WO2011004839A1 - 発泡電線及びこれを有する伝送ケーブル - Google Patents

発泡電線及びこれを有する伝送ケーブル Download PDF

Info

Publication number
WO2011004839A1
WO2011004839A1 PCT/JP2010/061533 JP2010061533W WO2011004839A1 WO 2011004839 A1 WO2011004839 A1 WO 2011004839A1 JP 2010061533 W JP2010061533 W JP 2010061533W WO 2011004839 A1 WO2011004839 A1 WO 2011004839A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
foamed
electric wire
propylene
melting
Prior art date
Application number
PCT/JP2010/061533
Other languages
English (en)
French (fr)
Inventor
亮 渡部
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201080022602.7A priority Critical patent/CN102439668B/zh
Priority to JP2011521942A priority patent/JP5420663B2/ja
Publication of WO2011004839A1 publication Critical patent/WO2011004839A1/ja
Priority to US13/343,189 priority patent/US8822825B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a foamed electric wire and a transmission cable having the same.
  • the foam insulation layer of foamed electric wires used for USB 3.0 cables, HDMI cables, Infiniband cables, micro USB cables, etc. has a small diameter, high heat resistance, and can be finely foamed. Is required.
  • a foam insulating layer there has heretofore been known one obtained by melting a polypropylene resin, supplying a chemical foaming agent such as azodicarbonamide, and kneading them uniformly (the following patents) Reference 1).
  • the propylene-based resin when used as the masterbatch resin, the propylene-based resin generally has a higher melting point than polyethylene, and therefore it is necessary to give a high temperature to the masterbatch in order to melt the propylene-based resin.
  • the chemical foaming agent is directly kneaded into the propylene resin, the chemical foaming agent is decomposed and foaming occurs.
  • the foamed cell when polyethylene is used as the resin for the masterbatch, the foamed cell can be sufficiently miniaturized, but the heat resistance of the foamed insulating layer obtained is lowered, so the heat resistance of the foamed electric wire using this is also lowered.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a foamed electric wire capable of obtaining excellent heat resistance while realizing sufficient miniaturization of the foamed cell and a transmission cable having the same. To do.
  • the present inventor used a low melting point propylene resin having a low melting point as a masterbatch resin, and the blending ratio of the low melting point propylene resin in the entire resin was a predetermined value.
  • the present inventors have found that the above-mentioned problems can be solved by making the ratio less than that, and have completed the present invention.
  • the present invention is a foamed electric wire comprising a conductor and a foamed insulating layer covering the conductor, wherein the foamed insulating layer comprises a base resin composed of a high melting point propylene resin having a melting point of 150 ° C. or higher, and a heat A decomposable chemical foaming agent and a masterbatch containing a low melting point propylene resin having a melting point of 135 ° C. or lower are kneaded to melt the low melting point propylene resin, and then the pyrolyzable chemical foaming agent is thermally decomposed. It is obtained by foaming, and the blending ratio of the low melting point propylene resin in the whole resin composed of the high melting point propylene resin and the low melting point propylene resin is less than 20% by mass. It is a foamed electric wire.
  • the blending ratio of the low melting point propylene resin in the whole resin composed of the high melting point propylene resin and the low melting point propylene resin is 5% by mass or less. In this case, as compared with the case where the blending ratio is out of the above range, the foamed cells can be more sufficiently miniaturized, and more excellent heat resistance can be obtained.
  • the melt tension when the resin in the foamed insulating layer is broken is 20 to 50 mN.
  • the melt tension at the time of the rupture of the resin in the foamed insulating layer is 20 mN or more, the foamed cell can be more sufficiently miniaturized.
  • the melt tension at the time of rupture of the resin in the foamed insulating layer is 50 mN or less, the degree of foaming tends to be difficult to decrease during the extrusion of the resin.
  • the base resin is a copolymer of propylene and an ⁇ -olefin other than propylene, and the copolymer includes a block copolymer.
  • the copolymer contains a block copolymer, the foamed cells can be more sufficiently miniaturized and better heat resistance can be obtained as compared with the case where the block copolymer is not contained.
  • an outer diameter of the foamed insulating layer is 1.6 mm or less.
  • the low melting point propylene resin is preferably a random copolymer of propylene and ⁇ -olefin.
  • the low melting point propylene resin is not a random copolymer of propylene and ⁇ -olefin.
  • the present invention is a transmission cable having the above foamed electric wire. According to this transmission cable, transmission loss can be reduced and excellent heat resistance can be obtained.
  • melt tension at break is a melt tension measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and specifically, an inner diameter of 1.0 mm and a length of 10 mm.
  • a capillary rheometer Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • After filling the flat capillary with resin set the piston speed 5mm / min, barrel inner diameter 9.55mm, take-up acceleration 400m / min 2 , barrel, capillary and thermostat just after the barrel to 200 ° C conditions
  • the barrel is filled with resin, and after 5 minutes preheating, piston extrusion is started at the above-mentioned piston speed, accelerated at the above-mentioned take-up acceleration, taken up, and measured for the tension at the time of breaking. It shall mean the average value of the measured values.
  • the “resin” filled in the flat capillary or barrel means a mixed resin of the base
  • a foamed electric wire capable of obtaining excellent heat resistance while realizing sufficient miniaturization of the foamed cell and a transmission cable having the same are provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 1 is a partial side view showing an embodiment of a foamed electric wire according to the present invention, and shows an example in which a foamed electric wire is applied to a coaxial cable as a transmission cable.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the transmission cable 10 is a coaxial cable, and includes a foamed electric wire 5, an outer conductor 3 that surrounds the foamed electric wire 5, and a sheath 4 that covers the outer conductor 3.
  • the foamed electric wire 5 includes an inner conductor 1 and a foamed insulating layer 2 that covers the inner conductor 1.
  • the foamed insulating layer 2 is a master batch including a base resin made of a high melting point propylene resin having a melting point of 150 ° C. or higher, a pyrolytic chemical foaming agent, and a low melting point propylene resin having a melting point of 135 ° C. or lower. And the low melting point propylene-based resin is melted, and then the pyrolytic chemical foaming agent is thermally decomposed and foamed.
  • the blending ratio of the low melting point propylene resin in the whole resin composed of the high melting point propylene resin and the low melting point propylene resin is less than 20% by mass.
  • the inner conductor 1 is prepared.
  • the internal conductor 1 include metal wires such as copper wires, copper alloy wires, and aluminum wires.
  • a material obtained by plating the surface of the metal wire with tin, silver or the like can be used as the internal conductor 1.
  • the inner conductor 1 can be a single wire or a stranded wire.
  • the foamed insulating layer 2 is formed on the inner conductor 1.
  • a base resin made of a high melting point propylene resin having a melting point of 150 ° C. or higher, a pyrolytic chemical foaming agent, and a low melting point propylene resin having a melting point of 135 ° C. or lower is included.
  • a base resin made of a high melting point propylene resin having a melting point of 150 ° C. or higher, a pyrolytic chemical foaming agent, and a low melting point propylene resin having a melting point of 135 ° C. or lower is included.
  • the high melting point propylene resin refers to a propylene resin having a melting point of 150 ° C. or higher.
  • the melting point of the high melting point propylene-based resin is preferably 155 ° C. or higher, and more preferably 160 ° C. or higher.
  • the melting point of the high-melting-point propylene-based resin is preferably 170 ° C. or less because the balance between the heat resistance and the low-temperature embrittlement resistance and the bending resistance can be favorably maintained.
  • Propylene resin means a resin containing a structural unit derived from propylene. Therefore, such propylene-based resins include homopolypropylene obtained by homopolymerization of propylene, copolymers of olefins other than propylene and propylene, and mixtures of two or more thereof.
  • olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene, 2-hexene and the like.
  • ⁇ -olefins such as ethylene, 1-butene, and 1-hexene are preferably used from the viewpoint of realizing more sufficient miniaturization of the foamed cell and obtaining better heat resistance, and more preferably ethylene. .
  • the propylene-based resin is a copolymer of olefin other than propylene and propylene
  • the copolymer may include a block copolymer or a random copolymer.
  • the copolymer comprises a block copolymer.
  • the foamed cells can be more sufficiently miniaturized and better heat resistance can be obtained as compared with the case where the block copolymer is not contained.
  • the copolymer may be composed only of a block copolymer, or may be composed of a mixture of a block copolymer and a random copolymer, but only composed of a block copolymer. Is preferred.
  • a foaming cell can be refined more fully and more excellent heat resistance can be acquired.
  • the masterbatch contains a low melting point propylene resin and a pyrolytic chemical foaming agent.
  • the low melting point propylene resin refers to a propylene resin having a melting point of 135 ° C. or lower.
  • the melting point of the low melting point propylene-based resin is preferably 130 ° C. or less, and more preferably 127 ° C. or less.
  • the melting point of the low-melting-point propylene-based resin is preferably 120 ° C. or more from the viewpoint of ease of handling in production.
  • Such low-melting-point propylene resins include homopolypropylene obtained by homopolymerization of propylene and copolymers of olefins other than propylene and propylene, similarly to the high-melting-point propylene resins.
  • the low melting point propylene-based resin includes a mixture of two or more of these.
  • olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene, 2-hexene and the like. Of these, ⁇ -olefins such as ethylene, 1-butene, and 1-hexene are preferably used from the viewpoints of fine foaming and heat resistance, and more preferably ethylene.
  • the low-melting-point propylene-based resin is a copolymer of olefin other than propylene and propylene
  • the copolymer may include a block copolymer or a random copolymer.
  • the copolymer preferably includes a random copolymer.
  • the melting point of the copolymer can be lowered more than when the random copolymer is not included, and the master batch without thermally decomposing the pyrolytic chemical foaming agent Can be easily obtained. Further, excellent low temperature embrittlement resistance and bending resistance can be obtained.
  • the copolymer may be composed only of a random copolymer or may be composed of a mixture of a random copolymer and a block copolymer, but only composed of a random copolymer. Is preferred.
  • the melting point of the copolymer can be further lowered, and the foamed cell can be made sufficiently finer. And more excellent heat resistance can be obtained.
  • the low-melting-point propylene-based resin is a random copolymer of ⁇ -olefin and propylene because the balance between heat resistance, low-temperature embrittlement resistance and flex resistance can be maintained better.
  • the low-melting-point propylene-based resin can be usually obtained by using a metallocene catalyst as a catalyst in homopolymerization of propylene or copolymerization of propylene and another olefin.
  • the pyrolytic chemical foaming agent is not particularly limited as long as it thermally decomposes to generate a gas such as NH 3 , N 2 , and CO 2.
  • azodicarbonamide hereinafter referred to as “ADCA”), 4, Examples thereof include 4′-oxybisbenzenesulfonylhydrazide, N, N′-dinitrosopentamethylenetetramine, azobisisobutyronitrile and the like.
  • ADCA azodicarbonamide
  • azodicarbonamide has a high thermal decomposition temperature, the difference between the melting point of the low melting point propylene resin and the thermal decomposition temperature becomes larger, and the thermal decomposition of the chemical blowing agent can be sufficiently suppressed in the process of producing the masterbatch. Therefore, it is preferable.
  • the content of the pyrolytic chemical foaming agent in the masterbatch is usually 1 to 40% by mass, preferably 2 to 20% by mass, more preferably 3 to 15% by mass.
  • a low melting point propylene resin and a pyrolytic chemical foaming agent may be introduced into an extruder and kneaded.
  • the low-melting-point propylene resin and the pyrolytic chemical foaming agent may be heated and kneaded at a temperature equal to or higher than the melting point of the low-melting-point propylene resin.
  • the pyrolytic chemical foaming agent is thermally decomposed during kneading, foaming unevenness may occur in the foamed insulating layer 2. Therefore, kneading is preferably performed at a temperature of 150 ° C. or lower.
  • the kneading is preferably performed at a temperature of 130 ° C. to 145 ° C.
  • the master batch and the high melting point propylene resin are kneaded.
  • the blending ratio of the low melting point propylene resin in the entire resin composed of the high melting point propylene resin and the low melting point propylene resin is less than 20% by mass. This is because the heat resistance of the foamed electric wire 5 cannot be sufficiently improved when the blending ratio is 20% by mass or more.
  • the blending ratio of the low melting point propylene resin in the whole resin composed of the high melting point propylene resin and the low melting point propylene resin is preferably 5% by mass or less. In this case, compared with the case where a compounding ratio is outside the said range, a foamed cell can be refined more fully and more excellent heat resistance can be obtained.
  • the blending ratio of the low melting point propylene resin is preferably 2% by mass or more from the viewpoint of stable extrusion moldability.
  • the low melting point propylene resin in the master batch is melted.
  • the pyrolytic chemical foaming agent is not thermally decomposed.
  • the thermal decomposition type chemical foaming agent is heated to a temperature equal to or higher than the thermal decomposition temperature to be thermally decomposed to generate a decomposition gas.
  • the resin containing the decomposition gas is foamed while being extruded, and the inner conductor 1 is covered with the extrudate.
  • the foamed insulating layer 2 is obtained on the inner conductor 1.
  • the melt tension at the time of rupture of the resin in the foamed insulating layer 2 is 20 mN or more because the foamed cells can be more sufficiently miniaturized, and preferably 25 mN or more. More preferred. However, if the melt tension at the time of rupture of the resin is too large, the degree of foaming tends to be low at the time of extrusion of the resin, so the melt tension is preferably 50 mN or less, more preferably 35 mN or less.
  • the melt tension of the resin at the time of rupture can be adjusted, for example, by adjusting the temperature of the resin at the die outlet of the extruder.
  • the outer diameter of the foam insulation layer 2 is preferably 1.6 mm or less, and more preferably 1.0 mm or less when the foamed electric wire 10 is used for a high-frequency cable.
  • the average particle size of the base resin pellets is usually 0.2 to 3 mm, preferably 0.5 to 1.5 mm, more preferably 0.8 to 1.3 mm.
  • the particle size of the pyrolytic chemical foaming agent is The distribution is preferably a sharper particle size distribution, and the average particle size of the pyrolytic chemical foaming agent is preferably 3 to 10 ⁇ m.
  • the foaming agent is uniformly dispersed in the base resin, and as a result, the outer diameter fluctuation of the resulting foamed insulating layer 2 can be more sufficiently suppressed. This is particularly useful when the foamed insulating layer 2 of the foamed electric wire 5 has a small diameter of 1.6 mm or less.
  • the outer conductor 3 is formed so as to surround the foamed electric wire 5 obtained as described above.
  • the external conductor 3 a known one that has been conventionally used can be used.
  • the external conductor 3 can be formed by winding a conductive wire or a tape formed by sandwiching a conductive sheet between resin sheets along the outer periphery of the insulating layer 2.
  • the outer conductor 3 can be constituted by a corrugated metal tube, that is, a corrugated metal tube. In this case, the flexibility of the foamed electric wire 5 can be improved.
  • sheath 4 protects the outer conductor 3 from physical or chemical damage.
  • the material constituting the sheath 4 include resins such as fluororesin, polyethylene, and polyvinyl chloride. From the viewpoint of the above, a halogen-free material such as polyethylene resin is preferably used.
  • the transmission cable 10 is obtained as described above.
  • the present invention is not limited to the above embodiment.
  • the foamed electric wire 5 is applied to a coaxial cable as a transmission cable, but the foamed electric wire 5 is a USB 3.0 cable, an HDMI cable, an Infiniband cable, a micro USB cable, or the like. It can also be applied to high-speed transmission cables.
  • Example 1 First, an ethylene-propylene copolymer having a melting point of 165 ° C. (trade name: FB5100, manufactured by Nippon Polypro Co., Ltd., hereinafter referred to as “EP copolymer”) was prepared as a base resin.
  • EP copolymer ethylene-propylene copolymer having a melting point of 165 ° C.
  • a random copolymer (trade name: WFX4TC, manufactured by Nippon Polypro Co., Ltd.) having a melting point of 125 ° C. as a master batch resin (MB resin) and azodicarbonamide (ADCA) as a pyrolytic chemical foaming agent
  • MB resin master batch resin
  • ADCA azodicarbonamide
  • the product was put into an extruder (product name: Labo Plast Mill D2020, screw diameter (D): ⁇ 20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho).
  • ADCA added 6 mass parts with respect to 100 mass parts of random copolymers.
  • melt extrusion was performed on condition of the following, the melt extrudate was cut with the pelletizer, and the pellet-shaped masterbatch was obtained.
  • WFX4TC which is MB resin is a random copolymer of ethylene and propylene. Kneading temperature: 140 ° C Screw speed: 20rpm
  • the base copolymer EP copolymer and the masterbatch are put into an extruder (screw diameter (D): ⁇ 25 mm, effective screw length (L): 800 mm, manufactured by St. Seisakusho) different from the above extruder.
  • Extrusion molding was performed.
  • an 80 mm portion (hereinafter referred to as a “first portion”) from the inlet of the extruder toward the downstream side is set at 160 ° C.
  • a further 160 mm downstream portion hereinafter referred to as a “second portion”.
  • the MB resin in the masterbatch was melted in the first part, and then the ADCA was pyrolyzed in the second part.
  • the blending ratio of the MB resin is as shown in Table 1 with respect to the entire resin composed of the base resin and the MB resin in the master batch. did.
  • the extrudate was extruded from the extruder into a tube shape, and a conductor having a diameter of 0.32 mm was covered with the tube-shaped extrudate.
  • a foamed electric wire comprising a conductor and a foamed insulating layer having an outer diameter of 0.92 mm and a thickness of 0.3 mm covering the conductor was produced.
  • Example 2 A foamed electric wire was produced in the same manner as in Example 1 except that the blending ratio of the base resin and the MB resin was changed as shown in Table 1.
  • Example 3 A foamed electric wire was produced in the same manner as in Example 1 except that the blending ratio of the base resin and the MB resin was changed as shown in Table 1.
  • Example 4 The MB resin was changed from WFX4TC to WFW4 (trade name, manufactured by Nippon Polypro Co., Ltd.), and a master batch was obtained in the same manner as in Example 1 except that it was obtained by melt extrusion of MB resin and ADCA under the following conditions. Thus, a foamed electric wire was produced. Kneading temperature: 150 ° C Screw speed: 20rpm
  • Example 5 A foamed electric wire was produced in the same manner as in Example 1 except that the base resin was changed from FB5100 to FB3312 (trade name, mp: 165 ° C., manufactured by Nippon Polypro Co., Ltd.) which is an EP block copolymer.
  • Example 6 The base resin was changed from FB5100 to a mixture of FB5100 and EP random copolymer F227D (trade name: mp: 150 ° C., manufactured by Prime Polypro Co., Ltd.).
  • FB5100, EP random copolymer and MB resin was changed as shown in Table 1, and a foamed electric wire was produced in the same manner as in Example 1 except that the base resin and the master batch were kneaded as follows. That is, in the kneading of the base resin and the master batch, the first part of the extruder is set to 145 ° C., and the second part downstream thereof is set to 180 ° C., so that the MB in the master batch at the first part is set. After the resin was melted, ADCA was pyrolyzed in the second part.
  • Example 7 The base resin was changed from FB5100 to a mixture of FB5100 and homopolypropylene F113G (trade name, mp: 165 ° C., manufactured by Prime Polypro Co., Ltd.), and the blending ratio of FB5100, homopolypropylene and MB resin is shown in Table 1.
  • a foamed electric wire was produced in the same manner as in Example 1 except that the change was made as shown in FIG.
  • Example 8 A foamed electric wire was produced in the same manner as in Example 1 except that the blending ratio of the base resin and the MB resin was changed as shown in Table 1.
  • the base resin is changed from FB5100 to high-density polyethylene (HDPE) having a melting point of 130 ° C., and without using a masterbatch, ADCA is added at a ratio of 0.6 part by mass with respect to 100 parts by mass of the base resin.
  • a foamed electric wire was produced in the same manner as in Example 1 except that the base resin and ADCA were kneaded as follows. That is, the base resin and ADCA are kneaded by setting the first part of the extruder at 145 ° C. and setting the second part further downstream at 180 ° C., so that the MB resin in the master batch at the first part. After melting, ADCA was pyrolyzed in the second part.
  • Hi-Zex (registered trademark) 5305E (trade name, manufactured by Mitsui Chemicals, Inc.) was used.
  • Example 2 The MB resin was changed from WFX4TC to low density polyethylene (LDPE) having a melting point of 110 ° C., and the mixing ratio of the base resin and the MB resin was changed as shown in Table 1 in the same manner as in Example 1. A foamed electric wire was prepared.
  • LDPE low density polyethylene
  • F522N trade name, manufactured by Ube Industries, Ltd.
  • Example 4 A foamed electric wire was produced in the same manner as in Example 1 except that the blending ratio of the base resin and the MB resin was changed as shown in Table 1.
  • Example 5 The master batch was prepared in the same manner as in Example 1 except that the MB resin was changed to FB5100 used as the base resin of Example 1 and the kneading temperature of MB resin and ADCA was changed to 180 ° C.
  • ADCA in the masterbatch is thermally decomposed and foamed in the process of producing the masterbatch, and the masterbatch cannot be produced. As a result, the foamed electric wire cannot be produced.
  • Example 6 A foamed electric wire was produced in the same manner as in Example 1 except that the blending ratio of the base resin and the MB resin was changed as shown in Table 1.
  • melt tension at break The melt tension at break of the foamed electric wires obtained in Examples 1 to 8 and Comparative Examples 1 to 4 and 6 was measured as follows.
  • the melt tension was measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Specifically, a flat capillary with an inner diameter of 1.0 mm and a length of 10 mm is filled with resin, the piston speed is 5 mm / min, the barrel inner diameter is 9.55 mm, the take-up acceleration is 400 m / min 2 , the barrel, the capillary, and the thermostat immediately after the barrel. After setting the temperature to 200 ° C., the barrel was filled with resin, and after preheating for 5 minutes, piston extrusion was started at the piston speed, accelerated by the take-up acceleration and taken up, and the tension when it was broken was measured. An average value of measured values of tension obtained by performing this 10 times was calculated. The results are shown in Table 1.
  • the “resin” filled in the flat capillary or the barrel is a mixed resin of the base resin and the resin in the master batch.
  • Heat resistance Heat resistance was evaluated by conducting a heat deformation test on the foamed electric wires of Examples 1 to 8 and Comparative Examples 1 to 4 and 6.
  • the heat deformation test was performed by using a heat deformation tester of “three-piece heat deformation tester model number W-3” manufactured by Toyo Seiki Seisakusho Co., Ltd. Specifically, a foamed electric wire cut to a length of 5 cm is placed on a cylindrical jig having a diameter of 9 mm and a length of 5.0 mm, preheated for 1 hour, and then heated to 121 ° C. while pressing the foamed electric wire against the cylindrical jig. Then, a load of 250 g was applied for 1 hour.
  • the heat deformation rate is measured, and based on this heat deformation rate, the acceptance standard achievement rate of the heat deformation rate is expressed by the following formula:
  • the acceptance criterion of the heat deformation rate was 12%. That is, a foamed electric wire having a heat deformation rate of 12% or less was accepted because the heat distortion rate passed standard achievement rate of 100% or more and the heat resistance was improved. Moreover, about the foamed electric wire with a heat deformation rate exceeding 12%, the acceptance standard achievement rate of the heat deformation rate became less than 100%, and since heat resistance was not fully improved, it was set as the rejection.
  • the results are shown in Table 2.
  • the heating deformation rate is expressed by the following formula: (In the formula, Tb represents the thickness of the foamed insulating layer before the heat deformation test, and Ta represents the thickness of the foamed insulating layer after the heat deformation test) Calculated according to
  • VSWR Voltage Standing Wave Ratio
  • the transmission cable thus obtained was cut to prepare 10 2 m transmission cables. And about these 10 transmission cables, the skew was measured using TDR TDS8000 (brand name, Nippon Tektronix Co., Ltd. product), and the average value was computed. The results are shown in Table 2.
  • the degree of foaming is the following formula: Calculated based on As a result, the foaming degree of the foamed insulating layers of the foamed wires obtained in Examples 1 to 8 and Comparative Examples 1 to 4 and 6 was 40%.
  • the “resin before foaming” refers to a mixed resin of the base resin and the MB resin before being introduced into the extruder, or a base resin.
  • the foamed electric wires of Examples 1 to 8 and Comparative Examples 2 to 4 and 6 all had an average foamed cell diameter of less than 40 ⁇ m.
  • the foamed electric wire of Comparative Example 1 had an average foamed cell diameter of 40 ⁇ m or more.
  • the foamed electric wires of Examples 1 to 8 show a pass standard achievement rate of the heating deformation rate of 100% or more, whereas the foamed electric wires of Comparative Examples 1 to 4 and 6 are less than 100% of the heat deformation. It showed the success criteria achievement rate. From this, it was found that the foamed electric wires of Examples 1 to 8 can realize sufficient miniaturization of the foamed cells and have sufficient heat resistance as compared with the foamed electric wires of Comparative Examples 1 to 4 and 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Insulating Materials (AREA)
  • Communication Cables (AREA)

Abstract

 本発明は、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができる発泡電線等を提供するものである。本発明の発泡電線は、導体と、導体を被覆する発泡絶縁層とを備え、発泡絶縁層が、150℃以上の融点を有する高融点プロピレン系樹脂からなるベース樹脂と、熱分解型化学発泡剤及び、135℃以下の融点を有する低融点プロピレン系樹脂を含むマスターバッチとを混練し、低融点プロピレン系樹脂を溶融させた後、熱分解型化学発泡剤を熱分解させて発泡させることにより得られるものであり、高融点プロピレン系樹脂及び低融点プロピレン系樹脂からなる樹脂全体における低融点プロピレン系樹脂の配合比率が20質量%未満である発泡電線である。

Description

発泡電線及びこれを有する伝送ケーブル
 本発明は、発泡電線及びこれを有する伝送ケーブルに関する。
 USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどに使用される発泡電線の発泡絶縁層には、細径で耐熱性が高く、微細発泡成形が可能であることが求められる。
 このような発泡絶縁層として、従来、ポリプロピレン系樹脂を溶融させ、これにアゾジカルボンアミドなどの化学発泡剤を供給し、これらを均一に混練することによって得られるものが知られている(下記特許文献1)。
特開2006-45268号公報
 しかし、上記特許文献1に記載の発泡絶縁層を得る場合、プロピレン系樹脂の融点が高いため、プロピレン系樹脂と化学発泡剤との混練時において、化学発泡剤が均一に混練される前に分解して発泡してしまい、化学発泡剤をプロピレン系樹脂に直接練り込むことができない。
 ここで、化学発泡剤を高濃度に含むマスターバッチをプロピレン系樹脂と混練することが考えられる。このとき、マスターバッチの樹脂としてポリエチレンを用いると、ポリエチレンは低い融点を有するため、比較的低い温度でポリエチレンの溶融が起こる。このため、プロピレン系樹脂とマスターバッチとの混練時に化学発泡剤が分解せず発泡が起こりにくい。一方、マスターバッチ樹脂としてプロピレン系樹脂を用いると、一般にプロピレン系樹脂はポリエチレンに比べて高い融点を有するため、プロピレン系樹脂を溶融させるために高い温度をマスターバッチに与える必要がある。この場合、化学発泡剤をプロピレン系樹脂に直接練り込むのと同様、化学発泡剤が分解し発泡が起こってしまう。
 従って、化学発泡剤を高濃度に含むマスターバッチをプロピレン系樹脂と混練する場合には、マスターバッチの樹脂としてポリエチレン、特に低密度ポリエチレンを用いざるを得ないと考えられる。
 しかし、マスターバッチの樹脂としてポリエチレンを用いると、発泡セルの十分な微細化は実現できるものの、得られる発泡絶縁層の耐熱性が低下するため、これを用いた発泡電線の耐熱性も低下する。
 本発明は、上記事情に鑑みてなされたものであり、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができる発泡電線及びこれを有する伝送ケーブルを提供することを目的とする。
 本発明者は上記課題を解決するため鋭意研究を重ねた結果、マスターバッチの樹脂として、低い融点を有する低融点プロピレン系樹脂を用い、且つ樹脂全体における低融点プロピレン系樹脂の配合比率を所定値未満とすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち本発明は、導体と、前記導体を被覆する発泡絶縁層とを備える発泡電線であって、前記発泡絶縁層が、150℃以上の融点を有する高融点プロピレン系樹脂からなるベース樹脂と、熱分解型化学発泡剤及び135℃以下の融点を有する低融点プロピレン系樹脂を含むマスターバッチとを混練し前記低融点プロピレン系樹脂を溶融させた後、前記熱分解型化学発泡剤を熱分解させて発泡させることにより得られるものであり、前記高融点プロピレン系樹脂及び前記低融点プロピレン系樹脂からなる樹脂全体における前記低融点プロピレン系樹脂の配合比率が20質量%未満であること、を特徴とする発泡電線である。
 この発泡電線によれば、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができる。
 上記発泡電線においては、前記高融点プロピレン系樹脂及び前記低融点プロピレン系樹脂からなる樹脂全体における前記低融点プロピレン系樹脂の配合比率が5質量%以下であることが好ましい。この場合、配合比率が上記範囲外にある場合に比べて、発泡セルのより十分な微細化が可能となるとともに、より優れた耐熱性を得ることができる。
 上記発泡電線においては、前記発泡絶縁層中の前記樹脂の破断時における溶融張力が20~50mNであることが好ましい。発泡絶縁層中の樹脂の破断時における溶融張力が20mN以上であると、発泡セルのより十分な微細化が可能になる。一方、発泡絶縁層中の樹脂の破断時における溶融張力が50mN以下であると、樹脂の押出時において発泡度が低くなりにくい傾向にある。
 上記発泡電線においては、前記ベース樹脂が、プロピレンとプロピレン以外のα-オレフィンとの共重合体であり、この共重合体がブロック共重合体を含むことが好ましい。共重合体がブロック共重合体を含むと、ブロック共重合体を含まない場合に比べて、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。
 また上記発泡電線においては、前記発泡絶縁層の外径が1.6mm以下であることが好ましい。
 上記発泡電線において、前記低融点プロピレン系樹脂が、プロピレンとα-オレフィンとのランダム共重合体であることが好ましい。この場合、低融点プロピレン系樹脂がプロピレンとα-オレフィンとのランダム共重合体でない場合と比べて、耐熱性や硬度が高いという利点がある。
 また本発明は、上記発泡電線を有する伝送ケーブルである。この伝送ケーブルによれば、伝送損失を低減できるとともに、優れた耐熱性を得ることができる。
 なお、本発明において、「破断時における溶融張力」とは、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて測定した溶融張力であり、詳細には内径1.0mm、長さ10mmのフラットキャピラリーに樹脂を充填し、ピストンスピード5mm/分、バレル内径9.55mm、引取加速度400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定してからバレルに樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始し、上記引取加速度で加速して引き取り、破断したときの張力を測定し、これを10回行って得られた張力の測定値の平均値を言うものとする。なお、フラットキャピラリー又はバレルに充填される「樹脂」とは、ベース樹脂とマスターバッチ中の樹脂との混合樹脂のことを言うものとする。
 本発明によれば、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができる発泡電線及びこれを有する伝送ケーブルが提供される。
本発明の発泡電線の一実施形態を示す部分側面図である。 図1のII-II線に沿った断面図である。
 以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。
 図1は、本発明に係る発泡電線の一実施形態を示す部分側面図であり、伝送ケーブルとしての同軸ケーブルに発泡電線を適用した例を示すものである。図2は、図1のII-II線に沿った断面図である。図1に示すように、伝送ケーブル10は同軸ケーブルを示しており、発泡電線5と、発泡電線5を包囲する外部導体3と、外部導体3を被覆するシース4とを備えている。そして、発泡電線5は、内部導体1と、内部導体1を被覆する発泡絶縁層2とを有している。
 ここで、発泡絶縁層2は、150℃以上の融点を有する高融点プロピレン系樹脂からなるベース樹脂と、熱分解型化学発泡剤及び135℃以下の融点を有する低融点プロピレン系樹脂を含むマスターバッチとを混練し、低融点プロピレン系樹脂を溶融させた後、熱分解型化学発泡剤を熱分解させて発泡させることにより得られるものである。ここで、高融点プロピレン系樹脂及び低融点プロピレン系樹脂からなる樹脂全体における低融点プロピレン系樹脂の配合比率は20質量%未満となっている。
 このような構成を有する発泡電線5によれば、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができる。
 次に、伝送ケーブル10の製造方法について説明する。
 まず発泡電線5の製造方法について説明する。
 (内部導体)
 はじめに内部導体1を準備する。内部導体1としては、例えば銅線、銅合金線、アルミニウム線等の金属線が挙げられる。また、上記金属線の表面にスズや銀等のめっきを施したものを内部導体1として用いることもできる。また内部導体1としては、単線または撚線を用いることができる。
 (発泡絶縁層)
 次に、内部導体1上に発泡絶縁層2を形成する。
 発泡絶縁層2を形成するためには、150℃以上の融点を有する高融点プロピレン系樹脂からなるベース樹脂と、熱分解型化学発泡剤及び135℃以下の融点を有する低融点プロピレン系樹脂を含むマスターバッチとを準備する。
 ここで、ベース樹脂について説明する。
 高融点プロピレン系樹脂とは、150℃以上の融点を有するプロピレン系樹脂を言う。ここで、融点が150℃未満であると、発泡電線5の耐熱性が顕著に低下する。また高融点プロピレン系樹脂の融点は、155℃以上であることが好ましく、160℃以上であることがより好ましい。但し、高融点プロピレン系樹脂の融点は、170℃以下であることが、耐熱性と、耐低温脆化や耐屈曲性とのバランスを良好に保てるという理由から好ましい。
 プロピレン系樹脂とは、プロピレンに由来する構成単位を含む樹脂を言う。従って、このようなプロピレン系樹脂には、プロピレンの単独重合により得られるホモポリプロピレン、プロピレン以外のオレフィンとプロピレンとの共重合体、これらの2種以上の混合物が含まれる。プロピレン以外のオレフィンとしては、例えばエチレン、1-ブテン、2-ブテン、1-ヘキセン、2-ヘキセンなどが挙げられる。中でも、エチレン、1-ブテン、1-ヘキセンなどのα-オレフィンが、発泡セルのより十分な微細化を実現し、より優れた耐熱性を得る観点から好ましく用いられ、より好ましくはエチレンが用いられる。
 プロピレン系樹脂が、プロピレン以外のオレフィンとプロピレンとの共重合体である場合、この共重合体は、ブロック共重合体を含むものであってもよく、ランダム共重合体を含むものであってもよいが、共重合体はブロック共重合体を含むことが好ましい。共重合体がブロック共重合体を含むと、ブロック共重合体を含まない場合に比べて、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。
 ここで、共重合体は、ブロック共重合体のみで構成されてもよく、ブロック共重合体とランダム共重合体との混合物で構成されてもよいが、ブロック共重合体のみで構成されることが好ましい。この場合、共重合体がブロック共重合体とランダム共重合体との混合物で構成される場合と比較して、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。
 次にマスターバッチについて説明する。
 マスターバッチは、低融点プロピレン系樹脂と熱分解型化学発泡剤とを含む。低融点プロピレン系樹脂とは、135℃以下の融点を有するプロピレン系樹脂を言う。ここで、融点が135℃を超えると、マスターバッチを製造する過程でプロピレン系樹脂を高温で溶融する必要が生じ、化学発泡剤が熱分解してしまう。その結果、得られる発泡絶縁層2において発泡ムラが生じ、高周波特性が大きく低下する。また低融点プロピレン系樹脂の融点は、130℃以下であることが好ましく、127℃以下であることがより好ましい。但し、低融点プロピレン系樹脂の融点は、120℃以上であることが、製造上の取り扱いやすさの観点から好ましい。
 このような低融点のプロピレン系樹脂には、高融点プロピレン系樹脂と同様に、プロピレンの単独重合により得られるホモポリプロピレン、プロピレン以外のオレフィンとプロピレンとの共重合体が含まれる。低融点プロピレン系樹脂には、これらの2種以上の混合物も含まれる。プロピレン以外のオレフィンとしては、例えばエチレン、1-ブテン、2-ブテン、1-ヘキセン、2-ヘキセンなどが挙げられる。中でも、エチレン、1-ブテン、1-ヘキセンどのα-オレフィンが、微細発泡化及び耐熱性の観点から好ましく用いられ、より好ましくはエチレンが用いられる。
 低融点プロピレン系樹脂が、プロピレン以外のオレフィンとプロピレンとの共重合体である場合、この共重合体は、ブロック共重合体を含むものであってもよく、ランダム共重合体を含むものであってもよいが、共重合体はランダム共重合体を含むことが好ましい。共重合体がランダム共重合体を含むと、ランダム共重合体を含まない場合に比べて共重合体の融点をより低下させることができ、熱分解型化学発泡剤を熱分解させることなくマスターバッチを容易に得ることができる。また、優れた耐低温脆化特性や耐屈曲性が得られる。
 ここで、共重合体は、ランダム共重合体のみで構成されてもよく、ランダム共重合体とブロック共重合体との混合物で構成されてもよいが、ランダム共重合体のみで構成されることが好ましい。この場合、共重合体がランダム共重合体とブロック共重合体との混合物で構成される場合と比較して、共重合体の融点をより低下させることができ、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。ここで、低融点プロピレン系樹脂がα-オレフィンとプロピレンとのランダム共重合体であることが、耐熱性と、耐低温脆化特性や耐屈曲性とのバランスをより良好に保てる点からより好ましい。
 上記低融点プロピレン系樹脂は通常、プロピレンの単独重合、又はプロピレンと他のオレフィンとの共重合の際に、触媒としてメタロセン触媒を使用することにより得ることができる。
 熱分解型化学発泡剤としては、熱分解してNH3、N2、CO2等のガスを発生するものであればよく、例えば、アゾジカルボンアミド(以下、「ADCA」と呼ぶ)、4,4’-オキシビスベンゼンスルホニルヒドラジド、N,N’-ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル等が挙げられる。中でも、アゾジカルボンアミドが、熱分解温度が高く、低融点プロピレン系樹脂の融点と熱分解温度との差がより大きくなり、マスターバッチを製造する過程において化学発泡剤の熱分解を十分に抑制できるため好ましい。
 マスターバッチ中の熱分解型化学発泡剤の含有率は通常、1~40質量%であり、好ましくは2~20質量%であり、より好ましくは3~15質量%である。
 マスターバッチを得るためには、低融点プロピレン系樹脂と熱分解型化学発泡剤とを押出機に導入して混練すればよい。そのためには、低融点プロピレン系樹脂及び熱分解型化学発泡剤を、低融点プロピレン系樹脂の融点以上の温度に加熱して混練すればよい。但し、混練中に熱分解型化学発泡剤が熱分解すると、発泡絶縁層2において発泡ムラが生じるおそれがある。そのため、混練は、150℃以下の温度で行うことが好ましい。例えば熱分解型化学発泡剤としてADCAを用いる場合には、混練は、130℃~145℃の温度で行うことが好ましい。
 上記のようにしてベース樹脂とマスターバッチを準備した後は、マスターバッチと高融点プロピレン系樹脂とを混練する。このとき、高融点プロピレン系樹脂及び低融点プロピレン系樹脂からなる樹脂全体における低融点プロピレン系樹脂の配合比率は20質量%未満とする。これは、配合比率が20質量%以上になると、発泡電線5の耐熱性を十分に向上させることができなくなるためである。
 ここで、高融点プロピレン系樹脂及び低融点プロピレン系樹脂からなる樹脂全体における低融点プロピレン系樹脂の配合比率は5質量%以下であることが好ましい。この場合、配合比率が上記範囲外にある場合に比べて、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。但し、低融点プロピレン系樹脂の配合比率は、2質量%以上であることが、安定した押出成形性の点から好ましい。
 また上記のマスターバッチとベース樹脂とを混練する場合には、まずマスターバッチ中の低融点プロピレン系樹脂を溶融させる。このとき、熱分解型化学発泡剤を熱分解させないようにする。こうして熱分解型化学発泡剤を樹脂中に均一に分散させた後、熱分解型化学発泡剤を熱分解温度以上の温度に加熱して熱分解させ、分解ガスを発生させる。そして、分解ガスを含有した樹脂を押し出しながら発泡させて、この押出物で内部導体1を被覆する。こうして内部導体1上に発泡絶縁層2が得られる。
 上記発泡電線5においては、発泡絶縁層2中の樹脂の破断時における溶融張力が20mN以上であると、発泡セルのより十分な微細化が可能になるという理由から好ましく、25mN以上であることがより好ましい。但し、樹脂の破断時における溶融張力が大きすぎると、樹脂の押出時において発泡度が低くなりやすい傾向にあるため、溶融張力は50mN以下であることが好ましく、35mN以下であることがより好ましい。
 破断時における樹脂の溶融張力は、例えば押出機のダイス出口における樹脂の温度を調整することで調整することができる。
 発泡絶縁層2の外径は、発泡電線10が高周波ケーブルに使用される場合には、1.6mm以下であることが好ましく、1.0mm以下であることがより好ましい。
 なお、ベース樹脂のペレットの平均粒径は通常は0.2~3mm、好ましくは0.5~1.5mm、より好ましくは0.8~1.3mmであり、熱分解型化学発泡剤の粒度分布は、よりシャープな粒度分布であることが好ましく、熱分解型化学発泡剤の平均粒径は3~10μmであることが好ましい。この場合、ベース樹脂とマスターバッチとを混練する場合に、発泡剤がベース樹脂中に均一に分散され、その結果、得られる発泡絶縁層2の外径変動をより十分に抑制することができる。このことは特に発泡電線5の発泡絶縁層2が1.6mm以下の細径である場合に特に有用である。
 (外部導体)
 次に、上記のようにして得られた発泡電線5を包囲するように外部導体3を形成する。外部導体3としては、従来より使用されている公知のものを使用することができる。例えば外部導体3は、導線や、導電シートを樹脂シートの間に挟んで構成したテープなどを絶縁層2の外周に沿って巻くことなどによって形成することができる。また、外部導体3は、コルゲート加工、即ち波形成形した金属管で構成することもできる。この場合には、発泡電線5の屈曲性を向上させることができる。
 (シース)
 最後にシース4を形成する。シース4は、外部導体3を物理的又は化学的な損傷から保護するものであり、シース4を構成する材料としては、例えばフッ素樹脂、ポリエチレン、ポリ塩化ビニル等の樹脂が挙げられるが、環境性等の観点からポリエチレン樹脂等のハロゲンフリー材料が好ましく用いられる。
 以上のようにして伝送ケーブル10が得られる。
 なお、本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、発泡電線5が、伝送ケーブルとしての同軸ケーブルに適用された例が示されているが、発泡電線5は、USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどにも適用可能である。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、表1中の数値の単位は、特に明示していない場合には「質量%」である。
 (実施例1)
 まずベース樹脂として、165℃の融点を有するエチレン-プロピレン共重合体(商品名:FB5100、日本ポリプロ株式会社製。以下、「EP共重合体」と呼ぶ)を用意した。
 一方、マスターバッチ樹脂(MB樹脂)としての、125℃の融点を有するランダム共重合体(商品名:WFX4TC、日本ポリプロ株式会社製)及び熱分解型化学発泡剤としてのアゾジカルボンアミド(ADCA)を押出機(製品名:ラボプラストミルD2020、スクリュー径(D):φ20mm、有効スクリュー長(L):400mm、東洋精機製作所社製)に投入した。このとき、ADCAは、ランダム共重合体100質量部に対して6質量部を添加した。そして、下記条件で溶融押出を行い、溶融押出物をペレタイザーでカットし、ペレット状のマスターバッチを得た。なお、MB樹脂であるWFX4TCは、エチレンとプロピレンとのランダム共重合体である。
 混練温度:140℃
 スクリュー速度:20rpm
 そして、ベース樹脂であるEP共重合体とマスターバッチとを上記の押出機とは異なる押出機(スクリュー径(D):φ25mm、有効スクリュー長(L):800mm、聖製作所社製)に投入し、押出成形を行った。このとき、押出機の投入口から下流側に向かって80mmの部分(以下、「第1部分」と呼ぶ)を160℃に設定し、そのさらに下流側160mmの部分(以下、「第2部分」と呼ぶ)を190℃に設定することにより、第1部分でマスターバッチ中のMB樹脂を溶融した後、第2部分でADCAを熱分解するようにした。またベース樹脂とマスターバッチとを押出機に投入する際には、ベース樹脂と、マスターバッチ中のMB樹脂とからなる樹脂全体に対してMB樹脂の配合比率が表1に示す通りとなるようにした。
 そして、押出機から押出物をチューブ状に押し出し、このチューブ状の押出物で直径0.32mmの導体を被覆した。こうして導体と、導体を被覆する外径0.92mm、厚さ0.3mmの発泡絶縁層とからなる発泡電線を作製した。
 (実施例2)
 ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (実施例3)
 ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (実施例4)
 MB樹脂を、WFX4TCからWFW4(商品名、日本ポリプロ株式会社製)に変更し、マスターバッチを、MB樹脂とADCAとを以下の条件で溶融押出することにより得たこと以外は実施例1と同様にして発泡電線を作製した。
 混練温度:150℃
 スクリュー速度:20rpm
 (実施例5)
 ベース樹脂を、FB5100から、EPブロック共重合体であるFB3312(商品名、mp:165℃、日本ポリプロ株式会社製)に変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (実施例6)
 ベース樹脂を、FB5100から、FB5100とEPランダム共重合体であるF227D(商品名:、mp:150℃、プライムポリプロ株式会社製)との混合物に変更し、FB5100とEPランダム共重合体とMB樹脂との配合比率を表1に示すように変更し、ベース樹脂とマスターバッチとを以下のようにして混練したこと以外は実施例1と同様にして発泡電線を作製した。即ちベース樹脂とマスターバッチとの混練は、押出機の第1部分を145℃に設定し、そのさらに下流側の第2部分を180℃に設定することにより、第1部分でマスターバッチ中のMB樹脂を溶融した後、第2部分でADCAを熱分解するようにして行った。
 (実施例7)
 ベース樹脂を、FB5100から、FB5100とホモポリプロピレンであるF113G(商品名、mp:165℃、プライムポリプロ株式会社製)との混合物に変更し、FB5100とホモポリプロピレンとMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (実施例8)
 ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (比較例1)
 ベース樹脂を、FB5100から、130℃の融点を有する高密度ポリエチレン(HDPE)に変更し且つマスターバッチを用いず、ベース樹脂100質量部に対してADCAを0.6質量部の割合で添加し、ベース樹脂とADCAとを以下のようにして混練したこと以外は実施例1と同様にして発泡電線を作製した。即ちベース樹脂とADCAとの混練は、押出機の第1部分を145℃に設定し、そのさらに下流側の第2部分を180℃に設定することにより、第1部分でマスターバッチ中のMB樹脂を溶融した後、第2部分でADCAを熱分解するようにして行った。上記HDPEとしては、ハイゼックス(登録商標)5305E(商品名、三井化学株式会社製)を用いた。
 (比較例2)
 MB樹脂を、WFX4TCから、110℃の融点を有する低密度ポリエチレン(LDPE)に変更し、ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。上記LDPEとしては、F522N(商品名、宇部興産株式会社製)を用いた。
 (比較例3)
 MB樹脂を、WFX4TCから、比較例1のベース樹脂として用いたHDPEに変更し、マスターバッチを、MB樹脂とADCAとを以下の条件で溶融押出することにより得たこと以外は実施例1と同様にして発泡電線を作製した。
 混練温度:150℃
 スクリュー速度:20rpm
 (比較例4)
 ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 (比較例5)
 MB樹脂を、実施例1のベース樹脂として用いたFB5100に変更し、MB樹脂とADCAとの混練温度を180℃に変更したこと以外は実施例1と同様にしてマスターバッチの作製を試みた。しかし、マスターバッチを作製する過程でマスターバッチ中のADCAが熱分解して発泡し、マスターバッチを作製することができず、その結果、発泡電線を作製することもできなかった。
 (比較例6)
 ベース樹脂とMB樹脂との配合比率を表1に示すように変更したこと以外は実施例1と同様にして発泡電線を作製した。
 [特性評価]
 実施例1~8及び比較例1~4及び6で得られた発泡電線について、以下の特性を評価した。なお、比較例5は、発泡絶縁層を作成することができなかったため、特性評価の対象とはしていない。
 (1)破断時における溶融張力
 実施例1~8、比較例1~4及び6で得られた発泡電線について以下のようにして破断時における溶融張力を測定した。
 即ち、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて溶融張力を測定した。詳細には内径1.0mm、長さ10mmのフラットキャピラリーに樹脂を充填し、ピストンスピード5mm/分、バレル内径9.55mm、引取加速度400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定してからバレルに樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始し、上記引取加速度で加速して引き取り、破断したときの張力を測定し、これを10回行って得られた張力の測定値の平均値を算出した。結果を表1に示す。なお、フラットキャピラリー又はバレルに充填される「樹脂」とは、ベース樹脂とマスターバッチ中の樹脂との混合樹脂とする。
 (2)平均発泡セル径
 実施例1~8、比較例1~4及び6の発泡電線から発泡絶縁層の一部を切り取り、その発泡絶縁層の断面を、走査型電子顕微鏡を用いて観察した。そして、無作為に選択した100個の発泡セルのそれぞれについてセル径を下記式:
Figure JPOXMLDOC01-appb-M000001
に基づいて測定した。そして、100個の発泡セルのセル径の平均値を「平均発泡セル径」として算出した。結果を表2に示す。なお、表2において、平均発泡セル径が40μm未満である発泡絶縁層を有する発泡電線を合格とし、平均発泡セル径が40μm以上である発泡絶縁層を有する発泡電線を不合格とした。
 (3)耐熱性
 耐熱性は、実施例1~8、比較例1~4及び6の発泡電線について加熱変形試験を行うことによって評価した。加熱変形試験は、東洋精機製作所株式会社製の「三個掛加熱変形試験機型番W-3」の加熱変形試験機を用いることによって行った。具体的には、直径9mm、長さ5.0mmの円柱ジグの上に、長さ5cmに切断した発泡電線を載せて1時間予熱した後、この発泡電線を円柱ジグに押し付けながら121℃に加熱して1時間にわたって250gの荷重をかけることにより行った。こうして加熱変形率を測定し、この加熱変形率に基づき、加熱変形率の合格基準達成率を、下記式:
Figure JPOXMLDOC01-appb-M000002
により算出した。ここで、加熱変形率の合格基準は12%とした。即ち加熱変形率が12%以下である発泡電線については加熱変形率の合格基準達成率が100%以上となり、耐熱性が向上したことになるので合格とした。また加熱変形率が12%を超える発泡電線については加熱変形率の合格基準達成率が100%未満となり、耐熱性が十分向上していないことになるので不合格とした。結果を表2に示す。なお、加熱変形率は、下記式:
Figure JPOXMLDOC01-appb-M000003
(式中、Tbは加熱変形試験前の発泡絶縁層の厚さ、Taは加熱変形試験後の発泡絶縁層の厚さを示す)
に従って算出した。
 (4)外径変動幅
 実施例1~8、比較例1~4及び6で得られた長さ2000mの発泡電線について、外径の最大値及び最小値を、外径測定器(キーエンス社製高速高精度デジタル測定器LS-7000シリーズ)を用いて測定し、下記式:
Figure JPOXMLDOC01-appb-M000004
により外径変動幅を算出した。結果を表2に示す。
 (5)VSWR(Voltage Standing Wave Ratio)
 実施例1~8、比較例1~4及び6で得られた発泡電線を、スズめっきされた編組からなる外部導体で被覆した後、外部導体を、オレフィン系ノンハロ材ANA9897N(商品名、リケンテクノス社製)からなるシースで押出被覆して同軸ケーブルを作製した。こうして得られた同軸ケーブルを切断し、3mの同軸ケーブルを10本用意した。そして、これら10本の同軸ケーブルについて、ネットワークアナライザ8722ES(商品名、アジレントテクノロジー株式会社製)を用いてVSWRを測定し、その測定値の平均値を算出した。このとき、周波数範囲は100MHz~5GHzとした。結果を表2に示す。
 (6)スキュー
 実施例1~8、比較例1~4及び6で得られた発泡電線を2本平行に配列させ、これらをドレインワイヤとともに、アルミニウム層とポリエチレンテレフタレート層との積層体からなる厚さ22μmのラミネートテープで巻回した。次に、これを、外径0.8mmの2本の電力線とともに、厚さ25μmのアルミニウムテープ層で巻回した後、編組層で覆い、さらにオレフィン系ノンハロ材ANA9897N(商品名、リケンテクノス社製)からなるシースで被覆した。こうしてTwinaxタイプの伝送ケーブルを作製した。こうして得られた伝送ケーブルを切断し、2mの伝送ケーブルを10本用意した。そして、これら10本の伝送ケーブルについて、TDR TDS8000(商品名、日本テクトロニクス株式会社製)を用いてスキューを測定し、その平均値を算出した。結果を表2に示す。
 (7)発泡度
 発泡度は下記式:
Figure JPOXMLDOC01-appb-M000005
に基づいて算出した。その結果、実施例1~8、比較例1~4及び6で得られた発泡電線の発泡絶縁層における発泡度はすべて40%であった。ここで、「発泡前の樹脂」とは、押出機に投入する前のベース樹脂及びMB樹脂の混合樹脂、又は、ベース樹脂のことを言う。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表2に示す結果より、実施例1~8及び比較例2~4,6の発泡電線はいずれも、平均発泡セル径が40μm未満であった。これに対し、比較例1の発泡電線は平均発泡セル径が40μm以上であった。また実施例1~8の発泡電線は、100%以上の加熱変形率の合格基準達成率を示しており、これに対し、比較例1~4,6の発泡電線は、100%未満の加熱変形率の合格基準達成率を示していた。このことから、実施例1~8の発泡電線は、比較例1~4,6の発泡電線に比べて発泡セルの十分な微細化が実現でき、且つ十分な耐熱性を有することが分かった。
 なお、同軸ケーブルについて測定したVSWR、及び、二芯平行線について測定したスキューについては、実施例1~8及び比較例1~4,6のいずれも良好な結果を示していた。
 以上より、本発明の発泡電線によれば、発泡セルの十分な微細化を実現しながら優れた耐熱性を得ることができることが確認された。
 1…内部導体(導体)、2…発泡絶縁層、5…発泡電線。
 

 

Claims (6)

  1.  導体と、
     前記導体を被覆する発泡絶縁層とを備える発泡電線であって、
     前記発泡絶縁層が、
     150℃以上の融点を有する高融点プロピレン系樹脂からなるベース樹脂と、
     熱分解型化学発泡剤及び、135℃以下の融点を有する低融点プロピレン系樹脂を含むマスターバッチとを混練し、
     前記低融点プロピレン系樹脂を溶融させた後、前記熱分解型化学発泡剤を熱分解させて発泡させることにより得られるものであり、
     前記高融点プロピレン系樹脂及び前記低融点プロピレン系樹脂からなる樹脂全体における前記低融点プロピレン系樹脂の配合比率が20質量%未満であること、
    を特徴とする発泡電線。
  2.  前記高融点プロピレン系樹脂及び前記低融点プロピレン系樹脂からなる樹脂全体における前記低融点プロピレン系樹脂の配合比率が5質量%以下であること、
    を特徴とする請求項1に記載の発泡電線。
  3.  前記発泡絶縁層中の前記樹脂の破断時における溶融張力が20~50mNであること、
    を特徴とする請求項1又は2に記載の発泡電線。
  4.  前記ベース樹脂が、プロピレンとプロピレン以外のα-オレフィンとの共重合体であり、この共重合体がブロック共重合体を含む、請求項1~3のいずれか一項に記載の発泡電線。
  5.  前記発泡絶縁層の外径が1.6mm以下である、請求項1~4のいずれか一項に記載の発泡電線。
  6.  請求項1~5のいずれか一項に記載の発泡電線を有する伝送ケーブル。

     
PCT/JP2010/061533 2009-07-07 2010-07-07 発泡電線及びこれを有する伝送ケーブル WO2011004839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080022602.7A CN102439668B (zh) 2009-07-07 2010-07-07 发泡电线及包含该发泡电线的传输电缆
JP2011521942A JP5420663B2 (ja) 2009-07-07 2010-07-07 発泡電線及びこれを有する伝送ケーブル
US13/343,189 US8822825B2 (en) 2009-07-07 2012-01-04 Foamed electric wire and transmission cable having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009161244 2009-07-07
JP2009-161244 2009-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/343,189 Continuation US8822825B2 (en) 2009-07-07 2012-01-04 Foamed electric wire and transmission cable having same

Publications (1)

Publication Number Publication Date
WO2011004839A1 true WO2011004839A1 (ja) 2011-01-13

Family

ID=43429263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061533 WO2011004839A1 (ja) 2009-07-07 2010-07-07 発泡電線及びこれを有する伝送ケーブル

Country Status (4)

Country Link
US (1) US8822825B2 (ja)
JP (1) JP5420663B2 (ja)
CN (1) CN102439668B (ja)
WO (1) WO2011004839A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056041B1 (ja) * 2015-08-20 2017-01-11 株式会社潤工社 ケーブルコア及び伝送ケーブル
JP6342044B1 (ja) * 2017-06-26 2018-06-13 東京特殊電線株式会社 フレキシブルフラットケーブル、その製造方法、及びその製造に用いる未発泡絶縁テープ
JP7227252B2 (ja) * 2017-12-28 2023-02-21 ダウ グローバル テクノロジーズ エルエルシー オレフィンマルチブロックコポリマー/シリコーンゴム組成物およびそれから形成された発泡体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372008A (ja) * 1986-09-16 1988-04-01 三菱電線工業株式会社 発泡絶縁ケ−ブルの製造方法
JPH02291605A (ja) * 1989-02-15 1990-12-03 Sumitomo Electric Ind Ltd 絶縁電線
JPH0817255A (ja) * 1994-07-04 1996-01-19 Hitachi Cable Ltd 発泡絶縁電線及びその製造方法
JPH10120835A (ja) * 1996-10-16 1998-05-12 Nippon Unicar Co Ltd 不活性ガス発泡法による高発泡絶縁ポリエチレン被覆電線製造用の発泡性樹脂組成物及びこれを被覆して作った高発泡絶縁ポリエチレン被覆電線
JP2003002998A (ja) * 2001-06-19 2003-01-08 Daicel Chem Ind Ltd 生分解性樹脂を用いた化学発泡剤マスターバッチ
JP2007131693A (ja) * 2005-11-09 2007-05-31 Sekisui Chem Co Ltd 発泡性マスターバッチ、この発泡性マスターバッチの製造方法およびこの発泡性マスターバッチを用いた射出発泡成形体の製造方法
JP2008019379A (ja) * 2006-07-14 2008-01-31 Fujikura Ltd 発泡用樹脂組成物用のマスターバッチ、発泡同軸ケーブル及びその製造方法
JP2009520608A (ja) * 2005-12-22 2009-05-28 プリスミアン・カビ・エ・システミ・エネルジア・ソチエタ・ア・レスポンサビリタ・リミタータ 発泡ポリオレフィン絶縁体を含む電気ケーブル及びその製造プロセス

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826899A (en) * 1987-06-15 1989-05-02 E. I. Du Pont De Nemours And Company Low smoke generating, high char forming, flame resistant thermoplastic multi-block copolyesters
US7160949B2 (en) * 2000-01-21 2007-01-09 Mitsui Chemicals, Inc. Olefin block copolymers, processes for producing the same and uses thereof
DE60110910T2 (de) * 2000-06-01 2005-10-20 Idemitsu Kosan Co. Ltd. Rohrförmiges-formprodukt, beschichtungsmaterial zum schutz von elektrischen drähten und harz für extrudiertes profil
US6673869B2 (en) * 2000-07-27 2004-01-06 Basell Poliolefine Italia S.P.A. Transparent elastomeric thermoplastic polyolefin compositions
JP4050480B2 (ja) * 2001-04-10 2008-02-20 矢崎総業株式会社 絶縁電線
EP1295910A1 (en) * 2001-09-25 2003-03-26 Borealis GmbH Insulating foam composition
EP1860129A1 (en) * 2002-01-31 2007-11-28 Mitsubishi Chemical Corporation Soft propylene-based resin composition
DE60326233D1 (de) * 2002-05-13 2009-04-02 Jsp Corp Expandierbares polyproplyenharzteilchen und durch formen im formwerkzeug daraus erhaltene formkörper
CN100482723C (zh) * 2002-05-31 2009-04-29 三井化学株式会社 烯属热塑性弹性体发泡体和制备它的烯属热塑性弹性体组合物
JP4257826B2 (ja) * 2002-09-30 2009-04-22 株式会社ジェイエスピー ポリプロピレン系樹脂発泡成形体の製造方法
ATE509352T1 (de) * 2002-12-11 2011-05-15 Prysmian Spa Elektrisches kabel mit geschäumter halbleitender isolationsabschirmung
AU2005207923B2 (en) * 2004-01-26 2008-08-07 The Procter & Gamble Company Fibers and nonwovens comprising polypropylene blends and mixtures
JP2006045268A (ja) 2004-07-30 2006-02-16 Japan Polypropylene Corp ポリプロピレン系樹脂被覆用発泡体
EP2248852B8 (en) * 2004-11-25 2012-05-16 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
CN1935890A (zh) * 2006-09-21 2007-03-28 成都普天电缆股份有限公司 用于射频同轴电缆的可发泡绝缘材料
AR064670A1 (es) * 2006-12-21 2009-04-15 Dow Global Technologies Inc Polimeros de olefina funcionalizados, composiciones y articulos preparados a partir de ellas y metodos para prepararlos
JP5161481B2 (ja) * 2007-05-02 2013-03-13 株式会社ジェイエスピー 表皮付ポリプロピレン系樹脂発泡成形体
WO2008139874A1 (ja) * 2007-05-08 2008-11-20 Mitsui Chemicals, Inc. プロピレン系樹脂組成物の架橋体および該架橋体の製造方法、ならびに該架橋体からなる架橋成形体
ATE553149T1 (de) * 2007-06-22 2012-04-15 Jsp Corp Polypropylenharzschaumstoffteilchen und formkörper daraus
CN103254514B (zh) * 2007-12-20 2015-11-18 埃克森美孚研究工程公司 全同立构聚丙烯和乙烯-丙烯共聚物的共混物
CN102131848B (zh) * 2008-08-29 2013-02-06 住友化学株式会社 交联发泡成形用树脂组合物、交联发泡成形体及交联发泡成形体的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372008A (ja) * 1986-09-16 1988-04-01 三菱電線工業株式会社 発泡絶縁ケ−ブルの製造方法
JPH02291605A (ja) * 1989-02-15 1990-12-03 Sumitomo Electric Ind Ltd 絶縁電線
JPH0817255A (ja) * 1994-07-04 1996-01-19 Hitachi Cable Ltd 発泡絶縁電線及びその製造方法
JPH10120835A (ja) * 1996-10-16 1998-05-12 Nippon Unicar Co Ltd 不活性ガス発泡法による高発泡絶縁ポリエチレン被覆電線製造用の発泡性樹脂組成物及びこれを被覆して作った高発泡絶縁ポリエチレン被覆電線
JP2003002998A (ja) * 2001-06-19 2003-01-08 Daicel Chem Ind Ltd 生分解性樹脂を用いた化学発泡剤マスターバッチ
JP2007131693A (ja) * 2005-11-09 2007-05-31 Sekisui Chem Co Ltd 発泡性マスターバッチ、この発泡性マスターバッチの製造方法およびこの発泡性マスターバッチを用いた射出発泡成形体の製造方法
JP2009520608A (ja) * 2005-12-22 2009-05-28 プリスミアン・カビ・エ・システミ・エネルジア・ソチエタ・ア・レスポンサビリタ・リミタータ 発泡ポリオレフィン絶縁体を含む電気ケーブル及びその製造プロセス
JP2008019379A (ja) * 2006-07-14 2008-01-31 Fujikura Ltd 発泡用樹脂組成物用のマスターバッチ、発泡同軸ケーブル及びその製造方法

Also Published As

Publication number Publication date
CN102439668B (zh) 2013-03-27
CN102439668A (zh) 2012-05-02
JP5420663B2 (ja) 2014-02-19
US8822825B2 (en) 2014-09-02
US20120138332A1 (en) 2012-06-07
JPWO2011004839A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5975334B2 (ja) 発泡樹脂成形体、発泡絶縁電線及びケーブル並びに発泡樹脂成形体の製造方法
EP2648191B1 (en) Insulated wire and cable
JP2014058625A (ja) 発泡樹脂成形体、発泡絶縁電線及びケーブル並びに発泡樹脂成形体の製造方法
JP5420663B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP5420662B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP6113823B2 (ja) GHz帯域の周波数の信号を伝送する絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
JP5552293B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP5426948B2 (ja) 発泡電線及びこれを有する伝送ケーブル
US8766096B2 (en) Production method of foamed electric wire
JP5687024B2 (ja) 絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
JP5545179B2 (ja) 発泡絶縁電線及びその製造方法
WO2011048974A1 (ja) 発泡電線及びこれを有する伝送ケーブル
JP3962421B1 (ja) 発泡成形方法、発泡同軸ケーブル及び発泡同軸ケーブルの製造方法
JP5489561B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP5212265B2 (ja) 発泡樹脂組成物及びこれを用いた電線・ケーブル
JP5298146B2 (ja) 細径発泡同軸ケーブル
JP5689692B2 (ja) 発泡電線及びこれを有する伝送ケーブル
JP2005302412A (ja) 高周波同軸ケーブル
JP4951704B1 (ja) 伝送ケーブル用絶縁電線及び伝送ケーブル
JP2006286619A (ja) 細径発泡同軸ケーブル
JP2007242589A (ja) 発泡同軸ケーブル
WO2000074934A1 (en) Improved battery cable
JP5926827B2 (ja) 絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
JP5298147B2 (ja) 発泡同軸ケーブル
JP2005154547A (ja) 樹脂組成物及びそれを用いた高周波同軸ケーブル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022602.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521942

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797150

Country of ref document: EP

Kind code of ref document: A1