WO2017030196A1 - 培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法 - Google Patents

培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法 Download PDF

Info

Publication number
WO2017030196A1
WO2017030196A1 PCT/JP2016/074282 JP2016074282W WO2017030196A1 WO 2017030196 A1 WO2017030196 A1 WO 2017030196A1 JP 2016074282 W JP2016074282 W JP 2016074282W WO 2017030196 A1 WO2017030196 A1 WO 2017030196A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
culture
layer
culture vessel
repellent layer
Prior art date
Application number
PCT/JP2016/074282
Other languages
English (en)
French (fr)
Inventor
慎一 五味
加川 健一
祐介 依田
真哉 三木
濱口 竜哉
Original Assignee
東京エレクトロン株式会社
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, トーカロ株式会社 filed Critical 東京エレクトロン株式会社
Priority to US15/753,091 priority Critical patent/US10793818B2/en
Priority to JP2017535580A priority patent/JP6511654B2/ja
Publication of WO2017030196A1 publication Critical patent/WO2017030196A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • C12M1/3453Opacity, turbidity or light transmission measure; Nephelometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0378Shapes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment

Definitions

  • the present invention relates to a culture vessel, a method for culturing cells using the culture vessel, and a method for observing cells using the culture vessel.
  • a culture container in which the inner surface of a recess is hydrophilized As a culture container, a culture container in which the inner surface of a recess is hydrophilized is known (for example, Patent Document 1).
  • the hydrophilic treatment of the inner surface of the recess is performed for various purposes. For example, when culturing adherent cells, the inner surface of the recess is treated with oxygen plasma for the purpose of improving adhesion to the inner surface of the recess, such as cells and cell scaffolding materials (eg, extracellular matrix). As a result, surface charges are introduced, and as a result, the inner surface of the recess is hydrophilized.
  • the inner surface of the recess is subjected to a superhydrophilic treatment for the purpose of preventing adhesion of the recess such as a cell to the inner surface due to hydrophobic interaction.
  • the culture solution in the vicinity of the inner peripheral surface of the recess is strongly attracted to the inner peripheral surface of the recess.
  • the thickness of the portion in the vicinity of the inner peripheral surface is larger than the thickness of the other portions, and a phenomenon that the liquid surface of the culture solution bends in a concave shape, that is, a concave meniscus occurs.
  • the concave meniscus is also generated when the inner peripheral surface of the concave portion is not hydrophilized.
  • a concave meniscus is generated when components such as amino acids and proteins contained in the culture medium are adsorbed on the inner peripheral surface of the recess during cell culture and the inner peripheral surface of the recess changes to hydrophilic.
  • the concave meniscus causes various problems. For example, when seeding cells in a culture vessel, the amount of seeded cells per unit area on the bottom surface of the recess increases near the inner peripheral surface of the recess, making uniform cell seeding difficult. In addition, when observing cells in the culture vessel with an optical microscope after cell culture, the optical axis is distorted due to the tilt of the liquid surface in the vicinity of the inner peripheral surface of the recess, so that it exists in the vicinity of the inner peripheral surface of the recess. Observation of cells becomes difficult or impossible.
  • Known techniques for preventing the concave meniscus include a technique of inserting a cylindrical body having a water-repellent inner surface into a culture vessel during observation (Patent Document 2), a technique of floating a transparent flat plate on the culture medium (Patent Document 3), etc. It has been.
  • the present invention provides a culture vessel, a method for culturing cells using the culture vessel, and a cell using the culture vessel, which can prevent a concave meniscus without using a jig. It aims to provide a method of observation.
  • the present invention provides the following inventions.
  • a culture vessel comprising a substrate having a recess and a water repellent layer formed on an outer edge region of the bottom surface of the recess and an inner peripheral surface of the recess, wherein one surface of the water repellent layer is the A culture container exposed to the space in the recess.
  • the culture container according to (1) wherein the bottom surface of the recess is a flat surface.
  • the culture container according to (1) or (2), wherein a contact angle between one surface of the water repellent layer and water is 115 ° or more.
  • the culture container according to (4) further comprising an adhesion layer formed between the water repellent layer and the DLC layer.
  • (6) A method for culturing cells using the culture vessel according to any one of (1) to (5), wherein the outer edge of the bottom surface of the recess is seeded before the cells are seeded in the recess. Forming the extracellular matrix layer in a region other than the region.
  • (7) A method for observing cells using the culture vessel according to any one of (1) to (5), wherein the cells in the recesses are phase-differenced from the bottom surface side or the opening side of the recesses. A method comprising the step of observing with a microscope.
  • a culture vessel capable of preventing a concave meniscus without using a jig, a method of culturing cells using the culture vessel, and observing cells using the culture vessel A method is provided.
  • FIG. 1 is a perspective view of a culture vessel according to the first embodiment.
  • FIG. 2 is an end view taken along the line AA of the culture vessel shown in FIG.
  • FIG. 3 is an enlarged view of a portion indicated by a symbol P in FIG.
  • FIG. 4 is a perspective view of a substrate provided in the culture vessel main body of the culture vessel shown in FIG.
  • FIG. 5 is an end view taken along line BB of the substrate shown in FIG.
  • FIG. 6 is a diagram for explaining a process of forming an extracellular matrix layer.
  • FIG. 7A is a diagram for explaining a concave meniscus that occurs when a water repellent layer is not formed.
  • FIG. 7A is a diagram for explaining a concave meniscus that occurs when a water repellent layer is not formed.
  • FIG. 7B is a diagram for explaining that the formation of a concave meniscus is prevented by forming a water-repellent layer in the culture container shown in FIG. 1.
  • FIG. 8 is a schematic view of a transmission inverted microscope used for cell observation.
  • FIG. 9 is a perspective view of a culture vessel according to the second embodiment. 10 is a cross-sectional view of the culture vessel shown in FIG. 9 along the line CC.
  • FIG. 11 is an enlarged view of a portion represented by a symbol Q in FIG.
  • FIG. 12 is a perspective view of a culture vessel according to the third embodiment. 13 is an end view taken along line DD of the culture vessel shown in FIG.
  • FIG. 14 is a view showing a microscope observation image of a culture dish in which a water repellent layer is formed.
  • FIG. 15 is a view showing a microscope observation image of a culture dish in which a water repellent layer is formed.
  • FIG. 16 is a view showing a microscope observation image of a culture dish in which a water repellent layer is formed.
  • FIG. 17 is a microscopic observation image of a normal culture dish in which a water repellent layer is not formed.
  • FIG. 18 is a diagram showing the relationship between the contact angle and the range that can be observed with a phase-contrast microscope.
  • the culture vessel 10A according to the first embodiment is a culture vessel for microscope observation, that is, a culture vessel capable of culturing cells and observing cultured cells under a microscope. Accordingly, the culture container 10A is configured to satisfy the conditions required for the container for cell culture and the conditions required for the container for microscopic observation. However, the configuration of the culture vessel 10A can be appropriately changed as long as cell culture is possible. When the culture container is not for microscopic observation, it is not necessary to satisfy the conditions required for the container for microscopic observation.
  • Examples of cells cultured in the culture vessel 10A include floating cells and adherent cells.
  • Examples of the adherent cells include pluripotent stem cells (eg, embryonic stem cells (ES cells), inducible pluripotent stem cells (iPS cells), etc.), stem cells, progenitor cells, somatic cells, germ cells and the like.
  • Examples of the floating cells include blood cells such as T cells and B cells.
  • the cells cultured in the culture vessel 10A may form a tissue. Examples of the tissue include cartilage tissue, bone tissue, muscle tissue, corneal tissue, and vascular tissue. The tissue may be a tissue separated from a living body or a tissue differentiated from stem cells.
  • the culture vessel 10A includes a culture vessel main body 1A and a lid 2.
  • the culture vessel main body 1 ⁇ / b> A includes a base 3 having a recess 4, a water repellent layer 5 formed on an outer edge region 411 of a bottom surface 41 of the recess 4 and an inner peripheral surface 42 of the recess 4. Is provided. Of the two surfaces of any layer including the water repellent layer 5, the space-side surface in the recess 4 may be referred to as “one surface”, and the opposite surface may be referred to as the “other surface”. is there.
  • the base 3 is a dish having a diameter of ⁇ 100 mm, a diameter of ⁇ 60 mm, a diameter of ⁇ 35 mm, etc., and the number of recesses that the base 3 has is one.
  • the number of recesses of the substrate 3 can be appropriately changed according to the use of the culture vessel, and the number of recesses of the substrate 3 may be two or more.
  • each recess can be configured in the same manner as the recess 4.
  • Examples of the substrate having two or more recesses include a multiwell plate having cylindrical wells such as 6 holes, 24 holes, 48 holes, and 96 holes.
  • the base 3 has a bottom wall portion 31 and a side wall portion 32 that stands from the periphery of the bottom wall portion 31 and forms the recess 4.
  • the bottom wall part 31 and the side wall part 32 are integrally molded.
  • the bottom wall portion 31 is formed of a flat plate member having a substantially constant thickness, and the inner wall surface of the bottom wall portion 31 and the outer wall surface on the opposite side thereof are flat.
  • the side wall part 32 is comprised by the cylindrical member with substantially constant thickness, and the inner wall surface of the side wall part 32 and the outer wall surface on the opposite side are pillar surfaces (expandable surface).
  • the shape of the bottom wall part 31 and the side wall part 32 can be suitably changed according to the use of a culture container.
  • the flat inner wall surface of the bottom wall portion 31 is a preferable condition when the cells cultured in the culture vessel 10A are adherent cells.
  • the reason is the same as the reason (described later) that the bottom surface 41 of the recess 4 is preferably a flat surface.
  • That the inner wall surface of the bottom wall portion 31 and the outer wall surface on the opposite side are flat is a preferable condition when observing cells cultured in the recess 4 with a microscope. That is, when this condition is satisfied, the accuracy of microscopic observation using the light transmittance of the bottom wall portion 31 can be improved.
  • the microscope observation using the light transmittance of the bottom wall portion 31 for example, a transmission type upright microscope observation in which light is irradiated from below the culture vessel body 1A and the transmitted light is received above the culture vessel body 1A.
  • the entire inner wall surface of the bottom wall portion 31 and the entire inner wall surface of the side wall portion 32 are subjected to a hydrophilic treatment.
  • the hydrophilization treatment include introduction of a hydrophilic functional group on the inner wall surface, formation of a hydrophilic layer on the inner wall surface, and the like.
  • the hydrophilic treatment can be performed according to a hydrophilic treatment generally performed on a culture vessel.
  • a hydrophilic functional group can be introduced into the inner wall surface by a treatment such as plasma treatment, corona discharge treatment or ultraviolet irradiation.
  • a hydrophilic layer material solution for example, a solution of a hydrophilic substance such as collagen, gelatin, fibronectin, laminin, polylysine, thrombospondin, vitronectin
  • a hydrophilic layer is formed on the inner wall surface by curing.
  • the curing process can be performed using a heating method, standing at room temperature, a plasma method, or the like.
  • the hydrophilic layer may be bonded to the inner wall surface by a chemical reaction, a plasma reaction, an electron beam, radiation, or a reaction using ultraviolet rays.
  • the material constituting the bottom wall portion 31 is a light transmissive material.
  • the light transmissive material include plastic, glass, ceramics, and the like.
  • the plastic include polystyrene, polyethylene, polypropylene, polycarbonate, polyester (for example, polyethylene terephthalate), acrylic resin (for example, polymethyl methacrylate), and the like.
  • the glass include silica glass.
  • ceramics include silica.
  • the material constituting the bottom wall portion 31 is a light transmissive material, which is a preferable condition for observing cells cultured in the recess 4 with a microscope. That is, when this condition is satisfied, the accuracy of microscopic observation using the light transmittance of the bottom wall portion 31 can be improved.
  • the material constituting the side wall portion 32 may be a light transmissive material or a light non-transparent material, but in the present embodiment, the bottom wall portion 31 and the side wall portion 32 are integrally formed. Therefore, the side wall portion 32 is made of a light-transmitting material like the bottom wall portion 31.
  • the light-impermeable material include ceramics such as alumina, plastics colored in white, black, and the like.
  • the recess 4 has a bottom surface 41, an inner peripheral surface 42 rising from the periphery of the bottom surface 41, and an opening 43 positioned on the opposite side of the bottom surface 41.
  • the bottom surface 41 of the recess 4 is partitioned into an outer edge region 411 and a central region 412 located inside the outer edge region 411 by a boundary line L1.
  • the boundary line L1 is a virtual line, and the outer edge region 411 and the central region 412 are virtual regions.
  • the boundary line L1 is an annular line located inside the outer peripheral line of the bottom surface 41.
  • the boundary line L1 is circular, but may be other annular shapes. Examples of the other ring include an elliptical shape and a rectangular shape.
  • the outer edge region 411 is an annular region that extends along the outer peripheral line of the bottom surface 41.
  • the outer peripheral line of the outer edge region 411 coincides with the outer peripheral line of the bottom surface 41, and the inner peripheral line of the outer edge region 411 coincides with the boundary line L1.
  • the outer edge region 411 has a width W1.
  • the width W1 is a distance between the outer peripheral line of the bottom surface 41 and the boundary line L1.
  • the width W1 of the outer edge region 411 is small. Is preferred.
  • the width W1 of the outer edge region 411 is preferably adjusted such that the ratio of the area of the outer edge region 411 to the area of the bottom surface 41 is 85% or less, It is more preferable to adjust so that it may become 50% or less.
  • the lower limit value of the ratio of the area of the outer edge region 411 to the area of the bottom surface 41 is not particularly limited, but is preferably 5%, more preferably 10%.
  • the width W1 of the outer edge region 411 is preferably adjusted to be 10 mm or less, and more preferably adjusted to be 5 mm or less.
  • the lower limit value of the width W1 of the outer edge region 411 is not particularly limited, but is preferably 0.5 mm, and more preferably 1 mm.
  • the bottom surface 41 of the recess 4 is formed by one surface of the inner wall surface of the bottom wall portion 31 of the base 3 or a hydrophilic layer formed on the inner wall surface, and the inner peripheral surface 42 of the recess 4 is the side wall of the base 3. It is formed by one surface of the inner wall surface of the part 32 or the hydrophilic layer formed on the inner wall surface.
  • the bottom surface 41 of the recess 4 is a flat surface, and the inner peripheral surface 42 of the recess 4 is a column surface (expandable surface).
  • the recess 4 has a circular shape in plan view, and the recess 4 has a rectangular cross-sectional shape.
  • the planar view shape and the cross-sectional view shape of the recess 4 can be appropriately changed.
  • the planar view shape of the recess 4 may be, for example, an elliptical shape, a rectangular shape, or the like.
  • the sectional view shape of the recess 4 may be, for example, a trapezoidal shape.
  • the shorter one of the upper and lower sides of the trapezoid is positioned on the bottom 41 side of the recess 4 so that the entire bottom surface 41 is visible from the opening 43. It is preferable.
  • the flat bottom surface 41 of the recess 4 is a preferable condition when the cells cultured in the culture vessel 10A are adherent cells. That is, if this condition is satisfied, it is advantageous when forming an extracellular matrix layer serving as a scaffold for adherent cells in the central region 412 of the bottom surface 41 of the recess 4. Specifically, as shown in FIG. 6, when forming the extracellular matrix layer, the extracellular matrix solution M added to the central region 412 of the bottom surface 41 of the recess 4 and spreading toward the periphery of the bottom surface 41 is added to the bottom surface 41. When the outer edge region 411 is reached, the water repellent layer 5 formed in the outer edge region 411 is repelled to form a droplet and stays in the central region 412.
  • the extracellular matrix can be efficiently adsorbed to a part or the whole of the central region 412.
  • the other is that the adsorption of the extracellular matrix to the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4 is suppressed, so that the cells are formed on the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4.
  • the generation of a concave meniscus resulting from the adsorption of the outer matrix and the hydrophilic surface of the water repellent layer 5 can be prevented.
  • the concentration of the protein contained in the extracellular matrix solution M is very high, and the adsorptivity is very high compared to a general protein. If the water-repellent layer 5 is not formed in the outer edge region 411 of the bottom surface 41 and the water-repellent layer 5 is formed only on the inner peripheral surface 42, the extracellular matrix solution M can be easily applied to the inner peripheral surface 42 of the recess 4. Therefore, the water repellency is lowered, and the effect of suppressing the generation of the concave meniscus is impaired.
  • the water-repellent layer 5 is formed not only on the inner peripheral surface 42 of the recess 4 but also on a region (that is, the outer edge region 411) that further enters the bottom surface 41, thereby forming the outer edge region 411 on the bottom surface 41. Even if the extracellular matrix is adsorbed on the formed water-repellent layer 5 and water repellency is impaired, the extracellular matrix is adsorbed on the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4 and the water-repellent layer is formed. It is possible to prevent the surface of the layer 5 from becoming hydrophilic. For this reason, it can prevent that the component in a culture solution is attracted to the water repellent layer 5 formed in the internal peripheral surface 42 of the recessed part 4, and generation
  • the bottom surface 41 and the inner peripheral surface 42 of the recess 4 have hydrophilicity.
  • the bottom surface 41 of the recess 4 it is preferable that at least the central region 412 has hydrophilicity when the cells cultured in the culture vessel 10A are adherent cells. That is, if this condition is satisfied, it is advantageous when forming an extracellular matrix layer serving as a scaffold for adherent cells in the central region 412 of the bottom surface 41 of the recess 4. Specifically, when the extracellular matrix layer is formed, components in the extracellular matrix solution added to the central region 412 of the bottom surface 41 of the recess 4 are easily adsorbed to the central region 412 of the bottom surface 41.
  • the water repellent layer 5 is formed on the outer edge region 411 of the bottom surface 41 of the recess 4 and the inner peripheral surface 42 of the recess 4.
  • “the water repellent layer is formed on the outer edge region of the bottom surface of the recess and the inner peripheral surface of the recess” means that the water repellent layer is formed on the entire outer edge region of the bottom surface of the recess and the entire inner peripheral surface of the recess.
  • the water repellent layer 5 is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4 via the intermediate layer 6A. ing.
  • one surface of the water repellent layer 5 is exposed in the space in the recess 4, and the other surface of the water repellent layer 5 is in contact with one surface of the intermediate layer 6A.
  • One surface of the intermediate layer 6A is in contact with the other surface of the water-repellent layer 5, and the other surface of the intermediate layer 6A is in contact with the outer edge region 411 of the bottom surface 41 of the recess 4 and the inner peripheral surface 42 of the recess 4. ing.
  • the intermediate layer 6 ⁇ / b> A is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4.
  • middle layers have the 1st part extended to the whole outer edge area
  • the edge of the first portion of the intermediate layer 6A on the inner peripheral surface 42 side is continuous with the edge of the second portion of the intermediate layer 6A on the bottom surface 41 side.
  • the edge of the first portion of the intermediate layer 6A on the boundary line L1 side coincides with the boundary line L1 in plan view.
  • the water repellent layer 5 is formed on the entire one surface of the intermediate layer 6A.
  • One surface of the intermediate layer 6A has a first region corresponding to the surface of the first portion of the intermediate layer 6A and a second region corresponding to the surface of the second portion of the intermediate layer 6A.
  • the water repellent layer 5 has a first portion that extends over the entire first region on one surface of the intermediate layer 6A and a second portion that extends over the entire second region of one surface of the intermediate layer 6A.
  • the edge portion on the inner peripheral surface 42 side of the first portion of the water repellent layer 5 is continuous with the edge portion on the bottom surface 41 side of the second portion of the water repellent layer 5.
  • the edge portion on the boundary line L1 side of the first portion of the water repellent layer 5 coincides with the boundary line L1 in plan view.
  • the water repellent layer 5 contains a water repellent.
  • the water repellent include polysiloxane, polysiloxane having an organic group and / or fluorine atom introduced, and a fluororesin.
  • the organic group introduced into the polysiloxane include an alkyl group such as a methyl group, an ethyl group, and a propyl group, and an aryl group such as a vinyl group and a phenyl group.
  • the fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / ethylene copolymer.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • the water repellent layer 5 may contain a primer component.
  • the primer component has a functional group that can bind to a functional group of a substance that constitutes a layer adjacent to the water repellent layer 5 (in this embodiment, the adhesion layer 62A).
  • a silane coupling agent etc. are mentioned, for example.
  • the bonding force between the water-repellent layer 5 and the adhesion layer 62A can be improved by the silanol group of the silane coupling agent being bonded to the hydroxyl group of the substance constituting the adhesion layer 62A to form a siloxane bond. .
  • the thickness of the water repellent layer 5 is preferably 0.01 to 0.2 ⁇ m.
  • the water repellent layer 5 is prepared by applying a water repellent layer raw material liquid (for example, a water repellent solution) to the surface on which the water repellent layer 5 is to be formed using, for example, spraying, dipping, brushing, or the like. After coating, it can be formed by curing. The curing process can be performed using a heating method, standing at room temperature, a plasma method, or the like.
  • the water repellent layer 5 may be bonded to the surface on which the water repellent layer 5 is to be formed by a chemical reaction, a plasma reaction, an electron beam, radiation, or a reaction using ultraviolet rays.
  • water repellency means that the contact angle between one surface of the water repellent layer and water is 90 ° or more.
  • the contact angle between one surface of the water repellent layer 5 and water is preferably 105 ° or more, and more preferably 115 ° or more.
  • the contact angle here is a contact angle when pure water is used, and the ⁇ / 2 method is adopted as a method for measuring the contact angle.
  • a commercially available contact angle measuring device for example, PG-X manufactured by Matsubo Corporation can be used.
  • the intermediate layer 6A has a DLC layer 61A formed on the other surface side of the water repellent layer 5, and an adhesion layer 62A formed between the water repellent layer 5 and the DLC layer 61A.
  • DLC means diamond-like carbon.
  • the DLC layer 61 ⁇ / b> A is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4.
  • the adhesion layer 62A is formed on the entire one surface of the DLC layer 61A.
  • the water repellent layer 5 is formed on one entire surface of the adhesion layer 62A.
  • the DLC layer 61 ⁇ / b> A can improve the water repellency of the water repellent layer 5.
  • the DLC layer 61A also serves as a barrier layer for preventing the components of the adhesion layer 62A from dissolving the substrate 3.
  • the thickness of the DLC layer 61A is preferably 0.1 to 1.0 ⁇ m.
  • the DLC layer is a hard film containing hydrocarbon as a main component and is a mixture of a diamond structure (SP3 structure) and a graphite structure (SP2 structure) while being amorphous. Some of the hydrogen atoms contained in the DLC layer may be substituted with fluorine atoms.
  • Examples of the method for forming the DLC layer include an ionization vapor deposition method, an arc ion plating method, a high frequency / high voltage pulse superposition type film formation method, a plasma booster method, and a plasma CVD method.
  • Examples of the source gas used for forming the DLC layer include hydrocarbon gas.
  • hydrocarbon examples include CH 3 , CH 2 CH 2 , C 2 H 2 , CH 3 CH 2 CH 3 , CH 3 CH 2 CH 2 CH 3 , C 6 H 5 CH 3 , C 6 H 5 CH 2 CH. , C 6 H 4 (CH 3 ) 2 , CH 3 (CH 2 ) 4 CH 3 and the like.
  • the adhesion layer 62A can more firmly adhere the water repellent layer 5 and the DLC layer 61A.
  • the thickness of the adhesion layer 62A is preferably 0.1 to 1.5 ⁇ m.
  • Examples of the adhesion layer 62A include a silica layer, a zirconia layer, and a titania layer.
  • the adhesion layer 62A is formed on the surface on which the adhesion layer 62A is to be formed by using, for example, a method such as spraying, dipping, brushing, etc., and the raw material liquid of the adhesion layer 62A (in the case of a silica layer, for example, ethyl silicate In the case of a (TEOS) solution or zirconia layer, for example, a normal butyl zirconate (NBZ) solution or in the case of a titania layer, for example, a butyl titanate dimer (DBT) solution) is applied and then cured.
  • a silica layer for example, ethyl silicate In the case of a (TEOS) solution or zirconia layer
  • the curing process can be performed using a heating method, standing at room temperature, a plasma method, or the like.
  • the adhesion layer 62A may be bonded to the surface on which the adhesion layer 62A is to be formed by a reaction using a chemical reaction, plasma reaction, electron beam, radiation, or ultraviolet light.
  • a culture chamber is formed in the recess 4. .
  • One surface of the water repellent layer 5 is exposed in the space in the recess 4, and a region corresponding to the surface of the first portion of the water repellent layer 5 in one surface of the water repellent layer 5 is a culture chamber.
  • the region corresponding to the surface of the second portion of the water repellent layer 5 forms the inner peripheral surface of the culture chamber.
  • the region where the water repellent layer 5 is not formed is exposed to the space in the recess 4 and forms the center region of the bottom surface of the culture chamber. Thereby, hydrophilicity is provided to the central region of the bottom surface of the culture chamber.
  • the lid 2 is configured to be detachable from the culture vessel main body 1.
  • the opening 43 of the recess 4 is sealed. Thereby, mixing of impurities (contamination) into the recess 4 can be prevented.
  • the portion of the lid 2 that seals the opening 43 of the recess 4 is formed of a flat plate member having a substantially constant thickness, and the inner wall surface (wall surface on the opening 43 side) of the portion and the opposite side thereof.
  • the outer wall surface is flat.
  • the configuration of the lid 2 can be appropriately changed according to the use of the culture container.
  • the inner wall surface of the portion of the lid 2 that seals the opening 43 of the recess 4 and the outer wall surface on the opposite side are flat. It is a condition. That is, when this condition is satisfied, the accuracy of microscopic observation using the light transmittance of the lid member 2 can be improved.
  • a transmission type upright microscope observation in which light is irradiated from below the culture vessel body 1 ⁇ / b> A and the transmitted light is received above the culture vessel body 1 ⁇ / b> A
  • An episcopic microscope that irradiates light from above the culture vessel body 1A and receives reflected light above the culture vessel body 1A, irradiates light from above the culture vessel body 1A, and transmits transmitted light to the culture vessel body 1A. Examples include observation with a transmission inverted microscope that receives light downward.
  • the material constituting the lid 2 is a light transmissive material. Specific examples of the light transmissive material are the same as those of the culture vessel main body 1A. In microscopic observation, when the lid 2 is not attached to the culture vessel main body 1A, the material constituting the lid 2 may be a light-impermeable material.
  • the material constituting the lid 2 is a light transmissive material, which is a preferable condition for observing cells cultured in the recess 4 with a microscope. That is, when this condition is satisfied, the accuracy of microscopic observation using the light transmittance of the lid 2 can be improved.
  • the culture vessel body 1A is (A1) preparing a substrate 3 having a recess 4; (A2) masking the central region 412 of the bottom surface 41 of the recess 4; (A3) forming a DLC layer 61A on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4; (A4) A step of forming the adhesion layer 62A on one entire surface of the DLC layer 61A formed in the step (A3), and (A5) a repelling property on the entire one surface of the adhesion layer 62A formed in the step (A4). It can be manufactured by a method including a step of forming the aqueous layer 5.
  • step (A1) for example, a commercially available substrate is prepared as the substrate 3 having the recess 4.
  • the substrate is usually marketed as a set with a lid.
  • a base for example, a base on which polystyrene constituting the bottom wall and the side wall is exposed on the inner wall surface of the bottom wall and the inner wall surface of the side wall is commercially available.
  • the cells cultured in the culture vessel 10A are adherent cells
  • a substrate that has been subjected to hydrophilization treatment at least in the central region of the bottom surface of the recess.
  • Use of such a substrate is advantageous when an extracellular matrix layer serving as a scaffold for adherent cells is formed in the central region of the bottom surface of the recess. Therefore, it is preferable to use as the substrate 3 a substrate in which the entire inner wall surface of the bottom wall portion and the entire inner wall surface of the side wall portion are subjected to hydrophilization treatment.
  • step (A2) for example, a commercially available masking material is used to cover the central region 412 of the bottom surface 41 of the recess 4.
  • the material and shape of the masking material are not particularly limited as long as the central region 412 can be protected from various processes (DLC layer forming process, adhesion layer forming, water repellent layer forming process, etc.) used in the subsequent steps.
  • the outer region 411 is formed with an arbitrary width on the bottom surface 41 of the recess 4 by covering the central region 412 with a masking material having an arbitrary diameter smaller than the diameter of the bottom surface 41 of the recess 4. Can do.
  • step (A3) the DLC layer 61A is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4 by using, for example, a plasma CVD method.
  • the plasma CVD method the source gas of the DLC layer 61 ⁇ / b> A is converted into plasma, and the DLC layer 61 ⁇ / b> A is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4.
  • the raw material liquid of the adhesion layer 62A is applied to the entire one surface of the DLC layer 61A and cured, whereby the DLC layer 61A
  • the adhesion layer 62A is formed on the entire one surface.
  • the raw material liquid of the water repellent layer 5 is applied to the entire one surface of the adhesion layer 62A and cured, whereby the adhesion layer 62A.
  • the water-repellent layer 5 is formed on the entire one surface.
  • the culture vessel main body 1A is used in combination with the lid 2, but the culture vessel main body 1A may be used alone.
  • the culture vessel main body 1A and the lid body 2 are preferably sterilized before being used for cell culture.
  • the sterilization method include a method of heat treatment in an autoclave, a method of sterilization with ethylene oxide gas, a method of irradiating radiation such as gamma rays, electron beams, and ultraviolet rays. It has been confirmed that the water-repellent layer 5 composed of a compound containing a fluorinated polysiloxane maintains the surface function (that is, water repellency) even after sterilization with autoclave, ethylene oxide, and gamma rays.
  • a culture material such as a cell or a culture solution is accommodated in the recess 4 of the culture vessel body 1A (cell seeding step).
  • the water repellent layer 5 is not formed on the inner peripheral surface 42 of the recess 4, and the inner peripheral surface 42 of the hydrophilic recess 4 is exposed to the space in the recess 4. .
  • FIG. 7 when the culture solution S is accommodated in the recess 4, the culture solution S is strongly attracted to the inner peripheral surface 42, and as a result, a portion of the culture solution S near the inner peripheral surface 42.
  • the thickness of S1 is larger than the thickness of the other portions, and the phenomenon that the liquid surface of the culture solution S bends in a concave shape, that is, a concave meniscus occurs.
  • a portion S1 in the vicinity of the inner peripheral surface 42 has a width W2.
  • the width W2 is a distance between the inflection point of the liquid surface of the culture medium S and the inner peripheral surface 42 of the recess 4.
  • the thickness of the portion S1 in the vicinity of the inner peripheral surface 42 of the culture solution S1 is larger than the thickness of the central portion due to the influence of the concave meniscus.
  • the per cell seeding amount increases in the vicinity of the inner peripheral surface 42 of the recess 4 and the cell seeding becomes uneven.
  • the water repellent layer 5 is formed on the bottom surface 41 and the inner peripheral surface 42 of the recess 4, so that the culture solution in the vicinity of the inner peripheral surface 42 of the recess 4 is It cannot be strongly attracted to the inner peripheral surface 42 of the recess 4. Therefore, generation of a concave meniscus is prevented. Further, when the generation of the concave meniscus is prevented, the liquid level is flattened, and the thickness of the portion in the vicinity of the inner peripheral surface 42 of the recess 4 does not become larger than the thickness of the other portions. The cell seeding amount per area does not increase in the vicinity of the inner peripheral surface 42 of the recess 4. Therefore, uniform cell seeding is possible.
  • the lid 2 is attached to the culture vessel main body 1A, and the opening 43 of the recess 4 is sealed (lid attachment step). Note that when the culture vessel main body 1A is used alone, the lid mounting step is omitted.
  • cells are cultured in the recesses 4 (cell culture process).
  • components such as amino acids and proteins contained in the culture solution are difficult to adsorb on the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4. Therefore, it is possible to prevent the formation of a concave meniscus resulting from the adsorption of components in the culture solution to the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4 and the surface of the water-repellent layer 5 becoming hydrophilic. it can. That is, a state where no concave meniscus is generated can be maintained through the cell culture process.
  • the cell culture method using the culture vessel 10A can be applied to a part or the whole of the central region 412 of the bottom surface 41 of the recess 4 before the cell seeding step. It is preferable to include a step of forming an outer matrix layer (extracellular matrix layer forming step).
  • the extracellular matrix layer contains extracellular matrix constituents (for example, proteins and the like).
  • the extracellular matrix is a material that becomes a scaffold for cells when the cells are cultured.
  • an extracellular matrix solution is added to the central region 412 of the bottom surface 41 of the recess 42, and the extracellular matrix is adsorbed to a part or the whole of the central region 412. Form a layer.
  • the addition of the extracellular matrix solution to the central region 412 is preferably carried out little by little (for example, dropwise) so that the added extracellular matrix solution gradually spreads toward the periphery of the bottom surface 41.
  • the extracellular matrix solution can be prepared, for example, by diluting a commercially available extracellular matrix at a recommended concentration in an appropriate solvent (for example, phosphate buffered saline).
  • an appropriate solvent for example, phosphate buffered saline.
  • the extracellular matrix solution added to the central region 412 is left, for example, in a 37 ° C. environment for 2 hours or longer or in a 4 ° C. environment for one night or longer, thereby allowing the extracellular matrix solution to partially or entirely in the central region 412. Can be adsorbed. After standing, the remaining extracellular matrix solution is removed.
  • the extracellular matrix solution M added to the central region 412 spreads toward the periphery of the bottom surface 41, but when reaching the outer edge region 411, the water repellent layer 5 formed in the outer edge region 411 It bounces into a droplet and remains in the central region 412. Accordingly, the extracellular matrix can be efficiently adsorbed to a part or the whole of the central region 412. This produces the following two big effects.
  • the other is that the adsorption of the extracellular matrix to the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4 is suppressed, so that the cells are formed on the water-repellent layer 5 formed on the inner peripheral surface 42 of the recess 4.
  • the generation of a concave meniscus resulting from the adsorption of the outer matrix and the hydrophilic surface of the water repellent layer 5 can be prevented.
  • the culture vessel main body 1A is used in combination with the lid 2, but the culture vessel main body 1A may be used alone.
  • the cell observation method using the culture vessel 10A includes a step of observing the cells in the recess 4 from the bottom 41 side or the opening 43 side of the recess 4 with a microscope.
  • Examples of the microscope used for observation include an optical microscope such as a phase contrast microscope.
  • Examples of the microscope used when observing the cells in the recess 4 from the bottom surface 41 side of the recess 4 include an inverted microscope (an epi-type inverted microscope or a transmission inverted microscope).
  • Examples of the microscope used when observing the cells in the recess 4 from the opening 43 side of the recess 4 include an upright microscope (an epi-type upright microscope or a transmission upright microscope).
  • a transmission-type inverted microscope When using a transmission-type inverted microscope, for example, light from the light source installed above the culture vessel 10A is irradiated into the recess 4 through the lid 2, and the light transmitted through the recess 4 is used as the culture vessel main body 1A.
  • the cells in the recesses 4 can be observed by receiving light with a transmission inverted microscope installed below the culture vessel 10 ⁇ / b> A through the bottom wall 31.
  • the culture vessel main body 1A is used in combination with the lid 2, but the culture vessel main body 1A may be used alone.
  • the transmission inverted microscope 8 is a phase contrast microscope that includes an illumination optical system 81, a stage 82, an observation optical system 83, and an image sensor 84 and can capture a phase difference image of a cell.
  • the culture vessel 10A after cell culture is placed with the lid 2 attached to the culture vessel main body 1A.
  • the cultured cells and the culture solution used for the culture are accommodated.
  • the cell in the recessed part 4 is an observation object.
  • the illumination optical system 81 generates illumination light suitable for generating a phase difference image and irradiates the culture vessel 10A held on the stage 82.
  • the illumination optical system 81 can be configured in the same manner as an illumination optical system generally used for an optical microscope.
  • the illumination optical system 81 adjusts the light generated from a light source such as a halogen lamp to uniform illumination light suitable for generating a phase difference image by passing through a field lens, ring diaphragm, condenser lens, etc. Irradiate the culture vessel 10 A on 82.
  • Stage 82 supports culture vessel 10A and adjusts the position of culture vessel 10A.
  • the stage 82 is preferably movable in the vertical direction (direction along the optical axis) and the horizontal direction (direction perpendicular to the optical axis) by a motor or the like.
  • the observation optical system 83 includes, for example, an objective lens, a phase difference plate, an imaging lens, and the like.
  • the observation optical system 83 receives light irradiated from the illumination optical system 81 and transmitted through the concave portion 4, and forms a phase difference image. .
  • the image sensor 84 captures a phase difference image of the observation object imaged by the observation optical system 83.
  • the imaging element 84 includes, for example, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, and the like.
  • the operations of the illumination optical system 81, the stage 82, the observation optical system 83, and the image sensor 84 are controlled by a control unit (not shown).
  • an eyepiece or the like for a human to observe an observation object with the naked eye may be provided instead of the image sensor 84.
  • Irradiation light R ⁇ b> 1 is irradiated from the irradiation optical system 81 to the culture container 10 ⁇ / b> A held on the stage 82.
  • Irradiation light R ⁇ b> 1 enters the recess 4 through the lid 2 and passes through the recess 4.
  • the transmitted light R2 transmitted through the bottom wall portion 31 of the culture vessel main body 1A is received by the observation optical system 83, and a phase difference image is formed.
  • the phase difference image of the observation object imaged by the observation optical system 83 is captured by the image sensor 84. In this way, the cells in the recess 4 are observed using the transmission inverted microscope 8.
  • the inner peripheral surface 42 of the concave portion 4 having hydrophilicity is exposed to the space in the concave portion 4. For this reason, as shown in FIG. 7A, when the culture solution S is accommodated in the recess 4, the culture solution S is strongly attracted to the inner peripheral surface 42. As a result, a portion of the culture solution S near the inner peripheral surface 42 is obtained.
  • the thickness of S1 is larger than the thickness of the other portions, and the phenomenon that the liquid surface of the culture solution S bends in a concave shape, that is, a concave meniscus occurs.
  • the optical axis is distorted due to the inclination of the liquid surface in the vicinity of the inner peripheral surface 42, so that it is difficult or impossible to observe cells existing in the portion S 1 in the vicinity of the inner peripheral surface 42.
  • the water-repellent layer 5 is formed on the bottom surface 41 and the inner peripheral surface 42 of the recess 4, so the inner peripheral surface of the recess 4
  • the culture medium S near 42 is not strongly attracted to the inner peripheral surface 42 of the recess 4. Therefore, generation of a concave meniscus is prevented. Therefore, distortion of the optical axis due to the inclination of the liquid surface does not occur in the vicinity of the inner peripheral surface 42, and cells existing in the vicinity of the inner peripheral surface 42 can be observed. That is, the microscope observation field is enlarged.
  • the outer edge region 411 of the bottom surface 41 of the recess 4 becomes a region where cells are difficult to adhere due to the formation of the water-repellent layer 5, so that the cells cultured in the culture vessel 10A are adherent cells. , There are no or few cells in this area. Even if the concave meniscus is prevented, if the width W1 of the outer edge region 411 is equal to or greater than the width W2, the effect of enlarging the microscope observation field by preventing the concave meniscus is lost. Accordingly, the width W1 of the outer edge region 411 is preferably smaller than the width W2.
  • the width W2 is about 10 mm when it is large.
  • the width W1 of the outer edge region 411 is preferably 10 mm or less, more preferably 5 mm or less.
  • the lower limit value of the width W1 of the outer edge region 411 is not particularly limited, but is preferably 0.5 mm, and more preferably 1 mm.
  • the culture container 10B according to the second embodiment is a culture container for microscopic observation, that is, a culture container capable of culturing cells and microscopically observing cultured cells. Therefore, the culture container 10B is configured to satisfy the conditions required for the container for cell culture and the conditions required for the container for microscopic observation. However, the configuration of the culture vessel 10B can be appropriately changed as long as cell culture is possible. When the culture container is not for microscopic observation, it is not necessary to satisfy the conditions required for the container for microscopic observation.
  • the culture vessel 10B includes a culture vessel main body 1B and a lid 2.
  • the difference between the culture container 10B and the culture container 10A will be mainly described, and the description regarding the culture container 10A is applied to other points.
  • the culture container body 1B is in accordance with the first embodiment in that the water-repellent layer 5 is formed on the outer edge region 411 of the bottom surface 41 of the recess 4 and the inner peripheral surface 42 of the recess 4 via the intermediate layer 6B.
  • the other points are the same as the culture vessel main body 1A.
  • the member or part same as the culture container main body 1A is represented by the same code
  • the intermediate layer 6 ⁇ / b> B is formed on the entire bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4, so that the entire outer edge region 411 of the bottom surface 41 and the inside of the recess 4 are formed. It is different from the intermediate layer 6 ⁇ / b> A that is formed on the entire peripheral surface 42 but is not formed in the central region 412 of the bottom surface 41.
  • the intermediate layer 6B is formed on the entire bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4.
  • the intermediate layer 6B includes a first portion that extends over the entire outer edge region 411 of the bottom surface 41, a second portion that extends over the entire inner peripheral surface 42, and a third portion that extends over the entire central region 412 of the bottom surface 41.
  • Have The edge portion on the inner peripheral surface 42 side of the first portion of the intermediate layer 6B is continuous with the edge portion on the bottom surface 41 side of the second portion of the intermediate layer 6B, and the central region of the first portion of the intermediate layer 6B.
  • the edge portion on the 412 side is continuous with the edge portion of the third portion of the intermediate layer 6B.
  • one surface of the intermediate layer 6B has a first region corresponding to the surface of the first portion of the intermediate layer 6B and a second region corresponding to the surface of the second portion of the intermediate layer 6B. And a third region corresponding to the surface of the third portion of the intermediate layer 6B.
  • the first portion of the water repellent layer 5 is formed in the first region of one surface of the intermediate layer 6B
  • the second portion of the water repellent layer 5 is formed in the second region of one surface of the intermediate layer 6B.
  • the edge portion on the boundary line L1 side of the first portion of the water repellent layer 5 coincides with the boundary line L1 in plan view.
  • the intermediate layer 6B includes a DLC layer 61B formed on the other surface side of the water repellent layer 5, and an adhesion layer 62B formed between the water repellent layer 5 and the DLC layer 61B.
  • the DLC layer 61B and the adhesion layer 62B are configured similarly to the DLC layer 61A and the adhesion layer 62A.
  • the water repellent layer 5 is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4 via the intermediate layer 6B, so that a culture chamber is formed in the recess 4. .
  • One surface of the water repellent layer 5 is exposed in the space in the recess 4, and a region corresponding to the surface of the first portion of the water repellent layer 5 in one surface of the water repellent layer 5 is a culture chamber.
  • the region corresponding to the surface of the second portion of the water repellent layer 5 forms the inner peripheral surface of the culture chamber.
  • water repellency is imparted to the outer edge region and the inner peripheral surface of the bottom surface of the culture chamber.
  • a region corresponding to the surface of the third portion of the intermediate layer 6B is exposed to the space in the recess 4 and forms a central region on the bottom surface of the culture chamber. Thereby, hydrophilicity is provided to the central region of the bottom surface of the culture chamber.
  • the culture vessel main body 1B is (B1) a step of preparing the base body 3 having the recesses 4; (B2) Step of forming the DLC layer 61B on the entire bottom surface 41 and the entire inner peripheral surface 42 of the recess 4, and (B3) forming the adhesion layer 62B on the entire one surface of the DLC layer 61B formed in step (B2). And (B4) the water repellent layer 5 in the region corresponding to the outer edge region 411 of the bottom surface 41 and the region corresponding to the inner peripheral surface 42 among the one surface of the adhesion layer 63B formed in the step (B3). It can be manufactured by a method including a forming step.
  • Processes (B1) to (B4) can be performed in the same manner as the manufacturing process of the culture vessel body 1A.
  • step (B4) a region other than the region where the water-repellent layer 5 is formed on one surface of the adhesion layer 62B may be covered with a masking material.
  • the culture vessel 10B can be used for a cell culture method and a cell observation method in the same manner as the culture vessel 10A.
  • the culture vessel 10C according to the third embodiment is a culture vessel for microscopic observation, that is, a culture vessel capable of cell culture and microscopic observation of cultured cells. Therefore, the culture container 10C is configured to satisfy the conditions required for the container for cell culture and the conditions required for the container for microscopic observation. However, the configuration of the culture vessel 10C can be appropriately changed as long as cell culture is possible. When the culture container is not for microscopic observation, it is not necessary to satisfy the conditions required for the container for microscopic observation.
  • the culture vessel 10 ⁇ / b> C includes a culture vessel main body 1 ⁇ / b> C and a lid 2.
  • the difference between the culture container 10C and the culture container 10A will be mainly described, and the description relating to the culture container 10A is applied to other points.
  • the culture container main body 1C is the first embodiment in that the water-repellent layer 5 is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4 via the intermediate layer 6C.
  • the other points are the same as those of the culture vessel main body 1A.
  • the same members or parts as those of the culture vessel main body 10A are denoted by the same reference numerals.
  • the intermediate layer 6C has a DLC layer 61A, but differs from the intermediate layer 6A having the DLC layer 61A and the adhesion layer 62A in that it does not have the adhesion layer 62A.
  • the other configuration of the intermediate layer 6C is the same as that of the intermediate layer 6A.
  • the water repellent layer 5 is formed on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4 via the intermediate layer 6C, whereby a culture chamber is formed in the recess 4. .
  • One surface of the water repellent layer 5 is exposed in the space in the recess 4, and a region corresponding to the surface of the first portion of the water repellent layer 5 in one surface of the water repellent layer 5 is a culture chamber.
  • the region corresponding to the surface of the second portion of the water repellent layer 5 forms the inner peripheral surface of the culture chamber.
  • water repellency is imparted to the outer edge region and the inner peripheral surface of the bottom surface of the culture chamber.
  • the region where the water repellent layer 5 is not formed is exposed to the space in the recess 4 and forms the center region of the bottom surface of the culture chamber. Thereby, hydrophilicity is provided to the central region of the bottom surface of the culture chamber.
  • the culture vessel main body 1C is (C1) preparing a substrate 3 having a recess 4; (C2) masking the central region 412 of the bottom surface 41 of the recess 4; (C3) A step of forming the DLC layer 61A on the entire outer edge region 411 of the bottom surface 41 of the recess 4 and the entire inner peripheral surface 42 of the recess 4, and (C4) one of the DLC layers 61A formed in the step (C3) It can be manufactured by a method including a step of forming the water repellent layer 5 on the entire surface.
  • Processes (C1) to (C4) can be performed in the same manner as the manufacturing process of the culture vessel main body 1A.
  • the culture vessel 10C can be used for the cell culture method and the cell observation method in the same manner as the culture vessel 10A.
  • Example 1 A commercially available polystyrene ⁇ 35 mm culture dish (FALCON, model number 353001) was prepared. This culture dish has a circular bottom wall portion and a peripheral wall portion that stands up from the periphery of the bottom wall portion to form a recess, and is integrally formed of a polystyrene material.
  • the surface of the recess is composed of a bottom surface formed by the bottom wall portion and an inner peripheral surface rising from the periphery of the bottom surface. The entire surface of the recess is hydrophilized.
  • a region other than the outer edge region of the bottom surface of the recess was covered with a commercially available masking material.
  • the outer edge region was set as an annular region having an outer peripheral line coinciding with the outer peripheral line of the bottom surface of the concave portion and an inner peripheral line having a distance of 5 mm from the outer peripheral line of the bottom surface of the concave portion.
  • a diamond-like carbon (DLC) coating layer was formed on the entire outer edge region of the bottom surface of the recess and the entire inner peripheral surface of the recess.
  • the DLC layer was formed with a film thickness of 0.5 ⁇ m by plasma CVD.
  • a film forming gas a mixed gas of C 2 H 2 and C 6 H 5 CH 3 was used.
  • an SiO 2 layer was formed as an adhesion layer on the DLC layer.
  • the SiO 2 layer was formed with a film thickness of 1.0 ⁇ m by applying TEOS (manufactured by High-Purity Science Co., Ltd.) on the DLC layer by spraying, followed by drying and curing.
  • TEOS manufactured by High-Purity Science Co., Ltd.
  • a water repellent layer was formed on the adhesion layer.
  • the water repellent layer was formed with a film thickness of 0.1 ⁇ m by applying a compound containing polysiloxane fluorinated by a spray method onto the DLC layer, followed by drying and curing.
  • the masking material was removed.
  • the contact angle with pure water on the surface of the water repellent layer was measured by the ⁇ / 2 method (PG-X manufactured by Matsubo Co., Ltd.), the contact angle was 110 ° to 120 ° (center value 115 °).
  • ReproFF2 ReproCell, model number RCHEMD006A
  • the inside of the recess into which the culture solution was introduced was observed according to a conventional method. Microscopic observation was performed under the conditions of standing for 8 days in a 37 ° C., 5% CO 2 incubator, as in normal cell culture conditions.
  • the ratio of the observable region in the microscopic field is 84% immediately after the introduction of the culture solution, 99% on the first day of culture, 100% on the second day of culture, and 96% on the third day of culture.
  • the fourth day of culture 89%, on the seventh day of culture, 99%, and on the eighth day of culture, 95%.
  • 95% of the whole could be observed with a phase contrast microscope, and only 5% of the whole area could not be observed with a phase contrast microscope.
  • Example 2 A commercially available polystyrene ⁇ 35 mm culture dish (FALCON, model number 353001) was prepared. Of the bottom surface of the recess, the region other than the outer edge region was covered with a commercially available masking material. The outer edge region was set as an annular region having an outer peripheral line coinciding with the outer peripheral line of the bottom surface of the concave portion and an inner peripheral line having a distance of 5 mm from the outer peripheral line of the bottom surface of the concave portion.
  • Example 2 As in Example 1, a DLC layer as a barrier layer, a SiO 2 layer as an adhesion layer, and a water repellent layer were formed.
  • the masking material was removed.
  • the contact angle with pure water on the surface of the water repellent layer was measured by the ⁇ / 2 method (PG-X manufactured by Matsubo Co., Ltd.), the contact angle was 110 ° to 120 ° (center value 115 °).
  • Vitronectin-N life technologies, model number A14700 is coated as a protein that serves as a scaffold for adherent cells in a region other than the outer edge region (the region where the water-repellent layer is not formed) on the bottom surface of the recess according to normal conditions. did.
  • iPS cells were cultured using ReproFF2 (ReproCell, model number RCHEMD006A), which is a culture solution for iPS cell culture.
  • ReproFF2 ReproCell, model number RCHEMD006A
  • Cell culture was performed under the conditions of standing in a 37 ° C., 5% CO 2 incubator for 10 days, as in normal cell culture conditions.
  • FIGS. 15 and 16 are microscopic observation images of a culture dish in which a water repellent layer is formed
  • FIG. 17 is a microscopic observation image of a normal culture dish in which a water repellent layer is not formed.
  • the ratio of the observable region in the microscopic field is 98% on the first culture day, 96% on the second culture day, and on the third culture day. 93%, 97% on the 4th day of culture, 96% on the 5th day of culture, 87% on the 6th day of culture, 98% on the 7th day of culture, 87% on the 8th day of culture, 98% on the 9th day of culture
  • the 10th day of culture was 94%. On average up to the 10th day, 94% of the whole could be observed with a phase contrast microscope, and only 6% of the total area could not be observed with a phase contrast microscope. Moreover, as shown in FIG.
  • the phase contrast microscope observation was also possible for the cells cultured very close to the inner peripheral surface of the recess. Furthermore, no problems were found with iPS cells, and it was confirmed that they can be cultured as usual. In addition, in the outer edge area
  • the ratio of the observable region in the microscopic field is 37% on the first day of culture and 43% on the second day of culture. %, 44% on the third day of culture, 34% on the fourth day of culture, 41% on the fifth day of culture, and 45% on the sixth day of culture. On average up to the 6th day, only 41% of the whole could be observed with a phase contrast microscope, and the remaining 59% could not be observed with a phase contrast.
  • Example 3 A commercially available polystyrene ⁇ 35 mm culture dish (FALCON, model number 353001) was prepared.
  • the contact angle with the pure water on the surface of the water-repellent layer is 60 °, 90 °, 100 ° to 110 ° in the contact angle measurement by the ⁇ / 2 method (PG-X manufactured by Matsubo Co., Ltd.) over the entire inner peripheral surface of the recess.
  • PG-X manufactured by Matsubo Co., Ltd.
  • ReproFF2 ReproCell, model number RCHEMD006A
  • the inside of the recess into which the culture solution was introduced was observed according to a conventional method.
  • FIG. 18 is a diagram showing the relationship between the contact angle and the range that can be observed with a phase-contrast microscope. As shown in FIG. 18, the ratio of the observable region in the microscope field is 31% at a contact angle of 60 °, 34% at a contact angle of 90 °, and 66 at a contact angle of 100 ° to 110 ° (center value 105 °). And 88% at a contact angle of 110 ° to 120 ° (center value 115 °).
  • the contact angle is 90 ° or more
  • the effect of suppressing the concave meniscus is manifested.
  • the contact angle is 105 ° or more
  • the suppression effect is further improved
  • the contact angle is 115 ° or more
  • the suppression effect is obtained. Further improvement has been shown.
  • the effect of the water-repellent layer shown in the above examples does not depend on the type of the culture vessel.
  • the surface of the recesses is hydrophilized. It is also demonstrated in various commercially available culture vessels including untreated culture dishes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Transplantation (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pathology (AREA)

Abstract

本発明は、治具を使用することなく、凹型メニスカスを防止することができる、培養容器を提供することを目的とし、かかる目的を達成するために、凹部(4)を有する基体(3)と、凹部(4)の底面(41)の外縁領域(411)及び凹部(4)の内周面(42)に形成された撥水層(5)とを備える、培養容器(1A)であって、撥水層(5)の一方の面が凹部(4)内の空間に露出する、培養容器(1A)を提供する。

Description

培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法
 本発明は、培養容器、該培養容器を使用して細胞を培養する方法、及び、該培養容器を使用して細胞を観察する方法に関する。
 培養容器として、凹部の内表面が親水化処理された培養容器が知られている(例えば、特許文献1)。凹部の内表面の親水化処理は、様々な目的で行われる。例えば、接着細胞を培養する場合、細胞、細胞の足場となる材料(例えば、細胞外マトリックス)等の凹部の内表面への接着性を向上させることを目的として、凹部の内表面を酸素プラズマ処理して表面電荷を導入し、その結果として凹部の内表面が親水化処理される。また、浮遊細胞を培養する場合、疎水性相互作用による細胞等の凹部の内表面への付着を防止することを目的として、凹部の内表面が超親水化処理される。
 凹部の内表面が親水化処理された培養容器を使用して細胞培養を行うと、凹部の内周面近傍の培養液が凹部の内周面に強く引きつけられる結果、培養液のうち、凹部の内周面近傍の部分の厚みが、それ以外の部分の厚みよりも大きくなり、培養液の液面が凹状に屈曲する現象、すなわち、凹型メニスカスが生じる。
 凹型メニスカスは、凹部の内周面が親水化処理されていない場合にも生じる。例えば、細胞培養中に、培養液に含有されるアミノ酸、タンパク質等の成分が凹部の内周面に吸着され、凹部の内周面が親水性に変化すると、凹型メニスカスが生じる。
 凹型メニスカスは、様々な問題を引き起こす。例えば、培養容器に細胞を播種する際、凹部の底面の単位面積あたりの細胞播種量が凹部の内周面近傍で増加するため、均一な細胞播種が困難となる。また、細胞培養後に、培養容器内の細胞を光学顕微鏡で観察する際、凹部の内周面近傍では液面が傾斜している影響で光軸が歪むため、凹部の内周面近傍に存在する細胞の観察が困難又は不可能となる。
 凹型メニスカスを防止する手法として、観察時に、撥水性内面を有する筒体を培養容器中に挿入する手法(特許文献2)、培養液上に透明な平板を浮かせる手法(特許文献3)等が知られている。
 一方、複数の凹部が形成されたマイクロプレートにおいて、ある凹部から試料が漏れ出して隣接する凹部に混入することを防止する手法として、マイクロプレートの凹部の内表面のうち、凹部の開口部と底面との中間部から、凹部の開口部までの間に、撥水性である第1領域を設けるとともに、凹部の底面から第1領域までの間に、親水性である第2領域を設ける手法(特許文献4)が知られている。
特表2001-507218号公報 特開昭62-69979号公報 特開平5-181068号公報 特開2004-245727号公報
 しかしながら、特許文献2の手法では、筒体が凹部の内周面近傍に位置するため、凹部の内周面近傍の細胞の観察は依然として困難又は不可能である。また、特許文献2及び特許文献3の手法では、治具(筒体又は平板)の使用に起因する培養液への不純物の混入(コンタミネーション)が懸念される。さらに、特許文献4の手法では、凹部の開口部と底面との中間部から、凹部の底面までの領域(第2領域)が親水性であるため、凹型メニスカスを防止することができない。
 そこで、本発明は、治具を使用することなく、凹型メニスカスを防止することができる、培養容器、該培養容器を使用して細胞を培養する方法、及び、該培養容器を使用して細胞を観察する方法を提供することを目的とする。
 本発明は、以下の発明を提供する。
(1)凹部を有する基体と、前記凹部の底面の外縁領域及び前記凹部の内周面に形成された撥水層とを備える、培養容器であって、前記撥水層の一方の面が前記凹部内の空間に露出する、培養容器。
(2)前記凹部の底面が平面である、(1)に記載の培養容器。
(3)前記撥水層の一方の面と水との接触角が115°以上である、(1)又は(2)に記載の培養容器。
(4)前記撥水層の他方の面側に形成されたDLC層をさらに備える、(1)~(3)のいずれかに記載の培養容器。
(5)前記撥水層と前記DLC層との間に形成された密着層をさらに備える、(4)に記載の培養容器。
(6)(1)~(5)のいずれかに記載の培養容器を使用して細胞を培養する方法であって、前記凹部内に細胞を播種する前に、前記凹部の底面のうち前記外縁領域以外の領域に細胞外マトリックス層を形成する工程を含む、方法。
(7)(1)~(5)のいずれかに記載の培養容器を使用して細胞を観察する方法であって、前記凹部内の細胞を、前記凹部の底面側又は開口部側から位相差顕微鏡で観察する工程を含む、方法。
 本発明によれば、治具を使用することなく、凹型メニスカスを防止することができる培養容器、該培養容器を使用して細胞を培養する方法、及び、該培養容器を使用して細胞を観察する方法が提供される。
図1は、第1実施形態に係る培養容器の斜視図である。 図2は、図1に示す培養容器のA-A線端面図である。 図3は、図2中の符号Pで表される部分の拡大図である。 図4は、図1に示す培養容器の培養容器本体が備える基体の斜視図である。 図5は、図4に示す基体のB-B線端面図である。 図6は、細胞外マトリックス層を形成する工程を説明するための図である。 図7Aは、撥水層が形成されていない場合に生じる凹型メニスカスを説明するための図である。 図7Bは、図1に示す培養容器において、撥水層が形成されていることにより、凹型メニスカスの発生が防止されることを説明するための図である。 図8は、細胞観察に使用される透過型倒立顕微鏡の概略図である。 図9は、第2実施形態に係る培養容器の斜視図である。 図10は、図9に示す培養容器のC-C線端面図である。 図11は、図10中の符号Qで表される部分の拡大図である。 図12は、第3実施形態に係る培養容器の斜視図である。 図13は、図12に示す培養容器のD-D線端面図である。 図14は、撥水層を形成した培養ディッシュの顕微鏡観察像を示す図である。 図15は、撥水層を形成した培養ディッシュの顕微鏡観察像を示す図である。 図16は、撥水層を形成した培養ディッシュの顕微鏡観察像を示す図である。 図17は、撥水層を形成していない通常の培養ディッシュの顕微鏡観察像である。 図18は、接触角と位相差顕微鏡観察可能範囲との関係を示す図である。
 以下、図面に基づいて本発明の実施形態を説明する。
〔第1実施形態〕
 第1実施形態に係る培養容器10Aは、顕微鏡観察用培養容器、すなわち、細胞培養が可能であるとともに、培養された細胞の顕微鏡観察が可能である培養容器である。したがって、培養容器10Aは、細胞培養のために容器に要求される条件と、顕微鏡観察のために容器に要求される条件とを満たすように構成されている。但し、培養容器10Aの構成は、細胞培養が可能な範囲で適宜変更可能である。培養容器が顕微鏡観察用でない場合、顕微鏡観察のために容器に要求される条件を満たす必要はない。
 培養容器10Aで培養される細胞としては、例えば、浮遊細胞、接着細胞等が挙げられる。接着細胞としては、例えば、多能性幹細胞(例えば、胚性幹細胞(ES細胞)、誘導性多能性幹細胞(iPS細胞)等)、幹細胞、前駆細胞、体細胞、生殖細胞等が挙げられる。浮遊細胞としては、例えば、T細胞、B細胞等の血球系細胞等が挙げられる。培養容器10Aで培養される細胞は、組織を形成していてもよい。組織としては、例えば、軟骨組織、骨組織、筋組織、角膜組織、血管組織等が挙げられる。組織は、生体から分離した組織であってもよいし、幹細胞から分化させた組織であってもよい。
 図1及び図2に示すように、培養容器10Aは、培養容器本体1A及び蓋体2を備える。
 図1及び図2に示すように、培養容器本体1Aは、凹部4を有する基体3と、凹部4の底面41の外縁領域411及び凹部4の内周面42に形成された撥水層5とを備える。なお、撥水層5を含む任意の層が有する2つの面のうち、凹部4内の空間側の面を「一方の面」といい、それと反対側の面を「他方の面」という場合がある。
 本実施形態において、基体3は、φ100mm径、φ60mm径、φ35mm径等のディッシュであり、基体3が有する凹部の数は1である。但し、基体3が有する凹部の数は培養容器の用途に応じて適宜変更可能であり、基体3が有する凹部の数は2以上であってもよい。基体3が有する凹部の数は2以上である場合、それぞれの凹部は凹部4と同様に構成することができる。2以上の凹部を有する基体としては、例えば、6穴、24穴、48穴、96穴等の円筒形ウェルを有するマルチウェルプレート等が挙げられる。
 図4及び図5に示すように、基体3は、底壁部31と、底壁部31の周縁から起立して凹部4を形成する側壁部32とを有する。本実施形態において、底壁部31及び側壁部32は一体成形されている。底壁部31は、厚みが略一定の平板状部材で構成されており、底壁部31の内壁面及びそれと反対側の外壁面は平面である。側壁部32は、厚みが略一定の筒状部材で構成されており、側壁部32の内壁面及びそれと反対側の外壁面は柱面(可展面)である。但し、底壁部31及び側壁部32の形状は、培養容器の用途に応じて適宜変更可能である。
 底壁部31の内壁面が平面であることは、培養容器10Aで培養される細胞が接着細胞である場合の好ましい条件である。その理由は、凹部4の底面41が平面であることが好ましい理由(後述)と同様である。
 底壁部31の内壁面及びそれと反対側の外壁面が平面であることは、凹部4内で培養された細胞を顕微鏡で観察する場合の好ましい条件である。すなわち、この条件が満たされると、底壁部31の光透過性を利用した顕微鏡観察の精度を向上させることができる。なお、底壁部31の光透過性を利用した顕微鏡観察としては、例えば、培養容器本体1Aの下方から光を照射し、透過光を培養容器本体1Aの上方で受光する透過型正立顕微鏡観察、培養容器本体1Aの上方から光を照射し、透過光を培養容器本体1の下方で受光する透過型倒立顕微鏡観察、培養容器本体1Aの下方から光を照射し、反射光を培養容器本体1Aの下方で受光する落射型倒立顕微鏡等が挙げられる。
 底壁部31の内壁面全体及び側壁部32の内壁面全体には、親水化処理が施されている。親水化処理としては、例えば、内壁面への親水性官能基の導入、内壁面への親水層の形成等が挙げられる。親水化処理は、培養容器に対して一般的に行われる親水化処理に従って行うことができる。例えば、プラズマ処理、コロナ放電処理、紫外線照射等の処理によって、内壁面へ親水性官能基を導入することができる。また、親水層の原料液(例えば、コラーゲン、ゼラチン、フィブロネクチン、ラミニン、ポリリジン、トロンボスポンジン、ビトロネクチン等の親水性物質の溶液)を、内壁面に対して、例えば、スプレー、ディッピング、刷毛塗り等の方法によって塗布した後、硬化させることにより、内壁面に親水層を形成することができる。硬化処理は、加熱法、常温放置、プラズマ法等を用いて行うことができる。親水層を形成する際、化学反応、プラズマ反応、電子線、放射線又は紫外線を使用した反応により、親水層を、内壁面に結合させてもよい。
 本実施形態において、底壁部31を構成する材料は光透過性材料である。光透過性材料としては、例えば、プラスチック、ガラス、セラミックス等が挙げられる。ブラスチックとしては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル(例えば、ポリエチレンテレフタレート)、アクリル樹脂(例えば、ポリメチルメタクリレート)等が挙げられる。ガラスとしては、例えば、シリカガラス等が挙げられる。セラミックスとしては、シリカ等が挙げられる。
 底壁部31を構成する材料は光透過性材料であることは、凹部4内で培養された細胞を顕微鏡で観察する場合の好ましい条件である。すなわち、この条件が満たされると、底壁部31の光透過性を利用した顕微鏡観察の精度を向上させることができる。
 側壁部32を構成する材料は、光透過性材料であってもよいし、光不透過性材料であってもよいが、本実施形態では、底壁部31及び側壁部32が一体成形されているので、側壁部32は、底壁部31と同様に光透過性材料で構成されている。なお、光不透過性材料としては、例えば、アルミナ等のセラミック、白色、黒色等に着色されたプラスチック等が挙げられる。
 図4及び図5に示すように、凹部4は、底面41と、底面41の周縁から起立する内周面42と、底面41の反対側に位置する開口部43とを有する。
 図4及び図5に示すように、凹部4の底面41は、境界線L1によって、外縁領域411と、外縁領域411の内側に位置する中央領域412とに区画されている。なお、境界線L1は仮想線であり、外縁領域411及び中央領域412は仮想領域である。
 境界線L1は、底面41の外周線よりも内側に位置する環状線である。本実施形態において、境界線L1は円形状であるが、その他の環状であってもよい。その他の環状としては、例えば、楕円形状、矩形状等が挙げられる。
 外縁領域411は、底面41の外周線に沿って延在する環状領域である。外縁領域411の外周線は底面41の外周線と一致し、外縁領域411の内周線は境界線L1と一致する。外縁領域411は幅W1を有する。幅W1は、底面41の外周線と境界線L1との距離である。
 外縁領域411は、撥水層5が形成されることにより、細胞が接着しにくい領域となるので、培養容器10Aで培養される細胞が接着細胞である場合、外縁領域411の幅W1は小さいことが好ましい。培養容器10Aで培養される細胞が接着細胞である場合、外縁領域411の幅W1は、底面41の面積に対する外縁領域411の面積の割合が85%以下となるように調整されることが好ましく、50%以下となるように調整されることがさらに好ましい。なお、底面41の面積に対する外縁領域411の面積の割合の下限値は特に限定されないが、好ましくは5%、さらに好ましくは10%である。例えば、底面41の半径が17.5mm以上である場合、外縁領域411の幅W1は、10mm以下となるように調整されることが好ましく、5mm以下となるように調整されることがさらに好ましい。なお、外縁領域411の幅W1の下限値は特に限定されないが、好ましくは0.5mm、さらに好ましくは1mmである。
 凹部4の底面41は、基体3の底壁部31の内壁面又は該内壁面に形成された親水層の一方の面によって形成されており、凹部4の内周面42は、基体3の側壁部32の内壁面又は該内壁面に形成された親水層の一方の面によって形成されている。
 凹部4の底面41は平面であり、凹部4の内周面42は柱面(可展面)である。凹部4の平面視形状は円形状であり、凹部4の断面視形状は矩形状である。但し、凹部4の平面視形状及び断面視形状は適宜変更可能である。凹部4の平面視形状は、例えば、楕円形状、矩形状等であってもよい。凹部4の断面視形状は、例えば、台形状等であってもよい。凹部4の断面視形状が台形状である場合、底面41全体が開口部43から視認可能となるように、台形の上辺及び下辺のうち長さが短い方が凹部4の底面41側に位置することが好ましい。
 凹部4の底面41が平面であることは、培養容器10Aで培養される細胞が接着細胞である場合の好ましい条件である。すなわち、この条件が満たされると、接着細胞の足場となる細胞外マトリックス層を、凹部4の底面41の中央領域412に形成する際に有利である。具体的には、図6に示すように、細胞外マトリックス層を形成する際、凹部4の底面41の中央領域412に添加され、底面41の周縁に向かって広がる細胞外マトリックス溶液Mが底面41の外縁領域411に到達すると、外縁領域411に形成された撥水層5で弾かれて液滴状となり、中央領域412に留まる。したがって、中央領域412の一部又は全体に細胞外マトリックスを効率よく吸着させることができる。このことは以下の2つの大きな効果を生む。1つは、細胞外マトリクス溶液Mを、細胞培養を行なう中央領域412にのみ選択的に導入することができるため、一般に高価である細胞外マトリクスの損失が少ない。もう1つは、凹部4の内周面42に形成された撥水層5への細胞外マトリックスの吸着が抑制されるので、凹部4の内周面42に形成された撥水層5に細胞外マトリクスが吸着して撥水層5の表面が親水化することに起因する凹型メニスカスの発生を防止することができる。通常、細胞外マトリクス溶液Mに含まれるタンパク質の濃度は非常に高濃度であり、かつ一般的なタンパク質に比較して吸着性が非常に高い。底面41の外縁領域411に撥水層5が形成されておらず、撥水層5が内周面42にのみ形成されていると、細胞外マトリクス溶液Mが凹部4の内周面42に容易に到達し、その撥水性を低下させるため、凹型メニスカスの発生を抑制する効果が損なわれる。したがって、凹部4の内周面42だけでなく、そこからさらに底面41側の一部に入り込んだ領域(すなわち外縁領域411)まで撥水層5を形成することにより、底面41の外縁領域411に形成された撥水層5については細胞外マトリックスが吸着して撥水性が損なわれたとしても、凹部4の内周面42に形成された撥水層5に細胞外マトリックスが吸着して撥水層5の表面が親水化することを防止することができる。このため、凹部4の内周面42に形成された撥水層5に培養液中の成分が引きつけられることを防止することができ、凹型メニスカスの発生を防止することができる。
 底壁部31の内壁面全体及び側壁部32の内壁面全体には、親水化処理が施されているので、凹部4の底面41及び内周面42は親水性を有している。凹部4の底面41のうち、少なくとも中央領域412が親水性を有することは、培養容器10Aで培養される細胞が接着細胞である場合の好ましい条件である。すなわち、この条件が満たされると、接着細胞の足場となる細胞外マトリックス層を、凹部4の底面41の中央領域412に形成する際に有利である。具体的には、細胞外マトリックス層を形成する際、凹部4の底面41の中央領域412に添加された細胞外マトリックス溶液中の成分が底面41の中央領域412に吸着されやすくなる。
 図1及び図2に示すように、撥水層5は、凹部4の底面41の外縁領域411及び凹部4の内周面42に形成されている。本発明において、「撥水層が凹部の底面の外縁領域及び凹部の内周面に形成されている」とは、撥水層が、凹部の底面の外縁領域全体及び凹部の内周面全体に、直接、あるいは、1又は2以上の層で構成される中間層を介して形成されていることを意味する。本実施形態では、図1及び図2に示すように、撥水層5が、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、中間層6Aを介して形成されている。
 図1及び図2に示すように、撥水層5の一方の面は、凹部4内の空間に露出しており、撥水層5の他方の面は、中間層6Aの一方の面と接している。中間層6Aの一方の面は、撥水層5の他方の面と接しており、中間層6Aの他方の面は、凹部4の底面41の外縁領域411及び凹部4の内周面42と接している。
 図1及び図2に示すように、中間層6Aは、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に形成されている。中間層6Aは、底面41の外縁領域411全体に延在する第1部分と、内周面42全体に延在する第2部分とを有する。中間層6Aの第1部分の内周面42側の端縁部は、中間層6Aの第2部分の底面41側の端縁部と連続している。中間層6Aの第1部分の境界線L1側の端縁部は、平面視において境界線L1と一致する。
 図1及び図2に示すように、撥水層5は、中間層6Aの一方の面全体に形成されている。中間層6Aの一方の面は、中間層6Aの第1部分の面に相当する第1領域と、中間層6Aの第2部分の面に相当する第2領域とを有する。撥水層5は、中間層6Aの一方の面の第1領域全体に延在する第1部分と、中間層6Aの一方の面の第2領域全体に延在する第2部分とを有する。撥水層5の第1部分の内周面42側の端縁部は、撥水層5の第2部分の底面41側の端縁部と連続している。撥水層5の第1部分の境界線L1側の端縁部は、平面視において境界線L1と一致する。
 撥水層5は、撥水剤を含有する。撥水剤としては、例えば、ポリシロキサン、有機基及び/又はフッ素原子が導入されたポリシロキサン、フッ素樹脂等が挙げられる。ポリシロキサンに導入される有機基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、フェニル基等のアリール基等が挙げられる。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)等が挙げられる。撥水層5には、撥水剤以外に、プライマー成分が含有されていてもよい。プライマー成分は、撥水層5に隣接する層(本実施形態では、密着層62A)を構成する物質の官能基と結合可能な官能基を有する。プライマー成分としては、例えば、シランカップリング剤等が挙げられる。例えば、シランカップリング剤のシラノール基が、密着層62Aを構成する物質の水酸基と結合してシロキサン結合を形成することにより、撥水層5と密着層62Aとの接合力を向上させることができる。
 撥水層5の厚みは、好ましくは0.01~0.2μmである。撥水層5は、撥水層5を形成すべき面に対して、例えば、スプレー、ディッピング、刷毛塗り等の方法を使用して、撥水層の原料液(例えば、撥水剤溶液)を塗布した後、硬化させることにより形成することができる。硬化処理は、加熱法、常温放置、プラズマ法等を用いて行うことができる。撥水層5を形成する際、化学反応、プラズマ反応、電子線、放射線又は紫外線を使用した反応により、撥水層5を、撥水層5を形成すべき面に結合させてもよい。
 撥水層5が有する2つの面のうち、凹部4内の空間に露出する一方の面は、撥水性を有する。本発明において、「撥水性」とは、撥水層の一方の面と水との接触角が90°以上であることを意味する。撥水層5の一方の面と水との接触角は、好ましくは105°以上、さらに好ましくは115°以上である。ここでの接触角は、純水を使用した場合の接触角であり、接触角の測定方法としては、θ/2法を採用している。接触角の測定には、市販の接触角測定装置(例えば、株式会社マツボー製PG-X等)を使用することができる。
 図3に示すように、中間層6Aは、撥水層5の他方の面側に形成されたDLC層61Aと、撥水層5及びDLC層61Aの間に形成された密着層62Aとを有する。なお、本発明において「DLC」はダイヤモンドライクカーボンを意味する。
 DLC層61Aは、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に形成されている。密着層62Aは、DLC層61Aの一方の面全体に形成されている。撥水層5は、密着層62Aの一方の面全体に形成されている。
 DLC層61Aは、撥水層5の撥水性を向上させることができる。また、DLC層61Aは、密着層62Aの成分が基体3を溶かさないようにするためのバリア層にもなる。
 DLC層61Aの厚みは、好ましくは0.1~1.0μmである。DLC層は、炭化水素を主成分とする硬質膜であって、非晶質(アモルファス)でありながらダイヤモンド構造(SP3構造)とグラファイト構造(SP2構造)とが混在したものである。DLC層に含まれる水素原子の一部はフッ素原子で置換されていてもよい。DLC層の形成方法としては、例えば、イオン化蒸着法、アークイオンプレーティング法、高周波・高電圧パルス重畳型成膜法、プラズマブースター法、プラズマCVD法等が挙げられる。DLC層の形成に用いられる原料ガスとしては、例えば、炭化水素ガス等が挙げられる。炭化水素としては、例えば、CH、CHCH、C、CHCHCH、CHCHCHCH、CCH、CCHCH、C(CH、CH(CHCH等が挙げられる。
 密着層62Aは、撥水層5とDLC層61Aとをより強固に密着させることができる。
 密着層62Aの厚みは、好ましくは0.1~1.5μmである。密着層62Aとしては、例えば、シリカ層、ジルコニア層、チタニア層等が挙げられる。密着層62Aは、密着層62Aを形成すべき面に対して、例えば、スプレー、ディッピング、刷毛塗り等の方法を使用して、密着層62Aの原料液(シリカ層の場合は、例えば、エチルシリケート(TEOS)溶液、ジルコニア層の場合は、例えば、ノルマルブチルジルコネート(NBZ)溶液、チタニア層の場合は、例えば、ブチルチタネートダイマー(DBT)溶液)を塗布した後、硬化させることにより形成することができる。硬化処理は、加熱法、常温放置、プラズマ法等を用いて行うことができる。密着層62Aを形成する際、化学反応、プラズマ反応、電子線、放射線又は紫外線を使用した反応により、密着層62Aを、密着層62Aを形成すべき面に結合させてもよい。
 凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、中間層6Aを介して撥水層5が形成されることにより、凹部4内には培養室が形成されている。撥水層5の一方の面は、凹部4内の空間に露出しており、撥水層5の一方の面のうち、撥水層5の第1部分の面に相当する領域は、培養室の底面の外縁領域を形成しており、撥水層5の第2部分の面に相当する領域は、培養室の内周面を形成している。これにより、培養室の底面の外縁領域及び内周面には撥水性が付与されている。凹部4の底面41のうち、撥水層5が形成されていない領域、すなわち、中央領域412は、凹部4内の空間に露出しており、培養室の底面の中央領域を形成している。これにより、培養室の底面の中央領域には親水性が付与されている。
 蓋体2は、培養容器本体1に対して着脱自在に構成される。蓋体2が培養容器本体2に装着されると、凹部4の開口部43が封止される。これにより、凹部4内への不純物の混入(コンタミネーション)を防止することができる。
 蓋体2のうち、凹部4の開口部43を封止する部分は、厚みが略一定の平板状部材で構成されており、その部分の内壁面(開口部43側の壁面)及びそれと反対側の外壁面は平面である。蓋体2の構成は、培養容器の用途に応じて適宜変更可能である。
 蓋体2のうち、凹部4の開口部43を封止する部分の内壁面及びそれと反対側の外壁面が平面であることは、凹部4内で培養された細胞を顕微鏡で観察する場合の好ましい条件である。すなわち、この条件が満たされると、蓋材2の光透過性を利用した顕微鏡観察の精度を向上させることができる。なお、蓋体2の光透過性を利用した顕微鏡観察としては、例えば、培養容器本体1Aの下方から光を照射し、透過光を培養容器本体1Aの上方で受光する透過型正立顕微鏡観察、培養容器本体1Aの上方から光を照射し、反射光を培養容器本体1Aの上方で受光する落射型正立顕微鏡、培養容器本体1Aの上方から光を照射し、透過光を培養容器本体1Aの下方で受光する透過型倒立顕微鏡観察等が挙げられる。
 本実施形態において、蓋体2を構成する材料は光透過性材料である。光透過性材料としては、培養容器本体1Aと同様の具体例が挙げられる。顕微鏡観察において、蓋体2が培養容器本体1Aに装着されない場合、蓋体2を構成する材料は、光不透過性材料であってもよい。
 蓋体2を構成する材料が光透過性材料であることは、凹部4内で培養された細胞を顕微鏡で観察する場合の好ましい条件である。すなわち、この条件が満たされると、蓋体2の光透過性を利用した顕微鏡観察の精度を向上させることができる。
 培養容器本体1Aは、
(A1)凹部4を有する基体3を準備する工程、
(A2)凹部4の底面41の中央領域412をマスキングする工程、
(A3)凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、DLC層61Aを形成する工程、
(A4)工程(A3)で形成されたDLC層61Aの一方の面全体に密着層62Aを形成する工程、及び
(A5)工程(A4)で形成された密着層62Aの一方の面全体に撥水層5を形成する工程
を含む方法によって製造することができる。
 工程(A1)では、凹部4を有する基体3として、例えば、市販の基体を準備する。基体は、通常、蓋体とセットで市販されている。例えば、底壁部の内壁面全体及び側壁部の内壁面全体に親水化処理が施されている基体、底壁部の内壁面全体及び側壁部の内壁面全体に親水化処理が施されていない基体(例えば、底壁部及び側壁部を構成するポリスチレンが底壁部の内壁面及び側壁部の内壁面に露出する基体)等が市販されている。培養容器10Aで培養される細胞が接着細胞である場合、少なくとも凹部の底面の中央領域に親水化処理が施された基体を使用することが好ましい。このような基体を使用すると、接着細胞の足場となる細胞外マトリックス層を、凹部の底面の中央領域に形成する際に有利である。したがって、底壁部の内壁面全体及び側壁部の内壁面全体に親水化処理が施されている基体を基体3として使用することが好ましい。また、底壁部の内壁面全体及び側壁部の内壁面全体に親水化処理が施されていない基体を使用する場合には、少なくとも凹部の底面の中央領域に親水化処理を施した後に基体3として使用することが好ましい。なお、親水化処理に関する説明は上記と同様であるので省略する。
 工程(A2)では、例えば、市販のマスキング材を使用して、凹部4の底面41の中央領域412を被覆する。マスキング材の材質および形状は、その後の工程で用いられる各種処理(DLC層形成処理、密着層形成、撥水層形成処理等)から、中央領域412を保護し得る限り特に限定されない。工程(A2)において、凹部4の底面41の直径より小さい任意の直径のマスキング材を用いて中央領域412を被覆することで、凹部4の底面41に外縁領域411を任意の幅で形成することができる。
 工程(A3)では、例えば、プラズマCVD法を使用して、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体にDLC層61Aを形成する。プラズマCVD法では、DLC層61Aの原料ガスをプラズマ化し、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体にDLC層61Aを形成する。
 工程(A4)では、例えば、スプレー、ディッピング、刷毛塗り等の方法を使用して、DLC層61Aの一方の面全体に密着層62Aの原料液を塗布して硬化させることにより、DLC層61Aの一方の面全体に密着層62Aを形成する。
 工程(A5)では、例えば、スプレー、ディッピング、刷毛塗り等の方法を使用して、密着層62Aの一方の面全体に撥水層5の原料液を塗布して硬化させることにより、密着層62Aの一方の面全体に撥水層5を形成する。
 以下、培養容器10Aを使用した細胞培養方法を説明する。本実施形態では、培養容器本体1Aが蓋体2と組み合わせて使用されるが、培養容器本体1Aが単独で使用されてもよい。
 培養容器本体1A及び蓋体2は、細胞培養に使用する前に滅菌されていることが好ましい。滅菌法としては、例えば、オートクレーブ中で熱処理する方法、エチレンオキサイドガスで滅菌する方法、ガンマ線、電子線、紫外線等の放射線を照射する方法等が挙げられる。フッ素化したポリシロキサンを含む化合物により構成された撥水層5は、オートクレーブ、エチレンオキサイド、ガンマ線滅菌処理後も表面機能(すなわち、撥水性)を維持することが確認されている。
 培養容器10Aを使用した細胞培養方法では、まず、培養容器本体1Aの凹部4内に細胞、培養液等の培養材料を収容する(細胞播種工程)。従来の、一般的な培養容器の場合、凹部4の内周面42に撥水層5が形成されておらず、親水性を有する凹部4の内周面42が凹部4内の空間に露出する。このため、図7に示すように、凹部4内に培養液Sが収容されると、培養液Sが内周面42に強く引きつけられる結果、培養液Sのうち、内周面42近傍の部分S1の厚みが、それ以外の部分よりも厚みよりも大きくなり、培養液Sの液面が凹状に屈曲する現象、すなわち、凹型メニスカスが生じる。培養液Sのうち、内周面42近傍の部分S1は幅W2を有する。なお、幅W2は、培養液Sの液面の変曲点と凹部4の内周面42との距離である。従来の、一般的な培養容器では、凹型メニスカスの影響により、培養液S1のうち、内周面42近傍の部分S1の厚みが、中央部分の厚みより大きいため、凹部4の底面41の単位面積あたりの細胞播種量が凹部4の内周面42近傍で増加し、細胞播種が不均一となる。これに対して、本実施形態における培養容器本体1Aでは、凹部4の底面41及び内周面42に撥水層5が形成されているので、凹部4の内周面42近傍の培養液は、凹部4の内周面42に強く引きつけられない。したがって、凹型メニスカスの発生が防止される。また、凹型メニスカスの発生が防止されると液面が平坦化され、凹部4の内周面42近傍の部分の厚みがそれ以外の部分の厚みよりも大きくならないので、凹部4の底面41の単位面積あたりの細胞播種量が凹部4の内周面42近傍で増加しない。したがって、均一な細胞播種が可能である。
 次いで、培養容器本体1Aに蓋体2を装着し、凹部4の開口部43を封止する(蓋体装着工程)。なお、培養容器本体1Aを単独で使用する場合、蓋体装着工程は省略される。
 次いで、常法に従って、凹部4内で細胞を培養する(細胞培養工程)。細胞培養工程において、培養液に含有されるアミノ酸、タンパク質等の成分は、凹部4の内周面42に形成された撥水層5に吸着しにくい。したがって、凹部4の内周面42に形成された撥水層5に培養液中の成分が吸着して撥水層5の表面が親水化することに起因する凹型メニスカスの発生を防止することができる。すなわち、細胞培養工程を通じて、凹型メニスカスが発生しない状態を維持することができる。
 凹部4内で培養される細胞が接着細胞である場合、培養容器10Aを使用した細胞培養方法は、細胞播種工程の前に、凹部4の底面41の中央領域412の一部又は全体に、細胞外マトリックス層を形成する工程(細胞外マトリックス層形成工程)を含むことが好ましい。
 細胞外マトリックス層は、細胞外マトリックス構成成分(例えば、タンパク質等)を含有する。細胞外マトリックスは、細胞が培養される際、細胞の足場となる材料である。
 細胞外マトリックス層形成工程では、例えば、凹部42の底面41の中央領域412に、細胞外マトリックス溶液を添加し、中央領域412の一部又は全体に細胞外マトリックスを吸着させることにより、細胞外マトリックス層を形成する。
 中央領域412への細胞外マトリックス溶液の添加は、添加された細胞外マトリックス溶液が、徐々に、底面41の周縁に向かって広がるように、少量ずつ添加(例えば、滴下)することが好ましい。
 細胞外マトリックス溶液は、例えば、市販の細胞外マトリックスを推奨濃度で適当な溶媒(例えば、リン酸緩衝生理食塩水)に希釈することにより調製することができる。中央領域412に添加された細胞外マトリックス溶液を、例えば、37℃環境下で2時間以上又は4℃環境下で一晩以上放置することにより、中央領域412の一部又は全体に細胞外マトリックスを吸着させることができる。放置後、残存する細胞外マトリックス溶液は除去される。
 図6に示すように、中央領域412に添加された細胞外マトリックス溶液Mは、底面41の周縁に向かって広がるが、外縁領域411に到達すると、外縁領域411に形成された撥水層5で弾かれて液滴状となり、中央領域412に留まる。したがって、中央領域412の一部又は全体に細胞外マトリックスを効率よく吸着させることができる。このことは以下の2つの大きな効果を生む。1つは、細胞外マトリクス溶液Mを、細胞培養を行なう中央領域412にのみ選択的に導入することができるため、一般に高価である細胞外マトリクスの損失が少ない。もう1つは、凹部4の内周面42に形成された撥水層5への細胞外マトリックスの吸着が抑制されるので、凹部4の内周面42に形成された撥水層5に細胞外マトリクスが吸着して撥水層5の表面が親水化することに起因する凹型メニスカスの発生を防止することができる。
 以下、培養容器10Aを使用した細胞観察方法を説明する。本実施形態では、培養容器本体1Aが蓋体2と組み合わせて使用されるが、培養容器本体1Aが単独で使用されてもよい。
 培養容器10Aを使用した細胞観察方法は、凹部4内の細胞を、凹部4の底面41側又は開口部43側から顕微鏡で観察する工程を含む。
 観察に使用される顕微鏡としては、例えば、位相差顕微鏡等の光学顕微鏡等が挙げられる。凹部4内の細胞を、凹部4の底面41側から観察する場合に使用される顕微鏡としては、例えば、倒立顕微鏡(落射型倒立顕微鏡又は透過型倒立顕微鏡)等が挙げられる。凹部4内の細胞を、凹部4の開口部43側から観察する場合に使用される顕微鏡としては、例えば、正立顕微鏡(落射型正立顕微鏡又は透過型正立顕微鏡)等が挙げられる。
 落射型倒立顕微鏡を使用する場合、例えば、培養容器10Aの下方に設置された光源から、培養容器本体1Aの底壁部31を通じて、凹部4内へ光を照射し、凹部4内の細胞で反射された光を、培養容器本体1Aの底壁部31を通じて、培養容器1の下方に設置された落射型倒立顕微鏡で受光することにより、凹部4内の細胞を観察することができる。
 透過型倒立顕微鏡を使用する場合、例えば、培養容器10Aの上方に設置された光源から、蓋体2を通じて、凹部4内へ光を照射し、凹部4内を透過した光を、培養容器本体1Aの底壁部31を通じて、培養容器10Aの下方に設置された透過型倒立顕微鏡で受光することにより、凹部4内の細胞を観察することができる。
 落射型正立顕微鏡を使用する場合、培養容器10Aの上方に設置された光源から、蓋体2を通じて、凹部4内へ光を照射し、凹部4内の細胞で反射された光を、蓋体2を通じて、培養容器10Aの上方に設置された落射型正立顕微鏡で受光することにより、凹部4内の細胞を観察することができる。
 透過型正立顕微鏡を使用する場合、培養容器10Aの下方に設置された光源から、培養容器本体1Aの底壁部31を通じて、凹部4内へ光を照射し、凹部4内を透過した光を、蓋体2を通じて、培養容器1の上方に設置された透過型正立顕微鏡で受光することにより、凹部4内の細胞を観察することができる。
 以下、透過型倒立顕微鏡を使用する場合の一実施形態を説明する。本実施形態では、培養容器本体1Aが蓋体2と組み合わせて使用されるが、培養容器本体1Aが単独で使用されてもよい。
 図8に示すように、透過型倒立顕微鏡8は、照明光学系81、ステージ82、観察光学系83及び撮像素子84を備える、細胞の位相差像の撮像が可能な位相差顕微鏡である。
 ステージ82には、細胞培養後の培養容器10Aが、培養容器本体1Aに蓋体2が装着された状態で載置されている。細胞培養後の培養容器10Aの凹部4内には、培養された細胞及び培養に使用された培養液が収容されている。凹部4内の細胞が観察対象物である。
 照明光学系81は、位相差像の生成に適した照明光を生成し、ステージ82上に保持された培養容器10Aに照射する。照明光学系81は、光学顕微鏡に一般的に用いられる照明光学系と同様に構成することができる。照明光学系81は、例えば、ハロゲンランプ等の光源から生じた光を、フィールドレンズ、リング絞り、コンデンサレンズ等を通過させることにより、位相差像の生成に適した均一照明光に調整し、ステージ82上の培養容器10Aに照射する。
 ステージ82は、培養容器10Aを支持し、培養容器10Aの位置を調整する。ステージ82は、モータ等によって、垂直方向(光学軸に沿った方向)及び水平方向(光学軸に垂直な方向)に移動可能であることが好ましい。
 観察光学系83は、例えば、対物レンズ、位相差板、結像レンズ等を備えており、照明光学系81から照射され、凹部4内を透過した光を受光し、位相差像を結像させる。
 撮像素子84は、観察光学系83によって結像された観察対象物の位相差像を撮像する。撮像素子84は、例えば、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等を備える。
 照明光学系81、ステージ82、観察光学系83及び撮像素子84の動作は、不図示の制御部によって制御される。
 透過型倒立顕微鏡8において、例えば、撮像素子84の代わりに人間が肉眼で観察対象物を観察するための接眼レンズ等が設けられていてもよい。
 透過型倒立顕微鏡8を使用した観察は、次のように行われる。照射光学系81から、ステージ82上に保持された培養容器10Aへ照射光R1が照射される。照射光R1は、蓋体2を通じて、凹部4内に入り、凹部4内を透過する。培養容器本体1Aの底壁部31を通じて透過した透過光R2は、観察光学系83で受光され、位相差像が結像される。観察光学系83によって結像された観察対象物の位相差像は、撮像素子84によって撮像される。こうして、透過型倒立顕微鏡8を使用して、凹部4内の細胞が観察される。
 凹部4の内周面42に撥水層5が形成されていない場合、親水性を有する凹部4の内周面42が凹部4内の空間に露出する。このため、図7Aに示すように、凹部4内に培養液Sが収容されると、培養液Sが内周面42に強く引きつけられる結果、培養液Sのうち、内周面42近傍の部分S1の厚みが、それ以外の部分よりも厚みよりも大きくなり、培養液Sの液面が凹状に屈曲する現象、すなわち、凹型メニスカスが生じる。凹型メニスカスが生じると、内周面42近傍では液面が傾斜している影響で光軸が歪むため、内周面42近傍の部分S1に存在する細胞の観察は困難又は不可能である。これに対して、図7Bに示すように、本実施形態における培養容器本体1Aでは、凹部4の底面41及び内周面42に撥水層5が形成されているので、凹部4の内周面42近傍の培養液Sは、凹部4の内周面42に強く引きつけられない。したがって、凹型メニスカスの発生が防止される。このため、内周面42近傍において液面の傾斜に起因する光軸の歪みが生じず、内周面42近傍に存在する細胞の観察が可能である。すなわち、顕微鏡観察視野が拡大する。
 図7Bに示すように、凹部4の底面41の外縁領域411は、撥水層5が形成されることにより、細胞が接着しにくい領域となるので、培養容器10Aで培養される細胞が接着細胞である場合、この領域には細胞が存在しない又はほとんど存在しない。凹型メニスカスが防止されても、外縁領域411の幅W1が幅W2以上であると、凹型メニスカス防止による顕微鏡観察視野の拡大効果が失われる。したがって、外縁領域411の幅W1は、幅W2よりも小さいことが好ましい。本実施形態のように、凹部4の半径が幅W2よりも十分に大きい場合(例えば、凹部4の半径が17.5mm以上である場合)、幅W2は、大きい際には10mmほどにもなる。この場合、外縁領域411の幅W1は、好ましくは10mm以下、さらに好ましくは5mm以下である。なお、外縁領域411の幅W1の下限値は特に限定されないが、好ましくは0.5mm、さらに好ましくは1mmである。
〔第2実施形態〕
 第2実施形態に係る培養容器10Bは、顕微鏡観察用培養容器、すなわち、細胞培養が可能であるとともに、培養された細胞の顕微鏡観察が可能である培養容器である。したがって、培養容器10Bは、細胞培養のために容器に要求される条件と、顕微鏡観察のために容器に要求される条件とを満たすように構成されている。但し、培養容器10Bの構成は、細胞培養が可能な範囲で適宜変更可能である。培養容器が顕微鏡観察用でない場合、顕微鏡観察のために容器に要求される条件を満たす必要はない。
 図9及び図10に示すように、培養容器10Bは、培養容器本体1Bと蓋体2とを備える。なお、以下では、培養容器10Bが培養容器10Aと異なる点について主に説明され、それ以外の点については、培養容器10Aに関する説明が適用される。
 培養容器本体1Bは、撥水層5が、凹部4の底面41の外縁領域411及び凹部4の内周面42に、中間層6Bを介して形成されている点で、第1実施形態に係る培養容器本体1Aと異なるが、それ以外の点は培養容器本体1Aと同一である。第2実施形態に係る培養容器本体1Bについて、培養容器本体1Aと同一の部材又は部分は同一の符号で表されている。
 図9及び図10に示すように、中間層6Bは、凹部4の底面41全体及び凹部4の内周面42全体に形成されている点で、底面41の外縁領域411全体及び凹部4の内周面42全体には形成されているが、底面41の中央領域412には形成されていない中間層6Aと異なる。
 図9及び図10に示すように、中間層6Bは、凹部4の底面41全体及び凹部4の内周面42全体に形成されている。中間層6Bは、底面41の外縁領域411全体に延在する第1部分と、内周面42全体に延在する第2部分と、底面41の中央領域412全体に延在する第3部分とを有する。中間層6Bの第1部分の内周面42側の端縁部は、中間層6Bの第2部分の底面41側の端縁部と連続しており、中間層6Bの第1部分の中央領域412側の端縁部は、中間層6Bの第3部分の端縁部と連続している。
 図9及び図10に示すように、中間層6Bの一方の面は、中間層6Bの第1部分の面に相当する第1領域と、中間層6Bの第2部分の面に相当する第2領域と、中間層6Bの第3部分の面に相当する第3領域とを有する。撥水層5の第1部分は、中間層6Bの一方の面の第1領域に形成されており、撥水層5の第2部分は、中間層6Bの一方の面の第2領域に形成されている。撥水層5の第1部分の境界線L1側の端縁部は、平面視において境界線L1と一致する。
 図11に示すように、中間層6Bは、撥水層5の他方の面側に形成されたDLC層61Bと、撥水層5及びDLC層61Bの間に形成された密着層62Bとを有する。DLC層61B及び密着層62Bは、DLC層61A及び密着層62Aと同様に構成される。
 凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、中間層6Bを介して撥水層5が形成されることにより、凹部4内には培養室が形成されている。撥水層5の一方の面は、凹部4内の空間に露出しており、撥水層5の一方の面のうち、撥水層5の第1部分の面に相当する領域は、培養室の底面の外縁領域を形成しており、撥水層5の第2部分の面に相当する領域は、培養室の内周面を形成している。これにより、培養室の底面の外縁領域及び内周面には撥水性が付与されている。中間層6Bの一方の面のうち、中間層6Bの第3部分の面に相当する領域は、凹部4内の空間に露出しており、培養室の底面の中央領域を形成している。これにより、培養室の底面の中央領域には親水性が付与されている。
 培養容器本体1Bは、
(B1)凹部4を有する基体3を準備する工程、
(B2)凹部4の底面41全体及び内周面42全体に、DLC層61Bを形成する工程、(B3)工程(B2)で形成されたDLC層61Bの一方の面全体に密着層62Bを形成する工程、及び
(B4)工程(B3)で形成された密着層63Bの一方の面のうち、底面41の外縁領域411に対応する領域及び内周面42に対応する領域に撥水層5を形成する工程
を含む方法によって製造することができる。
 工程(B1)~(B4)は、培養容器本体1Aの製造工程と同様に実施することができる。
 工程(B4)において、密着層62Bの一方の面のうち、撥水層5を形成する領域以外の領域をマスキング材で被覆してもよい。
 培養容器10Bは、培養容器10Aと同様にして、細胞培養方法及び細胞観察方法に使用することができる。
〔第3実施形態〕
 第3実施形態に係る培養容器10Cは、顕微鏡観察用培養容器、すなわち、細胞培養が可能であるとともに、培養された細胞の顕微鏡観察が可能である培養容器である。したがって、培養容器10Cは、細胞培養のために容器に要求される条件と、顕微鏡観察のために容器に要求される条件とを満たすように構成されている。但し、培養容器10Cの構成は、細胞培養が可能な範囲で適宜変更可能である。培養容器が顕微鏡観察用でない場合、顕微鏡観察のために容器に要求される条件を満たす必要はない。
 図12及び図13に示すように、培養容器10Cは、培養容器本体1Cと蓋体2とを備える。なお、以下では、培養容器10Cが培養容器10Aと異なる点について主に説明され、それ以外の点については、培養容器10Aに関する説明が適用される。
 培養容器本体1Cは、撥水層5が、凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、中間層6Cを介して形成されている点で、第1実施形態に係る培養容器本体1Aと異なるが、それ以外の点は培養容器本体1Aと同一である。第3実施形態に係る培養容器本体1Cについて、培養容器本体10Aと同一の部材又は部分は同一の符号で表されている。
 図12及び図13に示すように、中間層6Cは、DLC層61Aを有するが、密着層62Aを有しない点で、DLC層61A及び密着層62Aを有する中間層6Aと異なる。中間層6Cのそれ以外の構成は、中間層6Aと同様である。
 凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、中間層6Cを介して撥水層5が形成されることにより、凹部4内には培養室が形成されている。撥水層5の一方の面は、凹部4内の空間に露出しており、撥水層5の一方の面のうち、撥水層5の第1部分の面に相当する領域は、培養室の底面の外縁領域を形成しており、撥水層5の第2部分の面に相当する領域は、培養室の内周面を形成している。これにより、培養室の底面の外縁領域及び内周面には撥水性が付与されている。凹部4の底面41のうち、撥水層5が形成されていない領域、すなわち、中央領域412は、凹部4内の空間に露出しており、培養室の底面の中央領域を形成している。これにより、培養室の底面の中央領域には親水性が付与されている。
 培養容器本体1Cは、
(C1)凹部4を有する基体3を準備する工程、
(C2)凹部4の底面41のうち中央領域412をマスキングする工程、
(C3)凹部4の底面41の外縁領域411全体及び凹部4の内周面42全体に、DLC層61Aを形成する工程、及び
(C4)工程(C3)で形成されたDLC層61Aの一方の面全体に撥水層5を形成する工程
を含む方法によって製造することができる。
 工程(C1)~(C4)は、培養容器本体1Aの製造工程と同様に実施することができる。
 培養容器10Cは、培養容器10Aと同様にして、細胞培養方法及び細胞観察方法に使用することができる。
〔実施例1〕
 市販のポリスチレン製のφ35mm培養ディッシュ(FALCON社,型番353001)を準備した。この培養ディッシュは、円形の底壁部と、該底壁部の周縁から起立して凹部を形成する周壁部とを有し、ポリスチレン材料により一体成型されている。凹部の表面は、底壁部によって形成される底面と、該底面の周縁から起立する内周面とから構成される。凹部の表面全面には親水化処理が施されている。
 凹部の底面のうち外縁領域以外の領域を市販のマスキング材で覆った。外縁領域は、凹部の底面の外周線と一致する外周線と、凹部の底面の外周線からの距離が5mmである内周線とを有する環状領域として設定した。
 凹部の底面の外縁領域全体及び凹部の内周面全体に、ダイヤモンドライクカーボン(DLC)コーティング層を形成した。DLC層は、プラズマCVD法により、膜厚0.5μmで形成した。成膜用ガスには、C及びCCHの混合ガスを用いた。
 DLC層の形成後、DLC層上に、密着層として、SiO層を形成した。SiO層は、スプレー法によりTEOS(高純度科学(株)製)をDLC層上に塗布し、乾燥硬化させて、膜厚1.0μmで形成した。
 密着層の形成後、密着層上に、撥水層を形成した。撥水層は、スプレー法によりフッ素化したポリシロキサンを含む化合物をDLC層上に塗布し、乾燥硬化させて、膜厚0.1μmで形成した。
 撥水層の形成後、マスキング材を除去した。撥水層の表面における純水との接触角を、θ/2法(株式会社マツボー製PG-X)によって測定したところ、接触角は110°~120°(中心値115°)であった。
 その後、iPS細胞培養用培養液であるReproFF2(ReproCell社,型番RCHEMD006A)を凹部内に導入した。
 その後、常法に従って倒立型位相差顕微鏡(オリンパス社,型番IX-81)を使用して、培養液が導入された凹部内の観察を行なった。
 顕微鏡観察は、通常の細胞培養条件と同じく、37℃、5%COインキュベータ内で8日間静置する条件で行った。
 顕微鏡観察結果を図14に示す。図14に示すように、顕微鏡視野のうち観察可能な領域の割合は、培養液導入直後は84%、培養1日目は99%、培養2日目は100%、培養3日目は96%、培養4日目は89%、培養7日目は99%、培養8日目は95%であった。8日目まで平均すると、全体の95%が位相差顕微鏡観察可能であり、位相差顕微鏡観察が不可能であった領域は、全体のわずか5%であった。
 これらの結果から、凹部の内周面及び底面の外縁領域に撥水層を形成することにより、凹型メニスカスを抑制し、広範囲にわたって明瞭な観察が実現可能であることが示された。また、凹型メニスカス抑制効果は、8日間以上持続されることが示された。
〔実施例2〕
 市販のポリスチレン製のφ35mm培養ディッシュ(FALCON社,型番353001)を準備した。
 凹部の底面のうち外縁領域以外の領域を市販のマスキング材で覆った。外縁領域は、凹部の底面の外周線と一致する外周線と、凹部の底面の外周線からの距離が5mmである内周線とを有する環状領域として設定した。
 実施例1と同様に、バリア層であるDLC層、密着層であるSiO層、及び、撥水層を形成した。
 撥水層の形成後、マスキング材を除去した。撥水層の表面における純水との接触角を、θ/2法(株式会社マツボー製PG-X)によって測定したところ、接触角は110°~120°(中心値115°)であった。
 その後、凹部の底面の外縁領域以外の領域(撥水層が形成されていない領域)に、接着細胞の足場となるタンパク質として、Vitronectin-N(life technologies社,型番A14700)を、通常条件に従ってコーティングした。
 その後、iPS細胞培養用培養液であるReproFF2(ReproCell社,型番RCHEMD006A)を使用して、iPS細胞の培養を実施した。細胞培養は、通常の細胞培養条件と同じく、37℃、5%COインキュベータ内で10日間静置する条件で行った。
 経時的に常法に従って倒立型位相差顕微鏡(オリンパス社,型番IX-81)を使用して凹部内を観察し、撥水層を形成していない通常の培養用ディッシュと比較を行なった。
 顕微鏡観察結果を図15~17に示す。図15及び図16は、撥水層を形成した培養ディッシュの顕微鏡観察像であり、図17は、撥水層を形成していない通常の培養ディッシュの顕微鏡観察像である。
 図15に示すように、撥水層を形成した培養ディッシュにおいて、顕微鏡視野のうち観察可能な領域の割合は、培養1日目は98%、培養2日目は96%、培養3日目は93%、培養4日目は97%、培養5日目は96%、培養6日目は87%、培養7日目は98%、培養8日目は87%、培養9日目は98%、培養10日目は94%であった。10日目まで平均すると、全体の94%が位相差顕微鏡観察可能であり、位相差顕微鏡観察が不可能であった領域は、全体のわずか6%であった。また、図16に示すように、凹部の内周面のごく近傍で培養された細胞も、位相差顕微鏡観察が可能であった。さらに、iPS細胞についても問題は見られず、通常通りに培養できることが確認された。なお、凹部の底面の外縁領域、すなわち、接着細胞の足場となるタンパク質が塗布されていない部分では、細胞が、培養ディッシュ内の培養液中に浮遊した状態で観察された。
 一方、図17に示すように、撥水層が形成されていない通常の培養用ディッシュにおいて、顕微鏡視野のうち観察可能な領域の割合は、培養1日目は37%、培養2日目は43%、培養3日目は44%、培養4日目は34%、培養5日目は41%、培養6日目は45%であった。6日目まで平均すると、全体の41%のみが位相差顕微鏡観察可能であり、残りの59%については位相差観察が不可能であった。
 これらの結果から、凹部の底面の外縁領域及び凹部の内周面に撥水層を形成することにより、凹型メニスカスを抑制し、広範囲にわたって明瞭な観察が実現可能であることが示された。凹型メニスカス抑制効果は、iPS細胞を培養する条件下で10日間以上持続されることが示された。
〔実施例3〕
 市販のポリスチレン製のφ35mm培養ディッシュ(FALCON社,型番353001)を準備した。
 凹部の内周面全体を、θ/2法による接触角測定(株式会社マツボー製PG-X)において、撥水層の表面における純水との接触角が60°、90°、100°~110°(中心値105°)又は110°~120°(中心値115°)となるように撥水処理した後、iPS細胞培養用培養液であるReproFF2(ReproCell社,型番RCHEMD006A)を凹部内に導入した。その後、常法に従って倒立型位相差顕微鏡(オリンパス社,型番IX-81)を使用して、培養液が導入された凹部内の観察を行なった。
 結果を図18に示す。図18は、接触角と位相差顕微鏡観察可能範囲との関係を示す図である。図18に示すように、顕微鏡視野のうち観察可能な領域の割合は、接触角60°では31%、接触角90°では34%、接触角100°~110°(中心値105°)では66%、接触角110°~120°(中心値115°)では88%であった。
 これらの結果から、接触角が90°以上であると、凹型メニスカスの抑制効果が発現し、接触角105°以上であると抑制効果がより向上し、接触角115°以上であると抑制効果がさらに向上することが示された。
 以上の実施例に示される撥水層の作用効果は、培養容器の種類に依存するものではなく、本実施例で使用した培養ディッシュ(FALCON社,型番353001)の他、凹部の表面が親水化処理されていない培養ディッシュを含め市販されている様々な培養容器でも発揮される。
10A~10C  培養容器
1A~1C    培養容器本体
2        蓋体
3        基体
4        凹部
41       凹部の底面
411      凹部の底面の外縁領域
412      凹部の底面の中央領域
42       凹部の内周面
5        撥水層
6A~6C    中間層
61A,61B  DLC層
62A,62B  密着層

Claims (7)

  1.  凹部を有する基体と、
     前記凹部の底面の外縁領域及び前記凹部の内周面に形成された撥水層と
    を備える、培養容器であって、
     前記撥水層の一方の面が前記凹部内の空間に露出する、培養容器。
  2.  前記凹部の底面が平面である、請求項1に記載の培養容器。
  3.  前記撥水層の一方の面と水との接触角が115°以上である、請求項1又は2に記載の培養容器。
  4.  前記撥水層の他方の面側に形成されたDLC層をさらに備える、請求項1~3のいずれか一項に記載の培養容器。
  5.  前記撥水層と前記DLC層との間に形成された密着層をさらに備える、請求項4に記載の培養容器。
  6.  請求項1~5のいずれか一項に記載の培養容器を使用して細胞を培養する方法であって、
     前記凹部内に細胞を播種する前に、前記凹部の底面のうち前記外縁領域以外の領域に細胞外マトリックス層を形成する工程を含む、方法。
  7.  請求項1~5のいずれか一項に記載の培養容器を使用して細胞を観察する方法であって、
     前記凹部内の細胞を、前記凹部の底面側又は開口部側から位相差顕微鏡で観察する工程
    を含む、方法。
PCT/JP2016/074282 2015-08-20 2016-08-19 培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法 WO2017030196A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/753,091 US10793818B2 (en) 2015-08-20 2016-08-19 Culture container and cell culturing method and cell observation method using culture container
JP2017535580A JP6511654B2 (ja) 2015-08-20 2016-08-19 培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-163143 2015-08-20
JP2015163143 2015-08-20

Publications (1)

Publication Number Publication Date
WO2017030196A1 true WO2017030196A1 (ja) 2017-02-23

Family

ID=58051120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074282 WO2017030196A1 (ja) 2015-08-20 2016-08-19 培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法

Country Status (3)

Country Link
US (1) US10793818B2 (ja)
JP (1) JP6511654B2 (ja)
WO (1) WO2017030196A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207361A1 (ja) * 2017-05-12 2018-11-15 オリンパス株式会社 細胞画像取得装置
WO2018216568A1 (ja) * 2017-05-24 2018-11-29 株式会社ニコン 容器、容器に用いるシート及び筒体、並びに容器、シート及び筒体の製造方法
JP2020080722A (ja) * 2018-11-26 2020-06-04 大日本印刷株式会社 細胞の収縮を抑制できる細胞取扱容器、及び細胞構造体の作製方法
JP2021081220A (ja) * 2019-11-14 2021-05-27 東京ガスエンジニアリングソリューションズ株式会社 粘性変化判定装置、粘性変化判定用容器および粘性変化判定方法
JP2021196198A (ja) * 2020-06-10 2021-12-27 京セラ株式会社 反応容器および生化学分析装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941374B2 (en) * 2016-09-29 2021-03-09 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method
JP6779483B2 (ja) 2016-09-29 2020-11-04 住友ゴム工業株式会社 医療用検査装置及び細胞検査方法
JP2019107445A (ja) * 2017-12-15 2019-07-04 ニプロ株式会社 医療用ガラス容器及びその製造方法
JP7109719B2 (ja) 2018-02-14 2022-08-01 住友ゴム工業株式会社 特定細胞捕捉方法
US11614440B2 (en) 2019-01-24 2023-03-28 Sumitomo Rubber Industries, Ltd. Specific cell fractionating and capturing methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580299U (ja) * 1992-02-03 1993-11-02 株式会社キング製作所 植物等の培養用シャーレ
JPH07216239A (ja) * 1994-01-26 1995-08-15 Matsushita Electric Ind Co Ltd 耐汚染性に優れた樹脂組成物
JPH11290062A (ja) * 1998-04-09 1999-10-26 Nec Corp 培養方法
JP2001355995A (ja) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 冷凍プレート、および冷凍方法
JP2005055365A (ja) * 2003-08-06 2005-03-03 Toyo Kohan Co Ltd 核酸分子を固定化するための固体支持体
JP2005345181A (ja) * 2004-06-01 2005-12-15 Sony Corp 物質間の相互作用検出部と該検出部を備えるバイオアッセイ用基板、並びに物質間の相互作用の検出方法
JP2013034396A (ja) * 2011-08-04 2013-02-21 Nipro Corp 細胞培養シャーレ
JP2013179910A (ja) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd 電極付き細胞試験具
JP2016144422A (ja) * 2015-02-06 2016-08-12 秋田県 液滴形成用シャーレ及びそれを用いた電界撹拌方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58299U (ja) 1981-06-25 1983-01-05 東芝モノフラックス株式会社 セラミツクフアイバ−による炉壁構造
JPS60125899U (ja) * 1984-02-02 1985-08-24 テルモ株式会社 培養器具
US4741619A (en) * 1987-05-05 1988-05-03 Molecular Devices Corporation Hydrophilic microplates for vertical beam photometry
JP3133786B2 (ja) 1991-08-20 2001-02-13 ホーヤ株式会社 顕微鏡観察する方法
JPH06269979A (ja) 1993-03-17 1994-09-27 Harima Chem Inc 半田析出組成物及び回路基板への半田プリコート方法
GB9625301D0 (en) 1996-12-05 1997-01-22 Smith & Nephew Cell-culture system
EP1060022A1 (en) * 1998-02-04 2000-12-20 Merck & Co., Inc. Virtual wells for use in high throughput screening assays
FR2783179B1 (fr) * 1998-09-16 2000-10-06 Commissariat Energie Atomique Dispositif d'analyse chimique ou biologique comprenant une pluralite de sites d'analyse sur un support, et son procede de fabrication
JP2004245727A (ja) 2003-02-14 2004-09-02 Olympus Corp マイクロプレート
US20050244838A1 (en) * 2004-04-29 2005-11-03 Applera Corporation Minimizing the meniscus effect
US20070274871A1 (en) * 2006-05-23 2007-11-29 Genetix Limited Well plate
DK1880764T3 (da) * 2006-07-20 2012-12-17 Ibidi Gmbh Prøveholder til undersøgelse af cellevækst
US8703072B2 (en) * 2008-09-12 2014-04-22 Oliver Egeler Cell culture vessels for meniscus reduction with aqueous solutions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580299U (ja) * 1992-02-03 1993-11-02 株式会社キング製作所 植物等の培養用シャーレ
JPH07216239A (ja) * 1994-01-26 1995-08-15 Matsushita Electric Ind Co Ltd 耐汚染性に優れた樹脂組成物
JPH11290062A (ja) * 1998-04-09 1999-10-26 Nec Corp 培養方法
JP2001355995A (ja) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 冷凍プレート、および冷凍方法
JP2005055365A (ja) * 2003-08-06 2005-03-03 Toyo Kohan Co Ltd 核酸分子を固定化するための固体支持体
JP2005345181A (ja) * 2004-06-01 2005-12-15 Sony Corp 物質間の相互作用検出部と該検出部を備えるバイオアッセイ用基板、並びに物質間の相互作用の検出方法
JP2013034396A (ja) * 2011-08-04 2013-02-21 Nipro Corp 細胞培養シャーレ
JP2013179910A (ja) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd 電極付き細胞試験具
JP2016144422A (ja) * 2015-02-06 2016-08-12 秋田県 液滴形成用シャーレ及びそれを用いた電界撹拌方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207361A1 (ja) * 2017-05-12 2018-11-15 オリンパス株式会社 細胞画像取得装置
JPWO2018207361A1 (ja) * 2017-05-12 2020-03-12 オリンパス株式会社 細胞画像取得装置
US10795142B2 (en) 2017-05-12 2020-10-06 Olympus Corporation Cell-image acquisition device
WO2018216568A1 (ja) * 2017-05-24 2018-11-29 株式会社ニコン 容器、容器に用いるシート及び筒体、並びに容器、シート及び筒体の製造方法
JP2020080722A (ja) * 2018-11-26 2020-06-04 大日本印刷株式会社 細胞の収縮を抑制できる細胞取扱容器、及び細胞構造体の作製方法
JP2021081220A (ja) * 2019-11-14 2021-05-27 東京ガスエンジニアリングソリューションズ株式会社 粘性変化判定装置、粘性変化判定用容器および粘性変化判定方法
JP7377680B2 (ja) 2019-11-14 2023-11-10 東京ガスエンジニアリングソリューションズ株式会社 粘性変化判定装置および粘性変化判定方法
JP2021196198A (ja) * 2020-06-10 2021-12-27 京セラ株式会社 反応容器および生化学分析装置
JP7536518B2 (ja) 2020-06-10 2024-08-20 京セラ株式会社 反応容器および生化学分析装置

Also Published As

Publication number Publication date
US10793818B2 (en) 2020-10-06
JP6511654B2 (ja) 2019-05-15
US20180201892A1 (en) 2018-07-19
JPWO2017030196A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2017030196A1 (ja) 培養容器並びに該培養容器を使用した細胞培養方法及び細胞観察方法
van Midwoud et al. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
Kelleher et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features
JP6365717B2 (ja) 細胞凝集塊形成用培養容器
Feng et al. Surface patterning via thiol‐yne click chemistry: an extremely fast and versatile approach to superhydrophilic‐superhydrophobic micropatterns
Peterson et al. Poly (dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells
US9062283B2 (en) Method of reducing curvature in a meniscus of liquid medium
US20060281172A1 (en) Cell culturel vessel, production process thereof and cultured cell
US8001857B2 (en) Sample chamber
JP6916313B2 (ja) 高分子基板の表面改質方法およびこれにより改質された表面を有する高分子基板
JP5790056B2 (ja) 細胞培養容器
Cao et al. Antiwetting and antifouling performances of different lubricant-infused slippery surfaces
JP2016514168A (ja) メニスカス減少部材
JP2005312343A (ja) 観察用容器及び培養用容器,培養細胞
EP2860239A1 (en) Vessel for culturing human es cells
Hamid et al. Surface modification of SU‐8 for enhanced cell attachment and proliferation within microfluidic chips
Li et al. Atomic force microscopy imaging of live mammalian cells
US20130344579A1 (en) Imaging chamber for supporting multiple investigation of cells and tissues by various techniques
US11119301B2 (en) Immersion matrix, its use and immersion device
WO2004076610A1 (ja) 細胞培養用マイクロチャンバー加工装置及び方法
JP2008306977A (ja) 細胞培養基材
JP4603295B2 (ja) 顕微鏡対物レンズ及び顕微鏡対物レンズを用いた観察方法
JP4862261B2 (ja) パターニング用基板および細胞培養基板
JP2019110794A (ja) 細胞培養容器に対する細胞保持領域生成方法
JP2005237375A (ja) パターニング用基板および細胞培養基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753091

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017535580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837185

Country of ref document: EP

Kind code of ref document: A1