WO2017038635A1 - 酸化亜鉛粉体、分散液、組成物、及び化粧料 - Google Patents

酸化亜鉛粉体、分散液、組成物、及び化粧料 Download PDF

Info

Publication number
WO2017038635A1
WO2017038635A1 PCT/JP2016/074846 JP2016074846W WO2017038635A1 WO 2017038635 A1 WO2017038635 A1 WO 2017038635A1 JP 2016074846 W JP2016074846 W JP 2016074846W WO 2017038635 A1 WO2017038635 A1 WO 2017038635A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
oxide powder
particles
less
diameter
Prior art date
Application number
PCT/JP2016/074846
Other languages
English (en)
French (fr)
Inventor
藤橋 岳
真吾 細田
西田 健一郎
俊輔 須磨
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to JP2017537807A priority Critical patent/JP6729591B2/ja
Priority to ES16841667T priority patent/ES2782186T3/es
Priority to KR1020187004826A priority patent/KR102547489B1/ko
Priority to CN201680050524.9A priority patent/CN107922209B/zh
Priority to EP16841667.5A priority patent/EP3342755B1/en
Priority to US15/755,493 priority patent/US11497695B2/en
Publication of WO2017038635A1 publication Critical patent/WO2017038635A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a zinc oxide powder, a dispersion, a composition and a cosmetic.
  • This application is based on Japanese Patent Application No. 2015-169534 filed in Japan on August 28, 2015, and based on Japanese Patent Application No. 2015-231151 filed in Japan on November 26, 2015. Based on Japanese Patent Application No. 2016-014678 filed in Japan on March 28, the priority is claimed and the contents thereof are incorporated herein.
  • Zinc oxide particles have an ultraviolet shielding function, a gas permeation suppressing function, and the like, and have high transparency. For this reason, zinc oxide particles are used in applications that require transparency, such as ultraviolet shielding films, ultraviolet shielding glasses, cosmetics and gas barrier films (see, for example, Patent Documents 1 to 8).
  • Zinc oxide particles are used with the particle diameter adjusted according to the application.
  • Patent Document 5 proposes a zinc oxide powder having an average particle diameter of 0.01 ⁇ m or more and 0.03 ⁇ m or less so that high transparency and an ultraviolet absorption effect can be simultaneously obtained.
  • Patent Document 8 proposes a zinc oxide powder having an average particle diameter of 0.2 ⁇ m or more and 0.3 ⁇ m or less in order to improve the shielding property of long wavelength ultraviolet rays (UVA).
  • UVA long wavelength ultraviolet rays
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a zinc oxide powder excellent in storage stability, and a dispersion, a composition and a cosmetic containing the zinc oxide powder. To do.
  • the first aspect of the present invention is: Variation in the number distribution of the primary particles of the zinc oxide powder containing zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle Haywood diameter of 35 nm to 400 nm.
  • the second aspect of the present invention is a dispersion containing the zinc oxide powder of the first aspect of the present invention and a dispersion medium.
  • the third aspect of the present invention is a composition containing the zinc oxide powder of the first aspect of the present invention, a resin, and a dispersion medium.
  • the fourth aspect of the present invention is a cosmetic containing at least one of the zinc oxide powder according to the first aspect of the present invention and the dispersion according to the second aspect of the present invention.
  • the zinc oxide powder of the present invention contains zinc oxide particles whose primary particles have a minor axis of 35 nm or more and 350 nm or less, and whose primary particles have a Haywood diameter (area equivalent circle diameter) of 35 nm or more and 400 nm or less.
  • the coefficient of variation in the number distribution of the Haywood diameter of the primary particles of the powder is 50% or less. For this reason, it is excellent in storage stability. Moreover, since the particles are large, the ultraviolet shielding effect is also great.
  • the dispersion of the present invention contains the zinc oxide powder of the present invention and a dispersion medium. Therefore, since a dispersion having the same properties can be obtained without being influenced by the storage period of the zinc oxide powder, the quality stability is excellent.
  • the composition of the present invention contains the zinc oxide powder of the present invention, a resin, and a dispersion medium. Therefore, the composition having the same properties can be obtained without being influenced by the storage period of the zinc oxide powder, and thus the quality stability is excellent.
  • the cosmetic of the present invention contains at least one selected from the zinc oxide powder of the present invention and the dispersion of the present invention. For this reason, since the cosmetics of the same property can be obtained without being influenced by the storage period of the zinc oxide powder, the quality stability is excellent.
  • the zinc oxide powder of the present invention contains zinc oxide particles whose primary particles have a minor axis of 35 nm or more and 350 nm or less, and whose primary particles have a Haywood diameter of 35 nm or more and 400 nm or less.
  • the variation coefficient of the Haywood diameter in the number distribution of the Haywood diameter of the primary particles is 50% or less.
  • the zinc oxide powder of the present invention is preferably composed only of zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle Haywood diameter of 35 nm to 400 nm.
  • the variation coefficient of the Haywood diameter in the number distribution of the Haywood diameter of the primary particles of the zinc oxide powder is 50% or less.
  • the definition of the particle size analysis in the zinc oxide powder of the present invention is as defined in Japanese Industrial Standard JIS Z8827-1 “Particle Size Analysis—Image Analysis Method—Part 1: Static Image Analysis Method”.
  • the particle diameter can be measured by a method according to this standard and by analyzing the particle image.
  • the actual measurement of the particle size is performed by, for example, image analysis software Mac-View Ver. 4 (manufactured by Mountec) or the like.
  • the short diameter of primary particles of zinc oxide particles, the long diameter of primary particles, and the Haywood diameter are values calculated using images observed with an electron microscope.
  • the short diameter of the primary particles, the long diameter of the primary particles, and the Haywood diameter of the primary particles mean values measured using a portion that can be recognized as one particle. To do.
  • the short diameter of the primary particles, the long diameter of the primary particles, the Haywood diameter of the primary particles, and the aspect ratio of the primary particles are at least 100, preferably 200, more preferably 300 primary particles. More preferably, it means a value obtained by measuring 500 pieces. In the examples described below, values obtained by measuring 200 particles are shown.
  • the electron microscope may be a transmission electron microscope or a scanning electron microscope. It is preferable to use a transmission electron microscope.
  • the primary particles in the present invention are individual particles that do not have boundaries (grain boundaries) in the particles themselves, that is, are not aggregates when observed with an electron microscope image (magnification: 10,000 to 100,000 times). It can be thought of as particles that can be identified as In other words, when the aggregate and the primary particle are mixed, it means the particle having the smallest contour.
  • the short diameter of primary particles of zinc oxide particles means the length of the short side of the rectangle whose short side is the shortest when a rectangle circumscribing the primary particles is provided.
  • the minor axis means one length of the side.
  • the major axis of the primary particles of zinc oxide particles means the length of the long side in the rectangle with the short side being the shortest.
  • the Haywood diameter of primary particles of zinc oxide particles means the diameter of a circle having the same area as the projected area of primary particles.
  • the aspect ratio of primary particles of zinc oxide particles is a value obtained by dividing the major axis of primary particles by the minor axis of primary particles (major axis of primary particles / minor axis of primary particles). Means.
  • the content in the number distribution means the short diameter of the primary particles of the zinc oxide particles obtained by the evaluation using the above image, the long diameter of the primary particles, the Haywood diameter of the primary particles, and the primary particles.
  • a geometric value such as the aspect ratio, convert to a number-based distribution.
  • it means the value obtained by adding the corresponding particle diameters in the obtained number-based distribution.
  • the content ratio of the short diameter of primary particles of zinc oxide particles can be considered as a ratio of the number of particles included in a specific particle size range obtained when the obtained short diameter is converted into a number-based distribution. it can.
  • the coefficient of variation in the number distribution of Haywood diameters is the value (%) obtained by dividing the standard deviation of Haywood diameters by the arithmetic mean value of Haywood diameters (standard deviation of Haywood diameters / Haywood diameter arithmetics). Mean value ⁇ 100).
  • a small variation coefficient indicates that the particle size distribution of the number distribution is sharp, and the variation in particle size is small.
  • the minor axis of the primary particles of the zinc oxide particles of the present invention is preferably 35 nm or more and 350 nm or less.
  • the minor axis is more preferably 40 nm or more, and further preferably 45 nm or more.
  • the minor axis is more preferably 330 nm or less, and further preferably 310 nm or less. If a specific example is given, it is preferable that it is 40 to 330 nm, and it is more preferable that it is 45 to 310 nm.
  • the Haywood diameter of the primary particles of the zinc oxide particles of the present invention is preferably 35 nm or more and 400 nm or less.
  • the Haywood diameter is more preferably 40 nm or more, and further preferably 50 nm or more.
  • the Haywood diameter is more preferably 390 nm or less, and further preferably 370 nm or less. If a specific example is given, it is preferable that they are 40 nm or more and 390 nm or less, and it is preferable that they are 50 nm or more and 370 nm or less.
  • the Haywood diameter of the primary particles When the Haywood diameter of the primary particles is in the above range, a zinc oxide powder that is excellent in storage stability and transparency, has a wide ultraviolet shielding region, and has low photocatalytic activity can be obtained.
  • the average value of the Haywood diameter can be arbitrarily selected as necessary. For example, it may be 100 nm to 400 nm, and an example is 200 nm to 300 nm. Within such a range, the effect of excellent UVA shielding properties and good feeling on the skin can be obtained.
  • the coefficient of variation in the number distribution of the Haywood diameters of the primary particles of the zinc oxide particles of the present invention is preferably 50% or less. It is more preferably 45% or less, and further preferably 40% or less. Further, the lower limit value of the variation coefficient is not particularly limited as long as a desired effect is obtained. As needed, it may be 0.1% or more, 1% or more, 10% or more, or 15% or more. When the coefficient of variation in the number distribution of the haywood diameters of the primary particles is in the above range, a zinc oxide powder having excellent storage stability and transparency, a wide ultraviolet shielding region, and low photocatalytic activity can be obtained.
  • the short diameter of the primary particles of the zinc oxide particles, the Haywood diameter of the primary particles, and the coefficient of variation in the number distribution thereof to the above ranges By adjusting the short diameter of the primary particles of the zinc oxide particles, the Haywood diameter of the primary particles, and the coefficient of variation in the number distribution thereof to the above ranges, the storage stability and transparency are excellent, the ultraviolet shielding range is wide, and the photocatalyst A zinc oxide powder with low activity is obtained.
  • the reason is considered as follows.
  • the short diameter of the primary particles of all the zinc oxide particles contained in the zinc oxide powder and the Haywood diameter of the primary particles are 35 nm or more
  • the zinc oxide powder of the present invention has a diameter portion of less than 35 nm. Zinc oxide fine particles having (short diameter and Haywood diameter) are not included.
  • All the contained particles have a minor axis of 35 nm or more and a Haywood diameter of 35 nm or more. Therefore, in the above conditions, since there are no or few small particles, fusion between particles having small particles during storage is suppressed, so that a change in specific surface area can be suppressed. Moreover, since small particles are not included, the specific surface area is reduced, and the photocatalytic activity of the zinc oxide powder can be lowered. Even in the case where particles that do not satisfy the above conditions are included, a certain amount of the above-described effects can be obtained if the amount is very small.
  • the zinc oxide powder of the present invention contains coarse particles of zinc oxide by making the short diameter of primary particles of zinc oxide particles 350 nm or less and the Haywood diameter of primary particles of zinc oxide particles 400 nm or less. I can't. Therefore, a zinc oxide powder excellent in transparency can be obtained.
  • the short diameter of the primary particles of zinc oxide, the haywood diameter of the primary particles, and the coefficient of variation in the number distribution of the haywood diameter of the primary particles are adjusted to the above ranges, thereby shielding the short wavelength ultraviolet (UVB). And particles excellent in long-wavelength ultraviolet (UVA) shielding properties are mixed within a certain range.
  • the particles having excellent short wavelength ultraviolet (UVB) shielding properties are considered to be, for example, particles having excellent ultraviolet shielding properties of 315 nm to 280 nm, and the particles having excellent long wavelength ultraviolet (UVA) shielding properties are 400 nm to It is considered that the particles have excellent ultraviolet shielding properties of 315 nm, particularly 400 nm to 370 nm.
  • zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle Haywood diameter of 35 nm to 400 nm should be contained in a number distribution of 95% or more. Is preferred. More preferably 96% or more, still more preferably 98% or more, and most preferably 100%.
  • the content of zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle Haywood diameter of 35 nm to 400 nm in the above range is excellent in storage stability and transparency.
  • a zinc oxide powder having a wide shielding area can be obtained.
  • the major axis of the primary particles of the zinc oxide particles is preferably 50 nm or more and 650 nm or less.
  • the major axis is more preferably 60 nm or more, and still more preferably 65 nm or more.
  • the major axis is more preferably 600 nm or less, and more preferably 580 nm or less. If a specific example is given, it is more preferable that it is 60 nm or more and 600 nm or less, and it is further more preferable that it is 65 nm or more and 580 nm or less.
  • the aspect ratio of the primary particles of the zinc oxide particles is preferably 1.0 or more and 4.0 or less.
  • the aspect ratio is more preferably 3.8 or less, and more preferably 3.5 or less.
  • the aspect ratio is preferably 1.0 or more, but is also preferably 1.0. If a specific example is given, it is more preferable that it is 1.0 or more and 3.5 or less.
  • the ratio of the zinc oxide particles whose primary particle minor axis is 35 nm or more and 100 nm or less can be arbitrarily selected.
  • Zinc oxide particles whose primary particle minor axis is 35 nm or more and 100 nm or less are preferably contained in a primary particle minor axis basis number distribution of 1.5% or more and 10% or less, and 2.0% or more and It is more preferable to contain 9.5% or less, and it is further more preferable to contain 2.0% or more and 9.0% or less.
  • the ratio of the zinc oxide particles in which the minor axis of the primary particles exceeds 100 nm and is 350 nm or less can be arbitrarily selected. It is preferable that the zinc oxide particles whose primary particle has a minor axis of more than 100 nm and not more than 350 nm are contained in a number distribution based on the minor axis of the primary particle of more than 90% and not more than 98.5%, and more than 91% And it is more preferable to contain 98% or less.
  • the change rate of the specific surface area after standing with respect to the specific surface area before standing for 24 hours at a temperature of 150 ° C. and a relative humidity of 100% (specific surface area after standing / before standing) If the specific surface area is 0.9 or more and 1.1 or less, it may be considered that the storage stability is excellent.
  • the change rate of the specific surface area is more preferably 0.95 or more and 1.05 or less.
  • the specific surface area is 1.5 m 2 / g or more after standing at a temperature of 150 ° C. and a relative humidity of 100% and after standing for 24 hours.
  • It is preferably 0 m 2 / g or less, more preferably 2.0 m 2 / g or more and 7.5 m 2 / g or less, and 3.0 m 2 / g or more and 7.0 m 2 / g or less. More preferably.
  • the change rate of the specific surface area before and after standing at the above conditions is preferably 10% or less, more preferably 7% or less, and more preferably 5% or less. More preferably.
  • Standing the zinc oxide powder under high-temperature and high-humidity conditions is a normal storage acceleration test. Therefore, a zinc oxide powder having a small change rate in specific surface area under the above conditions means that the change in specific surface area is suppressed even during normal storage.
  • Such temperature and humidity conditions can be adjusted by using, for example, a pressure cooker device (highly accelerated life test device EHS-411M manufactured by Espec).
  • the zinc oxide powder of the present invention has a small rate of change in specific surface area when compared with that after standing for 24 hours at a temperature of 150 ° C. and a relative humidity of 100%. That is, since the performance of the zinc oxide powder of the present embodiment hardly changes even when stored, the storage stability is excellent.
  • the specific surface area of the zinc oxide powder changes, the oil absorption amount of the zinc oxide powder changes. Therefore, the dispersion and cosmetics prepared using the zinc oxide powder having a changed specific surface area have a viscosity higher than that of the dispersion and cosmetic prepared using the zinc oxide powder before the specific surface area is changed. It changes or the feel such as touch changes.
  • the dispersion and the cosmetic prepared using the zinc oxide powder whose specific surface area changes during storage are not excellent in quality stability.
  • the zinc oxide powder of the present invention has a small change rate of the specific surface area as described above. For this reason, storage stability is excellent. Therefore, the dispersion and the cosmetic prepared using the zinc oxide powder of the present invention are excellent in quality stability because changes in viscosity, feel and the like are suppressed.
  • the specific surface area of the zinc oxide powder of the present invention can be measured by a usual method used in this field.
  • a fully automatic specific surface area measuring device (trade name: BELSORP-MiniII, manufactured by Microtrack Bell) is used.
  • BELSORP-MiniII manufactured by Microtrack Bell
  • a value measured from a nitrogen adsorption isotherm by the BET multipoint method is measured.
  • the zinc oxide powder of the present invention preferably has a brilliant blue decomposition rate of 70% or less caused by the photocatalytic activity of the powder.
  • the reason is that if the decomposition ratio of this brilliant blue is 70% or less, the photocatalytic activity of the zinc oxide particles is suppressed. Therefore, such zinc oxide powder suppresses reaction with other materials used for cosmetics and the like, and as a result, can improve the storage stability of cosmetics.
  • the decomposition rate of brilliant blue is more preferably 60% or less, and further preferably 50% or less.
  • the reason why the photocatalytic activity was measured using brilliant blue is as follows.
  • Brilliant blue is commonly used as a color pigment for cosmetics as “Blue 1”.
  • brilliant blue is relatively excellent in light stability and has a maximum absorption wavelength around 630 nm. For this reason, the absorption with respect to ultraviolet light is comparatively weak, and there is little influence which is photodegraded by ultraviolet light.
  • brilliant blue is less likely to be adsorbed on the surface of zinc oxide powder than other pigments such as methylene blue.
  • brilliant blue is suitable for evaluating dye alteration caused by the photocatalytic activity of zinc oxide powder. Therefore, photocatalytic activity was measured using brilliant blue.
  • the method for measuring the degradation rate of brilliant blue is as follows. First, a brilliant blue aqueous solution in which brilliant blue is adjusted to a predetermined content (for example, 5 ppm) is prepared. Then, a predetermined amount (eg, 3 mL) is collected from this brilliant blue aqueous solution into a quartz cell. Then, the zinc oxide powder is added to the collected brilliant blue aqueous solution so that the zinc oxide powder in the brilliant blue aqueous solution becomes 0.01% by mass, and is ultrasonically dispersed to prepare a suspension. Next, the suspension is irradiated with ultraviolet rays having a predetermined wavelength from a predetermined distance (for example, 10 cm) for a predetermined time (for example, 10 minutes). As the ultraviolet irradiation lamp, for example, a sterilization lamp GL20 (wavelength 253.7 nm, ultraviolet output 7.5 W: manufactured by Toshiba Corporation) can be used.
  • a sterilization lamp GL20 microwavelength 253.7 nm, ultraviolet output 7.5 W:
  • the decomposition rate D of brilliant blue is calculated by the following formula (1).
  • D (A0 ⁇ A1) / A0 (1) (However, A0 is the absorbance at the absorption maximum wavelength (near 630 nm) of the absorption spectrum of the brilliant blue aqueous solution (5 ppm), and A1 is the absorbance at the absorption maximum wavelength of the absorption spectrum of the supernatant.)
  • Method for producing zinc oxide powder As a method of adjusting the short diameter, Haywood diameter, long diameter, and aspect ratio of the primary particles of zinc oxide particles in the zinc oxide powder within the scope of the present invention, for example, the size of the primary particles of the zinc oxide powder is The method of adjusting the production conditions of the manufacturing method used so that it may become uniform is mentioned. For example, when producing zinc oxide powder by a thermal decomposition method, heating unevenness can be achieved by reducing the rate of temperature rise during heating or reducing the amount of zinc oxide powder produced at a time. The method of reducing etc. is mentioned. In addition, when producing zinc oxide powder by a vapor phase method, for example, cooling slowly after reacting at a high temperature, reducing the amount of zinc oxide powder produced at one time, etc. The method etc. which reduce cooling nonuniformity are mentioned.
  • a zinc oxide fine particle having a specific surface area of 8 m 2 / g or more and 65 m 2 / g or less, an electrical conductivity of 150 ⁇ S / cm or less, and a bulk specific volume of 1 mL / g or more and 10 mL / g or less is prepared as a raw material, This is further grown by heating or the like.
  • the heating temperature and the heating time may be selected differently depending on the amount of zinc oxide fine particles to be heated. That is, according to the production amount of zinc oxide powder, the heating temperature and the heating time may be appropriately adjusted so that desired short diameter and Haywood diameter can be obtained.
  • the conductivity of the zinc oxide fine particles is low, so there are few impurities contained in the zinc oxide fine particles, and sintering of the zinc oxide fine particles is not hindered. It is possible to grow grains uniformly. Therefore, as described above, a zinc oxide powder having a coefficient of variation of 50% or less can be obtained.
  • the conductivity of the zinc oxide fine particles of the present invention used in the method for producing zinc oxide powder of the present invention is preferably 150 ⁇ S / cm or less, more preferably 100 ⁇ S / cm or less, and 50 ⁇ S / cm or less. Is more preferably 30 ⁇ S / cm or less, and most preferably 10 ⁇ S / cm or less.
  • the conductivity of the zinc oxide fine particles is within the above range, the above effects can be obtained.
  • the electrical conductivity of the zinc oxide fine particles means a value measured by the following method. 10 g of zinc oxide fine particles and 75 g of pure water are mixed, and this mixed solution is put into a container and boiled on a hot plate for 10 minutes. Next, after allowing the mixed liquid to cool to room temperature, pure water is added to the mixed liquid so that the total amount of zinc oxide fine particles and pure water is 85 g. Next, the mixture is solid-liquid separated by centrifugation, and the conductivity of the supernatant is measured with a conductivity meter (trade name: ES-12, manufactured by Horiba, Ltd.).
  • Examples of the method for adjusting the conductivity of the zinc oxide fine particles within the above range include a method of reducing the content of impurities in the zinc oxide fine particles. Specifically, when preparing zinc oxide fine particles, by using a high-purity raw material, preventing contamination of impurities during the manufacturing process, or providing an appropriate cleaning process during the manufacturing process, etc. Thus, zinc oxide fine particles having low conductivity can be obtained.
  • the reason why it is preferable to use zinc oxide fine particles having a specific surface area of 8 m 2 / g or more and 65 m 2 / g or less in the production method is that zinc oxide fine particles having a specific surface area within this range are slowly grown. This is because the zinc oxide powder of the present invention can be obtained.
  • the specific surface area of the fine particles of zinc oxide more preferably at most 15 m 2 / g or more and 60 m 2 / g, more preferably 20 m 2 / g or more and is 50 m 2 / g or less, 25 m 2 / g or more And it is especially preferable that it is 45 m ⁇ 2 > / g or less.
  • the reason for using fine particles of zinc oxide having a bulk specific volume of 1 mL / g or more and 10 mL / g or less is that the zinc oxide fine particles of the present invention can be produced by slowly growing fine particles of zinc oxide having a bulk specific volume in this range. Because it is possible to obtain.
  • the volume specific volume of the zinc oxide fine particles is more preferably 1.5 mL / g or more and 9.5 mL / g or less, further preferably 3.0 mL / g or more and 8.0 mL / g or less, It is especially preferable that it is 4.0 mL / g or more and 7.0 mL / g or less.
  • the method for controlling the volume specific volume of the zinc oxide fine particles within the above range is not particularly limited, and various methods can be selected. For example, when producing zinc oxide fine particles by a thermal decomposition method as described in JP-A-60-255620, the bulk specific volume of the raw material is adjusted, the thermal decomposition temperature is adjusted, The bulk specific volume of the zinc oxide powder can be controlled within the above range by performing pulverization or the like. Further, for example, when producing zinc oxide fine particles by a vapor phase method as described in JP-A-63-288914, by adjusting the temperature in the production process as appropriate, The bulk specific volume can be controlled within the above range.
  • the method for producing the aforementioned zinc oxide fine particles is not particularly limited. As the method for producing such zinc oxide fine particles, the above-described method for adjusting the specific surface area of the zinc oxide fine particles, the method for adjusting the conductivity of the zinc oxide fine particles, the method for adjusting the bulk specific volume of the zinc oxide fine particles, and the like are preferable. Can be included. A method of appropriately performing these adjustment methods can be mentioned.
  • the zinc oxide powder of the present invention or the zinc oxide particles contained in the powder may be subjected to a surface treatment on at least a part of at least one of an inorganic component and an organic component.
  • grains by which surface treatment is carried out by at least one of an inorganic component and an organic component are called surface treatment zinc oxide powder and surface treatment zinc oxide particle.
  • An inorganic component and an organic component are suitably selected according to the use of zinc oxide powder.
  • the inorganic component and the organic component are not particularly limited, and for example, surface treatment agents generally used in cosmetics can be used.
  • the inorganic component include at least one selected from the group consisting of silica, alumina and the like.
  • the organic component include at least one selected from the group consisting of a silicone compound, an organopolysiloxane, a fatty acid, a fatty acid soap, a fatty acid ester, and an organic titanate compound.
  • surfactant as an inorganic component or an organic component.
  • the silicone compound used for the surface treatment can be arbitrarily selected.
  • silicone oils such as methyl hydrogen polysiloxane, dimethyl polysiloxane, and methylphenyl polysiloxane
  • alkyl silanes such as methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, and octyltriethoxysilane
  • Fluoroalkylsilanes such as trifluoromethylethyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, methicone, hydrogen dimethicone, triethoxysilylethylpolydimethylsiloxyethyl dimethicone, triethoxysilylethylpolydimethylsiloxyethylhexyl dimethicone, (acrylates
  • fatty acid examples include palmitic acid, isostearic acid, stearic acid, lauric acid, myristic acid, behenic acid, oleic acid, rosin acid, 12-hydroxystearic acid, polyhydroxystearic acid and the like.
  • fatty acid soaps include aluminum stearate, calcium stearate, and 12-hydroxyaluminum stearate.
  • fatty acid esters include dextrin fatty acid esters, cholesterol fatty acid esters, sucrose fatty acid esters, starch fatty acid esters, and the like.
  • organic titanate compound examples include isopropyl triisostearoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dodecyl) benzenesulfonyl titanate, neopentyl (diallyl) oxy-tri (dioctyl) phosphate titanate, neopentyl (diallyl) oxy-trineododeca Noyl titanate etc. are mentioned.
  • the said compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the surface-treated zinc oxide powder of the present invention is used for industrial applications such as an ultraviolet shielding film and a gas barrier film, in addition to inorganic components and organic components used in cosmetics, anionic dispersants, cationic dispersions
  • a general dispersant used for dispersing the particles such as an agent, a nonionic dispersant, a silane coupling agent, and a wetting dispersant, can also be appropriately selected and used.
  • the photocatalytic activity of zinc oxide can be suppressed, or the dispersibility of the zinc oxide powder in the dispersion medium can be improved.
  • the method for producing the surface-treated zinc oxide powder of the present invention is not particularly limited.
  • a known method may be used as appropriate depending on the components used for the surface treatment.
  • the dispersion of the present invention contains the zinc oxide powder of the present invention and a dispersion medium.
  • the dispersion of the present invention includes a paste-like dispersion having a high viscosity.
  • the content of the zinc oxide powder in the dispersion of the present invention is not particularly limited, and may be appropriately adjusted according to desired characteristics.
  • content of the zinc oxide powder in a dispersion liquid can be selected arbitrarily. For example, 10 mass% or more and 90 mass% or less may be sufficient, 30 mass% or more and 90 mass% or less are preferable, 40 mass% or more and 85 mass% or less are more preferable, 50 mass% or more and 80 mass% or less. The following is more preferable.
  • the content of the zinc oxide powder in the dispersion is, for example, 30% by mass or more and 90% by mass or less, since the zinc oxide powder is contained at a high concentration, the degree of freedom of formulation can be improved.
  • the viscosity of the dispersion can be maintained at an easy level.
  • the viscosity of the dispersion of the present invention can be arbitrarily selected. For example, it is preferably 5 Pa ⁇ s or more and 300 Pa ⁇ s or less, more preferably 8 Pa ⁇ s or more and 100 Pa ⁇ s or less, further preferably 10 Pa ⁇ s or more and 80 Pa ⁇ s or less, more preferably 15 Pa It is most preferable that it is s or more and 60 Pa ⁇ s or less.
  • a dispersion that is easy to handle can be obtained even if the solid (zinc oxide powder) is contained at a high concentration.
  • the dispersion medium is appropriately selected according to the use of the dispersion. Although the suitable dispersion medium is illustrated below, the dispersion medium in the dispersion liquid of this invention is not limited to these.
  • the dispersion medium include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol, glycerin and other alcohols; ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether Esters such as acetate, propylene glycol monoethyl ether acetate, ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether And ethers such as diethylene glycol
  • dispersion media examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and cyclohexanone; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; cyclic hydrocarbons such as cyclohexane; Examples include amides such as dimethylformamide, N, N-dimethylacetoacetamide, and N-methylpyrrolidone; and chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane. These dispersion media may be used alone or in combination of two or more.
  • dispersion media examples include cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexanesiloxane; amino-modified polysiloxane, polyether-modified polysiloxane, and alkyl-modified polysiloxane. And modified polysiloxanes such as fluorine-modified polysiloxane. These dispersion media may be used alone or in combination of two or more.
  • dispersion media examples include liquid paraffin, squalane, isoparaffin, branched light paraffin, petroleum oil such as petrolatum, ceresin, isopropyl myristate, cetyl isooctanoate, glyceryl trioctanoate, etc.
  • Ester oil silicone oil such as decamethylcyclopentasiloxane, dimethylpolysiloxane, methylphenylpolysiloxane, higher fatty acids such as uric acid, myristic acid, palmitic acid, stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldeca Examples also include hydrophobic dispersion media such as higher alcohols such as diol and isostearyl alcohol. The amount of the dispersion medium in the dispersion can be arbitrarily selected as necessary. An example is 10 to 90% by mass. Examples thereof include 10 to 70% by mass, 15 to 60% by mass, and 20 to 50% by mass, but are not limited thereto.
  • the dispersion of the present invention may contain commonly used additives as long as the properties are not impaired.
  • additives include dispersants, stabilizers, water-soluble binders, thickeners, oil-soluble preservatives, ultraviolet absorbers, oil-soluble drugs, oil-soluble pigments, oil-soluble proteins, vegetable oils, animal oils, and the like. It is done. These amounts may be arbitrarily selected as necessary.
  • the method for producing the dispersion of the present invention is not particularly limited.
  • a method of mechanically dispersing the zinc oxide powder of the present invention and the dispersion medium with a known dispersion apparatus can be mentioned.
  • the dispersing device can be arbitrarily selected, and examples thereof include a stirrer, a self-revolving mixer, a homomixer, an ultrasonic homogenizer, a sand mill, a ball mill, and a roll mill.
  • the dispersion of the present invention can be used for cosmetics and other compositions having an ultraviolet shielding function and a gas permeation suppressing function.
  • composition of the present invention contains the zinc oxide powder of the present invention, a resin, and a dispersion medium.
  • the content of the zinc oxide powder in the composition is, for example, 10% by mass or more and 40% by mass or less, the solid content (zinc oxide powder) is contained at a high concentration. ) And a composition in which zinc oxide powder is uniformly dispersed can be obtained.
  • the dispersion medium is not particularly limited as long as it is generally used in industrial applications. For example, water, alcohols such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone and the like can be mentioned. You may use what was mentioned by the said dispersion liquid.
  • the content of the dispersion medium in the composition of the present invention is not particularly limited, and may be appropriately adjusted according to the properties of the target composition. Examples include 5 to 95% by mass, 20 to 90% by mass, 40 to 85% by mass and the like. However, it is not limited to this.
  • the resin is not particularly limited as long as it is generally used in industrial applications.
  • an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, a silicone resin, etc. are mentioned.
  • the content of the resin in the composition of the present invention is not particularly limited, and may be appropriately adjusted according to the properties of the target composition. Examples include 1 to 80% by mass, and 2 to 50% by mass and 5 to 20% by mass. However, it is not limited to this.
  • composition of the present invention may contain commonly used additives as long as the properties are not impaired.
  • additives include a polymerization initiator, a dispersant, and an antiseptic.
  • the method for producing the composition of the present invention is not particularly limited.
  • a method of mechanically mixing the zinc oxide powder of the present invention, a resin, and a dispersion medium with a known mixing device can be mentioned.
  • the method of mixing mechanically the dispersion liquid mentioned above and resin with a well-known mixing apparatus is mentioned.
  • the mixing device include a stirrer, a self-revolving mixer, a homomixer, and an ultrasonic homogenizer.
  • composition of the present invention can be used for various purposes as required.
  • the composition of the present invention is applied to a plastic substrate such as a polyester film by a normal coating method such as a roll coating method, a flow coating method, a spray coating method, a screen printing method, a brush coating method, or a dipping method.
  • a coating film can be formed.
  • These coating films can be used as an ultraviolet shielding film or a gas barrier film.
  • the cosmetic of the present invention contains at least one of the zinc oxide powder of the present invention and the dispersion of the present invention. That is, one or both may be included.
  • the cosmetic of the present invention preferably further contains a cosmetic base material.
  • the cosmetic base material means various raw materials that form the main body of the cosmetic, and can be arbitrarily selected.
  • examples thereof include oily raw materials, aqueous raw materials, surfactants, and powder raw materials. These may be used alone or in combination of two or more.
  • oily raw materials include fats and oils, higher fatty acids, higher alcohols, ester oils, and the like.
  • examples of the aqueous raw material include purified water, alcohol, and thickener.
  • the powder raw material include colored pigments, white pigments, pearl agents, extender pigments, and the like.
  • the cosmetic of the present invention can be obtained, for example, by blending the dispersion of the present invention into a cosmetic base material such as an emulsion, cream, foundation, lipstick, blusher, and eye shadow as usual.
  • a cosmetic base material such as an emulsion, cream, foundation, lipstick, blusher, and eye shadow as usual.
  • the cosmetic of the present invention is formulated, for example, by blending the zinc oxide powder of the present invention in an oil phase or an aqueous phase to form an O / W type or W / O type emulsion and then a cosmetic base material. Can also be obtained.
  • the lower limit of the content of the zinc oxide powder may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more.
  • 50 mass% or less may be sufficient as the upper limit of content of a zinc oxide powder, 40 mass% or less may be sufficient, and 30 mass% or less may be sufficient.
  • the lower limit of the content of zinc oxide powder in the sunscreen cosmetic can be arbitrarily selected.
  • the content of the zinc oxide powder is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • the upper limit of the content of zinc oxide powder in the sunscreen cosmetics can be arbitrarily selected, and may be 50% by mass or less, 40% by mass or less, or 30% by mass or less. Good.
  • hydrophobic dispersion medium inorganic fine particles and inorganic pigments other than zinc oxide powder
  • hydrophilic dispersion medium fats and oils
  • surfactant moisturizer, thickener, pH adjuster
  • It may contain nutrients, antioxidants, fragrances and the like. These amounts can be arbitrarily selected as necessary.
  • hydrophobic dispersion medium include hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin, and ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
  • Silicone oil such as decamethylcyclopentasiloxane, dimethylpolysiloxane, methylphenylpolysiloxane, higher fatty acids such as uric acid, myristic acid, palmitic acid, stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldodecanol, iso Examples include higher alcohols such as stearyl alcohol.
  • inorganic fine particles and inorganic pigments other than zinc oxide powder examples include calcium carbonate, calcium phosphate (apatite), magnesium carbonate, calcium silicate, magnesium silicate, aluminum silicate, kaolin, talc, titanium oxide, aluminum oxide, yellow
  • examples thereof include iron oxide, ⁇ -iron oxide, cobalt titanate, cobalt violet, and silicon oxide.
  • the sunscreen cosmetic may further contain at least one organic ultraviolet absorber.
  • a cosmetic containing both zinc oxide powder and an organic ultraviolet absorber is preferred because the ultraviolet shielding area is widened by the booster effect.
  • organic UV absorbers include benzotriazole UV absorbers, benzoylmethane UV absorbers, benzoic acid UV absorbers, anthranilic acid UV absorbers, salicylic acid UV absorbers, and cinnamic acid UV absorbers. Agents, silicone-based cinnamic acid UV absorbers, organic UV absorbers other than these, and the like.
  • benzotriazole ultraviolet absorber examples include 2,2′-hydroxy-5-methylphenylbenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′- And hydroxy-5′-methylphenylbenzotriazole.
  • benzoylmethane ultraviolet absorber examples include dibenzalazine, dianisoylmethane, 4-tert-butyl-4′-methoxydibenzoylmethane, 1- (4′-isopropylphenyl) -3-phenylpropane-1,3- And dione, 5- (3,3′-dimethyl-2-norbornylidene) -3-pentan-2-one, and the like.
  • benzoic acid ultraviolet absorber examples include paraaminobenzoic acid (PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl PABA ethyl ester, N, N-dimethyl PABA butyl ester, N, N-dimethyl PABA methyl ester and the like can be mentioned.
  • PABA paraaminobenzoic acid
  • PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester
  • N-diethoxy PABA ethyl ester N, N-dimethyl PABA ethyl ester
  • N, N-dimethyl PABA butyl ester N, N-dimethyl PABA methyl ester and the like
  • anthranilic acid ultraviolet absorber examples include homomenthyl-N-acetylanthranylate.
  • salicylic acid-based UV absorber examples include amyl salicylate, menthyl salicylate, homomenthyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, p-2-propanolphenyl salicylate, and the like.
  • cinnamic acid-based UV absorbers examples include octylmethoxycinnamate, di-paramethoxycinnamic acid-mono-2-ethylhexanoic acid glyceryl, octylcinnamate, ethyl-4-isopropylcinnamate, methyl-2, 5-diisopropyl cinnamate, ethyl-2,4-diisopropyl cinnamate, methyl-2,4-diisopropyl cinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl-p-methoxycinnamate, Octyl-p-methoxycinnamate (2-ethylhexyl-p-methoxycinnamate), 2-ethoxyethyl-p-methoxycinnamate, cyclohexyl
  • silicone-based cinnamic acid ultraviolet absorber examples include [3-bis (trimethylsiloxy) methylsilyl-1-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilyl- 3-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methyl Silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silyl-1-methyl Propyl] -3,4-dimethoxy
  • organic ultraviolet absorbers other than the above examples include 3- (4′-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl Examples include -5-methylbenzoxazole, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one, silicone-modified UV absorber, and fluorine-modified UV absorber.
  • the primary particles have a short diameter of 35 nm or more and 350 nm or less, and the primary particles have a haywood diameter of 35 nm or more and 400 nm or less,
  • the coefficient of variation in the number distribution of Haywood diameters is 50% or less. Therefore, it is possible to obtain a zinc oxide powder that is excellent in storage stability and transparency, particularly excellent in stability over time of a specific surface area, and has a wide ultraviolet shielding area.
  • the surface-treated zinc oxide powder of the present invention at least a part of the surface of the zinc oxide powder of the present invention is preferably surface-treated at least one of an inorganic component and an organic component. For this reason, the photocatalytic activity of zinc oxide can be further suppressed, and the dispersibility in the dispersion medium can be improved.
  • the dispersion of the present invention contains the zinc oxide powder of the present invention, a dispersion having substantially the same properties as before storage can be obtained regardless of the storage period of the zinc oxide powder, and the quality stability Excellent. Moreover, when the viscosity of the dispersion liquid of the present invention is 5 Pa ⁇ s or more and 300 Pa ⁇ s or less, handling of the dispersion liquid becomes easier.
  • composition of the present invention contains the zinc oxide powder of the present invention, a composition having properties substantially equivalent to those before storage can be obtained regardless of the storage period of the zinc oxide powder, and quality stability Excellent.
  • the cosmetic of the present invention since it contains at least one selected from the zinc oxide powder of the present invention and the dispersion of the present invention, it is substantially independent of the storage period of the zinc oxide powder. Cosmetics with the same properties can be obtained and quality stability is excellent.
  • Example 1 "Preparation of zinc oxide powder" Zinc oxide fine particles having a specific surface area of 26.2 m 2 / g, an electrical conductivity of 11.4 ⁇ S / cm, and a bulk specific volume of 5.8 mL / g are heated to obtain a zinc oxide powder A1 of Example 1. It was.
  • the zinc oxide powder A1 of Example 1 was observed by the following method. As a result, the following zinc oxide powder was found.
  • the short diameters of all the primary particles observed by the zinc oxide particles A1 fall within the range of 55 nm or more and 259 nm or less; -All the observed primary particles have a Haywood diameter within a range of 77 nm or more and 308 nm or less; The coefficient of variation in the number distribution of primary wood Haywood diameter is 26%;
  • the major axis of all the observed primary particles falls within the range of 92 nm or more and 436 nm or less;
  • the aspect ratio of all observed primary particles falls within the range of 1.0 or more and 2.4 or less; Containing 100% of zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle having a Haywood diameter of 35 nm to 400 nm in a number distribution; -The content rate of the zinc oxide particle whose primary particle short axis is 35
  • the zinc oxide powder A1 of Example 1 was allowed to stand for 24 hours at a temperature of 150 ° C. and a relative humidity of 100% in a pressure cooker apparatus (highly accelerated life test apparatus EHS-411M manufactured by Espec).
  • the specific surface area before standing was 4.7 m 2 / g
  • the specific surface area after standing was 4.9 m 2 / g
  • the rate of change of the specific surface area after standing with respect to the specific surface area before standing was 1.03. (4.9 / 4.7).
  • the short diameter of primary particles of zinc oxide particles, the long diameter of primary particles, the Haywood diameter of primary particles, and the aspect ratio of primary particles are determined by Japanese Industrial Standards JIS Z8827-1: 2008 “Particle Size Analysis—Image Analysis Method—Part 1: The measurement was carried out by the following method by a method according to “Static Image Analysis Method”. An electron micrograph of 200 particles was taken using an ionizing radiation electron microscope (FE-SEM) S-4800 (manufactured by Hitachi High-Technologies Corporation). Next, this electron micrograph was taken from the image analysis particle size distribution software Mac-View Ver.
  • FE-SEM ionizing radiation electron microscope
  • the specific surface area of the zinc oxide powder was measured from the nitrogen (N 2 ) adsorption isotherm by the BET multipoint method using a fully automatic specific surface area measuring device (trade name: BELSORP-MiniII, manufactured by Microtrack Bell). .
  • Example 2 "Preparation of zinc oxide powder" Zinc oxide fine particles having a specific surface area of 28.9 m 2 / g, an electrical conductivity of 8.8 ⁇ S / cm, and a bulk specific volume of 6.2 mL / g are heated to obtain a zinc oxide powder A2 of Example 2. It was.
  • the zinc oxide powder A2 of Example 2 was observed by the same method as in Example 1. As a result, the following zinc oxide powder was found.
  • the short diameters of all the primary particles of the zinc oxide particles observed fall within the range of 67 nm to 298 nm; -The Haywood diameter of all the observed primary particles falls within the range of 148 nm to 360 nm; The coefficient of variation in the number distribution of primary wood Haywood diameter is 16%;
  • the major axis of all the observed primary particles falls within the range of 164 nm to 569 nm; -The aspect ratio of all the observed primary particles falls within the range of 1.0 or more and 3.2 or less; Containing 100% of zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle having a Haywood diameter of 35 nm to 400 nm in a number distribution; -The content rate of the zinc oxide particle whose primary particle short axis is 35 nm or more and 100 n
  • the zinc oxide powder A2 of Example 2 was allowed to stand at a temperature of 150 ° C. and a relative humidity of 100% for 24 hours using a pressure cooker. Further, the short diameter of primary particles of zinc oxide particles, the long diameter of primary particles, the Haywood diameter of primary particles, and the aspect ratio of primary particles were measured in the same manner as in Example 1. Further, the specific surface area of the zinc oxide powder was measured in the same manner as in Example 1. The specific surface area before standing was 3.9 m 2 / g, the specific surface area after standing was 3.9 m 2 / g, and the rate of change of the specific surface area after standing with respect to the specific surface area before standing was 1.0. (3.9 / 3.9).
  • Example 3 "Preparation of zinc oxide powder" Zinc oxide fine particles having a specific surface area of 29.7 m 2 / g, an electrical conductivity of 12.9 ⁇ S / cm, and a bulk specific volume of 5.5 mL / g are heated to obtain a zinc oxide powder A3 of Example 3. It was.
  • the zinc oxide powder A3 of Example 3 was observed by the same method as in Example 1. As a result, the following zinc oxide powder was found.
  • the short axis of all the primary particles of the zinc oxide particles observed falls within the range of 55 nm or more and 302 nm or less; -All observed primary particles have a Haywood diameter in the range of 61 nm to 302 nm; The coefficient of variation in the number distribution of primary wood Haywood diameter is 32%;
  • the major axis of all the observed primary particles falls within the range of 61 nm to 505 nm; -The aspect ratio of all the observed primary particles falls within the range of 1.0 or more and 3.2 or less; Containing 100% of zinc oxide particles having a primary particle short diameter of 35 nm to 350 nm and a primary particle having a Haywood diameter of 35 nm to 400 nm in a number distribution; -The content rate of the zinc oxide particle whose primary particle has a minor axis of 35 n
  • the zinc oxide powder A3 of Example 3 was allowed to stand for 24 hours at a temperature of 150 ° C. and a relative humidity of 100% using a pressure cooker.
  • the short diameter of primary particles, the long diameter of primary particles, the Haywood diameter of primary particles, and the aspect ratio of primary particles were measured in the same manner as in Example 1.
  • the specific surface area of the zinc oxide powder was measured in the same manner as in Example 1.
  • the specific surface area before standing was 5.1 m 2 / g
  • the specific surface area after standing was 5.0 m 2 / g
  • the rate of change of the specific surface area after standing with respect to the specific surface area before standing was 0.98. (5.0 / 5.1).
  • Zinc oxide powder A4 (commercially available) was prepared. This powder A4 was observed by the same method as in Example 1. As a result, the following zinc oxide powder was found.
  • the short diameters of all the primary particles of the observed zinc oxide particles fall within the range of 5 nm to 154 nm; -All observed primary particles have a Haywood diameter within the range of 13 nm or more and 182 nm or less; The coefficient of variation in the number distribution of primary wood Haywood diameter is 66%;
  • the major axis of all observed primary particles falls within the range of 19 nm or more and 259 nm or less;
  • the aspect ratio of all observed primary particles falls within the range of 1.0 or more and 6.6 or less; Containing 34% of zinc oxide particles having a primary particle minor axis of 35 nm to 350 nm and a primary particle Haywood diameter of 35 nm to 400 nm in a number distribution;
  • This zinc oxide powder A4 (commercially available product) was allowed to stand for 24 hours at a temperature of 150 ° C. and a relative humidity of 100% using a pressure cooker.
  • the short diameter of primary particles, the long diameter of primary particles, the Haywood diameter of primary particles, the aspect ratio of primary particles, and the like were measured in the same manner as in Example 1.
  • the specific surface area of the zinc oxide powder was also measured in the same manner as in Example 1.
  • the specific surface area before standing was 12.5 m 2 / g
  • the specific surface area after standing was 8.8 m 2 / g
  • the rate of change of the specific surface area after standing with respect to the specific surface area before standing was 0.70. (8.8 / 12.5).
  • This zinc oxide powder A5 was allowed to stand for 24 hours at a temperature of 150 ° C. and a relative humidity of 100% using a pressure cooker.
  • the short diameter of primary particles, the long diameter of primary particles, the Haywood diameter of primary particles, the aspect ratio of primary particles, and the like were measured in the same manner as in Example 1.
  • the specific surface area of the zinc oxide powder was also measured in the same manner as in Example 1.
  • the specific surface area before standing was 3.7 m 2 / g
  • the specific surface area after standing was 3.2 m 2 / g
  • the rate of change of the specific surface area after standing with respect to the specific surface area before standing was 0.86. (3.2 / 3.7).
  • the primary particles have a short diameter of 35 nm to 350 nm and the primary particles have a Haywood diameter of 35 nm to 400 nm.
  • the zinc oxide powder containing a haywood diameter and having a coefficient of variation of 50% or less in the number distribution of haywood diameters has little change in specific surface area even when allowed to stand under high-temperature and high-humidity conditions, and has excellent storage stability. confirmed.
  • the photocatalytic activity of the zinc oxide powders of Examples 1 to 3 and Comparative Examples 1 and 2 was measured by the following method.
  • a brilliant blue aqueous solution in which the content of brilliant blue was adjusted to 5 ppm was prepared.
  • 0.0003 g of each zinc oxide powder was added to 3 g of this brilliant blue aqueous solution, and ultrasonically dispersed to prepare a suspension.
  • the suspension was irradiated with an ultraviolet lamp (center wavelength: 254 nm) at an irradiation distance of 10 cm for 10 minutes, and then the supernatant was collected.
  • the spectrophotometric spectrum of each of the brilliant blue aqueous solution and the supernatant before the zinc oxide was charged was measured with a spectrometer (manufactured by Shimadzu Corporation, model number: UV-3150). Using these measured values, the brilliant blue decomposition rate D was calculated according to the above equation (1). As a result, the degradation rate of brilliant blue was 49% in Example 1, 46% in Example 2, 55% in Example 3, 80% in Comparative Example 1, and 82% in Comparative Example 2.
  • the primary particle contains zinc oxide particles having a minor axis of 35 nm or more and 350 nm or less and a primary particle having a haywood diameter of 35 nm or more and 400 nm or less, and the coefficient of variation in the number distribution of primary particles' haywood diameter is 50% or less. It was confirmed that the zinc oxide powder was excellent in photocatalytic activity.
  • the sunscreen cream was applied on a quartz glass plate so that the coating amount was 2 mg / cm 2 and naturally dried for 15 minutes to form a coating film on the quartz glass plate.
  • the spectral transmittance in the ultraviolet region of this coating film was measured at six locations using SPF analyzer UV-1000S (manufactured by Labsphere), and the SPF value and critical wavelength were calculated using the measured values.
  • the results are shown in Table 3.
  • the average value of the SPF values at these six locations is as follows: the SPF value of sunscreen B1 is 100, the SPF value of sunscreen B2 is 70, the SPF value of sunscreen B3 is 85, and the SPF of sunscreen B4 The value was 53 and the SPF value of sunscreen B5 was 43.
  • the critical wavelength of sunscreen B1 was 377 nm
  • the critical wavelength of sunscreen B2 was 377 nm
  • the critical wavelength of sunscreen B3 was 377 nm
  • the critical wavelength of sunscreen B4 was 377 nm
  • the critical wavelength of sunscreen B5 was 375 nm. That is, the primary particle contains zinc oxide particles having a minor axis of 35 nm or more and 350 nm or less and a primary particle having a haywood diameter of 35 nm or more and 400 nm or less, and the coefficient of variation in the number distribution of primary particles' haywood diameter is 50% or less.
  • the zinc oxide powder was excellent in ultraviolet shielding properties in the UV-B region (wavelength 280 nm to 315 nm) and UV-A region (wavelength 315 nm to 400 nm) and had a wide ultraviolet shielding region.
  • the present invention can provide a zinc oxide powder excellent in storage stability, and a dispersion, a composition and a cosmetic containing the zinc oxide powder.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明の酸化亜鉛粉体は、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、前記一次粒子のヘイウッド径の個数分布における変動係数が50%以下である。

Description

酸化亜鉛粉体、分散液、組成物、及び化粧料
 本発明は、酸化亜鉛粉体、分散液、組成物および化粧料に関する。
 本願は、2015年8月28日に、日本に出願された特願2015-169534号に基づき、2015年11月26日に、日本に出願された特願2015-231151号に基づき、2016年1月28日に、日本に出願された特願2016-014678号に基づき、優先権を主張し、その内容をここに援用する。
 酸化亜鉛粒子は、紫外線遮蔽機能やガス透過抑制機能等を有し、かつ透明性も高い。このため、酸化亜鉛粒子は、紫外線遮蔽フィルム、紫外線遮蔽ガラス、化粧料やガスバリアフィルム等、透明性が必要な用途に使用されている(例えば、特許文献1~特許文献8参照)。
 酸化亜鉛粒子は、その用途に応じて粒子径が調整されて用いられる。例えば、特許文献5では、高い透明性と紫外線吸収効果とが同時に得られるように、平均粒子径が0.01μm以上かつ0.03μm以下である酸化亜鉛粉体が提案されている。
 また、特許文献8では、長波長紫外線(UVA)の遮蔽性を向上させるために、平均粒子径が0.2μm以上かつ0.3μm以下である酸化亜鉛粉体が提案されている。
特開昭57-205319号公報 特開昭60-255620号公報 特開昭63-288913号公報 特開昭63-288914号公報 特開平3-199121号公報 特開平7-232919号公報 特開2002-201382号公報 特開2010-275223号公報
 しかしながら、これらの酸化亜鉛粉体は保管しておくと、酸化亜鉛粉体の特性が変質し、その為に保管安定性に劣る、という問題があった。
 本発明は、上記事情に鑑みてなされたものであって、保管安定性に優れた酸化亜鉛粉体、並びに、酸化亜鉛粉体を含む分散液、組成物および化粧料を提供することを目的とする。
 すなわち、本発明の第一の態様は、
一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、前記酸化亜鉛粉体の一次粒子のヘイウッド径の個数分布における、変動係数が50%以下である酸化亜鉛粉体である。
 本発明の第二の態様は、本発明の第一の態様の酸化亜鉛粉体と、分散媒と、を含有する分散液である。
 本発明の第三の態様は、本発明の第一の態様の酸化亜鉛粉体と、樹脂と、分散媒と、を含有する組成物である。
 本発明の第四の態様は、本発明の第一の態様の酸化亜鉛粉体、および本発明の第二の態様の分散液の、少なくとも1種を含有する化粧料である。
 本発明の酸化亜鉛粉体は、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径(面積円相当径)が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、酸化亜鉛粉体の一次粒子のヘイウッド径の個数分布における、変動係数が50%以下である。このため、保管安定性に優れる。また粒子が大きいため、紫外線の遮蔽効果も大きい。
 本発明の分散液は、本発明の酸化亜鉛粉体と分散媒と、を含有する。従って、酸化亜鉛粉体の保管期間に左右されることなく、同じ性質の分散液が得られるため、品質安定性に優れる。
 本発明の組成物は、本発明の酸化亜鉛粉体と樹脂と分散媒と、を含有する。従って、酸化亜鉛粉体の保管期間に左右されることなく、同じ性質の組成物が得られるため、品質安定性に優れる。
 本発明の化粧料は、本発明の酸化亜鉛粉体、および本発明の分散液から選択される、少なくとも1種を含有する。このため、酸化亜鉛粉体の保管期間に左右されることなく、同じ性質の化粧料が得られるため、品質安定性に優れる。
 本発明の酸化亜鉛粉体、分散液、組成物および化粧料の好ましい例について説明する。
 なお、以下の例は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明の趣旨を逸脱しない範囲で、省略、追加、置換、その他の変更が可能である。
[酸化亜鉛粉体]
 本発明の酸化亜鉛粉体は、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有する。一次粒子のヘイウッド径の個数分布における、ヘイウッド径の変動係数は50%以下である。
 また、本発明の酸化亜鉛粉体は、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である、酸化亜鉛粒子のみからなることも好ましい。この酸化亜鉛粉体の一次粒子のヘイウッド径の個数分布におけるヘイウッド径の変動係数は50%以下である。
 本発明の酸化亜鉛粉体における粒子径解析の定義は、日本工業規格 JIS Z8827-1「粒子径解析-画像解析法-第1部:静的画像解析法」に定められたものを使用する。粒子径の測定はこの規格に準じた方法で、粒子の画像を解析することで、行うことができる。
 また、粒子径の実際の測定は、例えば、本規格に則って計算が行われる、画像解析ソフトウェアMac-View Ver.4(マウンテック社製)などを用いて行うことができる。
 本発明の酸化亜鉛粉体において、酸化亜鉛粒子の一次粒子の短径、一次粒子の長径およびヘイウッド径は、電子顕微鏡で観察した画像を用いて算出した値である。電子顕微鏡で観察した時に粒子が凝集している場合には、一次粒子の短径、一次粒子の長径、および一次粒子のヘイウッド径は、粒子1個と認識できる部分を用いて測定した値を意味する。
 本発明の酸化亜鉛粉体において、一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比は、一次粒子を少なくとも100個、好ましくは200個、より好ましくは300個、さらに好ましくは500個を測定した値を意味する。これより以下に述べる例では、200個の粒子を測定して得た値を示している。
 なお、電子顕微鏡は、透過型電子顕微鏡であっても、走査型電子顕微鏡であってもよい。透過型電子顕微鏡を用いることが好ましい。
 本発明における一次粒子とは、電子顕微鏡像(倍率:1万~10万倍)で観察した場合に、粒子自体内に境界(粒界)を有さない、すなわち凝集体ではない、個別の粒子として識別できる粒子、と考えることができる。言い換えれば、凝集体と一次粒子が混じっている場合、最も小さな輪郭を有する粒子を意味する。
 (一次粒子の短径)
 本発明の酸化亜鉛粉体において、酸化亜鉛粒子の一次粒子の短径とは、一次粒子に外接する長方形を設けた時に、短辺が最短となる長方形の短辺の長さを意味する。酸化亜鉛粒子に外接する長方形は、通常は複数存在する。そのため、酸化亜鉛粒子に外接する長方形の中でも、短辺が最も短くなる長方形を選択し、その長方形の短辺を、酸化亜鉛粒子の一次粒子の短径とする。なお、一次粒子に外接する長方形が正方形になった場合は、短径は辺の1つの長さを意味する。
 本発明の酸化亜鉛粉体において、酸化亜鉛粒子の一次粒子の長径とは、前記短辺が最短となる長方形における長辺の長さを意味する。
(一次粒子のヘイウッド径、及びアスペクト比)
 本発明の酸化亜鉛粉体において、酸化亜鉛粒子の一次粒子のヘイウッド径とは、一次粒子の投影面積と同じ面積を有する、円の直径を意味する。
(一次粒子のアスペクト比)
 本発明の酸化亜鉛粉体において、酸化亜鉛粒子の一次粒子のアスペクト比とは、一次粒子の前記長径を、一次粒子の前記短径で除した値(一次粒子の長径/一次粒子の短径)を意味する。
(含有率や変動係数の求め方)
 本発明の酸化亜鉛粉体において、個数分布における含有率とは、上記画像を用いる評価で得られた酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径、及び一次粒子のアスペクト比等の幾何学的数値を用い、個数基準分布に換算する。そして、得られる個数基準分布において該当する粒子径を加算して、得られる値を意味する。例えば、酸化亜鉛粒子の一次粒子の短径の含有率とは、得られた短径を個数基準分布に換算した時に得られる、特定の粒径範囲に含まれる粒子の個数の割合として考えることができる。
 本発明の酸化亜鉛粉体において、ヘイウッド径の個数分布における変動係数とは、ヘイウッド径の標準偏差をヘイウッド径の算術平均値で除した値(%)(ヘイウッド径の標準偏差/ヘイウッド径の算術平均値×100)を意味する。
 変動係数が小さいと、個数分布の粒度分布がシャープであることを示し、粒子の大きさのばらつきが小さい。
(短径の範囲)
 本発明の酸化亜鉛粒子の一次粒子の短径は35nm以上かつ350nm以下であることが好ましい。短径は40nm以上であることがより好ましく、45nm以上であることがさらに好ましい。短径は330nm以下であることがより好ましく、310nm以下であることがさらに好ましい。具体例を挙げれば、40nm以上かつ330nm以下であることが好ましく、45nm以上かつ310nm以下であることがより好ましい。
 酸化亜鉛粒子の一次粒子の短径が上記範囲であることにより、保管安定性および透明性に優れ、紫外線遮蔽域が広く、光触媒活性が低い、酸化亜鉛粉体を得ることができる。
(ヘイウッド径及び変動係数の範囲)
 本発明の酸化亜鉛粒子の一次粒子のヘイウッド径は、35nm以上かつ400nm以下であることが好ましい。ヘイウッド径は、40nm以上であることがより好ましく、50nm以上であることがさらに好ましい。ヘイウッド径は、390nm以下であることがより好ましく、370nm以下であることがさらに好ましい。具体例を挙げれば、40nm以上かつ390nm以下であることが好ましく、50nm以上かつ370nm以下であることが好ましい。
 一次粒子のヘイウッド径が上記範囲であることにより、保管安定性および透明性に優れ、紫外線遮蔽域が広く、光触媒活性が低い酸化亜鉛粉体を得ることができる。
 本発明では、ヘイウッド径の平均値は、必要に応じて、任意に選択できる。例えば、100nm~400nmであってもよく、200nm~300nmであることが例として挙げられる。このような範囲であるとUVAの遮蔽性に優れ、肌への使用感がよいという効果が得られる。
 本発明の酸化亜鉛粒子の一次粒子のヘイウッド径の個数分布における変動係数は、50%以下であることが好ましい。45%以下であることがより好ましく、40%以下であることがさらに好ましい。また、変動係数の下限値は、所望の効果が得られれば特に限定されない。必要に応じて、0.1%以上や1%以上であってもよく、10%以上であってもよく、15%以上であってもよい。
 一次粒子のヘイウッド径の個数分布における変動係数が上記範囲であることにより、保管安定性および透明性に優れ、紫外線遮蔽域が広く、光触媒活性が低い酸化亜鉛粉体を得ることができる。
(酸化亜鉛粉体の特性)
 酸化亜鉛粒子の一次粒子の短径、および一次粒子のヘイウッド径、およびその個数分布における変動係数を、上記範囲に調整することにより、保管安定性および透明性に優れ、紫外線遮蔽域が広く、光触媒活性が低い酸化亜鉛粉体が得られる。その理由は、次のように考えられる。
 酸化亜鉛粉体に含まれる、全ての酸化亜鉛粒子の一次粒子の、短径、および一次粒子のヘイウッド径を、35nm以上とする時、本発明の酸化亜鉛粉体には、35nm未満の径部分(短径およびヘイウッド径)を有する酸化亜鉛微粒子が含まれない。含まれる粒子は全て、35nm以上の短径と35nm以上のヘイウッド径を有する。
 そのため、上記条件においては、小さい粒子がない又は少ないため、保管時に粒子が小さいもの同士による融着が抑制されるので、比表面積の変化を抑制することができる。また小さい粒子が含まれない為、比表面積が小さくなり、酸化亜鉛粉体の光触媒活性を低くすることが可能である。なお、上記条件を満たさない粒子が含まれる場合でも、非常にわずかであれば、ある程度の前述の効果を得ることができる。
 一方、酸化亜鉛粒子の一次粒子の短径を350nm以下、かつ酸化亜鉛粒子の一次粒子のヘイウッド径を400nm以下とすることにより、本発明の酸化亜鉛粉体には、酸化亜鉛の粗大粒子が含まれない。そのため、透明性に優れる酸化亜鉛粉体が得られる。
 また、酸化亜鉛粒子の一次粒子の短径、および一次粒子のヘイウッド径、および一次粒子のヘイウッド径の個数分布における変動係数を、上記範囲に調整したことで、短波長紫外線(UVB)の遮蔽性に優れる粒子と、長波長紫外線(UVA)の遮蔽性に優れる粒子が、一定の範囲内で混在することとなる。そのため、紫外線を遮蔽できる波長領域が広くなるので、紫外線遮蔽域が広くなる。なお、短波長紫外線(UVB)の遮蔽性に優れる粒子とは、例えば315nm~280nmの紫外線遮蔽性に優れる粒子であると考えられ、長波長紫外線(UVA)の遮蔽性に優れる粒子とは400nm~315nm、特に、400nm~370nmの紫外線遮蔽性に優れる粒子であると考えられる。
(粉体中の比率)
 本発明の酸化亜鉛粉体において、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子は、個数分布で95%以上含有されることが好ましい。96%以上含有されることがより好ましく、98%以上含有されることがさらに好ましく、100%含有されることが最も好ましい。
 一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子の含有量が上記範囲であることにより、保管安定性および透明性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体を得ることができる。
 なお、酸化亜鉛粒子の一次粒子の短径やヘイウッド径が、個数分布でどの範囲に含有されているかどうかは、上記解析により、確認することができる。
(長径の範囲)
 酸化亜鉛粒子の一次粒子の長径は、50nm以上かつ650nm以下であることが好ましい。長径は60nm以上であることがより好ましく、65nm以上であることが更に好ましい。長径は600nm以下であることがより好ましく、580nm以下であることがより好ましい。具体例を挙げれば、60nm以上かつ600nm以下であることがより好ましく、65nm以上かつ580nm以下であることがさらに好ましい。
 酸化亜鉛粒子の一次粒子の長径が上記範囲であることにより、透明性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体を得ることができる。また、白色度に優れた酸化亜鉛粉体が得られる。
(アスペクト比の範囲)
 酸化亜鉛粒子の一次粒子のアスペクト比は、1.0以上かつ4.0以下であることが好ましい。アスペクト比は、3.8以下であることがより好ましく、3.5以下であることがより好ましい。アスペクト比は、1.0以上であることが好ましが、1.0であることも好ましい。具体例を挙げれば、1.0以上かつ3.5以下であることがより好ましい。
 酸化亜鉛粒子の一次粒子のアスペクト比が上記範囲であることにより、保管安定性および透明性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体を得ることができる。
(酸化亜鉛粒子の特定の粒子の割合)
 本発明の酸化亜鉛粉体は、一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の割合を、任意に選択することができる。一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子を、一次粒子の短径基準の個数分布で、1.5%以上かつ10%以下含有することが好ましく、2.0%以上かつ9.5%以下含有することがより好ましく、2.0%以上かつ9.0%以下含有することがさらに好ましい。
 酸化亜鉛粒子の一次粒子の短径が上記範囲に調整されることにより、保管安定性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体が得られる。また、光触媒活性が抑制された酸化亜鉛粉体が得られる。
 本発明の酸化亜鉛粉体は、一次粒子の短径が100nmを超えてかつ350nm以下である酸化亜鉛粒子の割合を、任意に選択することができる。一次粒子の短径が100nmを超えてかつ350nm以下である酸化亜鉛粒子を、一次粒子の短径基準の個数分布で、90%を超えて98.5%以下含有することが好ましく、91%以上かつ98%以下含有することがより好ましい。
 酸化亜鉛粒子の一次粒子の短径が上記範囲に調整されることにより、保管安定性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体が得られる。
(比表面積)
 本発明の酸化亜鉛粉体において、温度150℃、相対湿度100%で24時間静置する前の比表面積に対する、静置後の比表面積の変化率(静置後の比表面積/静置前の比表面積)が、0.9以上かつ1.1以下であれば、保存安定性に優れると考えて良い。比表面積の変化率は、0.95以上かつ1.05以下であることがより好ましい。
 また、本発明の酸化亜鉛粉体においては、温度150℃、相対湿度100%で、静置前、および24時間静置後の、それぞれの比表面積が、1.5m/g以上かつ8.0m/g以下であることが好ましく、2.0m/g以上かつ7.5m/g以下であることがより好ましく、3.0m/g以上かつ7.0m/g以下であることがさらに好ましい。
 すなわち、本発明の酸化亜鉛粉体は、前記条件で静置する前と後の比表面積の変化率が、10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。
 高温高湿条件下に酸化亜鉛粉体を静置することは、通常の保管の促進試験となる。そのため、上記条件で比表面積の変化率が小さい酸化亜鉛粉体は、通常の保管でも、比表面積の変化が抑制されることを意味する。
 このような温湿度条件は、例えば、プレッシャークッカー装置(エスペック社製の高度加速寿命試験装置 EHS-411M)を用いることにより、条件を調整することができる。
 本発明の酸化亜鉛粉体は、温度150℃、相対湿度100%で24時間静置する前と静置した後とを比較した時、比表面積の変化率が小さい。すなわち、本実施形態の酸化亜鉛粉体は、保管していても性能がほとんど変化しないため、保管安定性が優れる。
 酸化亜鉛粉体の比表面積が変化すると、酸化亜鉛粉体の吸油量が変化する。そのため、比表面積が変化した酸化亜鉛粉体を用いて調製した分散液や化粧料は、比表面積が変化する前の酸化亜鉛粉体を用いて調製した分散液や化粧料と比べて、粘度が変化したり、肌触り等の感触が変化したりする。このように、保管時に比表面積が変化する酸化亜鉛粉体を用いて調製した分散液や化粧料は、品質安定性が優れない。
 これに対して、本発明の酸化亜鉛粉体は、前述のように、比表面積の変化率が小さい。このため、保管安定性が優れる。
 従って、本発明の酸化亜鉛粉体を用いて調製した分散液や化粧料は、粘度や感触等の変化が抑制されるため、品質安定性が優れる。
 本発明の酸化亜鉛粉体における比表面積は、この分野で使用される通常の方法で測定でき、例えば、全自動比表面積測定装置(商品名:BELSORP-MiniII、マイクロトラック・ベル社製)を用い、BET多点法による窒素吸着等温線から測定された値を意味してよい。
(光触媒活性の評価)
 本発明の酸化亜鉛粉体は、粉体の光触媒活性によって生じるブリリアントブルーの分解率が70%以下であることが好ましい。その理由は、このブリリアントブルーの分解率が70%以下であれば、酸化亜鉛粒子の光触媒活性が抑制されていることを示す。そのため、このような酸化亜鉛粉体は、化粧料等に使用される他の材料との反応が抑制され、結果として化粧品の保管安定性を高めることができる。
 ブリリアントブルーの分解率は60%以下であることがより好ましく、50%以下であることがさらに好ましい。
 ここで、ブリリアントブルーを用いて光触媒活性を測定した理由は、次の通りである。
 ブリリアントブルーは「青1」として、化粧料の着色顔料に一般的に用いられている。また、ブリリアントブルーは、比較的光に対する安定性に優れている上に、吸収波長の極大値が630nm付近である。このため、紫外光に対する吸収が比較的弱く、紫外線により光分解される影響が少ない。さらに、ブリリアントブルーは、メチレンブルー等の他の色素と比較すると、酸化亜鉛粉体の表面に吸着され難い。以上の理由から、ブリリアントブルーは、酸化亜鉛粉体の光触媒活性によっておこる、色素の変質を評価するのに適している。そこで、ブリリアントブルーを用いて光触媒活性を測定した。
 ブリリアントブルーの分解率の測定方法は、次の通りである。
 まず、ブリリアントブルーを所定の含有率(例えば、5ppm)に調整したブリリアントブルー水溶液を作製する。そして、このブリリアントブルー水溶液から石英セルに所定量(例えば、3mL)採取する。そして、この採取したブリリアントブルー水溶液に、ブリリアントブルー水溶液中の酸化亜鉛粉体が0.01質量%となるように酸化亜鉛粉体を投入し、超音波分散して、懸濁液を調製する。次いで、この懸濁液に、所定の波長の紫外線を所定距離(例えば、10cm)から所定時間(例えば、10分)照射する。
 紫外線照射ランプとしては、例えば、殺菌ランプGL20(波長253.7nm、紫外線出力7.5W:東芝社製)を用いることができる。
 次いで、この紫外線が照射された懸濁液から上澄み液を採取する。分光計(島津製作所社製、型番:UV-3150)により、上記の酸化亜鉛粉体を投入する前のブリリアントブルー水溶液、および採取した上澄み液のそれぞれの吸収スペクトルを測定する。そして、これらの測定値を用いて、下記の式(1)によりブリリアントブルーの分解率Dを算出する。
 D=(A0-A1)/A0 ・・・(1)
(但し、A0はブリリアントブルー水溶液(5ppm)の吸収スペクトルの吸収極大波長(630nm付近)における吸光度、A1は上記の上澄み液の吸収スペクトルの吸収極大波長における吸光度である。)
(酸化亜鉛粉体の製造方法)
 酸化亜鉛粉体中の酸化亜鉛粒子の一次粒子の短径、ヘイウッド径、長径、及びアスペクト比を、本発明の範囲に調整する方法としては、例えば、酸化亜鉛粉体の一次粒子の大きさが均一となるように、使用する製造方法の作製条件を調整する方法が挙げられる。例えば、熱分解法で酸化亜鉛粉体を作製する場合には、加熱時において、昇温速度を緩やかにしたり、一回で作製する酸化亜鉛粉体の量を減らしたりする等により、加熱ムラを少なくする方法等が挙げられる。また、気相法で酸化亜鉛粉体を作製する場合には、例えば、高温で反応させた後に行う冷却時に、ゆっくり冷却させたり、一回で作製する酸化亜鉛粉体の量を減らしたりする等により、冷却ムラを少なくする方法等が挙げられる。
 本発明の酸化亜鉛粉体を製造する方法の例としては、以下の方法が挙げられる。
 比表面積が8m/g以上かつ65m/g以下、導電率が150μS/cm以下、および、嵩比容積が1mL/g以上かつ10mL/g以下である酸化亜鉛の微粒子を原料として用意し、これを加熱等により更に粒成長させる。加熱温度と加熱時間は、加熱する酸化亜鉛の微粒子の量等によって、異なった条件を選択してよい。すなわち、酸化亜鉛粉体の作製量に応じて、所望の短径とヘイウッド径が得られるように、加熱温度と加熱時間は、適宜調整されてよい。
 前述のような酸化亜鉛の微粒子を用いた場合、酸化亜鉛の微粒子の導電率が低いため、酸化亜鉛微粒子中に含有される不純物が少なく、酸化亜鉛の微粒子同士の焼結が阻害されることなく、均一に粒成長させることができる。
 したがって、上述のように変動係数が50%以下の酸化亜鉛粉体を得ることができる。
 本発明の酸化亜鉛粉体の製造方法で用いられる本発明の酸化亜鉛の微粒子の導電率は、150μS/cm以下であることが好ましく、100μS/cm以下であることがより好ましく、50μS/cm以下であることが更に好ましく、30μS/cm以下であることが一層好ましく、10μS/cm以下であることが最も好ましい。
 酸化亜鉛の微粒子の導電率が上記範囲であることにより、上記のような効果が得られる。
 酸化亜鉛の微粒子の導電率は、次の方法により測定された値を意味する。
 酸化亜鉛の微粒子10gと、純水75gとを混合し、この混合液を容器に入れ、ホットプレート上で10分間煮沸する。
 次いで、混合液を室温まで放冷した後、酸化亜鉛の微粒子と純水の合計量が85gになるように、混合液に純水を加える。
 次いで、遠心分離により、混合液を固液分離し、上澄み液の導電率を導電率計(商品名:ES-12、堀場製作所社製)により測定する。
 酸化亜鉛の微粒子の導電率を、上記の範囲内に調整する方法としては、例えば、酸化亜鉛の微粒子における不純物の含有量を減らす方法が挙げられる。具体的には、酸化亜鉛の微粒子を作製する場合に、純度の高い原料を用いたり、作製工程中の不純物の混入を防止したり、作製工程の過程で適宜洗浄工程を設けたりすること等により、導電率の低い酸化亜鉛の微粒子を得ることができる。
 前記製造方法で、比表面積が8m/g以上かつ65m/g以下の酸化亜鉛の微粒子を用いることが好ましい理由は、比表面積がこの範囲である酸化亜鉛の微粒子をゆっくり粒成長させることで、本発明の酸化亜鉛粉体を得ることが可能であるからである。
 酸化亜鉛の微粒子の比表面積は、15m/g以上かつ60m/g以下であることがより好ましく、20m/g以上かつ50m/g以下であることが更に好ましく、25m/g以上かつ45m/g以下であることが特に好ましい。
 嵩比容積が1mL/g以上かつ10mL/g以下の酸化亜鉛の微粒子を用いる理由は、嵩比容積がこの範囲の酸化亜鉛の微粒子をゆっくり粒成長させることで、本発明の酸化亜鉛粉体を得ることが可能であるからである。
 酸化亜鉛の微粒子の嵩比容積は、1.5mL/g以上かつ9.5mL/g以下であることがより好ましく、3.0mL/g以上かつ8.0mL/g以下であることが更に好ましく、4.0mL/g以上かつ7.0mL/g以下であることが特に好ましい。
 酸化亜鉛の微粒子の嵩比容積を、上記の範囲内に制御する方法は、特に限定されず、様々な方法を選択できる。例えば、特開昭60-255620号公報に記載されているような熱分解法で酸化亜鉛の微粒子を作製する場合には、原料の嵩比容積を調整したり、熱分解温度を調整したり、粉砕を行ったりすること等により、酸化亜鉛粉体の嵩比容積を上記の範囲内に制御することができる。
 また、例えば、特開昭63-288914号公報に記載されているような気相法で酸化亜鉛の微粒子を作製する場合には、作製過程における温度を適宜調整することにより、酸化亜鉛の微粒子の嵩比容積を上記の範囲内に制御することができる。
 酸化亜鉛粉体の製造方法に好ましく使用できる、比表面積が8m/g以上かつ65m/g以下、導電率が150μS/cm以下、および、嵩比容積が1mL/g以上かつ10mL/g以下である前述の酸化亜鉛の微粒子の製造方法は、特に限定されない。このような酸化亜鉛の微粒子の製造方法は、上述の酸化亜鉛の微粒子の比表面積の調整方法、酸化亜鉛の微粒子の導電率の調整方法、酸化亜鉛の微粒子の嵩比容積の調整方法等を好ましく含むことができる。これらの調整方法を適宜実施する方法が挙げられる。
[表面処理された酸化亜鉛粉体]
 本発明の酸化亜鉛粉体、又は粉体に含まれる酸化亜鉛粒子は、その表面の少なくとも一部が、無機成分および有機成分の少なくとも一方で表面処理されていてもよい。このように無機成分および有機成分の少なくとも一方で表面処理されている酸化亜鉛粉体や粒子を、表面処理酸化亜鉛粉体や、表面処理酸化亜鉛粒子と言う。
 無機成分と有機成分は、酸化亜鉛粉体の用途に応じて、適宜選択される。
 本発明の表面処理された酸化亜鉛粉体が化粧料に用いられる場合、無機成分および有機成分としては、特に限定されず、例えば、一般的に化粧料に用いられる表面処理剤を用いることができる。
 無機成分としては、例えば、シリカ、アルミナ等からなる群から選択される少なくとも1種が挙げられる。
 有機成分としては、例えば、シリコーン化合物、オルガノポリシロキサン、脂肪酸、脂肪酸石鹸、脂肪酸エステルおよび有機チタネート化合物からなる群から選択される少なくとも1種が挙げられる。
 また、無機成分または有機成分として、界面活性剤を用いてもよい。
 このような無機成分および有機成分の少なくとも一方によって、酸化亜鉛粉体や粒子を表面処理した場合、酸化亜鉛の光触媒活性を抑制したり、酸化亜鉛粉体の分散媒への分散性を向上したりすることができる。
 表面処理に用いられるシリコーン化合物は、任意に選択できる。例えば、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーンオイル; メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン等のアルキルシラン; トリフルオロメチルエチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のフルオロアルキルシラン、メチコン、ハイドロゲンジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン、(アクリレーツ/アクリル酸トリデシル/メタクリル酸トリエトキシシリルプロピル/メタクリル酸ジメチコン)コポリマー、トリエトキシカプリリルシラン等が挙げられる。
 これらのシリコーン化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、シリコーン化合物としては、これらのシリコーン化合物の共重合体を用いてもよい。
 脂肪酸としては、例えば、パルミチン酸、イソステアリン酸、ステアリン酸、ラウリン酸、ミリスチン酸、ベヘニン酸、オレイン酸、ロジン酸、12-ヒドロキシステアリン酸、ポリヒドロキシステアリン酸等が挙げられる。
 脂肪酸石鹸としては、例えば、ステアリン酸アルミニウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸アルミニウム等が挙げられる。
 脂肪酸エステルとしては、例えば、デキストリン脂肪酸エステル、コレステロール脂肪酸エステル、ショ糖脂肪酸エステル、デンプン脂肪酸エステル等が挙げられる。
 有機チタネート化合物としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ドデシル)ベンゼンスルホニルチタネート、ネオペンチル(ジアリル)オキシートリ(ジオクチル)ホスフェイトチタネート、ネオペンチル(ジアリル)オキシートリネオドデカノイルチタネート等が挙げられる。
 上記化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の表面処理した酸化亜鉛粉体が、紫外線遮蔽フィルムやガスバリア性フィルム等の工業用途に用いられる場合、化粧料に用いられる無機成分や有機成分の他に、アニオン系分散剤、カチオン系分散剤、ノニオン系分散剤、シランカップリング剤、湿潤分散剤等の、粒子を分散させる際に使用される一般的な分散剤も、適宜選択して用いることができる。
 このような表面処理をした場合、酸化亜鉛の光触媒活性を抑制したり、酸化亜鉛粉体の分散媒への分散性を向上したりすることができる。
 本発明の表面処理した酸化亜鉛粉体の製造方法は、特に限定されない。表面処理を行う場合は、表面処理に用いる成分に応じて、公知の方法で適宜実施すればよい。
[分散液]
 本発明の分散液は、本発明の酸化亜鉛粉体と、分散媒と、を含有する。
 なお、本発明の分散液は、粘度が高いペースト状の分散体も、その意味に含む。
 本発明の分散液における酸化亜鉛粉体の含有量は特に限定されず、所望の特性に合わせて適宜調整すればよい。
 本発明の分散液を化粧料に用いる場合には、分散液における酸化亜鉛粉体の含有量は任意に選択できる。例えば、10質量%以上かつ90質量%以下であってもよく、30質量%以上かつ90質量%以下が好ましく、40質量%以上かつ85質量%以下がより好ましく、50質量%以上かつ80質量%以下がさらに好ましい。
 分散液における酸化亜鉛粉体の含有量が、例えば30質量%以上かつ90質量%以下であると、酸化亜鉛粉体が高濃度で含有されるため、処方の自由度を向上することができ、分散液の粘度を取り扱いを容易な程度に維持することができる。
 本発明の分散液の粘度は任意に選択できる。例えば、5Pa・s以上かつ300Pa・s以下であることが好ましく、8Pa・s以上かつ100Pa・s以下であることがより好ましく、10Pa・s以上かつ80Pa・s以下であることがさらに好ましく、15Pa・s以上かつ60Pa・s以下であることが最も好ましい。
 分散液の粘度が上記範囲であることにより、例えば、固形分(酸化亜鉛粉体)を高濃度に含んでいても、取り扱いが容易な分散液を得ることができる。
 分散媒は、分散液の用途に応じて、適宜選択される。好適な分散媒を以下に例示するが、本発明の分散液における分散媒は、これらに限定されない。
 分散媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、が用いられる。
 これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 また、使用できる他の分散媒の例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;シクロヘキサン等の環状炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類;ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類等が挙げられる。
 これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 また、さらにその他の分散媒の例としては、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類;アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類等が挙げられる。
 これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 上記以外のその他の分散媒の例としては、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等の疎水性の分散媒も挙げられる。
 分散液における分散媒の量は、必要に応じて任意に選択できる。例えば、10~90質量%が挙げられる。10~70質量%や、15~60質量%や、20~50質量%などが例として挙げられるが、これに限定されない。
 本発明の分散液は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
 添加剤としては、例えば、分散剤、安定剤、水溶性バインダー、増粘剤、油溶性防腐剤、紫外線吸収剤、油溶性薬剤、油溶性色素類、油溶性蛋白質類、植物油、動物油等が挙げられる。これらの量は、必要に応じて任意に選択してよい。
 本発明の分散液の製造方法は、特に限定されない。例えば、本発明の酸化亜鉛粉体と、分散媒とを、公知の分散装置で、機械的に分散する方法などが挙げられる。
 分散装置は任意に選択でき、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
 本発明の分散液は、化粧料の他、紫外線遮蔽機能やガス透過抑制機能等を有する組成物等に用いることができる。
[組成物]
 本発明の組成物は、本発明の酸化亜鉛粉体と、樹脂と、分散媒と、を含有する。
 本発明の組成物における酸化亜鉛粉体の含有量は、所望の特性に合わせて適宜調整すればよい。例えば、3質量%以上かつ80質量%であっても良く、5質量%以上かつ60質量%であっても良く、10質量%以上かつ40質量%以下であることが好ましく、20質量%以上かつ30質量%以下であることがより好ましい。
 組成物における酸化亜鉛粉体の含有量が、例えば10質量%以上かつ40質量%以下であるとき、固形分(酸化亜鉛粉体)を高濃度に含むため、酸化亜鉛の特性(紫外線遮蔽性等)が十分に得られ、かつ、酸化亜鉛粉体を均一に分散した組成物を得ることができる。
 分散媒としては、工業用途で一般的に用いられるものであれば特に限定されない。例えば、水、メタノール、エタノール、プロパノール等のアルコール類、酢酸メチル、酢酸エチル、トルエン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。上記分散液で挙げられたものを使用してもよい。
 本発明の組成物における分散媒の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整してよい。例を挙げれば、5~95質量%等が挙げられ、20~90質量%や、40~85質量%などが例として挙げられる。ただしこれに限定されるものではない。
 樹脂としては、工業用途で一般的に用いられるものであれば特に限定されず使用できる。例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。
 本発明の組成物における樹脂の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整してよい。例を挙げれば、1~80質量%等が挙げられ、2~50質量%や、5~20質量%などが例として挙げられる。ただしこれに限定されるものではない。
 本発明の組成物は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
 添加剤としては、例えば、重合開始剤、分散剤、防腐剤等が挙げられる。
 本発明の組成物の製造方法は、特に限定されない。例えば、本発明の酸化亜鉛粉体と、樹脂と、分散媒とを、公知の混合装置で、機械的に混合する方法が挙げられる。
 また、上述した分散液と、樹脂とを、公知の混合装置で、機械的に混合する方法が挙げられる。
 混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー等が挙げられる。
 本発明の組成物は、必要に応じて様々な用途に使用できる。例えば、ロールコート法、フローコート法、スプレーコート法、スクリーン印刷法、はけ塗り法、浸漬法等の通常の塗布方法により、本発明の組成物をポリエステルフィルム等のプラスチック基材に塗布することにより、塗膜を形成することができる。これらの塗膜は、紫外線遮蔽膜やガスバリア膜として活用することができる。
[化粧料]
 本発明の化粧料は、本発明の酸化亜鉛粉体および本発明の分散液の少なくとも1種を含有する。すなわち、片方又は両方を含んでも良い。
 本発明の化粧料は、化粧品基剤原料を更に含むことが好ましい。
 ここで、化粧品基剤原料とは、化粧品の本体を形成する諸原料を意味し、任意に選択できる。例えば、油性原料、水性原料、界面活性剤、粉体原料等が挙げられる。これらは1種を使用してもよく、2種以上を組み合わせて使用しても良い。 油性原料としては、例えば、油脂、高級脂肪酸、高級アルコール、エステル油類等が挙げられる。
 水性原料としては、精製水、アルコール、増粘剤等が挙げられる。
 粉末原料としては、有色顔料、白色顔料、パール剤、体質顔料等が挙げられる。
 本発明の化粧料は、例えば、本発明の分散液を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の化粧品基剤原料に、従来通りに配合することにより得ることができる。
 また、本発明の化粧料は、例えば、本発明の酸化亜鉛粉体を油相または水相に配合して、O/W型またはW/O型のエマルションとしてから、化粧品基剤原料と配合することにより得ることもできる。
 化粧料における酸化亜鉛粉体の含有量は所望の特性に応じて適宜調整すればよい。例えば、酸化亜鉛粉体の含有量の下限は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、1質量%以上であってもよい。また、酸化亜鉛粉体の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。
 以下、化粧料の一例である、日焼け止め化粧料について具体的に説明する。
 紫外線、特に長波長紫外線(UVA)を効果的に遮蔽するためには、日焼け止め化粧料における酸化亜鉛粉体の含有量の下限は任意に選択できる。酸化亜鉛粉体の含有量は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。
また、日焼け止め化粧料における酸化亜鉛粉体の含有量の上限も任意に選択でき、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。
 日焼け止め化粧料は、必要に応じて、疎水性分散媒、酸化亜鉛粉体以外の無機微粒子や無機顔料、親水性分散媒、油脂、界面活性剤、保湿剤、増粘剤、pH調整剤、栄養剤、酸化防止剤、香料等を含んでいてもよい。これらの量は必要に応じて、任意に選択できる。
 疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
 酸化亜鉛粉体以外の無機微粒子や無機顔料としては、例えば、炭酸カルシウム、リン酸カルシウム(アパタイト)、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、カオリン、タルク、酸化チタン、酸化アルミニウム、黄酸化鉄、γ-酸化鉄、チタン酸コバルト、コバルトバイオレット、酸化ケイ素等が挙げられる。
 日焼け止め化粧料は、さらに、有機系紫外線吸収剤を少なくとも1種含有していてもよい。酸化亜鉛粉体と有機系紫外線吸収剤をともに含有する化粧料は、ブースター効果により、紫外線遮蔽域が広くなるため好ましい。 有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤、これら以外の有機系紫外線吸収剤等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール等が挙げられる。
 ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
 安息香酸系紫外線吸収剤としては、例えば、パラアミノ安息香酸 (PABA)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル、N,N-ジメチルPABAメチルエステル等が挙げられる。
 アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
 サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
 ケイ皮酸系紫外線吸収剤としては、例えば、オクチルメトキシシンナメート、ジ-パラメトキシケイ皮酸-モノ-2-エチルヘキサン酸グリセリル、オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、オクチル-p-メトキシシンナメート(2-エチルヘキシル-p-メトキシシンナメート)、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等が挙げられる。
 シリコーン系ケイ皮酸紫外線吸収剤としては、例えば、[3-ビス(トリメチルシロキシ)メチルシリル-1-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリル-3-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリル-1-メチルプロピル]-3,4-ジメトキシシンナメート等が挙げられる。
 上記以外の有機系紫外線吸収剤としては、例えば、3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン、シリコーン変性紫外線吸収剤、フッ素変性紫外線吸収剤等が挙げられる。
 以上説明したように、本発明の酸化亜鉛粉体によれば、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、ヘイウッド径の個数分布における変動係数が50%以下である。このため、保管安定性および透明性に優れ、特に比表面積の経時安定性に優れ、紫外線遮蔽域が広い酸化亜鉛粉体を得ることができる。
 本発明の表面処理酸化亜鉛粉体では、本発明の酸化亜鉛粉体の表面の少なくとも一部が、無機成分および有機成分の少なくとも一方で好ましく表面処理される。このため、酸化亜鉛の光触媒活性をより抑制することができ、また、分散媒への分散性を向上することができる。
 本発明の分散液は、本発明の酸化亜鉛粉体を含有するため、酸化亜鉛粉体の保管期間に左右されず、保管前と実質的に同等の性質の分散液が得られ、品質安定性に優れる。
 また、本発明の分散液の粘度が5Pa・s以上かつ300Pa・s以下である場合には、分散液の取り扱いがより容易となる。
 本発明の組成物は、本発明の酸化亜鉛粉体を含有するため、酸化亜鉛粉体の保管期間に左右されず、保管前と実質的に同等の性質の組成物が得られ、品質安定性に優れる。
 本発明の化粧料によれば、本発明の酸化亜鉛粉体および本発明の分散液から選択される少なくとも1種を含有しているため、酸化亜鉛粉体の保管期間に左右されず実質的に同等の性質の化粧料が得られ、品質安定性に優れる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
「酸化亜鉛粉体の作製」
 比表面積が26.2m/g、導電率が11.4μS/cm、および、嵩比容積が5.8mL/gの酸化亜鉛の微粒子を加熱し、実施例1の酸化亜鉛粉体A1を得た。
「酸化亜鉛粉体の評価」
 実施例1の酸化亜鉛粉体A1を下記の手法で観察した。その結果、以下の酸化亜鉛粉体であることが判明した。
・酸化亜鉛粒子A1の観察した一次粒子全ての短径が55nm以上かつ259nm以下の範囲に納まる;
・観察した一次粒子全てのヘイウッド径が77nm以上かつ308nm以下の範囲に納まる;
・一次粒子のヘイウッド径の個数分布における変動係数が26%;
・観察した一次粒子全ての長径が92nm以上かつ436nm以下の範囲に納まる;
・観察した一次粒子全てのアスペクト比が1.0以上かつ2.4以下の範囲に納まる;
・一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を、個数分布で100%含有;
・一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の含有率が個数分布で8.9%。
この実施例1の酸化亜鉛粉体A1を、プレッシャークッカー装置(エスペック社製の高度加速寿命試験装置 EHS-411M)で、温度150℃、相対湿度100%で24時間静置した。
 静置前の比表面積は4.7m/g、静置後の比表面積は4.9m/gであり、静置前の比表面積に対する静置後の比表面積の変化率は1.03(4.9/4.7)であった。
(酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比の測定)
 酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比は、日本工業規格 JIS Z8827-1:2008「粒子径解析-画像解析法-第1部:静的画像解析法」に準じた方法により、以下の手法で測定した。
 電離放射型電子顕微鏡(FE-SEM)S-4800(日立ハイテクノロジーズ社製)を用いて、200個分の粒子の電子顕微鏡写真を撮影した。次いで、この電子顕微鏡写真を、画像解析式粒度分布ソフトウェアMac-View Ver.4(マウンテック社製)を用いて解析し、一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比を決定した。
(酸化亜鉛粉体の比表面積の測定)
 酸化亜鉛粉体の比表面積は、全自動比表面積測定装置(商品名:BELSORP-MiniII、マイクロトラック・ベル社製)を用いて、BET多点法による窒素(N)吸着等温線から測定した。
[実施例2]
「酸化亜鉛粉体の作製」
 比表面積が28.9m/g、導電率が8.8μS/cm、および、嵩比容積が6.2mL/gの酸化亜鉛の微粒子を加熱し、実施例2の酸化亜鉛粉体A2を得た。
「酸化亜鉛粉体の評価」
 実施例2の酸化亜鉛粉体A2を実施例1と同じ手法で観察した。その結果、以下の酸化亜鉛粉体であることが判明した。
・観察した酸化亜鉛粒子の一次粒子全ての短径が67nm以上かつ298nm以下に納まる;
・観察した一次粒子全てのヘイウッド径が148nm以上かつ360nm以下の範囲に納まる;
・一次粒子のヘイウッド径の個数分布における変動係数が16%;
・観察した一次粒子全ての長径が164nm以上かつ569nm以下の範囲に納まる;
・観察した一次粒子全てのアスペクト比が1.0以上かつ3.2以下の範囲に納まる;
・一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を個数分布で100%含有;
・一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の含有率が個数分布で2.3%。
 この実施例2の酸化亜鉛粉体A2を、プレッシャークッカー装置で、温度150℃、相対湿度100%で24時間静置した。
 また、酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比を、実施例1と同様にして測定した。
 また、酸化亜鉛粉体の比表面積を実施例1と同様にして測定した。静置前の比表面積は3.9m/g、静置後の比表面積は3.9m/gであり、静置前の比表面積に対する静置後の比表面積の変化率は1.0(3.9/3.9)であった。
[実施例3]
「酸化亜鉛粉体の作製」
 比表面積が29.7m/g、導電率が12.9μS/cm、および、嵩比容積が5.5mL/gの酸化亜鉛の微粒子を加熱し、実施例3の酸化亜鉛粉体A3を得た。
「酸化亜鉛粉体の評価」
 実施例3の酸化亜鉛粉体A3を実施例1と同じ手法で観察した。その結果、以下の酸化亜鉛粉体であることが判明した。
・観察した酸化亜鉛粒子の一次粒子全ての短径が55nm以上かつ302nm以下の範囲に納まる;
・観察した一次粒子全てのヘイウッド径が61nm以上かつ302nm以下の範囲に納まる;
・一次粒子のヘイウッド径の個数分布における変動係数が32%;
・観察した一次粒子全ての長径が61nm以上かつ505nm以下の範囲に納まる;
・観察した一次粒子全てのアスペクト比が1.0以上かつ3.2以下の範囲に納まる;
・一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を個数分布で100%含有;
・一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の含有率が個数分布で7.5%。
 この実施例3の酸化亜鉛粉体A3を、プレッシャークッカー装置で、温度150℃、相対湿度100%で24時間静置した。
 なお、酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比を、実施例1と同様にして測定した。
 また、酸化亜鉛粉体の比表面積を実施例1と同様にして測定した。静置前の比表面積は5.1m/g、静置後の比表面積は5.0m/gであり、静置前の比表面積に対する静置後の比表面積の変化率は0.98(5.0/5.1)であった。 
[比較例1]
 酸化亜鉛粉体A4(市販品)を用意した。この粉体A4は、実施例1と同じ手法で観察した。その結果、以下の酸化亜鉛粉体であることが判明した。
・観察した酸化亜鉛粒子の一次粒子全ての短径が5nm以上かつ154nm以下の範囲に納まる;
・観察した一次粒子全てのヘイウッド径が13nm以上かつ182nm以下の範囲に納まる;
・一次粒子のヘイウッド径の個数分布における変動係数が66%;
・観察した一次粒子全ての長径が19nm以上かつ259nm以下の範囲に納まる;
・観察した一次粒子全てのアスペクト比が1.0以上かつ6.6以下の範囲に納まる;
・一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を個数分布で34%含有;
一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の含有率が個数分布で34.3%;
・一次粒子の短径が35nm未満である粒子含有率が64.0%。
この酸化亜鉛粉体A4(市販品)を、プレッシャークッカー装置で、温度150℃、相対湿度100%で24時間静置した。
 上述したように、比較例1の酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比等は、実施例1と同様にして測定した。
 酸化亜鉛粉体の比表面積も、実施例1と同様にして測定した。静置前の比表面積は12.5m/g、静置後の比表面積は8.8m/gであり、静置前の比表面積に対する静置後の比表面積の変化率は0.70(8.8/12.5)であった。
[比較例2]
 JIS1種の酸化亜鉛粉体を用いた。この粉体は、実施例1と同じ手法で観察した。その結果、以下の酸化亜鉛粉体であることが判明した。
・観察した酸化亜鉛粒子全ての一次粒子の短径が32nm以上かつ616nm以下に納まる;
・観察した一次粒子のヘイウッド径が45nm以上かつ733nm以下の範囲に納まる;
・一次粒子全てのヘイウッド径の個数分布における変動係数が58%;
・観察した一次粒子全ての長径が54nm以上かつ871nm以下の範囲に納まる;
・観察した一次粒子全てのアスペクト比が1.0以上かつ4.5以下の範囲に納まる;
・一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を個数分布で92%含有;
・一次粒子の短径が35nm以上かつ100nm以下である酸化亜鉛粒子の含有率が個数分布で28.3%;
・一次粒子の短径が35nm未満である粒子含有率が2.7%。
この酸化亜鉛粉体A5を、プレッシャークッカー装置で、温度150℃、相対湿度100%で24時間静置した。
 上述したように、比較例2の酸化亜鉛粒子の一次粒子の短径、一次粒子の長径、一次粒子のヘイウッド径および一次粒子のアスペクト比等は、実施例1と同様にして測定した。
 酸化亜鉛粉体の比表面積も、実施例1と同様にして測定した。静置前の比表面積は3.7m/g、静置後の比表面積は3.2m/gであり、静置前の比表面積に対する静置後の比表面積の変化率は0.86(3.2/3.7)であった。 
 表1に示す、実施例1~3、及び比較例1、2の結果から、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、ヘイウッド径の個数分布における変動係数が50%以下である酸化亜鉛粉体は、高温高湿条件下で静置されても比表面積の変化率が少なく、保管安定性に優れることが確認された。
Figure JPOXMLDOC01-appb-T000001
「光触媒活性の評価」
 実施例1~3、比較例1、2の酸化亜鉛粉体の光触媒活性を、以下の方法で測定した。
 ブリリアントブルーの含有率を5ppmに調整したブリリアントブルー水溶液を作製し、このブリリアントブルー水溶液3gに、0.0003gの各酸化亜鉛粉体を投入し、超音波分散して懸濁液を調整した。次いで、この懸濁液に紫外線ランプ(中心波長:254nm)を照射距離10cmにて10分間照射し、その後、上澄み液を採取した。
 次いで、分光計(島津製作所社製、型番:UV-3150)により、上記の酸化亜鉛投入前のブリリアントブルー水溶液および上澄み液それぞれの吸光光度スペクトルを測定した。これらの測定値を用いて、上記の式(1)によりブリリアントブルーの分解率Dを算出した。
 その結果、ブリリアントブルーの分解率は、実施例1が49%、実施例2が46%、実施例3が55%、比較例1が80%、比較例2が82%であった。
 すなわち、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、一次粒子のヘイウッド径の個数分布における変動係数が50%以下である酸化亜鉛粉体は、光触媒活性にも優れることが確認された。
「日焼け止めクリームの紫外線遮蔽性の評価」
 実施例1~3、比較例1、2の酸化亜鉛粉体を用いて、表2に示す配合で処方し、実施例1~3、比較例1、2の粉体を用いた日焼け止めクリームB1(実施例1)、B2(実施例2)、B3(実施例3)、B4(比較例1)、及びB5(比較例2)をそれぞれ処方した。
Figure JPOXMLDOC01-appb-T000002
                  
 日焼け止めクリームを、石英ガラス板上に、塗布量が2mg/cmとなるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。
 この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、測定値を用いて、SPF値と臨界波長を算出した。結果を表3に示す。
 表3に示すように、これら6箇所のSPF値の平均値は、日焼け止めB1のSPF値は100、日焼け止めB2のSPF値は70、日焼け止めB3のSPF値は85、日焼け止めB4のSPF値は53、日焼け止めB5のSPF値は43であった。
 また、日焼け止めB1の臨界波長は377nm、日焼け止めB2の臨界波長は377nm、日焼け止めB3の臨界波長は377nm、日焼け止めB4の臨界波長は377nm、日焼け止めB5の臨界波長は375nmであった。
 すなわち、一次粒子の短径が35nm以上かつ350nm以下、および一次粒子のヘイウッド径が35nm以上かつ400nm以下である酸化亜鉛粒子を含有し、一次粒子のヘイウッド径の個数分布における変動係数が50%以下である酸化亜鉛粉体は、UV-B領域(波長280nm~315nm)とUV-A領域(波長315nm~400nm)の紫外線遮蔽性に優れ、紫外線遮蔽域が広いことが確認された。
Figure JPOXMLDOC01-appb-T000003
 本発明の酸化亜鉛粉体は、保管安定性に優れるため、その工業的価値は大きい。本発明は、保管安定性に優れた酸化亜鉛粉体、並びに、酸化亜鉛粉体を含む分散液、組成物および化粧料を提供できる。

Claims (10)

  1.  一次粒子の短径が35nm以上かつ350nm以下、および
     一次粒子のヘイウッド径が35nm以上かつ400nm以下である、酸化亜鉛粒子を含有し、
     前記酸化亜鉛粉体の一次粒子のヘイウッド径の個数分布における変動係数が50%以下であることを特徴とする酸化亜鉛粉体。
  2.  前記酸化亜鉛粒子の一次粒子径の長径が50nm以上かつ650nm以下であることを特徴とする、請求項1に記載の酸化亜鉛粉体。
  3.  前記酸化亜鉛粒子の一次粒子のアスペクト比が1.0以上かつ4.0以下であることを特徴とする、請求項1に記載の酸化亜鉛粉体。
  4.  静置前の比表面積に対する、温度150℃、相対湿度100%で24時間静置後の比表面積の変化率が0.9以上かつ1.1以下であることを特徴とする、請求項1に記載の酸化亜鉛粉体。
  5.  請求項1に記載の酸化亜鉛粉体と、分散媒と、を含有してなることを特徴とする分散液。
  6.  請求項1に記載の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなることを特徴とする組成物。
  7.  請求項1に記載の酸化亜鉛粉体を含有してなることを特徴とする化粧料。
  8.  分散媒を含む、請求項7の化粧料。
  9.  前記酸化亜鉛粉体が、前記短径とヘイウッド径を有する一次粒子を、個数分布で95%以上含有する、請求項1に記載の酸化亜鉛粉体。
  10.  前記酸化亜鉛粉体が、前記短径と前記ヘイウッド径を有する一次粒子を、個数分布で100%含有する、請求項1に記載の酸化亜鉛粉体。
PCT/JP2016/074846 2015-08-28 2016-08-25 酸化亜鉛粉体、分散液、組成物、及び化粧料 WO2017038635A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017537807A JP6729591B2 (ja) 2015-08-28 2016-08-25 酸化亜鉛粉体、分散液、組成物、及び化粧料
ES16841667T ES2782186T3 (es) 2015-08-28 2016-08-25 Polvo de óxido de zinc
KR1020187004826A KR102547489B1 (ko) 2015-08-28 2016-08-25 산화 아연 분체, 분산액, 조성물, 및 화장료
CN201680050524.9A CN107922209B (zh) 2015-08-28 2016-08-25 氧化锌粉体、分散液、组合物以及化妆材料
EP16841667.5A EP3342755B1 (en) 2015-08-28 2016-08-25 Zinc oxide powder
US15/755,493 US11497695B2 (en) 2015-08-28 2016-08-25 Zinc oxide powder, dispersion, composition, and cosmetic

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-169534 2015-08-28
JP2015169534 2015-08-28
JP2015231151 2015-11-26
JP2015-231151 2015-11-26
JP2016-014678 2016-01-28
JP2016014678 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017038635A1 true WO2017038635A1 (ja) 2017-03-09

Family

ID=58187546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074846 WO2017038635A1 (ja) 2015-08-28 2016-08-25 酸化亜鉛粉体、分散液、組成物、及び化粧料

Country Status (7)

Country Link
US (1) US11497695B2 (ja)
EP (1) EP3342755B1 (ja)
JP (1) JP6729591B2 (ja)
KR (1) KR102547489B1 (ja)
CN (1) CN107922209B (ja)
ES (1) ES2782186T3 (ja)
WO (1) WO2017038635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145102A1 (ja) * 2022-01-31 2023-08-03 住友大阪セメント株式会社 酸化亜鉛粉体、分散液、塗料、化粧料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328421A (ja) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd 無機化合物微粒子、その製造方法およびその用途
JPH11144773A (ja) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP2003162145A (ja) * 2001-08-20 2003-06-06 Canon Inc 現像装置、プロセスカートリッジ及び画像形成方法
WO2007145285A1 (ja) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. ポリマー被覆金属酸化物微粒子およびその応用
WO2010007956A1 (ja) * 2008-07-17 2010-01-21 旭硝子株式会社 撥水性基体およびその製造方法
JP2015110530A (ja) * 2013-12-06 2015-06-18 ロレアル パウダー状化粧用組成物

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033766B2 (ja) 1981-06-15 1985-08-05 三菱マテリアル株式会社 酸化亜鉛超微粉末の製造法
JPS60255620A (ja) 1984-05-30 1985-12-17 Honjiyou Chem Kk 塩基性炭酸亜鉛及び微細酸化亜鉛の製造方法
US4808398A (en) * 1985-02-14 1989-02-28 The Dow Chemical Company Narrow size distribution zinc oxide
JPH075308B2 (ja) 1987-05-21 1995-01-25 日鉱亜鉛株式会社 酸化亜鉛の製造方法
JPS63288914A (ja) 1987-05-21 1988-11-25 Nikko Aen Kk 球状酸化亜鉛の製造方法
JP2687640B2 (ja) 1989-12-28 1997-12-08 三菱マテリアル株式会社 紫外線吸収能に優れた超微粒子酸化亜鉛粉末およびその製造方法
JP2821357B2 (ja) 1994-02-22 1998-11-05 株式会社日本触媒 酸化亜鉛微粒子の製法
EP0893409B1 (en) * 1994-06-06 2003-09-03 Nippon Shokubai Co., Ltd. Zinc oxide-based fine particles, process for producing the same, and use thereof
US6027869A (en) * 1998-12-17 2000-02-22 Eastman Kodak Company Photographic elements containing light scattering particles
KR100598316B1 (ko) * 1999-02-05 2006-07-10 쇼와 덴코 가부시키가이샤 초미립자 산화 아연, 그 제조 방법, 및 이를 이용한 화장품 재료
JP4756738B2 (ja) 2000-12-27 2011-08-24 ハクスイテック株式会社 紫外線遮蔽用酸化亜鉛微粒子
AUPS080802A0 (en) * 2002-02-27 2002-03-21 Advanced Powder Technology Pty Ltd A zinc oxide powder for use in a sunscreen composition
JP2004269558A (ja) * 2003-03-05 2004-09-30 Konica Minolta Holdings Inc 着色微粒子分散体およびそれを含有する水性インク
US7670676B2 (en) * 2005-06-15 2010-03-02 Toda Kogyo Corporation Pharmaceutical raw material
US20110150792A1 (en) * 2008-12-10 2011-06-23 Yun Shao Zinc oxide aqueous and non-aqueous dispersions
JP2008101176A (ja) * 2005-11-10 2008-05-01 Fujifilm Corp 組成物及び該組成物からなるフィルム、偏光板保護フィルム、光学補償フィルムならびに液晶表示装置
JP5446470B2 (ja) 2009-05-28 2014-03-19 住友大阪セメント株式会社 酸化亜鉛微粒子粉体、日焼け止め化粧料
KR101708082B1 (ko) * 2009-09-15 2017-02-17 스미토모 오사카 세멘토 가부시키가이샤 금속 산화물 입자 내포 수지 분체와 이를 포함한 분산액 및 수계 분산체 및 금속 산화물 입자 내포 수지 분체의 제조 방법 및 화장료
KR101907940B1 (ko) * 2011-06-10 2018-10-16 사까이가가꾸고오교가부시끼가이샤 둥근 형상 과산화아연 입자, 둥근 형상 산화아연 입자, 그들의 제조 방법, 화장료 및 방열성 필러
WO2016143629A1 (ja) * 2015-03-06 2016-09-15 コニカミノルタ株式会社 球状酸化亜鉛粒子、その製造方法及びそれを用いたプラズモンセンサーチップ
JP6447366B2 (ja) * 2015-05-29 2019-01-09 コニカミノルタ株式会社 球状酸化亜鉛粒子、その製造方法及びそれを用いたプラズモンセンサーチップ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328421A (ja) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd 無機化合物微粒子、その製造方法およびその用途
JPH11144773A (ja) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP2003162145A (ja) * 2001-08-20 2003-06-06 Canon Inc 現像装置、プロセスカートリッジ及び画像形成方法
WO2007145285A1 (ja) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. ポリマー被覆金属酸化物微粒子およびその応用
WO2010007956A1 (ja) * 2008-07-17 2010-01-21 旭硝子株式会社 撥水性基体およびその製造方法
JP2015110530A (ja) * 2013-12-06 2015-06-18 ロレアル パウダー状化粧用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342755A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145102A1 (ja) * 2022-01-31 2023-08-03 住友大阪セメント株式会社 酸化亜鉛粉体、分散液、塗料、化粧料

Also Published As

Publication number Publication date
EP3342755B1 (en) 2020-02-12
JPWO2017038635A1 (ja) 2018-06-14
CN107922209B (zh) 2020-02-21
US20180256461A1 (en) 2018-09-13
EP3342755A1 (en) 2018-07-04
KR102547489B1 (ko) 2023-06-23
JP6729591B2 (ja) 2020-07-22
EP3342755A4 (en) 2019-05-01
US11497695B2 (en) 2022-11-15
CN107922209A (zh) 2018-04-17
ES2782186T3 (es) 2020-09-11
KR20180044276A (ko) 2018-05-02

Similar Documents

Publication Publication Date Title
US6197282B1 (en) Fine ultraviolet screening particles, process for preparing the same, and cosmetic preparation
JP5850189B1 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
WO2017130632A1 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
JP6551482B2 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
JP6314898B2 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
JP6682950B2 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
JP6729591B2 (ja) 酸化亜鉛粉体、分散液、組成物、及び化粧料
WO2020067406A1 (ja) 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
JP2020055737A (ja) 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
WO2019026907A1 (ja) 表面処理酸化亜鉛粒子の製造方法
WO2021200541A1 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
US11325840B1 (en) Zinc oxide powder, dispersion, paint, and cosmetic
WO2023145102A1 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
JP2020050561A (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
US11332621B1 (en) Zinc oxide powder, dispersion, paint, and cosmetic
WO2020067417A1 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
WO2023190487A1 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料
CN114727920A (zh) 皮肤外用剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841667

Country of ref document: EP