WO2017033438A1 - イコライザ、中継器および通信システム - Google Patents

イコライザ、中継器および通信システム Download PDF

Info

Publication number
WO2017033438A1
WO2017033438A1 PCT/JP2016/003762 JP2016003762W WO2017033438A1 WO 2017033438 A1 WO2017033438 A1 WO 2017033438A1 JP 2016003762 W JP2016003762 W JP 2016003762W WO 2017033438 A1 WO2017033438 A1 WO 2017033438A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical signal
equalizer
selective switch
switch means
Prior art date
Application number
PCT/JP2016/003762
Other languages
English (en)
French (fr)
Inventor
浩志 稲田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201680049971.2A priority Critical patent/CN107925482A/zh
Priority to EP16838789.2A priority patent/EP3343804A4/en
Priority to US15/754,317 priority patent/US20180241472A1/en
Priority to JP2017536605A priority patent/JP6665861B2/ja
Publication of WO2017033438A1 publication Critical patent/WO2017033438A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25073Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using spectral equalisation, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/02Selecting arrangements for multiplex systems for frequency-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/256Distortion or dispersion compensation at the repeater, i.e. repeater compensation

Definitions

  • the present invention relates to an equalizer, a repeater, and a communication system.
  • a wavelength division multiplexing (WDM) optical signal is often used to transmit and receive a large amount of information.
  • WDM optical signal When transmitting a WDM optical signal over a long distance in a submarine communication system or the like, generally, a repeater device including an amplifier is disposed on an optical cable, and the optical intensity of the WDM optical signal is amplified in the repeater device.
  • EDFA Erbium Doped Fiber Amplifier
  • an equalizer for equalizing the wavelength dependence of EDFA is generally arranged together with EDFA.
  • an equalizer configured by three filters that exhibit characteristics totally opposite to the amplification characteristics of the EDFA may be disposed after the EDFA. Proposed.
  • the present invention has been made in view of the above problems, and provides an equalizer, a repeater, and a communication system that can easily adjust a loss wavelength characteristic in accordance with a characteristic of a wavelength division multiplexed optical signal, a use environment of an EDFA, or the like. For the purpose.
  • an equalizer includes wavelength selective switch means for adding a set loss profile to an input wavelength division multiplexed optical signal and outputting it, and the wavelength based on the acquired setting information.
  • a repeater includes an amplifying unit that amplifies and outputs the light intensity of an input wavelength division multiplexed optical signal, and the wavelength division multiplexing that receives a set loss profile.
  • Wavelength selective switch means for adding and outputting to an optical signal, and an equalizer having setting means for updating a loss profile set in the wavelength selective switch means based on the obtained setting information, and the amplifier and the equalizer inside
  • the setting information is information for flattening the spectrum of the wavelength division multiplexed optical signal output from the repeater.
  • a communication system includes an amplifying unit that amplifies and outputs an optical intensity of an input wavelength division multiplexed optical signal, and the wavelength division multiplexing that receives a set loss profile.
  • Wavelength selective switch means for adding to the optical signal and outputting, and equalizer comprising setting means for updating the loss profile set in the wavelength selective switch means based on the acquired setting information, and the amplifier and the The equalizers are arranged in tandem, and the setting information is information for flattening the spectrum of the wavelength division multiplexed optical signal that has passed through the amplification means and the wavelength selective switch means.
  • the loss wavelength characteristic of the equalizer can be easily adjusted according to the characteristics of the wavelength division multiplexed optical signal, the use environment of the EDFA, and the like.
  • FIG. It is a block block diagram of the equalizer 300B which concerns on 3rd Embodiment. It is a block block diagram of the equalizer 300C which concerns on 4th Embodiment. It is a system configuration figure of communication system 100B concerning a 5th embodiment.
  • FIG. 1 shows a block diagram of the equalizer according to the present embodiment.
  • the equalizer 10 of FIG. 1 includes a wavelength selective switch unit 20 and a setting unit 30.
  • the equalizer 10 receives a wavelength division multiplexing (WDM) optical signal to which wavelength dependency is added, and equalizes the wavelength dependency added to the input WDM optical signal.
  • WDM wavelength division multiplexing
  • the wavelength selective switch means 20 flexibly adjusts the loss wavelength characteristic of the input WDM optical signal by switching the optical signal for each wavelength.
  • the wavelength selective switch unit 20 according to the present embodiment is set to the input WDM optical signal by setting the loss profile by the setting unit 30 and switching the optical signal for each wavelength based on the set loss profile. Add a loss profile. Thereby, the wavelength dependency added to the WDM optical signal is equalized.
  • the setting unit 30 acquires the setting information, and sets the loss profile corresponding to the acquired setting information in the wavelength selective switch unit 20.
  • the setting means 30 acquires setting information for equalizing the wavelength dependence added to the WDM optical signal input to the equalizer 10.
  • the setting unit 30 sets a loss profile corresponding to the acquired setting information in the wavelength selective switch unit 20 every time setting information is acquired.
  • the equalizer configured as described above can easily set a desired loss profile in the wavelength selective switch means 20 by applying the wavelength selective switch means 20. Then, by switching the optical signal for each wavelength based on the loss profile set in the wavelength selective switch means 20, it is possible to reliably add an optimal loss profile to the WDM optical signal.
  • the equalizer 10 can easily set the optimum loss profile corresponding to the change to the wavelength selective switch means 20 even if the characteristics of the WDM optical signal, the use environment, or the like changes, and is equalized. Can be reliably added to the WDM optical signal. Furthermore, since it is not necessary to maintain a plurality of equalizers designed for each WDM optical signal characteristic and usage environment, an inexpensive system can be provided.
  • the wavelength selective switch means 20 is not limited to a single wavelength selective switch, and for example, a configuration in which AWG (Arrayed Waveguide Grating) and VOA (Variable Optical Attenuator) are combined may be applied.
  • AWG Arrayed Waveguide Grating
  • VOA Very Optical Attenuator
  • FIG. 2 shows a system configuration diagram of the communication system according to the present embodiment.
  • a repeater 200 and an equalizer 300 are arranged on the optical transmission line.
  • an optical submarine system that transmits and receives WDM optical signals can be applied.
  • the optical intensity of a WDM optical signal is wavelength-dependent, the transmission distance and the transmission band are reduced. Therefore, it is required to make the optical intensity for each wavelength of the WDM optical signal constant.
  • the repeater 200 amplifies the input WDM optical signal to a desired intensity level and outputs it.
  • the repeater 200 for example, a configuration in which erbium-doped fiber amplifiers (EDFA: Erbium Doped Fiber Amplifier) are arranged in multiple stages can be applied. Since EDFA uses the amplification effect of input signal light by stimulated emission of erbium ions, the gain wavelength characteristic is not flat, and the wavelength dependence of the light intensity occurs when the WDM optical signal passes through the EDFA.
  • EDFA Erbium Doped Fiber Amplifier
  • the equalizer 300 is disposed at the front stage or the rear stage of the repeater 200 and has a loss wavelength characteristic (hereinafter referred to as a loss profile) that is in conflict with the gain wavelength characteristic of the repeater 200. Therefore, when the WDM optical signal passes through the repeater 200 and the equalizer 300, the light intensity is amplified to a desired level, and the light intensity for each wavelength is flattened.
  • the equalizer 300 according to the present embodiment includes a wavelength selective switch (WSS: Wavelength Selective Switch) used in a ROADM (Reconfigurable Optical Add / Drop Multiplexer) system or the like.
  • FIG. 3 shows an example of a block configuration diagram of the equalizer 300 when WSS is applied as the equalizer 300.
  • 3 includes a 1: M wavelength demultiplexing unit 310, M filter units 321 to 32M, M optical switch units 331 to 33M, and an M: 1 wavelength multiplexing unit 340.
  • the M wavelength demultiplexing unit 310 distributes the input WDM optical signal for each wavelength and outputs the divided signals to the M filter units 321 to 32M.
  • the output characteristics for eliminating the gain wavelength characteristic of the repeater 200 are set in the filter units 321 to 32M by setting means (not shown in FIG. 3).
  • the filter units 321 to 32M perform a filtering process on the input optical signal according to the set output characteristics.
  • the optical switch units 331-33M perform a switching process on optical signals of a predetermined wavelength input from the corresponding filter units 321-32M based on instructions from setting means (not shown in FIG. 3).
  • the optical signal for each wavelength filtered in the filter units 321 to 32M is subjected to switching processing in the optical switch units 331 to 33M, so that an optical signal having a predetermined wavelength from which the gain wavelength characteristic of the repeater 200 is eliminated as a whole is optical.
  • Output from the switch units 331-33M are examples of the switch units 331-33M.
  • the wavelength combining unit 340 combines the optical signals for each wavelength output from the optical switch units 331 to 33M, and outputs the combined signal as a WDM optical signal.
  • the present invention is not limited to setting output characteristics for eliminating the gain wavelength characteristics of the repeater 200 in the filter units 321 to 32M and switching the output from the filter units 321 to 32M in the optical switch units 331 to 33M.
  • the multiplexing / distribution ratio in the 1: M wavelength demultiplexing unit 310 or the M: 1 wavelength multiplexing unit 340 is adjusted so that the gain wavelength characteristic of the repeater 200 is eliminated. You can also.
  • the equalizer 300 As described above, by configuring the equalizer 300 with WSS, output characteristics set in the filter units 321 to 32M and switching processing in the optical switch units 331 to 33M can be easily adjusted, and the gain wavelength of the repeater 200 can be adjusted. An optimal loss profile according to the characteristics can be reliably added to the equalizer 300.
  • the equalizer 300 By configuring the equalizer 300 with WSS, the equalizer 300 that has been individually designed for each characteristic of the WDM optical signal and the usage environment of the repeater 200 can be shared. In this case, the number of equalizers 300 and spare units of the equalizer 300 can be reduced, and as a result, the price of the communication system 100 can be reduced.
  • FIG. 4 shows a block configuration diagram of the relay apparatus 400 in this case.
  • EDFA 420 that amplifies the WDM optical signal
  • WSS 430 that equalizes the gain wavelength characteristic of EDFA 420 are arranged in a column inside housing 410 of relay apparatus 400.
  • the EDFA 420 functions similarly to the repeater 200 described above
  • the WSS 430 functions similarly to the equalizer 300 described above.
  • the loss profile of the WSS 430 disposed inside the housing 410 is adjusted so that the spectrum of the WDM optical signal output from the EDFA 420 is flat. Therefore, when the WDM optical signal passes through the repeater 400, the light intensity is amplified to a desired level while the light intensity for each wavelength is flattened.
  • the relay apparatus 400 of FIG. 4 can also change the wavelength band used by the relay apparatus 400 by changing the loss profile set in the WSS 430.
  • the relay apparatus 400 in FIG. 4 can match the wavelength band used to the wavelength band used in the existing system, and thus can be commonly applied to various systems having different signal bands.
  • the repeater 200 is configured with an EDFA.
  • the EDFA uses the amplification effect of the input signal light by stimulated emission of erbium ions, the gain of the EDFA is changed when the light intensity level of the input WDM optical signal or the operating temperature of the EDFA changes. Wavelength characteristics also change.
  • the spectrum change of the WDM optical signal when the light intensity level of the input WDM optical signal or the operating temperature of the EDFA changes will be described.
  • FIG. 5A shows a change in the wavelength characteristic of the light intensity when the WDM optical signal passes through the communication system 100 of FIG. 2 described in the second embodiment in a steady state.
  • FIG. 5B shows changes in wavelength characteristics of light intensity when a WDM optical signal having a light intensity different from that of the WDM optical signal in FIG.
  • FIG. 5C shows the change in the wavelength characteristic of the light intensity of the WDM optical signal when the repeater 200 is operating at a temperature different from that in FIG.
  • the WDM optical signal of spectrum ⁇ 1 with the intensity level of each wavelength being a constant level A1 is input to the repeater 200, the optical intensity of the WDM optical signal is amplified and the repeater 200 A WDM optical signal of spectrum ⁇ 1 to which gain wavelength characteristics are given is output.
  • the WDM optical signal of spectrum ⁇ 1 further passes through an equalizer 300 in which a loss profile that is inconsistent with the gain wavelength characteristic of the repeater 200 is set.
  • the gain wavelength characteristic provided in the repeater 200 is compensated, the light intensity is amplified to a desired level, and a WDM optical signal having a spectrum ⁇ with a constant light intensity for each wavelength is output.
  • the gain wavelength characteristic of the EDFA also changes when the light intensity level of the input WDM optical signal changes.
  • a WDM optical signal having a spectrum ⁇ 2 with an intensity level of each wavelength being a constant level A2 ( ⁇ A1) is input to the repeater 200
  • a WDM optical signal having a spectrum ⁇ 2 different from that in FIG. 5A is output. Is done.
  • the WDM optical signal of spectrum ⁇ 2 further passes through an equalizer 300 in which a loss profile that is inconsistent with the gain wavelength characteristic of the repeater 200 is set. As a result, a light intensity is amplified to a desired level, and a WDM optical signal having a spectrum ⁇ with a constant light intensity for each wavelength is output.
  • the gain wavelength characteristic of the repeater 200 changes. Therefore, even if a WDM optical signal of spectrum ⁇ 1 having the same intensity level A1 as that in FIG. 5A is input to the repeater 200, a WDM optical signal of spectrum ⁇ 3 different from that in FIG. Is output.
  • the WDM optical signal of spectrum ⁇ 3 further passes through an equalizer 300 in which a loss profile that is inconsistent with the gain wavelength characteristic of the repeater 200 is set. As a result, a light intensity is amplified to a desired level, and a WDM optical signal having a spectrum ⁇ with a constant light intensity for each wavelength is output.
  • FIG. 6 shows a block configuration diagram of the equalizer according to this embodiment.
  • the equalizer 300B of FIG. 6 includes a WSS unit 300 ', a memory 350, a sensor unit 360, and a WSS control unit 370.
  • the WSS unit 300 ′ is configured to add a loss profile to the WDM optical signal.
  • the equalizer 300 (1: M wavelength demultiplexing unit 310, filter units 321 to 32M, optical switch unit of FIG. 3 described in the second embodiment) 331-33M, M: 1 wavelength multiplexing unit 340) and the like can be applied.
  • the memory 350 a plurality of loss profiles associated with the light intensity level of the WDM optical signal and the operating temperature of the repeater 200 are registered.
  • the sensor unit 360 is arranged in the vicinity of the repeater 200, measures the light intensity level of the WDM optical signal input to the repeater 200 and the operating temperature of the repeater 200, and outputs the measurement result to the WSS control unit 370.
  • the WSS control unit 370 detects that the equalizer 300B is connected to an equalizer control device (not shown) at the time of factory shipment, laying work on a ship, changing parameters after laying, etc., the WSS control unit 370 acquires a loss profile from the equalizer control device. Then, the acquired loss profile is registered in the memory 350. Further, the WSS control unit 370 reads a loss profile corresponding to the measurement result input from the sensor unit 360 from the memory 350, and sets the read loss profile in the WSS unit 300 '.
  • the equalizer control device acquires gain wavelength characteristics when the optical intensity level and the operating temperature of the WDM optical signal of the repeater 200 to be compensated change by simulation, actual measurement, and the like, and the acquired gain wavelength characteristics and The opposite loss wavelength characteristics are calculated and held as a loss profile to be set in the equalizer 300B.
  • the sensor unit 360 After the equalizer 300B configured as described above is arranged on the optical transmission line, the sensor unit 360 starts measuring the light intensity level of the WDM optical signal and measuring the operating temperature of the repeater 200. Then, the WSS control unit 370 reads a loss profile corresponding to the measurement result input from the sensor unit 360 from the memory 350, and sets the read loss profile in the WSS unit 300 '.
  • the equalizer 300B according to the present embodiment can appropriately change the loss profile added to the WDM optical signal according to the light intensity level of the WDM optical signal, the operating temperature of the repeater 200, and the like. Therefore, the equalizer 300B can be shared regardless of specifications such as the light intensity of the WDM optical signal and the operating temperature, and the number of spare equalizers 300B used for gain equalization can be reduced.
  • the equalizer 300B of the present embodiment acquires a loss profile from an external equalizer control device and registers it in the memory 350, reads an appropriate loss profile from the memory 350 during operation, and sets it in the WSS unit 300 '.
  • the equalizer 300B instead of generating a loss profile in the equalizer 300B, the equalizer 300B only has to read out an appropriate loss profile from the memory 350 and set it in the WSS unit 300 ′. Therefore, the processing in the equalizer 300B can be reduced and the configuration of the equalizer 300B can be reduced. Can be simple.
  • the equalizer 300B after the loss profile is registered in the memory 350, the connection between the equalizer 300B and the equalizer control device is disconnected. In this case, it is possible to prevent the loss profile from being erroneously changed after the equalizer 300B is arranged on the optical transmission line, and it is possible to provide a highly reliable system.
  • the equalizer 300B and the equalizer control device can be configured to perform wireless communication.
  • a loss profile for the repeater 200 ′ is transferred from the equalizer controller to the optical transmission line. It is also possible to transmit to the operating equalizer 300 ⁇ / b> B arranged in FIG.
  • the equalizer 300B receives the loss profile for the repeater 200 ′ from the equalizer control device, so that the received loss profile is overwritten on the loss profile for the repeater 200 registered in the memory 350, and the received repeater The loss profile for 200 ′ is set in the WSS unit 300 ′.
  • the equalizer 300B and the equalizer control device are configured to transmit and receive a loss profile by wireless communication or the like, the light intensity level of the WDM optical signal passing through the repeater 200 and the equalizer 300 can be adjusted by remote control.
  • FIG. 7 shows a block configuration diagram of the equalizer according to the present embodiment.
  • the equalizer 300C in FIG. 7 includes a WSS unit 300 ′, a memory 350, a sensor unit 360, a WSS control unit 370B, and a spectrum acquisition unit 380.
  • the spectrum acquisition unit 380 acquires the spectrum of the WDM optical signal that has passed through the repeater 200 and the WSS unit 300 '(not shown in FIG. 7), and outputs the acquisition result to the WSS control unit 370B.
  • the WSS control unit 370B adjusts the loss profile set in the WSS unit 300 'so that the spectrum input from the spectrum acquisition unit 380 becomes flat.
  • FIG. 8 shows a system configuration diagram of the communication system according to the present embodiment.
  • a repeater (not shown) and a WSS unit 300 ′ are arranged on a plurality of optical transmission lines.
  • WSS control part 370C controls WSS control part 370C.
  • loss profiles for compensating gain wavelength characteristics for a plurality of repeaters respectively arranged on a plurality of optical transmission lines are registered.
  • the WSS control unit 370C reads the loss profile for the repeater to be compensated from the memory 350B and sets the loss profile in the corresponding WSS unit 300B '.
  • Equalizer 20 Wavelength selection switch means 30
  • Setting means 100, 100B Communication system 200 Repeater 300, 300B, 300C Equalizer 300 'WSS part 310 1: M wavelength demultiplexing part 321-32M Filter part 331-33M Optical switch part 340 M: 1-wavelength multiplexing unit 350, 350B Memory 360 Sensor unit 370, 370B, 370C WSS control unit 380 Spectrum acquisition unit 400 Relay device 410 Case 420 EDFA 430 WSS

Abstract

波長分割多重光信号の特性やEDFAの使用環境等に応じて損失波長特性を容易に調整可能とするために、イコライザ10は、設定されている損失プロファイルを入力された波長分割多重光信号へ付加して出力する波長選択スイッチ部20、および、取得した設定情報に基づいて波長選択スイッチ手段に損失プロファイルを設定する設定部30を備え、設定情報は出力された波長分割多重光信号のスペクトラムを平坦化するための情報であることを特徴とする。

Description

イコライザ、中継器および通信システム
 本発明は、イコライザ、中継器および通信システムに関する。
 海底通信システム等においては、大量の情報を送受信するために、波長分割多重(WDM:Wavelength Division Multiplexing)光信号が多く採用されている。海底通信システム等においてWDM光信号を長距離にわたって伝送させる場合、一般的に、光ケーブル上に増幅器を備える中継器装置を配置し、中継器装置においてWDM光信号の光強度を増幅させる。
 ここで、海底通信システムに配置される増幅器として、エルビウム添加ファイバ増幅器(EDFA:Erbium Doped Fiber Amplifier)がある。EDFAは増幅特性に波長依存性があることから、EDFAを用いてWDM光信号の光強度を増幅する場合、一般的に、EDFAと共にEDFAの波長依存性を等化するイコライザが配置される。
 例えば、特許文献1には、海底超長距離光増幅中継伝送システムにおいて、EDFAの後段に、トータル的にEDFAの増幅特性と相反する特性を示す3つのフィルタによって構成されるイコライザを配置することが提案されている。
特開平9-244079号公報
 ここで、近年の海底通信システムの拡大化に伴い、同一システム内であっても、光信号の光強度や通信帯域、動作温度等が異なるケースが増加している。EDFAの増幅特性は、光信号の光強度や通信帯域、動作温度によって変化することから、イコライザを同一システム内に配置する場合であっても、EDFAの使用環境に応じてイコライザの特性を変更する必要がある。
 すなわち、EDFAの仕様の数に合せてイコライザを用意する必要があり、さらに、それらのイコライザに対してそれぞれ予備のイコライザを準備しておく必要がある。この場合、システムのコストが高くなる。
 本発明は上記の課題に鑑みてなされたものであり、波長分割多重光信号の特性やEDFAの使用環境等に応じて損失波長特性を容易に調整可能なイコライザ、中継器および通信システムを提供することを目的とする。
 上記目的を達成するために本発明に係るイコライザは、設定されている損失プロファイルを入力された波長分割多重光信号へ付加して出力する波長選択スイッチ手段と、取得した設定情報に基づいて前記波長選択スイッチ手段に損失プロファイルを設定する設定手段と、を備え、前記設定情報は前記出力された波長分割多重光信号のスペクトラムを平坦化するための情報であることを特徴とする。
 上記目的を達成するために本発明に係る中継器は、入力された波長分割多重光信号の光強度を増幅して出力する増幅手段と、設定されている損失プロファイルを入力された前記波長分割多重光信号へ付加して出力する波長選択スイッチ手段および取得した設定情報に基づいて前記波長選択スイッチ手段に設定されている損失プロファイルを更新する設定手段を備えたイコライザと、内部に前記増幅器および前記イコライザが縦列配置されている筐体と、を備え、前記設定情報は中継器から出力される波長分割多重光信号のスペクトラムを平坦化するための情報であることを特徴とする。
 上記目的を達成するために本発明に係る通信システムは、入力された波長分割多重光信号の光強度を増幅して出力する増幅手段と、設定されている損失プロファイルを入力された前記波長分割多重光信号へ付加して出力する波長選択スイッチ手段および取得した設定情報に基づいて前記波長選択スイッチ手段に設定されている損失プロファイルを更新する設定手段を備えたイコライザと、を備え、前記増幅器および前記イコライザは縦列配置されると共に、前記設定情報は前記増幅手段および前記波長選択スイッチ手段を通過した波長分割多重光信号のスペクトラムを平坦化するための情報であることを特徴とする。
 上述した本発明の態様によれば、波長分割多重光信号の特性やEDFAの使用環境等に応じてイコライザの損失波長特性を容易に調整できる。
第1の実施形態に係るイコライザ10のブロック構成図である。 第2の実施形態に係る通信システム100のシステム構成図である。 第2の実施形態に係るイコライザ300のブロック構成図である。 第2の実施形態に係る中継装置400のブロック構成図である。 WDM光信号が通信システム100を通過する時のスペクトラムの変化を説明するための図である。 第3の実施形態に係るイコライザ300Bのブロック構成図である。 第4の実施形態に係るイコライザ300Cのブロック構成図である。 第5の実施形態に係る通信システム100Bのシステム構成図である。
<第1の実施形態>
 本発明の第1の実施形態について説明する。本実施形態に係るイコライザのブロック構成図を図1に示す。図1のイコライザ10は、波長選択スイッチ手段20および設定手段30を備える。イコライザ10は、波長依存性が付加された波長分割多重(WDM:Wavelength Division Multiplexing)光信号が入力され、入力されたWDM光信号に付加されている波長依存性を等化する。
 波長選択スイッチ手段20は、波長ごとに光信号をスイッチングすることにより、入力されるWDM光信号の損失波長特性をフレキシブルに調整する。本実施形態に係る波長選択スイッチ手段20は、設定手段30によって損失プロファイルが設定され、設定された損失プロファイルに基づいて波長ごとに光信号をスイッチングすることにより、入力されたWDM光信号へ設定されている損失プロファイルを付加する。これにより、WDM光信号に付加されている波長依存性が等化される。
 設定手段30は、設定情報を取得し、取得した設定情報に応じた損失プロファイルを波長選択スイッチ手段20へ設定する。ここで、設定手段30は、イコライザ10へ入力されるWDM光信号に付加された波長依存性を等化するための設定情報を取得する。なお、設定手段30は、設定情報を取得する毎に、取得した設定情報に応じた損失プロファイルを波長選択スイッチ手段20へ設定する。
 上記のように構成されたイコライザは、波長選択スイッチ手段20を適用することによって、波長選択スイッチ手段20へ所望の損失プロファイルを容易に設定することができる。そして、波長選択スイッチ手段20において設定された損失プロファイルに基づいて波長ごとに光信号をスイッチングすることにより、WDM光信号へ最適な損失プロファイルを確実に付加することができる。
 従って、本実施形態に係るイコライザ10は、WDM光信号の特性や使用環境等が変化しても、その変化に応じた最適な損失プロファイルを波長選択スイッチ手段20へ容易に設定でき、等化対象のWDM光信号へ確実に付加することができる。さらに、WDM光信号の特性や使用環境ごとに設計された複数のイコライザを保持する必要がないことから、安価のシステムを提供することができる。
 なお、波長選択スイッチ手段20は、波長選択スイッチを単体で構成したものに限定されず、例えば、AWG(Arrayed Waveguide Grating)およびVOA(Variable Optical Attenuator)を組み合わせた構成等を適用することもできる。
 <第2の実施形態>
 第2の実施形態について説明する。本実施形態に係る通信システムのシステム構成図を図2に示す。図2の通信システム100においては、光伝送路上に中継器200およびイコライザ300が配置されている。通信システム100として、例えば、WDM光信号を送受信する光海底システムを適用することができる。光海底システムにおいては、WDM光信号の光強度に波長依存性がある場合は伝送距離や伝送帯域の低減につながることから、WDM光信号の波長ごとの光強度を一定にすることが求められる。
 中継器200は、入力されたWDM光信号を所望の強度レベルに増幅して出力する。中継器200として、例えば、エルビウム添加ファイバ増幅器(EDFA:Erbium Doped Fiber Amplifier)を多段に配置した構成を適用することができる。EDFAは、エルビウムイオンの誘導放出による入力信号光の増幅作用を利用していることから、利得波長特性が平坦でなく、WDM光信号がEDFAを通過することによって光強度に波長依存性が生じる。
 イコライザ300は、中継器200の前段または後段に配置され、中継器200の利得波長特性と相反する損失波長特性(以下、損失プロファイルと記載する。)を有する。従って、WDM光信号が中継器200およびイコライザ300を通過することによって、光強度が所望のレベルに増幅されると共に、波長ごとの光強度が平坦化される。本実施形態に係るイコライザ300は、ROADM(Reconfigurable Optical Add/Drop Multiplexer)システムなどで使用されている波長選択スイッチ(WSS:Wavelength Selective Switch)を備える。
 イコライザ300としてWSSを適用した場合の、イコライザ300のブロック構成図の一例を図3に示す。図3のイコライザ300は、1:M波長分波部310、M個のフィルタ部321-32M、M個の光スイッチ部331-33M、および、M:1波長合波部340を備える。
 1:M波長分波部310は、入力されたWDM光信号を波長ごとに分配してM個のフィルタ部321-32Mへそれぞれ出力する。
 フィルタ部321-32Mはそれぞれ、図3に図示しない設定手段によって、中継器200の利得波長特性を解消するための出力特性が設定される。フィルタ部321-32Mは、設定された出力特性によって入力された光信号をフィルタリング処理する。
 光スイッチ部331-33Mは、図3に図示しない設定手段からの指示に基づいて、対応するフィルタ部321-32Mから入力された所定波長の光信号をスイッチング処理する。フィルタ部321-32Mにおいてフィルタリング処理された波長ごとの光信号を、光スイッチ部331-33Mにおいてスイッチング処理することにより、全体として中継器200の利得波長特性が解消された所定波長の光信号が光スイッチ部331-33Mから出力される。
 M:1波長合波部340は、光スイッチ部331-33Mから出力された波長ごとの光信号を合波し、WDM光信号として出力する。
 なお、中継器200の利得波長特性を解消するための出力特性をフィルタ部321-32Mにそれぞれ設定し、光スイッチ部331-33Mにおいてフィルタ部321-32Mからの出力をスイッチング処理することに限定されない。例えば、図3に図示しない設定手段によって、1:M波長分波部310やM:1波長合波部340における合分配比率を、中継器200の利得波長特性が解消されるように調整することもできる。
 上記のように、イコライザ300をWSSによって構成することにより、フィルタ部321-32Mに設定する出力特性や光スイッチ部331-33Mにおけるスイッチング処理を容易に調整することができ、中継器200の利得波長特性に応じた最適な損失プロファイルをイコライザ300へ確実に付加することができる。そして、イコライザ300をWSSによって構成することにより、今まで、WDM光信号の特性や中継器200の使用環境ごとに個別に設計していたイコライザ300を共通化できる。この場合、イコライザ300やイコライザ300の予備器の数を減らすことができ、結果として通信システム100の価格を下げることができる。
 ここで、イコライザ300を中継器200の内部に配置することもできる。この場合の中継装置400のブロック構成図を図4に示す。図4に示すように、中継装置400の筐体410の内部には、WDM光信号を増幅するEDFA420と、EDFA420の利得波長特性を等化するWSS430と、が縦列に配置されている。EDFA420は上述の中継器200と同様に機能し、WSS430は上述のイコライザ300と同様に機能する。
 図4の中継装置400は、例えば、予備中継装置として運用させることができる。筐体410の内部に配置されたWSS430は、EDFA420から出力されるWDM光信号のスペクトラムが平坦になるように、損失プロファイルが調整されている。従って、WDM光信号が中継装置400を通過することにより、波長ごとの光強度が平坦化された状態で光強度が所望のレベルに増幅される。
 ここで、図4の中継装置400はさらに、WSS430に設定されている損失プロファイルを変更することによって、中継装置400の使用波長帯域を変更することもできる。図4の中継装置400は、使用波長帯域を既存システムにおいて使用されている波長帯域に合せることができることから、信号帯域が異なる様々なシステムに共通に適用することができる。
 <第3の実施形態>
 第2の実施形態においては、中継器200をEDFAで構成した。既に述べたように、EDFAはエルビウムイオンの誘導放出による入力信号光の増幅作用を利用していることから、入力されるWDM光信号の光強度レベルやEDFAの動作温度が変わると、EDFAの利得波長特性も変化する。ここで、入力されるWDM光信号の光強度レベルやEDFAの動作温度が変わった場合のWDM光信号のスペクトラム変化について説明する。
 定常状態において、WDM光信号が第2の実施形態で説明した図2の通信システム100を通過する時の光強度の波長特性の変化を図5(a)に示す。さらに、図5(a)のWDM光信号とは異なる光強度を有するWDM光信号が通信システム100を通過する時の光強度の波長特性の変化を図5(b)に、図5(a)の場合と異なる温度で中継器200が動作している場合のWDM光信号の光強度の波長特性の変化を図5(c)に示す。
 図5(a)において、各波長の強度レベルが一定レベルA1であるスペクトラムα1のWDM光信号が中継器200に入力されることにより、WDM光信号の光強度が増幅されると共に中継器200の利得波長特性が付与されたスペクトラムβ1のWDM光信号が出力される。スペクトラムβ1のWDM光信号はさらに、中継器200の利得波長特性と相反する損失プロファイルが設定されたイコライザ300を通過する。これにより、中継器200において付与された利得波長特性が補償され、光強度が所望のレベルに増幅されると共に波長ごと光強度が一定のスペクトラムγのWDM光信号が出力される。
 一方、図5(b)に示すように、中継器200を構成するEDFAは、入力されるWDM光信号の光強度レベルが変わるとEDFAの利得波長特性も変化する。例えば、各波長の強度レベルが一定レベルA2(<A1)であるスペクトラムα2のWDM光信号が中継器200に入力されることにより、図5(a)とは異なるスペクトラムβ2のWDM光信号が出力される。スペクトラムβ2のWDM光信号はさらに、中継器200の利得波長特性と相反する損失プロファイルが設定されたイコライザ300を通過する。これにより、光強度が所望のレベルに増幅されると共に波長ごと光強度が一定のスペクトラムγのWDM光信号が出力される。
 さらに、図5(c)に示すように、周囲の温度が変化する等によって中継器200の動作温度が変化した場合、中継器200の利得波長特性が変化する。従って、各波長の強度レベルが図5(a)と同じ一定レベルA1であるスペクトラムα1のWDM光信号が中継器200に入力されても、図5(a)とは異なるスペクトラムβ3のWDM光信号が出力される。スペクトラムβ3のWDM光信号はさらに、中継器200の利得波長特性と相反する損失プロファイルが設定されたイコライザ300を通過する。これにより、光強度が所望のレベルに増幅されると共に波長ごと光強度が一定のスペクトラムγのWDM光信号が出力される。
 そこで、第3の実施形態においては、中継器200およびイコライザ300の動作を開始した後、入力されるWDM光信号の光強度レベルや中継器200の動作温度の変化に応じて、イコライザに設定する損失プロファイルをフレキシブルに変更する。本実施形態に係るイコライザのブロック構成図を図6に示す。図6のイコライザ300Bは、WSS部300’、メモリ350、センサ部360およびWSS制御部370によって構成される。
 WSS部300’はWDM光信号へ損失プロファイルを付加する構成であり、第2の実施形態で説明した図3のイコライザ300(1:M波長分波部310、フィルタ部321-32M、光スイッチ部331-33M、M:1波長合波部340)等を適用することができる。
 メモリ350には、WDM光信号の光強度レベルや中継器200の動作温度にそれぞれ対応付けられた複数の損失プロファイルが登録されている。
 センサ部360は、中継器200の近傍に配置され、中継器200に入力されるWDM光信号の光強度レベルや中継器200の動作温度を計測し、計測結果をWSS制御部370へ出力する。
 WSS制御部370は、工場出荷時や船上における敷設作業時や敷設後のパラメータ変更時等にイコライザ300Bが図示しないイコライザ制御装置に接続されたことを検知した場合、イコライザ制御装置から損失プロファイルを取得し、取得した損失プロファイルをメモリ350へ登録する。さらに、WSS制御部370は、センサ部360から入力された計測結果に対応する損失プロファイルをメモリ350から読み出し、読み出した損失プロファイルをWSS部300’へ設定する。
 なお、イコライザ300Bがイコライザ制御装置に接続されることによって損失プロファイルがメモリ350へ登録された後、イコライザ300Bとイコライザ制御装置との接続は切断される。ここで、イコライザ制御装置は、シミュレーションや実測等によって、補償対象の中継器200のWDM光信号の光強度レベルや動作温度が変化した場合の利得波長特性をそれぞれ取得し、取得した利得波長特性と相反する損失波長特性を演算し、イコライザ300Bへ設定する損失プロファイルとして保持する。
 上記のように構成されたイコライザ300Bは、光伝送路上に配置された後、センサ部360において、WDM光信号の光強度レベルの計測や中継器200の動作温度の計測を開始する。そして、WSS制御部370は、センサ部360から入力された計測結果に対応する損失プロファイルをメモリ350から読み出し、読み出した損失プロファイルをWSS部300’へ設定する。
 本実施形態に係るイコライザ300Bは、WDM光信号の光強度レベルや中継器200の動作温度等に応じて、WDM光信号に付加する損失プロファイルを適宜変更することができる。従って、WDM光信号の光強度や動作温度などの仕様に関係なくイコライザ300Bを共通化することができ、利得等化に使用するイコライザ300Bの予備数を減らすことができる。
 さらに、本実施形態のイコライザ300Bは、損失プロファイルを外部のイコライザ制御装置から取得してメモリ350へ登録しておき、動作時にメモリ350から適切な損失プロファイルを読み出してWSS部300’へ設定する。イコライザ300Bにおいて損失プロファイルを生成するのではなく、イコライザ300Bは適切な損失プロファイルをメモリ350から読み出してWSS部300’へ設定するだけで良いことから、イコライザ300Bにおける処理を軽減でき、イコライザ300Bの構成を単純にできる。
 また、本実施形態に係るイコライザ300Bにおいて、損失プロファイルがメモリ350へ登録された後、イコライザ300Bとイコライザ制御装置との接続が切断される。この場合、イコライザ300Bを光伝送路上に配置した後で損失プロファイルが誤って変更されることを抑制でき、信頼性が高いシステムを提供することができる。
 なお、イコライザ300Bとイコライザ制御装置とを無線通信できるように構成することもできる。この場合、例えば、故障等によって中継器200が、中継器200とは異なる利得波長特性を有する中継器200’と置きかえられた場合、中継器200’についての損失プロファイルをイコライザ制御装置から光伝送路上に配置された運用中のイコライザ300Bへ送信することもできる。
 イコライザ300Bは、イコライザ制御装置から中継器200’についての損失プロファイルを受信することにより、受信した損失プロファイルをメモリ350に登録されている中継器200についての損失プロファイルへ上書きすると共に、受信した中継器200’についての損失プロファイルをWSS部300’へ設定する。
 イコライザ300Bとイコライザ制御装置とが無線通信等によって損失プロファイルを送受信できるように構成する場合、中継器200およびイコライザ300を通過するWDM光信号の光強度レベルを遠隔操作によって調整することもできる。
 <第4の実施形態>
 第4の実施形態について説明する。本実施形態に係るイコライザのブロック構成図を図7に示す。図7のイコライザ300Cは、WSS部300’、メモリ350、センサ部360、WSS制御部370Bおよびスペクトラム取得部380によって構成される。
 スペクトラム取得部380は、図7には図示しない中継器200およびWSS部300’を通過したWDM光信号のスペクトラムを取得し、取得結果をWSS制御部370Bへ出力する。WSS制御部370Bは、スペクトラム取得部380から入力されたスペクトラムが平坦になるように、WSS部300’へ設定する損失プロファイルを調整する。
 中継器200およびWSS部300’を通過したWDM光信号のスペクトラムが平坦になるように、WSS部300’への損失プロファイルの設定をフィードバック制御することにより、中継器200およびイコライザ300Cから、高品質のWDM光信号が出力される。
 <第5の実施形態>
 第5の実施形態について説明する。本実施形態に係る通信システムのシステム構成図を図8に示す。図8の通信システム100Bにおいては、複数の光伝送路上にそれぞれ、図示しない中継器とWSS部300’とが配置される。そして、複数のWSS部300’をWSS制御部370Cによって制御する。
 メモリ350Bには、複数の光伝送路上にそれぞれ配置された複数の中継器についての利得波長特性を補償するための損失プロファイルが登録されている。WSS制御部370Cは、補償対象の中継器についての損失プロファイルをメモリ350Bから読み出して、対応するWSS部300B’へ設定する。
 メモリ350BおよびWSS制御部370Cを複数のWSS部300’において共有することにより、安価なシステムを提供することができる。
 本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。
 この出願は、2015年8月27日に出願された日本出願特願2015-167396を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  イコライザ
 20  波長選択スイッチ手段
 30  設定手段
 100、100B  通信システム
 200  中継器
 300、300B、300C  イコライザ
 300’  WSS部
 310  1:M波長分波部
 321-32M  フィルタ部
 331-33M  光スイッチ部
 340  M:1波長合波部
 350、350B  メモリ
 360  センサ部
 370、370B、370C  WSS制御部
 380  スペクトラム取得部
 400  中継装置
 410  筐体
 420  EDFA
 430  WSS

Claims (10)

  1.  設定されている損失プロファイルを入力された波長分割多重光信号へ付加して出力する波長選択スイッチ手段と、
     前記波長選択スイッチ手段から出力された前記波長分割多重光信号のスペクトラムを平坦化するための情報である設定情報を取得し、前記設定情報に基づいて前記波長選択スイッチ手段に損失プロファイルを設定する設定手段と、
    を備えるイコライザ。
  2.  前記波長選択スイッチ手段は、光伝送路上に増幅器と縦列配置された状態で、設定されている損失プロファイルを入力された波長分割多重光信号へ付加し、
     前記設定情報は前記波長選択スイッチ手段および前記増幅器を通過した波長分割多重光信号のスペクトラムを平坦化するための情報である、
    請求項1に記載のイコライザ。
  3.  前記増幅器の動作状態を検出して出力する検出手段および前記動作状態に対応付けられた複数の設定情報を記憶するメモリをさらに備え、
     前記設定手段はさらに、前記動作状態が入力された場合、入力された前記動作状態に対応付けられた設定情報を前記メモリから読み出し、前記メモリから読み出した前記設定情報に基づいて前記損失プロファイルを更新する、
    請求項2に記載のイコライザ。
  4.  前記波長選択スイッチ手段は複数あり、
     複数の前記波長選択スイッチ手段は複数の光伝送路上にそれぞれ配置され、
    前記設定手段は、前記メモリから読み出した設定情報に基づいて、複数の前記波長選択スイッチ手段に設定されている前記損失プロファイルをそれぞれ更新する、
    請求項3に記載のイコライザ。
  5.  前記波長選択スイッチ手段および前記増幅器を通過した波長分割多重光信号のスペクトラムを取得するスペクトラム取得手段をさらに備え、
     前記設定手段はさらに、前記取得されたスペクトラムが平坦化されるように、前記波長選択スイッチ手段に設定する損失プロファイルを調整する、
    請求項2乃至4のいずれか1項に記載のイコライザ。
  6. 前記増幅器は、EDFA(Erbium Doped Fiber Amplifier)である、請求項2乃至5のいずれか1項に記載のイコライザ。
  7.  前記波長選択スイッチ手段は、
     入力された波長分割多重光信号を波長ごとに分波して複数の光信号を出力する波長分波手段と、
     前記分波された複数の光信号を前記設定された損失プロファイルに応じてフィルタリング処理するフィルタ手段と、
     前記分波された複数の光信号を前記設定された損失プロファイルに応じてスイッチング処理するスイッチング手段と、
     前記フィルタリング処理および前記スイッチング処理が施された複数の光信号を合波して出力する波長合波手段と、
    を備える請求項1乃至6のいずれか1項に記載のイコライザ。
  8.  入力された波長分割多重光信号の光強度を増幅して出力する増幅手段と、
     設定されている損失プロファイルを入力された前記波長分割多重光信号へ付加して出力する波長選択スイッチ手段および中継器から出力される波長分割多重光信号のスペクトラムを平坦化するための情報である設定情報を取得し、前記設定情報に基づいて前記波長選択スイッチ手段に設定されている損失プロファイルを更新する設定手段を備えたイコライザと、
     内部に前記増幅手段および前記イコライザが縦列配置されている筐体と、
    を備える中継器。
  9.  入力された波長分割多重光信号の光強度を増幅して出力する増幅手段と、
     設定されている損失プロファイルを入力された前記波長分割多重光信号へ付加して出力する波長選択スイッチ手段および取得した設定情報に基づいて前記波長選択スイッチ手段に設定されている損失プロファイルを更新する設定手段を備えたイコライザと、
    を備え、
     前記増幅手段および前記イコライザは縦列配置されると共に、前記設定情報は前記増幅手段および前記波長選択スイッチ手段を通過した波長分割多重光信号のスペクトラムを平坦化するための情報であることを特徴とする通信システム。
  10.  設定されている損失プロファイルを波長選択スイッチ手段に入力された波長分割多重光信号へ付加し、
     前記波長選択スイッチ手段から出力された前記波長分割多重光信号のスペクトラムを平坦化するための情報である設定情報を取得し、
     前記設定情報に基づいて前記波長選択スイッチ手段に損失プロファイルを設定する、
    等化方法。
PCT/JP2016/003762 2015-08-27 2016-08-18 イコライザ、中継器および通信システム WO2017033438A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680049971.2A CN107925482A (zh) 2015-08-27 2016-08-18 均衡器、中继器和通信系统
EP16838789.2A EP3343804A4 (en) 2015-08-27 2016-08-18 Equalizer, repeater, and communication system
US15/754,317 US20180241472A1 (en) 2015-08-27 2016-08-18 Equalizer, repeater and communication system
JP2017536605A JP6665861B2 (ja) 2015-08-27 2016-08-18 イコライザ、中継器および通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-167396 2015-08-27
JP2015167396 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033438A1 true WO2017033438A1 (ja) 2017-03-02

Family

ID=58099763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003762 WO2017033438A1 (ja) 2015-08-27 2016-08-18 イコライザ、中継器および通信システム

Country Status (5)

Country Link
US (1) US20180241472A1 (ja)
EP (1) EP3343804A4 (ja)
JP (1) JP6665861B2 (ja)
CN (1) CN107925482A (ja)
WO (1) WO2017033438A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176834A1 (ja) * 2018-03-13 2019-09-19 日本電気株式会社 光伝送装置及び光伝送方法
JPWO2021177414A1 (ja) * 2020-03-06 2021-09-10
WO2023195130A1 (ja) * 2022-04-07 2023-10-12 日本電信電話株式会社 光伝送システム及び光伝送方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103097B1 (ja) * 2016-03-18 2017-03-29 日本電気株式会社 光伝送装置及びその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270603A (ja) * 2002-03-14 2003-09-25 Fujitsu Ltd 透過波長特性可変の光学素子およびそれを用いた波長特性可変装置、光増幅器、光伝送システム、並びに、透過波長特性の制御方法
JP2007028207A (ja) * 2005-07-15 2007-02-01 Fujitsu Ltd 光伝送装置
JP2012065026A (ja) * 2010-09-14 2012-03-29 Fujitsu Ltd 光伝送装置及び光減衰量制御方法
JP2012156285A (ja) * 2011-01-26 2012-08-16 Fujitsu Ltd 光増幅装置
JP2012529208A (ja) * 2009-06-02 2012-11-15 アルカテル−ルーセント 電力増幅を調整するための方法および機器

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180803A (ja) * 1998-12-15 2000-06-30 Sumitomo Electric Ind Ltd 多チャネル光可変減衰器
JP3844902B2 (ja) * 1999-03-02 2006-11-15 富士通株式会社 波長多重用光増幅器及び光通信システム
JP4234927B2 (ja) * 2000-04-14 2009-03-04 富士通株式会社 光波長多重伝送システム及び光出力制御方法及び光波長多重伝送装置
US7542675B1 (en) * 2000-05-30 2009-06-02 Nortel Networks Limited Optical switch with power equalization
WO2002019572A1 (fr) * 2000-08-31 2002-03-07 Fujitsu Limited Procede de demarrage d'un systeme de communication optique, procede d'agrandissement/de reduction de canaux, et support enregistre lisible par un ordinateur
US6429962B1 (en) * 2000-12-05 2002-08-06 Chorum Technologies Lp Dynamic gain equalizer for optical amplifiers
US7123833B2 (en) * 2001-08-09 2006-10-17 Cidra Corporation Dynamically reconfigurable optical smart node
US7019883B2 (en) * 2001-04-03 2006-03-28 Cidra Corporation Dynamic optical filter having a spatial light modulator
US6836610B2 (en) * 2001-09-07 2004-12-28 Hon Hai Precision Ind. Co., Ltd. Electrical variable optical attenuator
WO2003029861A1 (en) * 2001-10-03 2003-04-10 Tejas Networks India Pvt. Ltd. Improving optical signal to noise ratio system
US20030067670A1 (en) * 2001-10-04 2003-04-10 Lacra Pavel Dynamic optical spectral control scheme for optical amplifier sites
JP4000251B2 (ja) * 2001-10-31 2007-10-31 富士通株式会社 光信号交換装置およびその制御方法
JP3976554B2 (ja) * 2001-11-28 2007-09-19 富士通株式会社 可変減衰器制御システム
JP4166036B2 (ja) * 2002-05-21 2008-10-15 富士通株式会社 透過波長特性可変の光学素子、並びに、それを用いた波長特性可変装置、光増幅器および光伝送システム
JP4250400B2 (ja) * 2002-10-18 2009-04-08 富士通株式会社 波長多重方法及びその装置
JP2004147199A (ja) * 2002-10-25 2004-05-20 Sumitomo Electric Ind Ltd 可変フィルタ、光増幅装置および光通信システム
JP3926257B2 (ja) * 2002-12-04 2007-06-06 富士通株式会社 波長分割多重化伝送装置における利得設定方法
CN1212713C (zh) * 2003-09-19 2005-07-27 烽火通信科技股份有限公司 一种动态增益均衡方法以及使用该方法的光传输系统
JP4373397B2 (ja) * 2003-11-11 2009-11-25 富士通株式会社 光伝送装置
JP4397239B2 (ja) * 2004-01-15 2010-01-13 富士通株式会社 光伝送システム
US7426347B2 (en) * 2004-07-15 2008-09-16 Jds Uniphase Corporation Shared optical performance monitoring
JP4445373B2 (ja) * 2004-10-29 2010-04-07 富士通株式会社 光スイッチ
JP4752316B2 (ja) * 2005-04-26 2011-08-17 日本電気株式会社 光合分波器及び光アド・ドロップシステム並びに光信号の合分波方法
JP4783648B2 (ja) * 2006-02-28 2011-09-28 富士通株式会社 中継装置及び中継方法
US7769255B2 (en) * 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US8965220B2 (en) * 2007-05-30 2015-02-24 Tellabs Operations, Inc. Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
JP4850288B2 (ja) * 2007-08-27 2012-01-11 富士通株式会社 ネットワーク管理システム、中継装置及び方法
JP5146111B2 (ja) * 2008-05-29 2013-02-20 富士通株式会社 光伝送装置および光減衰量制御方法
US8428463B2 (en) * 2010-05-10 2013-04-23 Infinera Corporation Apparatus and method for controlling a dynamic gain equalizer
US9450697B2 (en) * 2011-12-02 2016-09-20 At&T Intellectual Property I, L.P. Apparatus and method for distributed compensation of narrow optical filtering effects in an optical network
US9008514B2 (en) * 2013-06-22 2015-04-14 Mark E. Boduch Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays
CN103338077B (zh) * 2013-07-25 2016-04-27 北京大学 基于ofdm的可变带宽光网络的功率均衡方法及系统
CN203747828U (zh) * 2014-03-25 2014-07-30 武汉光迅科技股份有限公司 一种实现光信噪比平坦的光纤传输系统
EP2924897B1 (en) * 2014-03-28 2016-06-22 Alcatel Lucent Method of equalizing an optical transmission signal
KR101524407B1 (ko) * 2014-05-23 2015-05-29 후지코교 가부시기가이샤 낚싯줄 가이드, 낚싯줄 가이드의 제조 방법 및 낚싯줄 가이드를 구비하는 낚싯대
CN104363045A (zh) * 2014-11-19 2015-02-18 天津光电通信技术有限公司 具有信号调理功能的智能波长选择光交叉系统
JP6485189B2 (ja) * 2015-04-23 2019-03-20 富士通株式会社 光伝送システムおよび光伝送装置
JP2016220128A (ja) * 2015-05-25 2016-12-22 富士通株式会社 光伝送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270603A (ja) * 2002-03-14 2003-09-25 Fujitsu Ltd 透過波長特性可変の光学素子およびそれを用いた波長特性可変装置、光増幅器、光伝送システム、並びに、透過波長特性の制御方法
JP2007028207A (ja) * 2005-07-15 2007-02-01 Fujitsu Ltd 光伝送装置
JP2012529208A (ja) * 2009-06-02 2012-11-15 アルカテル−ルーセント 電力増幅を調整するための方法および機器
JP2012065026A (ja) * 2010-09-14 2012-03-29 Fujitsu Ltd 光伝送装置及び光減衰量制御方法
JP2012156285A (ja) * 2011-01-26 2012-08-16 Fujitsu Ltd 光増幅装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343804A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176834A1 (ja) * 2018-03-13 2019-09-19 日本電気株式会社 光伝送装置及び光伝送方法
CN111837348A (zh) * 2018-03-13 2020-10-27 日本电气株式会社 光学传输设备和光学传输方法
JPWO2019176834A1 (ja) * 2018-03-13 2021-01-07 日本電気株式会社 光伝送装置及び光伝送方法
EP3767847A4 (en) * 2018-03-13 2021-05-19 NEC Corporation OPTICAL TRANSMISSION DEVICE AND OPTICAL TRANSFER METHOD
US11159264B2 (en) 2018-03-13 2021-10-26 Nec Corporation Optical transmission device and optical transmission method
JP7060082B2 (ja) 2018-03-13 2022-04-26 日本電気株式会社 光伝送装置及び光伝送方法
JPWO2021177414A1 (ja) * 2020-03-06 2021-09-10
WO2021177414A1 (ja) * 2020-03-06 2021-09-10 日本電気株式会社 スペクトラム監視装置、海底機器及び光通信システム
JP7428234B2 (ja) 2020-03-06 2024-02-06 日本電気株式会社 スペクトラム監視装置、海底機器及び光通信システム
US11936422B2 (en) 2020-03-06 2024-03-19 Nec Corporation Spectrum monitoring apparatus, submarine apparatus, and optical communication system
WO2023195130A1 (ja) * 2022-04-07 2023-10-12 日本電信電話株式会社 光伝送システム及び光伝送方法

Also Published As

Publication number Publication date
EP3343804A4 (en) 2018-08-22
EP3343804A1 (en) 2018-07-04
JP6665861B2 (ja) 2020-03-13
CN107925482A (zh) 2018-04-17
US20180241472A1 (en) 2018-08-23
JPWO2017033438A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6665861B2 (ja) イコライザ、中継器および通信システム
JP4725951B2 (ja) 波長多重信号光の増幅方法および光増幅器
EP2903185B1 (en) Optical amplification node for a Spatial Division Multiplexing optical network
US20210044075A1 (en) Optical repeater, manufacturing method of optical repeater, and relay method of optical signal
JP6455296B2 (ja) 光伝送装置
JP2007150636A (ja) 伝送装置
JP4593230B2 (ja) 光端局装置
JP7063329B2 (ja) 光中継器、光中継器の制御方法、及び光伝送システム
EP1067725A2 (en) Filter with variable transmission characteristic
EP3767843A1 (en) Variable equalizer and method for controlling variable equalizer
JP7306466B2 (ja) 光通信システム、光通信装置、光通信方法及びプログラム
JP6977774B2 (ja) 光伝送装置および光信号レベル制御方法
US11095388B2 (en) Optical amplification device and light amplification method
JP6693901B2 (ja) 光増幅装置、波長多重装置及び光分岐装置
CN112655161A (zh) 光学传输装置、光学通信系统和光学信号传输方法
WO2018190240A1 (ja) 中継器及び中継方法
JP2008042550A (ja) 光通信システム
JP7428234B2 (ja) スペクトラム監視装置、海底機器及び光通信システム
JP2000004061A (ja) 光利得等化装置
KR20150139696A (ko) 가변형 광 분기결합 다중화 시스템
JPH11252048A (ja) 波長多重光伝送システム
JP5489533B2 (ja) 光伝送装置、光波長増設装置および光波長増設方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536605

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE