WO2019026907A1 - 表面処理酸化亜鉛粒子の製造方法 - Google Patents
表面処理酸化亜鉛粒子の製造方法 Download PDFInfo
- Publication number
- WO2019026907A1 WO2019026907A1 PCT/JP2018/028667 JP2018028667W WO2019026907A1 WO 2019026907 A1 WO2019026907 A1 WO 2019026907A1 JP 2018028667 W JP2018028667 W JP 2018028667W WO 2019026907 A1 WO2019026907 A1 WO 2019026907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- oxide particles
- treated
- silane coupling
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
Definitions
- the present invention relates to a method of producing surface-treated zinc oxide particles.
- Priority is claimed on Japanese Patent Application No. 2017-149176, filed Aug. 1, 2017, the content of which is incorporated herein by reference.
- Zinc oxide is known to have excellent ultraviolet shielding ability, high gas barrier properties, and high transparency. Therefore, particles made of zinc oxide (hereinafter referred to as “zinc oxide particles”) have functions such as ultraviolet shielding and gas barrier, and are used as a forming material of various materials requiring transparency. Be As such a material, an ultraviolet shielding film, an ultraviolet shielding glass, cosmetics, a gas barrier film etc. are mentioned, for example.
- Examples of the method for obtaining transparency of the various materials described above include a method of reducing the primary particle diameter of zinc oxide particles as a forming material.
- a method of reducing the primary particle diameter of zinc oxide particles various methods such as a thermal decomposition method and a gas phase method have been studied (see, for example, Patent Documents 1 and 2).
- surface treatment of zinc oxide particles is carried out in order to adjust the surface of the zinc oxide particles to the properties of cosmetics or to suppress the catalytic activity of the zinc oxide particles.
- metal soap such as magnesium stearate
- silicone oil such as dimethicone or hydrogen dimethicone
- silane coupling agent having an alkoxy group such as octyl triethoxysilane as a surface treatment agent And the like are used (see, for example, Patent Documents 3 and 4).
- the silane coupling agent when the zinc oxide particles are subjected to surface treatment using a silane coupling agent, the silane coupling agent is chemically bonded to the surface of the zinc oxide particles. Therefore, the zinc oxide particles surface-treated with a silane coupling agent have high stability. Furthermore, the property of the zinc oxide particle surface can be easily changed by using two or more kinds of surface treatment agents having different substituents.
- zinc oxide particles surface-treated with a silane coupling agent are referred to as surface-treated zinc oxide particles.
- Such surface-treated zinc oxide particles are blended as such into cosmetics or blended into cosmetics in the form of a dispersion dispersed in a dispersion medium.
- JP 2002-284527 A Japanese Patent Laid-Open No. 2000-95519 JP 2002-362925 A JP 2001-181136 A
- the surface-treated zinc oxide particles described above have a problem that the ultraviolet shielding properties are low. Moreover, even if it surface-treated similarly, the subject that the ultraviolet-ray shielding property of surface-treated zinc oxide particle became nonuniform occurred.
- the present invention has been made in view of the above circumstances, and provides a method for producing surface-treated zinc oxide particles capable of obtaining surface-treated zinc oxide particles having high ultraviolet shielding properties and uniform ultraviolet shielding properties.
- the purpose is
- the present inventors have intensively studied to solve the above-mentioned problems. As a result, since zinc oxide particles commercially available have a wide variety of specific surface area, sodium content, and conductivity of the slurry, even if the surface treatment is the same, the surface treatment has uniform UV shielding properties. It was thought that zinc oxide particles could not be obtained. Therefore, the present inventors conducted various experiments and examined the relationship between various formulas and experimental results, and the zinc oxide particles before surface treatment had the formula (1): S ⁇ M / ⁇ 2 00.
- the method for producing surface-treated zinc oxide particles includes the specific surface area S (unit: m 2 / g) of zinc oxide particles, the sodium content M (unit: mg / kg) of zinc oxide particles, and zinc oxide
- S the specific surface area
- M the sodium content
- Z the conductivity
- ⁇ unit: ⁇ S / cm
- the specific surface area (unit: m 2 / g) of the zinc oxide particles in the present embodiment is the BET specific surface area determined by the BET method.
- Examples of the method for measuring the specific surface area of the zinc oxide particles include a BET method using a fully automatic specific surface area measuring device (trade name: Macsorb HM Model-1201, manufactured by Mountech Co., Ltd.).
- the specific surface area of the zinc oxide particles in this embodiment is preferably 4 m 2 / g or more and 35 m 2 / g or less, and 6 m 2 / g or more and 33 m 2 / g or less Is more preferably 8 m 2 / g or more and 32 m 2 / g or less, still more preferably 9 m 2 / g or more and 31 m 2 / g or less, 10 m 2 / g or more and 30 m 2 / g or more It is particularly preferable that it is 2 / g or less.
- the zinc oxide particles having the range of the specific surface area surface-treated zinc oxide particles excellent in transparency and ultraviolet shielding property can be produced.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles, and the conductivity ⁇ of the slurry satisfy the above-mentioned formula (1).
- the sodium content (unit: mg / kg) of the zinc oxide particles in the present embodiment is a value determined by a polarization Zeeman atomic absorption spectrophotometer.
- the following methods may be mentioned.
- the zinc oxide particles are placed in a Teflon beaker, and an appropriate amount of water and 5 mL of nitric acid are added thereto.
- the zinc oxide particles are dissolved in a mixture of nitric acid and water by heating the mixture to prepare an aqueous solution containing zinc oxide particles.
- the sodium content of the zinc oxide particles is measured with a polarization Zeeman atomic absorption spectrophotometer (model number: Z-2000, manufactured by Hitachi High-Technologies Corporation).
- the sodium content of the zinc oxide particles in the present embodiment is preferably 10 mg / kg or more, more preferably 20 mg / kg or more, and still more preferably 50 mg / kg or more.
- the sodium content of the zinc oxide particles is preferably 500 mg / kg or less, more preferably 200 mg / kg or less, still more preferably 110 mg / kg or less, and 100 mg / kg or less. Is particularly preferred.
- the upper limit value and the lower limit value of the sodium content of zinc oxide particles can be arbitrarily combined.
- the uniformity and homogeneity of the surface treatment reaction of the zinc oxide particles by the silane coupling agent become good, the dispersibility is high, and the surface treatment is excellent in the ultraviolet shielding performance.
- Zinc oxide particles can be obtained.
- slurry containing zinc oxide particles Electrical conductivity (unit: ⁇ S / cm) of a slurry prepared by mixing 10 parts by mass of zinc oxide particles and 90 parts by mass of pure water in the present embodiment for 1 hour (hereinafter referred to as “slurry containing zinc oxide particles”) Is the value measured by the following method.
- the following method may be mentioned. 10 parts by mass of zinc oxide particles and 90 parts by mass of pure water are stirred and mixed for 1 hour using a stirrer to prepare a slurry containing zinc oxide particles. While stirring is continued, the conductivity of the slurry is measured using a conductivity meter (trade name: ES-12, manufactured by Horiba, Ltd.).
- the conductivity of the slurry containing zinc oxide particles is preferably 25 ⁇ S / cm or more, more preferably 30 ⁇ S / cm or more, still more preferably 50 ⁇ S / cm or more, and 60 ⁇ S / cm or more Is particularly preferred.
- the conductivity of the slurry containing zinc oxide particles is preferably 200 ⁇ S / cm or less, more preferably 190 ⁇ S / cm or less, still more preferably 150 ⁇ S / cm or less, and 100 ⁇ S / cm or less. Being particularly preferred.
- the upper limit value and the lower limit value of the conductivity of the slurry containing zinc oxide particles can be arbitrarily combined.
- the conductivity of the slurry containing zinc oxide particles is in the above range, the uniformity and uniformity of the surface treatment reaction of the zinc oxide particles by the silane coupling agent become good, the dispersibility is high, and the ultraviolet shielding performance is excellent.
- Surface-treated zinc oxide particles can be obtained.
- the pH of the slurry containing zinc oxide particles is preferably 7.1 or more and 9.0 or less, more preferably 7.5 or more and 9.0 or less, and 7.5 or more and 8.5 or less It is further preferred that When the pH of the slurry containing the zinc oxide particles is in the above range, the uniformity and homogeneity of the surface treatment reaction of the zinc oxide particles by the silane coupling agent become good, the dispersibility is high, and the surface treatment is excellent in the ultraviolet shielding performance. Zinc oxide particles can be obtained.
- the pH of the slurry containing zinc oxide particles means a value measured by the following method. As described above, 10 parts by mass of zinc oxide particles and 90 parts by mass of pure water are mixed for 1 hour to prepare a slurry containing zinc oxide particles. The pH of the obtained slurry is measured using a pH meter (trade name: D-51, manufactured by Horiba, Ltd.).
- the surface treatment reaction of the silane coupling agent is a hydrolysis and condensation polymerization reaction, and it is preferable that the hydrolyzed silane coupling agent rapidly react with the zinc oxide particles in view of the reaction efficiency of the surface coating.
- the pH of the zinc oxide particles is in the above range
- the speed of the hydrolysis reaction and the condensation polymerization reaction is well balanced
- the silane coupling agent is the surface of the zinc oxide particles It is preferable because it is easily chemically bonded to Moreover, it is preferable also from the point which can suppress that a zinc oxide particle melt
- the specific surface area S (unit: m 2 / g), the sodium content M (unit: mg / kg) of zinc oxide particles, and the conductivity ⁇ (unit: ⁇ S / cm) of the slurry are unknown, before the step 1, these values may be measured by the above-mentioned method. Before the first step, the specific surface area S (unit: m 2 / g), the sodium content M (unit: mg / kg), and the conductivity ⁇ (unit: ⁇ S / cm) of the slurry are measured. In the case of performing these, the order in which these measurements are performed is not particularly limited.
- the zinc oxide particles satisfy the formula (1). Specifically, the specific surface area S (unit: m 2 / g), the sodium content M (unit: mg / kg), and the conductivity ⁇ of the slurry are substituted into the above formula (1) to obtain zinc oxide particles Determines whether the above equation (1) is satisfied. Thereby, in the 3rd process mentioned later, the zinc oxide particles optimal for the surface treatment by a silane coupling agent can be sorted out. Surface-treated zinc oxide particles having uniform properties by surface-treating the zinc oxide particles in the third step described later when the zinc oxide particles before surface treatment satisfy the above-mentioned formula (1) You can get
- the left side (S ⁇ M / ⁇ 2 ) of the above formula (1) is preferably 0.10 or more, from the viewpoint of further improving the SPF (Sun Protection Factor) value showing the ultraviolet shielding property, It is more preferable that it is the above and still more preferable that it is 0.30 or more.
- the left side (S ⁇ M / ⁇ 2 ) of the equation may be expressed as S ⁇ M / ⁇ 2 .
- the upper limit value of S ⁇ M / ⁇ 2 is not particularly limited. For example, it may be 1.0 or less, 0.80 or less, 0.60 or less, or 0.50 or less.
- the zinc oxide particles do not satisfy the above-mentioned formula (1)
- the method of washing the zinc oxide particles in the second step is not particularly limited.
- a method of washing zinc oxide particles for example, a method of stirring and mixing 30 parts by mass of zinc oxide particles and 70 parts by mass of pure water using a stirrer such as a drum-type stirrer can be mentioned.
- the time for cleaning the zinc oxide particles and the number of times of cleaning are not particularly limited, and are appropriately adjusted based on the determination result in the fourth step.
- the sodium content of the zinc oxide particles falls within a predetermined range, and the conductivity of the slurry containing such zinc oxide particles also falls within the predetermined range.
- the slurry is a slurry containing the specific surface area of the zinc oxide particles, the sodium content of the zinc oxide particles and the zinc oxide particles according to the method described above. Measure the conductivity. Furthermore, in the first step, based on the measurement result obtained by the above-described method, it is determined whether the zinc oxide particles satisfy the above-mentioned formula (1). As a result, if the zinc oxide particles satisfy the above formula (1), the second step is ended. On the other hand, if the zinc oxide particles do not satisfy the formula (1), the second step is continued until the zinc oxide particles satisfy the formula (1).
- the zinc oxide particles satisfying the above-mentioned formula (1) are sometimes referred to as a silane coupling agent having an alkoxy group (hereinafter sometimes referred to as a "silane coupling agent").
- a third step of surface treatment may be included. That is, in the third step, the zinc oxide particles are surface-treated with a silane coupling agent, for example, by mixing the above-mentioned zinc oxide particles and a silane coupling agent.
- the zinc oxide particle which passed through the 2nd process removes the pure water used for washing
- the silane coupling agent which has an alkoxy group will not be specifically limited if it is a silane coupling agent which can be used for cosmetics.
- a silane coupling agent which has an alkoxy group the thing which can be used for cosmetics among the silane coupling agents represented by following General formula (2) is mentioned, for example.
- R 1 Si (OR 2 ) 3 ... (2) R 1 represents an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group or a phenyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms.
- silane coupling agent at least one selected from the group consisting of alkyl alkoxysilane, allyl alkoxysilane, polysiloxane having an alkyl group in a side chain and polysiloxane having an alkyl group in a side chain preferable.
- alkyl alkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, n- Propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltripropoxysilane, n-propyltributoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, isopropyltripropoxysilane, isopropyltributoxysilane, phenyltrimethoxysilane , Phenyltriethoxysilane, phenyltripropoxysilane, phenyltributoxysilane, n-
- silane coupling agent for example, a siloxane skeleton such as dimethoxydiphenylsilane-triethoxycaprylylsilane crosspolymer, triethoxysilylethyl polydimethylsiloxyethyl dimethicone, triethoxysilylethyl polydimethylsiloxyethyl hexyl dimethicone has a main chain,
- a polymer type silane coupling agent having an alkoxy group and an acryl group in the molecular structure can also be used.
- silane coupling agent for example, fluoroalkylalkoxysilanes such as trifluoropropyltrimethoxysilane, perfluorooctyltriethoxysilane, tridecafluorooctyltriethoxysilane and the like can also be used.
- silane coupling agents may be used alone, or two or more thereof may be mixed and used.
- silane coupling agents having an octyl group in the molecule are more preferable.
- a silane coupling agent which has a moderate functional group polarity and can cope with a wide range of polar oil phases from natural oils and ester oils to silicone oils is particularly preferable.
- at least one selected from the group consisting of n-octyltriethoxysilane, n-octyltrimethoxysilane and dimethoxydiphenylsilane-triethoxycaprylyl crosspolymer is particularly preferable.
- One of these silane coupling agents may be used alone, or two or more thereof may be mixed and used.
- the surface treatment amount of the silane coupling agent to the zinc oxide particles may be appropriately adjusted in accordance with the characteristics required for the surface treated zinc oxide particles.
- the mixing amount of the silane coupling agent is preferably 2% by mass or more and 10% by mass or less with respect to the zinc oxide particles.
- the surface-treating agent is used in cosmetics in addition to the silane coupling agent, as long as the characteristics of the surface-treated zinc oxide particles are not impaired.
- the zinc oxide particles may be surface treated using a substance other than a silane coupling agent.
- Examples of the surface treatment agent other than the silane coupling agent include inorganic materials such as silica and alumina, and organic materials such as silicone compounds, fatty acids, fatty acid soaps, fatty acid esters and organic titanate compounds.
- the method of surface-treating zinc oxide particles with a silane coupling agent is not particularly limited.
- the surface treatment of the zinc oxide particles with a silane coupling agent may be appropriately selected from known methods such as dry treatment and wet treatment depending on the components such as the silane coupling agent used for the surface treatment.
- a silane coupling agent is added dropwise to the zinc oxide particles in the mixer under dripping or spray spraying while stirring the zinc oxide particles in a mixer such as a Henschel mixer or a super mixer. Stir at high speed for a fixed time Thereafter, while stirring is continued, heat treatment is performed at 70 ° C to 200 ° C.
- the silane coupling agent is chemically bonded to the surface of the zinc oxide particles.
- the water for hydrolysis of the silane coupling agent may use attached water of zinc oxide particles, and may be added together with or separately from the silane coupling agent as needed.
- the silane coupling agent may be used by diluting it with a solvent that can be mixed with the silane coupling agent.
- a solvent examples include alcohols such as methanol, ethanol and isopropanol, and hydrocarbons such as n-hexane, toluene and xylene.
- polar solvents such as alcohols having high compatibility with water are suitably used.
- a mixture of zinc oxide particles, a silane coupling agent and a solvent is mixed at 25 ° C. to 100 ° C. for several hours while stirring. Thereafter, the solid collected by solid-liquid separation is washed, and the washed product is heat-treated at 70 ° C. to 200 ° C. Thereby, the zinc oxide particles are surface-treated with a silane coupling agent.
- the method for producing surface-treated zinc oxide particles of the present embodiment in the first step, it is determined whether the zinc oxide particles satisfy the above-mentioned formula (1). For this reason, zinc oxide particles optimal for surface treatment with a silane coupling agent can be selected. Therefore, according to the method for producing surface-treated zinc oxide particles of the present embodiment, surface-treated zinc oxide particles having uniform properties can be obtained. That is, according to the method for producing surface-treated zinc oxide particles of this embodiment, the uniformity and homogeneity of the surface treatment reaction of the zinc oxide particles by the silane coupling agent become good, the dispersibility is high, and the ultraviolet ray shielding performance is excellent. Surface-treated zinc oxide particles can be obtained.
- the surface-treated zinc oxide particles of the present embodiment are surface-treated zinc oxide particles obtained by the method of producing surface-treated zinc oxide particles of the present embodiment. That is, the surface-treated zinc oxide particles of this embodiment are surface-treated zinc oxide particles in which the surface of the zinc oxide particles is surface-treated with a silane coupling agent having an alkoxy group, and the zinc oxide particles have the following formula ( Meet 1).
- the zinc oxide particles in the present embodiment are surface-treated with a silane coupling agent.
- the preferable range of the specific surface area of the zinc oxide particles, the sodium content of the zinc oxide particles, and the conductivity of the slurry containing zinc oxide particles is the zinc oxide particles in the present embodiment Similar numerical ranges can be employed.
- the surface-treated zinc oxide particles in which the surface of the zinc oxide particles is surface-treated with a silane coupling agent have very high stability because the zinc oxide particles and the silane coupling agent are chemically bonded.
- the surface property of the zinc oxide particle can be easily changed by selecting the silane coupling agent which has a substituent according to the objective. That is, according to the purpose, by changing the type of silane coupling agent, for example, the cosmetic containing the surface-treated zinc oxide particles of the present embodiment has a touch such as elongation or touch when applied to the skin. It can be changed.
- the surface-treated zinc oxide particles of the present embodiment it is possible to stably exhibit high ultraviolet shielding properties.
- the dispersion liquid of the present embodiment contains the surface-treated zinc oxide particles of the present embodiment and a dispersion medium.
- the dispersion of the present embodiment also includes a paste-like dispersion having a high viscosity.
- the dispersion medium is not particularly limited as long as it can be formulated into cosmetics and can disperse surface-treated zinc oxide particles.
- the dispersion medium for example, water; alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, octanol, glycerin and the like; ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, Esters such as propylene glycol monoethyl ether acetate and ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol Ethers such as monoethyl ether
- ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, cyclohexanone and the like; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and the like; cyclic hydrocarbons such as cyclohexane; And amides such as N-dimethylacetoacetamide and N-methylpyrrolidone; linear polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane and diphenylpolysiloxane, and the like.
- One of these dispersion media may be used alone, or two or more thereof may be mixed and used.
- cyclic polysiloxanes such as octamethyl cyclotetrasiloxane, decamethyl cyclopentasiloxane, dodecamethyl cyclohexane siloxane, etc .; amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, fluorine-modified Modified polysiloxanes, such as polysiloxane, etc. are mentioned.
- One of these dispersion media may be used alone, or two or more thereof may be mixed and used.
- hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched chain light paraffin, vaseline and ceresin; ester oils such as isopropyl myristate, cetyl isooctanoate and glyceryl trioctanoate Silicone oils such as decamethylcyclopentasiloxane, dimethylpolysiloxane and methylphenylpolysiloxane; higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid; lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyl dodecanol, iso; Examples thereof include hydrophobic dispersion media such as higher alcohols such as stearyl alcohol.
- the dispersion of the present embodiment may contain commonly used additives as long as the properties of the dispersion are not impaired.
- additives examples include preservatives, dispersants, dispersion aids, stabilizers, water-soluble binders, thickeners, oil-soluble drugs, oil-soluble dyes, oil-soluble proteins, UV absorbers and the like.
- the particle diameter (d50) when the cumulative volume percentage of the particle size distribution in the dispersion liquid of the present embodiment is 50% is preferably 300 nm or less, more preferably 250 nm or less, and further preferably 200 nm or less preferable.
- the lower limit of d50 is not particularly limited, and may be, for example, 50 nm or more, 100 nm or more, or 150 nm or more.
- the upper limit value and the lower limit value of d50 can be arbitrarily combined.
- the particle diameter (d90) when the cumulative volume percentage of the particle size distribution in the dispersion liquid of the present embodiment is 90% is preferably 400 nm or less, more preferably 350 nm or less, and 300 nm or less Is more preferred.
- the lower limit of d90 is not particularly limited, and may be, for example, 100 nm or more, 150 nm or more, or 200 nm or more.
- the upper limit value and the lower limit value of d90 can be arbitrarily combined.
- the surface-treated zinc oxide particles are easily distributed uniformly, and the ultraviolet shielding effect is preferably improved.
- d90 of a dispersion liquid is 400 nm or less, since the transparency of a dispersion liquid is high and the transparency of the cosmetics produced using this dispersion liquid also becomes high, it is preferable.
- dispersion liquid of the present embodiment when d50 and d90 in the dispersion liquid of the present embodiment are in the above ranges, it is possible to obtain a dispersion liquid which is excellent in transparency and excellent in ultraviolet shielding properties.
- cosmetics prepared using this dispersion also have excellent transparency and ultraviolet shielding properties.
- a method of measuring the cumulative volume percentage of the particle size distribution in the dispersion liquid of the present embodiment a method using a dynamic light scattering type particle size distribution measuring apparatus (model number: LB-550, manufactured by Horiba, Ltd.) can be mentioned.
- the content of the surface-treated zinc oxide particles in the dispersion liquid of the present embodiment is appropriately adjusted in accordance with the characteristics of the intended dispersion liquid.
- the content of the surface-treated zinc oxide particles in the dispersion is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass It is more preferable that it is more than.
- the content of the surface-treated zinc oxide particles in the dispersion is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less.
- the upper limit and the lower limit of the content of the surface-treated zinc oxide particles in the dispersion can be arbitrarily combined.
- the content of the surface-treated zinc oxide particles in the dispersion is in the above range, the surface-treated zinc oxide particles are contained in a high concentration in the dispersion. Therefore, while being able to improve the freedom degree of prescription of the cosmetics produced using a dispersion liquid, the viscosity of a dispersion liquid can be adjusted in the range which handling is easy.
- the viscosity of the dispersion liquid of the present embodiment is preferably 5 Pa ⁇ s or more, more preferably 8 Pa ⁇ s or more, still more preferably 10 Pa ⁇ s or more, and preferably 15 Pa ⁇ s or more. Most preferred.
- the viscosity of the dispersion is preferably 300 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, still more preferably 80 Pa ⁇ s or less, and most preferably 60 Pa ⁇ s or less .
- the upper limit value and the lower limit value of the viscosity of the dispersion can be arbitrarily combined.
- a method of measuring the viscosity of the dispersion liquid of the present embodiment for example, a method of measuring at 25 ° C. and 20 rpm using a digital viscometer (trade name: DV-I + Viscometer, manufactured by Brookfield) can be mentioned.
- the dispersion according to this embodiment was formed by applying a dispersion containing 10% by mass of surface-treated zinc oxide particles on a quartz glass plate to a thickness of 12 ⁇ m and naturally drying it for 15 minutes to form a coating film.
- the physical property value measured about the coating film is the following range. That is, the transmittance at 450 nm of the coating film is preferably 40% or more, more preferably 45% or more, and still more preferably 50% or more.
- the upper limit of the transmittance at 450 nm of the coating film is not particularly limited, and may be 100% or less, 90% or less, or 80% or less.
- the upper limit value and the lower limit value of the transmittance at 450 nm of the coating film can be arbitrarily combined.
- the transmittance of the coating film at 450 nm is preferably high.
- permeability in 450 nm of the coating film formed of the dispersion liquid of this embodiment the following methods are mentioned.
- a dispersion containing 10% by mass of surface-treated zinc oxide particles is coated on a quartz glass plate so that the thickness of the dispersion is 12 ⁇ m, and naturally dried for 15 minutes to form a coating.
- the transmittance at 450 nm is measured using an SPF analyzer UV-1000S (manufactured by Labsphere).
- the average transmittance of the above coating film at 290 nm to 320 nm is preferably 10% or less, more preferably 7% or less, and still more preferably 5% or less.
- the lower limit value of the average transmittance at 290 nm to 320 nm of the coating film is not particularly limited, and may be 0%, 0.5%, or 1%.
- the upper limit value and the lower limit value of the average transmittance at 290 nm to 320 nm of the coating film can be arbitrarily combined.
- the average transmittance at 290 nm to 320 nm is preferably low.
- the following methods may be mentioned.
- a dispersion containing 10% by mass of surface-treated zinc oxide particles is coated on a quartz glass plate to a thickness of 12 ⁇ m and naturally dried for 15 minutes to form a coating.
- the SPF analyzer UV-1000S manufactured by Labsphere
- the average transmittance at 290 nm to 320 nm is measured for the obtained coating film.
- the SPF value of the coating film is preferably 30 or more, more preferably 35 or more, and still more preferably 40 or more.
- the upper limit value of the SPF value of the coating film is not particularly limited, and may be 150, 100, or 80. According to the manufacturing method of the present invention, it is possible to provide a coating having a desired SPF value. For example, in order to obtain a high SPF value, the value of equation (1) may be controlled to be high.
- the upper limit value and the lower limit value of the SPF value of the coating film can be arbitrarily combined.
- the following method may be mentioned.
- a dispersion containing 10% by mass of surface-treated zinc oxide particles is coated on a quartz glass plate to a thickness of 12 ⁇ m and naturally dried for 15 minutes to form a coating.
- the SPF value of the obtained coating film is measured using an SPF analyzer UV-1000S (manufactured by Labsphere).
- the critical wavelength (Critical Wavelength) of the said coating film is 370 nm or more.
- the cosmetic containing the dispersion forming the coating has a critical wavelength of 370 nm or more, and a wide range of long wavelength ultraviolet light (UVA) and short wavelength ultraviolet light (UVB) UV rays can be shielded.
- the "critical wavelength” is a value determined by analyzing a coating film formed by applying a dispersion on a quartz glass plate. Specifically, for a coating film with a thickness of 12 ⁇ m, the absorption spectrum in the ultraviolet region of 290 nm or more and 400 nm or less is measured, and when integrated from 290 nm to the long wavelength side in the obtained absorption spectrum, the integration area is 290 nm A wavelength which is 90% of the integral area in the whole region of the above and 400 nm or less is referred to as a "critical wavelength". For example, an SPF analyzer UV-1000S (manufactured by Labsphere) is used to measure the absorption spectrum in the ultraviolet region of 290 nm or more and 400 nm or less.
- the method for producing the dispersion liquid of the present embodiment is not particularly limited. For example, there is a method of mechanically dispersing the surface-treated zinc oxide particles of the present embodiment and the dispersion medium with a known dispersing device.
- Distributed devices can be selected as needed.
- a dispersion apparatus a stirrer, a self-revolution type
- the dispersion liquid of the present embodiment can be used as a paint or the like having an ultraviolet shielding function, a gas permeation suppressing function, and the like other than cosmetics.
- the surface-treated zinc oxide particles of the present embodiment are included, high ultraviolet shielding properties are stably exhibited.
- composition of the present embodiment comprises the surface-treated zinc oxide particles of the present embodiment, a resin, and a dispersion medium.
- the content of the surface-treated zinc oxide particles in the composition of the present embodiment is appropriately adjusted according to the properties of the target composition.
- the content of the surface-treated zinc oxide particles in the composition of the present embodiment is, for example, preferably 10% by mass or more and 40% by mass or less, and more preferably 20% by mass or more and 30% by mass or less.
- the surface-treated zinc oxide particles in the composition When the content of the surface-treated zinc oxide particles in the composition is in the above range, the surface-treated zinc oxide particles are contained in a high concentration in the composition. Therefore, the characteristics of the surface-treated zinc oxide particles are sufficiently obtained, and a composition in which the surface-treated zinc oxide particles are uniformly dispersed is obtained.
- the dispersion medium is not particularly limited as long as it is generally used in industrial applications.
- examples of the dispersion medium include water, alcohols such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, toluene, methyl ethyl ketone and methyl isobutyl ketone.
- the content of the dispersion medium in the composition of the present embodiment is not particularly limited, and is appropriately adjusted in accordance with the characteristics of the target composition.
- the resin is not particularly limited as long as it is generally used in industrial applications.
- examples of the resin include acrylic resin, epoxy resin, urethane resin, polyester resin, silicone resin and the like.
- the content of the resin in the composition of the present embodiment is not particularly limited, and is appropriately adjusted in accordance with the characteristics of the target composition.
- composition of the present embodiment may contain commonly used additives as long as the properties of the composition are not impaired.
- additives a polymerization initiator, a dispersing agent, an antiseptic agent etc. are mentioned, for example.
- the method for producing the composition of the present embodiment is not particularly limited. For example, there is a method of mechanically mixing the surface-treated zinc oxide particles of the present embodiment, the resin, and the dispersion medium with a known mixing device.
- a mixing apparatus As a mixing apparatus, a stirrer, a revolution-revolution type mixer, a homomixer, an ultrasonic homogenizer, etc. are mentioned, for example.
- composition of the present embodiment to a plastic substrate such as a polyester film by a general coating method such as roll coating, flow coating, spray coating, screen printing, brush coating, dipping, etc.
- a coating film can be formed.
- These coating films can be utilized as an ultraviolet shielding film or a gas barrier film.
- composition of the present embodiment since the surface-treated zinc oxide particles of the present embodiment are included, high ultraviolet shielding properties are stably exhibited.
- the cosmetic of the present embodiment contains at least one of the surface-treated zinc oxide particles of the present embodiment and the dispersion of the present embodiment.
- the cosmetic of the present embodiment may contain a cosmetic base material.
- the cosmetic base material means various raw materials forming the main body of the cosmetic, and examples thereof include an oily raw material, an aqueous raw material, a surfactant, a powder raw material and the like.
- an oil-based raw material fats and oils, higher fatty acids, higher alcohols, ester oils etc. are mentioned, for example.
- aqueous material examples include purified water, alcohol, thickener and the like.
- a colored pigment As a powder raw material, a colored pigment, a white pigment, a pearlescent agent, an extender pigment etc. are mentioned.
- the cosmetic of the present embodiment can be obtained, for example, by blending the dispersion of the present embodiment with cosmetic base materials such as emulsions, creams, foundations, lipsticks, blushers, eye shadows and the like in the conventional manner.
- cosmetic base materials such as emulsions, creams, foundations, lipsticks, blushers, eye shadows and the like in the conventional manner.
- the surface-treated zinc oxide particles of the present embodiment are blended in an oil phase or an aqueous phase to form an O / W type or W / O type emulsion, and the emulsion and cosmetic base material And are obtained by blending.
- the content of the surface-treated zinc oxide particles in the cosmetic of the present embodiment is appropriately adjusted in accordance with the characteristics of the intended cosmetic.
- the lower limit of the content of the surface-treated zinc oxide particles may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more.
- the upper limit of the content of the surface-treated zinc oxide particles may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
- the upper limit value and the lower limit value of the content of the surface-treated zinc oxide particles in the cosmetic can be arbitrarily combined.
- the lower limit of the content of surface-treated zinc oxide particles in a sunscreen cosmetic is It is preferable that it is 0.01 mass% or more, It is more preferable that it is 0.1 mass% or more, It is more preferable that it is 1 mass% or more.
- the upper limit of the content of the surface-treated zinc oxide particles in the sunscreen cosmetic may be 50% by mass or less, 40% by mass or less, or 30% by mass or less. The upper limit and the lower limit of the content of the surface-treated zinc oxide particles in the sunscreen cosmetic can be arbitrarily combined.
- the sunscreen cosmetic may, if necessary, be a hydrophobic dispersion medium, inorganic fine particles and inorganic pigments other than surface-treated zinc oxide particles, a hydrophilic dispersion medium, oils and fats, surfactants, moisturizers, thickeners, pH adjusters. Nutrients, antioxidants, flavors and the like may be included.
- hydrophobic dispersion medium examples include liquid paraffin, squalane, isoparaffin, branched light paraffin, hydrocarbon oil such as vaseline and ceresin, and ester oil such as isopropyl myristate, cetyl isooctanoate and glyceryl trioctanoate.
- Silicone oils such as decamethylcyclopentasiloxane, dimethylpolysiloxane and methylphenylpolysiloxane, higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyl dodecanol, iso Higher alcohols such as stearyl alcohol may be mentioned.
- inorganic fine particles and inorganic pigments other than surface-treated particles contained in cosmetics include calcium carbonate, calcium phosphate (apatite), magnesium carbonate, calcium silicate, magnesium silicate, aluminum silicate, kaolin, talc, titanium oxide, Aluminum oxide, yellow iron oxide, ⁇ -iron oxide, cobalt titanate, cobalt violet, silicon oxide and the like can be mentioned.
- the sunscreen cosmetic may further contain at least one organic ultraviolet absorber.
- organic UV absorbers examples include benzotriazole UV absorbers, benzoylmethane UV absorbers, benzoic acid UV absorbers, anthranilic acid UV absorbers, salicylic acid UV absorbers, cinnamic acid UV absorbers. Agents, silicone cinnamic acid UV absorbers, etc.
- benzotriazole-based UV absorbers examples include 2,2′-hydroxy-5-methylphenylbenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′- Hydroxy-5'-methylphenylbenzotriazole and the like can be mentioned.
- UV absorbers examples include dibenzalazine, dianisoylmethane, 4-tert-butyl-4'-methoxydibenzoylmethane, 1- (4'-isopropylphenyl) -3-phenylpropane-1,3- And dione, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one and the like.
- benzoic acid-based UV absorbers include para-aminobenzoic acid (PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl PABA ethyl ester, N, N-dimethyl PABA butyl ester, N, N-dimethyl PABA methyl ester and the like can be mentioned.
- PABA para-aminobenzoic acid
- PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester
- N, N-diethoxy PABA ethyl ester N, N-dimethyl PABA ethyl ester
- N, N-dimethyl PABA butyl ester N, N-dimethyl PABA methyl ester and the like
- anthranilic acid ultraviolet absorber examples include homomentyl-N-acetyl anthranilate and the like.
- salicylic acid ultraviolet absorber examples include amyl salicylate, menthyl salicylate, homomentyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, p-2-propanol phenyl salicylate and the like.
- cinnamic acid-based UV absorbers examples include octyl methoxycinnamate (ethylhexyl methoxycinnamate), di-paramethoxycinnamic acid-glyceryl mono-2-ethylhexanoate, octyl cinnamate, ethyl 4-isopropylcinna Mate, methyl-2,5-diisopropylcinnamate, ethyl-2,4-diisopropylcinnamate, methyl-2,4-diisopropylcinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl- p-Methoxycinnamate, octyl-p-methoxycinnamate (2-ethylhexyl-p-methoxycinnamate), 2-ethoxyethyl-p
- silicone-based cinnamic acid UV absorbers include [3-bis (trimethylsiloxy) methylsilyl-1-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilyl- 3-Methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methyl Silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silyl-1-methyl] Propyl] -3,4-d
- organic ultraviolet absorbers other than the above include, for example, 3- (4'-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl Examples thereof include -5-methylbenzoxazole, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one, a silicone-modified ultraviolet absorber, and a fluorine-modified ultraviolet absorber.
- the critical wavelength of the cosmetic of the present embodiment is preferably 370 nm or more.
- a wide range of ultraviolet light of long wavelength ultraviolet light (UVA) and short wavelength ultraviolet light (UVB) can be blocked.
- the surface-treated zinc oxide particles of the present embodiment are included, high ultraviolet shielding properties are stably exhibited.
- Example 1 Selection of zinc oxide particles
- a commercial product Z having an average particle diameter of 35 nm was used.
- the specific surface area S of the zinc oxide particles was measured by the BET method using a fully automatic specific surface area measuring device (trade name: Macsorb HM Model-1201, manufactured by Mountech Co., Ltd.).
- the sodium content M of the zinc oxide particles was measured by the following method. In a tall beaker, 0.5 g of zinc oxide particles, 80 g of pure water, and 10 ml of concentrated nitric acid were added, and stirred using a stirrer to dissolve the zinc oxide particles. The solution was transferred to a volumetric flask and made up to 200 mL with pure water.
- the sodium content M of the zinc oxide particles was measured with a polarization Zeeman atomic absorption spectrophotometer (model number: Z-2000, manufactured by Hitachi High-Tech).
- the conductivity ⁇ of the slurry prepared by mixing 10 parts by mass of zinc oxide particles and 90 parts by mass of pure water for 1 hour was measured by the following method. 10 parts by mass of zinc oxide particles and 90 parts by mass of pure water were stirred and mixed for 1 hour using a stirrer to prepare a slurry containing zinc oxide particles. While stirring was continued, the conductivity ⁇ of the obtained slurry was measured using a conductivity meter (trade name: ES-12, manufactured by Horiba, Ltd.).
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A1 are shown in Table 1.
- the pure water was added so that zinc oxide particle
- the zinc oxide particles A1 obtained through washing with pure water were dried. 100 parts by mass of the zinc oxide particles A1 were charged into a Henschel mixer. 5 parts by mass of octyltriethoxysilane (trade name: KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.), 0.375 parts by mass of pure water, and isopropyl alcohol while stirring the zinc oxide particles A1 with a Henschel mixer 7.125 parts by mass of the mixture was added. These mixtures were mixed in a Henschel mixer and stirred for 1 hour. Next, the obtained mixture was ground by a jet mill, and the ground powder was dried at 100 ° C. to obtain surface-treated zinc oxide particles B1 of Example 1.
- the specific surface area S of the zinc oxide particles A2, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 are shown in Table 1.
- Surface-treated zinc oxide particles B2 of Example 2 and dispersion C2 of Example 2 were obtained in the same manner as in Example 1 except that zinc oxide particles A2 were used instead of using zinc oxide particles A1. .
- Example 3 A commercially available product Y having an average particle size of 44 nm was used as the zinc oxide particles.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles and the conductivity ⁇ of the slurry were measured in the same manner as in Example 1.
- the specific surface area S of zinc oxide particles S 24 m 2 / g
- sodium content M of zinc oxide particles M 2400 mg / kg
- conductivity of slurry ⁇ 1370 ⁇ S / cm
- S ⁇ M / ⁇ 2 0 It was .03.
- the zinc oxide particles did not satisfy S ⁇ M / ⁇ 2 0.050.05.
- the specific surface area S of the zinc oxide particles A3, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 are shown in Table 1.
- the pure water was added so that zinc oxide particle
- Surface-treated zinc oxide particles B3 of Example 3 and dispersion C3 of Example 3 were obtained in the same manner as in Example 1 except that zinc oxide particles A3 were used instead of using zinc oxide particles A1. .
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A4 are shown in Table 1.
- Surface-treated zinc oxide particles B4 of Example 4 and dispersion C4 of Example 4 were obtained in the same manner as in Example 1 except that zinc oxide particles A4 were used instead of using zinc oxide particles A1. .
- Example 5 As zinc oxide particles, a commercially available product X having an average particle size of 53 nm was used.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles and the conductivity ⁇ of the slurry were measured in the same manner as in Example 1.
- the specific surface area S of zinc oxide particles S 20 m 2 / g
- the sodium content M of zinc oxide particles M 101 mg / kg
- the conductivity ⁇ of the slurry ⁇ 81.2 ⁇ S / cm
- the zinc oxide particles satisfied S ⁇ M / ⁇ 2 0.050.05.
- the zinc oxide particles were not washed with pure water, and the commercial product X was used as zinc oxide particles A5.
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A5 are shown in Table 1.
- Surface-treated zinc oxide particles B5 of Example 5 and a dispersion C5 of Example 5 were obtained in the same manner as in Example 1 except that zinc oxide particles A5 were used instead of using zinc oxide particles A1. .
- Example 6 A commercial product W having an average particle diameter of 106 nm was used as the zinc oxide particles.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles and the conductivity ⁇ of the slurry were measured in the same manner as in Example 1.
- the specific surface area S of zinc oxide particles S 10 m 2 / g
- sodium content M of zinc oxide particles M 31 mg / kg
- conductivity ⁇ of the slurry ⁇ 82 ⁇ S / cm
- S ⁇ M / ⁇ 2 0 It was .05.
- the zinc oxide particles satisfied S ⁇ M / ⁇ 2 0.050.05.
- the commercial product W is used as zinc oxide particles A6 without washing the zinc oxide particles with pure water.
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A6 are shown in Table 1.
- Surface-treated zinc oxide particles B6 of Example 6 and dispersion C6 of Example 6 were obtained in the same manner as in Example 1 except that zinc oxide particles A6 were used instead of using zinc oxide particles A1. .
- Example 7 A commercially available product V having an average particle size of 71 nm was used as zinc oxide particles.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles and the conductivity ⁇ of the slurry were measured in the same manner as in Example 1.
- specific surface area S of zinc oxide particles S 15 m 2 / g
- sodium content M of zinc oxide particles M 48 mg / kg
- conductivity of slurry ⁇ 65 ⁇ S / cm
- S ⁇ M / ⁇ 2 0 It was .17.
- the zinc oxide particles satisfied S ⁇ M / ⁇ 2 0.050.05. Therefore, the commercial product V is used as zinc oxide particles A7 without washing the zinc oxide particles with pure water.
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A7 are shown in Table 1.
- Surface-treated zinc oxide particles B7 of Example 7 and dispersion C7 of Example 7 were obtained in the same manner as in Example 1 except that zinc oxide particles A7 were used instead of using zinc oxide particles A1. .
- Comparative Example 1 Surface-treated zinc oxide particles B8 of Comparative Example 1 and Comparative Example 1 in the same manner as Example 1 except that the zinc oxide particles Z before cleaning of Example 1 were used instead of using the zinc oxide particles A1. A dispersion C8 was obtained.
- Comparative Example 2 Surface-treated zinc oxide particles B9 of Comparative Example 2 and dispersion of Comparative Example 2 in the same manner as Example 1 except that the pre-wash zinc oxide particles Y of Example 3 were used instead of using the zinc oxide particles A1. Liquid C9 was obtained.
- Comparative Example 3 A commercial product U having an average particle size of 132 nm was used as zinc oxide particles.
- the specific surface area S of the zinc oxide particles, the sodium content M of the zinc oxide particles, and the conductivity ⁇ of the slurry were measured.
- specific surface area S of zinc oxide particles S 8 m 2 / g
- sodium content M of zinc oxide particles M 18 mg / kg
- conductivity of slurry ⁇ 76.2 ⁇ S / cm
- S ⁇ M / ⁇ 2 0.02.
- the zinc oxide particles are referred to as zinc oxide particles A10 of Comparative Example 3.
- the specific surface area S, the sodium content M, the conductivity of the slurry and S ⁇ M / ⁇ 2 of the zinc oxide particles A10 are shown in Table 1.
- Surface-treated zinc oxide particles B10 of Comparative Example 3 and a dispersion C10 of Comparative Example 3 were obtained in the same manner as in Example 1 except that zinc oxide particles A10 were used instead of zinc oxide particles A1. .
- the absorption spectrum of a 290 nm-400 nm ultraviolet region was measured using SPF analyzer UV-1000S (made by Labsphere), and it integrated from 290 nm to the long wavelength side in the obtained absorption spectrum
- the critical wavelength is defined as the wavelength at which the integral area is 90% of the integral area in the entire region of 290 nm to 400 nm.
- the coating films formed of the dispersions of Examples 1 to 7 have an average transmission at 290 nm to 320 nm although the transmittance at 450 nm is 46% or more and 77% or less. The ratio was 3% or less, the SPF value was 33 or more, and the critical wavelength was 370 nm or more. Accordingly, the coating films formed of the dispersions of Examples 1 to 7 have high ultraviolet shielding properties and can be capable of shielding a wide range of ultraviolet light of long wavelength ultraviolet light (UVA) and short wavelength ultraviolet light (UVB). I understood. This indicates that the surface-treated zinc oxide particles contained in the dispersions of Examples 1 to 7 have uniform ultraviolet shielding properties.
- UVA long wavelength ultraviolet light
- UVB short wavelength ultraviolet light
- the coating films made of the dispersions of Comparative Examples 1 to 3 have a transmittance of 48% to 72% at 450 nm, but an average transmittance at 290 nm to 320 nm Is 4% or more, the SPF value is 21 or less, and the critical wavelength is 370 nm or more. Therefore, although the coating film consisting of the dispersion liquid of Comparative Example 1 to Comparative Example 3 can shield a wide range of ultraviolet light of long wavelength ultraviolet light (UVA) and short wavelength ultraviolet light (UVB), it has low ultraviolet light shielding properties. I understood. This indicates that the surface-treated zinc oxide particles contained in the dispersions of Comparative Examples 1 to 3 have uneven UV shielding properties.
- UVA long wavelength ultraviolet light
- UVB short wavelength ultraviolet light
- the method for producing surface-treated zinc oxide particles of the present invention can produce surface-treated zinc oxide particles stably exhibiting high ultraviolet shielding properties. Therefore, the surface-treated zinc oxide particles obtained by the method for producing surface-treated zinc oxide particles of the present invention have a great industrial value when used in cosmetics.
- the present invention can provide a method for producing surface-treated zinc oxide particles in which surface-treated zinc oxide particles having high ultraviolet shielding properties and uniform ultraviolet shielding properties can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Cosmetics (AREA)
Abstract
本発明の表面処理酸化亜鉛粒子の製造方法は、酸化亜鉛粒子の比表面積S(単位:m2/g)と、前記酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)と、前記酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σ(単位:μS/cm)と、が、下記式(1)を満たしているかを判定する第1の工程を含む。S・M/σ2≧0.05・・・(1)
Description
本発明は、表面処理酸化亜鉛粒子の製造方法に関する。
本願は、2017年8月1日に、日本に出願された特願2017-149176号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年8月1日に、日本に出願された特願2017-149176号に基づき優先権を主張し、その内容をここに援用する。
酸化亜鉛は、紫外線遮蔽能に優れ、ガスバリア性が高く、さらに透明性が高いことが知られている。そのため、酸化亜鉛を形成材料とする粒子(以下、「酸化亜鉛粒子」と称する。)は、紫外線遮蔽やガスバリア等の機能を有するとともに、透明性が必要とされる種々の素材の形成材料として用いられる。このような素材としては、例えば、紫外線遮蔽フィルム、紫外線遮蔽ガラス、化粧料、ガスバリアフィルム等が挙げられる。
上記の種々の素材について、透明性を得るための方法としては、例えば、形成材料である酸化亜鉛粒子の一次粒子径を小さくする方法が挙げられる。酸化亜鉛粒子の一次粒子径を小さくする方法としては、熱分解法や気相法等の種々の方法が検討されている(例えば、特許文献1、2参照)。
酸化亜鉛粒子を化粧料に適用する場合、酸化亜鉛粒子の表面を化粧品の性状に合わせたり、酸化亜鉛粒子の触媒活性を抑えたりするために、酸化亜鉛粒子の表面処理が行われている。このような酸化亜鉛粒子の表面処理では、表面処理剤としては、例えば、ステアリン酸マグネシウム等の金属石鹸、ジメチコンやハイドロゲンジメチコン等のシリコーンオイル、オクチルトリエトキシシラン等のアルコキシ基を有するシランカップリング剤等が用いられている(例えば、特許文献3、4参照)。
上記の表面処理剤の中でも、シランカップリング剤を用いて、酸化亜鉛粒子を表面処理すると、シランカップリング剤が酸化亜鉛粒子の表面に化学的に結合する。そのため、シランカップリング剤で表面処理した酸化亜鉛粒子は安定性が高い。さらに、置換基が異なる表面処理剤を2種以上用いることにより、酸化亜鉛粒子表面の性質を容易に変更することができる。
以下の説明では、シランカップリング剤で表面処理した酸化亜鉛粒子を、表面処理酸化亜鉛粒子と称する。
以下の説明では、シランカップリング剤で表面処理した酸化亜鉛粒子を、表面処理酸化亜鉛粒子と称する。
このような表面処理酸化亜鉛粒子は、そのまま化粧料に配合されたり、分散媒に分散させた分散液の状態で化粧料に配合されたりしている。
しかしながら、上記の表面処理酸化亜鉛粒子は、紫外線遮蔽性が低いという課題があった。また、同じように表面処理しても、表面処理酸化亜鉛粒子の紫外線遮蔽性が一様にならないという課題があった。
本発明は、上記事情に鑑みてなされたものであって、紫外線遮蔽性が高く、かつ、紫外線遮蔽性が一様な表面処理酸化亜鉛粒子が得られる表面処理酸化亜鉛粒子の製造方法を提供することを目的とする。
本発明者等は、上記課題を解決するために鋭意研究を行った。その結果、市販されている酸化亜鉛粒子は、比表面積、ナトリウムの含有量、およびスラリーの導電率が多種多様であるため、同じように表面処理しても、紫外線遮蔽性が一様な表面処理酸化亜鉛粒子が得られないことに思い至った。そこで、本発明者等は様々な実験の実施、及び様々な式と実験結果との関係を検討し、表面処理前の酸化亜鉛粒子が、式(1):S・M/σ2≧0.05(Sは酸化亜鉛粒子の比表面積(単位:m2/g)、Mは酸化亜鉛粒子のナトリウム含有量(単位:mg/kg)、σは酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率(単位:μS/cm)である。)を満たすか否かを確認することが、性質が一様な表面処理酸化亜鉛粒子を得るために、有効であることを見出した。さらに、本発明者等は、式(1)を満たす酸化亜鉛粒子はそのまま、一方、式(1)を満たさない酸化亜鉛粒子は、式(1)を満たすまで洗浄し、それらの酸化亜鉛粒子を、アルコキシ基を有するシランカップリング剤で表面処理すれば、安定的に、紫外線遮蔽性が高く、かつ、紫外線遮蔽性が一様な表面処理酸化亜鉛粒子が得られることを見出し、本発明を完成するに至った。
本発明の表面処理酸化亜鉛粒子の製造方法は、酸化亜鉛粒子の比表面積S(単位:m2/g)と、前記酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)と、前記酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σ(単位:μS/cm)と、が、下記式(1)を満たしているかを判定する第1の工程を含むことを特徴とする。
S・M/σ2≧0.05・・・(1)
S・M/σ2≧0.05・・・(1)
本発明によれば、紫外線遮蔽性が高く、かつ、紫外線遮蔽性が一様な表面処理酸化亜鉛粒子が得られる、表面処理酸化亜鉛粒子の製造方法を提供することができる。
本発明の表面処理酸化亜鉛粒子の製造方法の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明は趣旨を逸脱しない範囲において、数値、量、材料、種類、時間、温度、順番などについて、変更、省略、置換、追加などが可能である。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明は趣旨を逸脱しない範囲において、数値、量、材料、種類、時間、温度、順番などについて、変更、省略、置換、追加などが可能である。
[表面処理酸化亜鉛粒子の製造方法]
本実施形態の表面処理酸化亜鉛粒子の製造方法は、酸化亜鉛粒子の比表面積S(単位:m2/g)と、酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)と、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σ(単位:μS/cm)と、が、下記式(1)を満たしているかを判定する第1の工程を含む。
S・M/σ2≧0.05・・・(1)
本実施形態の表面処理酸化亜鉛粒子の製造方法は、酸化亜鉛粒子の比表面積S(単位:m2/g)と、酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)と、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σ(単位:μS/cm)と、が、下記式(1)を満たしているかを判定する第1の工程を含む。
S・M/σ2≧0.05・・・(1)
本実施形態における酸化亜鉛粒子の比表面積(単位:m2/g)とは、BET法で求めたBET比表面積のことである。
酸化亜鉛粒子の比表面積を測定する方法としては、例えば、全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用いたBET法が挙げられる。
本実施形態における酸化亜鉛粒子の比表面積は、化粧料として使用される場合には、4m2/g以上かつ35m2/g以下であることが好ましく、6m2/g以上かつ33m2/g以下であることがより好ましく、8m2/g以上かつ32m2/g以下であることがさらに好ましく、9m2/g以上かつ31m2/g以下であることがさらに好ましく、10m2/g以上かつ30m2/g以下であることが特に好ましい。上記比表面積の範囲を有する酸化亜鉛粒子を用いることにより、透明性と紫外線遮蔽性に優れる表面処理酸化亜鉛粒子を製造することができる。
なお、本実施形態の表面処理酸化亜鉛粒子の製造方法では、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σは、上記の式(1)を満たす範囲内において如何なる値にもなり得る。
酸化亜鉛粒子の比表面積が上記範囲であることにより、化粧料に処方された場合に、より透明性の高い化粧料が得られるため好ましい。
本実施形態における酸化亜鉛粒子のナトリウム含有量(単位:mg/kg)とは、偏光ゼーマン原子吸光光度計で求めた値のことである。
酸化亜鉛粒子におけるナトリウム含有量を測定する方法としては、例えば、次のような方法が挙げられる。テフロン(登録商標)製のビーカーに酸化亜鉛粒子を入れ、そこに適量の水と硝酸5mLを添加する。次いで、この混合物を加熱することにより、酸化亜鉛粒子を硝酸と水の混合液に溶解して、酸化亜鉛粒子を含む水溶液を調製する。得られた水溶液を用いて、偏光ゼーマン原子吸光光度計(型番:Z-2000、日立ハイテク社製)により、酸化亜鉛粒子のナトリウム含有量を測定する。
本実施形態における酸化亜鉛粒子のナトリウム含有量は、10mg/kg以上であることが好ましく、20mg/kg以上であることがより好ましく、50mg/kg以上であることがさらに好ましい。また、酸化亜鉛粒子のナトリウム含有量は、500mg/kg以下であることが好ましく、200mg/kg以下であることがより好ましく、110mg/kg以下であることがさらに好ましく、100mg/kg以下であることが特に好ましい。酸化亜鉛粒子のナトリウム含有量の上限値および下限値は、任意に組み合わせることができる。
酸化亜鉛粒子のナトリウム含有量が上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性、及び均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
本実施形態における酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリー(以下、「酸化亜鉛粒子を含むスラリー」という。)の導電率(単位:μS/cm)とは、次の方法により測定された値のことである。
酸化亜鉛粒子を含むスラリーの導電率を測定する方法としては、例えば、次のような方法が挙げられる。酸化亜鉛粒子10質量部と、純水90質量部とを、攪拌子を用いて、1時間、攪拌、混合し、酸化亜鉛粒子を含むスラリーを調製する。攪拌を続けたまま、スラリーの導電率を、導電率計(商品名:ES-12、堀場製作所社製)を用いて測定する。
酸化亜鉛粒子を含むスラリーの導電率は、25μS/cm以上であることが好ましく、30μS/cm以上であることがより好ましく、50μS/cm以上であることがさらに好ましく、60μS/cm以上であることが特に好ましい。また、酸化亜鉛粒子を含むスラリーの導電率は、200μS/cm以下であることが好ましく、190μS/cm以下であることがより好ましく、150μS/cm以下であることがさらに好ましく、100μS/cm以下であることが特に好ましい。酸化亜鉛粒子を含むスラリーの導電率の上限値および下限値は、任意に組み合わせることができる。
酸化亜鉛粒子を含むスラリーの導電率が上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性、及び均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
また、酸化亜鉛粒子を含むスラリーのpHは、7.1以上かつ9.0以下であることが好ましく、7.5以上9.0以下であることがより好ましく、7.5以上8.5以下であることがさらに好ましい。
酸化亜鉛粒子を含むスラリーのpHが上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性及び均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
酸化亜鉛粒子を含むスラリーのpHが上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性及び均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
本実施形態において、酸化亜鉛粒子を含むスラリーのpHとは、次の方法により測定された値を意味する。
上述のように、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合し、酸化亜鉛粒子を含むスラリーを調製する。pH計(商品名:D-51、株式会社堀場製作所製)を用いて、得られたスラリーのpHを測定する。
上述のように、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合し、酸化亜鉛粒子を含むスラリーを調製する。pH計(商品名:D-51、株式会社堀場製作所製)を用いて、得られたスラリーのpHを測定する。
シランカップリング剤の表面処理反応は、加水分解及び縮重合反応であり、表面被覆の反応効率上、加水分解したシランカップリング剤が速やかに酸化亜鉛粒子と反応することが好ましい。酸化亜鉛粒子のpHが上記範囲であれば、酸化亜鉛粒子をシランカップリング剤で表面処理する場合、加水分解反応と縮重合反応の速度のバランスがよく、シランカップリング剤が酸化亜鉛粒子の表面に一様に化学的に結合しやすくなるため好ましい。また、表面処理中に酸化亜鉛粒子が溶解することを抑制することができる点でも好ましい。
酸化亜鉛粒子の比表面積S(単位:m2/g)、ナトリウム含有量M(単位:mg/kg)、および、スラリーの導電率σ(単位:μS/cm)が不明な場合には、第1の工程の前に、上記の方法によりこれらの値を測定すればよい。
なお、第1の工程の前に、比表面積S(単位:m2/g)、ナトリウム含有量M(単位:mg/kg)、および、スラリーの導電率σ(単位:μS/cm)を測定する場合には、これらの測定を行う順番は、特に限定されない。
なお、第1の工程の前に、比表面積S(単位:m2/g)、ナトリウム含有量M(単位:mg/kg)、および、スラリーの導電率σ(単位:μS/cm)を測定する場合には、これらの測定を行う順番は、特に限定されない。
第1の工程では、酸化亜鉛粒子が上記式(1)を満たしているかを判定する。具体的には、比表面積S(単位:m2/g)、ナトリウム含有量M(単位:mg/kg)、および、スラリーの導電率σを、上記式(1)に代入し、酸化亜鉛粒子が上記式(1)を満たしているかを判定する。これにより、後述する第3の工程にて、シランカップリング剤による表面処理に最適な酸化亜鉛粒子を選別することができる。
表面処理前の酸化亜鉛粒子が、上記式(1)を満たしている場合、後述する第3の工程にて、その酸化亜鉛粒子を表面処理することにより、性質が一様な表面処理酸化亜鉛粒子を得ることができる。
表面処理前の酸化亜鉛粒子が、上記式(1)を満たしている場合、後述する第3の工程にて、その酸化亜鉛粒子を表面処理することにより、性質が一様な表面処理酸化亜鉛粒子を得ることができる。
上記式(1)の左辺(S・M/σ2)は、紫外線遮蔽性を示すSPF(Sun Protection Factor)値をより向上させる観点においては、0.10以上であることが好ましく、0.20以上であることがより好ましく、0.30以上であることがさらに好ましい。なお式の左辺(S・M/σ2)は、S×M/σ2で表しても良い。
S・M/σ2の上限値は特に限定されない。例えば、1.0以下であってもよく、0.80以下であってもよく、0.60以下であってもよく、0.50以下であってもよい。
なお、S・M/σ2の上限値および下限値は、任意に組み合わせることができる。
本実施形態の表面処理酸化亜鉛粒子の製造方法は、第1の工程において、酸化亜鉛粒子が上記式(1)を満たしていないことが確認された場合、酸化亜鉛粒子が上記式(1)を満たすまで、酸化亜鉛粒子を洗浄する第2の工程を含んでいてもよい。
第2の工程において、酸化亜鉛粒子を洗浄する方法は、特に限定されない。酸化亜鉛粒子を洗浄する方法としては、例えば、酸化亜鉛粒子30質量部と、純水70質量部とを、ドラム缶型攪拌機等の攪拌機を用いて、攪拌、混合する方法が挙げられる。酸化亜鉛粒子を洗浄する時間や洗浄回数は、特に限定されず、第4の工程における判定結果に基づいて適宜調整される。
酸化亜鉛粒子を洗浄(水洗)することにより、酸化亜鉛粒子の水可溶物と、酸化亜鉛粒子の表面近傍に存在するNaイオンも除去されることとなる。そのため、酸化亜鉛粒子のナトリウム含有量が所定の範囲内となるとともに、そのような酸化亜鉛粒子を含むスラリーの導電率も所定の範囲内となる。
洗浄後の酸化亜鉛粒子の一部を取り出して、乾燥した試料とし、その試料について、上述の方法にて、酸化亜鉛粒子の比表面積、酸化亜鉛粒子のナトリウム含有量および酸化亜鉛粒子を含むスラリーの導電率を測定する。さらに、第1の工程にて、上述の方法で得られた測定結果に基づいて、酸化亜鉛粒子が上記式(1)を満たしているかを判定する。その結果、酸化亜鉛粒子が上記式(1)を満たしていれば、第2の工程を終了する。一方、酸化亜鉛粒子が上記式(1)を満たしていなければ、酸化亜鉛粒子が上記式(1)を満たすまで、第2の工程を継続する。
本実施形態の表面処理酸化亜鉛粒子の製造方法は、上記式(1)を満たす酸化亜鉛粒子を、アルコキシ基を有するシランカップリング剤(以下、「シランカップリング剤」と略すこともある。)で表面処理する第3の工程を含んでいてもよい。すなわち、第3の工程では、例えば、上記の酸化亜鉛粒子とシランカップリング剤を混合することにより、酸化亜鉛粒子を、シランカップリング剤で表面処理する。
なお、第2の工程を経た酸化亜鉛粒子は、洗浄に用いた純水を除去して、第3の工程に供される。洗浄に用いた純水を除去した後に、乾燥してから、第3の工程に供されてもよい。
なお、第2の工程を経た酸化亜鉛粒子は、洗浄に用いた純水を除去して、第3の工程に供される。洗浄に用いた純水を除去した後に、乾燥してから、第3の工程に供されてもよい。
アルコキシ基を有するシランカップリング剤は、化粧料に使用可能なシランカップリング剤であれば特に限定されない。
アルコキシ基を有するシランカップリング剤としては、例えば、下記一般式(2)で表されるシランカップリング剤のうち、化粧料に使用可能なものが挙げられる。
R1Si(OR2)3・・・(2)
(R1は、炭素原子数1~18のアルキル基、フルオロアルキル基またはフェニル基、R2は、炭素原子数1~4のアルキル基を示す。)
アルコキシ基を有するシランカップリング剤としては、例えば、下記一般式(2)で表されるシランカップリング剤のうち、化粧料に使用可能なものが挙げられる。
R1Si(OR2)3・・・(2)
(R1は、炭素原子数1~18のアルキル基、フルオロアルキル基またはフェニル基、R2は、炭素原子数1~4のアルキル基を示す。)
このようなシランカップリング剤としては、アルキルアルコキシシラン、アリルアルコキシシラン、アルキル基を側鎖に有するポリシロキサンおよびアリル基を側鎖に有するポリシロキサンからなる群から選ばれる少なくとも1種であることが好ましい。
アルキルアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン(トリエトキシカプリリルシラン)、n-オクタデシルトリメトキシシラン等が挙げられる。
シランカップリング剤としては、例えば、ジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマー、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン等の、シロキサン骨格を主鎖とし、分子構造内にアルコキシ基とアクリル基とを有するポリマー型シランカップリング剤等を用いることもできる。
シランカップリング剤としては、例えば、トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリエトキシシラン等のフルオロアルキルアルコキシシラン等を用いることもできる。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
上記のシランカップリング剤の中でも、分子内にオクチル基を有するシランカップリング剤がより好ましい。具体的には、官能基の極性が中程度でありナチュラルオイルやエステル油からシリコーンオイルまでの幅広い極性の油相に対応可能なシランカップリング剤がより好ましい。このようなシランカップリング剤としては、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシランおよびジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマーからなる群から選ばれる少なくとも1種が特に好ましい。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
酸化亜鉛粒子に対するシランカップリング剤の表面処理量は、表面処理酸化亜鉛粒子に求められる特性に応じて適宜調整すればよい。
シランカップリング剤の混合量は、酸化亜鉛粒子に対して2質量%以上かつ10質量%以下であることが好ましい。シランカップリング剤の混合量が上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性・均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
シランカップリング剤の混合量は、酸化亜鉛粒子に対して2質量%以上かつ10質量%以下であることが好ましい。シランカップリング剤の混合量が上記範囲であることにより、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性・均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
なお、本実施形態の表面処理酸化亜鉛粒子の製造方法では、表面処理酸化亜鉛粒子の特性を阻害しない範囲であれば、シランカップリング剤に加えて、化粧料に用いられる表面処理剤であって、シランカップリング剤以外のものを用いて、酸化亜鉛粒子を表面処理してもよい。
シランカップリング剤以外の表面処理剤としては、例えば、シリカ、アルミナ等の無機材料や、シリコーン化合物、脂肪酸、脂肪酸石鹸、脂肪酸エステル、有機チタネート化合物等の有機材料が挙げられる。
第3の工程において、酸化亜鉛粒子を、シランカップリング剤で表面処理する方法は、特に限定されない。酸化亜鉛粒子を、シランカップリング剤で表面処理する方法は、表面処理に用いる、シランカップリング剤等の成分に応じて、乾式処理や湿式処理等公知の方法が適宜選択される。
例えば、乾式処理の場合、ヘンシェルミキサーやスーパーミキサー等のミキサー中で、酸化亜鉛粒子を撹拌しながら、ミキサー中の酸化亜鉛粒子に、シランカップリング剤を液滴下あるいはスプレー噴霧にて添加した後、一定時間、高速強撹拌する。その後、撹拌を続けながら、70℃から200℃に加熱処理する。これにより、酸化亜鉛粒子の表面にシランカップリング剤が化学的に結合する。
シランカップリング剤の加水分解用の水分は、酸化亜鉛粒子の付着水を用いてもよく、必要に応じてシランカップリング剤と共にまたは別々に添加してもよい。
シランカップリング剤は、シランカップリング剤と混合可能な溶媒で希釈して用いてもよい。このような溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコールや、n-ヘキサン、トルエン、キシレン等の炭化水素が挙げられる。水分を添加して表面処理する場合には、これらの溶媒の中でも、水との相溶性が高いアルコール等の極性溶媒が好適に用いられる。
湿式処理の場合は、例えば、酸化亜鉛粒子、シランカップリング剤および溶媒の混合物を撹拌しながら、25℃から100℃で数時間、混合する。その後、固液分離して回収した固形分を洗浄し、この洗浄物を70℃から200℃で加熱処理する。これにより、酸化亜鉛粒子が、シランカップリング剤で表面処理される。
本実施形態の表面処理酸化亜鉛粒子の製造方法によれば、第1の工程にて、酸化亜鉛粒子が上記式(1)を満たしているかを判定する。このため、シランカップリング剤による表面処理に最適な酸化亜鉛粒子を選別することができる。したがって、本実施形態の表面処理酸化亜鉛粒子の製造方法によれば、性質が一様な表面処理酸化亜鉛粒子を得ることができる。すなわち、本実施形態の表面処理酸化亜鉛粒子の製造方法によれば、シランカップリング剤による酸化亜鉛粒子の表面処理反応の均一性・均質性が良好となり、分散性が高く、紫外線遮蔽性能に優れる表面処理酸化亜鉛粒子を得ることができる。
[表面処理酸化亜鉛粒子]
本実施形態の表面処理酸化亜鉛粒子は、本実施形態の表面処理酸化亜鉛粒子の製造方法によって得られた表面処理酸化亜鉛粒子である。すなわち、本実施形態の表面処理酸化亜鉛粒子は、酸化亜鉛粒子の表面が、アルコキシ基を有するシランカップリング剤で表面処理された表面処理酸化亜鉛粒子であって、酸化亜鉛粒子が、下記式(1)を満たす。
S・M/σ2≧0.05・・・(1)
(Sは酸化亜鉛粒子の比表面積(単位:m2/g)、Mは酸化亜鉛粒子のナトリウム含有量(単位:mg/kg)、σは酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率(単位:μS/cm)である。)
本実施形態の表面処理酸化亜鉛粒子は、本実施形態の表面処理酸化亜鉛粒子の製造方法によって得られた表面処理酸化亜鉛粒子である。すなわち、本実施形態の表面処理酸化亜鉛粒子は、酸化亜鉛粒子の表面が、アルコキシ基を有するシランカップリング剤で表面処理された表面処理酸化亜鉛粒子であって、酸化亜鉛粒子が、下記式(1)を満たす。
S・M/σ2≧0.05・・・(1)
(Sは酸化亜鉛粒子の比表面積(単位:m2/g)、Mは酸化亜鉛粒子のナトリウム含有量(単位:mg/kg)、σは酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率(単位:μS/cm)である。)
すなわち、本実施形態の表面処理酸化亜鉛粒子は、本実施形態における酸化亜鉛粒子が、シランカップリング剤で表面処理されたものである。
本実施形態の表面処理酸化亜鉛粒子において、酸化亜鉛粒子の比表面積、酸化亜鉛粒子のナトリウム含有量、および酸化亜鉛粒子を含むスラリーの導電率の好適な範囲は、本実施形態における酸化亜鉛粒子と同様の数値範囲を採用することができる。
酸化亜鉛粒子の表面をシランカップリング剤で表面処理した表面処理酸化亜鉛粒子は、酸化亜鉛粒子とシランカップリング剤が化学的に結合しているため、非常に安定性が高い。また、目的に応じた置換基を有するシランカップリング剤を選択することにより、酸化亜鉛粒子の表面の性質を容易に変更することができる。すなわち、目的に応じて、シランカップリング剤の種類を変更することにより、例えば、本実施形態の表面処理酸化亜鉛粒子を配合した化粧料について、肌に塗ったときの伸びや肌触り等の感触を変えることができる。
本実施形態の表面処理酸化亜鉛粒子によれば、安定的に高い紫外線遮蔽性を示すことができる。
[分散液]
本実施形態の分散液は、本実施形態の表面処理酸化亜鉛粒子と、分散媒と、を含有する。
なお、本実施形態の分散液は、粘度が高いペースト状の分散体も含む。
本実施形態の分散液は、本実施形態の表面処理酸化亜鉛粒子と、分散媒と、を含有する。
なお、本実施形態の分散液は、粘度が高いペースト状の分散体も含む。
分散媒は、化粧料に処方することが可能で、表面処理酸化亜鉛粒子を分散できるものであれば、特に限定されない。
分散媒としては、例えば、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;ナチュラルオイル、エステル油、シリコーンオイル等が挙げられる。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
分散媒としては、例えば、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;ナチュラルオイル、エステル油、シリコーンオイル等が挙げられる。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、他の分散媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;シクロヘキサン等の環状炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類;ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類等が挙げられる。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、他の分散媒としては、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類;アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類等が挙げられる。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
これらの分散媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、他の分散媒としては、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油;イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油;デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸;ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等の疎水性の分散媒が挙げられる。
本実施形態の分散液は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
添加剤としては、例えば、防腐剤、分散剤、分散助剤、安定剤、水溶性バインダー、増粘剤、油溶性薬剤、油溶性色素類、油溶性蛋白質類、UV吸収剤等が挙げられる。
本実施形態の分散液における粒度分布の累積体積百分率が50%のときの粒径(d50)は、300nm以下であることが好ましく、250nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
d50の下限値は、特に限定されず、例えば、50nm以上であってもよく、100nm以上であってもよく、150nm以上であってもよい。
d50の上限値および下限値は、任意に組み合わせることができる。
d50の上限値および下限値は、任意に組み合わせることができる。
また、本実施形態の分散液における粒度分布の累積体積百分率が90%のときの粒径(d90)は、400nm以下であることが好ましく、350nm以下であることがより好ましく、300nm以下であることがさらに好ましい。
d90の下限値は、特に限定されず、例えば、100nm以上であってもよく、150nm以上であってもよく、200nm以上であってもよい。
d90の上限値および下限値は、任意に組み合わせることができる。
d90の上限値および下限値は、任意に組み合わせることができる。
分散液のd50が300nm以下の場合には、この分散液を用いて作製した化粧料を皮膚に塗布した場合に、表面処理酸化亜鉛粒子が均一に分布しやすく、紫外線遮蔽効果が向上するため好ましい。また、分散液のd90が400nm以下の場合には、分散液の透明性が高く、この分散液を用いて作製された化粧料の透明性も高くなるため好ましい。
すなわち、本実施形態の分散液におけるd50とd90が上記範囲であることにより、透明性に優れ、紫外線遮蔽性に優れる分散液を得ることができる。また、この分散液を用いて作製した化粧料も、透明性と紫外線遮蔽性に優れる。
本実施形態の分散液における粒度分布の累積体積百分率の測定方法としては、動的光散乱式粒径分布測定装置(型番:LB-550、堀場製作所製)を用いた方法が挙げられる。
本実施形態の分散液における表面処理酸化亜鉛粒子の含有量は、目的とする分散液の特性に応じて適宜調整される。
本実施形態の分散液を化粧料に用いる場合、分散液における表面処理酸化亜鉛粒子の含有量は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。また、分散液における表面処理酸化亜鉛粒子の含有量は、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
分散液における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
分散液における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
分散液における表面処理酸化亜鉛粒子の含有量が上記範囲であることにより、分散液において、表面処理酸化亜鉛粒子が高濃度に含有される。そのため、分散液を用いて作製する化粧料の処方の自由度を向上することができるとともに、分散液の粘度を取り扱いが容易な範囲に調整することができる。
本実施形態の分散液の粘度は、5Pa・s以上であることが好ましく、8Pa・s以上であることがより好ましく、10Pa・s以上であることがさらに好ましく、15Pa・s以上であることが最も好ましい。また、分散液の粘度は、300Pa・s以下であることが好ましく、100Pa・s以下であることがより好ましく、80Pa・s以下であることがさらに好ましく、60Pa・s以下であることが最も好ましい。
分散液の粘度の上限値および下限値は、任意に組み合わせることができる。
分散液の粘度の上限値および下限値は、任意に組み合わせることができる。
分散液の粘度が上記範囲であることにより、酸化亜鉛粒子を高濃度に含んでいても、取り扱いが容易な分散液を得ることができる。
本実施形態の分散液の粘度の測定方法としては、例えば、デジタル粘度計(商品名:DV-I+Viscometer、Brookfield社製)を用いて、25℃、20rpmの条件で測定する方法が挙げられる。
本実施形態の分散液は、表面処理酸化亜鉛粒子を10質量%含有する分散液を、石英ガラス板上に厚さが12μmとなるように塗布して15分間自然乾燥させて塗膜を形成した場合、その塗膜について測定される物性値が、次の範囲であることが好ましい。
すなわち、上記塗膜の450nmにおける透過率は、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることがさらに好ましい。塗膜の450nmにおける透過率の上限値は特に限定されず、100%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
塗膜の450nmにおける透過率の上限値および下限値は、任意に組み合わせることができる。
すなわち、上記塗膜の450nmにおける透過率は、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることがさらに好ましい。塗膜の450nmにおける透過率の上限値は特に限定されず、100%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
塗膜の450nmにおける透過率の上限値および下限値は、任意に組み合わせることができる。
塗膜は450nmにおける透過率が高いほど透明性に優れるため、塗膜の450nmにおける透過率が高いことが好ましい。
本実施形態の分散液によって形成された塗膜の450nmにおける透過率の測定方法としては、次のような方法が挙げられる。表面処理酸化亜鉛粒子を10質量%含有する分散液を、石英ガラス板上に分散液の厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成する。次いで、得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、450nmにおける透過率を測定する。
上記塗膜の290nm~320nmにおける平均透過率は、10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。塗膜の290nm~320nmにおける平均透過率の下限値は特に限定されず、0%であってもよく、0.5%であってもよく、1%であってもよい。
塗膜の290nm~320nmにおける平均透過率の上限値および下限値は、任意に組み合わせることができる。
塗膜の290nm~320nmにおける平均透過率の上限値および下限値は、任意に組み合わせることができる。
塗膜は290nm~320nmにおける平均透過率が低いほど紫外線遮蔽性に優れるため、塗膜の290nm~320nmにおける平均透過率は低いことが好ましい。
本実施形態の分散液によって形成された塗膜の290nm~320nmにおける平均透過率の測定方法としては、次のような方法が挙げられる。表面処理酸化亜鉛粒子を10質量%含有する分散液を、石英ガラス板上に厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成する。次いで、得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、290nm~320nmにおける平均透過率を測定する。
上記塗膜のSPF値は、30以上であることが好ましく、35以上であることがより好ましく、40以上であることがさらに好ましい。塗膜のSPF値の上限値は特に限定されず、150であってもよく、100であってもよく、80であってもよい。本発明の製造方法によれば、所望のSPF値を有する塗膜を供することが可能である。例えば、高いSPF値を得るために、式(1)の値を高くするようにコントロールしても良い。
塗膜のSPF値の上限値および下限値は、任意に組み合わせることができる。
塗膜のSPF値の上限値および下限値は、任意に組み合わせることができる。
塗膜のSPF値が大きいほど、紫外線B波を防ぐ効果が大きいため、SPF値は大きいことが好ましい。
本実施形態の分散液によって形成された塗膜のSPF値の測定方法としては、次のような方法が挙げられる。表面処理酸化亜鉛粒子を10質量%含有する分散液を、石英ガラス板上に厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成する。次いで、得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、SPF値を測定する。
上記塗膜の臨界波長(Critical Wavelength)は、370nm以上であることが好ましい。塗膜の臨界波長が370nm以上であることにより、この塗膜を形成する分散液を含有する化粧料は、臨界波長が370nm以上となり、長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
なお、本明細書において「臨界波長」とは、石英ガラス板上に分散液を塗布して形成した塗膜を分析することによって求められる値である。具体的には、上記厚さが12μmの塗膜について、290nm以上かつ400nm以下の紫外線領域の吸収スペクトルを測定し、得られた吸収スペクトルにおいて290nmから長波長側に積分したとき、積分面積が290nm以上かつ400nm以下の全領域での積分面積の90%となる波長を「臨界波長」とする。290nm以上かつ400nm以下の紫外線領域の吸収スペクトルの測定には、例えば、SPFアナライザーUV-1000S(Labsphere社製)が用いられる。
本実施形態の分散液の製造方法は、特に限定されない。例えば、本実施形態の表面処理酸化亜鉛粒子と、分散媒とを、公知の分散装置で、機械的に分散する方法が挙げられる。
分散装置は、必要に応じて選択できる。分散装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
本実施形態の分散液は、化粧料の他、紫外線遮蔽機能やガス透過抑制機能等を有する塗料等に用いることができる。
本実施形態の分散液によれば、本実施形態の表面処理酸化亜鉛粒子を含むため、安定的に高い紫外線遮蔽性を示す。
[組成物]
本実施形態の組成物は、本実施形態の表面処理酸化亜鉛粒子と、樹脂と、分散媒と、を含有してなる。
本実施形態の組成物は、本実施形態の表面処理酸化亜鉛粒子と、樹脂と、分散媒と、を含有してなる。
本実施形態の組成物における表面処理酸化亜鉛粒子の含有量は、目的とする組成物の特性に応じて適宜調整される。本実施形態の組成物における表面処理酸化亜鉛粒子の含有量は、例えば、10質量%以上かつ40質量%以下であることが好ましく、20質量%以上かつ30質量%以下であることがより好ましい。
組成物における表面処理酸化亜鉛粒子の含有量が上記範囲であることにより、組成物において、表面処理酸化亜鉛粒子が高濃度に含有される。そのため、表面処理酸化亜鉛粒子の特性が充分に得られ、かつ、表面処理酸化亜鉛粒子を均一に分散した組成物が得られる。
分散媒は、工業用途で一般的に用いられるものであれば特に限定されない。分散媒としては、例えば、水、メタノール、エタノール、プロパノール等のアルコール類、酢酸メチル、酢酸エチル、トルエン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。
本実施形態の組成物における分散媒の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整される。
樹脂は、工業用途で一般的に用いられるものであれば特に限定されない。樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。
本実施形態の組成物における樹脂の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整される。
本実施形態の組成物は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
添加剤としては、例えば、重合開始剤、分散剤、防腐剤等が挙げられる。
添加剤としては、例えば、重合開始剤、分散剤、防腐剤等が挙げられる。
本実施形態の組成物の製造方法は、特に限定されない。例えば、本実施形態の表面処理酸化亜鉛粒子と、樹脂と、分散媒とを、公知の混合装置で、機械的に混合する方法が挙げられる。
また、上述の分散液と、樹脂とを、公知の混合装置で、機械的に混合する方法が挙げられる。
混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー等が挙げられる。
本実施形態の組成物を、ロールコート法、フローコート法、スプレーコート法、スクリーン印刷法、はけ塗り法、浸漬法等の通常の塗布方法により、ポリエステルフィルム等のプラスチック基材に塗布することにより、塗膜を形成することができる。これらの塗膜は、紫外線遮蔽膜やガスバリア膜として活用することができる。
本実施形態の組成物によれば、本実施形態の表面処理酸化亜鉛粒子を含むため、安定的に高い紫外線遮蔽性を示す。
[化粧料]
本実施形態の化粧料は、本実施形態の表面処理酸化亜鉛粒子および本実施形態の分散液の少なくとも一方を含有してなる。
本実施形態の化粧料は、本実施形態の表面処理酸化亜鉛粒子および本実施形態の分散液の少なくとも一方を含有してなる。
また、本実施形態の化粧料は、化粧品基剤原料を含有していてもよい。
化粧品基剤原料とは、化粧品の本体を形成する諸原料を意味し、油性原料、水性原料、界面活性剤、粉体原料等が挙げられる。
油性原料としては、例えば、油脂、高級脂肪酸、高級アルコール、エステル油類等が挙げられる。
油性原料としては、例えば、油脂、高級脂肪酸、高級アルコール、エステル油類等が挙げられる。
水性原料としては、精製水、アルコール、増粘剤等が挙げられる。
粉末原料としては、有色顔料、白色顔料、パール剤、体質顔料等が挙げられる。
本実施形態の化粧料は、例えば、本実施形態の分散液を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の化粧品基剤原料に、従来通りに配合することにより得られる。
また、本実施形態の化粧料は、本実施形態の表面処理酸化亜鉛粒子を油相または水相に配合して、O/W型またはW/O型のエマルションとし、そのエマルションと化粧品基剤原料とを配合することにより得られる。
本実施形態の化粧料における表面処理酸化亜鉛粒子の含有量は、目的とする化粧料の特性に応じて適宜調整される。例えば、表面処理酸化亜鉛粒子の含有量の下限は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、1質量%以上であってもよい。また、表面処理酸化亜鉛粒子の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。
化粧料における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
化粧料における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
以下、日焼け止め化粧料について具体的に説明する。
紫外線、特に長波長紫外線(UVA)を効果的に遮蔽し、粉っぽさやきしみの少ない良好な使用感を得るためには、日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の下限は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
紫外線、特に長波長紫外線(UVA)を効果的に遮蔽し、粉っぽさやきしみの少ない良好な使用感を得るためには、日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の下限は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。日焼け止め化粧料における表面処理酸化亜鉛粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
日焼け止め化粧料は、必要に応じて、疎水性分散媒、表面処理酸化亜鉛粒子以外の無機微粒子や無機顔料、親水性分散媒、油脂、界面活性剤、保湿剤、増粘剤、pH調整剤、栄養剤、酸化防止剤、香料等を含んでいてもよい。
疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
化粧料に含まれる表面処理粒子以外の無機微粒子や無機顔料としては、例えば、炭酸カルシウム、リン酸カルシウム(アパタイト)、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、カオリン、タルク、酸化チタン、酸化アルミニウム、黄酸化鉄、γ-酸化鉄、チタン酸コバルト、コバルトバイオレット、酸化ケイ素等が挙げられる。
日焼け止め化粧料は、さらに有機系紫外線吸収剤を少なくとも1種含有していてもよい。
有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤等が挙げられる。
ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール等が挙げられる。
ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
安息香酸系紫外線吸収剤としては、例えば、パラアミノ安息香酸(PABA)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル、N,N-ジメチルPABAメチルエステル等が挙げられる。
アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
ケイ皮酸系紫外線吸収剤としては、例えば、オクチルメトキシシンナメート(メトキシケイヒ酸エチルヘキシル)、ジ-パラメトキシケイ皮酸-モノ-2-エチルヘキサン酸グリセリル、オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、オクチル-p-メトキシシンナメート(2-エチルヘキシル-p-メトキシシンナメート)、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等が挙げられる。
シリコーン系ケイ皮酸紫外線吸収剤としては、例えば、[3-ビス(トリメチルシロキシ)メチルシリル-1-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリル-3-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリル-1-メチルプロピル]-3,4-ジメトキシシンナメート等が挙げられる。
上記以外の有機系紫外線吸収剤としては、例えば、3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン、シリコーン変性紫外線吸収剤、フッ素変性紫外線吸収剤等が挙げられる。
本実施形態の化粧料の臨界波長は、370nm以上であることが好ましい。化粧料の臨界波長が370nm以上であることにより、長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
本実施形態の化粧料によれば、本実施形態の表面処理酸化亜鉛粒子を含むため、安定的に高い紫外線遮蔽性を示す。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
「酸化亜鉛粒子の選定」
酸化亜鉛粒子として、平均粒子径:35nmの市販品Zを用いた。
全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用いたBET法により、酸化亜鉛粒子の比表面積Sを測定した。
次の方法により、酸化亜鉛粒子のナトリウム含有量Mを測定した。トールビーカーに、酸化亜鉛粒子を0.5g、純水80g、濃硝酸10mlを添加して、撹拌子を用いて撹拌し、酸化亜鉛粒子を溶解させた。この溶解液をメスフラスコに移し、純水で200mLに定容した。得られた水溶液を用いて、偏光ゼーマン原子吸光光度計(型番:Z-2000、日立ハイテク社製)により、酸化亜鉛粒子のナトリウム含有量Mを測定した。
次の方法により、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σを測定した。酸化亜鉛粒子10質量部と、純水90質量部とを、攪拌子を用いて、1時間、攪拌、混合し、酸化亜鉛粒子を含むスラリーを調製した。攪拌を続けたまま、得られたスラリーの導電率σを、導電率計(商品名:ES-12、堀場製作所社製)を用いて測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=30m2/g、酸化亜鉛粒子のナトリウム含有量M=1400mg/kg、スラリーの導電率σ=1034μS/cm、S・M/σ2=0.04であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていなかった。
そこで、純水による酸化亜鉛粒子の洗浄を繰り返して、比表面積S=30m2/g、ナトリウム含有量M=56mg/kg、スラリーの導電率σ=85.6μS/cm、S・M/σ2=0.23である酸化亜鉛粒子A1を得た。酸化亜鉛粒子A1の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
なお、洗浄は、酸化亜鉛粒子が30質量%となるように純水を添加し、ドラム缶型攪拌機で1時間攪拌する操作を3回行った。
「酸化亜鉛粒子の選定」
酸化亜鉛粒子として、平均粒子径:35nmの市販品Zを用いた。
全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用いたBET法により、酸化亜鉛粒子の比表面積Sを測定した。
次の方法により、酸化亜鉛粒子のナトリウム含有量Mを測定した。トールビーカーに、酸化亜鉛粒子を0.5g、純水80g、濃硝酸10mlを添加して、撹拌子を用いて撹拌し、酸化亜鉛粒子を溶解させた。この溶解液をメスフラスコに移し、純水で200mLに定容した。得られた水溶液を用いて、偏光ゼーマン原子吸光光度計(型番:Z-2000、日立ハイテク社製)により、酸化亜鉛粒子のナトリウム含有量Mを測定した。
次の方法により、酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σを測定した。酸化亜鉛粒子10質量部と、純水90質量部とを、攪拌子を用いて、1時間、攪拌、混合し、酸化亜鉛粒子を含むスラリーを調製した。攪拌を続けたまま、得られたスラリーの導電率σを、導電率計(商品名:ES-12、堀場製作所社製)を用いて測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=30m2/g、酸化亜鉛粒子のナトリウム含有量M=1400mg/kg、スラリーの導電率σ=1034μS/cm、S・M/σ2=0.04であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていなかった。
そこで、純水による酸化亜鉛粒子の洗浄を繰り返して、比表面積S=30m2/g、ナトリウム含有量M=56mg/kg、スラリーの導電率σ=85.6μS/cm、S・M/σ2=0.23である酸化亜鉛粒子A1を得た。酸化亜鉛粒子A1の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
なお、洗浄は、酸化亜鉛粒子が30質量%となるように純水を添加し、ドラム缶型攪拌機で1時間攪拌する操作を3回行った。
「表面処理酸化亜鉛粒子の作製」
純水による洗浄を経て得られた酸化亜鉛粒子A1を乾燥した。
酸化亜鉛粒子A1の100質量部をヘンシェルミキサーに投入した。酸化亜鉛粒子A1をヘンシェルミキサーで撹拌しながら、酸化亜鉛粒子A1に、オクチルトリエトキシシラン(商品名:KBE-3083、信越化学社製)5質量部、純水0.375質量部、およびイソプロピルアルコール7.125質量部の混合液を添加した。これらの混合物をヘンシェルミキサー内で混合し、1時間撹拌した。
次いで、得られた混合物をジェットミルで粉砕し、この粉砕粉を100℃で乾燥することにより、実施例1の表面処理酸化亜鉛粒子B1を得た。
純水による洗浄を経て得られた酸化亜鉛粒子A1を乾燥した。
酸化亜鉛粒子A1の100質量部をヘンシェルミキサーに投入した。酸化亜鉛粒子A1をヘンシェルミキサーで撹拌しながら、酸化亜鉛粒子A1に、オクチルトリエトキシシラン(商品名:KBE-3083、信越化学社製)5質量部、純水0.375質量部、およびイソプロピルアルコール7.125質量部の混合液を添加した。これらの混合物をヘンシェルミキサー内で混合し、1時間撹拌した。
次いで、得られた混合物をジェットミルで粉砕し、この粉砕粉を100℃で乾燥することにより、実施例1の表面処理酸化亜鉛粒子B1を得た。
「分散液の作製」
表面処理酸化亜鉛粒子B1を10質量部と、分散剤(商品名:KF-6028、信越化学社製)を2質量部と、デカメチルシクロペンタシロキサン88質量部とを、攪拌機により4000rpmで撹拌し、実施例1の分散液C1を得た。
表面処理酸化亜鉛粒子B1を10質量部と、分散剤(商品名:KF-6028、信越化学社製)を2質量部と、デカメチルシクロペンタシロキサン88質量部とを、攪拌機により4000rpmで撹拌し、実施例1の分散液C1を得た。
[実施例2]
実施例1において、洗浄回数を2回に減らした以外は実施例1と同様にして、酸化亜鉛粒子を含むスラリーを調製した。
その結果、比表面積S=30m2/g、ナトリウム含有量M=70mg/kg、スラリー導電率σ=186.7μS/cm、S・M/σ2=0.06の酸化亜鉛粒子A2を得た。酸化亜鉛粒子A2の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A2を用いたこと以外は実施例1と同様にして、実施例2の表面処理酸化亜鉛粒子B2と、実施例2の分散液C2とを得た。
実施例1において、洗浄回数を2回に減らした以外は実施例1と同様にして、酸化亜鉛粒子を含むスラリーを調製した。
その結果、比表面積S=30m2/g、ナトリウム含有量M=70mg/kg、スラリー導電率σ=186.7μS/cm、S・M/σ2=0.06の酸化亜鉛粒子A2を得た。酸化亜鉛粒子A2の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A2を用いたこと以外は実施例1と同様にして、実施例2の表面処理酸化亜鉛粒子B2と、実施例2の分散液C2とを得た。
[実施例3]
酸化亜鉛粒子として、平均粒子径:44nmの市販品Yを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=24m2/g、酸化亜鉛粒子のナトリウム含有量M=2400mg/kg、スラリーの導電率σ=1370μS/cm、S・M/σ2=0.03であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていなかった。
そこで、純水による酸化亜鉛粒子の洗浄を繰り返して、比表面積S=24m2/g、ナトリウム含有量M=81mg/kg、スラリー導電率σ=67.1μS/cm、S・M/σ2=0.43の酸化亜鉛粒子A3を得た。酸化亜鉛粒子A3の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
なお、洗浄は、酸化亜鉛粒子が30質量%となるように純水を添加し、ドラム缶攪拌機で1時間攪拌する洗浄を3回行った。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A3を用いたこと以外は実施例1と同様にして、実施例3の表面処理酸化亜鉛粒子B3と、実施例3の分散液C3とを得た。
酸化亜鉛粒子として、平均粒子径:44nmの市販品Yを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=24m2/g、酸化亜鉛粒子のナトリウム含有量M=2400mg/kg、スラリーの導電率σ=1370μS/cm、S・M/σ2=0.03であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていなかった。
そこで、純水による酸化亜鉛粒子の洗浄を繰り返して、比表面積S=24m2/g、ナトリウム含有量M=81mg/kg、スラリー導電率σ=67.1μS/cm、S・M/σ2=0.43の酸化亜鉛粒子A3を得た。酸化亜鉛粒子A3の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
なお、洗浄は、酸化亜鉛粒子が30質量%となるように純水を添加し、ドラム缶攪拌機で1時間攪拌する洗浄を3回行った。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A3を用いたこと以外は実施例1と同様にして、実施例3の表面処理酸化亜鉛粒子B3と、実施例3の分散液C3とを得た。
[実施例4]
実施例3において、洗浄回数を2回に減らした以外は実施例3と同様にして、酸化亜鉛粒子を含むスラリーを調製した。
その結果、比表面積S=24m2/g、ナトリウム含有量M=97mg/kg、スラリー導電率σ=75.7μS/cm、S・M/σ2=0.41の酸化亜鉛粒子A4を得た。
酸化亜鉛粒子A4の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A4を用いたこと以外は実施例1と同様にして、実施例4の表面処理酸化亜鉛粒子B4と、実施例4の分散液C4とを得た。
実施例3において、洗浄回数を2回に減らした以外は実施例3と同様にして、酸化亜鉛粒子を含むスラリーを調製した。
その結果、比表面積S=24m2/g、ナトリウム含有量M=97mg/kg、スラリー導電率σ=75.7μS/cm、S・M/σ2=0.41の酸化亜鉛粒子A4を得た。
酸化亜鉛粒子A4の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A4を用いたこと以外は実施例1と同様にして、実施例4の表面処理酸化亜鉛粒子B4と、実施例4の分散液C4とを得た。
[実施例5]
酸化亜鉛粒子として、平均粒子径:53nmの市販品Xを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=20m2/g、酸化亜鉛粒子のナトリウム含有量M=101mg/kg、スラリーの導電率σ=81.2μS/cm、S・M/σ2=0.31であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Xを酸化亜鉛粒子A5とした。酸化亜鉛粒子A5の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A5を用いたこと以外は実施例1と同様にして、実施例5の表面処理酸化亜鉛粒子B5と、実施例5の分散液C5とを得た。
酸化亜鉛粒子として、平均粒子径:53nmの市販品Xを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=20m2/g、酸化亜鉛粒子のナトリウム含有量M=101mg/kg、スラリーの導電率σ=81.2μS/cm、S・M/σ2=0.31であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Xを酸化亜鉛粒子A5とした。酸化亜鉛粒子A5の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A5を用いたこと以外は実施例1と同様にして、実施例5の表面処理酸化亜鉛粒子B5と、実施例5の分散液C5とを得た。
[実施例6]
酸化亜鉛粒子として、平均粒子径:106nmの市販品Wを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=10m2/g、酸化亜鉛粒子のナトリウム含有量M=31mg/kg、スラリーの導電率σ=82μS/cm、S・M/σ2=0.05であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Wを酸化亜鉛粒子A6とした。酸化亜鉛粒子A6の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A6を用いたこと以外は実施例1と同様にして、実施例6の表面処理酸化亜鉛粒子B6と、実施例6の分散液C6とを得た。
酸化亜鉛粒子として、平均粒子径:106nmの市販品Wを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=10m2/g、酸化亜鉛粒子のナトリウム含有量M=31mg/kg、スラリーの導電率σ=82μS/cm、S・M/σ2=0.05であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Wを酸化亜鉛粒子A6とした。酸化亜鉛粒子A6の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A6を用いたこと以外は実施例1と同様にして、実施例6の表面処理酸化亜鉛粒子B6と、実施例6の分散液C6とを得た。
[実施例7]
酸化亜鉛粒子として、平均粒子径:71nmの市販品Vを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=15m2/g、酸化亜鉛粒子のナトリウム含有量M=48mg/kg、スラリーの導電率σ=65μS/cm、S・M/σ2=0.17であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Vを酸化亜鉛粒子A7とした。酸化亜鉛粒子A7の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A7を用いたこと以外は実施例1と同様にして、実施例7の表面処理酸化亜鉛粒子B7と、実施例7の分散液C7とを得た。
酸化亜鉛粒子として、平均粒子径:71nmの市販品Vを用いた。
実施例1と同様にして、酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=15m2/g、酸化亜鉛粒子のナトリウム含有量M=48mg/kg、スラリーの導電率σ=65μS/cm、S・M/σ2=0.17であった。この酸化亜鉛粒子は、S・M/σ2≧0.05を満たしていた。
そこで、純水による酸化亜鉛粒子の洗浄を行わず、市販品Vを酸化亜鉛粒子A7とした。酸化亜鉛粒子A7の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A7を用いたこと以外は実施例1と同様にして、実施例7の表面処理酸化亜鉛粒子B7と、実施例7の分散液C7とを得た。
[比較例1]
酸化亜鉛粒子A1を用いる替りに、実施例1の洗浄前の酸化亜鉛粒子Zを用いたこと以外は実施例1と同様にして、比較例1の表面処理酸化亜鉛粒子B8と、比較例1の分散液C8とを得た。
酸化亜鉛粒子A1を用いる替りに、実施例1の洗浄前の酸化亜鉛粒子Zを用いたこと以外は実施例1と同様にして、比較例1の表面処理酸化亜鉛粒子B8と、比較例1の分散液C8とを得た。
[比較例2]
酸化亜鉛粒子A1を用いる替りに、実施例3の洗浄前酸化亜鉛粒子Yを用いたこと以外は実施例1と同様にして、比較例2の表面処理酸化亜鉛粒子B9と、比較例2の分散液C9とを得た。
酸化亜鉛粒子A1を用いる替りに、実施例3の洗浄前酸化亜鉛粒子Yを用いたこと以外は実施例1と同様にして、比較例2の表面処理酸化亜鉛粒子B9と、比較例2の分散液C9とを得た。
[比較例3]
酸化亜鉛粒子として、平均粒子径:132nmの市販品Uを用いた。
実施例1と同様にして、この酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=8m2/g、酸化亜鉛粒子のナトリウム含有量M=18mg/kg、スラリーの導電率σ=76.2μS/cm、S・M/σ2=0.02であった。この酸化亜鉛粒子を、比較例3の酸化亜鉛粒子A10とした。酸化亜鉛粒子A10の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A10を用いたこと以外は実施例1と同様にして、比較例3の表面処理酸化亜鉛粒子B10と、比較例3の分散液C10とを得た。
酸化亜鉛粒子として、平均粒子径:132nmの市販品Uを用いた。
実施例1と同様にして、この酸化亜鉛粒子の比表面積S、酸化亜鉛粒子のナトリウム含有量Mおよびスラリーの導電率σを測定した。
以上の測定の結果、酸化亜鉛粒子の比表面積S=8m2/g、酸化亜鉛粒子のナトリウム含有量M=18mg/kg、スラリーの導電率σ=76.2μS/cm、S・M/σ2=0.02であった。この酸化亜鉛粒子を、比較例3の酸化亜鉛粒子A10とした。酸化亜鉛粒子A10の比表面積S、ナトリウム含有量M、スラリーの導電率およびS・M/σ2を表1に示す。
酸化亜鉛粒子A1を用いる替りに、酸化亜鉛粒子A10を用いたこと以外は実施例1と同様にして、比較例3の表面処理酸化亜鉛粒子B10と、比較例3の分散液C10とを得た。
[評価]
「粒度分布の測定」
実施例1~実施例7および比較例1~実施例3で得られた分散液について、粒度分布の累積体積百分率が50%のときの粒径(d50)と、粒度分布の累積体積百分率が90%のときの粒径(d90)とを測定した。分散液における粒度分布の累積体積百分率の測定には、動的光散乱式粒径分布測定装置(型番:LB-550、堀場製作所製)を用いた。
結果を表2に示す。
「粒度分布の測定」
実施例1~実施例7および比較例1~実施例3で得られた分散液について、粒度分布の累積体積百分率が50%のときの粒径(d50)と、粒度分布の累積体積百分率が90%のときの粒径(d90)とを測定した。分散液における粒度分布の累積体積百分率の測定には、動的光散乱式粒径分布測定装置(型番:LB-550、堀場製作所製)を用いた。
結果を表2に示す。
「SPF値、臨界波長、透過率の測定」
実施例1~実施例7および比較例1~実施例3で得られた分散液を、それぞれ石英ガラス板上に厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成した。
得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、450nmにおける透過率、290nm~320nmにおける平均透過率およびSPF値を測定した。
また、得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、290nm~400nmの紫外線領域の吸収スペクトルを測定し、得られた吸収スペクトルにおいて290nmから長波長側に積分したとき、積分面積が290nm~400nmの全領域での積分面積の90%となる波長を臨界波長とした。
以上の結果を表2に示す。
実施例1~実施例7および比較例1~実施例3で得られた分散液を、それぞれ石英ガラス板上に厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成した。
得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、450nmにおける透過率、290nm~320nmにおける平均透過率およびSPF値を測定した。
また、得られた塗膜について、SPFアナライザーUV-1000S(Labsphere社製)を用いて、290nm~400nmの紫外線領域の吸収スペクトルを測定し、得られた吸収スペクトルにおいて290nmから長波長側に積分したとき、積分面積が290nm~400nmの全領域での積分面積の90%となる波長を臨界波長とした。
以上の結果を表2に示す。
表1および表2の結果から、実施例1~実施例7の分散液からなる塗膜は、450nmにおける透過率が46%以上かつ77%以下であるにも拘わらず、290nm~320nmにおける平均透過率が3%以下、SPF値が33以上、臨界波長が370nm以上であった。したがって、実施例1~実施例7の分散液からなる塗膜は、紫外線遮蔽性が高く、かつ、長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができることが分かった。これは、実施例1~実施例7の分散液に含まれる表面処理酸化亜鉛粒子は、紫外線遮蔽性が一様であることを示している。
一方、表1および表2の結果から、比較例1~比較例3の分散液からなる塗膜は、450nmにおける透過率が48%以上かつ72%以下であるが、290nm~320nmにおける平均透過率が4%以上、SPF値が21以下、臨界波長が370nm以上であった。したがって、比較例1~比較例3の分散液からなる塗膜は、長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができるものの、紫外線遮蔽性が低いことが分かった。これは、比較例1~比較例3の分散液に含まれる表面処理酸化亜鉛粒子は、紫外線遮蔽性が一様でないことを示している。
一方、表1および表2の結果から、比較例1~比較例3の分散液からなる塗膜は、450nmにおける透過率が48%以上かつ72%以下であるが、290nm~320nmにおける平均透過率が4%以上、SPF値が21以下、臨界波長が370nm以上であった。したがって、比較例1~比較例3の分散液からなる塗膜は、長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができるものの、紫外線遮蔽性が低いことが分かった。これは、比較例1~比較例3の分散液に含まれる表面処理酸化亜鉛粒子は、紫外線遮蔽性が一様でないことを示している。
本発明の表面処理酸化亜鉛粒子の製造方法は、安定的に高い紫外線遮蔽性を示す表面処理酸化亜鉛粒子を製造することができる。従って、本発明の表面処理酸化亜鉛粒子の製造方法によって得られた表面処理酸化亜鉛粒子は、化粧料に用いられた場合の工業的価値は大きい。本発明は、紫外線遮蔽性が高く、かつ、紫外線遮蔽性が一様な表面処理酸化亜鉛粒子が得られる表面処理酸化亜鉛粒子の製造方法を提供できる。
Claims (7)
- 酸化亜鉛粒子の比表面積S(単位:m2/g)と、前記酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)と、前記酸化亜鉛粒子10質量部と純水90質量部とを1時間混合して調製したスラリーの導電率σ(単位:μS/cm)と、が、下記式(1)を満たしているかを判定する第1の工程を含むことを特徴とする、表面処理酸化亜鉛粒子の製造方法。
S・M/σ2≧0.05・・・(1) - 前記第1の工程の前に、前記比表面積S(単位:m2/g)、前記酸化亜鉛粒子のナトリウム含有量M(単位:mg/kg)、および、前記スラリーの導電率σ(単位:μS/cm)の群から選択される少なくとも1種の値を測定する工程を有することを特徴とする、請求項1に記載の表面処理酸化亜鉛粒子の製造方法。
- 前記第1の工程において、前記酸化亜鉛粒子が下記式(1)を満たしていないことが確認された場合、前記酸化亜鉛粒子が下記式(1)を満たすまで、前記酸化亜鉛粒子を洗浄する第2の工程を含むことを特徴とする、請求項1または2に記載の表面処理酸化亜鉛粒子の製造方法。
- 上記式(1)を満たす前記酸化亜鉛粒子を、アルコキシ基を有するシランカップリング剤で表面処理する第3の工程を含むことを特徴とする、請求項1から3のいずれか1項に記載の表面処理酸化亜鉛粒子の製造方法。
- 前記比表面積Sは、4m2/g以上かつ35m2/g以下であることを特徴とする、請求項1から4のいずれか1項に記載の表面処理酸化亜鉛粒子の製造方法。
- 前記シランカップリング剤は、アルキルアルコキシシラン、アリルアルコキシシラン、アルキル基を側鎖に有するポリシロキサンおよびアリル基を側鎖に有するポリシロキサンからなる群から選ばれる少なくとも1種であることを特徴とする、請求項4または5に記載の表面処理酸化亜鉛粒子の製造方法。
- 前記シランカップリング剤は、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシランおよびジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマーからなる群から選ばれる少なくとも1種であることを特徴とする、請求項4または5に記載の表面処理酸化亜鉛粒子の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-149176 | 2017-08-01 | ||
JP2017149176A JP6922529B2 (ja) | 2017-08-01 | 2017-08-01 | 表面処理酸化亜鉛粒子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026907A1 true WO2019026907A1 (ja) | 2019-02-07 |
Family
ID=65232655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028667 WO2019026907A1 (ja) | 2017-08-01 | 2018-07-31 | 表面処理酸化亜鉛粒子の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6922529B2 (ja) |
WO (1) | WO2019026907A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115485241A (zh) * | 2020-04-30 | 2022-12-16 | 住友大阪水泥股份有限公司 | 表面改性氧化锌粒子、分散液、化妆料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7267159B2 (ja) * | 2019-09-12 | 2023-05-01 | 三井金属鉱業株式会社 | 表面処理酸化亜鉛粒子及び塗布用組成物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006502943A (ja) * | 2002-09-23 | 2006-01-26 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ハロゲンがない無水分散媒体における酸化亜鉛分散体 |
JP2008230915A (ja) * | 2007-03-20 | 2008-10-02 | Mitsui Mining & Smelting Co Ltd | 導電性酸化亜鉛粒子及びその製造方法 |
JP2009269946A (ja) * | 2008-04-30 | 2009-11-19 | Sumitomo Metal Mining Co Ltd | 紫外線遮蔽透明樹脂成形体およびその製造方法 |
JP2016141578A (ja) * | 2015-01-30 | 2016-08-08 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
WO2016136797A1 (ja) * | 2015-02-27 | 2016-09-01 | 住友大阪セメント株式会社 | 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 |
JP2016199437A (ja) * | 2015-04-13 | 2016-12-01 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
WO2017130632A1 (ja) * | 2016-01-29 | 2017-08-03 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5761631A (en) * | 1980-10-02 | 1982-04-14 | Dowa Mining Co Ltd | Production of high-purity and crystalline epsilon-zn(oh)2 |
JP3496858B2 (ja) * | 1996-10-15 | 2004-02-16 | 三井金属鉱業株式会社 | 超微細酸化亜鉛の製造方法 |
US9199857B2 (en) * | 2011-04-28 | 2015-12-01 | Sakai Chemical Industry Co., Ltd. | Zinc oxide particles, method for production of the same, and cosmetic, heat releasing filler, heat releasing resin composition, heat releasing grease, and heat releasing coating composition comprising the same |
KR102211522B1 (ko) * | 2013-09-30 | 2021-02-04 | 디에스엠 아이피 어셋츠 비.브이. | 이산화티탄 및 실리카를 포함하는 국소용 선 스크린 조성물 |
-
2017
- 2017-08-01 JP JP2017149176A patent/JP6922529B2/ja active Active
-
2018
- 2018-07-31 WO PCT/JP2018/028667 patent/WO2019026907A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006502943A (ja) * | 2002-09-23 | 2006-01-26 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ハロゲンがない無水分散媒体における酸化亜鉛分散体 |
JP2008230915A (ja) * | 2007-03-20 | 2008-10-02 | Mitsui Mining & Smelting Co Ltd | 導電性酸化亜鉛粒子及びその製造方法 |
JP2009269946A (ja) * | 2008-04-30 | 2009-11-19 | Sumitomo Metal Mining Co Ltd | 紫外線遮蔽透明樹脂成形体およびその製造方法 |
JP2016141578A (ja) * | 2015-01-30 | 2016-08-08 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
WO2016136797A1 (ja) * | 2015-02-27 | 2016-09-01 | 住友大阪セメント株式会社 | 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 |
JP2016199437A (ja) * | 2015-04-13 | 2016-12-01 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
WO2017130632A1 (ja) * | 2016-01-29 | 2017-08-03 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115485241A (zh) * | 2020-04-30 | 2022-12-16 | 住友大阪水泥股份有限公司 | 表面改性氧化锌粒子、分散液、化妆料 |
Also Published As
Publication number | Publication date |
---|---|
JP6922529B2 (ja) | 2021-08-18 |
JP2019026525A (ja) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017130632A1 (ja) | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 | |
JP5850189B1 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
JP7524943B2 (ja) | 表面改質酸化亜鉛粒子、分散液、化粧料 | |
WO2020067406A1 (ja) | 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 | |
JP7414390B2 (ja) | 表面処理金属酸化物粒子、分散液、組成物および化粧料 | |
JP6682950B2 (ja) | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 | |
JP6551482B2 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
WO2019026907A1 (ja) | 表面処理酸化亜鉛粒子の製造方法 | |
JP7275939B2 (ja) | 表面処理金属酸化物粒子の製造方法 | |
WO2020067417A1 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
JP6314898B2 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
JP7367587B2 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
WO2021200541A1 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
KR20230147093A (ko) | 표면 개질 산화 아연 입자, 분산액, 화장료, 표면 개질 산화 아연 입자의 제조 방법 | |
US20230218488A1 (en) | Surface-modified zinc oxide particles, liquid dispersion, and cosmetic | |
JP7095534B2 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
JP7552426B2 (ja) | 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法 | |
JP7367589B2 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
WO2023190487A1 (ja) | 表面改質酸化亜鉛粒子、分散液、化粧料 | |
JP2024051646A (ja) | 分散液、化粧料、分散液の製造方法 | |
JP2024092128A (ja) | 表面改質酸化チタン、表面改質酸化チタンの製造方法、分散液、組成物、化粧料 | |
JP2022128082A (ja) | 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法 | |
WO2023210618A1 (ja) | 表面処理酸化亜鉛粒子、分散液、化粧料、表面処理酸化亜鉛粒子の製造方法 | |
KR20240117602A (ko) | 산화 아연 분체, 분산액, 도료, 화장료 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18840770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18840770 Country of ref document: EP Kind code of ref document: A1 |