WO2017030152A1 - ケーブルコア及び伝送ケーブル - Google Patents

ケーブルコア及び伝送ケーブル Download PDF

Info

Publication number
WO2017030152A1
WO2017030152A1 PCT/JP2016/074040 JP2016074040W WO2017030152A1 WO 2017030152 A1 WO2017030152 A1 WO 2017030152A1 JP 2016074040 W JP2016074040 W JP 2016074040W WO 2017030152 A1 WO2017030152 A1 WO 2017030152A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
dielectric
cable core
foam
cable
Prior art date
Application number
PCT/JP2016/074040
Other languages
English (en)
French (fr)
Inventor
中島 健
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Priority to EP16837141.7A priority Critical patent/EP3340256B1/en
Priority to US15/753,489 priority patent/US10269470B2/en
Priority to CN201680048629.0A priority patent/CN107924738B/zh
Publication of WO2017030152A1 publication Critical patent/WO2017030152A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/146Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration in the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/14Noble metals, e.g. silver, gold or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables

Definitions

  • the present invention relates to a transmission cable such as a foamed coaxial cable used for medical equipment and the like and a cable core constituting the transmission cable.
  • the foamed coaxial cable made of a foamed dielectric around the center conductor has a low dielectric constant and allows high-speed signal transmission. It is used as.
  • a foam insulated cable is used as a communication wire.
  • the diameter of coaxial cables has been required to be reduced with the reduction in size and weight and power saving of medical devices and the like.
  • foamed coaxial cables are used for transmission cables with a large number of cores, such as medical ultrasonic probe cables and endoscope cables. From the viewpoint of operability, particularly, cable diameter reduction and flexibility are required. Yes.
  • the conventional example described in Patent Document 1 aims to solve the problem of aggregation of the foam nucleating agent and form a foamed insulator having a low dielectric constant.
  • the foamed molded body is formed by generating bubbles at the interface, thereby obtaining a foamed insulated cable having a small bubble diameter, a high degree of foaming, a uniform, low dielectric constant and low skew.
  • the bubble diameter is large in order to reduce the diameter of the cable, and no suggestion is made regarding the technique for maintaining the electrical characteristics while reducing the diameter.
  • the foamed coaxial cable In order to maintain the electrical characteristics while reducing the diameter of the foamed coaxial cable, it is essential to lower the dielectric constant of the dielectric of the cable core constituting the foamed coaxial cable. In order to lower the dielectric constant of the dielectric, there is a method of increasing the foaming rate of the foamed dielectric constituting the dielectric. Moreover, since the thickness of the foamed dielectric is reduced as the diameter is reduced, it is necessary to make the foamed cell diameter smaller. The foamed cells of the foamed dielectric are enlarged and coalesced as the foaming rate is increased, and the foamed cell diameter is not uniform. The non-uniform foam cell diameter has a great influence on the cable characteristics, and the foam cells directly have irregularities in appearance, and there are problems in the durability and insulation of the cable.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of maintaining the electrical characteristics while reducing the diameter of the cable core.
  • the foaming rate of the foamed dielectric of the cable core constituting the coaxial cable is 80% or more, and By configuring the body to have an average foam cell diameter of 10 ⁇ m or less and a standard deviation of the foam cell diameter of 2.5 or less, it is possible to maintain the electrical characteristics while reducing the diameter of the cable core. I found out.
  • a cable core constituting the foamed coaxial cable of the present invention includes an inner conductor, a foamed dielectric made of a fluororesin formed on the inner conductor by extrusion molding, and the foamed dielectric.
  • the dielectric of the cable core of the present invention includes a foam dielectric and a skin layer that covers the foam dielectric.
  • the foam dielectric is made of foam resin
  • the skin layer is made of solid resin.
  • the skin layer has a function of insulating the inner conductor and the outer conductor and contributes to smoothing the surface of the foamed dielectric.
  • the foamed dielectric can be foamed by conventionally known physical foaming and chemical foaming techniques. For example, extruding while introducing a gas such as nitrogen as a foaming agent into a foamable composition obtained by adding a foaming nucleating agent to a fluororesin, or foaming a foamable substance that generates heat by heating and generating gas.
  • a gas such as nitrogen as a foaming agent
  • foamable substance obtained by adding a foaming nucleating agent to a fluororesin
  • the method of mixing with a composition is mentioned.
  • fluororesin used as the base of the foamed dielectric examples include tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer, Mention may be made of thermoplastic fluororesins such as ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride and polyvinyl fluoride. These may be used alone or in combination.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ethylene-tetrafluoroethylene copolymer Mention may be made of thermoplastic fluororesins such as ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride and poly
  • the foam nucleating agent is preferably an electrically insulating material that does not affect the electrical characteristics.
  • Specific examples include those selected from boron nitride, aluminum borate, magnesium borate, potassium titanate, silicon nitride, and the like.
  • the skin layer is made of a solid resin, it is necessary to make the skin layer thin in order to increase the foaming rate of the entire foam layer, specifically, it is necessary to reduce the thickness to 0.01 mm or less. There is also.
  • the skin layer is easily affected by the stress caused by the foam cell growth of the foamed dielectric and the elongation stress caused by pulling down during molding. It is difficult to mold stably.
  • Resins used for the skin layer include tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer, ethylene-chlorotri
  • thermoplastic fluororesins such as a fluoroethylene copolymer, polyvinylidene fluoride, and polyvinyl fluoride.
  • the balance between the melt tension of the resin forming the skin layer and the MFR is important, and these resins can be used alone so as to have characteristics suitable for the skin layer.
  • a plurality of types may be combined.
  • the resin used for the foamed dielectric 12 and the skin layer 13 may be different.
  • the reason why the foaming rate of the foamed dielectric is 80% or more is that the dielectric constant of the dielectric must be kept low in order to maintain the electrical characteristics of the cable core while reducing the diameter.
  • the dielectric constant of the dielectric is 1.3 or less by setting the foaming rate to 80% or more.
  • the viscosity of the resin constituting the foamed dielectric is too high. If the viscosity is too high, the generation and growth of foam cells are hindered, and it is difficult to increase the foaming rate.
  • the viscosity is small, enlargement and coalescence of the generated foamed cells are likely to proceed. In particular, the higher the foaming rate of the foamed dielectric, the easier the cell coalescence occurs.
  • the thickness of the foamed dielectric is also reduced, so that the number of foam cells that can be arranged in the thickness direction of the foamed dielectric is reduced. It has been found that in order to maintain the mechanical strength of the foamed dielectric, it is necessary to reduce the diameter per foamed cell so that as many foam cell walls as possible exist in the foamed dielectric. When the average foamed cell diameter of the foam is 10 ⁇ m or less, the mechanical strength of the foamed dielectric is sufficiently obtained even when the central conductor of the cable core is an AWG40 or more ultrafine wire, and the cable is bent. In addition, it is possible to prevent the transmission characteristics from being deteriorated due to the collapse of the dielectric.
  • the thinner the cable core diameter, the thinner the foamed dielectric, and the larger the ratio of the foamed cell diameter to the foamed dielectric thickness the greater the influence of the foamed cell diameter on the cable core characteristics. .
  • the foamed cell diameter needs to be as uniform as possible. If the foamed cells are enlarged and united, the diameter of the foamed cells is not uniform, the uniformity of the dielectric is impaired, and sufficient performance cannot be obtained.
  • the average foamed cell diameter of the foamed dielectric is 10 ⁇ m or less, and at the same time, the standard deviation of the foamed cell diameter is 2.5 or less. It is.
  • the foam cell diameter is 10 ⁇ m or less
  • the outer diameter of the cable core is stabilized.
  • the foam cell diameter is large, the unevenness of the foam dielectric surface becomes large, and the dimensional stability of the thickness of the foam dielectric is impaired. If the thickness of the foamed dielectric material is unstable, when the transmission cable is used, its characteristic impedance changes and signal reflection occurs, which is not preferable.
  • the portion where the thickness of the foamed dielectric is reduced is that the outer diameter of the cable core is reduced, the load due to external force is concentrated on the portion where the outer diameter is thin, and the mechanical strength of the cable core is reduced. Become.
  • the average foamed cell diameter of the foamed dielectric is 10 ⁇ m or less and the standard deviation of the cable core outer diameter mm is 0.012 or less, a transmission cable having particularly stable electrical characteristics can be obtained. . *
  • the central conductor of the cable core is an ultra-fine wire of AWG40 or more.
  • excellent effects are obtained with the fine wires of AWGs 44, 46, and 48.
  • FIG. 1A and 1B are diagrams showing a configuration of a foamed coaxial cable using a cable core of an embodiment of the present invention as a main component, where FIG. 1A is a view seen from the axial direction, and FIG. 1B is orthogonal to the axis. It is the figure seen from the direction.
  • FIG. 3 is a diagram for explaining a cable core extrusion method according to an embodiment of the present invention.
  • FIG. 3 is a correlation diagram showing a preferable range of melt viscosity and MFR of a resin constituting the skin layer of the cable core according to the embodiment of the present invention.
  • (A) is the schematic diagram of the cross section of the cable core of embodiment of this invention
  • (B) is the schematic diagram of the cross section of the conventional cable core as a comparative example. It is a TDR curve of a coaxial cable using a cable core with a standard deviation of the cable core outer diameter mm exceeding 0.012. This is a TDR curve of a coaxial cable using a cable core having a standard deviation of the cable core outer diameter mm of 0.012 or less.
  • FIG. 1 is a diagram showing a configuration of a foamed coaxial cable having a cable core according to an embodiment of the present invention as a main component, where (A) is a cross-sectional view and (B) is a diagram showing the structure of the cable. It is.
  • the foamed coaxial cable 1 of the present embodiment mainly includes an inner conductor 11, a foam dielectric 12 made of a fluororesin formed on the inner conductor 11 by extrusion molding, and a skin layer 13 that covers the foam dielectric 12.
  • the outer conductor 14 is arranged on the outer periphery of the cable core constituted by
  • the foamed dielectric 12 has a foaming rate of 80% or more, an average foamed cell diameter of the foamed dielectric is 10 ⁇ m or less, and a standard deviation of the foamed cell diameter is 2.5 or less.
  • a jacket 15 (outer jacket) is formed on the outer periphery of the outer conductor 14.
  • the foamed dielectric 12 which is a characteristic part of the present invention is made of a foamed resin obtained by foaming the foamable composition containing the above-described foam nucleating agent.
  • the foamed coaxial cable 1 having such a configuration is formed by the following procedure.
  • a foam core 12 and a skin layer 13 are formed by coextrusion on the outer periphery of the inner conductor 11 using an extruder (described later) to form a cable core.
  • a foaming gas such as nitrogen is injected into the molten foamable composition in the foamed dielectric 12 extruder to form the foamed dielectric 12 made of foamed resin, and at the same time, the outer periphery of the foamed dielectric 12 is covered.
  • the skin layer 13 is formed.
  • the foamed dielectric 12 is made of foamed resin
  • the skin layer 13 is made of solid resin.
  • the foamed dielectric 12 in order to foam the foamed dielectric 12 uniformly, it is desirable to reduce the temperature difference of the entire foamed dielectric as much as possible. The reason for this is that the speed of foam cell generation and growth differs depending on the resin temperature, and the uniform foam temperature causes the generation and growth of foam cells at the same time, resulting in foaming.
  • the cell diameter is small and a uniform foamed dielectric can be obtained.
  • the foaming of the foamed dielectric of the conventional cable core is considered to occur by the following mechanism.
  • a foaming gas is filled in an extruder in which the foamable composition is dissolved, and the foaming gas is dissolved in the foamable composition.
  • the foaming gas dissolved in the foamable composition is adsorbed by the foaming nucleating agent in the foamable composition, and the foaming gas concentration around the foaming nucleating agent increases.
  • foaming begins around the foam nucleating agent. At this time, the speed at which the resin pressure decreases is not uniform throughout the foamed dielectric.
  • the skin layer 13 has the effect of suppressing the enlargement and coalescence of the foam cells of the foam dielectric 12 and reducing the foam cell diameter.
  • the foam dielectric is restrained from the outside, the resin pressure on the outer surface of the foam dielectric is reduced, and the pressure difference across the foam dielectric layer is reduced.
  • the skin layer 13 needs to be configured to be very thin, so that the MFR of the resin forming the skin layer 13 needs to be increased.
  • the balance between melt tension and MFR is important. ⁇ By reducing the variation in resin temperature and resin pressure during foaming of the foamed dielectric, it is possible to realize a foamed dielectric having a high foaming ratio, a finer foam cell diameter, and a uniform foam cell diameter. Therefore, it is possible to realize a cable core that maintains electrical characteristics while reducing the diameter.
  • the foamed cell diameter of the foamed dielectric obtained as described above is 10 ⁇ m or less, and the standard deviation of the foamed cell diameter is 2.5 or less.
  • the outer conductor 14 is formed on the outer periphery of the cable core.
  • the external conductor 14 can be formed by any method such as horizontal winding or braiding a plurality of conductor wires 14a at a predetermined angle (spiral) with respect to the longitudinal axis direction, winding a metal foil, or vapor deposition of metal fine particles. Form.
  • the conducting wire 11a is made of a stranded wire or a single wire.
  • the material is copper wire, silver wire, aluminum wire, various alloy wires or the like. Generally, the surface is coated with silver or tin. For example, a silver plated copper alloy wire is used.
  • a silver plated copper alloy wire is used.
  • any material such as a copper alloy or silver-plated annealed copper can be used.
  • a material of the jacket 15, in addition to a fluororesin a general resin such as polyolefin, polyvinyl chloride, polyester, or the like can be used.
  • FIG. 2 is a view for explaining the cable core extrusion molding method of the present embodiment, and shows a schematic configuration of the extrusion molding machine.
  • it is necessary to uniformly foam the foamed dielectric, and for that purpose, it is desirable to make the difference in resin temperature of the entire foamed dielectric as small as possible. It is desirable that the temperature difference between the highest temperature portion and the lowest temperature portion be within 10 ° C.
  • An extrusion molding machine 100 shown in FIG. 2 includes a crosshead 102 and a preheater 104 for coextruding a foam layer and a skin layer.
  • Reference numeral 11 denotes an inner conductor of the cable core, and an arrow 106 indicates a traveling direction of the line.
  • Reference numeral 102h denotes an arrangement portion of a heater for heating the resin in the cross head 102.
  • the internal conductor 11 was first heated (preheated) by the preheater 104.
  • the conductor side of the foamed dielectric 12 is also heated by the heat transmitted from the heated inner conductor 11, so that it is possible to effectively prevent a temperature difference between the outer side and the conductor side in the foamed dielectric 12.
  • the skin layer that is co-extruded with the foamed dielectric is selected based on the balance between the melt tension and MFR of the resin constituting the skin layer and the stress during foaming of the foamed dielectric, selection of the resin, extrusion conditions, etc. Adjusted.
  • the melt tension and MFR vary depending on the size of the cable core, the thickness of the skin layer, etc., but with the size of the cable core of the present invention, the melt tension when measured at 380 ° C. is about 0.03 N to 0.08 N, and
  • the MFR is preferably about 15 to 40 g / min.
  • the suitable ranges of the above-described melt tension and MFR are indicated by dotted rectangles. Since the balance between the melt tension and the MFR is important, it is preferable that the range surrounded by the quadrilateral in FIG.
  • Example 1 Foamability containing 99.5% by mass of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA420HP-J, manufactured by Mitsui / Dupont Fluorochemical) and 0.5% by mass of aluminum borate whisker (Alborex Y, manufactured by Shikoku Kasei)
  • PFA420HP-J tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • Al borate whisker Alborex Y, manufactured by Shikoku Kasei
  • FIG. 4A is a schematic diagram of a micrograph obtained by cutting the cable core of the present embodiment along a plane perpendicular to the axial direction and observing the cross section with an optical microscope (KH-2700, manufactured by HIROX).
  • the foam cell diameter was calculated from an image of a cross-sectional photomicrograph. Since the foam cell includes an elliptical one, it was converted into a circle by the following Equation 3.
  • the foamed cell diameter was calculated for any 50 or all the foamed cells that can be confirmed by the cross-sectional image, and the average was taken as the average foamed cell diameter.
  • the outer diameter of the cable core was calculated from an optical micrograph image of a cross section obtained by cutting the cable core along a plane perpendicular to the axial direction. The outer diameter was measured in four directions per cross section, and the average was taken as the cable core outer diameter. The cable core outer diameter was measured at arbitrary 50 locations, and the standard deviation of the cable core outer diameter was determined.
  • Example 1 A cable core was prepared in the same manner as in Example 1 except that the foamable composition used in Example 1 was not subjected to conductor preheating, the melt tension of the resin constituting the skin layer was 0.018 N, and the MFR was 35. Then, the capacitance was measured in the same manner as in Example 1. Moreover, the obtained cable core was cut
  • FIG. 4B is a schematic diagram of a micrograph of the cross section. From the micrograph image, the average foam cell diameter and the standard deviation of the foam cell diameter were determined in the same manner as in Example 1.
  • the foaming rate of the dielectric is improved as compared with the cable core of Comparative Example 1 in FIG. 4 (B). That is, compared with the cable core of the comparative example 1, first, the foaming rate of the foamed dielectric 12 is increased, and secondly, the skin layer 13 is thinned. Further, in the cable core of Comparative Example 1, the foam cells near the outer surface of the foam dielectric are enlarged and united, and the foam cell diameter of the foam dielectric is notably uniform. On the other hand, in the foamed dielectric of the cable core of Example 1, enlargement and coalescence of the foamed cells are suppressed, and the cell diameter is uniform as compared with Comparative Example 1.
  • the capacitance was set to 60 pF / m by setting the foaming rate of the foamed dielectric to 80 to 90% and the skin layer thickness to 0.006 to 0.008 ⁇ m. It was possible to form a cable having a dielectric outer diameter of 0.15 mm or less while maintaining it.
  • Table 1 shows the main dimensions, foaming rate, capacitance, average foamed cell diameter, etc., of the foamed cable examples of the present invention and the foamed cable of the comparative example.
  • the foamed cable of Example 1 has a core outer diameter (mm) reduced from 0.17 to 0.15 compared to Comparative Example 1 while maintaining the electrical characteristics, and the skin
  • the layer thickness (mm) is significantly improved from 0.01 to 0.008, and the foaming ratio of the foamed dielectric is significantly improved from 65% to 90%.
  • Example 2 A 0.09 mm silver-plated annealed copper wire was used for the conductor, and a foamed dielectric was formed on the conductor. At the same time, a skin layer was formed on the outer surface of the foamed dielectric.
  • a cable core having an outer diameter of 0.33 mm was prepared in the same manner as in Example 1 except that the melt tension of the resin constituting the skin layer was 0.08 N and the MFR was 15.
  • Comparative Example 2 A cable core having an outer diameter of 0.35 mm as in Comparative Example 1 except that 0.09 mm silver-plated annealed copper wire is used as the conductor, the melt tension of the resin constituting the skin layer is 0.05 N, and the MFR is 10. It was created.
  • Example 3 A 0.06 mm silver-plated annealed copper wire was used as the conductor, and a foamed dielectric was formed on the conductor. At the same time, a skin layer was formed on the outer surface of the foamed dielectric.
  • a cable core having an outer diameter of 0.19 mm was prepared in the same manner as in Example 1 except that the melt tension of the resin constituting the skin layer was 0.07 N and MFR was 27.
  • Example 4 A 0.05 mm silver-plated annealed copper wire was used as the conductor, and 0.8 MPa nitrogen was injected into the extruder to form a foamed dielectric on the conductor. Simultaneously with the coating of the foam dielectric, a skin layer was formed on the outer surface of the foam dielectric.
  • a cable core having an outer diameter of 0.14 mm was prepared in the same manner as in Example 1 except that the melt tension of the resin constituting the skin layer was adjusted to 0.03 N and MFR25.
  • Example 5 A 0.039 mm silver-plated annealed copper wire was used as the conductor, and a foamed dielectric was formed on the conductor. At the same time, a skin layer was formed on the outer surface of the foamed dielectric.
  • a cable core having an outer diameter of 0.133 mm was prepared in the same manner as in Example 1 except that the melt tension of the resin constituting the skin layer was 0.03 N and MFR was 35.
  • Example 2 shows the main dimensions, the foaming rate, the capacitance, the average foamed cell diameter, and the like of the examples of the foamed cable of the present invention and the foamed cables of the comparative example.
  • the foamed cable of Example 2 has a core outer diameter (mm) reduced from 0.35 to 0.33 compared to Comparative Example 2 having the same capacitance as Example 2.
  • the foaming rate is 80% or more
  • the average foamed cell diameter is 10 ⁇ m or less
  • the coalescence of the foamed cells is suppressed
  • the standard deviation of the foamed cell diameter is 2.5 or less. Electrical characteristics are maintained even when the cable core is made thinner.
  • Example 2 About each Example and the comparative example, it carried out similarly to Example 1, and calculated
  • Table 3 shows the cable core outer diameter standard deviation and the like of the cable core according to the present invention and the comparative example.
  • FIG. 5 shows a TDR curve obtained as a result of time domain reflectometry (TDR) measurement for the coaxial cable created using the cable core of the first embodiment.
  • FIG. 6 shows a TDR curve obtained as a result of TDR measurement for the coaxial cable created using the cable core of Example 2.
  • TDR time domain reflectometry
  • the standard deviation of the core outer diameter is larger than 0.012 mm, the waveform of the TDR curve indicating the characteristic impedance in FIG. 5 is disturbed, and it can be seen that the characteristic impedance varies depending on the cable position.
  • the standard deviation of the core outer diameter is 0.012 mm or less, the waveform of the TDR curve shown in FIG. 6 is stable, and a transmission cable having particularly stable electrical characteristics is obtained.
  • the foaming rate of the foamed dielectric is high, enlargement and coalescence of the foamed cells are suppressed.
  • a foamed coaxial cable having a cable core as a main component it is possible to obtain a cable core in which the foaming ratio of the foamed dielectric is high, the foamed cell diameter is small, and the foamed cell diameter of the entire foamed dielectric is uniform. While maintaining the diameter, the same electrical characteristics as when the cable diameter is large can be maintained.
  • the foamed coaxial cable having the cable core of the present invention as a constituent element can be used as a control circuit for machines that need to be equipped with control devices such as automobiles and airplanes, as well as electronic devices such as medical devices, communication devices, and computers. Is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Communication Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

【課題】電気特性を維持したまま、ケーブルコアの細径化を実現することが可能な技術を提供する。 【解決手段】内部導体と、内部導体上に押出成形によって形成されたフッ素樹脂で構成される発泡誘電体と、発泡誘電体を被覆するスキン層とを備えるケーブルコアにおいて、前記発泡誘電体の発泡率が80%以上であり、前記発泡誘電体の平均発泡セル径が10μm以下であり、前記発泡誘電体の発泡セル径の標準偏差が2.5以下であるように構成されている。

Description

ケーブルコア及び伝送ケーブル
本発明は、例えば、医療機器等に用いられる発泡同軸ケーブルなどの伝送ケーブルとその伝送ケーブルを構成するケーブルコアに関する。
通信用電線に用いられる同軸ケーブルにおいて、中心導体の周囲に設ける誘電体を発泡体で構成した発泡同軸ケーブルは、誘電体の誘電率が小さく、信号の高速伝送が可能であるため、信号伝送ケーブルとして用いられている。例えば、特許文献1記載の従来例では、発泡絶縁ケーブルが通信用電線として用いられている。一方、医療機器等に用いられる同軸ケーブルでは、近年、医療機器等の小型軽量化と省電力化に伴って、同軸ケーブルの細径化が要求されている。例えば、医療用超音波プローブケーブル、内視鏡ケーブル等の心数の多い伝送ケーブルに発泡同軸ケーブルが使用されており、操作性の観点から、特にケーブルの細径化と柔軟性が要求されている。
特開2011-162721号公報
例えば、特許文献1記載の従来例は、発泡核剤の凝集の問題を解決して、低誘電率な発泡絶縁体を形成することを目的とし、異種の高分子材料をベース樹脂に混練して、その界面で気泡を発生させて発泡成形体を成形することで、気泡径が小さく、発泡度が高く均一で、低誘電率、低スキューな発泡絶縁ケーブルを得ることができるとしている。しかしながら、特許文献1記載の従来例では、ケーブルを細径化するには気泡径が大きく、また、細径化しつつ電気特性を維持するための技術に関しては、何らの示唆もなされていない。また、一般的に従来の発泡同軸ケーブルにおいては、電気特性の維持と細径化を共に実現する技術に関しては、有効な提案は殆どなされていないのが実情である。
発泡同軸ケーブルを細径化しながら電気特性を維持するには、発泡同軸ケーブルを構成するケーブルコアの誘電体の誘電率を低くすることが必須となる。誘電体の誘電率を低くするには、誘電体を構成する発泡誘電体の発泡率を上げる方法がある。また、細径化に伴って発泡誘電体の肉厚も薄くなるため、発泡セル径をより小さくする必要がある。発泡誘電体の発泡セルは、発泡率が高くなるに従い、肥大化、合一化し、発泡セル径の不均一が顕著になる。発泡セル径が不均一になることで、ケーブルの特性に与える影響は大きく、また、発泡セルが直接外観の凹凸となったり、ケーブルの耐久性、絶縁性等に問題が生じる。
本発明は、上記のような課題に鑑みなされたものであり、その目的は、ケーブルコアを細径化しつつ、電気特性を維持することが可能な技術を提供することにある。
本発明者は、発泡同軸ケーブルを細径化するのに必要な構成について鋭意研究を重ねた結果、同軸ケーブルを構成するケーブルコアの発泡誘電体の発泡率が80%以上であり、前記発泡誘電体の平均発泡セル径が10μm以下であり、発泡セル径の標準偏差が2.5以下であるように構成することで、ケーブルコアを細径化しつつ、電気特性を維持することが可能であることを見出した。
即ち、上記目的達成のため、本発明の発泡同軸ケーブルを構成するケーブルコアは、内部導体と、前記内部導体上に押出成形によって形成されたフッ素樹脂で構成される発泡誘電体と、前記発泡誘電体を被覆するスキン層とで構成され、前記発泡誘電体の発泡率が80%以上であり、前記発泡誘電体の平均発泡セル径が10μm以下であり、発泡セル径の標準偏差が2.5以下であることを特徴としている。
本発明によれば、電気特性に優れた、AWG40以上の極細発泡同軸ケーブルを提供することが可能である。
ここで、本発明のケーブルコアの誘電体は、発泡誘電体と、発泡誘電体を被覆するスキン層から成る。発泡誘電体が発泡樹脂で構成されるのに対し、スキン層は充実樹脂で構成される。スキン層は、内部導体と外部導体とを絶縁する機能を有し、発泡誘電体の表面の平滑化にも寄与する。
発泡誘電体は、従来公知の物理的発泡と化学的発泡の手法で発泡させることができる。例えば、フッ素樹脂に発泡核剤を加えた発泡性組成物に窒素などの気体を発泡剤として導入しながら押出成形を行ったり、加熱によって熱分解して気体を発生する発泡性物質等を発泡性組成物に混合する方法が挙げられる。
発泡誘電体のベースとなるフッ素樹脂としては、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン‐テトラフルオロエチレン共重合体、エチレン‐クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等の熱可塑性フッ素樹脂を挙げることができる。これらは、単独で用いても、複数種類組み合わせてもよい。
発泡核剤としては、電気的特性に影響を及ぼさない電気絶縁性のものが好ましい。 具体的には、窒化ホウ素、ホウ酸アルミニウム、ホウ酸マグネシウム、チタン酸カリウム、窒化ケイ素などから選ばれるものを挙げることができる。
 スキン層は充実樹脂で成るため、発泡層全体の発泡率を高くするためには、スキン層を薄くする必要があり、具体的には、0.01mm以下まで薄肉化することが必要になることもある。スキン層は、薄肉化によって、発泡誘電体の発泡セル成長による応力の影響と、成形時の引き落としの伸長応力の影響を受けやすくなるため、発泡誘電体とのバランスを取りながら均一なスキン層を安定して成形することは困難である。
スキン層に用いる樹脂としては、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン‐テトラフルオロエチレン共重合体、エチレン‐クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等の熱可塑性フッ素樹脂を挙げることができる。薄肉のスキン層を安定して成型するには、スキン層を形成する樹脂の溶融張力とMFRのバランスが重要であり、スキン層に適した特性となるように、これらの樹脂を単独で用いても、複数種類組み合わせてもよい。発泡誘電体12とスキン層13とで用いる樹脂は、相違してもよい。
発泡誘電体の発泡率が80%以上であるとしたのは、細径化しながらケーブルコアの電気特性を維持するには、誘電体の誘電率を低く抑える必要があるからである。例えば誘電体を構成する樹脂がPFAの場合、発泡率を80%以上とすることで、誘電体の誘電率は1.3以下となる。発泡誘電体の発泡率を高くするためには、発泡誘電体を構成する樹脂の粘度が高すぎることは好ましくない。粘度が高すぎると、発泡セルの発生と成長の妨げとなり、発泡率を高くすることは難しい。一方、粘度が小さいと、発生した発泡セルの肥大化と合一化が進行しやすく、特に発泡誘電体の発泡率が高くなるほど、セルの合一化が起こり易くなる。
ケーブルコアを細径化すると発泡誘電体の肉厚も薄くなるため、発泡誘電体の厚さ方向に並ぶことができる発泡セルの数が少なくなる。発泡誘電体の機械的強度を保つためには、発泡セル1つあたりの径を小さくして、発泡誘電体内に発泡セルの壁ができるだけ数多く存在すようにする必要があることが分かった。前記発泡体の平均発泡セル径が10μm以下であれば、ケーブルコアの中心導体がAWG40以上の極細線であっても、発泡誘電体の機械的強度が十分に得られ、ケーブルを屈曲させたときにも、誘電体のつぶれによって伝送特性が低下することを防ぐことができる。
また、ケーブルコアの径が細くなるほど発泡誘電体の肉厚が薄くなり、発泡誘電体の肉厚に対する発泡セル径の比が大きくなるため、発泡セル径がケーブルコアの特性に与える影響が大きくなる。信号伝送ケーブルとして良好な伝送特性を得るためには、できるだけ発泡セル径が均一であることが必要である。発泡セルの肥大化、合一化がおこると、発泡セル径は不均一になり誘電体の均一性が損なわれ、十分な性能が得られない。前記発泡誘電体の平均発泡セル径が10μm以下であると同時に、発泡セル径の標準偏差が2.5以下であることで、ケーブルコアの細径化と電気特性の維持を両立させることが可能である。
 
さらに、発泡セル径が10μm以下であることで、ケーブルコア外径が安定する。発泡セル径が大きいと、発泡誘電体表面の凹凸が大きくなって、発泡誘電体の肉厚の寸法安定性が損なわれる。発泡誘電体の肉厚が不安定だと、伝送ケーブルとしたときに、その特性インピーダンスが変動し信号の反射が起こるため好ましくない。また、発泡誘電体の肉厚が薄くなる部分はケーブルコア外径が細くなり、外径の細い部分に外力による負荷が集中してケーブルコアの機械的強度が低下する他、凹凸により外観も悪くなる。前記発泡誘電体の平均発泡セル径が10μm以下であると同時に、ケーブルコア外径mmの標準偏差を0.012以下とすることで、とくに電気特性が安定した伝送ケーブルを得ることが可能になる。 
 本発明のケーブルコアは、前記ケーブルコアの中心導体が、AWG40以上の極細線であるのが好適である。例えば、AWG44、46、48の極細線で優れた効果が得られている。
本発明の実施形態のケーブルコアを主な構成要素とした発泡同軸ケーブルの  構成を示す図であり、(A)は、その軸方向から見た図、(B)は、その軸と直交す  る方向から見た図である。 本発明の実施形態のケーブルコアの押出成形方法を説明するための図である  。 本発明の実施形態のケーブルコアのスキン層を構成する樹脂の、溶融粘度と  MFRの好ましい範囲を示す相関図である。 (A)は、本発明の実施形態のケーブルコアの断面の模式図であり、(B)  は、比較例としての従来のケーブルコアの断面の模式図である。 ケーブルコア外径mmの標準偏差が0.012を超えるケーブルコアを用い  た同軸ケーブルのTDR曲線である。 ケーブルコア外径mmの標準偏差が0.012以下のケーブルコアを用いた  同軸ケーブルのTDR曲線である。
 以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが本発明の成立に必須であるとは限らない。
 図1は、本発明の実施形態のケーブルコアを主な構成要素とした発泡同軸ケーブルの構成を示す図であり、(A)は、その断面図、(B)は、ケーブルの構造を示す図である。本実施形態の発泡同軸ケーブル1は、主として、内部導体11と、内部導体11上に押出成形によって形成されたフッ素樹脂で構成される発泡誘電体12と、発泡誘電体12を被覆するスキン層13で構成されるケーブルコアの外周に、外部導体14を配置して構成される。発泡誘電体12の発泡率が80%以上であり、前記発泡誘電体の平均発泡セル径が10μm以下であり、発泡セル径の標準偏差が2.5以下であるように構成されている。尚、外部導体14の外周には、ジャケット15(外被)が形成されている。本発明の特徴的な部分である発泡誘電体12は、前述の発泡核剤を含有した発泡性組成物を発泡させた発泡樹脂で成る。
 このような構成の発泡同軸ケーブル1は以下の手順により形成される。先ず、内部導体11の外周に押出機(後述する)を用いて発泡誘電体12とスキン層13を共押出で形成してケーブルコアを作成する。発泡誘電体12の押出機内で、溶融した発泡性組成物に窒素などの発泡ガスを注入し、発泡樹脂で成る発泡誘電体12を形成すると同時に、この発泡誘電体12の外周を被覆するようにスキン層13を形成する。発泡誘電体12が発泡樹脂で成るのに対し、スキン層13は充実樹脂で成る。本発明の発泡同軸ケーブルの構成を実現するために、発泡誘電体12を均一に発泡させるためには、発泡誘電体全体の温度差を出来る限り小さくすることが望ましい。その理由は、樹脂の温度によって、発泡セルの発生、成長の速さが異なるためであり、発泡誘電体の温度が均一になることで、全体同時に発泡セルの発生と成長が進み、結果として発泡セル径が小さく、均一な発泡誘電体が得られる。発泡誘電体の最も温度が高くなる外表面近傍と、最も温度が低くなる内部導体近傍との温度差を、できるだけ小さくするために、内部導体に発泡誘電体を押出被覆する時に、押出樹脂の外側からの加熱と、内部導体の加熱を同時に行う等の手段をとることが望ましい。
 従来のケーブルコアの発泡誘電体の発泡は、以下のメカニズムで起こると考えられる。発泡性組成物を押出す場合、例えば、発泡性組成物を溶解させた押出機内に、発泡ガスを充填して、発泡性組成物に発泡ガスを溶解させる。発泡性組成物に溶解した発泡ガスは、発泡性組成物中の発泡核剤に吸着され、発泡核剤周囲の発泡ガス濃度が高くなる。発泡性組成物が押出機のダイを出て樹脂の圧力が下がると、発泡核剤周囲で発泡が始まる。このとき、樹脂の圧力が下がる速度は発泡誘電体全体で均一ではない。一般に、樹脂は溶融状態で押出機の押出方向と垂直な方向に応力が働くため、発泡誘電体外表面から先に圧力が下がりはじめ、逆に、内部導体側は圧力が下がり始めるのが遅い。発泡が始まるときの樹脂圧が不均一なため、そのままでは、発泡誘電体外表面に偏って発泡セルの発生、成長が起こり、発泡セルの肥大化、合一化の要因となる。逆に、発泡誘電体の内部導体側は、十分に発泡できない。
ここで、スキン層13は、発泡誘電体12の発泡セルの肥大化、合一化の抑制と、発泡セル径を微細化する効果も有している。発泡誘電体を押出すと同時にスキン層を押出すことで、発泡誘電体を外側から抑え込み、発泡誘電体の外表面の樹脂圧が下がる速度を遅くして、発泡誘電体層全体の圧力の差を小さくする効果がある。この時、スキン層を構成する樹脂の溶融張力は、発泡誘電体外表面の急な減圧を抑えながら、発泡を妨げない張力の範囲に調整する必要がある。また同時に、誘電体全体の発泡率を高くするためには、スキン層13を非常に薄肉に構成する必要があるため、スキン層13を形成する樹脂のMFRを高くする必要がある。スキン層13を形成する樹脂は、溶融張力とMFRのバランスが重要である。 発泡誘電体の発泡時の、樹脂温度、樹脂圧のばらつきを小さくすることにより、高発泡率、発泡セル径の微細化、発泡セル径の均一な発泡誘電体を実現できる。従って、細径化しながら電気特性を維持したケーブルコアを実現することが可能となる。
上述のようにして得られる発泡誘電体の発泡セル径は10μm以下であり、発泡セル径の標準偏差は2.5以下である。続いて、このケーブルコアの外周に外部導体14を形成する。外部導体14は、複数本の導体素線14aを長手軸方向に対して所定角度(螺旋状)で横巻、または編組し、もしくは金属箔を巻き回し、あるいは金属微粒子の蒸着など任意の方法で形成する。最後に、この外部導体14の外周に樹脂テープを長手軸方向に対して所定角度(螺旋状)で巻回し、もしくは、押出機を用いて樹脂を押出し被覆してジャケット15を形成することにより、発泡同軸ケーブル1が完成する。
 導線11aは、撚線または単線からなる。材質としては銅線、銀線、アルミニウム線、各種合金線などからなる。一般に、表面に銀、錫などのメッキで被覆したものを用いる。例えば銀めっき銅合金線などが用いられる。導体素線14aもしくは金属箔の材質としては例えば銅合金、銀めっき軟銅など任意のものを用いることができる。ジャケット15の材質としてはフッ素樹脂の他、一般的な樹脂、例えばポリオレフィン、ポリ塩化ビニルやポリエステルなどが使用可能である。
 本実施形態のケーブルコアの製造方法について詳しく述べる。図2は、本実施形態のケーブルコアの押出成形方法を説明するための図であり、押出成形機の概略構成を示す。本発明のケーブルコアの構成を実現するためには発泡誘電体を均一に発泡させる必要があり、そのためには、発泡誘電体全体の樹脂温度の差を出来る限り小さくすることが望ましい。最も温度が高い部分と最も温度が低い部分の温度差を10℃以内とすることが望ましい。本実施形態では、内部導体11に発泡誘電体12を押出被覆する時に、押出樹脂の外側からの加熱と同時に、内部導体11を先に加熱しながら被覆する方法(プレヒート)を採用した。図2に示す押出成形機100は、発泡層とスキン層とを共押出するためのクロスヘッド102と、プレヒーター104を備えている。11は、ケーブルコアの内部導体、矢印106は、ラインの進行方向を示す。102hは、クロスヘッド102における樹脂を加熱するヒータの配置部分を示している。この押出成形機100の加熱構造による、押出樹脂の外側からの加熱に加え、プレヒーター104によって、内部導体11を先に加熱(プレヒート)するようにした。これにより、加熱された内部導体11から伝達する熱で発泡誘電体12の導体側も加熱されるので、発泡誘電体12において外側と導体側で温度差を生じるのを有効に防止できる。
 また、発泡誘電体と共押出しするスキン層は、スキン層を構成する樹脂の、溶融張力とMFRのバランス、発泡誘電体の発泡時の応力とのバランスを考えて、樹脂の選択、押出条件などを調整した。溶融張力とMFRは、ケーブルコアの寸法、スキン層の肉厚などにより異なるが、本発明のケーブルコアのサイズでは、380℃で測定した場合の溶融張力が0.03N~0.08N程度、且つMFRを15~40g/min程度にするとよい。図3には、上記の、溶融張力とMFRの適する範囲を点線の四角形で示している。溶融張力とMFRは相互のバランスが重要なため、上記の範囲の中でも、とくに図3の四辺形で囲まれた範囲とすることが好ましい。
本実施形態のケーブルコアの製造方法の要点を以下に示す。 
実施例1
テトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体(三井・デュポンフロロケミカル製 PFA420HP‐J)99.5質量%、ホウ酸アルミニウムウィスカー(四国化成製 アルボレックスY)0.5質量%を含有する発泡性組成物を、押出機においてダイの温度400℃において押出成形した。押出機には、0.7MPaの窒素を注入し、405℃にプレヒートした0.05mmの銀メッキ軟銅線上に発泡成形によって外径0.15mmの発泡誘電体を形成した。発泡誘電体の被覆と同時に、もう一台接続してある押出機から、溶融張力0.04N、MFR30になるように調整した、PFA420HP‐JをベースとするPFAを押出し、発泡誘電体の外表面にスキン層を形成した。 
得られた発泡誘電体の静電容量を測定し、以下の数式1によって、誘電率εを求め、得られた誘電率に基づいて、更に、以下の数式2により気孔率V(%)を求めた。
Figure JPOXMLDOC01-appb-M000001
  ここで、C:1m当たりの静電容量(pF)
          D:誘電体外径(mm)
          d:導体の径(mm)
Figure JPOXMLDOC01-appb-M000002
  ここで、εf:発泡体誘電体を構成する組成物の発泡前の誘電率
図4(A)は、本実施形態のケーブルコアを軸方向に垂直な面で切断し、断面を光学顕微鏡(HIROX製 KH-2700)で観察した顕微鏡写真の模式図である。
発泡セル径の算出は、断面の顕微鏡写真の画像から算出した。発泡セルは、楕円形状のものも含まれるので、以下の数式3で円形に換算した。
Figure JPOXMLDOC01-appb-M000003
任意の50個、または、断面画像で確認できる全ての発泡セルについて発泡セル径を算出し、その平均を平均発泡セル径とした。
ケーブルコアの外径を、ケーブルコアを軸方向に垂直な面で切断した断面の、光学顕微鏡写真の画像から算出した。1断面につき外径を4方向で測定し、その平均をケーブルコア外径とした。任意の50か所でケーブルコア外径を測定し、ケーブルコア外径の標準偏差を求めた。
比較例1
実施例1において用いた発泡性組成物を、導体プレヒートを行わず、スキン層を構成する樹脂の溶融張力を0.018N、MFRを35とした以外は実施例1と同様にしてケーブルコアを作成し、実施例1と同様にして静電容量を測定した。また、得られたケーブルコアを軸方向に垂直な面で切断し、断面を光学顕微鏡写真で観察した。図4(B)は、その断面の顕微鏡写真の模式図である。顕微鏡写真の画像から、実施例1と同様にして平均発泡セル径と発泡セル径の標準偏差を求めた。
図4(A)実施例1のケーブルコアでは、図4(B)比較例1のケーブルコアに比べ、誘電体の発泡率が向上している。即ち、比較例1のケーブルコアに比べ、第1に、発泡誘電体12の発泡率が上っており、第2に、スキン層13が薄肉化されている。また、比較例1のケーブルコアでは、発泡誘電体外表面近くの発泡セルが肥大化、合一化して、発泡誘電体の発泡セル径の不均一が顕著になっている。それに対して、実施例1のケーブルコアの発泡誘電体は、発泡セルの肥大化、合一化が抑制されており、比較例1と比較してセル径が均一になっている。従って、発泡セル径が不均一であることが原因となる、ケーブルの電気特性に与える悪影響を防止でき、外観の凹凸も減少されており、ケーブルの耐久性、絶縁性等に問題が生じるのを有効に防止可能である。第2の点に関しては、発泡層とスキン層とを共押出する場合においても、スキン層を薄肉化しても均一なスキン層を成形することができている。
本発明の発泡同軸ケーブルの実施例を試作したところ、発泡誘電体の発泡率を80~90%、スキン層厚を0.006~0.008μmにすることで、静電容量:60pF/mを維持したまま、誘電体外径φ0.15mm以下のケーブルを成形することが可能となった。本発明の発泡ケーブルの実施例と比較例の発泡ケーブルの主要寸法、発泡率、静電容量、平均発泡セル径等を表1に示す。
Figure JPOXMLDOC01-appb-T000004
表1に示すように、実施例1の発泡ケーブルは、電気特性を維持したまま、比較例1に比べて、コア外径(mm)が0.17から0.15に細径化され、スキン層厚(mm)が0.01から0.008に、発泡誘電体の発泡率が65%から90%に、それぞれ有意に改善している。
実施例2
 導体に0.09mm銀メッキ軟銅線を用い、導体上に発泡誘電体を形成すると同時に、発泡誘電体の外表面にスキン層を形成した。スキン層を構成する樹脂の溶融張力を0.08N、MFRを15とした以外は、実施例1と同様にして外径0.33mmのケーブルコアを作成した。
比較例2
 導体に0.09mm銀メッキ軟銅線を用い、スキン層を構成する樹脂の溶融張力を0.05N、MFRを10とした以外は、比較例1と同様にして、外径0.35mmのケーブルコアを作成した。
実施例3
 導体に0.06mm銀メッキ軟銅線を用い、導体上に発泡誘電体を形成すると同時に、発泡誘電体の外表面にスキン層を形成した。スキン層を構成する樹脂の溶融張力を0.07N、MFRを27とした以外は、実施例1と同様にして、外径0.19mmのケーブルコアを作成した。
実施例4
 導体に、0.05mmの銀メッキ軟銅線を用い、押出機に、0.8MPaの窒素を注入し、導体上に発泡誘電体を形成した。発泡誘電体の被覆と同時に、発泡誘電体の外表面にスキン層を形成した。スキン層を構成する樹脂の溶融張力を0.03N、MFR25になるように調整した以外は、実施例1と同様にして、外径0.14mmのケーブルコアを作成した。
実施例5
 導体に、0.039mmの銀メッキ軟銅線を用い、導体上に発泡誘電体を形成すると同時に、発泡誘電体の外表面にスキン層を形成した。スキン層を構成する樹脂の溶融張力を0.03N、MFRを35とした以外は、実施例1と同様にして、外径0.133mmのケーブルコアを作成した。
各実施例、比較例について、実施例1と同様にして平均発泡セル径と発泡セル径の標準偏差を求めた。
本発明の発泡ケーブルの実施例と比較例の発泡ケーブルの主要寸法、発泡率、静電容量、平均発泡セル径等を表2に示す。
Figure JPOXMLDOC01-appb-T000005
表2に示すように、実施例2の発泡ケーブルは、実施例2と同じ静電容量を有する比較例2に比べて、コア外径(mm)が0.35から0.33に細径化されている。実施例3~5についても、発泡率を80%以上、平均発泡セル径を10μm以下とし、発泡セルの合一化を抑制して発泡セル径の標準偏差を2.5以下とすることで、ケーブルコアを細径化しても電気特性が維持されている。
 
 各実施例、比較例について、実施例1と同様にしてケーブルコア外径の標準偏差を求めた。
本発明のケーブルコアの実施例と比較例のケーブルコア外径標準偏差等を表3に示す。
また、実施例1のケーブルコアを用いて作成した同軸ケーブルについて、 Time Domain Reflectmetry(TDR)測定を行った結果のTDR曲線を図5に示す。同様に、実施例2のケーブルコアを用いて作成した同軸ケーブルについて、TDR測定を行った結果のTDR曲線を図6に示す。
Figure JPOXMLDOC01-appb-T000006
実施例1のケーブルコアはコア外径の標準偏差が0.012mmより大きく、図5の特性インピーダンスを示すTDR曲線の波形に乱れがあり、ケーブル位置によって特性インピーダンスが変動していることが分かる。実施例2のケーブルコアは、コア外径の標準偏差が0.012mm以下であり、図6に示すTDR曲線の波形が安定し、特に電気特性が安定した伝送ケーブルが得られている。
 
以上のように、本発明のケーブルコアによれば、発泡誘電体の発泡率が高いにも関わらず、発泡セルの肥大化、合一化が抑制されている。発泡誘電体の発泡率が高く、発泡セル径が小さく、発泡誘電体全体の発泡セル径が均一なケーブルコアを得ることができることで、ケーブルコアを主な構成要素とする発泡同軸ケーブルにおいて、細径化を図りながらケーブル径が大きいときと同等の電気特性を維持できる。
 本発明のケーブルコアを構成要素とする発泡同軸ケーブルは、医療機器、通信機器、コンピュータ等の電子機器は勿論、自動車、飛行機等の制御機器を狭小部に搭載する必要のある機械の制御回路にも適用可能である。
1 発泡同軸ケーブル、 11 内部導体、11a 導線、12 発泡誘電体、13 スキン層、14 外部導体、15 ジャケット

 

Claims (4)

  1. 内部導体と、前記内部導体上に押出成形によって形成されたフッ素樹脂で構成される発泡誘電体と、前記発泡誘電体を被覆するスキン層とを備えるケーブルコアにおいて、
    前記発泡誘電体の発泡率が80%以上であり、
    前記発泡誘電体の平均発泡セル径が10μm以下であり、
    前記発泡誘電体の発泡セル径の標準偏差が2.5以下であることを特徴とするケーブルコア。
  2. 前記ケーブルコアのケーブルコア外径mmの標準偏差が0.012以下であることを特徴とする請求項1に記載のケーブルコア。
  3. 前記内部導体が、AWG40以上の極細線であることを特徴とする請求項1または2に記載のケーブルコア。
  4. 信号を伝送する伝送ケーブルにおいて、請求項1乃至3に記載のケーブルコアを備えることを特徴とする伝送ケーブル。

     
PCT/JP2016/074040 2015-08-20 2016-08-17 ケーブルコア及び伝送ケーブル WO2017030152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16837141.7A EP3340256B1 (en) 2015-08-20 2016-08-17 Cable core and transmission cable
US15/753,489 US10269470B2 (en) 2015-08-20 2016-08-17 Cable core and transmission cable
CN201680048629.0A CN107924738B (zh) 2015-08-20 2016-08-17 电缆芯以及传输电缆

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015162883 2015-08-20
JP2015-162883 2015-08-20
JP2015-178968 2015-09-10
JP2015178968 2015-09-10
JP2016-074815 2016-04-03
JP2016074815A JP6056041B1 (ja) 2015-08-20 2016-04-03 ケーブルコア及び伝送ケーブル

Publications (1)

Publication Number Publication Date
WO2017030152A1 true WO2017030152A1 (ja) 2017-02-23

Family

ID=57756092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074040 WO2017030152A1 (ja) 2015-08-20 2016-08-17 ケーブルコア及び伝送ケーブル

Country Status (5)

Country Link
US (1) US10269470B2 (ja)
EP (1) EP3340256B1 (ja)
JP (1) JP6056041B1 (ja)
CN (1) CN107924738B (ja)
WO (1) WO2017030152A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174113A1 (ja) * 2017-03-24 2018-09-27 住友電気工業株式会社 絶縁電線
CN108766646A (zh) * 2018-03-23 2018-11-06 东莞市晟钫实业有限公司 一种hdmi光电复合线缆及其制造方法
JP2020013658A (ja) * 2018-07-13 2020-01-23 日星電気株式会社 ケーブル
AT17158U1 (de) * 2019-04-19 2021-07-15 Nmc Sa Verbundprofilstücke mit kern aus polyesterschaum niedriger dichte
BE1027200B1 (de) * 2019-04-19 2020-11-17 Nmc Sa Verbundprofilstücke mit kern aus polyesterschaum niedriger dichte
JP6806190B1 (ja) * 2019-07-01 2021-01-06 日立金属株式会社 高周波信号伝送用ケーブル
KR20230045044A (ko) * 2020-08-03 2023-04-04 다이킨 고교 가부시키가이샤 발포 성형용 조성물, 발포 성형체, 전선, 발포 성형체의 제조 방법 및 전선의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048973A1 (ja) * 2009-10-23 2011-04-28 株式会社フジクラ 発泡電線及びこれを有する伝送ケーブル
WO2014115623A1 (ja) * 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158986A (en) * 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5814768A (en) * 1996-06-03 1998-09-29 Commscope, Inc. Twisted pairs communications cable
US6884377B1 (en) * 1996-08-27 2005-04-26 Trexel, Inc. Method and apparatus for microcellular polymer extrusion
EP0923443B1 (en) * 1996-08-27 2002-11-27 Trexel Inc. Method and apparatus for polymer foam extrusion, in particular microcellular foam
US20020033132A1 (en) * 1996-08-27 2002-03-21 Kim Roland Y. Crush-resistant polymeric microcellular wire coating
WO2004058833A1 (ja) * 2002-12-25 2004-07-15 Daikin Industries, Ltd. フルオロポリマー及びその組成物
US20080153936A1 (en) * 2006-12-21 2008-06-26 E. I. Du Pont De Nemours And Company Foamed Fluoropolymer Article
US7838108B2 (en) * 2007-01-17 2010-11-23 Sabic Innovative Plastics Ip B.V. Nano-cellular polymer foam and methods for making them
TW200912963A (en) * 2007-08-08 2009-03-16 Daikin Ind Ltd Covered electric wire and coaxial cable
KR100948433B1 (ko) * 2007-10-15 2010-03-17 엘에스전선 주식회사 고발포 동축케이블
US20090233052A1 (en) * 2008-03-17 2009-09-17 E.I. Du Pont De Nemours And Company Conductors Having Polymer Insulation On Irregular Surface
JP5420663B2 (ja) * 2009-07-07 2014-02-19 株式会社フジクラ 発泡電線及びこれを有する伝送ケーブル
JP5581722B2 (ja) 2010-02-12 2014-09-03 日立金属株式会社 発泡絶縁電線の製造方法
JP2012104470A (ja) * 2010-10-14 2012-05-31 Hitachi Cable Ltd 多孔質紫外線硬化型樹脂被覆電線の製造方法、多孔質紫外線硬化型樹脂被覆電線、及び同軸ケーブル
EP2668032B1 (en) * 2011-01-27 2019-05-22 New Balance Athletics, Inc. Injection molding systems and methods for forming materials used in footwear
CN102254608A (zh) 2011-04-25 2011-11-23 浙江兆龙线缆有限公司 单对双轴平行高速传输电缆及其制造方法
JP5521121B2 (ja) 2012-03-07 2014-06-11 古河電気工業株式会社 絶縁ワイヤ、電気機器及び絶縁ワイヤの製造方法
JP5975334B2 (ja) 2012-09-13 2016-08-23 日立金属株式会社 発泡樹脂成形体、発泡絶縁電線及びケーブル並びに発泡樹脂成形体の製造方法
JP5972375B2 (ja) * 2013-02-07 2016-08-17 古河電気工業株式会社 絶縁電線及びモータ
EP3194138B1 (en) * 2014-08-06 2022-04-20 New Balance Athletics, Inc. Method of forming a foamed part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048973A1 (ja) * 2009-10-23 2011-04-28 株式会社フジクラ 発泡電線及びこれを有する伝送ケーブル
WO2014115623A1 (ja) * 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340256A4 *

Also Published As

Publication number Publication date
EP3340256A4 (en) 2019-05-01
JP2017054800A (ja) 2017-03-16
CN107924738A (zh) 2018-04-17
CN107924738B (zh) 2019-11-15
EP3340256B1 (en) 2020-06-24
EP3340256A1 (en) 2018-06-27
US20180240572A1 (en) 2018-08-23
JP6056041B1 (ja) 2017-01-11
US10269470B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6056041B1 (ja) ケーブルコア及び伝送ケーブル
JP5741457B2 (ja) 平行型発泡同軸ケーブル
JP4493595B2 (ja) 発泡同軸ケーブルおよびその製造方法
JP5255529B2 (ja) 伝送ケーブル用中空コア体及びその製造方法並びに信号伝送用ケーブル
WO2009119339A1 (ja) 同軸ケーブル中空コア体の製造方法、同軸ケーブル中空コア体、並びに同軸ケーブル
JP2013214499A (ja) 差動伝送ケーブル及びその製造方法
JP2015204195A (ja) 差動信号ケーブル及びその製造方法、多対差動信号ケーブル
JP2016072196A (ja) 2芯平行電線
TW200535194A (en) A foamed resin composition, a foam using the same and a coaxial cable
JP6299233B2 (ja) 絶縁電線及び同軸ケーブル
JP5464080B2 (ja) 同軸ケーブルおよび多心同軸ケーブル
JP2010113835A (ja) 発泡シース被覆ケーブル及びその製造方法
JP2017220424A (ja) 発泡同軸ケーブル及びその製造方法並びに多芯ケーブル
JP5420662B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP6679436B2 (ja) 樹脂組成物、ケーブル及びその製造方法
JP5595754B2 (ja) 超極細同軸ケーブル及びその製造方法
JP4111764B2 (ja) 細径同軸ケーブルおよびその製造方法
JP5545179B2 (ja) 発泡絶縁電線及びその製造方法
JP2011060573A (ja) 絶縁電線、及びケーブル
JP2013214517A (ja) 同軸ケーブル用中空コア体の製造装置
WO2011004839A1 (ja) 発泡電線及びこれを有する伝送ケーブル
JP2021190403A (ja) 同軸ケーブル
JP5545178B2 (ja) 発泡ケーブル及びその製造方法
JP2023141617A (ja) 同軸ケーブル
JP2008257986A (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016837141

Country of ref document: EP