JP4000251B2 - 光信号交換装置およびその制御方法 - Google Patents

光信号交換装置およびその制御方法 Download PDF

Info

Publication number
JP4000251B2
JP4000251B2 JP2001334807A JP2001334807A JP4000251B2 JP 4000251 B2 JP4000251 B2 JP 4000251B2 JP 2001334807 A JP2001334807 A JP 2001334807A JP 2001334807 A JP2001334807 A JP 2001334807A JP 4000251 B2 JP4000251 B2 JP 4000251B2
Authority
JP
Japan
Prior art keywords
output
level
optical signal
deflection
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334807A
Other languages
English (en)
Other versions
JP2003143629A (ja
Inventor
淳夫 石塚
和行 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2001334807A priority Critical patent/JP4000251B2/ja
Priority to US10/101,283 priority patent/US7233741B2/en
Publication of JP2003143629A publication Critical patent/JP2003143629A/ja
Application granted granted Critical
Publication of JP4000251B2 publication Critical patent/JP4000251B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速・大容量のWDMシステムにおける光クロスコネクト装置、光アド/ドロップ装置、波長ルータ装置等として用いて好適の、光信号交換装置およびその制御方法に関する。
【0002】
【従来の技術】
大容量光通信網を構築する有力な手段として波長分割多重 (WDM: Wavelength Division Multiplexing) 方式があり、近年、インターネットの爆発的な普及とともに、そのトラフィックが爆発的に増加している。
図14は上述のWDM方式による基幹光ネットワークとしての一般的な光クロスコネクト (OXC: Optical Cross-Connect)システムを模式的に示す図であり、この図14に示すOXCシステム100は、複数の光スイッチエレメント(図14中においては4つのクロスコネクト装置101−1〜101−4)が、光ファイバ102により相互に接続されてなるものである。光スイッチエレメント101−1〜101−4は、波長多重された光信号が光ファイバを通じて入力されると、波長単位で光信号の方路を切り替えるとともに、同一方路の光信号について波長多重して伝送し得るものである。
【0003】
この図14に示すOXCシステム100においては、ある通信ルートをなす光ファイバに障害が発生した場合、即時に予備の光ファイバ102や別ルートの光ファイバ102に自動的に迂回してシステムを高速に復旧させることができる他、波長単位での光パスの編集、波長変換可能な特徴を有する。
ついで、図15はWDM方式による一般的な光アド/ドロップ(OADM: Optical Add/Drop Multiplexing)リングシステム200を模式的に示す図であり、この図15に示すOADMリングシステム200は、複数の(図15中においては5つの光スイッチエレメント201−1〜201−5が光ファイバ206を通じてリング状に接続されてなるもので、各光スイッチエレメント201−1,201−3,201−4の配下にはそれぞれルータ202〜204が収容され、光スイッチエレメント201−1の配下には他の光スイッチ201−6が、光スイッチエレメント201−5の配下にはSONET(Synchronous Optical Network)伝送装置205が、それぞれ収容される。
【0004】
このような構成を持つOADMリングシステム200は、基幹ネットワークの下位に位置する県内・都市網で用いられ、1波長ごとの光信号を電気信号に変換することなく、そのまま任意に出し入れできるようになっている。即ち、ある地点でトラフィックが増加した場合に、波長の割り当てをダイナミックに変更することによって帯域を自動的に拡張し,転送可能容量を増やすなど,ユーザーの利用状況に合わせてネットワーク構成を自動的に変更させること可能である。
【0005】
これらのOXCシステム100、OADMシステム200における光スイッチエレメント110は、例えば図16に示すような構成を有している。即ち、この図16に示す光スイッチエレメント110は、光増幅器111,光分波器112,光スイッチ113,可変光減衰器114,光合波器115,光増幅器116および利得等化器117を備えて構成される。
【0006】
このように構成された光スイッチエレメント110においては、光増幅器111において光ファイバを通じて長距離伝送後に低下した光レベルを増幅し、光分波器112において光増幅器111からの波長多重光信号を波長分波し、光スイッチ113において分波された波長の光信号について所望の交換(スイッチング)を行なう。即ち、光スイッチ113の有する機能に応じて各波長の光信号について光クロスコネクト処理やアド/ドロップ処理を行なう。
【0007】
また、可変光減衰器114では光スイッチ113にてスイッチングがなされた(図15の場合にはリング伝送系の)各波長の光信号のレベルを等化減衰させ、光合波器115ではレベルが等化減衰された各波長の光信号について波長多重し、光増幅器116においては波長多重された光信号について増幅する。また、利得等化器117では、光増幅器116にて増幅された光信号を伝送先の装置に伝送する前段において、送信波長による利得のバラツキを等化する。
【0008】
上述の図14,図15に示すようOXCシステム100やOADMシステム200等のWDMシステムは、光ファイバを介して遠隔した装置間で波長多重光信号を伝送するものであり、各波長の光レベルにバラツキがあると、伝送路上での光の減衰等により、伝送帯域の狭小化、信号のSNR(信号対雑音比)の劣化を招くことになる。
【0009】
また、現在、上述の光増幅器112,116として一般に用いられているエルビウム添加ファイバ増幅器(EDFA: Erbium Doped Fiber Amplifier)は、このEDFA単体における利得帯域は数十nm程度であるが、多段に接続された場合にはその波長利得特性が強調され利得偏差が生じ、利得帯域が極端に狭まることが知られている。さらに、EDFAによる光増幅では、インコヒレントな自然放出光が発生し、わずかでも利得の低い波長は、利得の高い近接波長の自然放出光に埋もれる形となり、SNR(信号対雑音比)が劣化することが知られている。
【0010】
従って、光増幅器112,116には多段に接続した場合にもSNR劣化を保障するような利得平坦性が望まれるが、一般にEDFAはその波長帯域内に2つのピークを持った波長利得特性を示し、特性そのものが平坦な特性を持つものではない。
可変減衰器11は、上述の光増幅器111の増幅結果として図17における(a)に示すようなレベルのバラツキが生じた各波長の光信号について、(b)に示すように等化減衰させるものである。なお、図17中において利得等化器117の図示は説明の簡便化のため省略している。
【0011】
また、利得等化器117は、光増幅器116の増幅結果として図18における(a)に示すようなバラツキが生じた波長多重光信号の光レベルを、利得等化処理[即ち、(b)に示すような光増幅器116における波長利得特性の逆特性の信号処理]を行なうことによって、(c)に示すように等化するものである。なお、図18中において可変減衰器114の図示は説明の簡便化のため省略している。
【0012】
【発明が解決しようとする課題】
しかしながら、上述の図16に示すような光スイッチエレメント110においては、可変減衰器114および利得等化器117によって以下に示すような課題がある。
上述したように、図16に示す利得等化器117は、EDFAとしての光増幅器116の後段に挿入されたファブリペロ・エタロン・フィルタやファイバグレーティング (FBG: Fiber Bragg Grating) 等からなる光フィルタにより実現されるが、実際のEDFAの波長利得特性は複雑であり、この逆特性にフィルタ特性を合わせてフィルタを構成することは非常に困難であった。
【0013】
また、フーリエ級数近似を行い、各フーリエ級数項に対応した複数の光フィルタを合成することにより、ある程度高精度な利得等化フィルタを実現可能であるが、精度を向上させるには、光フィルタを多段に用る必要があり、伝送損失の増加およびシステム規模の増大を招いていた。
さらに、上述のごとき可変光減衰器114としては、各波長の光信号が伝搬する並列の光導波路中に各々マッハツェンダ干渉計や半導体光増幅器 (SOA: Semiconductor Optical Amplifier) ゲートを設け、それらを制御することで実現されているが、光導波路を用いるため波長依存性および偏向依存性を保障することが困難となる課題がある。
【0014】
また、上述の図16に示すような構成では、光スイッチ113ごとに上述の可変光減衰器114および利得等化器117の双方をそなえて構成することが必要となり、システム規模の増大を招くという課題があった。
本発明はこのような課題に鑑み創案されたもので、可変光減衰器ならびに利得等化器をその入力側および出力側にそなえることなく、経済化・小型化を測るとともに、広帯域でSNRの劣化を低減できるようにした、光信号交換装置およびその制御方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
このため、本発明の光信号交換装置は、複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段と、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく偏向手段を駆動制御する駆動制御手段とをそなえ、該駆動制御手段が、前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御部と、該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号のレベルを、設定された目標レベルとなるようにフィードバック制御するレベル制御部とをそなえて構成され、該駆動制御手段が、前記各出力ポートから出力された出力光信号を分岐する光分岐手段と、該光分岐手段で分岐された出力光信号を各々モニタすることにより、前記各出力ポートから出力された出力光信号のレベルをモニタする光検出手段と、該偏向手段における各入力光信号の偏向状態を駆動する駆動手段と、をそなえるとともに、該レベル制御部が、該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号レベルを該光検出手段から入力され、各出力光信号のレベルを、上記目標レベルとなるように、該偏向手段における各入力光信号の偏向状態をフィードバック制御すべく構成され、かつ、該レベル制御部が、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とに基づいて、各出力光信号のレベルを等化減衰すべくフィードバック制御するように構成されたことを特徴としている
【0017】
また、本発明の光信号交換装置は、複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段と、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく偏向手段を駆動制御する駆動制御手段とをそなえ、該駆動制御手段が、前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御部と、該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号のレベルを、設定された目標レベルとなるようにフィードバック制御するレベル制御部とをそなえて構成され、該駆動制御手段が、前記各出力ポートから出力された出力光信号を分岐する光分岐手段と、該光分岐手段で分岐された出力光信号を各々モニタすることにより、前記各出力ポートから出力された出力光信号のレベルをモニタする光検出手段と、該偏向手段における各入力光信号の偏向状態を駆動する駆動手段と、をそなえるとともに、該レベル制御部が、該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号レベルを該光検出手段から入力され、各出力光信号のレベルを、上記目標レベルとなるように、該偏向手段における各入力光信号の偏向状態をフィードバック制御すべく構成され、かつ、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号を等化させるための各出力光信号のレベル・利得等化減衰量を算出し、前記算出されたレベル・利得等化減衰量情報に基づいて、前記出力光信号レベルをフィードバック制御するように構成されたことを特徴としている
【0018】
また、本発明の光信号交換装置の制御方法は、上述の場合と同様の複数の入力ポートおよび出力ポートと、偏向手段と、メモリ手段とをそなえ、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく制御する光信号交換装置の制御方法であって、前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御ステップと、該切替制御ステップにおける制御が行なわれた後の各出力ポートから出力される出力光信号レベルを、設定された目標レベルとなるように、該偏向手段の偏向状態をフィードバック制御するレベル制御ステップとをそなえて構成され、かつ、該レベル制御ステップは、前記各出力ポートから出力された出力光信号のレベルをモニタし、該モニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とに基づいて、各出力光信号のレベルを等化減衰すべくフィードバック制御することを特徴としている
さらに、本発明の光信号交換装置の制御方法は、複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段とをそなえ、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく制御する光信号交換装置の制御方法であって、前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御ステップと、該切替制御ステップにおける制御が行なわれた後の各出力ポートから出力される出力光信号レベルを、設定された目標レベルとなるように、該偏向手段の偏向状態をフィードバック制御するレベル制御ステップとをそなえて構成され、かつ、該レベル制御ステップは、前記各出力ポートから出力された出力光信号のレベルをモニタし、該モニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号を等化させるための各出力光信号のレベル・利得等化減衰量を算出し、前記算出されたレベル・利得等化減衰量情報に基づいて、前記出力光信号レベルをフィードバック制御することを特徴としている。
【0019】
【発明の実施の形態】
以下、図面を参照することにより、本発明の実施の形態を説明する。
〔1〕光信号交換装置の構成の説明
本発明の一実施形態にかかる光信号交換装置は、前述の図16に示す光スイッチエレメント110の光スイッチ113として適用しうるものであり、以下に示す本願発明の構成によって、光スイッチエレメント110に設けられた可変光減衰器114および利得等化器117の機能を光スイッチとしての光信号交換装置に含めたものである。
【0020】
すなわち、図1は本実施形態にかかる光信号交換装置が適用された光スイッチエレメントを示すブロック図であり、この図1に示す光スイッチエレメント10における光増幅器11,光分波器12,光合波器15および光増幅器16は、それぞれ、前述の図16における光増幅器111,光分波器112,光合波器115および光増幅器116と同様の機能を有している。
【0021】
ここで、本実施形態にかかる光信号交換装置1は、図16に示す光スイッチ113と同様に、チャンネル毎の入力光信号について所望のスイッチングを行なうものであるが、詳細には光スイッチ2,光分岐カプラ部3,光検出器4,制御回路5,駆動回路6およびメモリ7をそなえて構成されている。尚、光分岐カプラ部3,光検出回路4,制御回路5および駆動回路6は、上述のメモリ7にて格納された偏向制御量に基づいて、光スイッチ2における各入力光信号の偏向状態を設定すべく光スイッチ2を駆動制御する駆動制御手段8として機能する。
【0022】
ここで、光スイッチ(偏向手段)2は、光分波器12にて分波(波長分割)されたチャンネル毎の入力光信号を対応する入力ポートから入力されて、これらの波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから交換後の光信号として出力するもので、詳細には、例えば図2に示すようなマイクロマシン(MEMS;Micro Electric Mechanical System)技術を適用した光学系により構成されている。
【0023】
この図2に示す光スイッチ2は、複数(Nチャンネル;Nは2以上の整数)チャンネルの各入力光信号について整列する入力ポートとしてのN個のコリメータ21を2次元に配置した入力コリメータアレイ2Aと、入力コリメータアレイ2Aからのチャンネル毎の入力光信号を偏向させるための第1ミラーアレイ2Bおよび第2ミラーアレイ2Cと、偏向された出力光信号を整列する出力ポートとしてのN個のコリメータ22を2次元に配置した出力コリメータアレイ2Dと、をそなえて構成さえている。
【0024】
なお、入力コリメータアレイ2Aおよび出力コリメータアレイ2Dを構成する各コリメータ21,22にはそれぞれ、光ファイバ25,26が接続され、光分波器12からの各入力信号光を対応する光ファイバ25を通じてコリメータ21に入力される一方、光ファイバ26を通じて光合波器15に対する出力信号光を出力するようになっている。
【0025】
また、第1ミラーアレイ2Bおよび第2ミラーアレイ2Cはそれぞれ、後述の駆動回路6としてのアクチュエータにより角度調整可能なティルトミラー23,24を、コリメータ21またはコリメータ22の数Nに対応して平面上に配置されたものである。更に、本実施形態においては、入力コリメータアレイ2Aおよび出力コリメータアレイ2Dを並列的に配置するとともに、第1ミラーアレイ2Bおよび第2ミラーアレイ2Cは互いに90度の角度をなして配置する一方、入力コリメータアレイ2Aおよび出力コリメータアレイ2Dと、各ミラーアレイ2B,2Cは、それぞれ45度の角度をなして配置される。
【0026】
これにより、入力コリメータアレイ2Aにおけるコリメータ(入力ポート)21を通じて入力された各入力光信号が、第1ミラーアレイ2Bおよび第2ミラーアレイ2Cにより角度が調整されたティルトミラー23,24を反射することによって、所望のコリメータ(出力ポート)22を通じて出力光信号として出力できるようになっている。
【0027】
さらに、メモリ(メモリ手段)7は、例えば図3に示すように、光スイッチ2における前記の各入力ポート(入力チャンネル)としてのコリメータ21に対する出力ポート(出力チャンネル)としてのコリメータ22の割り当てに応じた偏向制御量(駆動制御量)に関する情報をデータベース7Aとして格納するものである。即ち、メモリ7の偏向制御量データベース7Aにおいては、コリメータ21の位置に対応して割り当てられた位置のコリメータ22から出力信号光が出力できるように、当該切替対象となる入力光信号を反射する位置にあるティルトミラー23,24を角度調整するための情報を記憶するようになっている。
【0028】
なお、メモリ7においては、初期状態における各チャンネルの割り当てに対応した偏向制御量としてのティルトミラー23,24の駆動制御量情報についても初期設定データベース7Bとして記憶している。
また、光分岐カプラ部(光分岐手段)3は、前記各出力ポートから出力された出力光信号を分岐するもので、個々の光ファイバ26からの出力光信号を分岐する光カプラ31により構成される。即ち、各光ファイバ26には、出力光信号について分岐するための光カプラ31がそれぞれ設けられて、一方を出力光信号として出力する一方、他方を出力光信号レベルのフィードバック制御のための光信号として出力するようになっている。
【0029】
さらに、光検出器(光検出手段)4は、光分岐カプラ部3としての光カプラ31で分岐された出力光信号を各々モニタするもので、例えば各出力光信号のレベルに応じた電気信号(フォトカレント;電流信号)を出力するフォトダイオードおよび、フォトカレントを電圧信号に変換して出力する電流/電圧変換器等により構成される。
【0030】
また、駆動回路(駆動手段)6は、後述の制御回路5からの制御(ディジタル制御量)を受けて、これをアナログ制御量に変換することにより、上述の第1ミラーアレイ2Bを構成する各ティルトミラー23および第2ミラーアレイ2Cを構成する各ティルトミラー24の角度の可変制御するもので、例えばアクチュエータにより構成される。即ち、駆動回路6としてのアクチュエータにより、光スイッチ2における各入力光信号の偏向状態を駆動することができるようになっている。
【0031】
また、制御回路(制御手段)5は、上述の光検出器4からの各出力光信号のモニタ結果と、メモリ7に格納された偏向制御量データとに基づいて、光スイッチ2における偏向状態を設定すべく駆動回路6を制御するものであり、例えば、FPGA(Field Programmable Gate Arrays)等のASIC(Application Specific Integrated Circuit)により構成することができる。また、制御回路5は、装置の初期状態においては、メモリ7の初期設定データベース7Bに記憶された、初期のチャンネル設定に対応した各ティルトミラー23,24の駆動制御量を読み出して駆動回路6を制御する初期制御部53としての機能を有するが、本願発明の特徴となる切替制御部51およびレベル制御部52としての機能をも有している。
【0032】
ここで、切替制御部51は、入力ポートに対する出力ポートの割り当て(交換されるチャンネルの割り当て)の切替指示を受けると、当該チャンネルの切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量をメモリ7から読み出し、読み出した偏向制御量となるように光スイッチ2を制御するものである。
【0033】
すなわち、切替制御部51では、上述のチャンネル切替指示の対象となるティルトミラー23,24を角度調整するための、駆動回路6の駆動制御量についてメモリ7から読み出して、当該制御量で対象となるティルトミラー23,24の角度調整を行なうように駆動回路6を制御するようになっている。
また、レベル制御部52は、切替制御部51にて前記切替指示に対する制御が行なわれた後の各出力ポートとしてのコリメータ22から出力される出力光信号のレベルを、光検出器4からのモニタ情報に基づいて、設定された目標レベルとなるようにフィードバック制御するものであり、本実施形態においては、このフィードバック制御の態様(レベル等化モード)として、後で詳述する以下の3種類の態様を設定することができる。
【0034】
▲1▼各出力ポートとしてのコリメータ22から出力される出力光信号レベルの比較を行なって、各出力光信号のレベルを、比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させるべく、光スイッチ2における偏向状態をフィードバック制御する態様。
▲2▼光検出器4にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイス(本実施形態の場合には光増幅器16)の波長利得特性とに基づいて、第1に比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させ、第2に上述の減衰された出力光信号レベルに加重して、当該光デバイス16から出力される光信号について等化させるべく、各出力光信号のレベルを等化減衰させるべくフィードバック制御する態様。
【0035】
▲3▼光検出器4にてモニタされた各出力光信号のレベルと各出力ポートとしてのコリメータ22の後段に接続される光デバイス16の波長利得特性とから、当該光デバイスから出力される光信号をレベル・利得等化減衰させるための各出力光信号の等化減衰量を算出し、前記算出された等化減衰量情報に基づいて、前記出力光信号レベルを等化減衰すべくフィードバック制御する態様。
【0036】
したがって、上述の光スイッチ2のティルトミラー23,24により、レベル制御部52からの制御を駆動回路6による駆動を通じて受けることにより、出力光信号を可変に等化減衰させる等化減衰部2−1として機能している。
なお、上述の光増幅器16は、図4に示すように、合波器16bにて励起光源16aからの励起光と合波された信号光がエルビウムドープファイバ(EDF)16cを伝搬することにより、増幅された信号光として出力するものであるが、利得一定制御部16−5により、出力される信号光の利得が一定となるような利得一定制御を受けている。ここで、光分岐器16−1,16−2,O/E変換部16−3,16−4および利得一定制御部16−5については、図1中は図示を省略している。
【0037】
すなわち、光分岐器16−1,16−2において光増幅器16による増幅前後の光信号を分岐して、O/E変換部16−3,16−4にてそれぞれの光信号について電気信号に変換し、利得一定制御部16−5ではO/E変換部16−3,16−4からの電気信号に基づいて、増幅後の光信号が一定となるように励起光源16aからの励起光を制御するのである。
【0038】
このような利得一定制御を受けている光増幅器16においては、エルビウムドープファイバ16cの反転分布状態が一定となるため、利得波長特性についても一定とすることができる。即ち、反転分布は、入力信号光パワー,励起光源16bからの励起光パワーおよびエルビウムドープファイバ16cの長さの関数であるが、ファイバ長を固定として所定の利得一定制御を行なっている下においては、この反転分布状態も計算できるので、光増幅器16としての波長利得特性についても予め保持しておくことができるのである。
【0039】
上述の▲2▼,▲3▼の制御態様においては、光信号交換装置1の後段に接続される光増幅器16の波長利得特性に基づいた等化減衰制御を行なっているが、この光増幅器16の波長利得特性は、上述のごとき利得一定制御を行なっている場合における当該光増幅器16の利得Gに応じて、例えば図5に示すような波長利得特性データベース7Cとして、メモリ7に格納しておくことができる。
【0040】
この図5に示すデータベース7Cにおいては、光増幅器16が利得一定制御部16−5にて一定制御が想定される利得G1,G2,…,Gmに応じて、各チャンネル♯1〜♯Nの出力光信号λ1〜λn(n=N)の利得値g11〜gn1,g12〜gn2,…,g1m〜gnmを記憶するようになっている。
これにより、制御回路5のレベル制御部52では、上述のメモリ7に格納された波長利得特性を読み取って、上述のごとき▲2▼または▲3▼の態様のフィードバック制御を行なうことで、ある程度リアルタイムな波長利得特性情報に基づくレベル制御を行なうことができる。
【0041】
なお、この波長利得特性としては、上述のメモリ7の代わりに、例えば図6に示すように、光信号交換装置1の外部(光増幅器16を利得一定制御する利得一定制御部16−5内に設けられた波長利得特性データベース16A)から制御回路5のレベル制御部52に入力されるように構成してもよい。
〔2〕制御回路5における制御の説明
上述のごとく構成された光信号交換装置1においては、コリメータ21を通じて入力された各チャンネルの入力光信号は、駆動回路6により角度が設定されたティルトミラー23,24により偏向されて、それぞれ割り当てられたコリメータ22を通じて出力される。
【0042】
ここでは、切替制御部51において、上述のチャンネル割り当て(入力側コリメータ21に対する出力側コリメータ22割り当て)における切替指示を受けた場合の切替制御部51による制御、および切替制御部51における制御の行なわれた後のレベル制御部52によるフィードバック制御について、図7〜図12を用いて説明する。
【0043】
〔2−1〕切替制御部51による制御の説明
まず、本実施形態にかかる光信号交換装置1のチャンネル切替時の制御について、図7(または図9,図11)に示すフローチャートのステップA1〜A14に従って説明する。
すなわち、切替制御部51では、チャンネル切替指示を受けると、当該切替指示の対象となるチャンネル情報(CH,入力ポートに対応する入力チャンネル情報および出力ポートに対応する出力チャンネル情報)をメモリ7のデータベース7Aにアクセスすることにより読み出して(ステップA1)、決定された偏向角で光スイッチ(偏向手段)2のティルトミラー23,24が駆動されるように駆動回路6を制御する(切替制御ステップ,ステップA2,A3)。
【0044】
また、光検出器4において、チャンネル切替のあった出力光信号のレベルをモニタし、異常が無ければ、切替後の出力チャンネルから最適レベルの出力信号光が出力されるようにキャリブレーション制御を行なう(ステップA6〜ステップA14)。換言すれば、切替制御部51において、光検出器4にてモニタされた出力光信号レベルに基づいて、データベース7Aから読み出した偏向制御量による偏向状態について段階的に変化させることによりキャリブレーション制御を行なう。
【0045】
具体的には、切替制御部51による駆動回路6の制御により、ティルトミラー23,24をなす偏向角をある方向に一定量変化させ(ステップA6)、そのときの受信レベルを光検出器4にて検出する(ステップA7)。ここで、切替制御部51において変化前後の受信レベルを比較し、受信レベルが増加した場合には、同じ制御を繰り返す(ステップA8のNOルートからステップA6)。
【0046】
また、受信レベルが減少した場合には、最適点(パワー最大点)を通り過ぎたと判断し偏向角を反対の方向に一定量変化し(ステップA8のYESルートからステップA9)、この反対方向の変化の前後で受信レベルを比較する(ステップA10)。受信レベルがここで減少した場合には、誤動作が考えられるため制御をリセットし(ステップA10のYESルートからステップA11)、再スタートを行なう。
【0047】
受信レベルが反対に増加した場合には、この点が最適点である可能性が高いため、偏向角の微調整動作をN回繰り返す(ステップA12,ステップA13のNOルートからステップA6)。フィードバック動作がN回以上連続した場合にはこの点が最適点と判断し(ステップA13のYESルートからステップA14)、次のレベル制御部52によるレベル等化のステップに移行する。
【0048】
〔2−2〕レベル制御部52による制御の説明
上述のレベル制御部52では、切替制御部51におけるチャンネル切替指示に対する制御が行なわれた後の各コリメータ22から出力される出力光信号レベルを、設定された目標レベルとなるように、光スイッチ2の偏向状態(ティルトミラー23,24の角度)を前述の3つの態様(▲1▼〜▲3▼)でフィードバック制御するが(レベル制御ステップ)、各制御態様の詳細については以下の通りとなる。
【0049】
〔2−2−1〕レベル制御部52による第1の制御態様の説明
まず、第1の制御態様を図7のフローチャートのステップB1〜B7および図8を用いて説明することとする。
なお、ステップのB5−1〜B5−N,B6−1〜B6−NおよびB7−1〜B7−Nについては、ステップのB5,B6およびB7と記載している場合がある。
【0050】
切替制御部51による切替制御が終了すると、レベル等化モード情報の設定を参照して(ステップB1)、前述の▲1▼の態様によるレベル等化モードが設定されている場合には、ステップB1に続いて、各コリメータ22から出力される出力信号光レベルをモニタし、それぞれを比較する(レベル比較ステップ)。
具体的には、上述の切替制御部51による切替制御後の全チャンネルの受信レベルを光検出器4にて検出する(ステップB2)。なお、この光検出器4にて検出された全チャンネルの受信レベルは、例えば図8の(a)のようになる。
【0051】
レベル等化を行なうための光レベルの閾値が例えばメモリ7に設定されている場合には、当該閾値と、各チャンネルの光レベルとを比較して、光レベルが閾値以下となるチャンネルについてはレベル等化の対象から除外する(ステップB3)。尚、このステップB3による閾値の比較については省略することも可能である。
【0052】
閾値以上の光レベルを持つチャンネルの中で最低の光レベルとなるチャンネルをλrefとして選択すると〔ステップB4,図8の(b)参照〕、このチャンネルの光レベルを基準にレベル等化を行なう。具体的には、この最低レベルと、最低レベルチャンネル以外のチャンネルの光レベルとを比較し、各チャンネルについて差分を検出する(ステップB5)。
【0053】
次に、各コリメータ22から出力される出力信号光のレベルを、比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させるべく、偏向状態をフィードバック制御する(減衰ステップ)。即ち、チャンネル毎に、累積された減衰量と差分とが一致するまで、光スイッチ2のティルトミラー23,24の偏向角をある方向に一定量変化させて光レベルを徐々に減衰させる(ステップB6,ステップB7)。これにより、光信号交換装置1における各チャンネル(波長)の出力光信号の光レベルは、最低レベルに均一化させることができる〔ステップB7,図8の(c)参照〕。
【0054】
〔2−2−2〕レベル制御部52による第2の制御態様の説明
ついで、第2の制御態様を図7のフローチャートのステップB11〜B20および図9を用いて説明することとする。尚、前述した第1の制御態様の場合と同様、ステップのB15−1〜B15−N,…,B20−1〜B20−Nについては、ステップのB15,…B20と記載している場合がある。
【0055】
切替制御部51による切替制御が終了すると、レベル等化モード情報の設定を参照して(ステップB11)、前述した▲2▼の態様によるレベル等化モードが設定されている場合には、ステップB11に続いて、前述した第1の制御態様と同様に最低レベルCHを選択し〔レベル比較ステップ,図10における(b)参照〕、選択した最低レベルに各チャンネルの出力光信号〔図10における(a)参照〕の光レベルを等化する〔減衰ステップ,ステップB12〜B17,図10における(c)参照〕。ステップB3に相当するステップB13において閾値の比較を省略できることも同様である。
【0056】
続いて、減衰ステップにて減衰された出力光信号レベルに加重して、記憶された利得等化減衰量情報(波長利得特性情報)に基づいて、光増幅器16から出力される光信号について等化させるべく、偏向状態(ティルトミラー23,24の設定角度の状態)をフィードバック制御する(等化ステップ)。具体的には、光増幅器16の波長利得特性を、メモリ7(または利得一定制御部16−5;図6参照)のデータベース7C(または16A)を参照することにより読み出す(ステップB18)。更に、レベル制御部52では読み出した波長利得特性の逆特性を導出し、導出した逆特性に相当する各チャンネルのレベル減衰量を導出する。この各波長のゲインに応じた減衰量については、レベル制御部52内の演算機能により求めることができる。
【0057】
次に、チャンネル毎に、累積された減衰量と差分とが一致するまで、光スイッチ2のティルトミラー23,24の偏向角をある方向に一定量変化させて光レベルを徐々に減衰させる(ステップB19,ステップB20)。これにより、光スイッチ2に入力された光信号のレベル等化と、後段に接続した光増幅器16の波長利得特性をキャンセルする利得等化を同時に実現し、光増幅器16の出力は、各チャンネル(波長)の光レベルが均一な光信号となる〔図10における(d)参照〕。
【0058】
〔2−2−3〕レベル制御部52による第3の制御態様の説明
ついで、第3の制御態様を図11のフローチャートのステップB21〜B27および図12を用いて説明する。尚、前述した第1,第2の制御態様の場合と同様、ステップのB24−1〜B24−N,…,B27−1〜B27−Nについては、ステップのB24,…B27と記載している場合がある。
【0059】
切替制御部51による切替制御が終了すると、レベル等化モード情報の設定を参照して(ステップB21)、前述した▲3▼の態様によるレベル等化モードが設定されている場合には、ステップB21に続いて、全チャンネル♯1〜♯Nの受信レベルを検出(モニタ)する〔モニタステップ,ステップB22,図12における(a)参照〕。
【0060】
続いて、モニタステップにてモニタされた各出力光信号レベルと各コリメータ22の後段に接続される光増幅器16の波長利得特性とから、当該光増幅器16から出力される光信号を、レベル・利得等化減衰させるための各出力光信号の等化減衰量を算出する(算出ステップ)。
具体的には、後段に接続した光増幅器16の波長利得特性情報を、メモリ7(または利得一定制御部16−5;図6参照)のデータベース7C(または16A)を参照することにより読み出す〔ステップB23,図12における(a)の符号g参照〕。そして、検出した光レベルと前記特性情報gとから、光増幅器16出力後の各チャンネルの出力光信号における光レベルを予測する〔ステップB24,図12の(b)参照〕。次に、各チャンネルにおける予測された光レベルを比較して、最低の予測光レベルとなるチャンネルλrefを選択し(図12の(b)参照)、チャンネルλref以外のチャンネルについては、当該チャンネルの予測光レベルとチャンネルλrefの予測光レベル(最低予測光レベル)との差分を算出する(ステップB25)。
【0061】
続いて、算出ステップにて算出された等化減衰量情報に基づいて、当該光増幅器16から出力される光信号についてレベル・利得等化減衰させるべく、偏向状態(ティルトミラー23,24の設定角度の状態)をフィードバック制御する(等化減衰ステップ)。
具体的には、チャンネル毎に、累積された減衰量と差分とが一致するまで、光スイッチ2におけるティルトミラー23,24の偏向角をある方向に一定量変化させて光レベルを徐々に減衰させる(ステップB26,ステップB27)。これにより、光スイッチ2に入力した光信号のレベル等化〔図12の(c)参照〕と、後段に接続した光増幅器16の波長利得特性をキャンセルする利得等化〔図12の(d)参照〕とを同時に実現することができる。
〔3〕本実施形態による効果の説明
このように、本実施形態にかかる光信号交換装置によれば、光信号交換装置内部の光結合効率を制御することにより、可変光減衰器を用いることなく各波長の光レベルを等化できるので、課題となっていた可変光減衰器の波長依存性、偏波依存性を考慮する必要がなくなり、柔軟なシステム設計が可能となる。
【0062】
また、波長利得依存性を持つ光デバイスとしての光増幅器16の後段に利得等化器を用いることなく、光増幅器16出力の各波長の光レベルを等化できるので、課題となっていた利得等化器を構成するための光フィルタ特性を考慮する必要がなくなり、高精度なレベル等化が可能となる。したがって、帯域幅の劣化および光SNRの劣化を最小限にとどめ、信号伝送品質の低下を防ぐことができる。
【0063】
また、波長多重伝送システムにおける光スイッチ2の後段に設けられていた可変光減衰器および利得等化器等の機能部を削減させることができるので、部品点数の削減・装置構成のためのコスト低廉化の観点からも、WDMシステムに寄与するところが大きい。
〔4〕その他
上述のレベル制御部52による第1〜第3の制御態様においては、図7,9および11に示すように、それぞれ各チャンネル♯1〜♯Nの出力信号光のレベルについての等化制御を並列的に行なうようになっているが、各チャンネル毎に、またはN/2以下の数チャンネルを単位として順次制御するようにしてもよい。
【0064】
また、上述の本実施形態においては、光スイッチ(偏向手段)2として図2に示すような入力コリメータアレイ2A,第1ミラーアレイ2B,第2ミラーアレイ2Cおよび出力コリメータアレイ2Dからなる光学系により構成しているが、本発明によればこれに限定されず、例えば図13に示すような光学系により構成することもできる。
【0065】
すなわち、この図13に示すように、光スイッチ2として、波長多重されるチャンネル数に対応して配置された複数の入力コリメートレンズ(入力ポート)2Eおよび出力コリメートレンズ(出力ポート)2Fとともに、入力ポートまたは出力ポートの数に対応して同一平面上に並列した入力側電気光学材料(第1の光偏向素子)2Gおよび出力側電気光学材料(第2の光偏向素子)2Hを有する平面型光スイッチをそなえ、入力コリメートレンズ2Eからの入力光信号を、それぞれが対応する入力側電気光学材料2Gで屈折させた後に出力側電気光学材料2Hで屈折させ、割り当てられた出力コリメートレンズ2Fから出力されるように構成することとしてもよい。
【0066】
なお、上述の電気光学材料2G,2Hは、駆動回路6から印加される電気信号によって、入射される光信号の偏向角を可変制御しうるものであり、このように構成された光スイッチ2により、小型の光スイッチ2としながら、制御回路5にてレベル等化,利得等化を行なうことができる。
さらに、上述の図13の場合において、第1,第2偏向素子としては電気光学材料に限定されず、これ以外の公知の偏向素子を用いることも、もちろん可能である。
〔5〕付記
(付記1) 複数の入力ポートおよび出力ポートをそなえるとともに、
前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから交換後の光信号として出力する偏向手段と、
該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段と、
該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく該偏向手段を駆動制御する駆動制御手段とをそなえ、
該駆動制御手段が、
前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御部と、
該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号のレベルを、設定された目標レベルとなるようにフィードバック制御するレベル制御部とをそなえて構成されたことを
特徴とする、光信号交換装置。
【0067】
(付記2) 該駆動制御手段が、
前記各出力ポートから出力された出力光信号を分岐する光分岐手段と、
該光分岐手段で分岐された出力光信号を各々モニタする光検出手段と、
該偏向手段における各入力光信号の偏向状態を駆動する駆動手段と、
該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく該駆動手段を制御する制御手段とをそなえ、
該レベル制御部が、
該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号レベルを該光モニタ手段から入力され、各出力光信号のレベルを、上記目標レベルとなるように、該偏向手段における各入力光信号の偏向状態をフィードバック制御すべく構成されたことを
特徴とする、付記1記載の光信号交換装置。
【0068】
(付記3) 該レベル制御部が、各出力ポートから出力される出力光信号レベルの比較を行なって、各出力光信号のレベルを、前記比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させるべく、前記偏向状態をフィードバック制御するように構成されたことを特徴とする、付記1記載の光信号交換装置。
【0069】
(付記4) 該レベル制御部が、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とに基づいて、各出力光信号のレベルを等化減衰すべくフィードバック制御するように構成されたことを特徴とする、付記2記載の光信号交換装置。
(付記5) 該レベル制御部が、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号を等化させるための各出力光信号の等化減衰量を算出し、前記算出された等化減衰量情報に基づいて、前記出力光信号レベルを等化減衰すべくフィードバック制御するように構成されたことを特徴とする、付記2記載の光信号交換装置。
【0070】
(付記6) 該メモリ手段が、各出力ポートの後段に接続される光デバイスの波長利得特性についても記憶しておき、該レベル制御部が、該メモリ手段にて記憶された波長利得特性を用いることにより前記フィードバック制御を行なうように構成されたことを特徴とする、付記4または5記載の光信号交換装置。
(付記7) 前記光デバイスが光増幅器であることを特徴とする、付記4〜6のいずれか一項記載の光信号交換装置。
【0071】
(付記8) 該切替制御部が、該光検出手段にてモニタされた前記各出力光信号レベルに基づいて、前記読み出した偏向制御量による偏向状態をキャリブレーション制御すべく構成されたことを特徴とする、付記2記載の光信号交換装置。
(付記9) 該偏向手段が、上記複数の入力ポートからの入力光信号について整列する入力コリメータアレイと、該駆動手段による駆動により角度調整可能なティルトミラーを上記の入力ポートまたは出力ポートの数に対応して平面上に配置されて該入力コリメータアレイからのチャンネル毎の入力光信号を偏向させる第1ミラーアレイおよび第2ミラーアレイと、上記の第1ミラーアレイおよび第2ミラーアレイにて偏向された各出力光信号を整列して上記割り当てられた出力ポートに供給する出力コリメータアレイと、をそなえて構成されたことを特徴とする、付記1〜8のいずれか一項記載の光信号交換装置。
【0072】
(付記10) 該偏向手段が、上記複数の入力ポートおよび出力ポートとともに、上記の入力ポートまたは出力ポートの数に対応して同一平面上に並列した第1の光偏向素子および第2の光偏向素子を有する平面型光スイッチをそなえ、前記入力ポートからの入力光信号を、それぞれが対応する第1の光偏向素子で屈折させた後に第2の光偏向素子で屈折させ、前記割り当てられた出力ポートから出力されるように構成されたことを特徴とする、付記1〜8のいずれか一項記載の光信号交換装置。
【0073】
(付記11) 複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段とをそなえ、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく制御する光信号交換装置の制御方法であって、
前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御ステップと、
該切替制御ステップにおける制御が行なわれた後の各出力ポートから出力される出力光信号レベルを、設定された目標レベルとなるように、該偏向手段の偏向状態をフィードバック制御するレベル制御ステップとをそなえて構成されたことを
特徴とする、光信号交換装置の制御方法。
【0074】
(付記12) 該レベル制御ステップが、
各出力ポートから出力される出力光信号レベルをモニタし、それぞれを比較するレベル比較ステップと、
各出力ポートから出力される出力光信号のレベルを、前記比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させるべく、前記偏向状態をフィードバック制御する減衰ステップとをそなえて構成されたことを特徴とする、付記11記載の光信号交換装置の制御方法。
【0075】
(付記13) 該メモリ手段が、各出力ポートの後段に接続される光デバイスの波長利得特性に基づき当該光デバイスから出力される光信号を等化させるための各出力光信号の等化減衰量情報についても記憶しておき、
該レベル制御ステップが、
各出力ポートから出力される出力光信号レベルをモニタし、それぞれを比較するレベル比較ステップと、
各出力ポートから出力される出力光信号のレベルを、前記比較の結果最もレベルの低い出力光信号のレベルとなるように減衰させるべく、前記偏向状態をフィードバック制御する減衰ステップと
前記減衰ステップにて減衰された出力光信号レベルに加重して、該メモリ手段にて記憶された利得等化減衰量情報に基づいて、当該光デバイスから出力される光信号について等化させるべく、前記偏向状態をフィードバック制御する等化ステップとをそなえて構成されたことを特徴とする、付記11記載の光信号交換装置の制御方法。
【0076】
(付記14) 該レベル制御ステップが、
各出力ポートから出力される出力光信号レベルをモニタするモニタステップと、
該モニタステップにてモニタされた各出力光信号レベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号をレベル・利得等化減衰させるための各出力光信号の等化減衰量を算出する算出ステップと、
前記算出ステップにて算出された等化減衰量情報に基づいて、当該光デバイスから出力される光信号について等化減衰させるべく、前記偏向状態をフィードバック制御する等化減衰ステップとをそなえて構成されたことを特徴とする、付記11記載の光信号交換装置の制御方法。
【0077】
(付記15) 該レベル比較ステップにおいて、各出力ポートから出力される出力光信号レベルの比較を行なうにあたり、予め設定した閾値以下のレベルの出力光信号がある場合には、該閾値よりも大きいレベルの出力光信号の中でレベル比較を行なうことを特徴とする、付記12または13記載の光信号交換装置の制御方法。
【0078】
【発明の効果】
以上詳述したように、本発明の光信号交換装置およびその制御方法によれば、駆動制御手段の制御により、光信号交換装置内部の光結合効率を制御することができ、可変光減衰器を用いることなく各波長の光レベルを等化できるので、課題となっていた可変光減衰器の波長依存性、偏波依存性を考慮する必要がなくなり、柔軟なシステム設計が可能となる。
【0079】
また、波長利得依存性を持つ光デバイスとしての光増幅器の後段に利得等化器を用いることなく、光増幅器出力の各波長の光レベルを等化できるので、課題となっていた利得等化器を構成するための光フィルタ特性を考慮する必要がなくなり、高精度なレベル等化が可能となる。したがって、帯域幅の劣化および光SNRの劣化を最小限にとどめ、信号伝送品質の低下を防ぐことができる。
【0080】
また、WDMシステムにおけるOXCシステムやOADMシステムにおける光スイッチとして機能する偏向手段の後段に設けられていた可変光減衰器および利得等化器等の機能部を削減させることができるので、部品点数の削減させて、装置構成のためのコストを大幅に低廉化させることができる利点がある。
【図面の簡単な説明】
【図1】本実施形態にかかる光信号交換装置が適用された光スイッチエレメントを示すブロック図である。
【図2】本実施形態における光スイッチの構成例を示す模式図である。
【図3】本実施形態において光スイッチにおける入力側コリメータに対する出力側コリメータの割り当てに応じた偏向制御量に関するデータベースを示す図である。
【図4】本実施形態において利得一定制御される光増幅器を示すブロック図である。
【図5】本実施形態における波長利得特性に関するデータベースを示す図である。
【図6】本実施形態における変形例を示すブロック図である。
【図7】本実施形態における切替制御部およびレベル制御部の第1の制御態様について説明するためのフローチャートである。
【図8】(a)〜(c)は、本実施形態におけるレベル制御部の第1の制御態様について説明するための図である。
【図9】本実施形態における切替制御部およびレベル制御部の第2の制御態様について説明するためのフローチャートである。
【図10】(a)〜(d)は、本実施形態におけるレベル制御部の第2の制御態様について説明するための図である。
【図11】本実施形態における切替制御部およびレベル制御部の第3の制御態様について説明するためのフローチャートである。
【図12】(a)〜(d)は、本実施形態におけるレベル制御部の第3の制御態様について説明するための図である。
【図13】本実施形態における光スイッチの変形例を示す模式図である。
【図14】WDM方式による基幹光ネットワークとしての一般的な光クロスコネクトシステムを模式的に示す図である。
【図15】WDM方式による一般的な光アド/ドロップリングシステムを模式的に示す図である。
【図16】図14に示すOXCシステムや図15に示すOADMシステムにおける光スイッチエレメントを示すブロック図である。
【図17】図15に示す光スイッチエレメントの課題について説明するための図である。
【図18】図15に示す光スイッチエレメントの課題について説明するための図である。
【符号の説明】
1 光信号交換装置
2 光スイッチ(偏向手段)
2A,2D コリメータアレイ
2B,2C ミラーアレイ
2E,2F コリメートレンズ
2G,2H 電気光学材料
2−1 等化減衰部
3 光分岐カプラ部(光分岐手段)
4 光検出器(光検出手段)
5 制御回路(制御手段)
6 駆動回路(駆動手段)
7 メモリ(メモリ手段)
7A〜7C,16A データベース
8 駆動制御手段
11,16 光増幅器
12 光分波器
15 光合波器
16a 励起光源
16b 光合波器
16c エルビウムドープファイバ
16−1,16−2 光分岐器
16−3,16−4 O/E変換部
16−5 利得一定制御部
21 入力側コリメータ
22 出力側コリメータ
23,24 ティルトミラー
25,26 光ファイバ
31 光カプラ
51 切替制御部
52 レベル制御部
53 初期設定部
100 OXCシステム
101−1〜101−4 光スイッチ
102 光ファイバ
110 光スイッチエレメント
111 光増幅器
112 光分波器
113 光スイッチ
114 可変光減衰器
115 光合波器
116 光増幅器
117 利得等化器
200 OADMシステム
201−1〜201−6 光スイッチ
202〜204 ルータ
205 SONET伝送装置

Claims (4)

  1. 複数の入力ポートおよび出力ポートをそなえるとともに、
    前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから交換後の光信号として出力する偏向手段と、
    該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段と、
    該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく該偏向手段を駆動制御する駆動制御手段とをそなえ、
    該駆動制御手段が、
    前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御部と、
    該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号のレベルを、設定された目標レベルとなるようにフィードバック制御するレベル制御部とをそなえて構成され
    該駆動制御手段が、
    前記各出力ポートから出力された出力光信号を分岐する光分岐手段と、
    該光分岐手段で分岐された出力光信号を各々モニタすることにより、前記各出力ポートから出力された出力光信号のレベルをモニタする光検出手段と、
    該偏向手段における各入力光信号の偏向状態を駆動する駆動手段と、をそなえるとともに、
    該レベル制御部が、
    該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号レベルを該光検出手段から入力され、各出力光信号のレベルを、上記目標レベルとなるように、該偏向手段における各入力光信号の偏向状態をフィードバック制御すべく構成され、
    かつ、該レベル制御部が、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とに基づいて、各出力光信号のレベルを等化減衰すべくフィードバック制御するように構成されたことを特徴とする、光信号交換装置
  2. 複数の入力ポートおよび出力ポートをそなえるとともに、
    前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから交換後の光信号として出力する偏向手段と、
    該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段と、
    該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく該偏向手段を駆動制御する駆動制御手段とをそなえ、
    該駆動制御手段が、
    前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御部と、
    該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号のレベルを、設定された目標レベルとなるようにフィードバック制御するレベル制御部とをそなえて構成され、
    該駆動制御手段が、
    前記各出力ポートから出力された出力光信号を分岐する光分岐手段と、
    該光分岐手段で分岐された出力光信号を各々モニタすることにより、前記各出力ポートから出力された出力光信号のレベルをモニタする光検出手段と、
    該偏向手段における各入力光信号の偏向状態を駆動する駆動手段と、をそなえるとともに、
    該レベル制御部が、
    該切替制御部にて前記切替指示に対する制御が行なわれた後の各出力ポートから出力される出力光信号レベルを該光検出手段から入力され、各出力光信号のレベルを、上記目標レベルとなるように、該偏向手段における各入力光信号の偏向状態をフィードバック制御すべく構成され、
    かつ、該レベル制御部が、該光検出手段にてモニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号を等化させるための各出力光信号のレベル・利得等化減衰量を算出し、前記算出されたレベル・利得等化減衰量情報に基づいて、前記出力光信号レベルをフィードバック制御するように構成されたことを特徴とする光信号交換装置。
  3. 複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段とをそなえ、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく制御する光信号交換装置の制御方法であって、
    前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御ステップと、
    該切替制御ステップにおける制御が行なわれた後の各出力ポートから出力される出力光信号レベルを、設定された目標レベルとなるように、該偏向手段の偏向状態をフィードバック制御するレベル制御ステップとをそなえて構成され
    かつ、該レベル制御ステップは、
    前記各出力ポートから出力された出力光信号のレベルをモニタし、
    該モニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とに基づいて、各出力光信号のレベルを等化減衰すべくフィードバック制御することを特徴とする、光信号交換装置の制御方法。
  4. 複数の入力ポートおよび出力ポートをそなえるとともに、前記複数の入力ポートから入力された波長の互いに異なる複数の入力光信号を偏向して、各入力ポートに割り当てられた出力ポートから出力する偏向手段と、該偏向手段における前記の各入力ポートに対する出力ポートの割り当てに応じた偏向制御量に関する情報を格納するメモリ手段とをそなえ、該メモリ手段にて格納された偏向制御量に基づいて、該偏向手段における各入力光信号の偏向状態を設定すべく制御する光信号交換装置の制御方法であって、
    前記の入力ポートに対する出力ポートの割り当ての切替指示を受けると、当該切替指示の対象となる入力ポートにおける切り替え先の出力ポートについての偏向制御量を該メモリ手段から読み出し、読み出した偏向制御量となるように該偏向手段を制御する切替制御ステップと、
    該切替制御ステップにおける制御が行なわれた後の各出力ポートから出力される出力光信号レベルを、設定された目標レベルとなるように、該偏向手段の偏向状態をフィードバック制御するレベル制御ステップとをそなえて構成され、
    かつ、該レベル制御ステップは、
    前記各出力ポートから出力された出力光信号のレベルをモニタし、
    該モニタされた各出力光信号のレベルと各出力ポートの後段に接続される光デバイスの波長利得特性とから、当該光デバイスから出力される光信号を等化させるための各出力光信号のレベル・利得等化減衰量を算出し、前記算出されたレベル・利得等化減衰量情報に 基づいて、前記出力光信号レベルをフィードバック制御することを特徴とする、光信号交換装置の制御方法。
JP2001334807A 2001-10-31 2001-10-31 光信号交換装置およびその制御方法 Expired - Fee Related JP4000251B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001334807A JP4000251B2 (ja) 2001-10-31 2001-10-31 光信号交換装置およびその制御方法
US10/101,283 US7233741B2 (en) 2001-10-31 2002-03-20 Optical exchange for wavelength division multiplexed (WDM) network, and optical exchange method for WDM network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334807A JP4000251B2 (ja) 2001-10-31 2001-10-31 光信号交換装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2003143629A JP2003143629A (ja) 2003-05-16
JP4000251B2 true JP4000251B2 (ja) 2007-10-31

Family

ID=19149885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334807A Expired - Fee Related JP4000251B2 (ja) 2001-10-31 2001-10-31 光信号交換装置およびその制御方法

Country Status (2)

Country Link
US (1) US7233741B2 (ja)
JP (1) JP4000251B2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127481B2 (ja) * 2002-05-08 2008-07-30 富士通株式会社 光信号交換器の制御装置および制御方法
US20040042067A1 (en) * 2002-06-04 2004-03-04 Eiselt Michael H. Apparatus and method for duplex optical transport using a co-directional optical amplifier
JP4039150B2 (ja) * 2002-07-09 2008-01-30 株式会社デンソー 光スイッチサブシステム
US7248759B2 (en) * 2002-12-03 2007-07-24 Fujitsu Limited Optical signal switching apparatus, and controller and method for control of optical switch
US8909038B2 (en) * 2003-01-07 2014-12-09 Alcatel Lucent Method and apparatus providing transient control in optical add-drop nodes
JP4654560B2 (ja) * 2003-02-10 2011-03-23 日本電気株式会社 光出力制御装置、光出力制御方法および光出力制御プログラム
JP4532950B2 (ja) * 2004-03-24 2010-08-25 富士通株式会社 光スイッチ及びそれを備えたネットワークシステム
JP4625284B2 (ja) * 2004-07-20 2011-02-02 株式会社日立製作所 光伝送装置
JP4489522B2 (ja) * 2004-07-20 2010-06-23 富士通株式会社 波長多重光伝送システム
US20060049341A1 (en) * 2004-09-06 2006-03-09 National Central University Method for examining corrosion of a steel reinforcement rod embedded in concrete
US7634196B2 (en) * 2004-10-06 2009-12-15 Cisco Technology, Inc. Optical add/drop multiplexer with reconfigurable add wavelength selective switch
MY159370A (en) * 2004-10-20 2016-12-30 Coley Pharm Group Inc Semi-soft-class immunostimulatory oligonucleotides
JP4683976B2 (ja) * 2005-03-31 2011-05-18 富士通株式会社 光スイッチ装置および光スイッチングシステム
JP4695424B2 (ja) * 2005-03-31 2011-06-08 富士通株式会社 光スイッチ装置およびその制御情報更新方法
JP4625372B2 (ja) * 2005-05-26 2011-02-02 富士通株式会社 光伝送装置およびその導通試験方法並びに光伝送システム
JP4678647B2 (ja) * 2005-08-31 2011-04-27 富士通株式会社 光ノードのアップグレード方法および光ノード装置
JP4540620B2 (ja) * 2006-02-17 2010-09-08 富士通株式会社 光スイッチ装置
JP4633664B2 (ja) * 2006-03-24 2011-02-16 富士通株式会社 光スイッチシステム
JP2007306335A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 光クロスコネクト装置
JP5175459B2 (ja) * 2006-08-23 2013-04-03 日本電気株式会社 光受信機、光受信装置及び光信号受信方法
JP4807198B2 (ja) * 2006-09-12 2011-11-02 三菱電機株式会社 光クロスコネクト装置、光クロスコネクト方法、およびプログラム
JP4915449B2 (ja) * 2007-03-19 2012-04-11 富士通株式会社 光伝送装置
JP4855335B2 (ja) * 2007-05-21 2012-01-18 日本電信電話株式会社 冗長構成光伝送装置および光切替器
JP5347363B2 (ja) * 2008-07-31 2013-11-20 富士通株式会社 Wdm光伝送システムおよびその制御方法
JP5428278B2 (ja) * 2008-10-14 2014-02-26 富士通株式会社 光増幅器の制御装置
US8532487B2 (en) * 2008-10-21 2013-09-10 Broadcom Corporation Managed PON repeater and cross connect
JP5079669B2 (ja) * 2008-11-20 2012-11-21 日本電信電話株式会社 光ネットワークシステム
JP2012043934A (ja) * 2010-08-18 2012-03-01 Fujitsu Ltd 増幅装置、通信システムおよび増幅方法
US9008510B1 (en) * 2011-05-12 2015-04-14 Google Inc. Implementation of a large-scale multi-stage non-blocking optical circuit switch
WO2013028241A1 (en) * 2011-08-25 2013-02-28 The Trustees Of Columbia University In The City Of New York Systems and methods for a cross-layer optical network node
CN102598707B (zh) * 2011-12-28 2014-04-02 华为技术有限公司 一种均衡链路性能的方法和装置
US9685762B1 (en) * 2014-09-30 2017-06-20 Aurrion, Inc. Semiconductor optical amplifier with gain flattening filter
EP3343804A4 (en) * 2015-08-27 2018-08-22 Nec Corporation Equalizer, repeater, and communication system
US10447420B2 (en) * 2016-06-03 2019-10-15 Infinera Corporation Method and system for signaling defects in a network element with optical fabric
CN114355514A (zh) 2020-10-13 2022-04-15 华为技术有限公司 光交换的方法和装置、硅基液晶和波长选择开关

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444801A (en) 1994-05-27 1995-08-22 Laughlin; Richard H. Apparatus for switching optical signals and method of operation
JPH10173597A (ja) 1996-12-06 1998-06-26 Nec Corp 光イコライザ
JP2000131626A (ja) 1998-10-29 2000-05-12 Nec Corp 可変光減衰器と光減衰方法
JP2000180803A (ja) 1998-12-15 2000-06-30 Sumitomo Electric Ind Ltd 多チャネル光可変減衰器
JP2000332691A (ja) 1999-05-25 2000-11-30 Nec Miyagi Ltd 光出力制御回路
US6149278A (en) 1999-06-29 2000-11-21 E-Tek Dynamics Wavelength independent variable optical attenuator
CA2379822A1 (en) 1999-07-21 2001-02-01 Timothy G. Slater Flexible, modular, compact fiber optic switch improvements
JP2001086066A (ja) 1999-09-16 2001-03-30 Hitachi Cable Ltd 波長等化器
US6351329B1 (en) 1999-10-08 2002-02-26 Lucent Technologies Inc. Optical attenuator
US6650803B1 (en) * 1999-11-02 2003-11-18 Xros, Inc. Method and apparatus for optical to electrical to optical conversion in an optical cross-connect switch

Also Published As

Publication number Publication date
US7233741B2 (en) 2007-06-19
JP2003143629A (ja) 2003-05-16
US20030081283A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
JP4000251B2 (ja) 光信号交換装置およびその制御方法
US6798941B2 (en) Variable transmission multi-channel optical switch
US6288810B1 (en) Device for adding and dropping optical signals
US7826748B2 (en) Systems and methods for adaptive gain control to compensate OSNR penalty caused by side-lobe of MEMS-based reconfigurable optical add-drop multiplexers
JP5672011B2 (ja) 波長選択スイッチおよび波長ずれ補正方法
US7123833B2 (en) Dynamically reconfigurable optical smart node
JP3851007B2 (ja) 波長多重光検出装置
US5915052A (en) Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam
JP4366384B2 (ja) 波長選択スイッチモジュール
JP2016519783A (ja) 統合されたチャネルモニタを有する波長選択スイッチ
WO2002075403A1 (en) Method and apparatus for providing gain equalizing to an optical signal in an optical communication system
US7379668B2 (en) Optical amplification in photonic switched crossconnect systems
WO2007078415A2 (en) Method of reducing mems mirror edge diffraction
JP2009044734A (ja) 再構成可能な光スイッチ及びバックアップチューナブルレーザ送信機を備える波長多重光通信システム
US20030053750A1 (en) Dynamic channel power equalizer based on VPG elements
JP2009003378A (ja) ミラー装置および光スイッチ
JP2008503886A (ja) 波長分割多重(wdm)光分波器
US20050213178A1 (en) Controlling apparatus and controlling method for spatial optical switch
US6636657B1 (en) Channelized wavelength division multiplex equalizer using reflective attenuators
US6625340B1 (en) Optical switch attenuator
JP3298404B2 (ja) 光増幅器の利得制御装置および方法
US6486462B1 (en) Tunable optical add-drop multiplexer
US8433201B2 (en) Dynamic gain equalizer-monitor
JP4180595B2 (ja) 波長多重光制御装置
WO2005102014A2 (en) Idler tone channel blocker for wdm system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees