WO2017033374A1 - 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法 - Google Patents

導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法 Download PDF

Info

Publication number
WO2017033374A1
WO2017033374A1 PCT/JP2016/003049 JP2016003049W WO2017033374A1 WO 2017033374 A1 WO2017033374 A1 WO 2017033374A1 JP 2016003049 W JP2016003049 W JP 2016003049W WO 2017033374 A1 WO2017033374 A1 WO 2017033374A1
Authority
WO
WIPO (PCT)
Prior art keywords
intercalation compound
metal particles
coating composition
graphite intercalation
graphite
Prior art date
Application number
PCT/JP2016/003049
Other languages
English (en)
French (fr)
Inventor
忠政 明彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017536181A priority Critical patent/JPWO2017033374A1/ja
Priority to CN201680037596.XA priority patent/CN107849395A/zh
Priority to US15/739,686 priority patent/US20180171161A1/en
Publication of WO2017033374A1 publication Critical patent/WO2017033374A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to a conductive composite material, and more particularly to a conductive coating composition using a graphite intercalation compound, a conductive material, a method for manufacturing a conductive coating composition, and a method for manufacturing a conductive material.
  • One material that achieves high conductivity is a metal material such as silver.
  • the unit price of a metal material is generally high. Therefore, it is required to further improve conductivity while using a graphite intercalation compound whose unit price is relatively low.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for improving conductivity while suppressing an increase in unit price.
  • a conductive coating composition is a conductive coating composition including a graphite intercalation compound, metal particles, a binder, and a solvent, wherein the conductive coating composition The volume occupied by the graphite intercalation compound in the product is larger than the volume occupied by the metal particles in the conductive coating composition.
  • This conductive material is a conductive material containing a graphite intercalation compound and metal particles, and the volume occupied by the graphite intercalation compound in the conductive material is larger than the volume occupied by the metal particles in the conductive material.
  • Still another embodiment of the present invention is a method for producing a conductive coating composition.
  • a graphite intercalation compound and metal particles are mixed to produce a conductive material, a binder and a solvent are stirred and heated to produce a binder solution, and the binder solution is electrically conductive.
  • a volume of the graphite intercalation compound in the conductive coating composition is larger than a volume of the metal particles in the conductive coating composition.
  • Still another aspect of the present invention is a method for producing a conductive material.
  • This method is a method for producing a conductive material in which a graphite intercalation compound and metal particles are mixed, and the volume occupied by the graphite intercalation compound in the conductive material is larger than the volume occupied by the metal particles in the conductive material.
  • the conductivity can be improved while suppressing an increase in unit price.
  • Embodiments of the present invention relate to a conductive material containing a graphite intercalation compound and a conductive coating composition using the conductive material.
  • the metal material has high conductivity, but its material unit price is high.
  • the unit price of the carbon material is low, but its conductivity is low.
  • the graphite intercalation compound has a relatively high conductivity while being inexpensive. Therefore, it is required to improve the conductivity of the graphite intercalation compound.
  • metal particles are bonded to the graphite intercalation compound.
  • FIG. 1 shows a configuration of a conductive coating composition 100 according to an embodiment of the present invention.
  • the conductive coating composition 100 includes a graphite intercalation compound 10 and metal particles 20.
  • the conductive coating composition 100 includes a binder and a solvent (not shown) in order to bond them. It can be said that the graphite intercalation compound 10 and the metal particles 20 are conductive materials.
  • the graphite intercalation compound 10 is a compound having a sandwich structure in which various atoms, molecules, and the like are intruded into the interlayer of graphite, which is a layered material in which carbon hexagonal network surfaces are laminated in parallel.
  • the number of conductive carriers on the graphite layer increases due to charge transfer between the intercalation such as atoms and molecules that have entered between the graphite layers and the adjacent graphite layer. As a result, the graphite intercalation compound 10 has high conductivity.
  • the graphite intercalation compound 10 uses, for example, powders such as flaky natural graphite, artificial graphite, vapor-grown carbon fiber, and graphite fiber as a base material.
  • the graphite intercalation compound 10 may be based on, for example, a pyrolytic graphite sheet obtained by heat-treating a polyimide film at 2600 to 3000 ° C. or a material obtained by pulverizing a pyrolytic graphite sheet.
  • the graphite intercalation compound 10 may be based on a graphite material having good crystal integrity such as a metal supported on the end of these graphite materials. In order to support the metal on the end of the graphite material, for example, the metal complex and the graphite material are mixed and then fired. Note that the base material is not limited to these.
  • any substance species such as atoms, molecules, and ions can be used as intercalation, and for example, metal chloride, alkali metal, and alkaline earth metal are used.
  • metal chlorides are iron chloride, copper chloride, nickel chloride, aluminum chloride, zinc chloride, cobalt chloride, gold chloride, bismuth chloride, etc.
  • alkali metals and alkaline earth metals are lithium, potassium, rubidium Cesium, calcium, magnesium and the like. In addition, two or more of these may be used in combination as intercalation.
  • the graphite intercalation compound 10 in which the metal chloride is inserted is heat-treated at 250 to 500 ° C.
  • intercalate inserted into graphite is iron chloride or copper chloride having a high electron affinity, it functions as an acceptor that gives holes to the graphite intercalation compound 10.
  • the intercalate inserted into the graphite functions as a donor that gives electrons to the graphite intercalation compound 10 when the ionization potential is lithium, potassium, or cesium smaller than that of graphite.
  • Metal powder is used for the metal particles 20.
  • the metal powder include stainless steel, titanium oxide, ruthenium oxide, indium oxide, aluminum, iron, copper, gold, silver, platinum, titanium, nickel, magnesium, palladium, chromium, tin, tantalum, and niobium.
  • the metal particles 20 may be a metal silicide-based conductive ceramic, a metal carbide-based conductive ceramic, a metal boride-based conductive ceramic, or a metal nitride-based conductive ceramic.
  • metal silicide-based conductive ceramics are iron silicide, molybdenum silicide, zirconium silicide, titanium silicide, and the like.
  • metal carbide based conductive ceramics include tungsten carbide, silicon carbide, calcium carbide, zirconium carbide, tantalum carbide, titanium carbide, niobium carbide, molybdenum carbide, vanadium carbide, and the like.
  • metal boride-based conductive ceramics include tungsten boride, titanium boride, tantalum boride, zirconium boride and the like.
  • metal nitride-based conductive ceramics examples include chromium nitride, aluminum nitride, molybdenum nitride, zirconium nitride, tantalum nitride, titanium nitride, gallium nitride, niobium nitride, vanadium nitride, boron nitride, and the like.
  • the metal particles 20 may be a synthetic powder using two or more of these metal powders in combination.
  • the form of the metal particle 20 is a fiber or powder obtained by depositing or plating a metal on an inorganic / organic fiber.
  • Polyester resin vinyl resin, phenol resin, acrylic resin, epoxy resin, polyimide resin, cellulose, etc. are used for the binder. Moreover, it is not limited to these.
  • Solvent is also called solvent.
  • the solvent it is preferable to contain 50% by mass or more of a solvent having a boiling point of 150 ° C. or higher, particularly a solvent having a boiling point of 200 ° C. or higher.
  • a solvent having high affinity with an inorganic substance (metal or the like) and dissolving an additive described later is preferable, and generally an organic solvent having an alcoholic OH group is preferable.
  • organic solvent is alcohol.
  • examples of alcohols include non-aliphatic alcohols such as ⁇ -terpineol; butyl carbitol (diethylene glycol monobutyl ether), hexylene glycol (2-methyl-2,4-pentanediol), ethylene glycol-2-ethylhexyl ether, etc. Glycols and the like.
  • N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane and the like are preferably selected in accordance with the affinity for carbon and metal particles 20.
  • solvents with low viscosity such as aliphatic alcohols and ketones may be used, and ethanol, 2-propanol, methyl ethyl ketone, methyl isobutyl ketone, etc. are used. Also good.
  • a mixture of a high boiling point solvent and a low boiling point solvent may be used as the solvent. At that time, the ratio of the contents is not particularly limited, but as described above, the amount of the high boiling point solvent is preferably 50% by mass or more.
  • metal carbide exists as an additive between the graphite intercalation compound 10 and the metal particles 20. Therefore, the graphite intercalation compound 10 is covalently bonded or ionically bonded to the metal carbide, and the metal particles 20 are covalently bonded or ionically bonded to the metal carbide.
  • the volume occupied by the graphite intercalation compound 10 in the conductive coating composition 100 is larger than the volume occupied by the metal particles 20 in the conductive coating composition 100.
  • the volume occupied by the graphite intercalation compound 10 in the conductive coating composition 100 is 35%, and the volume occupied by the metal particles 20 in the conductive coating composition 100 is 15%.
  • the ratio is not limited to this.
  • any metal can be used as the metal particle 20, for example, use of gold, silver, or copper is preferable.
  • Their coefficients of thermal expansion [10 ⁇ 6 / K] are “14.3” (gold), “18.0” (silver), and “16.8” (copper).
  • the expansion coefficient [10 ⁇ 6 / K] is “4.4”.
  • the density [g / cm 3 ] of the metal particles 20 is “19.3” (gold), “10.5” (silver), “9.0” (copper), and the density of the graphite intercalation compound 10 [G / cm 3 ] is “2.2 to 2.4”.
  • the volume occupied by the metal particles 20 is larger than the volume occupied by the graphite intercalation compound 10
  • the coefficient of thermal expansion increases, so that peeling from peripheral members such as a substrate is likely to occur.
  • the soft material increases, the material is easily deformed, resulting in insufficient adhesion or peeling due to external force or temperature change.
  • the density increases, so the weight increases.
  • the cost increases.
  • the volume occupied by the graphite intercalation compound 10 is made larger than the volume occupied by the metal particles 20.
  • the volume occupied by the graphite intercalation compound 10 is larger than the volume occupied by the metal particles 20 in the conductive material.
  • the volume occupied by the graphite intercalation compound 10 in the conductive material is 70%
  • the volume occupied by the metal particles 20 in the conductive material is 30%. The ratio is not limited to this.
  • the average particle diameter of the metal particles 20 is made smaller than 100 ⁇ m.
  • the average particle diameter is measured by an optical microscope or a scanning electron microscope.
  • the average particle diameter that is, the size and the diameter of the metal particles 20 is reduced, the substantial melting point of the metal particles 20 is lowered.
  • the conductivity of the conductive coating composition 100 is improved.
  • the average particle size of the metal particles 20 is 100 ⁇ m or more, the phenomenon of necking becomes difficult to occur.
  • a graphite intercalation compound 10 is produced.
  • a graphite material as a raw material for the graphite intercalation compound 10 is prepared.
  • This graphite material has a layered structure formed by a graphene laminate.
  • chemical species to be intercalated are inserted between the layers of the graphite material.
  • the chemical species to be inserted is composed of the aforementioned materials.
  • a known technique such as a gas phase method or a liquid phase method is used.
  • vapor phase method vapor of a chemical species is brought into contact with graphite as a host at a high temperature.
  • the host graphite is immersed in a solution in which a chemical species is dissolved in an organic solvent or a liquid in which a chemical species is melted at a high temperature.
  • the conductive material which is a mixture is produced
  • it mixes uniformly using a ball mill, a triple roll, an extruder, a Banbury mixer, a V blender, a kneader, a ribbon mixer, a Henschel mixer, etc. Note that the generation of the conductive material is not limited to this.
  • a binder and a solvent are added to a container having a stirrer and a heating device, and a binder solution is produced while stirring and heating.
  • the conductive material is dispersed in the binder solution by adding and mixing and kneading the conductive material to the binder solution, and the conductive coating composition 100 is manufactured. Furthermore, you may manufacture a conductive wiring by baking the conductive coating composition 100.
  • Example 1 First, 2 g of iron chloride (99.9%) is dissolved in 125 mL of ethanol (special grade 99.5%), and 9.61 mL of pentaethylenehexamine (ethyleneamine mixture) is added to the Fe-N complex. Formed. To this solution, 4.0 g of natural graphite made of Ito graphite having an average particle diameter of 10 ⁇ m was added as graphite, and then dispersed by an ultrasonic homogenizer. After dispersion, ethanol was immediately removed by a rotary evaporator, and the solid content was taken out.
  • ethanol special grade 99.5%
  • pentaethylenehexamine ethyleneamine mixture
  • a quartz tube ( ⁇ 16 mm, L500 mm) in the shape of a stoppered test tube is filled with solid content, and a mixed gas of 1% O 2 /99% N 2 is mixed at 300 mL / min for 90 seconds at 900 ° C.
  • the graphite carrying iron was recovered. Iron is supported by graphite by nitrogen atoms. Impurities remaining on the surface were removed by washing the iron-supported graphite with ultrapure water.
  • 0.06 g of graphite carrying iron, 0.26 g of potassium chloride, and 0.6 g of anhydrous copper (II) chloride were vacuum sealed in a glass ampule, and the ampule was heat-treated at 400 ° C. for 10 hours. After natural cooling, graphite was taken out from the ampule, and potassium chloride and copper (II) chloride adhering to the surface were removed by washing with water to obtain a graphite intercalation compound 10.
  • a Sigma-Aldrich silver powder having an average particle diameter of 2 ⁇ m is prepared.
  • a conductive material as a material was obtained.
  • 0.1 g of the conductive material was put in a cylindrical mold having a diameter of 10 mm, and a pressure of 200 MPa was applied to obtain a green compact of the cylindrical conductive material.
  • Example 2 Instead of graphite carrying iron in Example 1, natural graphite made of Ito graphite having an average particle diameter of 10 ⁇ m was used. The rest is the same as in the first embodiment.
  • the volume resistivity of the green compact of the conductive material in each of Example 1, Example 2, and Comparative Example is measured by a four-probe method.
  • the volume resistivity in Example 1 is 18 [ ⁇ cm]
  • the volume resistivity in Example 2 is 45 [ ⁇ cm]
  • the volume resistivity in the comparative example is 120 [ ⁇ cm]. From this, the volume resistivity of Example 1 and Example 2 becomes low compared with a comparative example.
  • the graphite intercalation compounds 10 can be connected by the metal particles 20. Moreover, since the graphite intercalation compounds 10 are connected to each other by the metal particles 20, the conductivity can be improved. Moreover, since the graphite intercalation compound 10 is used, the raise of a unit price can be suppressed. Moreover, since the metal chloride is intercalated in the graphite intercalation compound 10, electroconductivity can be improved. Moreover, since the average particle diameter of the metal particles 20 is smaller than 100 ⁇ m, it is possible to easily form a conductive path. Further, since the conductive path can be easily formed, the conductivity can be improved.
  • the conductivity can be improved.
  • the volume occupied by the graphite intercalation compound 10 in the conductive material is larger than the volume occupied by the metal particles 20, the graphite intercalation compounds 10 can be connected by the metal particles 20.
  • the low-cost and highly conductive graphite intercalation compound 10 is used, so that the cost can be reduced while maintaining high conductivity characteristics.
  • the graphite intercalation compound 10 is bonded using a small amount of metal particles 20, high conductivity that cannot be obtained by conventional carbon-based wiring can be obtained.
  • nitrogen atoms exist between the graphite intercalation compound 10 and the metal particles 20, iron is easily supported by graphite, and the metal particles 20 can be easily bonded to the graphite intercalation compound 10.
  • a conductive coating composition 100 is a conductive coating composition 100 including a graphite intercalation compound 10, metal particles 20, a binder, and a solvent.
  • the volume occupied by the intercalation compound 10 is larger than the volume occupied by the metal particles 20 in the conductive coating composition 100.
  • the graphite intercalation compound 10 may be intercalated with a metal chloride.
  • the average particle diameter of the metal particles 20 is smaller than 100 ⁇ m.
  • the graphite intercalation compound 10 and the metal particles 20 may be chemically bonded.
  • Nitrogen atoms may exist between the graphite intercalation compound 10 and the metal particles 20.
  • Metal carbide may exist between the graphite intercalation compound 10 and the metal particles 20.
  • the graphite intercalation compound 10 may be covalently bonded or ionically bonded to the metal carbide, and the metal particle 20 may be covalently bonded or ionically bonded to the metal carbide.
  • This conductive material is a conductive material including the graphite intercalation compound 10 and the metal particles 20, and the volume occupied by the graphite intercalation compound 10 in the conductive material is larger than the volume occupied by the metal particles 20 in the conductive material. .
  • Still another embodiment of the present invention is a method for producing the conductive coating composition 100.
  • the graphite intercalation compound 10 and the metal particles 20 are mixed to produce a conductive material, the binder and the solvent are stirred and heated to produce a binder solution, and the binder solution.
  • Still another aspect of the present invention is a method for producing a conductive material.
  • This method is a method for producing a conductive material in which graphite intercalation compound 10 and metal particles 20 are mixed, and the volume occupied by graphite intercalation compound 10 in the conductive material is larger than the volume occupied by metal particles 20 in the conductive material. Is also big.
  • the conductivity can be improved while suppressing an increase in unit price.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

導電性塗料組成物100は、黒鉛層間化合物10と、金属粒子20と、バインダーと、溶剤とを含む。黒鉛層間化合物10は、炭素六角網面を平行に積層した層状物質である黒鉛の層間に、さまざまな原子や分子等を侵入させたサンドイッチ構造の化合物である。バインダー、溶剤は、黒鉛層間化合物10と、金属粒子20とを接着させる。導電性塗料組成物100において黒鉛層間化合物10が占める体積は、導電性塗料組成物100において金属粒子20が占める体積よりも大きい。

Description

導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
 本発明は、導電性複合材料に関し、特に黒鉛層間化合物を使用する導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法に関する。
 エレクトロニクス技術の発展に伴い、プリント配線回路等における信号用回路には、導電性の塗料を印刷して形成された回路が利用されつつある。このような目的に使用される導電性材料には、軽量と高い導電性が求められる。そのため、黒鉛層間化合物が合成樹脂マトリックス中に分散される(例えば、特許文献1参照)。
特開平5-65366号公報
 高い導電性を実現する材料の1つが、銀などの金属材料である。しかしながら、金属材料では、一般的に材料の単価が高い。そのため、単価が比較的安い黒鉛層間化合物を使用しながら、導電性をさらに向上することが求められる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、単価の上昇を抑制しながら、導電性を向上する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の導電性塗料組成物は、黒鉛層間化合物と、金属粒子と、バインダーと、溶剤とを含む導電性塗料組成物であって、導電性塗料組成物において黒鉛層間化合物が占める体積は、導電性塗料組成物において金属粒子が占める体積よりも大きい。
 本発明の別の態様は、導電性材料である。この導電性材料は、黒鉛層間化合物と金属粒子とを含む導電性材料であって、導電性材料において黒鉛層間化合物が占める体積は、導電性材料において金属粒子が占める体積よりも大きい。
 本発明のさらに別の態様は、導電性塗料組成物の製造方法である。この方法は、黒鉛層間化合物と金属粒子とを混合することによって、導電性材料を生成するステップと、バインダーと溶剤とを撹拌、加熱しながらバインダー溶液を生成するステップと、バインダー溶液に、導電性材料を加えるステップとを備える導電性塗料組成物の製造方法であって、導電性塗料組成物において黒鉛層間化合物が占める体積は、導電性塗料組成物において金属粒子が占める体積よりも大きい。
 本発明のさらに別の態様は、導電性材料の製造方法である。この方法は、黒鉛層間化合物と金属粒子とを混合する導電性材料の製造方法であって、導電性材料において黒鉛層間化合物が占める体積は、導電性材料において金属粒子が占める体積よりも大きい。
 本発明によれば、単価の上昇を抑制しながら、導電性を向上できる。
本発明の実施の形態に係る導電性塗料組成物の構成を示す図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施の形態は、黒鉛層間化合物を含んだ導電性材料と、それを利用した導電性塗料組成物に関する。前述のごとく、金属材料の導電性は高いが、その材料単価は高い。一方、カーボン材料の材料単価は安いが、その導電性は低い。ここで、黒鉛層間化合物は、安価でありつつも、比較的高い導電性を有する。そのため、黒鉛層間化合物の導電性を向上することが求められる。本実施の形態では、黒鉛層間化合物に金属粒子を結合させる。これは、黒鉛層間化合物において、黒鉛にアクセプタレベルが形成されており、アクセプタレベルが形成されるとキャリア密度が高くなるので、金属粒子を結合させると導電性が向上するからである。これにより、低価格な黒鉛系ペーストでありながら、高い導電性が得られる。
 図1は、本発明の実施の形態に係る導電性塗料組成物100の構成を示す。導電性塗料組成物100は、黒鉛層間化合物10、金属粒子20を含む。また、導電性塗料組成物100は、これらを接着させるために、図示しないバインダー、溶剤を含む。なお、黒鉛層間化合物10、金属粒子20は、導電性材料であるともいえる。
 黒鉛層間化合物10は、炭素六角網面を平行に積層した層状物質である黒鉛の層間に、さまざまな原子や分子等を侵入させたサンドイッチ構造の化合物である。黒鉛層間化合物10では、黒鉛層間に侵入した原子や分子等のインターカレートと、それと隣接する黒鉛の層との間で電荷移動が生じることによって、黒鉛の層上の伝導キャリア数が増大する。その結果、黒鉛層間化合物10は高導電性を有する。
 ここでの黒鉛層間化合物10は、例えば、鱗片状天然黒鉛、人造黒鉛、気相成長炭素繊維、黒鉛繊維などの粉末を母材とする。また、黒鉛層間化合物10は、例えば、ポリイミドフィルムを2600~3000℃で熱処理することにより得られる熱分解グラファイトシートまたは熱分解グラファイトシートを粉砕したものを母材としてもよい。さらに、黒鉛層間化合物10は、これらの黒鉛材料の端部に金属を担持したものなど結晶完全性のよい黒鉛材料を母材としてもよい。黒鉛材料の端部に金属を担持させるために、例えば、金属錯体と黒鉛材料が混合されてから焼成される。なお、母材は、これらに限定されるものではない。
 インターカレートとして、原子、分子、およびイオン等のあらゆる物質種が使用可能であり、例えば、金属塩化物、アルカリ金属、アルカリ土類金属が使用される。金属塩化物の一例は、塩化鉄、塩化銅、塩化ニッケル、塩化アルミニウム、塩化亜鉛、塩化コバルト、塩化金、塩化ビスマスなどであり、アルカリ金属およびアルカリ土類金属の一例は、リチウム、カリウム、ルビジウム、セシウム、カルシウム、マグネシウムなどである。なお、インターカレートとして、これらを2種以上組み合わせて使用してもよい。さらに、金属塩化物が挿入された黒鉛層間化合物10を、5~100%の水素気流下、250~500℃で熱処理することにより、挿入された金属塩化物を還元し、金属微粒子として存在させてもよい。黒鉛中に挿入されたインターカレートは、電子親和力の大きい塩化鉄または塩化銅である場合、黒鉛層間化合物10に正孔を与えるアクセプタとして機能する。また、黒鉛中に挿入されたインターカレートは、イオン化ポテンシャルが黒鉛より小さいリチウム、カリウム、またはセシウムである場合、黒鉛層間化合物10に電子を与えるドナーとして機能する。
 金属粒子20には、金属粉末が使用される。金属粉末の一例は、ステンレス、酸化チタン、酸化ルテニウム、酸化インジウム、アルミニウム、鉄、銅、金、銀、白金、チタン、ニッケル、マグネシウム、パラジウム、クロム、錫、タンタル、ニオブなどである。さらに、金属粒子20は、金属珪化物系の導電性セラミック、金属炭化物系の導電性セラミック、金属硼化物系の導電性セラミック、金属窒化物系の導電性セラミックであってもよい。金属珪化物系の導電性セラミックの一例は、珪化鉄、珪化モリブデン、珪化ジルコニウム、珪化チタンなどである。金属炭化物系の導電性セラミックの一例は、タングステンカーバイド、シリコンカーバイド、炭化カルシウム、炭化ジルコニウム、炭化タンタル、炭化チタン、炭化ニオブ、炭化モリブデン、炭化バナジウムなどである。金属硼化物系の導電性セラミックの一例は、硼化タングステン、硼化チタン、硼化タンタル、硼化ジルコニウムなどである。金属窒化物系の導電性セラミックの一例は、窒化クロム、窒化アルミニウム、窒化モリブデン、窒化ジルコニウム、窒化タンタル、窒化チタン、窒化ガリウム、窒化ニオブ、窒化バナジウム、窒化硼素などである。また、金属粒子20は、これらの金属粉末を2種以上併用した合成粉末であってもよい。さらに、金属粒子20の形態は、無機・有機繊維に金属を蒸着またはメッキした繊維、粉末である。
 バインダーには、ポリエステル樹脂、ビニル樹脂、フェノール樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド系樹脂、セルロースなどが使用される。また、これらに限定されない。
 溶剤は、溶媒とも呼ばれる。溶媒としては、沸点が150℃以上の溶媒、特に沸点が200℃以上の溶媒を50質量%以上含むことが好ましい。このように、沸点が高い溶媒を多数含むことによって、炭素と無機物質の分散性が確保しやすくなり、かつ平滑な膜が得られる。また、溶媒としては、無機物質(金属等)と親和性が高く、かつ後述の添加剤を溶解する溶媒が好ましく、一般には、アルコール性OH基を有する有機溶媒が好ましい。
 有機溶媒の一例は、アルコール類等である。アルコール類は、例えば、α-テルピネオール等の非脂肪族アルコール類;ブチルカルビトール(ジエチレングリコールモノブチルエーテル)、ヘキシレングリコール(2-メチル-2,4-ペンタンジオール)、エチレングリコール-2-エチルヘキシルエーテル等のグリコール類等である。その他、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン等から、炭素、金属粒子20との親和性に合わせて選択することが好ましい。
 ペースト状の導電性塗料組成物100から乾燥物をスキージ法で基板上に形成して電極を製造する場合、有機溶媒には、前述したアルコール類全般が使用可能である。一方、ペースト状の導電性塗料組成物100から乾燥物をスクリーン印刷で基板上に形成して電極を製造する場合、有機溶媒の粘度を高くし、かつ均質な塗膜を得る必要がある。そのため、有機溶媒としてα-テルピネオールやブチルカルビトール等を使用することが多い。その他、スピンコート、ディップコート、スプレーコート等を行う場合、脂肪族アルコールやケトン類等の粘度が低い溶媒が使用されてもよく、エタノール、2-プロパノール、メチルエチルケトン、メチルイソブチルケトン等が使用されてもよい。また、高沸点溶媒と低沸点溶媒との混合物が溶媒として使用されてもよい。その際、その含有量の比は、特に制限されるわけではないが、前述のごとく、高沸点溶媒の量を50質量%以上とすることが好ましい。
 ここで、黒鉛層間化合物10と金属粒子20との間には、添加物として金属炭化物が存在する。そのため、黒鉛層間化合物10は、金属炭化物に共有結合あるいはイオン結合し、金属粒子20は、金属炭化物に共有結合あるいはイオン結合している。
 導電性塗料組成物100において黒鉛層間化合物10が占める体積は、導電性塗料組成物100において金属粒子20が占める体積よりも大きい。例えば、導電性塗料組成物100において黒鉛層間化合物10が占める体積は、35%であり、導電性塗料組成物100において金属粒子20が占める体積は、15%である。割合はこれに限定されない。
 ここで、金属粒子20として、あらゆる金属の使用が可能であるが、例えば、金、銀、銅の使用が好ましい。それらの熱膨張率係数[10-6/K]は、「14.3」(金)、「18.0」(銀)、「16.8」(銅)であり、黒鉛層間化合物10の熱膨張率係数[10-6/K]は、「4.4」である。一方、金属粒子20の密度[g/cm]は、「19.3」(金)、「10.5」(銀)、「9.0」(銅)であり、黒鉛層間化合物10の密度[g/cm]は、「2.2~2.4」である。このような状況下において、金属粒子20が占める体積が、黒鉛層間化合物10が占める体積よりも大きい場合、熱膨張率が上がるので、基板などの周辺部材との剥離が生じやすくなる。また、前述の場合、軟らかい材料が多くなるので、変形しやすくなり、外力や温度変化で密着不足あるいは剥離の要因になる。また、前述の場合、密度が上がるので、重量が増加する。また、前述の場合、コストが増加する。これらのうちの少なくとも1つを抑制するために、前述のごとく、黒鉛層間化合物10が占める体積が、金属粒子20が占める体積よりも大きくされる。
 なお、黒鉛層間化合物10と金属粒子20によって構成される導電性材料においても黒鉛層間化合物10が占める体積は、導電性材料において金属粒子20が占める体積よりも大きい。例えば、導電性材料において黒鉛層間化合物10が占める体積は、70%であり、導電性材料において金属粒子20が占める体積は、30%である。割合はこれに限定されない。
 特に、金属粒子20の平均粒子径は、100μmよりも小さくされる。ここで、平均粒子径は、光学顕微鏡または走査型電子顕微鏡によって測定される。金属粒子20の平均粒子径、つまりサイズ、直径が小さくなると、金属粒子20の実質的な融点が下がる。その結果、金属粒子20を加熱した際に、ネッキングにより金属粒子20の表面が融解し、金属粒子20と黒鉛層間化合物10との間に導電パスが形成されやすくなる。導電パスが形成されると、導電性塗料組成物100の導電性が向上する。なお、一般的に、金属粒子20の平均粒子径が100μm以上になると、ネッキングの現象が生じにくくなる。
 次に、本実施の形態に係る導電性塗料組成物100、導電性材料の製造方法の一例を説明する。
(1)まず、黒鉛層間化合物10を生成する。そのために、黒鉛層間化合物10の原料となる黒鉛材料を準備する。この黒鉛材料はグラフェンの積層体によって形成された層状構造を有する。これに続いて、黒鉛材料の層間に、インターカレートとなる化学種を挿入する。挿入する化学種は、前述の材料で構成される。化学種を黒鉛材料に挿入するために、公知の技術、例えば、気相法、液相法が使用される。気相法では、高温下で化学種の蒸気をホストである黒鉛に接触させる。また、液相法では、化学種を有機溶媒に溶解させた溶液、または化学種を高温で溶融させて液体としたものに、ホストである黒鉛が浸漬される。
(2)次に、黒鉛層間化合物10と金属粒子20とを混合することによって混合物である導電性材料を生成する。その際、ボールミル、三本ロール、押出し機、バンバリーミキサー、Vブレンダー、ニーダ、リボンミキサー、ヘンシェルミキサーなどを用いて均一に混合される。なお、導電性材料の生成は、これに限定されない。
(3)撹拌機、加熱装置を有した容器に、バインダーと溶剤とを加え、撹拌、加熱しながらバインダー溶液を生成する。
(4)バインダー溶液に導電性材料を加えて混和、混練することによって、導電性材料をバインダー溶液で分散させ、導電性塗料組成物100を製造する。さらに、導電性塗料組成物100を焼成することによって、導電性配線を製造してもよい。
 次に、本実施の形態に係る実施例を説明する。
(実施例1)
 まず、塩化鉄(99.9%)2gをエタノール(試薬特級99.5%)125mLに溶解し、これにペンタエチレンヘキサミン(エチレンアミン混合物)9.61mLを添加することによって、Fe-N錯体を形成した。この溶液に、黒鉛として平均粒子径が10μmの伊藤黒鉛製天然黒鉛4.0gを加えてから、超音波ホモジナイザーにより分散させた。分散後、ロータリーエバポレータによりエタノールを直ちに除去し、固形分を取り出した。
 栓をした試験管の形状をした石英管(φ16mm、L500mm)に固形分を詰め入れ、1%のO/99%のNの混合ガス300mL/minのフロー下で、900℃で90秒加熱し、冷却後、鉄を担持した黒鉛を回収した。黒鉛による鉄の担持は、窒素原子によってなされる。鉄を担持した黒鉛に対して超純水で洗浄することによって、表面に残留している不純物を除去した。この鉄を担持した黒鉛0.06gと、塩化カリウム0.26gと、無水塩化銅(II)0.6gとをガラス製アンプルに真空封入し、そのアンプルを400℃で10時間熱処理した。自然冷却後、アンプルより黒鉛を取り出し、表面に付着した塩化カリウムおよび塩化銅(II)を水洗によって除去することで、黒鉛層間化合物10を得た。
 金属粒子20として、平均粒子径が2μmのシグマアルドリッチ製銀粉を用意し、シグマアルドリッチ製銀粉と黒鉛層間化合物10を33:64の体積割合で混合して、黒鉛層間化合物10と金属粒子20の複合材料である導電性材料を得た。さらに、導電性材料を、0.1gを直径10mmの円筒状金型に入れ、200MPaの圧力を加えることで、円筒型の導電性材料の圧粉体を得た。
(実施例2)
 実施例1における鉄を担持した黒鉛の代わりに、平均粒子径10μmの伊藤黒鉛製天然黒鉛を使用した。それ以外は実施例1と同様である。
(比較例)
 実施例1における黒鉛層間化合物10の代わりに、平均粒子径10μmの伊藤黒鉛製天然黒鉛を使用した。それ以外は実施例1と同様である。
 実施例1、実施例2、比較例のそれぞれにおける導電性材料の圧粉体における体積抵抗率は、四探針法で測定される。その結果、実施例1における体積抵抗率は18[μΩcm]であり、実施例2における体積抵抗率は45[μΩcm]であり、比較例における体積抵抗率は120[μΩcm]である。これより、比較例と比べて、実施例1および実施例2の体積抵抗率が低くなる。
 本発明の実施の形態によれば、導電性塗料組成物100において黒鉛層間化合物10が占める体積が、金属粒子20が占める体積よりも大きいので、黒鉛層間化合物10同士を金属粒子20によって接続できる。また、黒鉛層間化合物10同士が金属粒子20によって接続されるので、導電性を向上できる。また、黒鉛層間化合物10を使用するので、単価の上昇を抑制できる。また、黒鉛層間化合物10には、金属塩化物がインターカレートされているので、導電性を向上できる。また、金属粒子20の平均粒子径は100μmよりも小さいので、導電パスを形成しやすくできる。また、導電パスが形成しやすくなるので、導電性を向上できる。
 また、黒鉛層間化合物10と金属粒子20は、金属炭化物を介して、共有結合あるいはイオン結合しているので、導電性を向上できる。また、導電性材料において黒鉛層間化合物10が占める体積が、金属粒子20が占める体積よりも大きいので、黒鉛層間化合物10同士を金属粒子20によって接続できる。また、従来高価格な金属材料を用いた配線材料について、低コストで高導電な黒鉛層間化合物10を使用するので、高導電特性を保ったまま低コスト化できる。また、黒鉛層間化合物10を少量な金属粒子20を用いて結合するので、従来のカーボン系配線では得られなかった高導電性を得ることができる。また、黒鉛層間化合物10と金属粒子20との間には、窒素原子が存在するので、黒鉛による鉄の担持がなされやすくなり、黒鉛層間化合物10に金属粒子20を結合しやすくできる。
 本実施の形態の概要は、次の通りである。本発明のある態様の導電性塗料組成物100は、黒鉛層間化合物10と、金属粒子20と、バインダーと、溶剤とを含む導電性塗料組成物100であって、導電性塗料組成物100において黒鉛層間化合物10が占める体積は、導電性塗料組成物100において金属粒子20が占める体積よりも大きい。
 黒鉛層間化合物10には、金属塩化物がインターカレートされていてもよい。
 金属粒子20の平均粒子径は、100μmよりも小さい。
 黒鉛層間化合物10と金属粒子20は、化学的に結合していてもよい。
 黒鉛層間化合物10と金属粒子20との間には、窒素原子が存在してもよい。
 黒鉛層間化合物10と金属粒子20との間には、金属炭化物が存在してもよい。
 黒鉛層間化合物10は、金属炭化物に共有結合あるいはイオン結合し、金属粒子20は、金属炭化物に共有結合あるいはイオン結合していてもよい。
 本発明の別の態様は、導電性材料である。この導電性材料は、黒鉛層間化合物10と金属粒子20とを含む導電性材料であって、導電性材料において黒鉛層間化合物10が占める体積は、導電性材料において金属粒子20が占める体積よりも大きい。
 本発明のさらに別の態様は、導電性塗料組成物100の製造方法である。この方法は、黒鉛層間化合物10と金属粒子20とを混合することによって、導電性材料を生成するステップと、バインダーと溶剤とを撹拌、加熱しながらバインダー溶液を生成するステップと、バインダー溶液に、導電性材料を加えるステップとを備える導電性塗料組成物100の製造方法であって、導電性塗料組成物100において黒鉛層間化合物10が占める体積は、導電性塗料組成物100において金属粒子20が占める体積よりも大きい。
 本発明のさらに別の態様は、導電性材料の製造方法である。この方法は、黒鉛層間化合物10と金属粒子20とを混合する導電性材料の製造方法であって、導電性材料において黒鉛層間化合物10が占める体積は、導電性材料において金属粒子20が占める体積よりも大きい。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 10 黒鉛層間化合物、 20 金属粒子、 100 導電性塗料組成物。
 本発明によれば、単価の上昇を抑制しながら、導電性を向上できる。

Claims (10)

  1.  黒鉛層間化合物と、金属粒子と、バインダーと、溶剤とを含む導電性塗料組成物であって、
     前記導電性塗料組成物において前記黒鉛層間化合物が占める体積は、前記導電性塗料組成物において前記金属粒子が占める体積よりも大きいことを特徴とする導電性塗料組成物。
  2.  前記黒鉛層間化合物には、金属塩化物がインターカレートされていることを特徴とする請求項1に記載の導電性塗料組成物。
  3.  前記金属粒子の平均粒子径は、100μmよりも小さいことを特徴とする請求項1に記載の導電性塗料組成物。
  4.  前記黒鉛層間化合物と前記金属粒子は、化学的に結合していることを特徴とする請求項1から3のいずれか1項に記載の導電性塗料組成物。
  5.  前記黒鉛層間化合物と前記金属粒子との間には、窒素原子が存在することを特徴とする請求項4に記載の導電性塗料組成物。
  6.  前記黒鉛層間化合物と前記金属粒子との間には、金属炭化物が存在することを特徴とする請求項1から3のいずれか1項に記載の導電性塗料組成物。
  7.  前記黒鉛層間化合物は、前記金属炭化物に共有結合あるいはイオン結合し、前記金属粒子は、前記金属炭化物に共有結合あるいはイオン結合していることを特徴とする請求項6に記載の導電性塗料組成物。
  8.  黒鉛層間化合物と金属粒子とを含む導電性材料であって、
     前記導電性材料において前記黒鉛層間化合物が占める体積は、前記導電性材料において前記金属粒子が占める体積よりも大きいことを特徴とする導電性材料。
  9.  黒鉛層間化合物と金属粒子とを混合することによって、導電性材料を生成するステップと、
     バインダーと溶剤とを撹拌、加熱しながらバインダー溶液を生成するステップと、
     前記バインダー溶液に、前記導電性材料を加えるステップとを備える導電性塗料組成物の製造方法であって、
     前記導電性塗料組成物において前記黒鉛層間化合物が占める体積は、前記導電性塗料組成物において前記金属粒子が占める体積よりも大きいことを特徴とする導電性塗料組成物の製造方法。
  10.  黒鉛層間化合物と金属粒子とを混合する導電性材料の製造方法であって、
     前記導電性材料において前記黒鉛層間化合物が占める体積は、前記導電性材料において前記金属粒子が占める体積よりも大きいことを特徴とする導電性材料の製造方法。
PCT/JP2016/003049 2015-08-24 2016-06-24 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法 WO2017033374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017536181A JPWO2017033374A1 (ja) 2015-08-24 2016-06-24 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
CN201680037596.XA CN107849395A (zh) 2015-08-24 2016-06-24 导电性涂料组合物、导电性材料、导电性涂料组合物的制造方法、导电性材料的制造方法
US15/739,686 US20180171161A1 (en) 2015-08-24 2016-06-24 Conductive coating composition, conductive material, method for manufacturing conductive coating composition, and method for manufacturing conductive material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015165188 2015-08-24
JP2015-165188 2015-08-24
JP2016-043856 2016-03-07
JP2016043856 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017033374A1 true WO2017033374A1 (ja) 2017-03-02

Family

ID=58099765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003049 WO2017033374A1 (ja) 2015-08-24 2016-06-24 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法

Country Status (4)

Country Link
US (1) US20180171161A1 (ja)
JP (1) JPWO2017033374A1 (ja)
CN (1) CN107849395A (ja)
WO (1) WO2017033374A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744985A (zh) * 2018-05-16 2018-11-06 南京帝膜净水材料开发有限公司 一种卷式膜元件
CN108706575B (zh) * 2018-07-06 2019-12-31 广州特种承压设备检测研究院 一种液相球磨剥离石墨烯的制备方法
CN111114041A (zh) * 2020-01-07 2020-05-08 中国电子科技集团公司第十六研究所 一种高导热石墨-铜互穿式结构的复合材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195168A (ja) * 1987-10-06 1989-04-13 S K Koki:Kk 導電性塗料組成物
JPH0565366A (ja) * 1991-09-06 1993-03-19 Yazaki Corp 導電性樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647688A3 (en) * 1987-10-06 1996-03-27 Cabotex Co Ltd Conductive composition comprising a graphite intercalation compound.
JPH0195170A (ja) * 1987-10-06 1989-04-13 Yamaha Corp 導電性塗料
JPH09249407A (ja) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法
JP5151150B2 (ja) * 2006-12-28 2013-02-27 株式会社日立製作所 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP5039514B2 (ja) * 2007-11-16 2012-10-03 ハリマ化成株式会社 低抵抗導電性ペースト
DE102009054427B4 (de) * 2009-11-25 2014-02-13 Kme Germany Ag & Co. Kg Verfahren zum Aufbringen von Gemengen aus Kohlenstoff und Metallpartikeln auf ein Substrat, nach dem Verfahren erhältliches Substrat und dessen Verwendung
CN102074714A (zh) * 2010-12-17 2011-05-25 湖南大学 一种以过渡金属—石墨层间复合物为填料制备燃料电池双极板的方法
CN102311273B (zh) * 2011-06-09 2012-08-22 苏州东南碳制品有限公司 一种炭纤维增强受电弓碳滑板及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195168A (ja) * 1987-10-06 1989-04-13 S K Koki:Kk 導電性塗料組成物
JPH0565366A (ja) * 1991-09-06 1993-03-19 Yazaki Corp 導電性樹脂組成物

Also Published As

Publication number Publication date
JPWO2017033374A1 (ja) 2018-05-24
CN107849395A (zh) 2018-03-27
US20180171161A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101099237B1 (ko) 전도성 페이스트와 이를 이용한 전도성 기판
KR20090047328A (ko) 도전성 페이스트 및 이를 이용한 인쇄회로기판
WO2017033374A1 (ja) 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
Wang et al. Functional inks for printable energy storage applications based on 2 D materials
US20120049131A1 (en) Electroconductive paste and method for fabricating the same
TWI480357B (zh) 導電膠組成物與電極的形成方法
WO2014054618A1 (ja) 銀ハイブリッド銅粉とその製造法、該銀ハイブリッド銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
Idier et al. Modified silver nanowire transparent electrodes with exceptional stability against oxidation
KR101777691B1 (ko) 그래핀 산화물을 포함하는 발열 조성물 및 그를 이용한 발열체
US20100270516A1 (en) Method for forming nanometer scale dot-shaped materials
KR20180058903A (ko) 절연 잉크 조성물 및 그를 이용하여 절연막이 형성된 기판
Wang et al. Low temperature sintering of Ag nanoparticles/graphene composites for paper based writing electronics
WO2017033375A1 (ja) 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
JP2010165594A (ja) 導電性ペースト、その製造方法、これを用いた回路配線、及びその製造方法
US20130130020A1 (en) Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same
JP2018184331A (ja) 金属めっき炭素材料、導電性材料、導電性塗料組成物
JP6247069B2 (ja) ポリマー厚膜導体組成物のラミネーション
Oh et al. Anomalous Optoelectric Properties of an Ultrathin Ruthenium Film with a Surface Oxide Layer for Flexible Transparent Conducting Electrodes
Jung et al. Electrical and morphological properties of conducting layers formed from the silver–glass composite conducting powders prepared by spray pyrolysis
WO2017154058A1 (ja) 導電性塗料組成物、導電性材料、導電性塗料組成物の製造方法、導電性材料の製造方法
CN111128633B (zh) 石墨烯场发射阴极及其制备方法
Kim et al. Size-controlled Bi-based glass powders prepared by spray pyrolysis as inorganic additives for silver electrode
KR102488985B1 (ko) 탄소나노튜브 발열잉크의 제조방법 및 이에 따라 제조된 발열잉크
JP2017157537A (ja) 透明導電膜およびその製造方法
WO2020145360A1 (ja) 電子部品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739686

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017536181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838726

Country of ref document: EP

Kind code of ref document: A1