.
  • the present invention has succeeded in solving such problems and has led to the present invention.
  • a polyrotaxane having a hydroxyl group having a pKa of 6 or more and less than 14 in the side chain introduced into the cyclic molecule is used, thereby iso (thio) cyanate of the polyrotaxane.
  • the present inventors succeeded in solving such a problem by reducing the reactivity with respect to, and making it possible to react with iso (thio) cyanate, leading to the present invention.
  • the present invention is a polyrotaxane having a complex molecular structure composed of an axial molecule and a plurality of cyclic molecules that include the axial molecule, satisfying at least one of the requirements (X) and (Y), a production method thereof, and An optical composition comprising the polyrotaxane.
  • an optical composition using a polyrotaxane that satisfies at least one of the requirements (X) and (Y) as a polyrotaxane as shown in the examples described later,
  • an optical article having good moldability and high mechanical strength can be produced with high yield.
  • a photochromic compound is added to the optical composition to produce a photochromic lens, a photochromic lens having excellent photochromic properties (color density and fading speed) can be produced.
  • the polymerization can be controlled by lowering the reactivity with respect to iso (thio) cyanate than the primary hydroxyl group, and the moldability and cloudiness can be reduced. Since it can be suppressed and has a side chain, a crosslinked structure can be formed, and excellent mechanical strength can be obtained.
  • the reactivity with respect to iso (thio) cyanate can be controlled, the polymerization rate can be adjusted, and the moldability and cloudiness can be suppressed. Since it has a chain, a cross-linked structure can be formed, so that excellent mechanical strength can be obtained.
  • a photochromic compound when added to produce a photochromic optical article, excellent photochromic properties can be exhibited by using the polyrotaxane of the present invention. That is, since the cyclic molecule of polyrotaxane can slide on the axial molecule, a space is formed around the cyclic molecule, and the reversible structural change of the photochromic compound is promptly caused by this space. As a result, the color fading speed and the color density are improved. Furthermore, by introducing a cyclic molecule into which a side chain is introduced, a reversible structural change of a photochromic compound existing in the vicinity of a highly flexible side chain can be caused more quickly.
  • the polyrotaxane of the present invention is a polyrotaxane having a complex molecular structure composed of an axial molecule and a plurality of cyclic molecules that include the axial molecule, and satisfies at least one of the requirements (X) and (Y). Moreover, the optical composition of the present invention contains the polyrotaxane of the present invention.
  • A is an organic group having 1 to 10 carbon atoms and contains at least one hydroxyl group.
  • the pKa of the hydroxyl group of the compound represented by is 6 or more and less than 14.
  • the pKa of the hydroxyl group is a binding site where the group represented by the formula (1) in the polyrotaxane of the present invention is bonded to the side chain, as described above.
  • the polyrotaxane of the present invention which is a polyrotaxane having a complex molecular structure composed of an axial molecule and a plurality of cyclic molecules that include the axial molecule, satisfying the requirement (X) is also referred to as the polyrotaxane of aspect I
  • a polyrotaxane having a complex molecular structure composed of a plurality of cyclic molecules that include an axial molecule and satisfying the requirement (Y) is also referred to as a polyrotaxane of embodiment II.
  • polyrotaxane of this invention is also described as a polyrotaxane (A).
  • the polyrotaxane is indicated by “1” as a whole as shown in FIG.
  • the polyrotaxane molecule has a complex molecular structure formed by chain-like axial molecules “2” and cyclic molecules “3”.
  • the chain molecule “2” is surrounded by a plurality of cyclic molecules “3”, and the axial molecule “2” penetrates the inside of the ring of the cyclic molecule “3”. Therefore, the cyclic molecule “3” can freely slide on the axial molecule “2”, but the end molecules “4” are formed at both ends of the axial molecule “2”.
  • Polyrotaxane in which side chain having secondary or tertiary hydroxyl group is introduced into at least part of cyclic molecule (polyrotaxane of embodiment I)>
  • a side chain “5” having a secondary or tertiary hydroxyl group is introduced into a part of the cyclic molecule.
  • the polyrotaxane may have a primary hydroxyl group in addition to the secondary or tertiary hydroxyl group in the side chain.
  • the primary, secondary, When the total number of moles of tertiary hydroxyl groups is 100%, the proportion of primary hydroxyl groups is preferably 50% or less.
  • the polyrotaxane may have a hydroxyl group having a pKa of a hydroxyl group of less than 6 or 14 or more in the side chain.
  • the total number of hydroxyl groups in the side chain is 100%.
  • the proportion of hydroxyl groups having a pKa of less than 6 or 14 or more is preferably 50% or less.
  • the chain portion is linear or branched as long as it can penetrate the ring of the cyclic molecule.
  • Well generally formed by a polymer.
  • polystyrene resin polystyrene resin
  • acrylic Resin poly (meth) acrylic acid, polymethyl methacrylate, polymethyl acrylate, acrylic resin) Nitrile-methyl acrylate copolymer resin
  • polycarbonate polyurethane, vinyl chloride-vinyl acetate copolymer resin
  • polyvinyl alcohol polyvinyl pyrrolidone
  • cellulose resins carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.
  • polyacrylamide polyethylene oxide
  • polyethylene glycol, polypropylene glycol Polyvinyl acetal, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, olefin resin (polyethylene, polypropylene, etc.)
  • polyester polyvinyl chloride, styrene resin (polystyrene, acrylonitrile-styrene copolymer resin, etc.), acrylic Resin (pol
  • a polymer that forms a chain portion is preferably polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol, or polyvinyl methyl ether.
  • Polyethylene glycol is most preferred.
  • the bulky group formed at both ends of the chain portion is not particularly limited as long as it is a group that prevents the elimination of the cyclic molecule from the axial molecule, but from the viewpoint of bulkiness, an adamantyl group, a trityl group, A fluoresceinyl group, a dinitrophenyl group, and a pyrenyl base can be exemplified, and an adamantyl group can be exemplified particularly in terms of ease of introduction.
  • the molecular weight of the above-described axial molecule is not particularly limited, but if it is too large, the compatibility with other components tends to be poor, and if it is too small, the mobility of the cyclic molecule is lowered and the photochromic property is reduced. There is a tendency to decrease. From such a viewpoint, the weight average molecular weight Mw of the axial molecule is preferably in the range of 1,000 to 100,000, particularly 5,000 to 80,000, particularly preferably 10,000 to 50,000.
  • the cyclic molecule has a ring of a size that can include the axial molecule as described above.
  • a ring include a cyclodextrin ring, a crown ether ring, a benzocrown ring, a dibenzocrown ring, and a dibenzocrown ring.
  • a cyclohexanocrown ring can be mentioned, and a cyclodextrin ring is particularly preferable.
  • the cyclodextrin ring includes ⁇ -form (ring inner diameter 0.45-0.6 nm), ⁇ -form (ring inner diameter 0.6-0.8 nm), and ⁇ -form (ring inner diameter 0.8-0.95 nm).
  • ⁇ -cyclodextrin ring and ⁇ -cyclodextrin ring are particularly preferable, and ⁇ -cyclodextrin ring is most preferable.
  • a plurality of cyclic molecules having a ring as described above are included in one axial molecule.
  • the cyclic molecule is cyclic.
  • the number of molecular inclusions is preferably in the range of 0.001 to 0.6, more preferably 0.002 to 0.5, and still more preferably 0.003 to 0.4. If the number of inclusions of the cyclic molecule is too large, the cyclic molecules are densely present with respect to one axial molecule, so that the mobility is lowered and the photochromic property tends to be lowered. On the other hand, when the number of inclusions is too small, the gap between the axial molecules becomes narrow, the gap that allows the reversible reaction of the photochromic compound molecule decreases, and the photochromic property also tends to be lowered.
  • the maximum number of inclusions of a cyclic molecule with respect to one axial molecule can be calculated from the length of the axial molecule and the thickness of the ring of the cyclic molecule.
  • the maximum inclusion number is calculated as follows. .
  • the number of repeating units is calculated from the molecular weight of the polyethylene glycol, and 1/2 of the number of repeating units is obtained as the maximum inclusion number of the cyclic molecule.
  • the maximum inclusion number is 1.0, and the inclusion number of the cyclic molecule is adjusted to the above-described range.
  • the side chain is represented by the following formula (1) -A (1) (In the formula, A is an organic group having 1 to 10 carbon atoms and contains at least one hydroxyl group.)
  • H represents a hydrogen atom.
  • A is an organic group having 1 to 10 carbon atoms, and the following formula (A-1) or (A-2)
  • R 7 is a group selected from a hydrocarbon group having 1 to 4 carbon atoms, a halogen atom, a nitro group, an acyl group, a methylsulfonyl group, a trifluoromethyl group, a cyano group, and a carboxyl group, and p is (It is an integer of 0 to 4, and when R 7 is 2 or more, they may be groups different from each other, and R 8 is a trifluoromethyl group or hydrogen.)
  • the group shown by can be used conveniently.
  • the group represented by (A-1) is preferably a group represented by (A-1 ′).
  • the compound represented by the formula (2) is a compound having a structure in which the bonding site where the group represented by the formula (1) is bonded to the side chain is substituted with hydrogen,
  • the pKa of the hydroxyl group of the compound represented by (2) is 6 or more and less than 14.
  • the side chain having a secondary or tertiary hydroxyl group has a secondary or tertiary hydroxyl group, and the organic chain having 3 to 20 carbon atoms is repeated. It is suitable that it is formed.
  • the side chain preferably has a group represented by -A and is formed by repeating organic chains having 3 to 20 carbon atoms.
  • the weight average molecular weight of such a side chain is in the range of 200 to 10,000, preferably 250 to 5000, more preferably 300 to 1,500.
  • the polyrotaxane may have a primary hydroxyl group in the side chain, but from the viewpoint of moldability, the total moles of primary, secondary, and tertiary hydroxyl groups in the side chain.
  • the proportion of primary hydroxyl groups is preferably 50% or less, more preferably 20% or less, and most preferably 0%. That is, when the number of primary hydroxyl groups is small, the reactivity between polyrotaxane and iso (thio) cyanate is lowered and moldability is improved.
  • the side chain having a secondary or tertiary hydroxyl group as described above is introduced by modifying a functional group of the ring of the cyclic molecule and modifying this functional group.
  • the ⁇ -cyclodextrin ring has 18 hydroxyl groups as functional groups, and side chains are introduced through these hydroxyl groups. That is, a maximum of 18 side chains can be introduced into one ⁇ -cyclodextrin ring.
  • the modification degree is 50% (ie 0.5).
  • the side chain (organic chain) as described above has a secondary or tertiary hydroxyl group, and is linear as long as the size of the side chain is within the aforementioned range. It may be branched or branched, and ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; living radical polymerization such as atom transfer radical polymerization, RAFT polymerization, NMP polymerization, etc.
  • a side chain of an appropriate size can be introduced by reacting the compound with a functional group of the ring.
  • the reaction may be carried out so as to have such a structure at the end of the side chain.
  • the hydroxyl group introduced into the side chain is a primary hydroxyl group
  • a secondary or tertiary hydroxyl group-protected isocyanate compound is reacted with the side chain primary hydroxyl group. Then, by performing deprotection, a side chain into which a secondary or tertiary hydroxyl group has been introduced can be obtained.
  • the preferred side chain structure is most preferably a side chain represented by the following formula (1).
  • Q is a structure represented by the following formulas (Q-1), (Q-2), and (Q-3)
  • G represents a linear alkylene group or alkenylene group having 1 to 8 carbon atoms, a branched alkylene group or alkenylene group having 3 to 20 carbon atoms, and a part of the alkylene group or alkenylene group is an —O— bond.
  • each G may be the same group or a different group, and n 1 , n 2 And n 3 are each independently an integer of 1 to 200) (Q-1) to (Q-3), wherein Q is composed of two or more selected from the formulas (Q-1), (Q-2) and (Q-3) G may be the same group or different groups, and the total of n 1 , n 2 and n 3 is an integer of 1 to 200, and R 1 and R 2 are each independently hydrogen, carbon number 1 Is a group selected from a
  • Q is a structure represented by the following formulas (Q-1), (Q-2), and (Q-3)
  • G represents a linear alkylene group or alkenylene group having 1 to 8 carbon atoms, a branched alkylene group or alkenylene group having 3 to 20 carbon atoms, and a part of the alkylene group or alkenylene group is an —O— bond.
  • —NH— bond, —SO— bond, or —SiO— bond an alkylene group or alkenylene group, or a part of hydrogen of the alkylene group is a hydroxyl group, a carboxyl group, an acyl group, a phenyl group, a halogen atom,
  • n 1 , n 2 And n 3 are each independently an integer of 1 to 200) (Q-1) to (Q-3) when Q is composed of two or more selected from the formulas (Q-1), (Q-2) and (Q-3) G that constitutes may be the same group or different groups
  • n 1 , n 2, and n 3 are an integer of 1 to 200 in total
  • X is an alkylene group or alkenylene group having 2 to 20 carbon atoms
  • R 3 and R 4 are each independently hydrogen, a straight chain having 1 to 6 carbon atoms.
  • a chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms is selected, but R 3 and R 4 are groups that do not simultaneously become hydrogen, and R 5 is carbon or sulfur.
  • the polyrotaxane of the embodiment II may have a hydroxyl group having a pKa of less than 6 or more than 14 in the side chain, but from the viewpoint of moldability, the total number of hydroxyl groups in the side chain is 100%.
  • the pKa of the hydroxyl group is preferably less than 6 and the proportion of the 14 or more hydroxyl group is preferably 50% or less, more preferably 20% or less, and most preferably 0%.
  • the pKa of the hydroxyl group is less than 6 and the hydroxyl group of 14 or more is small, the reactivity to iso (thio) cyanate can be easily controlled, the polymerization rate can be adjusted, and the moldability and cloudiness can be suppressed. This is because it can be done.
  • the side chain having a hydroxyl group having a pKa of 6 or more and less than 14 as described above is introduced by modifying the functional group using a functional group included in the ring of the cyclic molecule.
  • the ⁇ -cyclodextrin ring has 18 hydroxyl groups as functional groups, and side chains are introduced through these hydroxyl groups. That is, a maximum of 18 side chains can be introduced into one ⁇ -cyclodextrin ring.
  • the modification degree is 50% (ie 0.5).
  • the side chain (organic chain) as described above has a hydroxyl group having a pKa of 6 or more and less than 14 as long as the size of the side chain is within the aforementioned range. It may be chain-like or branched, and ring-opening polymerization; radical polymerization; cationic polymerization; anion polymerization; living radical polymerization such as atom transfer radical polymerization, RAFT polymerization, NMP polymerization, etc.
  • a side chain of an appropriate size can be introduced by reacting an appropriate compound with the functional group of the ring.
  • the side chain When the side chain is introduced by polymerization, if the hydroxyl group does not have a hydroxyl group having a pKa of 6 or more and less than 14, the side chain has a structure in which a hydroxyl group having a hydroxyl group pKa of 6 or more and less than 14 is introduced.
  • the reaction may be performed.
  • the pKa of the hydroxyl group introduced into the side chain is less than 6 or 14 or more
  • the pKa of the hydroxyl group has a hydroxyl group of 6 or more but less than 14, or the pKa of the hydroxyl group is 6 or more.
  • the side chain represented by the following formula (3) is most preferably introduced.
  • -QA (3) In the formula (3), Q is a structure represented by the following formulas (Q-1), (Q-2), and (Q-3)
  • G represents a linear alkylene group or alkenylene group having 1 to 8 carbon atoms, a branched alkylene group or alkenylene group having 3 to 20 carbon atoms, and a part of the alkylene group or alkenylene group is an —O— bond.
  • n 1 , n 2 and n 3 are each independently an integer of 1 to 200.
  • a side chain represented by the following formula (3 ′) is introduced.
  • Q is a structure represented by the following formulas (Q-1), (Q-2), and (Q-3)
  • G represents a linear alkylene group or alkenylene group having 1 to 8 carbon atoms, a branched alkylene group or alkenylene group having 3 to 20 carbon atoms, and a part of the alkylene group or alkenylene group is an —O— bond.
  • n 1 , n 2 and n 3 is each independently 1 to 200.
  • an alkenylene group an alkylene group or an alkenylene group in which a part of the alkylene group or alkenylene group is substituted with an —O— bond or an —NH— bond
  • A is an organic group having 1 to 10 carbon atoms, Contains one hydroxyl group.
  • a preferred structure of the side chain represented by the formula (1) is that Q has the structure of either the formula (Q-1) or (Q-2) or both, and n 1 and n 2 are each independently In the range of 1 to 100 in total, and more preferably in the range of 1 to 100, and more preferably, Q has the structure of either or both of formulas (Q-1) and (Q-2) N 1 and n 2 are each independently in the range of 1 to 75, and the total is in the range of 1 to 75. Most preferably, Q is the formula (Q-1), and n 1 is in the range of 1 to A range of 50.
  • the side chain is preferably introduced by ring-opening polymerization as the method for introducing the side chain having a secondary or tertiary hydroxyl group, and the ring-opening polymerization may be cyclic ether or cyclic siloxane.
  • a side chain derived from a cyclic compound of cyclic lactone, cyclic lactam, cyclic acetal, cyclic amine, or cyclic carbonate can be introduced.
  • the terminal when the terminal is a primary hydroxyl group, it may be changed to a secondary or tertiary hydroxyl group by the method described above.
  • a cyclic ether, a cyclic lactone, a cyclic lactam, or a cyclic carbonate from the viewpoints of easy availability, high reactivity, and easy size (molecular weight) preparation.
  • a hydroxyl group can be introduced at the terminal, but the structure of the compound used determines the number of the terminal hydroxyl group.
  • the introduced side chain has a primary hydroxyl group, a secondary or tertiary hydroxyl group may be introduced by the method described above.
  • Specific examples of cyclic ethers, cyclic lactones, cyclic lactams, and cyclic carbonates that can be side chains are given below.
  • Cyclic ether in which a primary hydroxyl group can be introduced into the side chain by ring-opening polymerization Ethylene oxide, 1,2-propylene oxide, oxetane, etc.
  • those more preferably used for ring-opening polymerization are cyclic lactones and cyclic lactams, and among them, ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ Lactones such as -methyl- ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactam, ⁇ -butyllactam, etc.
  • the most preferred side chain is the ease of synthesis and the ease of controlling the molecular weight. , ⁇ -caprolactone, and ⁇ -caprolactam.
  • a side chain is introduced using ⁇ -valerolactone, a polyrotaxane having a side chain having a secondary hydroxyl group introduced at the end of the side chain can be obtained.
  • a primary hydroxyl group is introduced after ring-opening polymerization, as described above, for example, reacting with an isocyanate compound protecting a secondary or tertiary hydroxyl group, followed by deprotection In this case, a secondary or tertiary hydroxyl group may be introduced.
  • the method for introducing a side chain having a hydroxyl group having a pKa of 6 or more and less than 14 is preferable, and the side chain is preferably introduced by ring-opening polymerization.
  • Side chains derived from cyclic compounds of ethers, cyclic siloxanes, cyclic lactones, cyclic lactams, cyclic acetals, cyclic amines, and cyclic carbonates can be introduced.
  • a cyclic ether, a cyclic lactone, a cyclic lactam, or a cyclic carbonate from the viewpoints of easy availability, high reactivity, and easy size (molecular weight) preparation.
  • a hydroxyl group can be introduced at the terminal, but the pKa of the terminal hydroxyl group is determined by the structure of the compound used.
  • the pKa of the introduced side chain hydroxyl group is less than 6 or 14 or more, the hydroxyl group having a pKa of 6 to 14 may be introduced by the method described above.
  • Specific examples of cyclic ethers, cyclic lactones, cyclic lactams, and cyclic carbonates that can be side chains are given below.
  • Cyclic ether Cyclic lactones such as ethylene oxide, 1,2-propylene oxide, oxetane, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -hexyl- ⁇ -butyrolactone, ⁇ -heptyl- ⁇ -butyrolactone, ⁇ -hydroxy- ⁇ -butyrolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ - Butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -nonanolactone, ⁇ -undecanolactone, ⁇ -valerolactone, ⁇ -bromo- ⁇ -butyrolactone, ⁇ -crotonolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -methacryloyl Oxy
  • those more preferably used for ring-opening polymerization are cyclic lactones and cyclic lactams.
  • cyclic lactones and cyclic lactams are cyclic lactones and cyclic lactams.
  • the most preferred side chain is the ease of synthesis and the ease of controlling the molecular weight.
  • ⁇ -caprolactone, and ⁇ -caprolactam are preferred side chain.
  • the pKa of the hydroxyl group introduced after the side chain polymerization is less than 6 or a hydroxyl group of 14 or more, as described above, for example, the pKa is reacted with an isocyanate compound protecting a hydroxyl group of 6 to less than 14, Thereafter, deprotection may be performed to introduce a hydroxyl group having a pKa of 6 or more and less than 14.
  • a functional group for example, a hydroxyl group
  • a functional group for example, a hydroxyl group
  • a low molecular weight compound such as propylene oxide is reacted with a functional group to perform hydroxypropylation to introduce a functional group (hydroxyl group) rich in reactivity.
  • the production method is most preferred.
  • X is an alkylene group or alkenylene group having 2 to 20 carbon atoms, an alkylene group or alkenylene group in which a part of the alkylene group or alkenylene group is substituted with an —O— bond or —NH— bond
  • Z is a group selected from the group consisting of the following formulas, Z-1 to Z-9
  • R 3 and R 4 are each independently hydrogen, a linear alkyl group having 1 to 6 carbon atoms, or 1 to 6 branched alkyl groups are selected, but R 3 and R 4 are groups that do not simultaneously become hydrogen, and R 5 is carbon or sulfur.
  • the alkylene group may be a branched alkylene group or a linear alkylene group.
  • the alkenylene group may be a branched alkenylene group or a linear alkenylene group.
  • Specific examples of the compound represented by the above formula (2) include 2-methyl-2- (trimethylsiloxy) propyl isocyanate, 2-methyl-2- (t-butyldimethylsiloxy) propyl isocyanate, 2- (trimethylsiloxy).
  • 2- (trimethylsiloxy) propyl isocyanate or 2- (t-butyldimethylsiloxy) is used instead of 2-methyl-2- (trimethylsiloxy) propyl isocyanate.
  • Propyl isocyanate may be used.
  • the polyrotaxane most preferably used is a polyethylene molecule having an adamantyl group bonded to both ends as a shaft molecule, a cyclic molecule having an ⁇ -cyclodextrin ring, and an ⁇ -poly
  • a polyrotaxane in which a side chain is introduced into the ring by caprolactone and a secondary or tertiary hydroxyl group is introduced at the terminal by the production method described above is preferably used.
  • a side chain having a hydroxyl group having a pKa of 6 or more and less than 14 is introduced into at least a part of the cyclic molecule of the present invention.
  • At least a part of the cyclic molecule of the polyrotaxane has a pKa of a hydroxyl group.
  • Preferably comprises reacting a polyrotaxane introduced with a side chain having a primary hydroxyl group of 14 or more with a compound represented by the following formula (4). Further, a polyrotaxane in which a side chain having a primary hydroxyl group having a pKa of 14 or more hydroxyl groups is introduced into at least a part of the cyclic molecule of polyrotaxane was reacted with a compound represented by the following formula (4). Later, a production method in which Z is deprotected is most preferred.
  • R 6 is carbon or sulfur
  • X is an alkylene group or alkenylene group having 2 to 20 carbon atoms, and a part of the alkylene group or alkenylene group is substituted with —O— bond or —NH— bond.
  • An alkylene group or an alkenylene group, wherein T is represented by the following formula (T-1) or (T-2):
  • R 7 is a group selected from a hydrocarbon group having 1 to 4 carbon atoms, a halogen atom, a nitro group, an acyl group, a methylsulfonyl group, a trifluoromethyl group, a cyano group, and a carboxyl group, and p is (It is an integer of 0 to 4, and when R 7 is 2 or more, they may be groups different from each other, and R 8 is a trifluoromethyl group or hydrogen.)
  • Z is a group selected from the group consisting of the following formulas Z-1 to Z-9
  • the alkylene group may be a branched alkylene group or a linear alkylene group.
  • the alkenylene group may be a branched alkenylene group or a linear alkenylene group.
  • Z is As a production method for deprotection, the following method can be used.
  • a polyrotaxane having a primary hydroxyl group having a pKa of hydroxyl group of 14 or more in the side chain is prepared by the method described in Patent Document 8, and the primary hydroxyl group having a pKa of hydroxyl group of 14 or more is converted to 1- ( 2-Isocyanatoethyl) -4-[(trimethylsilyl) oxy] -benzene is introduced and then deprotected using tetra-n-butylammonium fluoride (TBAF), so that at least a part of the cyclic molecule has hydroxyl groups.
  • TBAF tetra-n-butylammonium fluoride
  • the most preferably used polyrotaxane is a polyethylene molecule having an adamantyl group bonded to both ends as a shaft molecule, a cyclic molecule having an ⁇ -cyclodextrin ring, and ⁇ -poly
  • a polyrotaxane in which a side chain is introduced into the ring by caprolactone and a hydroxyl group having a pKa of 6 or more and less than 14 is introduced at the terminal by the production method described above is preferably used.
  • the polyrotaxane (A) of the present invention (for example, the polyrotaxane of aspect I and aspect II) can be used as an optical composition.
  • an optical composition is used together with the component (B) described later, it can be suitably used for plastic lenses such as eyeglass lenses.
  • a compound having two or more groups selected from an isocyanate group and an isothiocyanate group in one molecule Is a compound having a total of two or more isocyanate groups and isothiocyanate groups in one molecule of the polyiso (thio) cyanate compound.
  • polyisocyanate compounds include aliphatic isocyanates, alicyclic isocyanates, aromatic isocyanates, sulfur-containing aliphatic isocyanates, aliphatic sulfide isocyanates, aromatic sulfide isocyanates, aliphatic sulfones.
  • examples include isocyanates, aromatic sulfone isocyanates, sulfonate ester isocyanates, aromatic sulfonic acid amide isocyanates, and sulfur-containing heterocyclic isocyanates.
  • Polyisothiocyanate compounds include aliphatic isothiocyanate, alicyclic isothiocyanate, aromatic isothiocyanate, heterocyclic isothiocyanate, carbonyl isothiocyanate, sulfur-containing aliphatic isothiocyanate, sulfur-containing aromatic isothiocyanate, sulfur-containing Heterocyclic isothiocyanate and the like can be mentioned.
  • Specific examples of these polyiso (thio) cyanate compounds include the following compounds.
  • Aliphatic isocyanates ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, decamethylene diisocyanate Butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethylhexamethylene diisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2,5,7-trimethyl-1,8-diisocyanate Anate-5-isocyanate methyl octane, bis (isocyanate ethyl) carbonate,
  • nonane-4,8-diisocyanate mixture bicyclo [2.2.1] heptane-2,5-diisocyanate and bicyclo [2.2.1] heptane-2,6-diisocyanate mixture, bicyclo [2, A mixture of 2,2] octane-2,5-diisocyanate and bicyclo [2,2,2] octane-2,6-diisocyanate, tricyclo [5.2.1.0 2.6 ] decane-3,8-diisocyanate and tricyclo [5.2.1.0 2.6 ] Mixture of decane-4,9-diisocyanate
  • Aromatic isocyanate ; xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, 4-chloro-m-xylylene diisocyanate, 4,5-dichloro-m-xylylene diisocyanate, 2, , 3,5,6-tetrabromo-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (isocyanatoethyl) benzene, bis (isocyanatopropyl) benzene, 1 , 3-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, 1,4-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diis
  • Sulfur-containing aliphatic isocyanate thiodiethyl diisocyanate, thiodipropyl diisocyanate, thiodihexyl diisocyanate, dimethyl sulfone diisocyanate, dithiodimethyl diisocyanate, dithiodiethyl diisocyanate, 1-isocyanate methylthio-2,3-bis (2-isocyanatoethylthio) propane 1,2-bis (2-isocyanatoethylthio) ethane, 1,1,2,2-tetrakis (isocyanatomethylthio) ethane, 2,2,5,5-tetrakis (isocyanatomethylthio) -1,4-dithiane, 2,4-dithiapentane-1,3-diisocyanate, 2,4,6-trithiaheptane-3,5-diisocyanate, 2,4,7,9-tetrathiap
  • Aliphatic sulfide isocyanates bis [2- (isocyanatomethylthio) ethyl] sulfide, dicyclohexylsulfide-4,4′-diisocyanate, bis (isocyanatemethyl) sulfide, bis (isocyanateethyl) sulfide, bis (isocyanatopropyl) sulfide, bis (Isocyanate hexyl) sulfide, bis (isocyanate methyl) disulfide, bis (isocyanate ethyl) disulfide, bis (isocyanate propyl) disulfide aromatic sulfide type isocyanate; diphenyl sulfide-2,4′-diisocyanate, diphenyl sulfide-4,4′- Diisocyanate, 3,3′-dimethoxy-4,4′-diisocyanate dibenzylthioether, bis (4
  • Aliphatic sulfone isocyanate bis (isocyanate methyl) sulfone Aromatic sulfone isocyanate; diphenylsulfone-4,4′-diisocyanate, diphenylsulfone-3,3′-diisocyanate, benzylidenesulfone-4,4′-diisocyanate, diphenylmethanesulfone -4,4'-diisocyanate, 4-methyldiphenylmethanesulfone-2,4'-diisocyanate, 4,4'-dimethoxydiphenylsulfone-3,3'-diisocyanate, 3,3'-dimethoxy-4,4'-diisocyanate Dibenzylsulfone, 4,4′-dimethyldiphenylsulfone-3,3′-diisocyanate, 4,4′-di-tert-butyldiphenylsulfone-3,
  • Aliphatic isothiocyanate 1,2-diisothiocyanate ethane, 1,3-diisothiocyanate propane, 1,4-diisothiocyanate butane, 1,6-diisothiocyanate hexane, p-phenylene diisopropylidene diisothiocyanate Cycloaliphatic isothiocyanate; cyclohexyl isothiocyanate, cyclohexane diisothiocyanate, 2,4-bis (isothiocyanatomethyl) norbornane, 2,5-bis (isothiocyanatomethyl) norbornane, 3,4-bis (isothiocyanato) Methyl) norbornane, 3,5-bis (isothiocyanatomethyl) norbornane aromatic isothiocyanate; phenyl isothiocyanate, 1,2-diisothiocyanate benzene, 1,3-diisothiocyanate
  • Examples of such a polyfunctional isothiocyanate include the following compounds. Sulfur-containing aliphatic isothiocyanate; thiobis (3-isothiocyanate propane), thiobis (2-isothiocyanate ethane), dithiobis (2-isothiocyanate ethane) Sulfur-containing aromatic isothiocyanate; 1-isothiocyanate 4- ⁇ (2-isothiocyanate) sulfonyl ⁇ benzene, thiobis (4-isothiocyanate benzene), sulfonyl bis (4-isothiocyanate benzene), sulfinyl bis (4-isothiocyanate) Benzene), dithiobis (4-isothiocyanate benzene), 4-isothiocyanate-1- ⁇ (4-isothiocyanate phenyl) sulfonyl ⁇ -2-methoxy-benzene, 4-methyl-3-isothio
  • Preferable examples of the polyiso (thio) cyanate compound of the component (B) include pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 2,5-bis (isocyanate methyl)- Bicyclo [2,2,1] -heptane, 2,6-bis (isocyanatemethyl) -bicyclo [2,2,1] -heptane, 1,2-bis (2-isocyanatoethylthio) ethane, xylene diisocyanate (o -, M-, p-), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 4,4'-diphenylmethane diisocyanate, and a mixture thereof. May be released.
  • the optical article has excellent moldability, mechanical strength, hardness, or the optimum blending of the above components (A) and (B) for obtaining excellent photochromic properties when a photochromic compound described later is added.
  • the ratio is preferably in the range of 50 to 97 parts by mass of (A) and 3 to 50 parts by mass of (B) with respect to 100 parts by mass of the total of (A) and (B).
  • an iso (thio) cyanate-reactive group-containing compound (C) that can react with the component (B) can be used.
  • the component (C) will be described below.
  • ⁇ (C) Iso (thio) cyanate-reactive group-containing compound As an iso (thio) cyanate-reactive group-containing compound, a poly (thio) ol compound (C-1) having two or more hydroxyl groups and / or thiol groups in one molecule, and a hydroxyl group or thiol group in one molecule One mono (thi) ol compound (C-2) can be increased.
  • Poly (thi) ol compound having two or more groups selected from a hydroxyl group and a thiol group in one molecule A poly (thi) ol compound having at least two groups selected from a hydroxyl group and a thiol group in one molecule (hereinafter also simply referred to as “poly (thi) ol compound”) is a poly (thi) ol compound. It is a compound having a total of two or more of at least one group selected from a hydroxyl group (OH group) and a thiol group (SH group).
  • examples of the polyol compound include di-, tri-, tetra-, penta-, hexa-hydroxy compounds, polyesters containing two or more OH groups in one molecule (polyester) Polyol) polyether containing two or more OH groups in one molecule (hereinafter referred to as polyether polyol), polycarbonate containing two or more OH groups in one molecule (polycarbonate polyol), in one molecule
  • polyether polyol polyether containing two or more OH groups in one molecule
  • polycarbonate polyol polycarbonate polyol
  • a typical example is polycaprolactone containing 2 or more OH groups (polycaprolactone polyol), and an acrylic polymer containing 2 or more OH groups per molecule (polyacryl polyol).
  • Polythiol compounds include aliphatic polythiols, aromatic polythiols, halogen-substituted aromatic polythiols, heterocycle-containing polythiols, and aromatic polythiols containing sulfur atoms in addition to mercapto groups, sulfur other than mercapto groups.
  • Examples include aliphatic polythiols containing atoms and heterocyclic polythiols containing sulfur atoms in addition to mercapto groups. Specific examples of these compounds are as follows.
  • Aliphatic alcohol ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane, 1,9 -Dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glycerin, trimethylolethane, trimethylolpropane, butanetriol, 1,2-methylglucoside, Pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol Mannitol, dolcitol, id
  • Aromatic alcohols dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxybenzene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, trihydroxyphenanthrene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) phenylmethane, bis (4 -Hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) -1-naphthylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane 2- (4-hydroxyphenyl) -2- (3-hydroxyphenyl) propane, 2,2-
  • Aliphatic polythiol methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 2,2-propanedithiol, 1,6-hexanedithiol, , 2,3-propanetrithiol, tetrakis (mercaptomethyl) methane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane- 1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, bicyclo [2,2,1] hepta-exo-cis-2,3-dithiol, 1,1-bis (mercaptomethyl) cyclohexane, thioapple Acid bis (2-mercaptoethyl ester
  • Aromatic polythiol 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 1,2-bis (mercaptoethyl) benzene, 1,3-bis (mercaptoethyl) benzene, 1,4-bis (mercaptoethyl) benzene, 1,2-bis ( Mercaptomethoxy) benzene, 1,3-bis (mercaptomethoxy) benzene, 1,4-bis (mercaptomethoxy) benzene, 1,2-bis (mercaptoethoxy) benzene, 1,3-bis (mercaptoethoxy) benzene, 1 , 4-bis (mercaptoethoxy) benzene, 1,2,3-trimercaptobenzene, 1, ,
  • Aliphatic polythiols containing sulfur atoms in addition to mercapto groups bis (mercaptomethyl) sulfide, bis (mercaptoethyl) sulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) methane, bis (2-mercaptoethyl) Thio) methane, bis (3-mercaptopropyl) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2- (2-mercaptoethylthio) ethane, 1,2- (3-mercaptopropyl) ethane, , 3-bis (mercaptomethylthio) propane, 1,3-bis (2-mercaptoethylthio) propane, 1,3-bis (3-mercaptopropylthio) propane, 1,2-bis (2-mercaptoethylthio) -3-Mercaptopropane, 2-mercaptoethylthio-1,3- Lopandi
  • component (C-1) each molecule has one or more hydroxyl groups and thiol groups. Compounds can also be used
  • a plurality of R 6 are any of an organic group containing a hydroxyl group and / or a thiol group, a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, or a phenyl group, and may be the same or different from each other,
  • One molecule has an organic group containing two or more hydroxyl groups and / or thiol groups,
  • the degree of polymerization n is an integer of 6 to 100.
  • the organic group containing a hydroxyl group and / or thiol group in R 6 in the above formula (5) is a monovalent hydrocarbon group having 1 to 10 carbon atoms in which at least one hydroxyl group and / or thiol group is bonded, or a hydroxyl group And / or a monovalent group containing an oxygen atom or a sulfur atom in a chain having 1 to 10 carbon atoms to which at least one thiol group is bonded, specifically, an alkylene chain having 1 to 10 carbon atoms, Organic groups derived from polyols or polythiols are preferred.
  • the alkyl group for R 6 is preferably an alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, Examples include n-octyl group and isooctyl group.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclooctyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group and the like.
  • the silsesquioxane compound can have various structures such as cage shape, ladder shape, and random shape, but in the present invention, a mixture composed of a plurality of structures is preferable.
  • Preferred examples of component (C-1) include polyethylene polyol, polycaprolactone polyol, polycarbonate carbonate, trimethylolpropane, pentaerythritol, trimethylolpropane tris (3-mercaptopropionate).
  • Pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (3 -Mercaptopropionate), 1,6-hexanediol bis (3-mercaptopropionate), 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 2,2-bis (mercapto) Mechi ) -1,4-butanedithiol, 1,4-bis (mercaptopropylthiomethyl) benzene, 2,5-bis (mercaptomethyl) -1,4-dithiane, 4-mercaptomethyl-1,8-dimercapto-3 , 6-dithiaoctane, 1,1,1,1-tetrakis (mercaptomethyl) methane, 1,1,3,3-t
  • (C-2) a mono (thio) ol compound having one hydroxyl group or thiol group in one molecule will be described.
  • a mono (thi) ol compound having one hydroxyl group or one thiol group in one molecule (hereinafter also simply referred to as “mono (thi) ol compound”) can be used.
  • a rigid cured body having a network structure having a (thio) urethane bond is obtained by a reaction between a polyiso (thio) cyanate compound and a poly (thi) ol compound.
  • the component (C-2) into the optical composition, the mono (thi) ol compound having a free structure at one end is incorporated into the network structure.
  • a flexible space is formed around the periphery. Therefore, the reversible structural change of the photochromic compound existing in the vicinity of this space is generated more quickly, so it is speculated that a photochromic cured product with excellent photochromic properties (color density, fading speed) can be produced. Is done.
  • the mono (thi) ol compound has only one hydroxyl group or thiol group, it has fewer hydrogen bonds than the poly (thi) ol compound, thereby reducing the viscosity of the optical composition. Highly effective.
  • Examples of the mono (thi) ol compound include the following compounds. Compound having one hydroxyl group in one molecule; polyethylene glycol monooleyl ether, polyoxyethylene oleate, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol mono-4-octylphenyl ether, linear Polyoxyethylene alkyl ether (polyethylene glycol monomethyl ether, polyoxyethylene lauryl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene tridecyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether), 5 to 5 carbon atoms 30 saturated alkyl alcohols having a linear or branched structure; a compound having one thiol group in one molecule; 3-methoxybutylthiog Licolate, 2-ethylhexyl thioglycolate, 2-mercaptoethyl octanoic acid ester, 3-mercaptopropi
  • the optical article is excellent in moldability, mechanical strength, hardness or optimal (A), (B) for obtaining excellent photochromic characteristics when a photochromic compound described later is added.
  • ) And (C) components are blended in amounts of 3 to 15 parts by weight for (A) and 25 parts for (B), where the total of the above components (A), (B) and (C) is 100 parts by weight. It is preferable to contain in a range of 20 to 65 parts by mass, (C) in an amount of 4 to 10 parts by mass, (B) 30 to 60 parts by mass, and (C) 30 to 60 parts by mass. It is most preferable to contain it in the range of parts by mass.
  • the optical composition obtained by adding a photochromic compound to the optical composition of the present invention can be used as a photochromic optical composition.
  • photochromic compound exhibiting photochromic properties those known per se can be used, and these can be used alone or in combination of two or more. It is possible to produce a plastic lens having photochromic properties by adding these to an optical composition and polymerizing and curing them.
  • photochromic compounds are fulgide compounds, chromene compounds, and spirooxazine compounds.
  • fulgide compounds chromene compounds
  • spirooxazine compounds Typical examples of such photochromic compounds are fulgide compounds, chromene compounds, and spirooxazine compounds.
  • indeno [2,1-f] naphtho [1,2-b] pyran skeleton is used from the viewpoint of photochromic properties such as color density, initial colorability, durability, and fading speed. It is more preferable to use a chromene compound having a molecular weight of 540. Particularly, a chromene compound having a molecular weight of 540 or more is preferably used because it is particularly excellent in color density and fading speed.
  • chromene compounds shown below are examples of chromene compounds that are particularly preferably used in the present invention.
  • the preferred amount of use varies depending on the photochromic expression method.
  • the photochromic compound (D) is used in an amount of 0.0001 to 10 parts by mass, preferably 0.001 to 2 parts by mass, and most preferably 0.001 to 1 part by mass.
  • photochromic properties are developed by the lamination method, it is used in an amount of 0.01 to 20 parts by mass, preferably 0.01 to 10 parts by mass.
  • the photochromic property is developed by the binder method, it is used in an amount of 0.1 to 40 parts by mass, preferably 0.5 to 20 parts by mass.
  • a resin is used for the purpose of improving the refractive index, improving the moldability, and adjusting the hardness of the cured product.
  • a modifier (E), a polymerization curing accelerator (F), and an internal mold release agent (G) may further be included. These will be described.
  • a resin modifier can be added for the purpose of improving the refractive index of the resulting cured product and adjusting the hardness.
  • examples thereof include olefin compounds including episulfide compounds, thietanyl compounds, epoxy compounds, and (meth) acrylate compounds. A specific example will be described below.
  • An episulfide compound is a compound having two or more episulfide groups in one molecule, and is cured by ring-opening polymerization. These compounds may be added to increase the refractive index. Specific examples of such episulfide compounds include the following.
  • a thietanyl compound is a thietane compound having two or more thietanyl groups in one molecule, and is cured by ring-opening polymerization. These compounds may be added to increase the refractive index. Some of these thietanyl compounds have an episulfide group together with a plurality of thietanyl groups, which are listed in the above section on episulfide compounds. Other thietanyl compounds include a metal-containing thietane compound having a metal atom in the molecule and a non-metal thietane compound not containing a metal. As specific examples of such thietanyl compounds, the following can be exemplified.
  • Non-metallic thietane compounds bis (3-thietanyl) disulfide, bis (3-thietanyl) sulfide, bis (3-thietanyl) trisulfide, bis (3-thietanyl) tetrasulfide, 1,4-bis (3-thietanyl) -1,3,4-trithiabutane, 1,5-bis (3-thietanyl) -1,2,4,5-tetrathiapentane, 1,6-bis (3-thietanyl) -1,3,4,6 -Tetrathiahexane, 1,6-bis (3-thietanyl) -1,3,5,6-tetrathiahexane, 1,7-bis (3-thietanyl) -1,2,4,5,7-penta Thiaheptane, 1,7-bis (3-thietanylthio) -1,2,4,6,7-pentathiaheptane, 1,1-bis (3-thie
  • This thietane compound contains, as metal atoms, group 14 elements such as Sn atom, Si atom, Ge atom and Pb atom; group 4 elements such as Zr atom and Ti atom; group 13 elements such as Al atom.
  • group 14 elements such as Sn atom, Si atom, Ge atom and Pb atom
  • group 4 elements such as Zr atom and Ti atom
  • group 13 elements such as Al atom.
  • the following compounds are particularly preferably used, for example.
  • the epoxy compound has an epoxy group in the molecule as a polymerizable group, and is cured by ring-opening polymerization. These compounds may be added to adjust the refractive index and the lens hardness.
  • Such epoxy compounds are roughly classified into aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds, and specific examples thereof include the following.
  • Aliphatic epoxy compounds ethylene oxide, 2-ethyloxirane, butyl glycidyl ether, phenyl glycidyl ether, 2,2′-methylenebisoxirane, 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, Triethylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, nonaethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, tetrapropylene glycol diglycidyl ether, nonapropylene Glycol diglycidyl ether, neopentyl glycol diglycy Dil ether, trimethylolpropane triglycidyl ether, glycerol trig
  • Chain aliphatic sulfur-containing atom epoxy compounds bis (2,3-epoxypropyl) sulfide, bis (2,3-epoxypropyl) disulfide, bis (2,3-epoxypropylthio) methane, 1,2-bis (2,3-epoxypropylthio) ethane, 1,2-bis (2,3-epoxypropylthio) propane, 1,3-bis (2,3-epoxypropylthio) propane, 1,3-bis (2 , 3-epoxypropylthio) -2-methylpropane, 1,4-bis (2,3-epoxypropylthio) butane, 1,4-bis (2,3-epoxypropylthio) -2-methylbutane, 1, 3-bis (2,3-epoxypropylthio) butane, 1,5-bis (2,3-epoxypropylthio) pentane, 1,5-bis (2,3-epoxypropylthio)- -
  • ⁇ Olefin compound including (meth) acrylate compound, and compound having other radical polymerizable group The olefin compound containing the (meth) acrylate compound and the other compound having a radical polymerizable group have a radical polymerizable group in the molecule as the polymerizable group, and are cured by radical polymerization. These compounds can be used for adjusting the lens hardness. The following can be illustrated as the specific example.
  • (Meth) acrylate compounds ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol Diacrylate, polyethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, dipropylene glycol diacrylate, dipropylene glycol dimethacrylate, tripropylene glycol diacrylate, tripropylene glycol dimethacrylate, polypropylene glycol Dimethacrylate, polypropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, ethylene glycol bisglycidyl acrylate, ethylene glycol bisglycidyl methacrylate, bisphenol A diacrylate,
  • a reaction catalyst or condensing agent for urethane or urea is used as a polymerization curing accelerator.
  • an epoxy curing agent or a cationic polymerization catalyst for ring-opening polymerization of an epoxy group is used as a polymerization curing accelerator.
  • a radical polymerization initiator Is used as a polymerization curing accelerator.
  • reaction catalyst for urethane or urea
  • This reaction catalyst is used in poly (thio) urethane bond formation by reaction of polyiso (thia) cyanate with a polyol or polythiol.
  • These polymerization catalysts can include tertiary amines and the corresponding inorganic or organic salts, phosphines, quaternary ammonium salts, quaternary phosphonium salts, Lewis acids, or organic sulfonic acids. As specific examples, the following can be exemplified.
  • the catalytic activity is too high depending on the type of the compound selected, it is possible to suppress the catalytic activity by mixing a tertiary amine and a Lewis acid.
  • Tertiary amines triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, triethylamine, hexamethylenetetramine, N, N-dimethyloctylamine, N, N, N ′, N '-Tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis (1-methylpiperidine), 1,8-diazabicyclo- (5,4,0) -7-undecene phosphines; trimethylphosphine, Triethylphosphine, tri-n-propylphosphie, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tribenzylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,2-bis (dimethylphosphine)
  • condensation agent Specific examples include the following.
  • Inorganic acids hydrogen chloride, hydrogen bromide, sulfuric acid, phosphoric acid, etc.
  • Organic acids p-toluenesulfonic acid, camphorsulfonic acid, etc.
  • Acidic ion exchange resins Amberlite, Amberlyst, etc.
  • Carbodiimide Dicyclohexylcarbodiimide, 1-ethyl-3- (3-Dimethylaminopyrrolyl) -carbodiimide
  • epoxy curing agent examples include the following. Amine compounds and salts thereof; 2-methylimidazole, 2-ethyl-4-methylimidazole, 1,8-diaza-bicyclo (5,4,0) undecene-7-trimethylamine, benzyldimethylamine, triethylamine, 2,4, 6-tris (dimethylaminomethyl) phenol, 2- (dimethylaminomethyl) phenol quaternary ammonium salt; tetramethylammonium chloride, benzyltrimethylammonium bromide, tetrabutylammonium bromide organic phosphine compound; tetra-n-butylphosphonium benzo Triazolate, tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate metal carboxylate; chromium (III) tricarboxylate, tin octylate acetylace
  • ⁇ Cationic polymerization catalyst Specific examples of the cationic polymerization catalyst include the following. Lewis acid catalyst; BF 3 / amine complex, PF 5 , BF 3 , AsF 5 , SbF 5, etc. Thermosetting cationic polymerization catalyst; Phosphonium salt, quaternary ammonium salt, sulfonium salt, benzylammonium salt, benzylpyridinium salt, benzyl Sulfonium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, amine imide UV curable cationic polymerization catalyst; diaryliodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexafluoroantimonate
  • the polymerization initiator includes a thermal polymerization initiator, and specific examples thereof are as follows.
  • ⁇ (G) Internal mold release agent As an example of the internal mold release agent used in the present invention, any can be used as long as it has a release effect and does not impair the physical properties such as transparency of the resin, but preferably a surfactant is used. Is done. Of these, phosphate ester surfactants are preferred.
  • the internal mold release agent herein includes those exhibiting a mold release effect among the above-mentioned various catalysts, and may include, for example, quaternary ammonium salts and quaternary phosphonium salts. These internal mold release agents are appropriately selected from the combination with monomers, polymerization conditions, economy, and ease of handling. Specific examples of the internal release agent of the phosphate ester are as follows.
  • Alkyl acid phosphate Alkyl acid phosphate; mono-n-butyl phosphate, mono-2-ethylhexyl phosphate, mono-n-octyl phosphate, mono-n-butyl phosphate, bis (2-ethylhexyl) phosphate, di ( 2-ethylhexyl), di-n-octyl phosphate, di-n-butyl phosphate, butyl acid phosphate (mono-, di-mixture), ethyl acid phosphate (mono-, di-mixture), butoxyethyl acid phosphate ( Mono-, di-mixture), 2-ethylhexyl acid phosphate (mono-, di-mixture), isotridenic acid phosphate (mono-, di-mixture), tetracosyl acid phosphate (mono-, di-mixture), stearyl Acid phosphate (mono-, di-mixture) Other
  • Each of the various internal mold release agents (G) described above may be used alone or in combination of two or more, but the amount used may be small, for example, (A), (B) and (C ) Can be used in an amount of 0.001 to 10 parts by mass with respect to 100 parts by mass in total.
  • ⁇ Other ingredients> When a photochromic compound is added to the optical composition of the present invention, various compounding agents known per se, for example, an ultraviolet absorber, an antistatic agent, an infrared absorber, and an ultraviolet ray, as long as the effects of the present invention are not impaired.
  • Various stabilizers such as stabilizers, antioxidants, anti-coloring agents, antistatic agents, fluorescent dyes, dyes, pigments, fragrances, additives, solvents, leveling agents, and thiols such as t-dodecyl mercaptan are polymerized As a preparation agent, it can mix
  • UV stabilizer is preferable because the durability of the photochromic compound can be improved.
  • UV stabilizers hindered amine light stabilizers, hindered phenol antioxidants, sulfur-based antioxidants and the like are known.
  • Particularly suitable UV stabilizers are as follows.
  • the total amount of (A), (B), and (C) is 100 parts by mass. , 0.001 to 10 parts by mass, particularly 0.01 to 1 part by mass.
  • a hindered amine light stabilizer when used, there is a difference in durability improvement effect depending on the type of photochromic compound.
  • 1 mol of the photochromic compound (D) is used in order to prevent color deviation of the prepared color tone.
  • the amount is preferably 0.5 to 30 mol, more preferably 1 to 20 mol, and still more preferably 2 to 15 mol.
  • Antistatic agents include alkali metal or alkaline earth metal salts, quaternary ammonium salts, surfactants (nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants). ), And ionic liquids (salts that exist as liquids at room temperature and exist as pairs of cations and anions). Specific examples are as follows.
  • Alkali metal or alkaline earth metal salt alkali metal (lithium, sodium, potassium, etc.) or alkaline earth metal (magnesium, calcium, etc.) and organic acid [mono- or dicarboxylic acid having 1 to 7 carbon atoms (formic acid, acetic acid, Salt of propionic acid, oxalic acid, succinic acid, etc.), sulfonic acid having 1 to 7 carbon atoms (methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, etc.) and thiocyanic acid], and said organic acid and inorganic Salts of acids [hydrohalic acids (hydrochloric acid, hydrobromic acid, etc.), perchloric acid, sulfuric acid, nitric acid, phosphoric acid, etc.], etc.
  • organic acid and inorganic Salts of acids hydrohalic acids (hydrochloric acid, hydrobromic acid, etc.), perchloric acid, sulfur
  • Quaternary ammonium salts Amidinium (1-ethyl-3-methylimidazolium, etc.) Or a salt of guanidinium (2-dimethylamino-1,3,4-trimethylimidazolinium, etc.) and the organic acid or inorganic acid, etc.
  • Sexifier Sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, alkyl glycoside, polyoxyethylene alkyl phenyl ether, higher fatty acid salt (soap) , ⁇ -sulfo fatty acid methyl ester salt, linear alkylbenzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, (mono) alkyl phosphate ester salt, ⁇ -olefin sulfonate, alkane sulfonate, alkyl trimethyl Ammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, N-methylbishydroxyethylamine fat, fatty acid ester / hydrochloride, alkylammonium F
  • Ionic liquids 1,3-ethylmethylimidazolium bistrifluoromethanesulfonimide, 1,3-ethylmethylimidazolium tetrafluoroborate, 1-ethylpyridinium bistrifluoromethanesulfonimide 1-ethylpyridinium tetrafluoroborate, 1-ethylpyridinium hexafluorophosphate, 1-methylpyrazolium bistrifluoromethanesulfonimide, etc.
  • the molar ratio of the hydroxyl group and thiol group to the functional group of the isocyanate group and thioisocyanate group is such that the amount of hydroxyl group and thiol group is 0.1 mol per mole of isocyanate group and thioisocyanate group. To 1.2 mol, especially 0.85 to 1.15 mol, and most preferably, it is in the range of 0.9-1.1 moles.
  • the optical composition of the present invention is generally at least one selected from (A) polyrotaxane and (B) one isocyanate group and isothiocyanate group in one molecule.
  • (D) the photochromic compound, (C) an iso (thio) cyanate reactive group-containing compound is preferably blended. For example, each component is melt-kneaded. It is desirable to prepare a photochromic optical composition, prepare a photochromic cured product by polymerizing and curing the composition, and develop the photochromic property by the cured product.
  • a coating solution is prepared by dispersing or dissolving the photochromic optical composition in an organic solvent.
  • the coating liquid is applied to a transparent optical sheet or optical film and dried to form a photochromic coating layer, thereby exhibiting photochromic properties.
  • the organic solvent to be used may be appropriately selected depending on the use, but from the viewpoint of solubility, ketones such as methyl ethyl ketone and diethyl ketone, halogens such as methylene chloride and chloroform, aromatic hydrocarbons such as toluene and xylene, It is preferable to use ethers such as dioxane and tetrahydropyran.
  • the above-mentioned photochromic optical composition is polymerized and cured to produce a photochromic cured product.
  • Polymerization curing is performed by radical polymerization, ring-opening polymerization, anionic polymerization or condensation by irradiation with heat or, if necessary, active energy rays such as ultraviolet rays, ⁇ rays, ⁇ rays, and ⁇ rays, heat, or a combination of both. This is done by carrying out polymerization.
  • polyrotaxane (C) iso (thio) cyanate-reactive group-containing compound, (E) resin modifier, and further (D) type of polymerization curing accelerator and photochromic cured product to be formed
  • a polyrotaxane (C) iso (thio) cyanate-reactive group-containing compound, (E) resin modifier, and further (D) type of polymerization curing accelerator and photochromic cured product to be formed
  • the photochromic optical composition When the photochromic optical composition is thermally polymerized, it particularly affects the properties of the photochromic cured product from which the polymerization temperature is obtained.
  • This temperature condition is influenced by the type and amount of the thermal polymerization initiator and the type of polymerizable monomer, and thus cannot be limited in general.
  • the polymerization is started at a relatively low temperature, and the temperature is slowly increased. The method is preferred. Since the polymerization time varies depending on various factors as well as the temperature, it is preferable to determine the optimal time according to these conditions in advance. Generally, the conditions are set so that the polymerization is completed in 2 to 48 hours. It is preferable to choose.
  • the UV intensity affects the properties of the resulting photochromic cured product.
  • the illumination conditions can not be unconditionally limited because affected by the type of the kind and amount and polymerizable monomers of the photopolymerization initiator, typically 365nm in the UV light 50 ⁇ 500mW / cm 2 at a wavelength of zero. It is preferable to select conditions so that light is irradiated in a time of 5 to 5 minutes.
  • the above photochromic optical composition is injected between the glass molds held by the elastomer gasket or the spacer, and the polymerizable monomer
  • the type of polymerization curing accelerator it is possible to obtain a photochromic cured product molded in the form of an optical material such as a lens by casting polymerization by heating in an air furnace or irradiation with active energy rays such as ultraviolet rays. it can.
  • a spectacle lens or the like to which photochromic properties are directly imparted can be obtained.
  • a coating solution is applied to the surface of an optical substrate such as a lens substrate by spin coating or dipping the photochromic optical composition.
  • a coating solution may be prepared by appropriately dissolving in an organic solvent, applied, and dried to remove the organic solvent.
  • the photochromic layer which consists of a photochromic hardened body is formed in the surface of an optical base material by thermosetting by heating (coating method).
  • a resin modifier having a radical polymerizable group it may be further cured by UV irradiation or heating in an inert gas such as nitrogen.
  • an optical substrate such as a lens substrate is arranged facing the glass mold so that a predetermined gap is formed, and a photochromic optical composition is injected into the gap, and in this state, UV irradiation or heating is performed.
  • a photochromic layer made of a photochromic cured product can be formed on the surface of an optical base material by cast polymerization using an inner mold that performs polymerization curing. Is formed on the surface of the optical substrate in advance by subjecting the surface of the optical substrate to chemical treatment with an alkali solution, acid solution, etc., physical treatment by corona discharge, plasma discharge, polishing, etc. The adhesion between the photochromic layer and the optical substrate can also be improved. Of course, it is also possible to provide a transparent adhesive resin layer on the surface of the optical substrate.
  • a photochromic sheet is produced by sheet molding using the photochromic optical composition, and this is sandwiched between two transparent sheets (optical sheets).
  • a photochromic laminate having the photochromic layer as an adhesive layer is obtained.
  • the photochromic sheet it is also possible to employ a means of coating using a coating solution in which the photochromic optical composition is dissolved in an organic solvent.
  • the photochromic laminate produced in this way is, for example, mounted in a mold, and then, by injection molding a thermoplastic resin for an optical substrate such as a lens (for example, polycarbonate), photochromic properties can be obtained.
  • An optical substrate such as a lens having a predetermined shape is provided.
  • this photochromic laminated body can also be adhere
  • the photochromic optical composition described above can exhibit photochromic properties with excellent color density, fading speed, and the like, and is capable of exhibiting photochromic properties without reducing properties such as mechanical strength. It is effectively used for producing a material such as a photochromic lens.
  • the photochromic layer and photochromic cured product formed from the photochromic optical composition are dyed using a dye such as a disperse dye, silane coupling agent, silicon, zirconium, antimony, aluminum, tin, tungsten, depending on the application.
  • a dye such as a disperse dye, silane coupling agent, silicon, zirconium, antimony, aluminum, tin, tungsten, depending on the application.
  • Preparation of hard coat film using hard coat agent mainly composed of sol, etc. formation of thin film by vapor deposition of metal oxide such as SiO 2 , TiO 2 , ZrO 2, etc. by thin film by applying organic polymer
  • Post-processing such as antireflection treatment and antistatic treatment can also be performed.
  • the amount of inclusion was measured by 1 H-NMR measurement apparatus (JNM-LA500 manufactured by JEOL Ltd.) after dissolving polyrotaxane in DMSO-d 6 and calculated by the following method.
  • X, Y and X / (YX) have the following meanings.
  • X Integral value of proton derived from hydroxyl group of 4-6 ppm cyclodextrin
  • Y Integral value of proton derived from cyclodextrin of 3-4 ppm and PEG methylene chain
  • X / (YX) Proton ratio of cyclodextrin to PEG First, Theoretically, X / (YX) when the maximum inclusion amount is 1 is calculated in advance, and this value is compared with X / (YX) calculated from the analysis value of the actual compound. The amount was calculated.
  • the modification degree of the cyclic molecule to the OH group by the hydroxypropyl group was 0.5.
  • a mixed solution was prepared by dissolving 5 g of the resulting hydroxypropylated polyrotaxane in 22.5 g of ⁇ -caprolactone at 80 ° C. The mixture was stirred at 110 ° C. for 1 hour while blowing dry nitrogen, 0.16 g of a 50 wt% xylene solution of tin (II) 2-ethylhexanoate was added, and the mixture was stirred at 130 ° C. for 6 hours. Thereafter, xylene was added to obtain a polycaprolactone-modified polyrotaxane xylene solution into which a side chain having a nonvolatile concentration of about 35% by mass was introduced.
  • the polycaprolactone-modified polyrotaxane xylene solution prepared above is dropped into hexane, collected, and dried, whereby a side chain-modified polyrotaxane having a primary hydroxyl group as a polymerizable functional group (side chain of the obtained polyrotaxane)
  • the weight average molecular weight Mw of the obtained polyrotaxane was about 400,000, and the hydroxyl value was 1.35 mmol / g in the measured value.
  • the weight average molecular weight of polyrotaxane was measured by gel permeation chromatography (GPC) under the following conditions.
  • Measurement device Liquid chromatograph (Nippon Waters) GPC column: Shodex GPC KF-805 (exclusion limit molecular weight: 2,000,000) (manufactured by Showa Denko KK) ⁇ Flow rate: 1 mL / min -Column temperature: 40 ° C Sample concentration: 0.5% (w / v) (diluted with DMF) -Mobile phase solvent: DMF -Standard polystyrene conversion The hydroxyl value of the polyrotaxane was measured by a titration method.
  • the polyrotaxane xylene solution was dropped into hexane and collected, and then 20 g of THF was added. Under an argon atmosphere, a THF solution of TBAF (10 ml, 1.0 M) was added, and the mixture was stirred while heating under reflux. After completion of the reaction, a saturated aqueous NH 4 Cl solution was added for liquid separation, the aqueous layer was extracted with toluene, and the collected oil layer was dried over Na 2 SO 4 . Thereafter, the solvent is removed under reduced pressure, and a polyrotaxane (AI-1) characterized in that a side chain having a tertiary hydroxyl group is introduced into at least a part of the cyclic molecule can be obtained.
  • AI-1 polyrotaxane
  • the molecular weight of the side chain of the obtained polyrotaxane was about 600 on average, and the weight average molecular weight Mw of the obtained polyrotaxane was 460000 by GPC measurement, and the hydroxyl group of the side chain was 100% of the tertiary hydroxyl group.
  • AI-2 Polyrotaxane having a tertiary hydroxyl group in the side chain (1-5) Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-2); (1-1) A polyrotaxane having a tertiary hydroxyl group in the side chain (AI) except that 10,000 PEG was used instead of 20,000 having a weight average molecular weight of 20,000. -2) was obtained.
  • AI-3 Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (1-6) Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-3); A polyrotaxane (AI-3) having a tertiary hydroxyl group in the side chain was prepared in the same manner as (AI-1) except that the amount of ⁇ -caprolactone in (1-3) was 125 g.
  • AI-4 Polyrotaxane having a secondary hydroxyl group in the side chain (1-7) Preparation of a polyrotaxane having a secondary hydroxyl group in the side chain (AI-4); (1-4) was the same as (AI-1) except that 1.45 g of 2- (t-butyldimethylsiloxy) propyl isocyanate was used instead of 2-methyl-2- (trimethylsiloxy) propyl isocyanate. Thus, a polyrotaxane (AI-4) having a secondary hydroxyl group in the side chain was prepared.
  • AI-5 Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (1-8) Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-5); In (1-1), 10,000 PEG was used instead of 20,000 having a weight average molecular weight of 20,000, and 22.5 g of ⁇ -caprolactam was used instead of ⁇ -caprolactone in (1-3). In the same manner as AI-1), a polyrotaxane (AI-5) having a tertiary hydroxyl group in the side chain was obtained.
  • AI-6 Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (1-8) Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-6); In the same manner as (AI-1) except that 22.5 g of ⁇ -valerolactone was used instead of ⁇ -caprolactone in (1-3), a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-6) Got.
  • AI-7 Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (1-9) Preparation of a polyrotaxane having a tertiary hydroxyl group in the side chain (AI-7); (AI-1) except that 90,000 PEG was used in place of PEG having a weight average molecular weight of 20,000 in (1-1), and the amount of ⁇ -caprolactone in (1-3) was 12.5 g. In the same manner as in the preparation method, a polyrotaxane (AI-7) having a tertiary hydroxyl group in the side chain was obtained.
  • AI-8 Polyrotaxane having tertiary hydroxyl group in side chain (1-10) Preparation of polyrotaxane having tertiary hydroxyl group in side chain (AI-8) In (1-4), 2-methyl-2- (trimethylsiloxy) ) A polyrotaxane (AI-8) having a tertiary hydroxyl group in the side chain was obtained in the same manner as in (AI-1) except that 0.63 g of propyl isocyanate was used.
  • AI-9 Polyrotaxane (1-11) having tertiary hydroxyl group in side chain Preparation of polyrotaxane (AI-9) having tertiary hydroxyl group in side chain In (1-4), 2-methyl-2- (trimethylsiloxy) ) A polyrotaxane (AI-9) having a tertiary hydroxyl group in the side chain was obtained in the same manner as in (AI-1) except that 1.01 g of propyl isocyanate was used.
  • AII-1 Polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain
  • a method for preparing polyrotaxane (AII-1) is described below. The processes up to the “(1-3) introduction of side chain into polyrotaxane” were carried out in the same manner as in the preparation of polyrotaxane (AI-1).
  • This polyrotaxane xylene solution was dropped into hexane and recovered, and then 20 g of THF was added. Under an argon atmosphere, a solution of tetra-n-butylammonium fluoride (TBAF) in THF (10 ml, 1.0 M) was added, and heated under reflux. Stir. After completion of the reaction, a saturated aqueous NH 4 Cl solution was added to separate the solution, the aqueous layer was extracted with toluene, and the collected oil layer was dried over Na 2 SO 4 .
  • TBAF tetra-n-butylammonium fluoride
  • the molecular weight of the side chain of the obtained polyrotaxane was about 650 on average, and the weight average molecular weight Mw of the obtained polyrotaxane was 477,000 as measured by GPC measurement.
  • the terminal hydroxyl groups were all substituted in the polyrotaxane obtained in (1-3) from the disappearance of 1- (2-isocyanatoethyl) -4-[(trimethylsilyl) oxy] -benzene.
  • AII-2 Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-5) Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (AII-2); (1-1) A polyrotaxane having a pKa 10 hydroxyl group in the side chain in exactly the same manner as (AII-1) except that 10,000 PEG was used instead of 20,000 having a weight average molecular weight. (AII-2) was obtained.
  • AII-3 Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-6) Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (AII-3); A polyrotaxane (AII-3) having a hydroxyl group having a pKa of 10 in the side chain was prepared in the same manner as (AII-1) except that the amount of ⁇ -caprolactone in (1-3) was 125 g.
  • AII-4 Polyrotaxane having a hydroxyl group of pKa 9.3 as a side chain (1-7) Preparation of polyrotaxane (AII-4) having a hydroxyl group of pKa 9.3 as a side chain; A saturated solution of 140 mL of dichloromethane and 140 mL of NaHCO 3 was added to 1.94 g of 3,3,3-trifluoro-2- (phenylmethoxy) -2- (trifluoromethyl) -1-propanamine at room temperature and stirred. While cooling to 0 degrees, stirring was stopped.
  • This polyrotaxane xylene solution was dropped into hexane and recovered. Then, a mixed solution of 18 g of THF / 2 g of MeOH was added, and 0.07 g of 10% Pd / C was added thereto at room temperature.
  • the polyrotaxane was obtained by stirring for 1.5 hours and introducing a side chain having a hydroxyl group with a pKa of 9.3 (HA in the formula (2) is (CF 3 ) 2 -CH-OH).
  • the molecular weight of the side chain of the obtained polyrotaxane was about 700 on average, and the weight average molecular weight Mw of the obtained polyrotaxane was 470000 by GPC measurement.
  • the terminal hydroxyl groups were all substituted because all of 1- (2-isocyanatoethyl) -4-[(trimethylsilyl) oxy] -benzene disappeared.
  • AII-4 The physical properties of this polyrotaxane (AII-4) were as follows. Inclusion amount of ⁇ -CD: 0.25 Side chain modification degree: 0.5 Side chain molecular weight: about 700 on average Polyrotaxane weight average molecular weight Mw (GPC): 500,000 100% of the side chain hydroxyl group having a pKa of 9.3 (HA in formula (2) is (CF 3 ) 2 —CH—OH)
  • AII-5 Preparation of a polyrotaxane having a hydroxyl group with a pKa of 12.5 on the side chain
  • a polyrotaxane (A-5) having a hydroxyl group with a pKa of the hydroxyl group of 12.5 on the side chain 4,4,4-trifluoro-3- (phenyl) instead of 3,3,3-trifluoro-2- (phenylmethoxy) -2- (trifluoromethyl) -1-propanamine in (1-7)
  • a polyrotaxane (A-5) having a hydroxyl group with a pKa of the hydroxyl group of 12.5 in the side chain was obtained in the same manner as in the preparation method of (AII-4) except that 1.58 g of methoxy) -1-butanamine was used (formula HA in (2) is CF 3 —CH 2 —OH).
  • AII-6 Polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-9) Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-1) having a weight average molecular weight of 20,000 Similar to the preparation method of (AII-1), except that PEG having a molecular weight of 90,000 was used instead of PEG, and the amount of ⁇ -caprolactone in (1-3) was 10.5 g, A polyrotaxane (AII-6) having a hydroxyl group having a pKa of 10 was obtained.
  • AII-7 Polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-10) Preparation of polyrotaxane (AII-7) having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-4) Similar to the preparation method of (AII-1) except that the amount of-(2-isocyanatoethyl) -4-[(trimethylsilyl) oxy] -benzene was 0.80 g, the side chain has a hydroxyl group having a pKa of 10 in the side chain. A polyrotaxane (AII-7) was obtained.
  • AII-7 The physical properties of this polyrotaxane (AII-7) were as follows. Inclusion amount of ⁇ -CD: 0.25 Side chain modification degree: 0.5 Side chain molecular weight: about 600 on average Polyrotaxane weight average molecular weight Mw (GPC): 439000 50% hydroxyl group with a pKa of hydroxyl group of 10 in the side chain (HA of formula (2) is phenol), 50% of hydroxyl group with a pKa of hydroxyl group of 15.5 in the side chain (HA of formula (2) is methanol) )
  • AII-8 a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain (1-11)
  • Preparation of a polyrotaxane having a hydroxyl group having a pKa of 10 hydroxyl groups in the side chain Similar to the preparation method of (AII-1) except that 1- (2-isocyanatoethyl) -4-[(trimethylsilyl) oxy] -benzene was changed to 1.43 g, a hydroxyl group having a pKa of 10 on the side chain was formed on the side chain. Polyrotaxane (AII-8) having was obtained.
  • HA in formula (2) is methanol
  • Side chain modification degree 0.5
  • Side chain molecular weight about 500 on average
  • the side chain hydroxyl group is 100% primary hydroxyl group (HA in formula (2) is methanol)
  • (C-2) a mono (thi) ol compound having one hydroxyl group or thiol group in one molecule
  • 3-MBMA 3-methoxybutyl thioglycolate 1-DT: dodecanethiol
  • Example I-1 According to the following formulation, each component was mixed to prepare a uniform liquid (optical composition). Table 3 shows the blending amounts. Prescription; (A) Polyrotaxane: AI-1 8 parts by mass (B) Polyisocyanate compound: NBDI 47 parts by mass (C) Poly (thi) ol compound: PL1 20 parts by mass, TMP 16 parts by mass Mono (thi) ol compound: PGME10 9 Part by mass (D) Photochromic compound: 0.04 part by mass of PC1 (H) Internal mold release agent: 0.3 part by mass of PA2EE (based on the total amount of the mixture) (Other blends): HALS 0.1 parts by mass Using the above optical composition, a photochromic cured product was obtained by a kneading method. The polymerization method is shown below.
  • a mold composed of a glass mold designed to have a thickness of 2 mm and 10 mm and a gasket made of an ethylene-vinyl acetate copolymer is obtained.
  • the two types of molds were injected. Subsequently, it was cured for 15 hours while gradually raising the temperature from 30 ° C to 100 ° C. After the completion of the polymerization, the photochromic cured product was removed from the glass mold of the mold to obtain a photochromic cured product having a cured product thickness of 2 mm and 10 mm.
  • Color density ⁇ (120) ⁇ (0) ⁇ difference between absorbance ⁇ (120) ⁇ after light irradiation for 120 seconds and absorbance ⁇ (0) before light irradiation at the maximum absorption wavelength . It can be said that the higher this value, the better the photochromic properties. Further, when the color was developed outdoors, the color tone was visually evaluated.
  • Moldability-1 The optical distortion of the cured body (2 mm thickness) was visually observed. The evaluation criteria are as follows. 1: No optical distortion 2: Optical distortion observed in a part of half or less of the lens 3: Optical distortion observed in the entire lens
  • Cloudiness-1 The white turbidity evaluation of the said hardening body (2 mm thickness) was performed visually. The evaluation criteria are as follows. 1: At a level that is not a problem as a product, there is no white turbidity or hardly visible. 2: A level that is not a problem as a product but slightly cloudy. 3: It is a level with no problem as a product, but white turbidity is stronger than 2. 4: Those that are cloudy and cannot be used as a product.
  • Formability-2 The optical distortion of the cured product (10 mm thick) was evaluated using a high-pressure mercury lamp. That is, it evaluated by irradiating the surface of the said hardening body (10-mm thickness) with the light of a high pressure mercury lamp, and observing the projection visually.
  • the evaluation criteria are as follows.
  • White turbidity -2 The white turbidity of the cured body (10 mm thickness) was evaluated using a high-pressure mercury lamp. That is, the degree of white turbidity was evaluated by irradiating the side of the cured body (10 mm thickness) with light from a high-pressure mercury lamp and observing the cured body (10 mm thickness) visually from the surface. The evaluation criteria are as follows.
  • Examples I-2 to 11, Comparative Examples I-1 to 3> A photochromic cured product was prepared and evaluated in the same manner as in Example I-1 except that the photochromic optical composition having the composition shown in Table 3 was used. The results are shown in Table 4. In Example I-11 and Comparative Example I-3, since no photochromic compound (D) component was added, the photochromic characteristics were not measured. The evaluation of moldability-1 and cloudiness-1 was carried out with reference to Patent Document 8.
  • a mold composed of a glass mold designed to have a thickness of 2 mm and 10 mm and a gasket made of an ethylene-vinyl acetate copolymer is obtained.
  • the two types of molds were injected. Subsequently, it was cured for 15 hours while gradually raising the temperature from 30 ° C to 100 ° C. After the completion of the polymerization, the photochromic cured product was removed from the glass mold of the mold to obtain a photochromic cured product having a cured product thickness of 2 mm and 10 mm.
  • Example II-2 to 8 Comparative Examples II-1 to 3> A photochromic cured product was prepared and evaluated in the same manner as in Example II-1, except that the photochromic optical composition having the composition shown in Table 5 was used. The results are shown in Table 6. In Example II-7 and Comparative Example II-3, no photochromic compound (D) component was added, so the photochromic characteristics were not measured. The evaluation of moldability-1 and cloudiness-1 was carried out with reference to Patent Document 8. Comparative Examples I-1 to I-3 are the same experiments as Comparative Examples II-1 to II-3, respectively.
  • a photochromic laminate was obtained by a coating method.
  • the polymerization method is shown below.
  • a thiourethane plastic lens having a center thickness of about 2 mm, a spherical power of ⁇ 6.00 D, and a refractive index of 1.60 was prepared.
  • This thiourethane plastic lens was previously alkali-etched at 50 ° C. for 5 minutes using a 10% aqueous sodium hydroxide solution, and then thoroughly washed with distilled water.
  • the photochromic coating composition was dropped onto the surface of the plastic lens rotated at 2000 rpm. Thereafter, it was polymerized and cured by heating at 120 ° C. for 1 hour to obtain a photochromic laminate.
  • the film thickness of the photochromic layer was about 30 ⁇ m.
  • the obtained photochromic laminate had a maximum absorption wavelength of 586 nm, a color density of 0.93, a fading speed of 50 seconds, a Vickers hardness of 7, a moldability-1 of 1, and a cloudiness of 1. Further, as a result of evaluating the moldability and white turbidity of the photochromic cured product (10 mm thick), the moldability-2 was 1 and the white turbidity-2 was 1. The maximum absorption wavelength, color density, fading speed, moldability-1 and 2, and cloudiness-1 and 2 were evaluated by the same method as in Example I and the Vickers hardness was measured by the method shown below. did. These measured values are shown in Table 8.
  • Vickers hardness The Vickers hardness of the obtained photochromic layer was measured using a micro Vickers hardness meter PMT-X7A (manufactured by Matsuzawa Co., Ltd.). A square pyramid diamond indenter was used as the indenter, and the evaluation was performed under the conditions of a load of 10 gf and an indenter holding time of 30 seconds. The measurement results were shown as an average value of a total of 3 times after performing a total of 4 measurements and excluding the first value with a large measurement error.
  • Example II-9 A photochromic cured product was prepared and evaluated in the same manner as in Example I-12, except that the photochromic optical composition having the composition shown in Table 7 was used. The results are shown in Table 8.
  • the cured product obtained by polymerizing the optical composition of the present invention has excellent moldability and mechanical strength, and is further reduced in cloudiness. Further, when a photochromic compound is added, in addition to the above physical properties, photochromic characteristics are also excellent.
  • Comparative Examples I-1 and 2 although the photochromic characteristics, moldability-1, white turbidity-1 and the like were good, the evaluation results of more severe moldability-2 and white turbidity-2 were insufficient. Also in Comparative Example 3, the evaluation results of moldability-2 and white turbidity-2 were insufficient.
  • the optical composition of the present invention can also be applied to a coating method.
  • Polyrotaxane 2 Axial molecule 3: Cyclic molecule 4: Bulky end group 5: Side chain having secondary or tertiary hydroxyl group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)
  • Polyethers (AREA)
  • Optical Filters (AREA)

Abstract

本発明は、レンズ基材製造時における白濁や光学歪み等の外観不良を低減した光学物品を得ることができ、フォトクロミック化合物を添加した場合には、それに加え良好なフォトクロミック性及び機械強度を有するフォトクロミック硬化体を形成することができる光学用組成物及び該組成物に用いるポリロタキサンを提供する。前記ポリロタキサンは、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、(X)および(Y)の少なくとも一方を満たす。 (X)該ポリロタキサンの環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されている (Y)該ポリロタキサンの環状分子の少なくとも一部に、-A(Aは有機基であり、少なくとも一つの水酸基を含む。)で示される基を有する側鎖が導入されているポリロタキサンであり、H-Aで示される化合物の水酸基のpKaが6以上14未満である

Description

ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物
 本発明は、新規なポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物に関する。
 ポリロタキサンは、環状分子を有し、その環状分子を串刺し状に貫通する直鎖状分子と、この直鎖状分子の両末端に配置され、前記環状分子と直鎖状分子との分離を防止する封鎖基とを有する特異的な構造を有している。このポリロタキサンにおいては、前記環状分子が直鎖状分子上を相対的に移動できるため、種々の特性、特に優れた機械特性を有しており、種々の応用展開が期待されており、コンタクトレンズ等の光学材料等にも用いられている(特許文献1)。一方、光学材料の多くはプラスチックレンズが用いられており、無機レンズに比べて軽量であり、割れ難く、染色が可能なため、近年、あらゆる産業分野で急速に普及してきている。その中の一つとして、眼鏡レンズの分野がある。眼鏡レンズは、その用途から、透明であること、 耐久性が優れること、染色性が容易であること、 加工に耐えうる樹脂強度を有すること等多くの機能が求められており、これまで様々なレンズ用樹脂素材が開発され使用されている。また、上記眼鏡レンズの種類の一つにフォトクロミック眼鏡レンズがある。フォトクロミック眼鏡レンズとは、太陽光のような紫外線を含む光が照射される屋外ではレンズが速やかに着色してサングラスとして機能し、そのような光の照射がない屋内においては退色して透明な通常の眼鏡として機能するものであり、近年その需要は増大している。
 光学材料にフォトクロミック性を付与するためには、一般に、フォトクロミック化合物はプラスチック材料と併用されるが、具体的には、次のような手段が知られている。(a)重合性モノマーにフォトクロミック化合物を溶解させ、それを重合させることにより、直接、レンズ等の光学材料を成型する方法。この方法は、練り込み法と呼ばれている。(b)レンズ等のプラスチック成型品の表面に、フォトクロミック化合物が分散された樹脂層を、コーティング或いは注型重合により設ける方法。この方法は、積層法と呼ばれている。(c)2枚の光学シートを、フォトクロミック化合物が分散された接着材樹脂により形成された接着層により接合すること。この方法は、バインダー法と呼ばれている。
 ところで、フォトクロミック性が付与された光学物品などの光学材料については、さらに、次のような特性が求められている。
 (I)紫外線を照射する前の可視光領域での着色度(初期着色)が低いこと。
 (II)紫外線を照射した時の着色度(発色濃度)が高いこと。
 (III)紫外線の照射を止めてから元の状態に戻るまでの速度(退色速度)が速いこと。
 (IV)発色~退色の可逆作用の繰り返し耐久性がよいこと。
 (V)保存安定性が高いこと。
 (VI)各種の形状に成型し易いこと。
 (VII)機械的強度が低下することなく、フォトクロミック性が付与されること。
 従って、前述した(a)~(c)の手段でフォトクロミック性を有する光学材料などを製造するに際しても、上記のような要求が満足されるように、種々の提案がなされているが、発色濃度や退色速度などに関して、さらに優れたフォトクロミック性を発現させることが求められているのが現状である。
 例えば、前述した練り込み法は、ガラスモールドを使用して安価で大量にフォトクロミックプラスチックレンズを生産できるという利点を有しているおり、現在、フォトクロミックプラスチックレンズの多くは、この方法により生産されている。
 しかしながら、練り込み法ではレンズ基材に強度が要求されるため、フォトクロミック化合物が分散されているマトリックス樹脂の機械的強度を高める必要がある。このため、優れたフォトクロミック性を発現させることが困難となっている。即ち、マトリックス樹脂中に存在するフォトクロミック化合物の分子の自由度が低くなるため、フォトクロミック可逆反応が損なわれてしまうのである。
 例えば、このような練り込み法に関して、特許文献2には、イソシアネートモノマーとチオールモノマーを含むモノマー組成物にフォトクロミック化合物を添加する手法が記載されている。また、特許文献3には、特定の(メタ)アクリル重合性モノマーとフォトクロミック化合物とを含むフォトクロミック硬化性組成物が示されている。
 しかるに、これらの組成物を重合硬化せしめて成型されたフォトクロミックレンズは、機械的強度は高いものの、フォトクロミック特性の点で不満足である。
 一方、積層法やバインダー法では、前述した練り込み法に比して、フォトクロミック性が各種基材表面に形成されている薄い層で発現するため、練り込み法と同等の発色濃度を発現させるためには、フォトクロミック化合物を高濃度で溶解する必要がある。その場合、フォトクロミック化合物の種類によっては、溶解性が不十分であったり、保存中に析出してしまう等の問題があった。また、フォトクロミック性を発現する層が薄いため、フォトクロミック化合物の耐久性が劣っている場合もあった。
 例えば、特許文献4には、プラスチックレンズ上にフォトクロミック硬化性組成物をスピンコートなどにより塗布し、光硬化させてフォトクロミックコーティング層を形成する方法が開示されている(この積層法は、コーティング法とも呼ばれる)。
 また、特許文献5には、エラストマーガスケット、粘着テープまたはスペーサーなどの部材を用いて、プラスチックレンズとガラスモールドとの間に隙間を確保し、この隙間にフォトクロミック硬化性組成物を流し込み、重合硬化させるフォトクロミック層の形成方法(以下、2段重合法ともいう)が示されている。
 さらに、特許文献6には、フォトクロミック化合物を含有するポリウレタン樹脂接着層により透明なカーボネートシートを接合した積層シートを製造する方法が開示されている(バインダー法)。
 しかるに、特許文献4~6の何れの方法においても、フォトクロミック化合物が配合されている薄い層によりフォトクロミック性を発現させるため、溶解性が低いフォトクロミック化合物を用いた場合には、発色濃度が低くなる傾向があり、さらに、フォトクロミック化合物の耐久性が劣っている場合もあった。
 特許文献7には、プラスチックレンズ上にポリオールとイソシアネート等からなるフォトクロミックウレタン硬化性組成物をスピンコートなどにより塗布し、熱硬化させてフォトクロミックコーティング層を形成する積層法が開示されているが、この方法においても、十分な発色濃度を確保することはできていない。
 特許文献8には、これらの課題を解決するためのものとして、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造を有し、環状分子の一部に水酸基を含有する側鎖を有するポリロタキサン、ポリイソシアネートモノマー、及びフォトクロミック化合物からなるフォトクロミック組成物が開示されている。該フォトクロミック組成物は、ポリロタキサンを含有させることにより、ウレタン結合による高い機械的強度と、ポリウレタンの一部にポリロタキサンが結合することによって形成される自由空間の存在による優れたフォトクロミック性(発色濃度及び退色速度)とを両立させている(特許文献8参照)。
国際公開第2005/095493号パンフレット 国際公開第2012/176439号パンフレット 国際公開第2009/075388号パンフレット 国際公開第2011/125956号パンフレット 国際公開第2003/011967号パンフレット 国際公開第2013/099640号パンフレット 国際公開第2001/055269号パンフレット 国際公開第2015/068798号パンフレット
 上記特許文献8には、成型性(光学歪みや白濁)についてほぼ問題ないレベルであるとの評価結果が記載されている。しかしながら、より高精度な評価を実施したところ、成型性が不十分となる場合があった。また、種々のレンズ形状について同様な評価を実施したところ、厚みの厚いレンズの場合には、特に成型性の問題が顕著となり、改良の余地があった。
 従って、本発明の目的は、レンズ基材製造時における白濁や光学歪み等の外観不良を低減した光学物品を得ることができ、フォトクロミック化合物を添加した場合には、それに加え良好なフォトクロミック性及び機械強度を有するフォトクロミック硬化体を形成することができる光学用組成物及びその製法並びに該光学用組成物に用いる新規なポリロタキサンを提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、ポリロタキサンのイソ(チオ)シアネート基と反応する重合性基が、1級の水酸基の場合、イシ(チオ)シアネート基との反応性が高すぎる為に不良が発生し易いことをつきとめた。また、不良が発生するものは、水酸基を有する有機基に対応する、水酸基を有する化合物のpKaが6未満または14以上である場合が多いことが分かった。ポリロタキサンのイソ(チオ)シアネート基と反応する水酸基のpKaが14以上の場合、イソ(チオ)シアネート基との反応性が高すぎる為に不良が発生し易いことをつきとめた。つまり、ポリロタキサンは、1分子が数十万以上の高分子量である為、光学組成物の粘度も高粘度になり、不均一に反応が進行すると、他のモノマーとの相分離が起こりやすく、成型性不良を起こしやすいという知見を得た。また、水酸基のpKaが6未満である水酸基の場合、イソ(チオ)シアネートとの反応性が低すぎる為、未重合のモノマーとして存在する為、不均一に反応が進行し、相分離、成型性不良を起こしやすいという知見を得た。
 即ち、プラスチックレンズ等の光学物品を得る際に、反応性が高すぎると、重合反応が局所的に進行し、成型体が不均一となる為、光学歪みの原因となる脈理が生じ、また、重合を制御できずに、重合条件に追随しない大きな重合発熱が生じた場合、対流が引き起こされることでも、脈理が生じると考えられる。更に、重合反応が局所的に進行し、成型体が不均一となる為、ポリロタキサンリッチなオリゴマーを形成してしまい、それにより相分離する為、白濁を生じることが分かった。
 そこで、反応性を低下させる為のある態様として、環状分子に導入された側鎖に2級、または3級の水酸基を有する新規のポリロタキサンを用いることにより、ポリロタキサンのイソ(チオ)シアネートに対する反応性を低下させ、かかる課題を解決することに成功し、本発明に至った。
 また、反応性を低下させる為の別の態様として、環状分子に導入された側鎖に水酸基のpKaが6以上14未満の水酸基を有する新規のポリロタキサンを用いることにより、ポリロタキサンのイソ(チオ)シアネートに対する反応性を低下させ、なお且つ、イソ(チオ)シアネートとは反応可能にすることで、かかる課題を解決することに成功し、本発明に至った。
 すなわち、本発明は、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、要件(X)および(Y)の少なくとも一方を満たすポリロタキサン、及びその製法、並びに該ポリロタキサンを含む光学用組成物である。
 要件(X):該ポリロタキサンの環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されている
 要件(Y):該ポリロタキサンの環状分子の少なくとも一部に、下記式(1)
 -A (1)
 (式中Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。)
で示される基を有する側鎖が導入されているポリロタキサンであり、下記式(2)
 H-A(2)
で示される化合物の水酸基のpKaが6以上14未満である
 ポリロタキサンとして、要件(X)および(Y)の少なくとも一方を満たすポリロタキサンを用いた光学用組成物を用いることにより、後述する実施例でも示されているように、成型性や白濁を抑制することで、成型性が良好であり、機械強度の高い光学物品を歩留まりよく製造することが出来る。さらに、該光学用組成物にフォトクロミック化合物を添加し、フォトクロミックレンズを製造する際においては、フォトクロミック性(発色濃度及び退色速度)にも優れたフォトクロミックレンズを製造することができる。
 本発明では、要件(X)を満たすポリロタキサンを用いることにより、イソ(チオ)シアネートに対する反応性を1級の水酸基よりも低下させることで、重合を制御させることが出来、上記成型性や白濁を抑制させることが出来、さらに側鎖を有することから、架橋構造を形成でき、優れた機械強度を得ることも出来る。
 本発明では、要件(Y)を満たすポリロタキサンを用いることにより、イソ(チオ)シアネートに対する反応性を制御することで、重合速度を調整し、上記成型性や白濁を抑制させることが出来、さらに側鎖を有することから、架橋構造を形成できるために、優れた機械強度を得ることも出来る。
 さらに、フォトクロミック化合物を添加し、フォトクロミック光学物品を製造する際も、本発明のポリロタキサンを用いることで優れたフォトクロミック特性を発現させることが出来る。即ち、ポリロタキサンが有している環状分子は、軸分子上をスライド可能となっているため、この環状分子の周りに空間が形成され、この空間によって、フォトクロミック化合物の可逆的な構造変化が速やかに生じ、この結果、退色速度の向上や発色濃度の向上がもたらされる。さらに、側鎖が導入された環状分子を導入することにより、柔軟性の高い側鎖近傍に存在するフォトクロミック化合物の可逆的な構造変化を、より速やかに生じさせるようになる。
本発明に用いるポリロタキサンの分子構造を示す概略図
 本発明のポリロタキサンは、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、要件(X)および(Y)の少なくとも一方を満たす。また、本発明の光学用組成物は、本発明のポリロタキサンを含有する。
 要件(X):該ポリロタキサンの環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されている
 要件(Y):該ポリロタキサンの環状分子の少なくとも一部に、下記式(1)
 -A (1)
 (式中Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。)
で示される基を有する側鎖が導入されているポリロタキサンであり、下記式(2)
 H-A(2)
で示される化合物の水酸基のpKaが6以上14未満である
 以下、本発明を構成する各成分について説明する。
 なお、本明細書において、水酸基のpKaとは、特に記載がない限り、上記記載にあるように、本発明のポリロタキサン中の式(1)で示される基が側鎖と結合している結合部位を水素に置換した、式(2)で示される化合物H-Aとした場合の水酸基のpKaを指している。
 なお、本発明の、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、要件(X)を満たすポリロタキサンを、態様Iのポリロタキサンとも記し、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、要件(Y)を満たすポリロタキサンを、態様IIのポリロタキサンとも記す。また、本発明のポリロタキサンを、ポリロタキサン(A)とも記す。
 ポリロタキサンは、図1に示されているように、全体として”1”で示されている。ポリロタキサン分子は、鎖状の軸分子”2”と環状分子”3”とから形成されている複合分子構造を有している。即ち、鎖状の軸分子”2”を複数の環状分子”3”が包接しており、環状分子”3”が有する環の内部を軸分子”2”が貫通している。従って、環状分子”3”は、軸分子”2”上を自由にスライドし得るのであるが、軸分子”2”の両端には、嵩高い末端基”4”が形成されており、環状分子”3”の軸分子”2”からの脱落が防止されている。
 上記しているが、このようなポリロタキサンが有している環状分子”3”は、軸分子”2”上をスライド可能となっているため、フォトクロミック化合物を含んでなるフォトクロミック硬化体を製造する場合、この環状分子の周りに空間が形成され、この空間によって、フォトクロミック化合物の可逆的な構造変化が速やかに生じ、この結果、退色速度の向上や発色濃度の向上がもたらされる。
 <環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されているポリロタキサン(態様Iのポリロタキサン)>
 態様Iのポリロタキサンは、環状分子の一部に2級または3級の水酸基を有する側鎖”5”が導入されている。
 また、本発明において、ポリロタキサンは側鎖に2級または3級の水酸基の他に1級の水酸基を有していてもよいが、成型性の観点から、側鎖に有する1級、2級、及び3級の水酸基の全mol数を100%とした場合に、1級の水酸基の占める割合が50%以下であることが好ましい。
 態様Iのポリロタキサンでは、このような2級または3級の水酸基を有する側鎖”5”を環に導入することにより、後述するイソ(チオ)シアネート化合物等との重合を制御させながら反応させることが容易になり、成型性を向上した光学物品を得ることが可能となる。また、隣り合う軸分子の間に適度な空間をより確実に形成することができ、フォトクロミック化合物分子の可逆反応を許容し得る間隙を確実に確保することができ、優れたフォトクロミック性を発現させることができると考えられる。さらに、このような側鎖”5”は、ポリロタキサンに架橋構造を形成し、これにより、本発明の光学用組成物を用いて形成されるフォトクロミック硬化体の機械的強度を向上させることができる。
 <環状分子の側鎖の末端の少なくとも一部に、水酸基のpKaが6以上14未満である式(1)で示される基を有する側鎖を導入しているポリロタキサン(態様IIのポリロタキサン)>
 態様IIのポリロタキサンは、環状分子の少なくとも一部に、水酸基のpKaが6以上14未満である式(1)で示される基を有する側鎖を導入していることを特徴とする側鎖”5”が導入されている。
 また、本発明において、ポリロタキサンは側鎖に水酸基のpKaが6未満または14以上である水酸基を有していてもよいが、成型性の観点から、側鎖の水酸基の全mol数を100%とした際に、水酸基のpKaが6未満または14以上の水酸基の占める割合が50%以下であることが好ましい。
 態様IIのポリロタキサンでは、このような水酸基のpKaが6以上14未満である水酸基を有する側鎖”5”を環に導入することにより、後述するイソ(チオ)シアネート化合物等との重合を制御させながら反応させることが容易になり、成型性を向上した光学物品を得ることが可能となる。また、隣り合う軸分子の間に適度な空間をより確実に形成することができ、フォトクロミック化合物分子の可逆反応を許容し得る間隙を確実に確保することができ、優れたフォトクロミック性を発現させることができると考えられる。さらに、このような側鎖”5”は、ポリロタキサンに架橋構造を形成し、これにより、本発明の光学用組成物を用いて形成されるフォトクロミック硬化体の機械強度を向上させることができる。
 本発明のポリロタキサンにおいて、軸分子としては、種々のものを用いることが可能であり、例えば、鎖状部分としては、環状分子が有する環を貫通し得る限りにおいて直鎖状或いは分岐鎖であってよく、一般にポリマーにより形成される。
 このような軸分子の鎖状部分を形成するポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリエステル、ポリ塩化ビニル、スチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合樹脂など)、アクリル系樹脂(ポリ(メタ)アクリル酸、ポリメチルメタクリレート、ポリメチルアクリレート、アクリロニトリル-メチルアクリレート共重合樹脂など)、ポリカーボネート、ポリウレタン、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリアミド(ナイロンなど)、ポリイミド、ポリジエン(ポリイソプレン、ポリブタジエンなど)、ポリシロキサン(ポリジメチルシロキサンなど)、ポリスルホン、ポリイミン、ポリ無水酢酸、ポリ尿素、ポリスルフィド、ポリフォスファゼン、ポリケトンポリフェニレン、ポリハロオレフィン等を挙げることができる。これらのポリマーは、適宜共重合されていてもよく、また変性されたものであってもよい。
 本発明において、鎖状部分を形成するポリマーとして好適なものは、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコールまたはポリビニルメチルエーテルであり、ポリエチレングリコールが最も好適である。
 さらに、鎖状部分の両端に形成される嵩高い基としては、軸分子からの環状分子の脱離を防ぐ基であれば、特に制限されないが、嵩高さの観点から、アダマンチル基、トリチル基、フルオレセイニル基、ジニトロフェニル基、及びピレニル基体を挙げることができ、特に導入のし易さなどの点で、アダマンチル基を挙げることができる。
 上述した軸分子の分子量は、特に制限されるものではないが、大きすぎると、他の成分との相溶性が悪くなる傾向があり、小さすぎると環状分子の可動性が低下し、フォトクロミック性が低下する傾向がある。このような観点から、軸分子の重量平均分子量Mwは、1000~100000、特に5000~80000、特に好ましくは10000~50000の範囲にあることが好適である。
 また、環状分子は、上記のような軸分子を包接し得る大きさの環を有するものであり、このような環としては、シクロデキストリン環、クラウンエーテル環、ベンゾクラウン環、ジベンゾクラウン環及びジシクロヘキサノクラウン環を挙げることができ、特にシクロデキストリン環が好ましい。
 尚、シクロデキストリン環には、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)があるが、本発明では、特にα-シクロデキストリン環及びγ-シクロデキストリン環が好ましく、α-シクロデキストリン環が最も好ましい。
 上記のような環を有する環状分子は、1つの軸分子に複数個が包接しているが、一般に、軸分子1個当たりに包接し得る環状分子の最大包接数を1としたとき、環状分子の包接数は、0.001乃至0.6、より好ましくは、0.002乃至0.5、さらに好ましくは0.003乃至0.4の範囲にあることが好ましい。環状分子の包接数が多すぎると、一つの軸分子に対して環状分子が密に存在するため、その可動性が低下し、フォトクロミック性が低下する傾向がある。また包接数が少なすぎると、軸分子間の間隙が狭くなり、フォトクロミック化合物分子の可逆反応を許容し得る間隙が減少することとなり、やはりフォトクロミック性が低下する傾向がある。
 尚、一つの軸分子に対する環状分子の最大包接数は、軸分子の長さ及び環状分子が有する環の厚みから算出することができる。
 例えば、軸分子の鎖状部分がポリエチレングリコ-ルで形成され、環状分子が有する環がα-シクロデキストリン環である場合を例にとると、次のようにして最大包接数が算出される。
 即ち、ポリエチレングリコ-ルの繰り返し単位[-CH2-CH2O-]の2つ分がα-シクロデキストリン環1つの厚みに近似する。従って、このポリエチレングリコールの分子量から繰り返し単位数を算出し、この繰り返し単位数の1/2が環状分子の最大包接数として求められる。この最大包接数を1.0とし、環状分子の包接数が前述した範囲に調製されることとなる。
 また、態様IIのポリロタキサンにおいて、側鎖は、下記式(1)
 -A  (1)
 (式中Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。)
で示される基を有する側鎖であり、下記式(2)
 H-A (2)
で示される化合物の水酸基のpKaが6以上14未満である基である。
 なお、当然のことであるが、前記式(2)において、Hは、水素原子を示す。
 式(1)中のAとしては、炭素数1~10の有機基で、下記式(A-1)または(A-2)
Figure JPOXMLDOC01-appb-C000013
 (式中、R7は、炭素数1~4の炭化水素基、ハロゲン原子、ニトロ基、アシル基、メチルスルホニル基、トリフルオロメチル基、シアノ基、カルボキシル基から選ばれる基であり、pは0~4の整数であり、R7が2個以上の場合は互いに異なる基であっても良く、R8はトリフルオロメチル基、または水素である。)
で示される基が好適に使用出来る。(A-1)で示される基としては、pは0である基がもっとも好適である。また(A-1)で示される基としては、(A-1’)で示される基であることが好ましい。
 態様IIのポリロタキサンにおいて、式(2)で示される化合物は、式(1)で示される基が側鎖と結合している結合部位を水素に置換した構造を有している化合物であり、式(2)で示される化合物の水酸基のpKaが6以上14未満である。
 また、態様Iのポリロタキサンにおける、2級または3級の水酸基を有する側鎖に関しては、2級または3級の水酸基を有しており、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。態様IIのポリロタキサンにおける、側鎖としては、-Aで示される基を有しており、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。
 このような側鎖の重量平均分子量は200~10000、好ましくは250~5000、より好ましくは300~1,500の範囲にある。即ち、側鎖が小さ過ぎると、フォトクロミック化合物分子の可逆反応を許容し得る間隙を確保するという機能が不十分となり、側鎖が大き過ぎると、後述する他のモノマーとの相溶性が悪くなり、相分離を生じやすくなる、また、後述するフォトクロミック化合物をポリロタキサンに緊密に混合することが困難となり、結局、ポリロタキサンによって確保される空間を十分に活用することが困難となる傾向にある。
 さらに、態様Iのポリロタキサンにおいて、ポリロタキサンは側鎖に1級の水酸基を有していてもよいが、成型性の観点から、側鎖に有する1級、2級、及び3級の水酸基の全mol数を100%とした場合に、1級の水酸基の占める割合が50%以下であることが好ましく、さらに好ましいのは20%以下であり、最も好ましいのは0%である。即ち、1級の水酸基が少ないと、ポリロタキサンとイソ(チオ)シアネートとの反応性が低下し、成型性が向上する為である。
 上記のような2級または3級の水酸基を有する側鎖は、環状分子が有する環が有する官能基を利用し、この官能基を修飾することによって導入される。例えば、α-シクロデキストリン環は、官能基として18個の水酸基を有しており、この水酸基を介して側鎖が導入される。即ち、1つのα-シクロデキストリン環に対しては最大で18個の側鎖を導入することができることとなる。本発明においては、前述した側鎖の機能を十分に発揮させるためには、このような環が有する全官能基数の6%以上、特に30%以上が、側鎖で修飾されていることが好ましい。より具体的には、該全官能基数の6%以上100%以下が側鎖で修飾されていることが好ましく、該全官能基数30%以上100%以下が側鎖で修飾されていることがより好ましく、該全官能基数30%以上80%以下が側鎖で修飾されていることがさらに好ましい。因みに、上記α-シクロデキストリン環の18個の水酸基の内の9個に側鎖が結合している場合、その修飾度は50%(すなわち、0.5)となる。
 態様Iのポリロタキサンにおいて、上記のような側鎖(有機鎖)は、2級または3級の水酸基を有しており、さらに側鎖の大きさが前述した範囲内にある限り、直鎖状であってもよいし、分枝状であってもよく、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などを利用し、適宜の化合物を前記環が有する官能基に反応させることによって適宜の大きさの側鎖を導入することができる。重合により側鎖を導入した際に、2級または3級の水酸基を有していない場合は、さらに側鎖の末端にそのような構造を有するように反応を行えばよい。後述に詳しく記載するが、例えば、側鎖に導入されている水酸基が1級の水酸基の場合には、2級、もしくは3級の水酸基を保護したイソシアネート化合物を側鎖の1級の水酸基と反応させ、その後脱保護を行うことで2級、もしくは3級の水酸基を導入した側鎖を得ることができる。
 好適な側鎖の構造としては、下記式(1)で示される側鎖を有することが最も好ましい。
Figure JPOXMLDOC01-appb-C000014
 前記式(1)において、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
Figure JPOXMLDOC01-appb-C000015
 (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、水酸基、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200の整数である)
から選ばれる少なくとも1種からなり、Qが、式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3の合計が1~200の整数でありR1及びR2はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または炭素数1~6の分岐鎖状のアルキル基から選ばれる基であるが、R1とR2は同時に水素になることはない基である。
 また、好適な側鎖の構造としては、下記式(1’)で示される側鎖を有することも最も好ましい。
Figure JPOXMLDOC01-appb-C000016
式(1’)において、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
Figure JPOXMLDOC01-appb-C000017
 (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、水酸基、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200の整数である)
から選ばれる少なくとも1種からなり、Qが式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3は合計で1~200の整数であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O- 結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、R3及びR4はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または炭素数1~6の分岐鎖状のアルキル基から選ばれるが、R3とR4は同時に水素になることはない基であり、R5は炭素、又は硫黄である。
 さらに、態様IIのポリロタキサンにおいて、ポリロタキサンは側鎖に水酸基のpKaが6未満または14以上の水酸基を有していてもよいが、成型性の観点から、側鎖の水酸基の全mol数を100%とした際に、水酸基のpKaが6未満、及び14以上の水酸基の占める割合が50%以下であることが好ましく、さらに好ましいのは20%以下であり、最も好ましいのは0%である。即ち、水酸基のpKaが6未満、及び14以上の水酸基が少ないと、イソ(チオ)シアネートに対する反応性を容易に制御するができ、重合速度を調整し、上記成型性や白濁を抑制させることができる為である。
 上記のような水酸基のpKaが6以上14未満である水酸基を有する側鎖は、環状分子が有する環が有する官能基を利用し、この官能基を修飾することによって導入される。例えば、α-シクロデキストリン環は、官能基として18個の水酸基を有しており、この水酸基を介して側鎖が導入される。即ち、1つのα-シクロデキストリン環に対しては最大で18個の側鎖を導入することができることとなる。本発明においては、前述した側鎖の機能を十分に発揮させるためには、このような環が有する全官能基数の6%以上、特に30%以上が、側鎖で修飾されていることが好ましい。より具体的には、該全官能基数の6%以上100%以下が側鎖で修飾されていることが好ましく、該全官能基数30%以上100%以下が側鎖で修飾されていることがより好ましく、該全官能基数30%以上80%以下が側鎖で修飾されていることがさらに好ましい。因みに、上記α-シクロデキストリン環の18個の水酸基の内の9個に側鎖が結合している場合、その修飾度は50%(すなわち、0.5)となる。
 態様IIのポリロタキサンにおいて、上記のような側鎖(有機鎖)は、水酸基のpKaが6以上14未満の水酸基を有しており、さらに側鎖の大きさが前述した範囲内にある限り、直鎖状であってもよいし、分枝状であってもよく、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などを利用し、適宜の化合物を前記環が有する官能基に反応させることによって適宜の大きさの側鎖を導入することができる。重合により側鎖を導入した際に、水酸基のpKaが6以上14未満の水酸基を有していない場合は、さらに側鎖に水酸基のpKaが6以上14未満の水酸基が導入された構造を有するように反応を行えばよい。後述に詳しく記載するが、例えば、側鎖に導入されている水酸基のpKaが6未満または14以上である場合には、水酸基のpKaが6以上14未満の水酸基を有する又は水酸基のpKaが6以上14未満の水酸基が保護された化合物を側鎖の水酸基と反応させることで、水酸基のpKaが6以上14未満の水酸基を導入した側鎖を得ることができる。
 好適な側鎖の構造としては、下記式(3)で示される側鎖が導入されていることが最も好ましい。
-Q-A (3)
 前記式(3)において、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
Figure JPOXMLDOC01-appb-C000018
 (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に1~200の整数である。)
から選ばれる少なくとも1種からなり、
 Qが、式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合には、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3の合計が1~200の整数であり、Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。なお、H-Aで示される化合物の水酸基のpKaは6以上14未満である。
 好適な側鎖の構造としては、下記式(3’)で示される側鎖が導入されていることも最も好ましい。
Figure JPOXMLDOC01-appb-C000019
 前記式(3’)において、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
Figure JPOXMLDOC01-appb-C000020
 (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200である。)
から選ばれる少なくとも1種からなり、
 Qが、式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合には、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3の合計が1~200の整数であり、R6は炭素、又は硫黄であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。
 式(1)で示される側鎖の好ましい構造は、Qが式(Q-1)または(Q-2)の何れか、もしくは両方の構造を有しており、n1及びn2は各々独立で1~100の範囲であって、合計で1~100の範囲であり、さらに好ましいのは、Qが式(Q-1)または(Q-2)の何れかもしくは両方の構造を有しており、n1及びn2は各々独立で1~75の範囲であって、合計で1~75の範囲であり、最も好ましいのはQが式(Q-1)であり、n1が1~50の範囲である。
 態様Iのポリロタキサンにおいて、前述の2級または3級の水酸基を有する側鎖の導入方法として好ましくは開環重合により側鎖が導入されるのが好ましく、開環重合としては、環状エーテル、環状シロキサン、環状ラクトン、環状ラクタム、環状アセタール、環状アミン、環状カーボネート、の環状化合物に由来する側鎖を導入することができる。導入した際に、末端が1級水酸基の場合、上記に記載した手法等で、2級もしくは3級の水酸基へ変更すればよい。
 これらの中でも、入手が容易であり、反応性が高く、さらには大きさ(分子量)の調製が容易であるという観点から、環状エーテル、環状ラクトン、環状ラクタム、環状カーボネートを用いることが好ましい。このような化合物を用い、開環重合を行えば、末端は水酸基が導入可能だが、用いた化合物の構造により末端の水酸基が第何級かが決定される。導入した側鎖の水酸基が1級の場合には、上記に記載した手法で2級または3級の水酸基を導入すればよい。以下に、側鎖になりうる環状エーテル、環状ラクトン、環状ラクタム、環状カーボネートの具体例を挙げる。
 開環重合により、側鎖に1級の水酸基が導入されうる環状エーテル:
 エチレンオキシド、1,2-プロピレンオキシド、オキセタンなど
 開環重合により、側鎖に2級または3級の水酸基が導入されうる環状エーテル:
 エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシドなど
 開環重合により、側鎖に1級の水酸基が導入されうる環状ラクトン;
 β-プロピオラクトン、γ-ブチロラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトンδ-バレロラクトン、α-メチル-δ-バレロラクトン、α-エチル-δ-バレロラクトン、α-ヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オン、ε-カプロラクトン、α-メチル-ε-カプロラクトン、α-エチル-ε-カプロラクト、ン、α-ヘキシル-ε-カプロラクトン、5-n-プロピル-ε-カプロラクトン、5-n-ヘキシル-ε-カプロラクトン、ζ-エナントラクトンなど。
 開環重合により、側鎖に2級または3級の水酸基が導入されうる環状ラクトン
 β-メチルプロピオラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、γ-メチル-γ-デカノラクトン、DL-パントラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトンα,ε-ジメチル-ε-カプロラクトン、7α-ノニルオキセパン-2-オン
 開環重合により、側鎖に1級の水酸基が導入されうる環状ラクタム;
 ε-カプロラクタム、γ-ブチルラクタム、DL-α-アミノ-ε-カプロラクタム
 開環重合により、側鎖に1級の水酸基が導入されうる環状カ-ボネート;
 エチレンカ-ボネート、炭酸ビニレン
 開環重合により、側鎖に2級の水酸基が導入されうる環状カ-ボネート;
 炭酸プロピレン、炭酸1,2-ブチレン
 上記の環状化合物は、単独で使用するばかりか、複数種を併用することもできる。
 態様Iのポリロタキサンにおいて、開環重合にさらに好適に使用されるものは環状ラクトン及び環状ラクタムであり、その中でも、好適に利用されるのは、ε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-ブチロラクトン、γ-バレロラクトン、ε-カプロラクタム、γ-ブチルラクタム等のラクトンであり、最も好ましい側鎖は、合成の簡便さ、また分子量の制御のし易さから、ε-カプロラクトン、ε-カプロラクタムである。なお、上記化合物において、γ-バレロラクトンを用いて側鎖を導入すれば、側鎖末端に2級の水酸基を導入した側鎖を有するポリロタキサンを得ることができる。開環重合後に導入されるのが1級水酸基である場合には、上記記載にもあるが、例えば、2級、もしくは3級の水酸基を保護したイソシアネート化合物で反応させ、その後脱保護を行うことで2級、もしくは3級の水酸基を導入すればよい。
 態様IIのポリロタキサンにおいて、前述の水酸基のpKaが6以上14未満の水酸基を有する側鎖の導入方法として好ましくは、開環重合により側鎖が導入されるのが好ましく、開環重合としては、環状エーテル、環状シロキサン、環状ラクトン、環状ラクタム、環状アセタール、環状アミン、環状カーボネートの環状化合物に由来する側鎖を導入することができる。
 これらの中でも、入手が容易であり、反応性が高く、さらには大きさ(分子量)の調製が容易であるという観点から、環状エーテル、環状ラクトン、環状ラクタム、環状カーボネートを用いることが好ましい。このような化合物を用い、開環重合を行えば、末端に水酸基が導入可能だが、用いた化合物の構造により末端の水酸基のpKaが決定される。導入した側鎖の水酸基のpKaが6未満または14以上の場合には、上記に記載した手法で水酸基のpKaが6以上14未満の水酸基を導入すればよい。以下に、側鎖になりうる環状エーテル、環状ラクトン、環状ラクタム、環状カーボネートの具体例を挙げる。
 環状エーテル:
 エチレンオキシド、1,2-プロピレンオキシド、オキセタン、エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシドなど
 環状ラクトン;
 β-プロピオラクトン、γ-ブチロラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトンδ-バレロラクトン、α-メチル-δ-バレロラクトン、α-エチル-δ-バレロラクトン、α-ヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オン、ε-カプロラクトン、α-メチル-ε-カプロラクトン、α-エチル-ε-カプロラクト、ン、α-ヘキシル-ε-カプロラクトン、5-n-プロピル-ε-カプロラクトン、5-n-ヘキシル-ε-カプロラクトン、ζ-エナントラクトン、β-メチルプロピオラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、γ-メチル-γ-デカノラクトン、DL-パントラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトンα,ε-ジメチル-ε-カプロラクトン、7α-ノニルオキセパン-2-オン
 環状ラクタム;ε-カプロラクタム、γ-ブチルラクタム、DL-α-アミノ-ε-カプロラクタム
 環状カ-ボネート;エチレンカ-ボネート、炭酸ビニレン、炭酸プロピレン、炭酸1,2-ブチレン
 上記の環状化合物は、単独で使用するばかりか、複数種を併用することもできる。
 態様IIのポリロタキサンにおいて、開環重合にさらに好適に使用されるものは環状ラクトン及び環状ラクタムであり、その中でも、好適に利用されるのは、ε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-ブチロラクトン、γ-バレロラクトン、ε-カプロラクタム、γ-ブチルラクタム等のラクトンであり、最も好ましい側鎖は、合成の簡便さ、また分子量の制御のし易さから、ε-カプロラクトン、ε-カプロラクタムである。側鎖重合後に導入される水酸基のpKaが6未満または14以上の水酸基である場合には、上記記載にもあるが、例えば、pKaが6以上14未満の水酸基を保護したイソシアネート化合物で反応させ、その後脱保護を行うことでpKaが6以上14未満の水酸基を導入すればよい。
 このように、開環重合により環状化合物を反応させて側鎖を導入する場合、環に結合している官能基(例えば水酸基)は反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、例えば、カプロラクトンなどを反応させるために、プロピレンオキシドなどの低分子化合物を官能基と反応させてのヒドロキシプロピル化を行い、反応性に富んだ官能基(水酸基)を導入した後、前述した環状化合物を用いての開環重合により、側鎖を導入するという手段を採用することができる。
 さらに、本発明の環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されていることを特徴とするポリロタキサン(態様Iのポリロタキサン)の製造方法としては、合成の簡便さ、また分子量の制御のし易さから、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、該ポリロタキサンの環状分子の少なくとも一部に1級の水酸基を有している側鎖が導入されているポリロタキサンと下記式(2)で示される化合物とを反応させることを含むことが好ましい。また、ポリロタキサンの環状分子の少なくとも一部に1級の水酸基を有している側鎖が導入されているポリロタキサンと下記式(2)で示される化合物とを反応させた後に、Zを脱保護する製造方法が最も好ましい。
Figure JPOXMLDOC01-appb-C000021
 (式中、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O- 結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、Zは下記式、Z-1~Z-9からなる群から選ばれる基であり、R3及びR4はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または炭素数1~6の分岐鎖状のアルキル基から選ばれるが、R3とR4は同時に水素になることはない基であり、R5は炭素、又は硫黄である。
Figure JPOXMLDOC01-appb-C000022
 上記アルキレン基としては、分岐状アルキレン基であっても、直鎖状アルキレン基であってもよい。また、上記アルケニレン基としては、分岐状アルケニレン基であっても、直鎖状アルケニレン基であってもよい。
 上記式(2)で示される化合物の具体例を例示すると、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネート、2-メチル-2-(t-ブチルジメチルシロキシ)プロピルイソシアネート、2-(トリメチルシロキシ)プロピルイソシアネート、2-(t-ブチルジメチルシロキシ)プロピルイソシアネート、[(2-イソシアネート-1、1-ジメチルエトキシ)メチル]ベンゼン、(2-イソシアネート-1-メチルプロポキシ)ベンゼン等があげられ、特に好ましくは2-メチル-2-(トリメチルシロキシ)プロピルイソシアネート、2-メチル-2-(t-ブチルジメチルシロキシ)プロピルイソシアネートがあげられる。
 前記環状分子の少なくとも一部に1級の水酸基を有している側鎖が導入されているポリロタキサンと上記式(2)で示される化合物とを反応した後に、Zを脱保護する製造方法としては、以下のような方法を用いることが出来る。
 特許文献8に記載されている方法で側鎖に1級の水酸基を有するポリロタキサンを調製し、該ポリロタキサンの1級の水酸基に、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネートを導入した後、フッ化テトラ-n-ブチルアンモニウム(TBAF)を用い、脱保護することで、環状分子の少なくとも一部に、3級の水酸基を有する側鎖が導入されているポリロタキサンを取得することが出来る。上記製造方法にて、2級の水酸基を導入する場合には、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネート代わりに、2-(トリメチルシロキシ)プロピルイソシアネートや2-(t-ブチルジメチルシロキシ)プロピルイソシアネートを用いればよい。
 態様Iのポリロタキサンにおいて、最も好適に使用されるポリロタキサンとしては、両端にアダマンチル基が結合しているポリエチレングリコ-ルを軸分子とし、α-シクロデキストリン環を有する環状分子とし、さらに、ε-ポリカプロラクトンにより該環に側鎖が導入され、末端に上記記載の製造方法により2級、または3級の水酸基を導入したポリロタキサンが好適に使用される。
 さらに、本発明の環状分子の少なくとも一部に、pKaが6以上14未満の水酸基を有する側鎖が導入されていることを特徴とするポリロタキサン(態様IIのポリロタキサン)の製造方法としては、合成の簡便さ、また分子量の制御のし易さから、軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、該ポリロタキサンの環状分子の少なくとも一部に水酸基のpKaが14以上の1級の水酸基を有している側鎖が導入されているポリロタキサンと下記式(4)で示される化合物とを反応させることを含むことが好ましい。また、ポリロタキサンの環状分子の少なくとも一部に水酸基のpKaが14以上の1級の水酸基を有している側鎖が導入されているポリロタキサンと下記式(4)で示される化合物とを反応させた後に、Zを脱保護する製造方法が最も好ましい。
Figure JPOXMLDOC01-appb-C000023
 [式中、R6は炭素、又は硫黄であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、式中Tは下記式(T-1)又は(T-2)
Figure JPOXMLDOC01-appb-C000024
 (式中、R7は、炭素数1~4の炭化水素基、ハロゲン原子、ニトロ基、アシル基、メチルスルホニル基、トリフルオロメチル基、シアノ基、カルボキシル基から選ばれる基であり、pは0~4の整数であり、R7が2個以上の場合は互いに異なる基であっても良く、R8はトリフルオロメチル基、または水素である。)
からなる群から選ばれる基であり、式中Zは、下記式Z-1~Z-9
Figure JPOXMLDOC01-appb-C000025
からなる群から選ばれる基である。]
 (T-1)で示される基としては、pは0である基がもっとも好適である。
 上記アルキレン基としては、分岐状アルキレン基であっても、直鎖状アルキレン基であってもよい。また、上記アルケニレン基としては、分岐状アルケニレン基であっても、直鎖状アルケニレン基であってもよい。
 上記式(4)で示される化合物の具体例を例示すると、
1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼン、1-(2-イソチオシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼン、1-[[(1,1-ジメチルエチル)ジメチルシリル]オキシ]-4-(2-イソシアネートプロピル)ベンゼン、1-(2-イソシアネートエチル)-4-メトキシベンゼ1-(2-イソシアネートエチル)-4-(フェニルメトキシ)-ベンゼン、3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンイソシアネート、4,4,4-トリフルオロ-3-(フェニルメトキシ)-1ブタンイソシアネート、4,4,4-トリフルオロ-3-[(4-メトキシフェニル)メトキシ]-1-ブタンイソシアネートが挙げられる。なお、3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンイソシアネート、4,4,4-トリフルオロ-3-(フェニルメトキシ)-1ブタンイソシアネート、4,4,4-トリフルオロ-3-[(4-メトキシフェニル)メトキシ]-1-ブタンイソシアネートは、3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンアミン、4,4,4-トリフルオロ-3-(フェニルメトキシ)-1ブタンアミン、4,4,4-トリフルオロ-3-[(4-メトキシフェニル)メトキシ]-1-ブタンアミンの1級アミン基をホスゲンと反応させることにより、イソシアネート基に変換することで得ることが出来る。
 前記環状分子の少なくとも一部に水酸基のpKaが14以上の1級の水酸基を有している側鎖が導入されているポリロタキサンと上記式(4)で示される化合物とを反応した後に、Zを脱保護する製造方法としては、以下のような方法を用いることが出来る。
 特許文献8に記載されている方法で側鎖に水酸基のpKaが14以上の1級の水酸基を有するポリロタキサンを調製し、該ポリロタキサンの水酸基のpKaが14以上の1級の水酸基に、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンを導入した後、フッ化テトラ-n-ブチルアンモニウム(TBAF)を用い、脱保護することで、環状分子の少なくとも一部に、水酸基のpKaが6以上14未満の水酸基を有する側鎖が導入されているポリロタキサンを取得することが出来る。
 態様IIのポリロタキサンにおいて、最も好適に使用されるポリロタキサンとしては、両端にアダマンチル基が結合しているポリエチレングリコ-ルを軸分子とし、α-シクロデキストリン環を有する環状分子とし、さらに、ε-ポリカプロラクトンにより該環に側鎖が導入され、末端に上記記載の製造方法により水酸基のpKaが6以上14未満の水酸基を導入したポリロタキサンが好適に使用される。
 本発明のポリロタキサン(A)(例えば、態様I、態様IIのポリロタキサン)は、光学用組成物として用いることができる。例えば、後述する(B)成分と共に用いて光学用組成物とした場合、眼鏡レンズ等のプラスチックレンズに好適に使用できる。
 次に(B)について説明する。
 <(B)1分子中に、イソシアネート基及びイソチオシアネート基から選択される少なくとも1種の基を2個以上有する化合物>
 本発明の光学用組成物を構成する1分子中に、イソシアネート基及びイソチオシアネート基から選択される少なくとも1種の基を2個以上有する化合物(以下単に「ポリイソ(チオ)シアネート化合物」とも言う)は、ポリイソ(チオ)シアネート化合物1分子中にイソシアネート基及びイソチオシアネート基を、合計で2個以上を有する化合物である。該ポリイソ(チオ)シアネート化合物の内、ポリイソシアネート化合物としては、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、含イオウ脂肪族イソシアネート、脂肪族スルフィド系イソシアネート、芳香族スルフィド系イソシアネート、脂肪族スルホン系イソシアネート、芳香族スルホン系イソシアネート、スルホン酸エステル系イソシアネート、芳香族スルホン酸アミド系イソシアネート、含イオウ複素環イソシアネート等が挙げられる。
 またポリイソチオシアネート化合物としては、脂肪族イソチオシアネート、脂環族イソチオシアネート、芳香族イソチオシアネート、含複素環イソチオシアネート、カルボニルイソチオシアネート、含イオウ脂肪族イソチオシアネート、含イオウ芳香族イソチオシアネート、含イオウ複素環イソチオシアネート等が挙げられる。これら、ポリイソ(チオ)シアネート化合物の具体例としては、以下の化合物を例示することができる。
 脂肪族イソシアネート;エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カ-ボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコ-ルジプロピルエーテルω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、リジントリイソシアネート、2-イソシアネートエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアネートプロピル-2,6-ジイソシアネートヘキサノエート
 脂環族イソシアネート;イソホロンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリト-ル、ダイマ-酸ジイソシアネート、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ[4.3.0]ノナン-3,7-ジイソシアネートとビシクロ[4.3.0]ノナン-4,8-ジイソシアネートの混合物、ビシクロ[2.2.1]ヘプタン-2,5-ジイソシアネートとビシクロ[2.2.1]ヘプタン-2,6-ジイソシアネートの混合物、ビシクロ[2,2,2]オクタン-2,5-ジイソシアネートとビシクロ[2,2,2]オクタン-2,6-ジイソシアネートの混合物、トリシクロ[5.2.1.02.6]デカン-3,8-ジイソシアネートとトリシクロ[5.2.1.02.6]デカン-4,9-ジイソシアネートの混合物
 芳香族イソシアネート;キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレ-ト、メシチリレントリイソシアネート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート、トリレンジイソシアネート、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、トリジンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5、6-ペンタイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコ-ルジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート。
 含イオウ脂肪族イソシアネート;チオジエチルジイソシアネート、チオジプロピルジイソシアネート、チオジヘキシルジイソシアネート、ジメチルスルフォンジイソシアネート、ジチオジメチルジイソシアネート、ジチオジエチルジイソシアネート、1-イソシアネートメチルチオ-2,3-ビス(2-イソシアナートエチルチオ)プロパン、1,2-ビス(2-イソシアネートエチルチオ)エタン、1,1,2,2-テトラキス(イソシアネートメチルチオ)エタン、2,2,5,5-テトラキス(イソシアネートメチルチオ)-1,4-ジチアン、2,4-ジチアペンタン-1,3-ジイソシアネート、2,4,6-トリチアヘプタン-3,5-ジイソシアネート、2,4,7,9-テトラチアペンタン-5,6-ジイソシアネート、ビス(イソシアネートメチルチオ)フェニルメタン、ビス(イソシアネートメチルチオ)メタン、ビス(イソシアネートエチルチオ)メタン、ビス(イソシアネートエチルチオ)エタン、ビス(イソシアネートメチルチオ)エタン、1,5-イソシアネート2-イソシアネートメチル-3-チアペンタン
 脂肪族スルフィド系イソシアネート;ビス[2-(イソシアネートメチルチオ)エチル]スルフィド、ジシクロヘキシルスルフィド-4,4’-ジイソシアネート、ビス(イソシアネートメチル)スルフィド、ビス(イソシアネートエチル)スルフィド、ビス(イソシアネートプロピル)スルフィド、ビス(イソシアネートヘキシル)スルフィド、ビス(イソシアネートメチル)ジスルフィド、ビス(イソシアネートエチル)ジスルフィド、ビス(イソシアネートプロピル)ジスルフィド
 芳香族スルフィド系イソシアネート;ジフェニルスルフィド-2,4’-ジイソシアネート、ジフェニルスルフィド-4,4’-ジイソシアネート、3,3’-ジメトキシ-4,4’-ジイソシアネートジベンジルチオエーテル、ビス(4-イソシアネートメチルベンゼン)スルフィド、4,4’-メトキシベンゼンチオエチレングリコ-ル-3,3’-ジイソシアネート、ジフェニルジスルフィド-4,4’-ジイソシアネート、2,2’-ジメチルジフェニルジスルフィド-5,5’-ジイソシアネート、3,3’-ジメチルジフェニルジスルフィド-5,5’-ジイソシアネート、3,3’-ジメチルジフェニルジスルフィド-6,6’-ジイソシアネート、4,4’-ジメチルジフェニルジスルフィド-5,5’-ジイソシアネート、3,3’-ジメトキシジフェニルジスルフィド-4,4’-ジイソシアネート、4,4’-ジメトキシジフェニルジスルフィド-3,3’-ジイソシアネート
 脂肪族スルホン系イソシアネート;ビス(イソシアネートメチル)スルホン
 芳香族スルホン系イソシアネート;ジフェニルスルホン-4,4’-ジイソシアネート、ジフェニルスルホン-3,3’-ジイソシアネート、ベンジリデンスルホン-4,4’-ジイソシアネート、ジフェニルメタンスルホン-4,4’-ジイソシアネート、4-メチルジフェニルメタンスルホン-2,4’-ジイソシアネート、4,4’-ジメトキシジフェニルスルホン-3,3’-ジイソシアネート、3,3’-ジメトキシ-4,4’-ジイソシアネートジベンジルスルホン、4,4’-ジメチルジフェニルスルホン-3,3’-ジイソシアネート、4,4’-ジ-tert-ブチルジフェニルスルホン-3,3’-ジイソシアネート、4,4’-ジメトキシベンゼンエチレンジスルホン-3,3’-ジイソシアネート、4,4’-ジクロロジフェニルスルホン-3,3’-ジイソシアネート
 スルホン酸エステル系イソシアネート;4-メチル-3-イソシアネートベンゼンスルホニル-4’-イソシアネートフェノ-ルエステル、4-メトキシ-3-イソシアネートベンゼンスルホニル-4’-イソシアネートフェノ-ルエステル
 芳香族スルホン酸アミド系イソシアネート;4-メチル-3-イソシアネートベンゼンスルホニルアニリド-3’-メチル-4’-イソシアネート、ジベンゼンスルホニル-エチレンジアミン-4,4’-ジイソシアネート、4,4’-ジメトキシベンゼンスルホニル-エチレンジアミン-3,3’-ジイソシアネート、4-メチル-3-イソシアネートベンゼンスルホニルアニリド-4-メチル-3’-イソシアネート
 含イオウ複素環イソシアネート;チオフェン-2,5-ジイソシアネート、チオフェン-2,5-ジイソシアネートメチル、1,4-ジチアン-2,5-ジイソシアネート、1,4-ジチアン-2,5-ジイソシアネートメチル、1,3-ジチオラン-4,5-ジイソシアネート、1,3-ジチオラン-4,5-ジイソシアネートメチル、1,3-ジチオラン-2-メチル-4,5-ジイソシアネートメチル、1,3-ジチオラン-2,2-ジイソシアネートエチル、テトラヒドロチオフェン-2,5-ジイソシアネート、テトラヒドロチオフェン-2,5-ジイソシアネートメチル、テトラヒドロチオフェン-2,5-ジイソシアネートエチル、テトラヒドロチオフェン-3,4-ジイソシアネートメチル、トリシクロチアオクタンジイソシアネート、2-(1,1-ジイソシアネートメチル)チオフェン、3-(1,1-ジイソシアネートメチル)チオフェン、2-(2-チエニルチオ)-1,2-ジイソシアネートプロパン、2-(3-チエニルチオ)-1,2-ジイソシアネートプロパン、3-(2-チエニル)-1,5-ジイソシアネート-2,4-ジチアペンタン、3-(3-チエニル)-1,5-ジイソシアネート-2,4-ジチアペンタン、3-(2-チエニルチオ)-1,5-ジイソシアネート-2,4-ジチアペンタン、3-(3-チエニルチオ)-1,5-ジイソシアネート-2,4-ジチアペンタン、3-(2-チエニルチオメチル)-1,5-ジイソシアネート-2,4-ジチアペンタン、3-(3-チエニルチオメチル)-1,5-ジイソシアネート- 2,4-ジチアペンタン、2,5-(ジイソシアネートメチル)チオフェン、2,3-(ジイソシアネートメチル) チオフェン、2,4-(ジイソシアネートメチル)チオフェン、3,4-(ジイソシアネートメチル)チオフェン、2,5-(ジイソシアネートメチルチオ)チオフェン、2,3-(ジイソシアネートメチルチオ)チオフェン、2,4-(ジイソシアネートメチルチオ)チオフェン、3,4-(ジイソシアネートメチルチオ) チオフェン、2,4-ビスイソシアネートメチル-1,3,5-トリチアン
 さらに、上記ポリイソシアネートのハロゲン置換体、アルキル置換体、アルコキシ置換体、ニトロ置換体や、多価アルコールとのプレポリマー型変性体、カルボジイミド変性体、ウレア変性体、ビウレット変性体、ダイマー化あるいはトリマー化反応生成物等も使用できる。
 脂肪族イソチオシアネート;1,2-ジイソチオシアネートエタン、1,3-ジイソチオシアネートプロパン、1,4-ジイソチオシアネートブタン、1,6-ジイソチオシアネートヘキサン、p-フェニレンジイソプロピリデンジイソチオシアネート
 脂環族イソチオシアネート;シクロヘキシルイソチオシアネート、シクロヘキサンジイソチオシアネート、2,4-ビス(イソチオシアナトメチル)ノルボルナン、2,5-ビス(イソチオシアナトメチル)ノルボルナン、3,4-ビス(イソチオシアナトメチル)ノルボルナン、3,5-ビス(イソチオシアナトメチル)ノルボルナン
 芳香族イソチオシアネート;フェニルイソチオシアネート、1,2-ジイソチオシアネートベンゼン、1,3-ジイソチオシアネートベンゼン、1,4-ジイソチオシアネートベンゼン、2,4-ジイソチオシアネートトルエン、2,5-ジイソチオシアネート-m-キシレンジイソシアネート、4,4’-ジイソチオシアネート-1,1’-ビフェニル、1,1’-メチレンビス(4-イソチオシアネートベンゼン)、1,1’-メチレンビス(4-イソチオシアネート2-メチルベンゼン)、1,1’-メチレンビス(4-イソチオシアネート3-メチルベンゼン)、1,1’-(1,2-エタンジイル)ビス(4-イソチオシアネートベンゼン)、4,4’-ジイソチオシアネートベンゾフェノン、4,4’-ジイソチオシアネート-3,3’-ジメチルベンゾフェノン、ベンズアニリド-3,4’-ジイソチオシアネート、ジフェニルエーテル-4,4’-ジイソチオシアネート、ジフェニルアミン-4,4’-ジイソチオシアネート
 含複素環イソチオシアネート;2,4,6-トリイソチオシアネート-1,3,5-トリアジン
 カルボニルイソチオシアネート;ヘキサンジオイルジイソチオシアネート、ノナンジオイルジイソチオシアネート、カルボニックジイソチオシアネート、1,3-ベンゼンジカルボニルジイソチオシアネート、1,4-ベンゼンジカルボニルジイソチオシアネート、(2,2’-ビピリジン)-4,4’-ジカルボニルジイソチオシアネート
 さらに、イソチオシアネート基のイオウ原子の他に少なくとも1つのイオウ原子を有する多官能のイソチオシアネートも使用することができる。このような多官能イソチオシアネートとしては、以下の化合物を例示することができる。
含イオウ脂肪族イソチオシアネート;チオビス(3-イソチオシアネートプロパン)、チオビス(2-イソチオシアネートエタン)、ジチオビス(2-イソチオシアネートエタン)
 含イオウ芳香族イソチオシアネート;1-イソチオシアネート4-{(2-イソチオシアネート)スルホニル}ベンゼン、チオビス(4-イソチオシアネートベンゼン)、スルホニルビス(4-イソチオシアネートベンゼン)、スルフィニルビス(4-イソチオシアネートベンゼン)、ジチオビス(4-イソチオシアネートベンゼン)、4-イソチオシアネート-1-{(4-イソチオシアネートフェニル)スルホニル}-2-メトキシ-ベンゼン、4-メチル-3-イソチオシアネートベンゼンスルホニル-4’-イソチオシアネートフェニルエステル、4-メチル-3-イソチオシアネートベンゼンスルホニルアニリド-3’-メチル-4’-イソチオシアネート
含イオウ複素環イソチオシアネート;チオフェン-2,5-ジイソチオシアネート、1,4-ジチアン-2,5-ジイソチオシアネート
 <(B)成分の好ましい例>
 上記(B)成分のポリイソ(チオ)シアネート化合物の好ましい例としては、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、1,2-ビス(2-イソシアナ-トエチルチオ)エタン、キシレンジイソシアネート(o-,m-,p-)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、および、4,4'-ジフェニルメタンジイソシアネートから選ばれるのが好ましく、また、それらの混合物から選ばれてもよい。
 <(A)、及び(B)成分の好適な配合割合>
 さらに、本発明において、光学物品が優れた成型性、機械強度、硬度または後述するフォトクロミック化合物を添加した際の優れたフォトクロミック特性を得るための最適な上記(A)、及び(B)成分の配合割合は、前記(A)、及び(B)の合計100質量部に対し、(A)を50~97質量部、(B)を3~50質量部の範囲で含有することが好ましく、(A)を60~95質量部、(B)を5~40質量部の範囲で含有することが好ましく、(A)を70~93質量部、(B)を7~30質量部の範囲で含有することがもっとも好ましい。
 また、本発明では、(A)成分のポリロタキサン以外にも、(B)成分と反応出来るイソ(チオ)シアネート反応性基含有化合物(C)を用いることが出来る。(C)成分について以下に説明する。
 <(C)イソ(チオ)シアネート反応性基含有化合物>
 イソ(チオ)シアネート反応性基含有化合物としては、1分子中に水酸基及び/又はチオール基を2個以上有するポリ(チ)オール化合物(C-1)、1分子中に水酸基、またはチオール基を1個有するモノ(チ)オール化合物(C-2)を上げることができる。
 <(C-1)1分子中に水酸基及びチオール基から選択される少なくとも1種の基を2個以上有するポリ(チ)オール化合物>
 1分子中に水酸基及びチオール基から選択される少なくとも1種の基を2個以上有するポリ(チ)オール化合物(以下単に「ポリ(チ)オール化合物」とも言う)は、ポリ(チ)オール化合物中に水酸基(OH基)及びチオール基(SH基)から選択される少なくとも1種の基を合計で2個以上有する化合物である。該ポリ(チ)オール化合物の内、ポリオール化合物としては、例えば、ジ-、トリ-、テトラ-、ペンタ-、ヘキサ-ヒドロキシ化合物、1分子中に2個以上のOH基を含有するポリエステル(ポリエステルポリオール)、1分子中に2個以上のOH基を含有するポリエーテル(以下ポリエーテルポリオールという)、1分子中に2個以上のOH基を含有するポリカーボネート(ポリカ-ボネートポリオール)、1分子中に2個以上のOH基を含有するポリカプロラクトン(ポリカプロラクトンポリオール)、1分子中に2個以上のOH基を含有するアクリル系重合体(ポリアクリルポリオール)が代表的である。
 また、ポリチオール化合物としては、脂肪族ポリチオール、芳香族ポリチオール、ハロゲン置換芳香族ポリチオール、含複素環ポリチオール、及び、メルカプト基以外にも硫黄原子を含有している芳香族ポリチオール、メルカプト基以外にも硫黄原子を含有している脂肪族ポリチオール、メルカプト基以外に硫黄原子を含有する含複素環ポリチオールが挙げられる。これらの化合物を具体的に例示すると次のとおりである。
 脂肪族アルコール;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ブタントリオール、1,2-メチルグルコサイド、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール、ポリエチレングリコール、トリス(2-ヒドロキシエチル)イソシアヌレート、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、シクロヘキサントリオール、マルチトール、ラクチトール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、o-ジヒドロキシキシリレン、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2”-ヒドロキシエチルオキシ)フェニル〕プロパン、3官能ポリオールとして日本乳化剤(株)製のTMP-30、TMP-60、TMP-90、4官能ポリオールとして日本乳化剤(株)製のPNT40、PNT60
 芳香族アルコール;ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシベンゼン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4'-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス (4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、エチレングリコ-ルビス(4-ヒドロキシフェニル)エーテル、4,4'- ジヒドロキシジフェニルスルフィド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジシクロヘキシル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジフェニル-4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルスルホキシド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルホン、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7'-ジヒドロキシ-3,3',4,4'-テトラヒドロ-4,4,4',4'-テトラメチル-2,2'-スピロビ(2H-1-ベンゾピラン)、トランス-2,3- ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4'-ジヒドロキシビフェニル、ハイドロキノンレゾールシン
 含硫黄ポリオール;ビス-〔4-(ヒドロキシエトキシ)フェニル〕スルフィド、ビス-〔4-(2-ヒドロキシプロポキシ)フェニル〕スルフィド、ビス-〔4-(2,3-ジヒドロキシプロポキシ)フェニル〕スルフィド、ビス-〔4-(4-ヒドロキシシクロヘキシロキシ)フェニル〕スルフィド、ビス-〔2-メチル-4-(ヒドロキシエトキシ)-6-ブチルフェニル〕スルフィド、上記の含硫黄ポリオールに、水酸基1個当たり平均3分子以下のエチレンオキシドおよび/またはプロピレンオキシドが付加された化合物、ジ-(2-ヒドロキシエチル)スルフィド、ビス(2-ヒドロキシエチル)ジスルフィド、1,4-ジチアン-2,5-ジオール、ビス(2,3-ジヒドロキシプロピル)スルフィド、テトラキス(4-ヒドロキシ-2-チアブチル)メタン、ビス(4-ヒドロキシフェニル)スルホン、テトラブロモビスフェノールS、テトラメチルビスフェノールS、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、1,3-ビス(2-ヒドロキシエチルチオエチル)-シクロヘキサン
 含硫複素環ポリオール;2,5-ビス(ヒドロキシメチル)-1,4-ジチアン、3-ヒドロキシ-6-ヒドロキシメチル-1,5-ジチアシクロヘプタン、3,7-ジヒドロキシ-1,5-ジチアシクロオクタン
 ポリエステルポリオール;ポリオールと多塩基酸との縮合反応により得られる化合物
 ポリエーテルポリオール;分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物及びその変性体
 ポリカプロラクトンポリオール;ε-カプロラクトンの開環重合により得られる化合物
 ポリカ-ボネートポリオール;低分子ポリオール類の1種類以上のホスゲン化より得られる化合物、エチレンカ-ボネート、ジエチルカ-ボネート、ジフェニルカ-ボネート等を用いてのエステル交換法により得られる化合物
 ポリアクリルポリオール;水酸基を含有するアクリル酸エステルもしくはメタクリル酸エステルとこれらエステルと共重合可能なモノマーとの共重合体により得られる化合物等
 脂肪族ポリチオール;メタンジチオール、1,2-エタンジチオール、1,1-プロパンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、2,2-プロパンジチオール、1,6-ヘキサンジチオール、1,2,3-プロパントリチオール、テトラキス(メルカプトメチル)メタン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、2,2-ジメチルプロパン-1,3-ジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メチルシクロヘキサン-2,3-ジチオール、ビシクロ〔2,2,1〕へプタ-exo-cis-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、チオリンゴ酸ビス(2-メルカプトエチルエステル)、2,3-ジメルカプトコハク酸(2-メルカプトエチルエステル)、2,3-ジメルカプト-1-プロパノール(2-メルカプトアセテート)、2,3-ジメルカプト-1-プロパノール(3-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、1,2-ジメルカプトプロピルメチルエーテル、2,3-ジメルカプトプロピルメチルエーテル、2,2-ビス(メルカプトメチル)-1,3-プロパンジチオール、ビス(2-メルカプトエチル)エーテル、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、1、4-ビス(3-メルカプトブチリルオキシ)ブタン、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(チオグリコレート)、1,6-ヘキサンジオールビス(チオグリコレート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロ-ルエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、ジペンタエリスリト-ルヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリト-ルテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2-メルカプトメチル-1,3-プロパンジチオール、2-メルカプトメチル-1,4-ブタンジチオール、2,4,5-トリス(メルカプトメチル)-1,3-ジチオラン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、4,4-ビス(メルカプトメチル)-3,5-ジチアヘプタン-1,7-ジチオール、2,3-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,6-ビス(メルカプトメチル)-3,5-ジチアヘプタン-1,7-ジチオール、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ビスメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
 芳香族ポリチオール;1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,2-ビス(メルカプトメトキシ)ベンゼン、1,3-ビス(メルカプトメトキシ)ベンゼン、1,4-ビス(メルカプトメトキシ)ベンゼン、1,2-ビス(メルカプトエトキシ)ベンゼン、1,3-ビス(メルカプトエトキシ)ベンゼン、1,4-ビス(メルカプトエトキシ)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(メルカプトエチル)ベンゼン、1,2,4-トリス(メルカプトエチル)ベンゼン、1,3,5-トリス(メルカプトエチル)ベンゼン、1,2,3-トリス(メルカプトメトキシ)ベンゼン、1,2,4-トリス(メルカプトメトキシ)ベンゼン、1,3,5-トリス(メルカプトメトキシ)ベンゼン、1,2,3-トリス(メルカプトエトキシ)ベンゼン、1,2,4-トリス(メルカプトエトキシ)ベンゼン、1,3,5-トリス(メルカプトエトキシ)ベンゼン、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(メルカプトエチル)ベンゼン、1,2,3,4-テトラキス(メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメトキシ)ベンゼン、1,2,4,5-テトラキス(メルカプトメトキシ)ベンゼン、1,2,3,4-テトラキス(メルカプトエトキシ)ベンゼン、1,2,3,5-テトラキス(メルカプトエトキシ)ベンゼン、1,2,4,5-テトラキス(メルカプトエトキシ)ベンゼン、2,2’-ジメルカプトビフェニル、4,4’-ジメルカプトビフェニル、4,4’-ジメルカプトビベンジル、2,5-トルエンジチオール、3,4-トルエンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、2,4-ジメチルベンゼン-1,3-ジチオール、4,5-ジメチルベンゼン-1,3-ジチオール、9,10-アントラセンジメタンチオール、1,3-ジ(p-メトキシフェニル)プロパン-2,2-ジチオール、1,3-ジフェニルプロパン-2,2-ジチオール、フェニルメタン-1,1-ジチオール、2,4-ジ(p-メルカプトフェニル)ペンタン、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン
 ハロゲン置換芳香族ポリチオール;2,5-ジクロロベンゼン-1,3-ジチオール、1,3-ジ(p-クロロフェニル)プロパン-2,2-ジチオール、3,4,5-トリブロム-1,2-ジメルカプトベンゼン、2,3,4,6-テトラクロル-1,5-ビス(メルカプトメチル)ベンゼン
 含複素環ポリチオール;2-メチルアミノ-4,6-ジチオールsym-トリアジン、2-エチルアミノ-4,6-ジチオールsym-トリアジン、2-アミノ-4,6-ジチオールsym-トリアジン、2-モルホリノ-4,6-ジチオールsym-トリアジン、2-シクロヘキシルアミノ-4,6-ジチオールsym-トリアジン、2-メトキシ-4,6-ジチオールsym-トリアジン、2-フェノキシ-4,6-ジチオールsym-トリアジン、2-チオベンゼンオキシ-4,6-ジチオールsym-トリアジン、2-チオブチルオキシ-4,6-ジチオールsym-トリアジン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン
 メルカプト基以外にも硫黄原子を含有している芳香族ポリチオール;1,2-ビス(メルカプトメチルチオ)ベンゼン、1,3-ビス(メルカプトメチルチオ)ベンゼン、1,4-ビス(メルカプトメチルチオ)ベンゼン、1,2-ビス(メルカプトエチルチオ)ベンゼン、1,3-ビス(メルカプトエチルチオ)ベンゼン、1,4-ビス(メルカプトエチルチオ)ベンゼン、1,2,3-トリス(メルカプトメチルチオ)ベンゼン、1,2,4-トリス(メルカプトメチルチオ)ベンゼン、1,3,5-トリス(メルカプトメチルチオ)ベンゼン、1,2,3-トリス(メルカプトエチルチオ)ベンゼン、1,2,4-トリス(メルカプトエチルチオ)ベンゼン、1,3,5-トリス(メルカプトエチルチオ)ベンゼン、1,2,3,4-テトラキス(メルカプトメチルチオ)ベンゼン、1,2,3,5-テトラキス(メルカプトメチルチオ)ベンゼン、1,2,4,5-テトラキス(メルカプトメチルチオ)ベンゼン、1,2,3,4-テトラキス(メルカプトエチルチオ)ベンゼン、1,2,3,5-テトラキス(メルカプトエチルチオ)ベンゼン、1,2,4,5-テトラキス(メルカプトエチルチオ)ベンゼン
 メルカプト基以外にも硫黄原子を含有している脂肪族ポリチオール;ビス(メルカプトメチル)スルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピル)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-(2-メルカプトエチルチオ)エタン、1,2-(3-メルカプトプロピル)エタン、1,3-ビス(メルカプトメチルチオ)プロパン、1,3-ビス(2-メルカプトエチルチオ)プロパン、1,3-ビス(3-メルカプトプロピルチオ)プロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、2-メルカプトエチルチオ-1,3-プロパンジチオール、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプト-1,4-ジチアン、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)、ジスルフィド、ビス(メルカプトプロピル)ジスルフィド、上記化合物のチオグリコール酸或いはメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシプロピルスルフィドビス(2-メルカプトアセテート)、ヒドロキシプロピルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシプロピルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシプロピルジスルフィドビス(3-メルカプトプロピオネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、1,4-ジチアン-2,5-ジオールビス(2-メルカプトアセテート)、1,4-ジチアン-2,5-ジオールビス(3-メルカプトプロピオネート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(2-メルカプトエチル)-1,4-ジチアン、2,5-ビス(3-メルカプトプロピル)-1,4-ジチアン、2-(2-メルカプトエチル)-5-メルカプトメチル-1,4-ジチアン、2-(2-メルカプトエチル)-5-(3-メルカプトプロピル)-1,4-ジチアン、2-メルカプトメチル-5-(3-メルカプトプロピル)-1,4-ジチアン、チオグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、4,4’-チオジブチル酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、4,4’-ジチオジブチル酸ビス(2-メルカプトエチルエステル)、チオジグリコール酸ビス(2,3-ジメルカプトプロピルエステル)、チオジプロピオン酸ビス(2,3-ジメルカプトプロピルエステル)、ジチオジグリコール酸ビス(2,3-ジメルカプトプロピルエステル)、ジチオジプロピオン酸(2,3-ジメルカプトプロピルエステル)、2-メルカプトメチル-6-メルカプト-1,4-ジチアシクロヘプタン、4,5-ビス(メルカプトメチルチオ)-1,3-ジチオラン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-ビス(メルカプトメチルチオ)メチル-1,3-ジチエタン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,11-トリメルカプト-4,6,8,10-テトラチアウンデカン、1,2,13-トリメルカプト-4,6,8,10,12-ペンタチアトリデカン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト-4,6,8,10-テトラチアトリデカン、ビス(2,5-ジメルカプト-4-チアペンチル)ジスルフィド、ビス(2,7-ジメルカプト-4,6-ジチアへプチル)ジスルフィド、1,2,5-トリメルカプト-4-チアペンタン、3,3-ジメルカプトメチル-1,5-ジメルカプト-2,4-ジチアペンタン、3-メルカプトメチル-1,5-ジメルカプト-2,4-ジチアペンタン、3-メルカプトメチルチオ-1,7-ジメルカプト-2,6-ジチアヘプタン、3,6-ジメルカプトメチル-1,9-ジメルカプト-2,5,8-トリチアノナン、3,7-ジメルカプトメチル-1,9-ジメルカプト-2,5,8-トリチアノナン、4,6-ジメルカプトメチル-1,9-ジメルカプト-2,5,8-トリチアノナン、3-メルカプトメチル-1,6-ジメルカプト-2,5-ジチアヘキサン、3-メルカプトメチルチオ-1,5-ジメルカプト-2-チアペンタン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,4,8,11-テトラメルカプト-2,6,10-トリチアウンデカン、1,4,9,12-テトラメルカプト-2,6,7,11-テトラチアドデカン、2,3-ジチア-1,4-ブタンジチオール、2,3,5,6-テトラチア-1,7-ヘプタンジチオール、2,3,5,6,8,9-ヘキサチア-1,10-デカンジチオール、2-(1-メルカプト-2-メルカプトメチル-3-チアブチル)-1,3-ジチオラン、1,5-ジメルカプト-3-メルカプトメチルチオ-2,4-ジチアペンタン、2-メルカプトメチル-4-メルカプト-1,3-ジチオラン、2,5-ジメルカプト-1,4-ジチアン、2,6-ジメルカプト-1,4-ジチアン、2,4-ジメルカプトメチル-1,3-ジチエタン、1,2,6,10,11-ペンタメルカプト-4,8-ジチアウンデカン、1,2,9,10-テトラメルカプト-6-メルカプトメチル-4,7-ジチアデカン、1,2,9,13,14-ペンタメルカプト-6-メルカプトメチル-4,7,11-トリチアテトラデカン、1,2,6,10,14,15-ヘキサメルカプト-4,8,1 2-トリチアペンタデカン、1,4-ジチアン-2,5-ビス(4,5-ジメルカプト-2-チアペンタン)、1,4-ジチアン-2,5-ビス(5,6-ジメルカプト-2,3-ジチアヘキサン)
 メルカプト基以外に硫黄原子を含有する含複素環ポリチオール;3,4-チオフェンジチオール、テトラヒドロチオフェン-2,5-ジメルカプトメチル、2,5-ジメルカプト-1,3,4-チアジアゾール
 イソシアヌレート基含有ポリチオール;1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプト、プロパン、トリス-{(3-メルカプトプロピオニルオキシ)-エチル}-イソシアヌレート、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H、3H、5H)-トリオン、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート
 また本発明における上記(C-1)成分として、1分子中に水酸基及びチオール基を各々1個以上有する化合物も使用できる。その具体例としては、以下の化合物を例示することができる。
 2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グリセリンジ(メルカプトアセテート)、1-ヒドロキシ-4-メルカプトシクロヘキサン、2,4-ジメルカプトフェノール、2-メルカプトハイドロキノン、4-メルカプトフェノール、1,3-ジメルカプト-2-プロパノール、2,3-ジメルカプト-1-プロパノール、1,2-ジメルカプト-1,3-ブタンジオール、ペンタエリスリト-ルトリス(3-メルカプトプロピオネート)、ペンタエリスリトールモノ(3-メルカプトプロピオネート)、ペンタエリスリトールビス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3-メルカプトプロピオネート)、ヒドロキシメチル-トリス(メルカプトエチルチオメチル)メタン、1-ヒドロキシエチルチオ-3-メルカプトエチルチオベンゼン、4-ヒドロキシ-4’-メルカプトジフェニルスルホン、2-(2-メルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3-メルカプトプロピオネート)、ジメルカプトエタンモノ(サリチレート)、ヒドロキシエチルチオメチル-トリス(メルカプトエチルチオ)メタン
 (C-1)成分としては、その他にもシルセスキオキサン構造を有する化合物を用いることが可能である。シルセスキオキサンとは、下記式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000026
{式中、
 複数個あるR6は、水酸基及び/またはチオール基を含む有機基、水素原子、アルキル基、シクロアルキル基、アルコキシ基、またはフェニル基の何れかであり、互いに同一もしくは異なっていてもよく、少なくとも1分子中には2つ以上の水酸基及び/またはチオール基を含む有機基を有し、
 重合度nは6~100の整数である。}
 上記式(5)中R6における水酸基及び/またはチオール基を含む有機基は、水酸基及び/またはチオール基が少なくとも1つ以上結合した炭素数1~10である1価の炭化水素基、または水酸基及び/またはチオール基が少なくとも1つ以上結合した炭素数1~10の鎖中に酸素原子、または硫黄原子を含む1価の基であり、具体的には、炭素数1~10のアルキレン鎖、ポリオールまたはポリチオール等から誘導される有機基が好ましいものとして挙げられる。
 また、R6における、アルキル基としては、炭素数1~10のアルキル基が好ましい。炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソオクチル基等が挙げられる。
 シクロアルキル基としては、炭素数3~8のシクロアルキル基が好ましい。炭素数3~8のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロオクチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 アルコキシ基は、炭素数1~6のアルコキシ基が好ましい。炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基等が挙げられる。
 一般にシルセスキオキサン化合物は、ケ-ジ状、ハシゴ状、ランダムといった種々の構造を取ることができるが、本発明においては複数の構造からなる混合物であることが好ましい。
 <(C-1)成分の好ましい例>
 上記(C-1)成分のポリ(チ)オール化合物の好ましい例としては、ポリエチレンポリオール、ポリカプロラクトンポリオール、ポリカ-ボネートポリオール、トリメチロ-ルプロパン、ペンタエリスリトール、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-メルカプトメタノール、トリス-{(3-メルカプトプロピオニルオキシ)-エチル}-イソシアヌレートであることが好ましい。
 次に、(C-2)1分子中に1個の水酸基、またはチオール基を有するモノ(チ)オール化合物について説明する。
 <(C-2)1分子中に水酸基、またはチオール基を1個有するモノ(チ)オール化合物>
 本発明では、1分子中に1個の水酸基、またはチオール基を有するモノ(チ)オール化合物(以下単に「モノ(チ)オール化合物」とも言う)を用いること出来る。本発明の光学用組成物を硬化させると、ポリイソ(チオ)シアネート化合物とポリ(チ)オール化合物との反応により、(チオ)ウレタン結合を有する網目状構造の剛直な硬化体が得られるが、さらに、上記(C-2)成分を光学用組成物に配合することで、片末端フリ-な構造を有するモノ(チ)オール化合物が網目状構造に取り込まれるため、モノ(チ)オール化合物の周辺にフレキシブルな空間が形成される。従ってこの空間近傍に存在するフォトクロミック化合物の可逆的な構造変化を、より速やかに生じさせるようになるためフォトクロミック特性(発色濃度、退色速度)に優れたフォトクロミック硬化体を製造することができるものと推測される。
 さらに、モノ(チ)オール化合物は、水酸基、またはチオール基を1個しか有さない為、水素結合がポリ(チ)オール化合物よりも少なく、その結果、光学用組成物の粘度を減少させることに効果が高い。
 モノ(チ)オール化合物としては、以下の化合物を例示することができる。
 1分子中に1個の水酸基を有する化合物;ポリエチレングリコールモノオレイルエーテル、ポリオキシエチレンオレエート、ポリエチレングリコールモノラウラート、ポリエチレングリコールモノステアラート、ポリエチレングリコールモノ-4-オクチルフェニルエーテル、直鎖状のポリオキシエチレンアルキルエーテル(ポリエチレングリコールモノメチルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル)、炭素数5~30の直鎖状、または枝分かれ状を有する飽和アルキルアルコ-ル
 1分子中に1個のチオール基を有する化合物;3-メトキシブチルチオグリコレート、2-エチルヘキシルチオグリコレート、2-メルカプトエチルオクタン酸エステル、3-メルカプトプロピオン酸-3-メトキシブチル、チオグリコール酸-3-メトキシブチル、3-メルカプトプロピオン酸エチル、3-メルカプトプロピオン酸-2-オクチル、n-オクチル-3-メルカプトプロピオネート、メチル-3-メルカプトプロピオネート、トリデシル-3-メルカプトプロピオネート、ステアリル-3-メルカプトプロピオネート、炭素数5~30の直鎖状、または枝分かれ状構造を有する飽和アルキルチオール
 <(A)、(B)、及び(C)成分の好適な配合割合>
 さらに、本発明の光学用組成物において、光学物品が優れた成型性、機械強度、硬度または後述するフォトクロミック化合物を添加した際の優れたフォトクロミック特性を得るための最適な上記(A)、(B)、及び(C)成分の配合割合は、上記(A)、(B)、及び(C)成分の合計を100質量部とすると、(A)を3~15質量部、(B)を25~70質量部、(C)を20~65質量部の範囲で含有することが好ましく、(A)を4~10質量部、(B)を30~60質量部、(C)を30~60質量部の範囲で含有することがもっとも好ましい。
 <(D)フォトクロミック化合物>
 本発明の光学用組成物にフォトクロミック化合物を添加した光学用組成物は、フォトクロミック光学用組成物として使用できる。
 フォトクロミック性を示すフォトクロミック化合物としては、それ自体公知のものを使用することができ、これらは、1種単独で使用することもできるし、2種以上を併用することもできる。これらを光学用組成物に添加し、重合硬化させることで、フォトクロミック特性を有するプラスチックレンズを製造することが可能である。
 このようなフォトクロミック化合物として代表的なものは、フルギド化合物、クロメン化合物及びスピロオキサジン化合物であり、例えば、特開平2-28154号公報、特開昭62-288830号公報、WO94/22850号パンフレット、WO96/14596号パンフレット等、多くの文献に開示されている。
 本発明においては、公知のフォトクロミック化合物の中でも、発色濃度、初期着色性、耐久性、退色速度などのフォトクロミック性の観点から、インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を有するクロメン化合物を用いることがより好ましく、特に分子量が540以上のクロメン化合物が、発色濃度及び退色速度に特に優れるため好適に使用される。
 以下に示すクロメン化合物は、本発明において特に好適に使用されるクロメン化合物の例である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 <フォトクロミック光学用組成物の好適組成>
 上述した本発明の光学用組成物では、その好適使用量は、フォトクロミック性の発現方式によっても異なる。練り込み法によってフォトクロミック硬化体に重合する際は、このフォトクロミック硬化体のフォトクロミック性を発現させる場合には、(A)成分、(B)成分、(C)成分の合計100質量部に対して、0.0001~10質量部の量でフォトクロミック化合物(D)が使用され、好ましくは、0.001~2質量部、もっとも好ましくは0.001~1質量部の量で使用するのが好適である。積層法によってフォトクロミック性を発現させる時には、0.01~20質量部の量で使用され、好ましくは0.01~10質量部が好適である。また、バインダー法によってフォトクロミック性を発現させる場合には、0.1~40質量部の量で使用され、好ましくは0.5~20質量部の量で使用されるのが好適である。
 <(E) 樹脂改質剤、(F)重合硬化促進剤、(G)内部離型剤>
 本発明の光学用組成物においては、(A)、(B)、及び(C)の各成分の他に、屈折率の向上、成型性の向上、硬化体の硬度調製等を目的として、樹脂改質剤(E)、重合硬化促進剤(F)、内部離型剤(G)をさらに含んでよい。これらについて説明する。
 <(E)樹脂改質剤>
 本発明においては、得られる硬化体の屈折率の向上や、硬度調製を目的として、樹脂改質剤を添加することが出来る。例えば、エピスルフィド系化合物、チエタニル系化合物、エポキシ化合物、(メタ)アクリレート化合物を含むオレフィン化合物等が挙げられる。以下に具体例を説明する。
 <エピスルフィド系化合物>
 エピスルフィド系化合物は、1分子内に2個以上のエピスルフィド基を有している化合物であり、開環重合により硬化する。これらの化合物は、高屈折率化する為に添加されてもよい。このようなエピスルフィド系化合物の具体例としては、以下のものを例示することができる。
 ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピルチオ)メタン、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(2,3-エピチオプロピルジチオ)メタン、ビス(2,3-エピチオプロピルジチオ)エタン、ビス(6,7-エピチオ-3,4-ジチアヘプチル)スルフィド、ビス(6,7-エピチオ-3,4-ジチアヘプチル)ジスルフィド、1,4-ジチアン-2,5-ビス(2,3-エピチオプロピルジチオメチル)、1,3-ビス(2,3-エピチオプロピルジチオメチル)ベンゼン、1,6-ビス(2,3-エピチオプロピルジチオメチル)-2-(2,3-エピチオプロピルジチオエチルチオ)-4-チアヘキサン、1,2,3-トリス(2,3-エピチオプロピルジチオ)プロパン、1,1,1,1-テトラキス(2,3-エピチオプロピルジチオメチル)メタン、1,3-ビス(2,3-エピチオプロピルジチオ)-2-チアプロパン、1,4-ビス(2,3-エピチオプロピルジチオ)-2,3-ジチアブタン、1,1,1-トリス(2,3-エピチオプロピルジチオ)メタン、1,1,1-トリス(2,3-エピチオプロピルジチオメチルチオ)メタン、1,1,2,2-テトラキス(2,3-エピチオプロピルジチオ)エタン、1,1,2,2-テトラキス(2,3-エピチオプロピルジチオメチルチオ)エタン、1,1,3,3-テトラキス(2,3-エピチオプロピルジチオ)プロパン、1,1,3,3-テトラキス(2,3-エピチオプロピルジチオメチルチオ)プロパン、2-[1,1-ビス(2,3-エピチオプロピルジチオ)メチル]-1,3-ジチエタン、2-[1,1-ビス(2,3-エピチオプロピルジチオメチルチオ)メチル]-1,3-ジチエタン
 <チエタニル系化合物>
 チエタニル系化合物は、1分子内に2個以上のチエタニル基を有するチエタン化合物であり、開環重合により硬化する。これらの化合物は、高屈折率化する為に添加されてもよい。このようなチエタニル系化合物の一部は、複数のチエタニル基と共にエピスルフィド基を有するものであり、これは、上記のエピスルフィド系化合物の項に挙げられている。その他のチエタニル系化合物には、分子内に金属原子を有している含金属チエタン化合物と、金属を含んでいない非金属系チエタン化合物とがある。このようなチエタニル系化合物の具体例としては、以下のものを例示することができる。
 非金属系チエタン化合物;ビス(3-チエタニル)ジスルフィド、ビス(3-チエタニル)スルフィド、ビス(3-チエタニル)トリスルフィド、ビス(3-チエタニル)テトラスルフィド、1,4-ビス(3-チエタニル)-1,3,4-トリチアブタン、1,5-ビス(3-チエタニル)-1,2,4,5-テトラチアペンタン、1,6-ビス(3-チエタニル)-1,3,4,6-テトラチアヘキサン、1,6-ビス(3-チエタニル)-1,3,5,6-テトラチアヘキサン、1,7-ビス(3-チエタニル)-1,2,4,5,7-ペンタチアヘプタン、1,7-ビス(3-チエタニルチオ)-1,2,4,6,7-ペンタチアヘプタン、1,1-ビス(3-チエタニルチオ)メタン、1,2-ビス(3-チエタニルチオ)エタン、1,2,3-トリス(3-チエタニルチオ)プロパン、1,8-ビス(3-チエタニルチオ)-4-(3-チエタニルチオメチル)-3,6-ジチアオクタン、1,11-ビス(3-チエタニルチオ)-4,8-ビス(3-チエタニルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(3-チエタニルチオ)-4,7-ビス(3-チエタニルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(3-チエタニルチオ)-5,7-ビス(3-チエタニルチオメチル)-3,6,9-トリチアウンデカン、2,5-ビス(3-チエタニルチオメチル)-1,4-ジチアン、2,5-ビス[[2-(3-チエタニルチオ)エチル]チオメチル]-1,4-ジチアン、2,5-ビス(3-チエタニルチオメチル)-2,5-ジメチル-1,4-ジチアン、ビスチエタニルスルフィド、ビス(チエタニルチオ)メタン、3-[<(チエタニルチオ)メチルチオ>メチルチオ]チエタン、ビスチエタニルジスルフィド、ビスチエタニルトリスルフィド、ビスチエタニルテトラスルフィド、ビスチエタニルペンタスルフィド、1,4-ビス(3-チエタニルジチオ)-2,3-ジチアブタン、1,1,1-トリス(3-チエタニルジチオ)メタン、1,1,1-トリス(3-チエタニルジチオメチルチオ)メタン、1,1,2,2-テトラキス(3-チエタニルジチオ)エタン、1,1,2,2-テトラキス(3-チエタニルジチオメチルチオ)エタン
 <含金属チエタン化合物>
 このチエタン化合物は、分子内に、金属原子として、Sn原子、Si原子、Ge原子、Pb原子等の14族の元素;Zr原子、Ti原子等の4族の元素;Al原子等の13族の元素;またはZn原子等の12族の元素;などを含んでいるものであり、例えば、特に好適に使用されるのは、以下の化合物である。
 アルキルチオ(チエタニルチオ)スズ;メチルチオトリス(チエタニルチオ)スズ、エチルチオトリス(チエタニルチオ)スズ、プロピルチオトリス(チエタニルチオ)スズ、イソプロピルチオトリス(チエタニルチオ)スズ
 ビス(アルキルチオ)ビス(チエタニルチオ)スズ;ビス(メチルチオ)ビス(チエタニルチオ)スズ、ビス(エチルチオ)ビス(チエタニルチオ)スズ、ビス(プロピルチオ)ビス(チエタニルチオ)スズ、ビス(イソプロピルチオ)ビス(チエタニルチオ)スズ
 アルキルチオ(アルキルチオ)ビス(チエタニルチオ)スズ;エチルチオ(メチルチオ)ビス(チエタニルチオ)スズ、メチルチオ(プロピルチオ)ビス(チエタニルチオ)スズ、イソプロピルチオ(メチルチオ)ビス(チエタニルチオ)スズ、エチルチオ(プロピルチオ)ビス(チエタニルチオ)スズ、エチルチオ(イソプロピルチオ)ビス(チエタニルチオ)スズ、イソプロピルチオ(プロピルチオ)ビス(チエタニルチオ)スズ
 ビス(チエタニルチオ)環状ジチオスズ化合物;ビス(チエタニルチオ)ジチアスタンネタン、ビス(チエタニルチオ)ジチアスタンノラン、ビス(チエタニルチオ)ジチアスタンニナン、ビス(チエタニルチオ)トリチアスタンノカン
 アルキル(チエタニルチオ)スズ化合物;メチルトリス(チエタニルチオ)スズ、ジメチルビス(チエタニルチオ)スズ、ブチルトリス(チエタニルチオ)スズ、テトラキス(チエタニルチオ)スズ、テトラキス(チエタニルチオ)ゲルマニウム、トリス(チエタニルチオ)ビスマス
 <エポキシ化合物>
 エポキシ化合物は、重合性基として、分子内にエポキシ基を有するものであり、開環重合により硬化する。これらの化合物は、屈折率の調製やレンズ硬度の調製の為に添加されてもよい。このようなエポキシ化合物は、大きく分けて、脂肪族エポキシ化合物、脂環族エポキシ化合物及び芳香族エポキシ化合物に分類され、その具体例としては、以下のものを例示することができる。
 脂肪族エポキシ化合物;エチレンオキシド、2-エチルオキシラン、ブチルグリシジルエーテル、フェニルグリシジルエーテル、2,2’-メチレンビスオキシラン、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ノナエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、テトラプロピレングリコールジグリシジルエーテル、ノナプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、ジグリセロールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、トリス(2-ヒドロキシエチル)イソシアヌレ-トのジグリシジルエーテル、トリス(2-ヒドロキシエチル)イソシアヌレ-トのトリグリシジルエーテル
 脂環族エポキシ化合物;イソホロンジオールジグリシジルエーテル、ビス-2,2-ヒドロキシシクロヘキシルプロパンジグリシジルエーテル
 芳香族エポキシ化合物;レゾールシンジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、オールトフタル酸ジグリシジルエステル、フェノールノボラックポリグリシジルエーテル、クレゾールノボラックポリグリシジルエーテル
 また、上記以外にも、エポキシ基と共に、分子内に硫黄原子を有するエポキシ化合物も使用することができる。このような含硫黄原子エポキシ化合物は、特に屈折率向上に寄与するものであり、鎖状脂肪族系及び環状脂肪族系のものがあり、その具体例は、次のとおりである。
 鎖状脂肪族系含硫黄原子エポキシ化合物;ビス(2,3-エポキシプロピル)スルフィド、ビス(2,3-エポキシプロピル)ジスルフィド、ビス(2,3-エポキシプロピルチオ)メタン、1,2-ビス(2,3-エポキシプロピルチオ)エタン、1,2-ビス(2,3-エポキシプロピルチオ)プロパン、1,3-ビス(2,3-エポキシプロピルチオ)プロパン、1,3-ビス(2,3-エポキシプロピルチオ)-2-メチルプロパン、1,4-ビス(2,3-エポキシプロピルチオ)ブタン、1,4-ビス(2,3-エポキシプロピルチオ)-2-メチルブタン、1,3-ビス(2,3-エポキシプロピルチオ)ブタン、1,5-ビス(2,3-エポキシプロピルチオ)ペンタン、1,5-ビス(2,3-エポキシプロピルチオ)-2-メチルペンタン、1,5-ビス(2,3-エポキシプロピルチオ)-3-チアペンタン、1,6-ビス(2,3-エポキシプロピルチオ)ヘキサン、1,6-ビス(2,3-エポキシプロピルチオ)-2-メチルヘキサン、3,8-ビス(2,3-エポキシプロピルチオ)-3,6-ジチアオクタン、1,2,3-トリス(2,3-エポキシプロピルチオ)プロパン、2,2-ビス(2,3-エポキシプロピルチオ)-1,3-ビス(2,3-エポキシプロピルチオメチル)プロパン、2,2-ビス(2,3-エポキシプロピルチオメチル)-1-(2,3-エポキシプロピルチオ)ブタン
 環状脂肪族系含硫黄原子エポキシ化合物;1,3-ビス(2,3-エポキシプロピルチオ)シクロヘキサン、1,4-ビス(2,3-エポキシプロピルチオ)シクロヘキサン、1,3-ビス(2,3-エポキシプロピルチオメチル)シクロヘキサン、1,4-ビス(2,3-エポキシプロピルチオメチル)シクロヘキサン、2,5-ビス(2,3-エポキシプロピルチオメチル)-1,4-ジチアン、2,5-ビス[<2-(2,3-エポキシプロピルチオ)エチル>チオメチル]-1,4-ジチアン、2,5-ビス(2,3-エポキシプロピルチオメチル)-2,5-ジメチル-1,4-ジチアン
 <(メタ)アクリレート化合物を含むオレフィン化合物、およびその他のラジカル重合性基を有する化合物>
 (メタ)アクリレート化合物を含むオレフィン化合物、およびその他のラジカル重合性基を有する化合物は、重合性基として、分子内にラジカル重合性基を有するものであり、ラジカル重合により硬化する。これらの化合物は、レンズ硬度の調製に用いることができる。その具体例としては、以下のものを例示することができる。
 (メタ)アクリレート化合物;エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、ジプロピレングリコールジアクリレート、ジプロピレングリコールジメタクリレート、トリプロピレングリコールジアクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールビスグリシジルアクリレート、エチレングリコールビスグリシジルメタクリレート、ビスフェノールAジアクリレート、ビスフェノールAジメタクリレート、2,2-ビス(4-アクロキシエトキシフェニル)プロパン、2,2-ビス(4-メタクロキシエトキシフェニル)プロパン、2,2-ビス(4-アクロキシジエトキシフェニル)プロパン、2,2-ビス(4-メタクロキシジエトキシフェニル)プロパン、2,2-ビス(4-メタクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-メタクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(4-メタクリロイルオキシジプロポキシフェニル)プロパン、ビスフェノールFジアクリレート、ビスフェノールF ジメタクリレート、1,1-ビス(4-アクロキシエトキシフェニル)メタン、1,1-ビス(4-メタクロキシエトキシフェニル)メタン、1,1-ビス(4-アクロキシジエトキシフェニル)メタン、1,1-ビス(4-メタクロキシジエトキシフェニル)メタン、ジメチロールトリシクロデカンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラメタクリレート、グリセロールジアクリレート、グリセロールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、メチルチオアクリレートメチルチオメタクリレート、フェニルチオアクリレート、ベンジルチオメタクリレート、キシリレンジチオールジアクリレート、キシリレンジチオールジメタクリレート、メルカプトエチルスルフィドジアクリレート、メルカプトエチルスルフィドジメタクリレート、2官能ウレタンアクリレート、2官能ウレタンメタクリレート
 アリル化合物;アリルグリシジルエーテル、ジアリルフタレート、ジアリルテレフタレート、ジアリルイソフタレート、ジアリルカーボネート、ジエチレングリコールビスアリルカーボネート、メトキシポリエチレングリコールアリルエーテル
 ビニル化合物;αメチルスチレン、αメチルスチレンダイマー、スチレン、クロロスチレン、メチルスチレン、ブロモスチレン、ジブロモスチレン、ジビニルベンゼン、3,9-ジビニルスピロビ(m-ジオキサン)
 <(F)重合硬化促進剤>
 本発明の光学用組成物においては、上述した化合物の種類に応じて、その重合硬化を速やかに促進させるために各種の重合硬化促進剤を使用することができる。
 例えば、水酸基、及びチオール基とNCO基、及びNCS基との反応に用いる場合には、ウレタン或いはウレア用反応触媒や縮合剤が重合硬化促進剤として使用される。
 エピスルフィド系化合物、チエタニル系、エポキシ化合物が使用された場合は、エポキシ硬化剤やエポキシ基を開環重合させるためのカチオン重合触媒が重合硬化促進剤として使用される。
 (メタ)アクリル基、およびその他のラジカル重合性基を有する化合物((メタ)アクリレート化合物を含むオレフィン化合物、およびその他のラジカル重合性基を有する化合物)が含まれている場合は、ラジカル重合開始剤が重合硬化促進剤として使用される。
 <ウレタン或いはウレア用反応触媒>
 この反応触媒は、ポリイソ(チア)シアネートと、ポリオール又はポリチオールとの反応によるポリ(チオ)ウレタン結合生成において用いられる。これらの重合触媒は3級アミン類およびこれらに対応する無機または有機塩類、ホスフィン類、4級アンモニウム塩類、4級ホスホニウム塩類、ルイス酸類、または有機スルホン酸を挙げることが出来る。この具体例としては、以下のものを例示することができる。また、選択する上述の化合物の種類により、触媒活性が高すぎる場合は、3級アミンとルイス酸を混合して用いることにより触媒活性を抑えることが可能である。
 3級アミン類;トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリエチルアミン、ヘキサメチレンテトラミン、N,N-ジメチルオクチルアミン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン、4,4’-トリメチレンビス(1-メチルピペリジン)、1,8-ジアザビシクロ-(5,4,0)-7-ウンデセン
 ホスフィン類;トリメチルホスフィン、トリエチルホスフィン、トリ-n-プロピルホスフィ、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリベンジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,2-ビス(ジメチルホスフィノ)エタン
 4級アンモニウム塩類;テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド
 4級ホスホニウム塩類;テトラメチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド
 ルイス酸;トリフェニルアルミ、ジメチルスズジクロライド、ジメチルスズビス(イソオクチルチオグリコレート)、ジブチルスズジクロライド、ジブチルチンジラウレート、ジブチルスズマレエート、ジブチルスズマレエートポリマー、ジブチルスズジリシノレート、ジブチルスズビス(ドデシルメルカプチド)、ジブチルスズビス(イソオクチルチオグリコレート)、ジオクチルスズジクロライド、ジオクチルスズマレエート、ジオクチルスズマレエートポリマー、ジオクチルスズビス(ブチルマレエート)、ジオクチルスズジラウレート、ジオクチルスズジリシノレート、ジオクチルスズジオレエート、ジオクチルスズジ(6-ヒドロキシ)カプロエート、ジオクチルスズビス(イソオクチルチオグリコレート)、ジドデシルスズジリシノレート、各種金属塩、例えば、オレイン酸銅、アセチルアセトン酸銅、アセチルアセトン酸鉄、ナフテン酸鉄、乳酸鉄、クエン酸鉄、グルコン酸鉄、オクタン酸カリウム、チタン酸2-エチルヘキシル
 有機スルホン酸;メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸
 <縮合剤>
 縮合剤としての具体例は、以下のものを例示することができる。
 無機酸;塩化水素、臭化水素、硫酸やリン酸等
 有機酸;p-トルエンスルホン酸、カンファースルホン酸等
 酸性イオン交換樹脂;アンバーライト、アンバーリスト等
 カルボジイミド;ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノピロリル)-カルボジイミド
 <エポキシ硬化剤>
 エポキシ硬化剤としての具体例は、以下のものを例示することができる。
 アミン化合物及びその塩;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7-トリメチルアミン、ベンジルジメチルアミン、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノ-ル、2-(ジメチルアミノメチル)フェノール
 4級アンモニウム塩;テトラメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、テトラブチルアンモニウムブロミド
 有機ホスフィン化合物;テトラ-n-ブチルホスホニウムベンゾトリアゾレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート
 金属カルボン酸塩;クロム(III)トリカルボキシレート、オクチル酸スズ
 アセチルアセトンキレ-ト化合物;クロムアセチルアセトナート
 <カチオン重合触媒>
 カチオン重合触媒としての具体例は、以下のものを例示することができる。
 ルイス酸系触媒;BF3・アミン錯体、PF5、BF3、AsF5、SbF5
 熱硬化性カチオン重合触媒;ホスホニウム塩や4級アンモニウム塩、スルホニウム塩、ベンジルアンモニウム塩、ベンジルピリジニウム塩、ベンジルスルホニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、アミンイミド
 紫外硬化性カチオン重合触媒;ジアリールヨードニウムヘキサフロオロホスフェート、ヘキサフルオロアンチモン酸ビス(ドデシルフェニル)ヨードニウム
 <ラジカル重合開始剤>
 重合開始剤には、熱重合開始剤があり、その具体例は以下のとおりである。
 ジアシルパーオキサイド;ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド
 アセチルパーオキサイドパーオキシエステル;t-ブチルパーオキシ-2-エチルヘキサネート、t-ブチルパーオキシネオデカネート、クミルパーオキシネオデカネート、t-ブチルパーオキシベンゾエート
 パーカーボネート;ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート
 アゾ化合物;アゾビスイソブチロニトリル
 上述した各種の重合硬化促進剤(E)は、それぞれ、1種単独でも、2種以上を併用することもできるが、その使用量は、所謂触媒量でよく、例えば、上記(A)、(B)、及び(C)の合計100質量部に対して、0.001~10質量部、特に0.01~5質量部の範囲の少量でよい。
 <(G)内部離型剤>
 本発明において用いられる内部離型剤の例としては、離型性の効果があり樹脂の透明性などの物性を損なわないものであればいずれでも使用可能であるが、好ましくは界面活性剤が使用される。その中でも、リン酸エステル系界面活性剤が好ましい。ここでいう内部離型剤は、前述の各種触媒のうち離型効果を示すものをも含み、例えば4級アンモニウム塩類および4級ホスホニウム塩類をも含むことがある。これら内部離型剤は、モノマーとの組合せ、重合条件、経済性、取り扱いの容易さより適宜選ばれる。リン酸エステルの内部離型剤の具体例は、以下のとおりである。
 アルキルアシッドホスフェート;リン酸モノ-n-ブチル、リン酸モノ-2-エチルヘキシル、リン酸モノ-n-オクチル、リン酸モノ-n-ブチル、ビス(2-エチルヘキシル)ホスフェ-ト、リン酸ジ(2-エチルヘキシル)、リン酸ジ-n-オクチル、リン酸ジ-n-ブチル、ブチルアシッドホスフェート(モノ-、ジ-混合物)、エチルアシッドホスフェート(モノ-、ジ-混合物)、ブトキシエチルアシッドホスフェート(モノ-、ジ-混合物)、2-エチルヘキシルアシッドホスフェート(モノ-、ジ-混合物)、イソトリデンアシッドホスフェート(モノ-、ジ-混合物)、テトラコシルアシッドホスフェート(モノ-、ジ-混合物)、ステアリルアシッドホスフェイト(モノ-、ジ-混合物)
 その他のリン酸エステル;オレイルアシッドホスフェート(モノ-、ジ-混合物)、ジブチルピロホスフェート、エチレングリコールアシッドホスフェート(モノ-、ジ-混合物)、ブトキシエチルアシッドホスフェート(モノ-、ジ-混合物)等が例示できる。
 上述した各種の内部離型剤(G)は、それぞれ、1種単独でも、2種以上を併用することもできるが、その使用量は少量でよく、例えば(A)、(B)及び(C)の合計100質量部に対して0.001質量部~10質量部の量で用いることが出来る。
 <その他の配合成分>
 本発明の光学用組成物に、フォトクロミック化合物を添加する際には、本発明の効果を損なわない範囲でそれ自体公知の各種配合剤、例えば、紫外線吸収剤、帯電防止剤、赤外線吸収剤、紫外線安定剤、酸化防止剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料等の各種安定剤、添加剤、溶剤、レベリング剤、さらには、t-ドデシルメルカプタン等のチオール類を重合調製剤として、必要に応じて配合することができる。
 中でも、紫外線安定剤を使用するとフォトクロミック化合物の耐久性を向上させることができるために好適である。このような紫外線安定剤としては、ヒンダ-ドアミン光安定剤、ヒンダードフェノール酸化防止剤、イオウ系酸化防止剤などが知られている。特に好適な紫外線安定剤は、以下の通りである。
 ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト、ADEKA(株)製アデカスタブLA-52、LA-57、LA-62、LA-63、LA-67、LA-77、LA-82、LA-87、2,6-ジ-t-ブチル-4-メチル-フェノール、エチレンビス(オキシエチレン)ビス[3-(5-t-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、チバ・スペシャリティ-・ケミカルズ社製のIRGANOX1010、1035、1075、1098、1135、1141、1222、1330、1425、1520、259、3114、3790、5057、565
 このような紫外線安定剤の使用量は、本発明の効果を損なわない限り特に制限されるものではないが、通常、(A)、(B)、及び(C)の合計100質量部に対して、0.001質量部~10質量部、特に0.01質量部~1質量部の範囲である。特にヒンダ-ドアミン光安定剤を用いる場合、フォトクロミック化合物の種類によって耐久性の向上効果に差がある結果、調製された発色色調の色ズレが生じないようにするため、フォトクロミック化合物(D)1モル当り、0.5~30モル、より好ましくは1~20モル、さらに好ましくは2~15モルの量とするのがよい。
 また、帯電防止性剤としては、アルカリ金属又はアルカリ土類金属塩、4級アンモニウム塩、界面活性剤(非イオン界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤)、及びイオン性液体(常温で液体として存在し、陽イオン及び陰イオンの対で存在する塩)等が挙げられる。具体例としては以下の通りである。
 アルカリ金属又はアルカリ土類金属塩;アルカリ金属(リチウム、ナトリウム及びカリウム等)又はアルカリ土類金属(マグネシウム及びカルシウム等)と、有機酸[炭素数1~7のモノ又はジカルボン酸(ギ酸、酢酸、プロピオン酸、シュウ酸及びコハク酸等)、炭素数1~7のスルホン酸(メタンスルホン酸、トリフルオロメタンスルホン酸及びp-トルエンスルホン酸等)及びチオシアン酸]との塩、及び前記有機酸と無機酸[ハロゲン化水素酸(塩酸及び臭化水素酸等)、過塩素酸、硫酸、硝酸及びリン酸等)]の塩等
 4級アンモニウム塩;アミジニウム(1-エチル-3-メチルイミダゾリウム等)又はグアニジウム(2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム等)と、前記有機酸又は無機酸との塩等
 界面活性剤;しょ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、アルキルグリコシド、ポリオキシエチレンアルキルフェニルエーテル、高級脂肪酸塩(石けん)、α-スルホ脂肪酸メチルエステル塩、直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、(モノ)アルキルリン酸エステル塩、α-オレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、Nメチルビスヒドロキエチルアミン脂、肪酸エステル・塩酸塩、アルキルアミノ脂肪酸塩、アルキルベタイン、アルキルアミンオキシド等
 イオン性液体;1,3-エチルメチルイミダゾリウムビストリフルオロメタンスルホンイミド、1,3-エチルメチルイミダゾリウムテトラフルオロボレート、1-エチルピリジニウムビストリフルオロメタンスルホンイミド、1-エチルピリジニウムテトラフルオロボレート、1-エチルピリジニウムヘキサフルオロフォスフェート、1-メチルピラゾリウムビストリフルオロメタンスルホンイミド等
 さらに、本発明においては、フォトクロミック性向上効果を最大限に発揮させるためには、水酸基及びチオール基と、イソシアネート基及びチオイソシアネート基の官能基のモル比が、イソシアネート基及びチオイソシアネート基1モル当り、水酸基及びチオール基の量が0.8~1.2モル、特に0.85~1.15モル、最も好ましくは、0.9~1.1モルの範囲とするのがよい。
 <フォトクロミック光学用組成物の製造方法>
 本発明の光学用組成物は、フォトクロミック光学用組成物として用いる場合には、一般的には、(A)ポリロタキサン、(B)1分子中に、イソシアネート基及びイソチオシアネート基から選択される少なくとも1種の基を2個以上有する化合物、(D)フォトクロミック化合物に加えて、(C)イソ(チオ)シアネート反応性基含有化合物が配合されていることが好ましく、例えば、各成分を溶融混練してフォトクロミック光学用組成物を調製し、これを重合硬化させることによりフォトクロミック硬化体を作製し、この硬化体によりフォトクロミック性を発現させることが望ましい。
 また構成成分の溶解性向上や膜厚調製のため、本発明の光学用組成物をフォトクロミックコーティング剤としてもいる場合、上記フォトクロミック光学用組成物を有機溶媒に分散ないし溶解させて塗布液を調製し、この塗布液を透明な光学シートや光学フィルムに塗布し、乾燥することにより、フォトクロミックコーティング層を形成し、これにより、フォトクロミック性を発現させることができる。用いる有機溶媒は、用途に応じて適宜選択すればよいが、溶解性の点からメチルエチルケトン、ジエチルケトン等のケトン類、塩化メチレン、クロロホルム等のハロゲン類、トルエン、キシレン等の芳香族炭化水素類、ジオキサン、テトラヒドロピラン等のエーテル類等を用いることが好ましい。
 上記のフォトクロミック光学用組成物は、フォトクロミック硬化体を作製するために重合硬化を行なう。重合硬化は、熱、または必要に応じて、紫外線、α線、β線、γ線等の活性エネルギー線の照射、熱、あるいは両者の併用等により、ラジカル重合、開環重合、アニオン重合或いは縮重合を行うことにより、行われる。即ち、(A)ポリロタキサン、(C))イソ(チオ)シアネート反応性基含有化合物や、(E)樹脂改質剤、さらには(D)重合硬化促進剤の種類及び形成されるフォトクロミック硬化体の形態に応じて、適宜の重合手段を採用すればよい。
 フォトクロミック光学用組成物を熱重合させるに際しては、特に重合時の温度が得られるフォトクロミック硬化体の性状に影響を与える。この温度条件は、熱重合開始剤の種類と量や重合性モノマーの種類によって影響を受けるので一概に限定はできないが、一般的に比較的低温で重合を開始し、ゆっくりと温度を上げていく方法が好適である。重合時間も温度と同様に各種の要因によって異なるので、予めこれらの条件に応じた最適の時間を決定するのが好適であるが、一般には、2~48時間で重合が完結するように条件を選ぶのが好ましい。フォトクロミック積層シートを得る場合には、重合性官能基同士の反応が進行する温度で重合し、その際、目的とする分子量になるように最適な温度と時間を決定することが好ましい。
 また、フォトクロミック光学用組成物を光重合させる際には、重合条件のうち、特にUV強度は得られるフォトクロミック硬化体の性状に影響を与える。この照度条件は、光重合開始剤の種類と量や重合性モノマーの種類によって影響を受けるので一概に限定はできないが、一般的に365nmの波長で50~500mW/cm2のUV光を0.5~5分の時間で光照射するように条件を選ぶのが好ましい。
 上述した重合硬化を利用しての練り込み法によりフォトクロミック性を発現させる場合には、エストラマーガスケット又はスペーサーで保持されているガラスモールド間に、上記のフォトクロミック光学用組成物を注入し、重合性モノマーや重合硬化促進剤の種類に応じて、空気炉中での加熱や紫外線等の活性エネルギー線照射によっての注型重合によって、レンズ等の光学材料の形態に成型されたフォトクロミック硬化体を得ることができる。かかる方法によれば、直接、フォトクロミック性が付与された眼鏡レンズ等が得られる。
 積層法によりフォトクロミック性を発現させる場合には、フォトクロミック光学用組成物を、スピンコートやディッピング等により、レンズ基材等の光学基材の表面に塗布液を塗布する。フォトクロミック光学用組成物が高粘度の場合には、適宜有機溶剤に溶解させて塗布液を調製し、塗布し、乾燥して有機溶剤を除去すればよい。次いで加熱により熱硬化を行うことで光学基材の表面にフォトクロミック硬化体からなるフォトクロミック層が形成される(コーティング法)。また、樹脂改質剤で、ラジカル重合性基を有するものを用いる際は、さらに窒素などの不活性ガス中でのUV照射や加熱等により重合硬化を行ってもよい。
 また、レンズ基材等の光学基板を所定の空隙が形成されるようにガラスモールドに対面して配置し、この空隙にフォトクロミック光学用組成物を注入し、この状態で、UV照射や加熱等により重合硬化を行うインナーモールドによる注型重合によっても、光学基材の表面にフォトクロミック硬化体からなるフォトクロミック層を形成することができる
 上記のような積層法(コーティング法及び注型重合法)によりフォトクロミック層を光学基材の表面に形成する場合には、予め光学基材の表面に、アルカリ溶液、酸溶液などによる化学的処理、コロナ放電、プラズマ放電、研磨などによる物理的処理を行っておくことにより、フォトクロミック層と光学基材との密着性を高めることもできる。勿論、光学基材の表面に透明な接着樹脂層を設けておくことも可能である。
 さらに、バインダー法によりフォトクロミック性を発現する場合には、フォトクロミック光学用組成物を用いてのシート成形によりフォトクロミックシートを作製し、これを2枚の透明なシート(光学シート)で挟んで、前述した重合硬化を行うことにより、フォトクロミック層を接着層とするフォトクロミック積層体が得られる。
 この場合、フォトクロミックシートの作成には、フォトクロミック光学用組成物を有機溶剤に溶解させた塗布液を用いてのコーティングという手段も採用することができる。
 このようにして作製されたフォトクロミック積層体は、例えば、これを金型内に装着され、この後、レンズなどの光学基材用熱可塑性樹脂(例えばポリカーボネート)を射出成形することにより、フォトクロミック性が付与された所定形状のレンズ等の光学基材が得られる。また、このフォトクロミック積層体は、接着剤などにより、光学基材の表面に接着することもでき、これにより、フォトクロミックレンズを得ることもできる。
 上述したフォトクロミック光学用組成物は、発色濃度や退色速度等に優れたフォトクロミック性を発現させることができ、しかも、機械的強度等の特性を低減させることもなく、フォトクロミック性が付与された光学基材、例えばフォトクロミックレンズの作成に有効に利用される。
 また、フォトクロミック光学用組成物により形成されるフォトクロミック層やフォトクロミック硬化体は、その用途に応じて、分散染料などの染料を用いる染色、シランカップリング剤やケイ素、ジルコニウム、アンチモン、アルミニウム、スズ、タングステン等のゾルを主成分とするハードコート剤を用いてのハードコート膜の作成、SiO2、TiO2、ZrO2等の金属酸化物の蒸着による薄膜形成、有機高分子を塗布しての薄膜による反射防止処理、帯電防止処理等の後加工を施すことも可能である。
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。以下の実施例及び比較例において、上記の各成分及びフォトクロミック特性の評価方法等は、以下のとおりである。
 (A)環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されていることを特徴とするポリロタキサン(態様Iのポリロタキサン)の調製;
AI-1:3級水酸基を側鎖に有するポリロタキサン
 下記にポリロタキサン(AI-1)の調製方法を以下に記す。
 (1-1)PEG-COOHの調製;
 軸分子形成用のポリマーとして、重量平均分子量20000の直鎖状ポリエチレングリコ-ル(PEG)を用意した。
 下記処方;
  PEG 10g
  TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル) 100mg
  臭化ナトリウム 1g
により、各成分を水100mLに溶解させた。
 この溶液に、市販の次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)5mLを添加し、室温で10分間撹拌した。その後、エタノールを最大5mLまでの範囲で添加して反応を終了させた。そして、50mLの塩化メチレンを用いた抽出を行った後、塩化メチレンを留去し、250mLのエタノールに溶解させてから、-4℃の温度で12時間かけて再沈させ、PEG-COOHを回収し、乾燥した。
 (1-2)1級水酸基を側鎖に有するポリロタキサンの調製;
 上記で調製されたPEG-COOH 3gおよびα-シクロデキストリン(α-CD)12gを、それぞれ、70℃の温水50mLに溶解させ、得られた各溶液を混合し、よく振り混ぜた。次いで、この混合溶液を、4℃の温度で12時間再沈させ、析出した包接錯体を凍結乾燥して回収した。その後、室温でジメチルホルムアミド(DMF)50mlに、アダマンタンアミン0.13gを溶解した後、上記の包接錯体を添加して速やかによく振り混ぜた。続いてBOP試薬(ベンゾトリアゾール1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート)0.38gをDMFに溶解した溶液をさらに添加して、よく振り混ぜた。さらにジイソプロピルエチルアミン0.14mlをDMFに溶解させた溶液を添加してよく振り混ぜてスラリー状の試薬を得た。上記で得られたスラリー状の試薬を4℃で12時間静置した。その後、DMF/メタノール混合溶媒(体積比1/1)50mlを添加、混合、遠心分離を行なって上澄みを捨てた。さらに、上記DMF/メタノール混合溶液による洗浄を行った後、メタノールを用いて洗浄、遠心分離を行い、沈殿物を得た。得られた沈殿物を真空乾燥で乾燥させた後、50mLのDMSO(ジメチルスルホキシド)に溶解させ、得られた透明な溶液を700mLの水中に滴下してポリロタキサンを析出させた。析出したポリロタキサンを遠心分離で回収し、真空乾燥させた。さらにDMSOに溶解、水中で析出、回収、乾燥を行い、精製ポリロタキサンを得た。このときのα-CDの包接量は0.25である。
 ここで、包接量は、DMSO-d6にポリロタキサンを溶解し、1H-NMR測定装置(日本電子製JNM-LA500)により測定し、以下の方法により算出した。
 ここで、X,Y及びX/(Y-X)は、以下の意味を示す。
  X:4~6ppmのシクロデキストリンの水酸基由来プロトンの積分値
  Y:3~4ppmのシクロデキストリン及びPEGのメチレン鎖由来プロトンの積分値
  X/(Y-X):PEGに対するシクロデキストリンのプロトン比
 先ず、理論的に最大包接量1の時のX/(Y-X)を予め算出し、この値と実際の化合物の分析値から算出されたX/(Y-X)を比較することにより包接量を算出した。
 (1-3)ポリロタキサンへの側鎖の導入;
 上記で精製されたポリロタキサン500mgを1mol/LのNaOH水溶液50mLに溶解し、プロピレンオキシド3.83g(66mmol)を添加し、アルゴン雰囲気下、室温で12時間撹拌した。次いで、1mol/LのHCl水溶液を用い、上記のポリロタキサン溶液を、pHが7~8となるように中和し、透析チュ-ブにて透析した後、凍結乾燥し、ヒドロキシプロピル化ポリロタキサンを得た。
 尚、ヒドロキシプロピル基による環状分子のOH基への修飾度は0.5であった。得られたヒドロキシプロピル化ポリロタキサン5gを、ε-カプロラクトン22.5gに80℃で溶解させた混合液を調製した。この混合液を、乾燥窒素をブローさせながら110℃で1時間攪拌した後、2-エチルヘキサン酸錫(II)の50wt%キシレン溶液0.16gを加え、130℃で6時間攪拌した。その後、キシレンを添加し、不揮発濃度が約35質量%の側鎖を導入したポリカプロラクトン修飾ポリロタキサンキシレン溶液を得た。
 上記で調製されたポリカプロラクトン修飾ポリロタキサンキシレン溶液をヘキサン中に滴下し、回収し、乾燥することにより、重合性の官能基として1級の水酸基を有する側鎖修飾ポリロタキサン(得られたポリロタキサンの側鎖の分子量は平均で約500、GPC測定により、得られたポリロタキサンの重量平均分子量Mwは400000のポリロタキサン、水酸基価は測定値で1.35mmol/gである。)を得た。
 なお、実施例においてポリロタキサンの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で、以下の条件で測定した。
・測定装置:液体クロマトグラフ装置(日本ウォーターズ社製)
・GPCカラム:Shodex GPC KF-805(排除限界分子量:2,000,000)(昭和電工株式会社製)
・流速:1mL/min
・カラム温度:40℃
・サンプル濃度:0.5%(w/v)(DMFで希釈)
・移動相溶媒:DMF
・標準ポリスチレン換算
 ポリロタキサンの水酸基価は滴定法によって測定した。
 (1-4)側鎖に3級水酸基を有するポリロタキサン(AI-1)の調製
 このポリロタキサン5gに対し、キシレン15g、ジブチルヒドロキシトルエン(重合禁止剤)0.005gを添加した後、アルゴン雰囲気下で、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネート1.26gを滴下した。なお、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネートは、ポリロタキサンの水酸基と1:1で反応するように滴下した。40℃で16時間攪拌し、ポリカプロラクトン末端に水酸基が保護された側鎖を導入したポリロタキサンのキシレン溶液を得た。
 このポリロタキサンキシレン溶液をヘキサン中に滴下し、回収した後、THF20gを加え、アルゴン雰囲気下、TBAFのTHF溶液(10ml、1.0M)を加え、加熱還流下攪拌した。反応終了後、飽和NH4Cl水溶液を加え分液し、水層をトルエンで抽出し、集めた油層をNa2SO4で乾燥させた。その後、溶媒を減圧下除去し、環状分子の少なくとも一部に、3級の水酸基を有する側鎖が導入されていることを特徴とするポリロタキサン(AI-1)を取得することが出来る。得られたポリロタキサンの側鎖の分子量は平均で約600、GPC測定により、得られたポリロタキサンの重量平均分子量Mwは460000であり側鎖の水酸基は3級水酸基100%であった。
 AI-2:側鎖に3級水酸基を有するポリロタキサン
 (1-5)側鎖に3級水酸基を有するポリロタキサン(AI-2)の調製;
 (1-1)において重量平均分子量が2万のPEGのかわりに、1万のPEGを用いた以外、上記(AI-1)と全く同様にして、側鎖に3級水酸基を有するポリロタキサン(AI-2)を得た。
 このポリロタキサン(AI-2)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約600
  ポリロタキサン重量平均分子量Mw(GPC):230000
  側鎖の水酸基は3級水酸基100%
 AI-3:側鎖に3級水酸基を有するポリロタキサン
(1-6)側鎖に3級水酸基を有するポリロタキサン(AI-3)の調製;
(1-3)におけるε-カプロラクトンの量を125gとした以外、(AI-1)と全く同様にして3級水酸基を側鎖に有するポリロタキサン(AI-3)を調製した。
 このポリロタキサン(AI-3)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約2500
  ポリロタキサン重量平均分子量Mw(GPC):1900000
  側鎖の水酸基は3級水酸基100%
 AI-4:側鎖に2級水酸基を有するポリロタキサン
 (1-7)側鎖に2級水酸基を有するポリロタキサン(AI-4)の調製;
 (1-4)において、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネートのかわりに2-(t-ブチルジメチルシロキシ)プロピルイソシアネートを1.45gとした以外、(AI-1)と全く同様にして2級水酸基を側鎖に有するポリロタキサン(AI-4)を調製した。
 このポリロタキサン(AI-4)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約600
  ポリロタキサン重量平均分子量Mw(GPC):460000
  側鎖の水酸基は2級水酸基100%
 AI-5:側鎖に3級水酸基を有するポリロタキサン
(1-8)側鎖に3級水酸基を有するポリロタキサン(AI-5)の調製;
(1-1)において重量平均分子量が2万のPEGのかわりに、1万のPEGを用い、(1-3)におけるε-カプロラクトンのかわりに、ε―カプロラクタムを22.5g用いた以外、(AI-1)と全く同様にして、側鎖に3級水酸基を有するポリロタキサン(AI-5)を得た。
 このポリロタキサン(AI-5)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約600
  ポリロタキサン重量平均分子量Mw(GPC):230000
  側鎖の水酸基は3級水酸基100%
 AI-6:側鎖に3級水酸基を有するポリロタキサン
(1-8)側鎖に3級水酸基を有するポリロタキサン(AI-6)の調製;
(1-3)におけるε-カプロラクトンのかわりに、γ-バレロラクトン22.5gを用いた以外、(AI-1)と全く同様にして、側鎖に3級水酸基を有するポリロタキサン(AI-6)を得た。
 このポリロタキサン(AI-6)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約500
  ポリロタキサン重量平均分子量Mw(GPC):400000
  側鎖の水酸基は3級水酸基100%
 AI-7:側鎖に3級水酸基を有するポリロタキサン
(1-9)側鎖に3級水酸基を有するポリロタキサン(AI-7)の調製;
 (1-1)において重量平均分子量が2万のPEGのかわりに、9万のPEGを使用し、(1-3)におけるε-カプロラクトンの量を12.5gとした以外、(AI-1)の調製方法と同様に、側鎖に3級水酸基を有するポリロタキサン(AI-7)を得た。
 このポリロタキサン(AI-7)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約400
  ポリロタキサン重量平均分子量Mw(GPC):1500000
  側鎖の水酸基は3級水酸基100%
 AI-8:側鎖に3級水酸基を有するポリロタキサン
 (1-10)側鎖に3級水酸基を有するポリロタキサン(AI-8)の調製
 (1-4)において、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネートを0.63gとした以外、(AI-1)の調製方法と同様に、側鎖に3級水酸基を有するポリロタキサン(AI-8)を得た。
 α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約550
  ポリロタキサン重量平均分子量Mw(GPC):430000
  側鎖の水酸基は3級水酸基50%、1級の水酸基50%
 AI-9:側鎖に3級水酸基を有するポリロタキサン
(1-11)側鎖に3級水酸基を有するポリロタキサン(AI-9)の調製
 (1-4)において、2-メチル-2-(トリメチルシロキシ)プロピルイソシアネートを1.01gとした以外、(AI-1)の調製方法と同様に、側鎖に3級水酸基を有するポリロタキサン(AI-9)を得た。
 α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約600
  ポリロタキサン重量平均分子量Mw(GPC):450000
  側鎖の水酸基は3級水酸基80%、1級の水酸基20%
 以上のように作製した(A)ポリロタキンサン(AI-1)~(AI-9)の特徴を表1にまとめた。
Figure JPOXMLDOC01-appb-T000031
 (A)環状分子の少なくとも一部に、pKaが6以上14未満の水酸基を有する側鎖が導入されていることを特徴とするポリロタキサン(態様IIのポリロタキサン)の調製;
 AII-1:水酸基のpKaが10の水酸基を側鎖に有するポリロタキサン
 下記にポリロタキサン(AII-1)の調製方法を以下に記す。
 前記「(1-3)ポリロタキサンへの側鎖の導入」までは、ポリロタキサン(AI-1)の調製方法と同様に行った。
 ポリロタキサン(AI-1)調製方法の「(1-3)ポリロタキサンへの側鎖の導入」で得られた、重合性の官能基として1級の水酸基を有する側鎖修飾ポリロタキサン(得られたポリロタキサンの側鎖の分子量は平均で約500、GPC測定により、得られたポリロタキサンの重量平均分子量Mwは400000のポリロタキサン、水酸基価は測定値で1.35mmol/gである。)は、pKaが15.5の1級の水酸基を有する側鎖修飾ポリロタキサンであった(式(2)のH-Aがメタノール)。
 (1-4)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサンの調製
 このポリロタキサン5gに対し、キシレン15g、ジブチルヒドロキシトルエン(重合禁止剤)0.005gを添加した後、アルゴン雰囲気下で、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼン1.59gを滴下した。なお、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンは、ポリロタキサンの水酸基と等molとなるように滴下した。40℃で16時間攪拌し、原料が全て消失したことを確認し、ポリカプロラクトン末端に水酸基が保護された側鎖を導入したポリロタキサンのキシレン溶液を得た。
 このポリロタキサンキシレン溶液をヘキサン中に滴下し、回収した後、THF20gを加え、アルゴン雰囲気下、フッ化テトラ-n-ブチルアンモニウム(TBAF)のTHF溶液(10ml、1.0M)を加え、加熱還流下攪拌した。反応終了、飽和NH4Cl水溶液を加え分液し、水層をトルエンで抽出し、集めた油層をNa2SO4で乾燥させた。その後、溶媒を減圧下除去し、環状分子の少なくとも一部に、水酸基のpKaが10である水酸基を有する側鎖が導入されているポリロタキサンを取得することが出来た(式(2)のH-Aがフェノール)。なお、pKaは水中における値であり、(a)日本化学会編の化学便覧(改訂3版、昭和59年6月25日、丸善株式会社発行)に記載のpKaであり、(a)に記載がないものに関しては、(b)The Journal of Physical Chemistry vol.68,number6,page1560(1964)記載の方法で、測定を実施することでpKaの値を得ることができる。得られたポリロタキサンの側鎖の分子量は平均で約650、GPC測定により、得られたポリロタキサンの重量平均分子量Mwは477000であった。また、末端の水酸基は、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンの消失から、(1-3)で得られたポリロタキサンの水酸基は全て置換されていた。
 AII-2:側鎖に水酸基のpKaが10の水酸基を有するポリロタキサンの調製
 (1-5)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-2)の調製;
 (1-1)において重量平均分子量が2万のPEGのかわりに、1万のPEGを用いた以外、上記(AII-1)と全く同様にして、側鎖にpKaが10の水酸基を有するポリロタキサン(AII-2)を得た。
 このポリロタキサン(AII-2)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約650
  ポリロタキサン重量平均分子量Mw(GPC):239000
  側鎖の水酸基のpKaが10の水酸基が100%(式(2)のH-Aがフェノール)
 AII-3:側鎖に水酸基のpKaが10の水酸基を有するポリロタキサンの調製
 (1-6)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-3)の調製;
 (1-3)におけるε-カプロラクトンの量を125gとした以外、(AII-1)と全く同様にしてpKaが10の水酸基を側鎖に有するポリロタキサン(AII-3)を調製した。
 このポリロタキサン(AII-3)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約2500
  ポリロタキサン重量平均分子量Mw(GPC):1900000
  側鎖の水酸基のpKaが10の水酸基が100%(式(2)のH-Aがフェノール)   
 AII-4:側鎖に水酸基のpKa9.3の水酸基を有するポリロタキサン
 (1-7)側鎖に水酸基のpKa9.3の水酸基を有するポリロタキサン(AII-4)の調製;
 ジクロロメタン140mLとNaHCO3140mLの飽和溶液を、室温で3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンアミン1.94gに加えた後、攪拌しながら0度まで冷却し、攪拌を停止した。その後、液が2層になった後、ジクロロメタン溶液(15mL)に溶解しているトリホスゲン1.35gをシリンジにて有機層に加え、直ぐに30分再度攪拌した。その後、水層と有機層を分け、水層は、再度ジクロロメタンで分液にて抽出した後、有機層をNa2SO4で水分を除去し、濃縮することで、3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンイソシアネートとし、濃縮した3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンイソシアネートに、アルゴン雰囲気下で(1-3)で合成したポリロタキサン5gと、キシレン15g、ジブチルヒドロキシトルエン(重合禁止剤)0.005gを添加した後、アルゴン雰囲気下、40℃で16時間攪拌した。反応終了は、3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンイソシアネートが全て消失したことを確認し、ポリカプロラクトン末端に水酸基が保護された側鎖を導入したポリロタキサンのキシレン溶液を得た。
 このポリロタキサンキシレン溶液をヘキサン中に滴下し、回収した後、THF18g/MeOH2gの混合溶液を加え、そこに、10%Pd/Cを0.07gを室温で加えた後、水素置換し、60度で1.5時間攪拌させ、pKaが9.3である水酸基を有する側鎖が導入されていることを特徴とするポリロタキサンを取得することが出来た(式(2)のH-Aが(CF32-CH-OH)。得られたポリロタキサンの側鎖の分子量は平均で約700、GPC測定により、得られたポリロタキサンの重量平均分子量Mwは470000であった。また、末端の水酸基は、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンが全て消失したことから全て置換されていた。
 このポリロタキサン(AII-4)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約700
  ポリロタキサン重量平均分子量Mw(GPC):500000
  側鎖の水酸基のpKaが9.3の水酸基が100%(式(2)のH-Aが(CF32-CH-OH)
 AII-5:側鎖に水酸基のpKaが12.5の水酸基を有するポリロタキサンの調製
 (1-8)側鎖に水酸基のpKaが12.5の水酸基を有するポリロタキサン(A-5)の調製;
 (1-7)における3,3,3-トリフルオロ-2-(フェニルメトキシ)-2-(トリフルオロメチル)-1-プロパンアミンの替わりに4,4,4-トリフルオロ-3-(フェニルメトキシ)-1ブタンアミン1.58gとした以外、(AII-4)の調製方法と同様にして、側鎖に水酸基のpKaが12.5の水酸基を有するポリロタキサン(A-5)を得た(式(2)のH-AがCF3-CH2-OH)。
 このポリロタキサン(AII-5)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約650
  ポリロタキサン重量平均分子量Mw(GPC):477000
  側鎖の水酸基のpKaは約12.5の水酸基が100%(式(2)のH-AがCF3-CH2-OH)
 AII-6:側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン
 (1-9)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサンの調製
(1-1)において重量平均分子量が2万のPEGのかわりに、分子量が9万のPEGを使用し、(1-3)におけるε-カプロラクトンの量を10.5gとした以外、(AII-1)の調製方法と同様に、側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-6)を得た。
 このポリロタキサン(AII-6)の物性は以下の通りであった。
  α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約400
  ポリロタキサン重量平均分子量Mw(GPC):1500000
  側鎖の水酸基のpKaが10の水酸基が100%(式(2)のH-Aがフェノール)   
 AII-7:側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン
 (1-10)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-7)の調製
 (1-4)において、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンを0.80gとした以外、(AII-1)の調製方法と同様に、側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-7)を得た。
 このポリロタキサン(AII-7)の物性は以下の通りであった。
 α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約600
  ポリロタキサン重量平均分子量Mw(GPC):439000
  側鎖に水酸基のpKaが10の水酸基50%(式(2)のH-Aがフェノール)、側鎖に水酸基のpKaが15.5の水酸基50%(式(2)のH-Aがメタノール)
 AII-8:側鎖に水酸基のpKaが10である水酸基を有するポリロタキサン
 (1-11)側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-8)の調製
 (1-4)において、1-(2-イソシアネートエチル)-4-[(トリメチルシリル)オキシ]-ベンゼンを1.43gとした以外、(AII-1)の調製方法と同様に、側鎖に水酸基のpKaが10の水酸基を有するポリロタキサン(AII-8)を得た。
 このポリロタキサン(AII-8)の物性は以下の通りであった。
 α-CDの包接量:0.25
  側鎖の修飾度:0.5
  側鎖の分子量:平均で約650
  ポリロタキサン重量平均分子量Mw(GPC):470000
  側鎖に水酸基のpKaが10の級水酸基90%(式(2)のH-Aがフェノール)、側鎖に水酸基のpKaが15.5の水酸基10%(式(2)のH-Aがメタノール)
 以上のように作製した(A)ポリロタキンサン(AII-1)~(AII-8)の特徴を表2にまとめた。
Figure JPOXMLDOC01-appb-T000032
 (B)1分子中に、イソシアネート基及びイソチオシアネート基から選択される少なくとも1種の基を2個以上有する化合物;
 XDI:m-キシレンジイソシアネート
 NBDI:(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネート
 HXDI:1,3-ビス(イソシアナトメチル)シクロヘキサン
 (C)イソ(チオ)シアネート反応性基含有化合物
 (C-1)1分子中に水酸基及びチオール基から選択される少なくとも1種の基を2個以上有するポリ(チ)オール化合物;
 PL1:旭化成ケミカルズ株式会社製デュラノ-ル
 (ポリカ-ボネートジオール、数平均分子量500)
 TMP:トリメチロ-ルプロパン
 PNT-40:ペンタエリスリトールポリオキシエチレンエーテル(日本乳化剤製4官能ポリオール)
 ポリチオール;
 PEMP:ペンタエリスリト-ルテトラキス(3-メルカプトプロピオネート)
 DPMP:ジペンタエリスリト-ルヘキサキス(3-メルカプトプロピオネート)
 EGMP-4:テトラエチレングリコ-ルビス(3-メルカプトプロピオネート)
 PRX:側鎖に1級水酸基を有するポリロタキサン
  AI-1を製造する過程における「(1-3)ポリロタキサンへの側鎖の導入」で得られた1級水酸基を側鎖に有するポリロタキサンである。(式(2)のH-Aがメタノール)。
 側鎖の修飾度:0.5
 側鎖の分子量:平均で約500
 ポリロタキサン重量平均分子量Mw(GPC):400000
 側鎖の水酸基は1級水酸基100%(式(2)のH-Aがメタノール)
 (C-2)1分子中に1個の水酸基、またはチオール基を有するモノ(チ)オール化合物;
 PGME10:ポリエチレングリコールモノオレイルエーテル(n≒10、Mw=668)
 3-MBMA:チオグリコール酸-3-メトキシブチル
 1-DT:ドデカンチオール
 フォトクロミック化合物(D);PC1:
Figure JPOXMLDOC01-appb-C000033
 (F)重合硬化促進剤;
 ウレタン或いはウレア用反応触媒;
 DBTD:ジブチルチンジラウレート
 (G)内部離型剤;
 DBP:ジ-n-ブチル錫
 PA2EE:リン酸-2-エチルへキシル(モノ-、 ジ-混合物)
 その他の配合
 安定剤;
 HALS:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト(分子量508)
 <実施例I-1>
 下記処方により、各成分を混合して均一液(光学用組成物)を調製した。各配合量を表3に示す。
処方;
 (A)ポリロタキサン:AI-1 8質量部
 (B)ポリイソシアネート化合物:NBDI 47質量部
 (C)ポリ(チ)オール化合物:PL1 20質量部、TMP 16質量部
    モノ(チ)オール化合物:PGME10 9質量部
 (D)フォトクロミック化合物:PC1 0.04質量部
 (H)内部離型剤:PA2EE 0.3質量部(混合物の全量に対して)
 (その他の配合):HALS 0.1質量部
 上記の光学用組成物を用い、練り込み法にてフォトクロミック硬化体を得た。重合方法は、以下に示す。
 即ち、前記均一液を十分に脱泡した後、得られる硬化体の厚みが2mm、及び10mmとなるように設計されたガラスモールドとエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型よりなる2種類のモールド型に注入した。ついで、30℃から100℃まで徐々に昇温しながら、15時間かけて硬化させた。重合終了後、フォトクロミック硬化体を鋳型のガラス型から取り外すことにより、硬化体の厚みが2mm、及び10mmのフォトクロミック硬化体を得た。得られたフォトクロミック硬化体(2mm厚)のフォトクロミック特性、Lスケールロックウェル硬度(HL)、成型性、及び白濁を評価した結果、最大吸収波長577nm、発色濃度0.89、退色速度52秒、Lスケールロックウェル硬度(HL)77、成型性-1が1、及び白濁-1が1であった。また、フォトクロミック硬化体(10mm厚)の成型性、及び白濁を評価した結果、成型性-2が1、及び白濁-2が1であった。なお、最大吸収波長、発色濃度、退色速度、Lスケールロックウェル硬度、成型性-1及び2、白濁-1及び2の評価は、以下に示す方法で実施した。
 〔評価項目〕
 (1)最大吸収波長(λmax):得られたフォトクロミック硬化体(2mm厚)を試料とし、これに、浜松ホトニクス製のキセノンランプL-2480(300W)SHL-100を、エアロマスフィルター(コーニング社製)を介して20℃±1℃、硬化体表面でのビーム強度365nm=2.4mW/cm2、245nm=24μW/cm2で120秒間照射して発色させ、(株)大塚電子工業製の分光光度計(瞬間マルチチャンネルフォトディテクタ-MCPD1000)により求めた発色後の最大吸収波長である。該最大吸収波長は発色時の色調に関係する。
 (2)発色濃度{ε(120)-ε(0)}:前記最大吸収波長における、120秒間光照射した後の吸光度{ε(120)}と光照射前の吸光度ε(0)との差。この値が高いほどフォトクロミック性が優れているといえる。また屋外で発色させたとき発色色調を目視により評価した。
 (3)退色速度〔t1/2(sec.)〕:120秒間光照射後、光の照射を止めたときに、試料の前記最大吸収波長における吸光度が{ε(120)-ε(0)}の1/2まで低下するのに要する時間。この時間が短いほどフォトクロミック性が優れているといえる。
 (4)Lスケールロックウェル硬度(HL):上記硬化体(2mm厚)を25℃の室内で1日保持した後、明石ロックウェル硬度計(形式:AR-10)を用いて、フォトクロミック硬化体(2mm厚)のLスケ-ルロックウェル硬度を測定した。
 (5)成型性-1:
 上記硬化体(2mm厚)の光学歪みを目視にて観察した。評価基準は、以下の通りである。
  1:光学歪みがないもの
  2:光学歪みがレンズの半分以下の一部分にみられるもの
  3:光学歪みがレンズ全体にみられるもの
 (6)白濁-1:
 上記硬化体(2mm厚)の白濁評価を、目視にて行った。評価基準は、以下の通りである。
  1:製品として問題ないレベルで、白濁がない、あるいはほとんど見えない。
  2:製品として問題ないレベルであるが若干白濁のあるもの。
  3:製品として問題ないレベルであるが2よりは白濁が強いもの。
  4:白濁があり、製品として使用できないもの。
 (7)成型性-2:
 上記硬化体(10mm厚)の光学歪みは、高圧水銀灯を用いて評価した。すなわち、高圧水銀灯の光を上記硬化体(10mm厚)の表面に照射し、その投影を目視で観察することにより評価した。評価基準は、以下の通りである。
  1:光学歪みがないもの
  2:光学歪みがレンズの半分以下の一部分にみられるもの
  3:光学歪みがレンズの半分以上に見られるもの
  4:光学歪みがレンズ全体にみられるもの
 (8)白濁-2:
 上記硬化体(10mm厚)の白濁を、高圧水銀灯を用いて評価した。すなわち、高圧水銀灯の光を上記硬化体(10mm厚)の側面に照射し、上記硬化体(10mm厚)を表面から目視で観察することにより、白濁の程度を評価した。評価基準は、以下の通りである。
  1:白濁がない、あるいはほとんど見えないもの。
  2:製品として問題ないレベルであるが若干白濁のあるもの。
  3:製品として問題ないレベルであるが2よりは白濁が強いもの。
  4:白濁があり、製品として使用できないもの。
 <実施例I-2~11、比較例I-1~3>
 表3に示した組成のフォトクロミック光学用組成物を用いた以外は、実施例I-1と同様な方法でフォトクロミック硬化体を作製し、評価を行なった。結果を、表4に示した。また、実施例I-11、比較例I-3はフォトクロミック化合物(D)成分を添加していない為、フォトクロミック特性は測定していない。また、成型性-1、及び白濁-1の評価は、特許文献8を参考に実施した。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 <実施例II-1>
 下記処方により、各成分を混合して均一液(光学用組成物)を調製した。各配合量を表5に示す。
処方;
 (A)ポリロタキサン:AII-1 8質量部
 (B)ポリイソシアネート化合物:NBDI 47質量部
 (C)ポリ(チ)オール化合物:PL1 22質量部、TMP 16質量部
    モノ(チ)オール化合物:PGME10 7質量部
 (D)フォトクロミック化合物:PC1 0.04質量部
 (H)内部離型剤:PA2EE 0.3質量部
 (その他の配合):HALS 0.1質量部
 上記の光学用組成物を用い、練り込み法にてフォトクロミック硬化体を得た。重合方法は、以下に示す。
 即ち、前記均一液を十分に脱泡した後、得られる硬化体の厚みが2mm、及び10mmとなるように設計されたガラスモールドとエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型よりなる2種類のモールド型に注入した。ついで、30℃から100℃まで徐々に昇温しながら、15時間かけて硬化させた。重合終了後、フォトクロミック硬化体を鋳型のガラス型から取り外すことにより、硬化体の厚みが2mm、及び10mmのフォトクロミック硬化体を得た。得られたフォトクロミック硬化体(2mm厚)のフォトクロミック特性、Lスケールロックウェル硬度(HL)、成型性、及び白濁を評価した結果、最大吸収波長579nm、発色濃度0.90、退色速度54秒、Lスケールロックウェル硬度(HL)80、成型性-1が1、及び白濁-1が1であった。また、フォトクロミック硬化体(10mm厚)の成型性、及び白濁を評価した結果、成型性-2が1、及び白濁-2が1であった。なお、最大吸収波長、発色濃度、退色速度、Lスケ-ルロックウェル硬度、成型性-1及び2、白濁-1及び2の評価は、上述の方法で実施した。
 <実施例II-2~8、比較例II-1~3>
 表5に示した組成のフォトクロミック光学用組成物を用いた以外は、実施例II-1と同様な方法でフォトクロミック硬化体を作製し、評価を行なった。結果を、表6に示した。また、実施例II-7、比較例II-3はフォトクロミック化合物(D)成分を添加していない為、フォトクロミック特性は測定していない。また、成型性-1、及び白濁-1の評価は、特許文献8を参考に実施した。
 なお、比較例I-1~3は、それぞれ比較例II-1~3と同様の実験である。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 <実施例I-12>
 下記処方により、各成分を混合して均一液(光学用組成物)を調製した。各配合量を表7に示す。
 処方;
 (A)ポリロタキサン:AI-1 12質量部
 (B)ポリイソシアネート化合物:XDI 37質量部
 (C)ポリ(チ)オール化合物:DPMP 38質量部
    モノ(チ)オール化合物:1-DT 13質量部
 (D)フォトクロミック化合物:PC1 0.04質量部
 (F)重合硬化促進剤:DBTD:ジブチルチンジラウレート0.001質量部(混合物の全量に対して)
 (その他の配合):HALS 0.1質量部
 上記の光学用組成物を用い、コーティング法にてフォトクロミック積層体を得た。重合方法は、以下に示す。
 光学基材として、中心厚が約2mm、球面度数-6.00Dで屈折率が1.60のチオウレタン系プラスチックレンズを用意した。なお、このチオウレタン系プラスチックレンズは、事前に10%水酸化ナトリウム水溶液を用いて、50℃で5分間のアルカリエッチングを行い、その後十分に蒸留水で洗浄を実施した。
 スピンコーター(1H-DX2、MIKASA製)を用いて、2000rpmで回転させている上記プラスチックレンズの表面に、フォトクロミックコーティング組成物を滴下した。その後、120℃で1時間加熱することにより重合硬化させ、フォトクロミック積層体を得た。フォトクロミック層の膜厚は、約30μmであった。
 得られたフォトクロミック積層体は、最大吸収波長586nm、発色濃度0.93、退色速度50秒、ビッカース硬度7、成型性-1が1、及び白濁-1が1であった。また、フォトクロミック硬化体(10mm厚)の成型性、及び白濁を評価した結果、成型性-2が1、及び白濁-2が1であった。なお、最大吸収波長、発色濃度、退色速度、成型性-1及び2、白濁-1及び2の評価は、実施例I等の同様の方法で実施し、ビッカース硬度については以下に示す方法で実施した。これら測定値を表8に示した。
 (9)ビッカース硬度:得られたフォトクロミック層のビッカース硬度は、マイクロビッカース硬度計PMT-X7A(株式会社マツザワ製)を用いて測定した。圧子には、四角錐型ダイヤモンド圧子を用い、荷重10gf、圧子の保持時間30秒の条件にて評価を実施した。測定結果は、計4回の測定を実施した後、測定誤差の大きい1回目の値を除いた計3回の平均値で示した。
 <実施例II-9>
 表7に示した組成のフォトクロミック光学用組成物を用いた以外は、<実施例I-12>と同様の方法でフォトクロミック硬化体を作製し、評価を行なった。結果を、表8に示した。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 以上の実施例、及び比較例から明らかな通り、本発明の光学用組成物を重合して得られる硬化体は、優れた成型性、及び機械強度を有し、さらに白濁が低減されている。また、フォトクロミック化合物を添加した場合においては、前記物性に加え、フォトクロミック特性も優れる。
 一方、比較例I-1及び2においては、フォトクロミック特性、成型性-1、白濁-1等は良好であるものの、より厳しい成型性-2、白濁-2の評価結果は不十分であった。また、比較例3においても、成型性-2、白濁-2の評価結果は不十分であった。
 また、本発明の光学用組成物は、コーティング法にも適用できる。
 1:ポリロタキサン
 2:軸分子
 3:環状分子
 4:嵩高い末端基
 5:2級または3級の水酸基を有する側鎖

Claims (17)

  1.  軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、要件(X)および(Y)の少なくとも一方を満たすことを特徴とするポリロタキサン。
     要件(X):該ポリロタキサンの環状分子の少なくとも一部に、2級または3級の水酸基を有する側鎖が導入されている
     要件(Y):該ポリロタキサンの環状分子の少なくとも一部に、下記式(1)
     -A (1)
     (式中Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。)
    で示される基を有する側鎖が導入されているポリロタキサンであり、下記式(2)
     H-A(2)
    で示される化合物の水酸基のpKaが6以上14未満である
  2.  要件(X)を満たす、請求項1に記載のポリロタキサン。
  3.  前記側鎖が有する1級、2級、及び3級の水酸基の全mol数を100%とした場合に、1級の水酸基の占める割合が50%以下である請求項2に記載のポリロタキサン。
  4.  前記2級または3級の水酸基を有する側鎖が下記式(1)で示される構造を有している請求項2または3に記載のポリロタキサン。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
    Figure JPOXMLDOC01-appb-C000002
     (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、水酸基、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200の整数である)
    から選ばれる少なくとも1種からなり、Qが式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3は合計で1~200の整数であり、R1及びR2はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または、炭素数1~6の分岐鎖状のアルキル基から選ばれる基であるが、R1とR2は同時に水素になることはない基である。]
  5.  前記2級または3級の水酸基を有する側鎖が下記式(1’)で示される構造を有している請求項2または3に記載のポリロタキサン。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
    Figure JPOXMLDOC01-appb-C000004
     (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、水酸基、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200の整数である)
    から選ばれる少なくとも1種からなり、Qが式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3は合計で1~200の整数であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O- 結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、R3及びR4はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または炭素数1~6の分岐鎖状のアルキル基から選ばれるが、R3とR4は同時に水素になることはない基であり、R5は炭素、又は硫黄である。]
  6.  要件(Y)を満たす、請求項1に記載のポリロタキサン。
  7.  前記側鎖が有する水酸基の全mol数を100%とした場合に、pKaが6未満または14以上の水酸基の占める割合が50%以下である請求項6のポリロタキサン。
  8.  前記環状分子の少なくとも一部に、下記式(3)
     -Q-A  (3)
    [式中、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
    Figure JPOXMLDOC01-appb-C000005
     (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200である。)
    から選ばれる少なくとも1種からなり、
     Qが、式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合には、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3の合計が1~200の整数であり、Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。]
    で示される側鎖が導入されている請求項6または7に記載のポリロタキサン。
  9.  前記環状分子の少なくとも一部に、下記式(3’)
    Figure JPOXMLDOC01-appb-C000006
    [式中、Qは下記式(Q-1)、(Q-2)及び(Q-3)で示される構造
    Figure JPOXMLDOC01-appb-C000007
     (式中、Gは炭素数1~8の直鎖状アルキレン基又はアルケニレン基、炭素数3~20の分岐鎖状アルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合、-NH-結合、-SO-結合、または-SiO-結合で置換されてなるアルキレン基又はアルケニレン基、または前記アルキレン基の水素の一部が、カルボキシル基、アシル基、フェニル基、ハロゲン原子及びオレフィン基からなる群から選ばれる少なくとも1種で置換されてなるアルキレン基であり、Gが複数存在する場合には各Gは同じ基でも異なる基であってもよく、n1、n2及びn3は各々独立に、1~200である。)
    から選ばれる少なくとも1種からなり、
     Qが、式(Q-1)、(Q-2)及び(Q-3)から選ばれる2種以上からなる場合には、(Q-1)~(Q-3)を構成するGは、同じ基でも異なる基であってもよく、n1、n2及びn3の合計が1~200の整数であり、R6は炭素、又は硫黄であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、Aは炭素数1~10の有機基であり、少なくとも一つの水酸基を含む。]
    で示される側鎖が導入されている請求項6または7に記載のポリロタキサン。
  10.  ポリロタキサンが有している環状分子に含まれている環が、シクロデキストリン環である請求項1~9のいずれか一項に記載のポリロタキサン。
  11.  前記環状分子の環内を貫通している軸分子が、両端に嵩高い基を有する鎖状構造を有しており、鎖状部分がポリエチレングリコールで形成され且つ両端の嵩高い基がアダマンチル基である請求項1~10のいずれか一項に記載のポリロタキサン。
  12.  請求項1~11のいずれか一項に記載のポリロタキサンを含有する光学用組成物。
  13.  1分子中に、イソシアネート基及びイソチオシアネート基から選択される少なくとも1種の基を2個以上有する化合物(B)を含有する請求項12に記載の光学用組成物。
  14.  イソ(チオ)シアネート反応性基含有化合物(C)を含有する請求項12または13に記載の光学用組成物。
  15.  フォトクロミック化合物(D)を含有する請求項12~14のいずれか一項に記載の光学用組成物。
  16.  軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであって、該ポリロタキサンの環状分子の少なくとも一部に1級の水酸基を有している側鎖が導入されているポリロタキサンと、下記式(2)で示される化合物とを反応させることを含む請求項2に記載のポリロタキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O- 結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、Zは下記式、Z-1~Z-9からなる群から選ばれる基であり、R3及びR4はそれぞれ独立に水素、炭素数1~6の直鎖状アルキル基、または炭素数1~6の分岐鎖状のアルキル基から選ばれるが、R3とR4は同時に水素になることはない基であり、R5は炭素、又は硫黄である。)
    Figure JPOXMLDOC01-appb-C000009
  17.  軸分子と該軸分子を包接する複数の環状分子とからなる複合分子構造のポリロタキサンであり、該ポリロタキサンの環状分子の少なくとも一部に水酸基のpKaが14以上である1級の水酸基を有している側鎖が導入されているポリロタキサンと、下記式(4)で示される水酸基が保護された(チオ)イソシアネート化合物とを反応させることを含む請求項6に記載のポリロタキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000010
    [式中、R6は炭素、又は硫黄であり、Xは炭素数2~20のアルキレン基又はアルケニレン基、前記アルキレン基又はアルケニレン基の一部が-O-結合または-NH-結合で置換されてなるアルキレン基又はアルケニレン基であり、式中Tは下記式(T-1)又は(T-2)
    Figure JPOXMLDOC01-appb-C000011
     (式中、R7は、炭素数1~4の炭化水素基、ハロゲン原子、ニトロ基、アシル基、メチルスルホニル基、トリフルオロメチル基、シアノ基、カルボキシル基から選ばれる基であり、pは0~4の整数であり、R7が2個以上の場合は互いに異なる基であっても良く、R8はトリフルオロメチル基、または水素である。)
    からなる群から選ばれる基であり、式中Zは、下記式Z-1~Z-9
    Figure JPOXMLDOC01-appb-C000012
    からなる群から選ばれる基である。]
PCT/JP2016/075463 2015-09-03 2016-08-31 ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物 WO2017038865A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017538070A JP6767371B2 (ja) 2015-09-03 2016-08-31 ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物
US15/757,062 US10494488B2 (en) 2015-09-03 2016-08-31 Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
EP16841895.2A EP3345954B1 (en) 2015-09-03 2016-08-31 Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
MX2018002693A MX2018002693A (es) 2015-09-03 2016-08-31 Polirotaxano, metodo para la produccion del mismo, y composicion optica que contiene dicho polirotaxano.
CN201680050984.1A CN107922605B (zh) 2015-09-03 2016-08-31 聚轮烷及其制法以及含有该聚轮烷的光学用组合物
US16/598,010 US11578174B2 (en) 2015-09-03 2019-10-10 Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015174232 2015-09-03
JP2015-174232 2015-09-03
JP2015175101 2015-09-04
JP2015-175101 2015-09-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/757,062 A-371-Of-International US10494488B2 (en) 2015-09-03 2016-08-31 Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane
US16/598,010 Continuation US11578174B2 (en) 2015-09-03 2019-10-10 Polyrotaxane, production method therefor, and optical composition containing said polyrotaxane

Publications (1)

Publication Number Publication Date
WO2017038865A1 true WO2017038865A1 (ja) 2017-03-09

Family

ID=58188815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075463 WO2017038865A1 (ja) 2015-09-03 2016-08-31 ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物

Country Status (6)

Country Link
US (2) US10494488B2 (ja)
EP (1) EP3345954B1 (ja)
JP (2) JP6767371B2 (ja)
CN (2) CN107922605B (ja)
MX (1) MX2018002693A (ja)
WO (1) WO2017038865A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075301A (ja) * 2015-10-14 2017-04-20 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
JP2019011462A (ja) * 2017-06-29 2019-01-24 国立大学法人大阪大学 修飾ポリロタキサンおよびその製造方法並びに樹脂組成物
WO2019069694A1 (ja) * 2017-10-04 2019-04-11 豊田合成株式会社 架橋ポリロタキサンを有する化合物及びアクチュエータ
JP2019065066A (ja) * 2017-09-28 2019-04-25 株式会社ネオス 硬化性組成物および硬化被膜の製造方法ならびに樹脂成形物品
WO2019198675A1 (ja) * 2018-04-10 2019-10-17 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
WO2019198664A1 (ja) * 2018-04-12 2019-10-17 株式会社トクヤマ フォトクロミック光学物品及びその製造方法
JP2020139085A (ja) * 2019-02-28 2020-09-03 三井化学株式会社 光学材料用重合性組成物
WO2021241596A1 (ja) * 2020-05-28 2021-12-02 株式会社トクヤマ 光学材料用化合物、硬化性組成物、硬化体、及び光学物品
CN114402008A (zh) * 2019-10-17 2022-04-26 株式会社德山 光致变色性羟基氨基甲酸酯化合物
WO2022158348A1 (ja) * 2021-01-25 2022-07-28 株式会社トクヤマ 樹脂組成物、光学積層体、光学物品、レンズ及び眼鏡
US11767467B2 (en) 2018-07-20 2023-09-26 Tokuyama Corporation Photochromic compound and curable composition containing said photochromic compound
WO2024014183A1 (ja) * 2022-07-15 2024-01-18 国立大学法人 東京大学 高い強靭性を有する高分子固体電解質

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922605B (zh) * 2015-09-03 2020-12-11 株式会社德山 聚轮烷及其制法以及含有该聚轮烷的光学用组合物
EP3687548A4 (en) 2017-09-29 2021-05-26 The Regents of the University of California MULTI-ARMED POLYROTAXANE PLATFORM FOR PROTECTED NUCLEIC ACID DELIVERY
CN108594470B (zh) * 2018-05-08 2020-06-02 江苏康耐特光学有限公司 一种多功能树脂镜片及其制备方法
EP3845567A4 (en) * 2018-08-27 2022-05-04 ASM Inc. POLYROTAXANE, THERMALLY CURABLE COMPOSITION WITH SAID POLYROTAXANE, THERMALLY CURED CROSSLINKED ARTICLE, METHOD OF MAKING POLYROTAXANE AND METHOD OF MAKING A THERMALLY CURED CROSSLINKED ARTICLE
CN109652057B (zh) * 2018-12-10 2022-03-18 南阳师范学院 一种锰掺杂硫化锌量子点嵌入型荧光复合膜的制备方法
CN116693721B (zh) * 2023-06-16 2024-07-19 西北师范大学 基于raft合成环糊精双臂季鏻盐聚合物抗菌材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
WO2009145073A1 (ja) * 2008-05-30 2009-12-03 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、水系ポリロタキサン分散組成物、及びポリロタキサンとポリマーとの架橋体、並びにこれらの製造方法
JP2011144338A (ja) * 2009-12-16 2011-07-28 Nissan Motor Co Ltd 水系塗料およびこれを用いた水系塗膜
JP2011178931A (ja) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd 修飾ポリロタキサンおよびその製造方法ならびにこれを用いた溶液、溶剤系塗料、溶剤系塗膜
WO2013099842A1 (ja) * 2011-12-26 2013-07-04 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
WO2015068798A1 (ja) * 2013-11-11 2015-05-14 株式会社トクヤマ フォトクロミック組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009599A1 (en) 2000-01-26 2002-01-24 Welch Cletus N. Photochromic polyurethane coating and articles having such a coating
ES2295321T3 (es) 2001-07-27 2008-04-16 Tokuyama Corporation Composicion curable, articulo curado obtenido a partir de ella y material optico fotocromico y procedimiento para su produccion.
KR101180169B1 (ko) 2004-03-31 2012-09-05 도꾜 다이가꾸 폴리로탁산을 갖는 중합체 재료, 및 그의 제조 방법
CN101889036B (zh) 2007-12-13 2013-01-02 株式会社德山 光致变色固化性组合物
JP4911474B2 (ja) * 2008-02-26 2012-04-04 富士フイルム株式会社 ハードコートフィルム、偏光板、および画像表示装置
JP2011046917A (ja) * 2010-02-26 2011-03-10 Advanced Softmaterials Inc 光架橋性ポリロタキサン、該光架橋性ポリロタキサンを有する組成物、及び該組成物由来の架橋体、並びにこれらの製造方法
ES2523576T3 (es) 2010-04-01 2014-11-27 Tokuyama Corporation Composición curable fotocrómica
CN103547608B (zh) 2011-06-23 2016-04-13 三井化学株式会社 聚合性组合物
WO2013099640A1 (ja) 2011-12-26 2013-07-04 株式会社トクヤマ フォトクロミック組成物
CN107922605B (zh) * 2015-09-03 2020-12-11 株式会社德山 聚轮烷及其制法以及含有该聚轮烷的光学用组合物
ES2881772T3 (es) 2015-09-03 2021-11-30 Tokuyama Corp Procedimiento de producción de un laminado fotocromático

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
WO2009145073A1 (ja) * 2008-05-30 2009-12-03 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、水系ポリロタキサン分散組成物、及びポリロタキサンとポリマーとの架橋体、並びにこれらの製造方法
JP2011144338A (ja) * 2009-12-16 2011-07-28 Nissan Motor Co Ltd 水系塗料およびこれを用いた水系塗膜
JP2011178931A (ja) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd 修飾ポリロタキサンおよびその製造方法ならびにこれを用いた溶液、溶剤系塗料、溶剤系塗膜
WO2013099842A1 (ja) * 2011-12-26 2013-07-04 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
WO2015068798A1 (ja) * 2013-11-11 2015-05-14 株式会社トクヤマ フォトクロミック組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345954A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075301A (ja) * 2015-10-14 2017-04-20 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
JP2019011462A (ja) * 2017-06-29 2019-01-24 国立大学法人大阪大学 修飾ポリロタキサンおよびその製造方法並びに樹脂組成物
JP7088491B2 (ja) 2017-06-29 2022-06-21 国立大学法人大阪大学 修飾ポリロタキサンおよびその製造方法並びに樹脂組成物
JP2019065066A (ja) * 2017-09-28 2019-04-25 株式会社ネオス 硬化性組成物および硬化被膜の製造方法ならびに樹脂成形物品
WO2019069694A1 (ja) * 2017-10-04 2019-04-11 豊田合成株式会社 架橋ポリロタキサンを有する化合物及びアクチュエータ
CN111954691B (zh) * 2018-04-10 2022-04-22 株式会社德山 使用聚轮烷的氨基甲酸酯树脂以及抛光垫
WO2019198675A1 (ja) * 2018-04-10 2019-10-17 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP7545326B2 (ja) 2018-04-10 2024-09-04 株式会社トクヤマ ポリロタキンサンを用いたウレタン樹脂、および研磨用パッド
US11912813B2 (en) 2018-04-10 2024-02-27 Tokuyama Corporation Urethane resin using polyrotaxane, and pad for polishing
CN111954691A (zh) * 2018-04-10 2020-11-17 株式会社德山 使用聚轮烷的氨基甲酸酯树脂以及抛光垫
JPWO2019198675A1 (ja) * 2018-04-10 2021-05-13 株式会社トクヤマ ポリロタキンサンを用いたウレタン樹脂、および研磨用パッド
WO2019198664A1 (ja) * 2018-04-12 2019-10-17 株式会社トクヤマ フォトクロミック光学物品及びその製造方法
JPWO2019198664A1 (ja) * 2018-04-12 2021-04-30 株式会社トクヤマ フォトクロミック光学物品及びその製造方法
CN111954832A (zh) * 2018-04-12 2020-11-17 株式会社德山 光致变色光学物品及其制造方法
US11767467B2 (en) 2018-07-20 2023-09-26 Tokuyama Corporation Photochromic compound and curable composition containing said photochromic compound
JP7357451B2 (ja) 2019-02-28 2023-10-06 三井化学株式会社 光学材料用重合性組成物
JP2020139085A (ja) * 2019-02-28 2020-09-03 三井化学株式会社 光学材料用重合性組成物
CN114402008A (zh) * 2019-10-17 2022-04-26 株式会社德山 光致变色性羟基氨基甲酸酯化合物
WO2021241596A1 (ja) * 2020-05-28 2021-12-02 株式会社トクヤマ 光学材料用化合物、硬化性組成物、硬化体、及び光学物品
WO2022158348A1 (ja) * 2021-01-25 2022-07-28 株式会社トクヤマ 樹脂組成物、光学積層体、光学物品、レンズ及び眼鏡
WO2024014183A1 (ja) * 2022-07-15 2024-01-18 国立大学法人 東京大学 高い強靭性を有する高分子固体電解質

Also Published As

Publication number Publication date
JP7066776B2 (ja) 2022-05-13
US20200071467A1 (en) 2020-03-05
US20180312643A1 (en) 2018-11-01
CN107922605B (zh) 2020-12-11
EP3345954A4 (en) 2019-04-24
CN111154056A (zh) 2020-05-15
CN107922605A (zh) 2018-04-17
CN111154056B (zh) 2021-12-21
US11578174B2 (en) 2023-02-14
JP2020125503A (ja) 2020-08-20
US10494488B2 (en) 2019-12-03
EP3345954A1 (en) 2018-07-11
MX2018002693A (es) 2018-04-13
JP6767371B2 (ja) 2020-10-14
JPWO2017038865A1 (ja) 2018-06-21
EP3345954B1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP7066776B2 (ja) ポリロタキサン及びその製法並びに該ポリロタキサンを含有する光学用組成物
CN107207851B (zh) 光致变色固化物的制造方法
US10125309B2 (en) Photochromic composition
EP3330751B1 (en) Method of producing a photochromic laminate
JP6392696B2 (ja) フォトクロミック組成物の製造方法
JPWO2018235771A1 (ja) フォトクロミック性ポリロタキサン化合物、及び該フォトクロミック性ポリロタキサン化合物を含んでなる硬化性組成物
TWI793352B (zh) 光致變色化合物,及含該光致變色化合物而成之硬化性組成物
JP6452530B2 (ja) フォトクロミック組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15757062

Country of ref document: US

Ref document number: MX/A/2018/002693

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE