WO2018174113A1 - 絶縁電線 - Google Patents

絶縁電線 Download PDF

Info

Publication number
WO2018174113A1
WO2018174113A1 PCT/JP2018/011234 JP2018011234W WO2018174113A1 WO 2018174113 A1 WO2018174113 A1 WO 2018174113A1 JP 2018011234 W JP2018011234 W JP 2018011234W WO 2018174113 A1 WO2018174113 A1 WO 2018174113A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
pores
insulated wire
varnish
hollow
Prior art date
Application number
PCT/JP2018/011234
Other languages
English (en)
French (fr)
Inventor
槙弥 太田
雅晃 山内
吉田 健吾
田村 康
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to US16/484,201 priority Critical patent/US10607750B2/en
Priority to CN201880016777.3A priority patent/CN110419083B/zh
Priority to JP2019507725A priority patent/JP7076429B2/ja
Publication of WO2018174113A1 publication Critical patent/WO2018174113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • the present invention relates to an insulated wire.
  • This application claims priority based on Japanese Patent Application No. 2017-58687 filed on Mar. 24, 2017, and incorporates all the description content described in the above Japanese application.
  • an electric device having a high applied voltage for example, a motor used at a high voltage
  • partial discharge corona discharge
  • dielectric breakdown occurs at an early stage, and as a result, the life of the insulated wire and thus the electrical equipment is shortened.
  • the insulated wire used for the electric equipment with a high applied voltage is also required to improve the corona discharge starting voltage in addition to excellent insulation and mechanical strength.
  • An effective way to increase the corona discharge starting voltage is to reduce the dielectric constant of the insulating layer.
  • a heat-cured film (insulating layer) is formed by an insulating varnish containing a coating film constituent resin and a thermally decomposable resin that decomposes at a temperature lower than the baking temperature of the coating film constituent resin. )
  • JP 2012-224714 A has been proposed (see JP 2012-224714 A).
  • pores are formed in the heat-cured film by utilizing the fact that the thermally decomposable resin is thermally decomposed during baking of the coating film-constituting resin and the portions become pores. Low dielectric constant of insulating coating is realized.
  • An insulated wire according to an aspect of the present invention is an insulated wire including a linear conductor and one or more insulating layers stacked on an outer peripheral surface of the conductor, and includes at least one of the one or more insulating layers.
  • One layer contains a plurality of pores, and the independent porosity in the pores is 80% by volume or more.
  • FIG. 2 is a schematic cross-sectional view of pores and outer shells included in the insulated wire of FIG. 1. It is typical sectional drawing of the hollow formation particle
  • the present invention has been made based on the circumstances as described above, and aims to provide an insulated wire that promotes lowering the dielectric constant of an insulating layer and is excellent in insulation, mechanical strength, and solvent resistance. To do.
  • the insulated wire according to one embodiment of the present invention promotes the reduction of the dielectric constant of the insulating layer and is excellent in insulation, mechanical strength, and solvent resistance.
  • An insulated wire according to an aspect of the present invention is an insulated wire including a linear conductor and one or more insulating layers stacked on an outer peripheral surface of the conductor, and includes at least one of the one or more insulating layers.
  • One layer contains a plurality of pores, and the independent porosity in the pores is 80% by volume or more.
  • the insulated wire only needs to include an insulating layer that suppresses communication between pores and satisfies the independent porosity.
  • the pores include an outer shell, and the outer shell is a core-shell structure hollow-forming particle.
  • An insulated wire derived from the shell and having an independent porosity in the pores equal to or higher than the above value is preferable. Due to the presence of the outer shell, an insulating layer including a high ratio of independent pores formed by suppressing communication between pores can be obtained more reliably. The pores thus formed have very small variations in size and shape.
  • the insulated wire can promote a lower dielectric constant than conventional insulated wires having pores formed of a single thermally decomposable resin.
  • the dielectric breakdown voltage can be increased, the insulation is excellent, and the mechanical strength is also excellent. Moreover, solvent resistance can be improved because the pores included in the insulating layer are provided with outer shells at the periphery.
  • independent porosity refers to a value obtained by a measurement method described later.
  • the core-shell structure refers to a structure in which the material forming the core of the particle is different from the material of the shell surrounding the core.
  • the porosity of the insulating layer is preferably 20% by volume or more.
  • porosity means the percentage of the volume of the pores relative to the volume including the pores of the insulating layer.
  • the shape of the pores is preferably a flat sphere.
  • the pores formed in the vertical direction where external force is likely to act are difficult to come into contact with each other, so that the independent porosity can be improved.
  • the “flattened sphere” means that the maximum diagonal length passing through the center of gravity is the major axis, and the minimum diagonal length passing through the center of gravity is the minor axis (the length of the minor axis). It means a sphere, for example, a sphere having a ratio of the minor axis to the major axis in a cross section including the minor axis and the major axis of 0.95 or less.
  • the main component of the outer shell is preferably silicone.
  • silicone means a polymer containing a repeating structure of a siloxane bond in which a silicon atom and an oxygen atom are bonded.
  • the “main component” is a component having the highest content, for example, a component contained in an amount of 50% by mass or more.
  • the insulated wire in FIG. 1 includes a linear conductor 1 and a single insulating layer 2 laminated on the outer peripheral surface of the conductor 1.
  • This insulating layer 2 contains a plurality of pores 3.
  • the insulated wire includes an outer shell 4 at the peripheral edge of the pore 3.
  • the conductor 1 is, for example, a square wire having a square cross section, but may be a round wire having a circular cross section or a stranded wire obtained by twisting a plurality of strands.
  • the material of the conductor 1 is preferably a metal having high electrical conductivity and high mechanical strength.
  • a metal include copper, copper alloy, aluminum, aluminum alloy, nickel, silver, soft iron, steel, and stainless steel.
  • the conductor 1 is a material in which these metals are formed in a linear shape, or a multilayer structure in which such a linear material is coated with another metal, such as a nickel-coated copper wire, a silver-coated copper wire, or a copper-coated aluminum. Wire, copper-coated steel wire, etc. can be used.
  • the insulating layer 2 contains a plurality of pores 3 derived from hollow-forming particles having a core-shell structure described later.
  • the insulating layer 2 is formed of an insulating resin composition, pores 3 scattered in the resin composition, and outer shells 4 at the peripheral edge of the pores 3.
  • the insulating layer 2 is formed by applying and baking an insulating layer forming varnish, which will be described later, on the outer peripheral surface of the conductor 1.
  • the lower limit of the porosity of the insulating layer 2 is preferably 20% by volume, and more preferably 25% by volume.
  • the upper limit of the porosity of the insulating layer 2 is preferably 80% by volume, and more preferably 65% by volume.
  • the porosity (volume%) of the insulating layer 2 is the same as the mass W1 when there is no pore determined by multiplying the apparent volume V1 calculated from the outer shape of the insulating layer 2 by the density ⁇ 1 of the material of the insulating layer 2, and the insulating layer 2 From the actual mass W2 of the layer 2, it can be obtained by the equation of (W1-W2) ⁇ 100 / W1.
  • the lower limit of the independent porosity in the pores 3 is 80% by volume, preferably 85% by volume, and more preferably 90% by volume.
  • the upper limit of the independent porosity in the pores is, for example, 100% by volume.
  • the independent porosity in the pores 3 can be determined by interposing an insulating resin composition between adjacent pores when a cross section of the sample of the insulating layer 2 is observed with a scanning electron microscope (SEM). It is the volume% of the total pores of pores (independent pores) that are not open. This independent porosity (volume%) can be calculated by binarization so as to distinguish the independent pores from the pores other than the independent pores in the SEM photograph of the cross section of the insulating layer.
  • SEM scanning electron microscope
  • the plurality of pores 3 are each covered with an outer shell 4 as shown in FIG. 2, and the outer shell 4 is a core after the core 6 of the core-shell structure shown in FIG. It is composed of a shell 7. That is, the outer shell 4 is derived from the shell 7 of the hollow-forming particle 5 having a core-shell structure. Moreover, at least a part of the outer shells 4 of the plurality of pores 3 has a defect. The defects can be confirmed by SEM photographs of pore cross sections observed with a scanning electron microscope (SEM).
  • the plurality of pores 3 are flat spheres as shown in FIG.
  • the ratio of the pores 3 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 1 is larger.
  • the lower limit of the ratio of the number of pores 3 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 1 with respect to the number of all pores 3 is preferably 60%, more preferably 80%.
  • the pores that are in contact with the formed pores may increase, and the independent porosity may be lowered.
  • the short axis of the pores is oriented in a direction perpendicular to the conductor surface means that the angle difference between the short axis of the pores and the direction perpendicular to the conductor surface is 20 degrees or less.
  • the lower limit of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pore 3 is preferably 0.2 and more preferably 0.3.
  • the upper limit of the average of the above ratio is preferably 0.95, more preferably 0.9. If the average of the above ratios is less than the above lower limit, it is necessary to increase the amount of shrinkage in the thickness direction during baking of the varnish, which may reduce the flexibility of the insulated wire 2. Conversely, if the average of the above ratios exceeds the upper limit, when the porosity is increased, the pores formed in the thickness direction of the insulating layer 2 where external force is likely to act easily come into contact with each other, and the independent porosity is increased.
  • the short diameter and long diameter of the pores 3 can be determined by observing the cross section of the insulating layer 2 with a scanning electron microscope (SEM).
  • the said ratio can be adjusted by changing the pressure added to the hollow formation particle 5 by the shrinkage
  • the pressure applied to the hollow forming particles 5 can be changed depending on, for example, the type of the material that is the main component of the resin composition, the thickness of the insulating layer 2, the material of the hollow forming particles 5, the baking conditions, and the like.
  • the average of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pores is a section including the minor axis and the major axis of, for example, 30 pores 3 included in the insulating layer 2. The ratio of the length of the minor axis to the major axis is calculated and averaged.
  • the lower limit of the average major axis of the pores 3 is not particularly limited, but is preferably 0.1 ⁇ m and more preferably 1 ⁇ m.
  • the upper limit of the average of the major axis is preferably 10 ⁇ m, and more preferably 8 ⁇ m. If the average major axis is less than the lower limit, the insulating layer 2 may not have a desired porosity. On the contrary, if the average of the major axis exceeds the upper limit, it is difficult to make the distribution of the pores 3 in the insulating layer 2 uniform, and the distribution of the dielectric constant is likely to be biased.
  • “the average of the major diameters of the pores” means a value obtained by averaging the major diameters of, for example, thirty pores 3 included in the insulating layer 2.
  • the lower limit of the average of the maximum length in the direction perpendicular to the surface of the conductor 1 in the pore 3 is not particularly limited, but is preferably 0.1 ⁇ m and more preferably 1 ⁇ m.
  • the upper limit of the average of the maximum length in the vertical direction is preferably 10 ⁇ m, and more preferably 8 ⁇ m.
  • the lower limit of the average of the maximum length in the direction parallel to the surface of the conductor 1 in the pores 3 is not particularly limited, but is preferably 0.1 ⁇ m and more preferably 1 ⁇ m.
  • the upper limit of the average of the maximum length in the parallel direction is preferably 10 ⁇ m, and more preferably 8 ⁇ m.
  • both the average of the maximum length in the vertical direction and the average of the maximum length in the parallel direction in the pores 3 are not more than the above upper limit.
  • the average of the maximum lengths in the vertical and parallel directions of the pores 3 can be equal to or less than the above upper limit.
  • the independent porosity in the pores 3 can be improved.
  • the insulation properties and mechanical strength of the insulated wires are increased.
  • the solvent resistance can be further improved.
  • the average of the maximum length in the vertical direction in the pores and the average of the maximum length in the parallel direction means, for example, the maximum length in the direction perpendicular to the surface of the conductor 1 for 30 pores 3 included in the insulating layer 2.
  • the average value of the maximum length in the parallel direction means, for example, the maximum length in the direction perpendicular to the surface of the conductor 1 for 30 pores 3 included in the insulating layer 2.
  • the lower limit of the average diameter of the pores 3 is preferably 0.1 ⁇ m, and more preferably 1 ⁇ m.
  • the upper limit of the average diameter is preferably 10 ⁇ m, more preferably 8 ⁇ m. If the average diameter of the pores 3 is less than the lower limit, a desired porosity may not be obtained in the insulating layer 2. On the contrary, if the average of the major axis exceeds the upper limit, it is difficult to make the distribution of the pores 3 in the insulating layer 2 uniform, and the distribution of the dielectric constant is likely to be biased.
  • the “average diameter of the pores” means a value obtained by calculating and averaging the diameters of true spheres corresponding to the volume of the pores, for example, for 30 pores 3 included in the insulating layer 2.
  • the volume of the pores 3 can be obtained by observing the cross section of the insulating layer 2 with a scanning electron microscope (SEM).
  • the average diameter of the pores 3 is, for example, the kind of the material that is the main component of the resin composition, the thickness of the insulating layer 2, the average particle diameter of the thermally decomposable resin particles used as the core of the hollow forming particles, and the baking conditions. It can be adjusted by changing etc.
  • the average diameter of the pores 3 is preferably narrower from the viewpoint of enhancing the insulation of the insulated wire.
  • the upper limit of the ratio ( ⁇ / D) of the standard deviation ( ⁇ ) of the average diameter to the average diameter (D) of the pores 3 is preferably 0.3, and more preferably 0.1.
  • the lower limit of the ratio is, for example, 0.001.
  • the plurality of outer shells 4 present at the peripheral edges of the plurality of pores 3 are at least partially defective.
  • the pores 3 and the outer shell 4 are derived from hollow forming particles 5 having a core 6 mainly composed of a thermally decomposable resin as shown in FIG. 3 and a shell 7 having a higher thermal decomposition temperature than this thermally decomposable resin. . That is, when the varnish containing the hollow forming particles 5 is baked, the thermally decomposable resin that is the main component of the core 6 is gasified by thermal decomposition and scattered through the shell 7 to form the pores 3 and the outer shell 4. The At this time, the passage of the thermally decomposable resin in the shell 7 exists in the outer shell 4 as a defect.
  • the shape of the defect varies depending on the material and shape of the shell 7, but cracks, cracks and holes are preferable from the viewpoint of enhancing the effect of preventing the pores formed from communicating with the outer shell 4.
  • the insulating layer 2 may include an outer shell 4 that is free from defects. Depending on the outflow condition of the thermally decomposable resin of the core 6 to the outside of the shell 7, a defect may not be formed in the outer shell 4.
  • the insulating layer 2 may include pores 3 that are not covered by the outer shell 4.
  • the lower limit of the average thickness of the insulating layer 2 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the insulating layer 2 is preferably 200 ⁇ m, and more preferably 120 ⁇ m. If the average thickness of the insulating layer 2 is less than the above lower limit, the insulating layer 2 may be broken and the conductor 1 may be insufficiently insulated. Conversely, if the average thickness of the insulating layer 2 exceeds the upper limit, the volume efficiency of a coil or the like formed using the insulated wire may be reduced.
  • the upper limit of the ratio of the dielectric constant of the insulating layer 2 to the dielectric constant of the layer that does not contain pores is 95%. Yes, 90% is preferable, and 80% is more preferable. If the dielectric constant ratio exceeds the upper limit, the corona discharge starting voltage may not be sufficiently improved.
  • the pores 3 included in the insulating layer 2 are thus surrounded by the outer shell 4 and the independent porosity in the pores 3 is high. Since the independent porosity in the pores 3 is high, the insulated wire is excellent in insulation, mechanical strength, and solvent resistance even when the porosity of the insulating layer 2 is increased.
  • the plurality of pores 3 are flat spheres in the insulated wire, the formed pores are difficult to contact each other, and the independent porosity in the pores 3 can be further increased.
  • the insulating layer forming varnish is a varnish used for forming the insulating layer 2 of the insulated wire.
  • the insulating layer forming varnish according to the first embodiment includes a resin composition forming a matrix and hollow-forming particles 5 having a core-shell structure dispersed in the resin composition. 6 is mainly composed of a thermally decomposable resin, and the thermal decomposition temperature of the main component of the shell 7 of the hollow-forming particles 5 is higher than the thermal decomposition temperature of the thermally decomposable resin.
  • the resin composition is a composition containing a main polymer, a diluent solvent, a curing agent, and the like.
  • the main polymer is not particularly limited, but when a thermosetting resin is used, for example, a polyvinyl formal precursor, a thermosetting polyurethane precursor, a thermosetting acrylic resin precursor, an epoxy resin precursor, a phenoxy resin precursor, a heat A cured polyester precursor, a thermosetting polyesterimide precursor, a thermosetting polyesteramideimide precursor, a thermosetting polyamideimide precursor, a polyimide precursor, or the like can be used.
  • thermoplastic resin when using a thermoplastic resin as a main polymer, polyether imide, polyether ether ketone, polyether sulfone, polyimide etc. can be used, for example.
  • polyimide and a polyimide precursor are preferable because the insulating layer forming varnish can be easily applied and the strength and heat resistance of the insulating layer 2 can be easily improved.
  • the diluting solvent a known organic solvent conventionally used for insulating varnish can be used. Specifically, polar organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, ⁇ -butyrolactone and the like are used.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve) ), Ethers such as diethylene glycol dimethyl ether and tetrahydrofuran; hydrocarbons such as hexane, heptane, benzene, toluene and xylene Halogenated hydrocarbons such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two or more. Used.
  • the resin composition may contain a curing agent.
  • Curing agents include titanium-based curing agents, isocyanate compounds, blocked isocyanates, urea and melamine compounds, amino resins, acetylene derivatives, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, aliphatic acid anhydrides, and aromatics. An acid anhydride etc. are illustrated.
  • These curing agents are appropriately selected according to the type of main polymer contained in the resin composition to be used. For example, in the case of polyamideimide, imidazole, triethylamine and the like are preferably used as the curing agent.
  • examples of the titanium-based curing agent include tetrapropyl titanate, tetraisopropyl titanate, tetramethyl titanate, tetrabutyl titanate, and tetrahexyl titanate.
  • isocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, C3-C12 aliphatic diisocyanates such as lysine diisocyanate; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Dicyclohexyl-4,4′-diisocyanate, 1,3-diisocyanatomethylcyclohexane (hydrogenated X I), hydrogenated TDI,
  • Examples thereof include alicyclic isocyanates having 5 to 18 carbon atoms; aliphatic diisocyanates having an aromatic ring such as xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI); and modified products thereof.
  • Examples of the blocked isocyanate include diphenylmethane-4,4′-diisocyanate (MDI), diphenylmethane-3,3′-diisocyanate, diphenylmethane-3,4′-diisocyanate, diphenylether-4,4′-diisocyanate, and benzophenone-4,4.
  • ⁇ -Diisocyanate diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, etc.
  • Examples thereof include compounds obtained by adding a blocking agent such as dimethylpyrazole to the isocyanate group.
  • the melamine compound include methylated melamine, butylated melamine, methylolated melamine, and butyrololized melamine.
  • the acetylene derivative include ethynylaniline and ethynylphthalic anhydride.
  • the hollow forming particle 5 includes a core 6 mainly composed of a thermally decomposable resin and a shell 7 having a higher thermal decomposition temperature than the thermally decomposable resin.
  • the thermally decomposable resin used as the main component of the core 6 for example, resin particles that are thermally decomposed at a temperature lower than the baking temperature of the main polymer are used.
  • the baking temperature of the main polymer is appropriately set according to the type of resin, but is usually about 200 ° C. or higher and 600 ° C. or lower.
  • the lower limit of the thermal decomposition temperature of the thermally decomposable resin used for the core 6 of the hollow forming particles 5 is preferably 200 ° C.
  • the upper limit is preferably 400 ° C.
  • the thermal decomposition temperature means a temperature at which the temperature is increased from room temperature to 10 ° C./min in an air atmosphere and the mass reduction rate becomes 50%.
  • the thermal decomposition temperature can be determined, for example, by measuring the thermogravimetry using a thermogravimetry-differential thermal analyzer (“TG / DTA” manufactured by SII Nano Technology).
  • the heat-decomposable resin used for the core 6 of the hollow-forming particles 5 is not particularly limited.
  • one end of polyethylene glycol, polypropylene glycol, etc., both ends or part thereof are alkylated, (meth) acrylated or epoxidized.
  • Compound (1) having an alkyl group having 1 to 6 carbon atoms such as poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, etc.
  • a polymer of a (meth) acrylic acid ester having an alkyl group having 1 to 6 carbon atoms is preferable in that it is easily thermally decomposed at the baking temperature of the main polymer and easily forms pores 3 in the insulating layer 2.
  • An example of such a polymer of (meth) acrylic acid ester is polymethyl methacrylate (PMMA).
  • the shape of the core 6 is preferably spherical.
  • spherical heat-decomposable resin particles may be used as the core 6.
  • the lower limit of the average particle diameter of the resin particles is not particularly limited, but is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, and even more preferably 1 ⁇ m.
  • the upper limit of the average particle diameter of the resin particles is preferably 15 ⁇ m and more preferably 10 ⁇ m. If the average particle diameter of the resin particles is less than the lower limit, it may be difficult to produce the hollow-forming particles 5 having the resin particles as the core 6.
  • the average particle diameter of the resin particles means a particle diameter showing the highest volume content in the particle size distribution measured with a laser diffraction particle size distribution measuring apparatus.
  • the main component of the shell 7 a material having a higher thermal decomposition temperature than that of the above-described thermally decomposable resin is used. Further, as the main component of the shell 7, one having a low dielectric constant and high heat resistance is preferable. Examples of such a material used as the main component of the shell 7 include resins such as polystyrene, silicone, fluororesin, and polyimide. Among these, silicone is preferable in that elasticity is imparted to the shell 7 and insulation and heat resistance are easily improved.
  • the “fluororesin” is a fluorine atom or an organic group in which at least one hydrogen atom bonded to a carbon atom constituting the repeating unit of the polymer chain has a fluorine atom (hereinafter also referred to as “fluorine atom-containing group”). ).
  • the fluorine atom-containing group is a group in which at least one hydrogen atom in a linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group. Can do.
  • the shell 7 may contain a metal as long as the insulating property is not impaired.
  • the main resin of the shell 7 may be the same as or different from the main polymer of the resin composition contained in the insulating layer forming varnish.
  • the thermal decomposition temperature is higher than that of the thermally decomposable resin. Since the main component resin is difficult to be thermally decomposed, the independent porosity in the pores 3 can be increased. In some cases, the presence of the outer shells of the pores 3 included in the insulating layer 2 cannot be confirmed even when the insulated wire formed with such an insulating layer forming varnish is observed with an electron microscope.
  • the shell 7 can be made difficult to be integrated with the resin composition by using a resin different from the main polymer of the resin composition as the main resin of the shell 7, the same kind as the main polymer of the resin composition is used. Compared with the case where resin is used, the independent porosity in the pores 3 is increased.
  • the lower limit of the average thickness of the shell 7 is not particularly limited, but is preferably 0.01 ⁇ m, for example, and more preferably 0.02 ⁇ m.
  • the upper limit of the average thickness of the shell 7 is preferably 0.5 ⁇ m, and more preferably 0.4 ⁇ m. If the average thickness of the shell 7 is less than the lower limit, the independent porosity in the pores 3 may be lowered. Conversely, if the average thickness of the shell 7 exceeds the above upper limit, the volume of the pores 3 becomes too small, and the porosity of the insulating layer 2 may not be increased to a predetermined level or more.
  • the shell 7 may be formed of one layer or a plurality of layers.
  • the average of the total thickness of the plurality of layers may be within the range of the thickness.
  • the “average thickness of the shell” means, for example, a value obtained by averaging the thickness of the shell 7 for 30 hollow forming particles 5.
  • the upper limit of the CV value of the hollow forming particles 5 is preferably 30% and more preferably 20%.
  • the insulating layer 2 includes a plurality of pores 3 having different sizes, and thus there is a risk that the distribution of the dielectric constant tends to be biased.
  • the lower limit of the CV value of the hollow-forming particles 5 is not particularly limited, but is preferably 1%. If the CV value of the hollow forming particles 5 is less than the lower limit, the cost of the hollow forming particles 5 may be too high.
  • the “CV value” means a variable defined in JIS-Z8825 (2013).
  • the said hollow formation particle 5 is good also as a structure which forms the core 6 with one thermal decomposable resin particle, or the core 6 is formed with several thermal decomposable resin particles,
  • the resin of the shell 7 may be configured to cover the plurality of thermally decomposable resin particles.
  • the surface of the hollow forming particles 5 may be smooth without irregularities as shown in FIG. 3, or irregularities may be formed.
  • the lower limit of the resin solid content concentration of the varnish for forming an insulating layer prepared by diluting with the organic solvent and dispersing the hollow-forming particles 5 is preferably 15% by mass, more preferably 20% by mass.
  • the upper limit of the resin solid content concentration of the insulating layer forming varnish is preferably 50% by mass, and more preferably 30% by mass.
  • a pore forming agent such as a thermally decomposable particle may be mixed with the insulating layer forming varnish.
  • the insulating layer forming varnish may be prepared by combining diluting solvents having different boiling points. The pores formed by the combination of the pores formed by the pore-forming agent and the diluting solvents having different boiling points are difficult to communicate with the pores derived from the hollow-forming particles 5. Therefore, even when the outer shell 4 includes pores that are not covered, the presence of the pores covered by the outer shell 4 can increase the independent porosity in the pores 3.
  • the insulating layer forming varnish according to the second embodiment is a varnish used for forming the insulating layer of the insulated wire, similarly to the insulating layer forming varnish of the first embodiment.
  • the insulating layer forming varnish of the second embodiment contains a resin composition forming a matrix and hollow particles dispersed in the resin composition, and the main component of the outer shell of the hollow particles is a resin.
  • the resin composition of the insulating layer forming varnish can be the same as the insulating layer forming varnish of the first embodiment.
  • Examples of the resin that is the main component of the hollow particles include polystyrene, silicone, fluororesin, polyimide, and the like.
  • silicone is preferable in that elasticity is imparted to the outer shell and insulation and heat resistance are easily improved.
  • the lower limit of the average inner diameter of the hollow particles is not particularly limited, but is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, and even more preferably 1 ⁇ m.
  • the upper limit of the average inner diameter of the hollow particles is preferably 15 ⁇ m and more preferably 10 ⁇ m.
  • an insulating layer having a desired porosity may not be obtained.
  • the average inner diameter of the hollow particles exceeds the above upper limit, the pore distribution in the insulating layer is difficult to be uniform, and the dielectric constant distribution is likely to be biased.
  • the average inner diameter of the hollow particles is, for example, the type of the material that is the main component of the resin composition, the thickness of the insulating layer 2, the average particle diameter of the thermally decomposable resin particles used as the core of the hollow forming particles, the baking conditions, and the like. It can be adjusted by changing.
  • the “average inner diameter of the hollow particles” means, for example, the value obtained by calculating and averaging the diameters of true spheres corresponding to the volume of the hollow particles for 30 hollow particles.
  • the upper limit of the average thickness of the outer shell is preferably 0.5 ⁇ m, more preferably 0.4 ⁇ m.
  • the average thickness of the outer shell is less than the above lower limit, the independent porosity in the formed pores 3 may be lowered.
  • the average thickness of the outer shell exceeds the upper limit, the volume of the pores becomes too small, and the porosity of the insulating layer may not be increased beyond a predetermined level.
  • the outer shell may be formed of one layer or a plurality of layers.
  • the average of the total thickness of the plurality of layers may be within the range of the thickness.
  • the average thickness of the outer shell of the hollow particles can be changed, for example, by changing the kind of the material that is the main component of the resin composition, the thickness of the insulating layer 2, the average thickness of the shell of the hollow particles, the baking conditions, and the like. Can be adjusted.
  • the CV value of the hollow particles can be the same as that of the hollow forming particles of the insulating layer forming varnish of the first embodiment.
  • the insulating layer forming varnish can be obtained by heating the insulating layer forming varnish of the first embodiment. That is, the hollow particles of this embodiment are obtained by gasifying and removing the thermally decomposable resin of the core of the hollow particles by heating the insulating layer forming varnish of the first embodiment. That is, the outer shell of the hollow particle in the insulating layer forming varnish of the present embodiment is derived from the shell of the hollow-forming particle having the core-shell structure.
  • the method for producing an insulated wire includes a step of preparing a varnish for forming an insulating layer by dispersing core-structured hollow-forming particles 5 in a resin composition obtained by diluting a main polymer for forming the insulating layer 2 with a solvent. (Varnish preparation step), a step of applying the insulating layer forming varnish to the outer peripheral surface of the conductor 1 (varnish application step), and a step of removing the core 6 of the hollow forming particles 5 by heating (heating step). .
  • a resin composition that forms a matrix of the insulating layer 2 is prepared by diluting the main polymer that forms the insulating layer 2 with a solvent.
  • the hollow forming particles 5 are dispersed in this resin composition to prepare an insulating layer forming varnish.
  • the insulating layer forming varnish may be prepared by mixing the hollow forming particles 5 at the same time when the main polymer is diluted with a solvent, instead of dispersing the hollow forming particles 5 in the resin composition.
  • ⁇ Varnish application process> In the varnish application step, after the insulating layer forming varnish prepared in the varnish preparation step is applied to the outer peripheral surface of the conductor 1, the application amount of the varnish of the conductor 1 is adjusted and the applied varnish surface is smoothed by an application die. I do.
  • the coating die has an opening.
  • the conductor 1 coated with the insulating layer forming varnish passes through the opening, the excess varnish is removed, and the coating amount of the varnish is adjusted. Thereby, as for the said insulated wire, the thickness of the insulating layer 2 becomes uniform and uniform electrical insulation is obtained.
  • the insulating layer 2 is formed on the surface of the conductor 1 by baking the insulating layer forming varnish by passing the conductor 1 coated with the insulating layer forming varnish through a baking furnace.
  • the thermally decomposable resin of the core 6 of the hollow forming particles 5 contained in the insulating layer forming varnish is gasified by thermal decomposition, and the gasified thermally decomposable resin passes through the shell 7 and scatters.
  • the core 6 of the hollow forming particles 5 is removed by heating during baking.
  • the insulated wire can be obtained.
  • the insulating layer 2 formed using the insulating layer forming varnish includes pores 3 derived from the hollow forming particles 5. Since the pores 3 are surrounded by the outer shell 4, even if the pores are increased so that the porosity of the insulating layer 2 is increased, the independent porosity can be increased. Further, the insulating layer 2 having the pores 3 surrounded by the outer shell 4 can have a higher dielectric breakdown voltage than the insulating layer having pores formed of a single thermally decomposable resin, and has excellent insulation properties. can do. Thus, even when the porosity of the insulating layer 2 is increased by the insulating layer forming varnish, the insulating property, mechanical strength, and solvent resistance can be improved.
  • the thermally decomposable resin of the core 6 is gasified by thermal decomposition to obtain hollow particles from which the core 6 has been removed.
  • the varnish preparation step hollow particles are dispersed in the resin composition forming the matrix of the insulating layer 2 to prepare an insulating layer forming varnish. Even after the coating and baking of the insulating layer forming varnish, the hollow structure of the hollow particles from which the core 6 has been removed is maintained, so that the coating and baking of the insulating layer forming varnish includes pores 3 due to the hollow particles.
  • the insulating layer 2 can be formed. However, when performing a heating process before a varnish preparation process in this way, the process of baking the varnish for insulating layer formation is performed after a varnish application process separately from a heating process.
  • the core 6 is more easily lost more reliably than in the case where the core 6 of the hollow particles 5 is lost by heating during baking. Therefore, pores can be more reliably formed in the insulating layer 2 and foaming of the insulating layer 2 due to the decomposition gas of the thermally decomposable resin can be suppressed.
  • the insulated wire in which one insulating layer is laminated on the outer peripheral surface of the conductor has been described, but an insulated electric wire in which a plurality of insulating layers are laminated on the outer peripheral surface of the conductor may be used. That is, one or a plurality of insulating layers may be laminated between the conductor 1 of FIG. 1 and the insulating layer 2 including the pores 3, or one or a plurality of insulating layers may be provided on the outer peripheral surface of the insulating layer 2 including the pores 3 of FIG. These insulating layers may be laminated, or one or a plurality of insulating layers may be laminated on both the outer peripheral surface and the inner peripheral surface of the insulating layer 2 including the pores 3 in FIG.
  • the insulated wire in which a plurality of insulating layers are laminated in this manner it is only necessary that at least one insulating layer includes pores surrounded by the outer shell (pores formed by hollow particles). That is, pores due to hollow particles may be included in two or more insulating layers. When two or more insulating layers contain pores due to hollow particles, each of these insulating layers contributes to a reduction in dielectric constant.
  • the insulated wire in which at least one layer of the plurality of insulating layers is formed of the insulating layer forming varnish is also within the scope intended by the present invention.
  • the mechanical strength of an insulated wire can be improved by laminating
  • the same kind may be used as a resin composition which forms these some insulating layers, and a mutually different thing may be used.
  • the insulated wire in which the pores included in the insulating layer are flat spheres has been described, but the pores may not be flat spheres.
  • the pores surrounded by the outer shell may be non-flat polygons or spheres. Even if the pores have such a shape, the formed pores are not easily communicated with each other by the outer shell, so that the independent porosity in the pores in the insulating layer can be increased. Therefore, even with the pores having such a shape, the insulated wire can have excellent insulation, mechanical strength, and solvent resistance.
  • an additional layer such as a primer layer may be provided between the conductor and the insulating layer.
  • a primer layer is a layer provided in order to improve the adhesiveness between layers, for example, can be formed with a well-known resin composition.
  • the resin composition forming the primer layer includes, for example, one or more kinds of resins selected from polyimide, polyamideimide, polyesterimide, polyester, and phenoxy resin. Good. Moreover, the resin composition forming the primer layer may contain an additive such as an adhesion improver. By forming a primer layer between the conductor and the insulating layer using such a resin composition, it is possible to improve the adhesion between the conductor and the insulating layer. Properties such as flexibility, wear resistance, scratch resistance, and workability can be effectively enhanced.
  • the resin composition forming the primer layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, etc. together with the above resin.
  • the lower limit of the average primer layer thickness is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the average thickness of the primer layer is preferably 30 ⁇ m, more preferably 20 ⁇ m.
  • the manufacturing method for generating pores in the insulating layer using the thermally decomposable resin has been described, but instead of the thermally decomposable resin, a foaming agent or a thermally expandable microcapsule is mixed with the varnish, It is good also as a manufacturing method which forms a pore in an insulating layer with a foaming agent or a thermally expansible microcapsule.
  • a resin for forming an insulating layer diluted with a solvent is mixed with a thermally expandable microcapsule to prepare an insulating layer forming varnish, and the insulating layer forming varnish is applied to the outer peripheral surface of the conductor.
  • An insulating layer may be formed by coating and baking. During baking, pores are formed in the insulating layer by expansion or foaming of the thermally expandable microcapsules contained in the varnish.
  • the heat-expandable microcapsule has a core material (including inclusion) made of a thermal expansion agent and an outer shell that wraps the core material.
  • the thermal expansion agent of the heat-expandable microcapsules may be any one that expands or generates a gas by heating, and the principle thereof does not matter.
  • a thermal expansion agent of the thermally expandable microcapsule for example, a low boiling point liquid, a chemical foaming agent, or a mixture thereof can be used.
  • alkanes such as butane, i-butane, n-pentane, i-pentane and neopentane, and freons such as trichlorofluoromethane are preferably used.
  • a material having thermal decomposability such as azobisisobutyronitrile that generates N 2 gas by heating is preferably used.
  • the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is equal to or higher than the softening temperature of the outer shell of the thermally expandable microcapsule described later. More specifically, the lower limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 60 ° C, more preferably 70 ° C. The upper limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 200 ° C., and more preferably 150 ° C.
  • the thermally expandable microcapsule When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is less than the lower limit, the thermally expandable microcapsule may expand unintentionally during manufacture, transportation or storage of the insulated wire. When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule exceeds the above upper limit, the energy cost necessary for expanding the thermally expandable microcapsule may be excessive.
  • the outer shell of the thermally expandable microcapsule is formed of a stretchable material that can expand without breaking when the thermal expansion agent expands to form a microballoon containing the generated gas.
  • a resin composition mainly composed of a polymer such as a thermoplastic resin is usually used.
  • thermoplastic resin used as the main component of the outer shell of the thermally expandable microcapsule is formed from monomers such as vinyl chloride, vinylidene chloride, acrylonitrile, acrylic acid, methacrylic acid, acrylate, methacrylate, styrene, etc. Polymers formed from two or more types of monomers are preferably used.
  • An example of a preferred thermoplastic resin is a vinylidene chloride-acrylonitrile copolymer.
  • the expansion start temperature of the thermal expansion agent is 80 ° C. or higher and 150 ° C. or lower.
  • the pores included in the insulating layer are formed by the thermal decomposition of the thermally decomposable resin.
  • the pores may be formed by a hollow filler.
  • a resin composition that forms an insulating layer and the hollow filler are kneaded, and an insulated wire including pores in the insulating layer can be manufactured by covering the conductor with the kneaded material by extrusion molding.
  • the hollow portion inside the hollow filler becomes the pores included in the insulating layer.
  • the hollow filler include shirasu balloons, glass balloons, ceramic balloons, and organic resin balloons.
  • an organic resin balloon is preferable among them.
  • a glass balloon is preferable because it is easily available and is not easily damaged.
  • the structure in which the pores included in the insulating layer are formed by thermal decomposition of the thermally decomposable resin has been described.
  • a thermoplastic resin is used as the resin for forming the insulating layer, and it is homogeneously mixed with a solvent and applied to the outer peripheral surface of the conductor in a heated and melted state. Then, the resin and the solvent are phase-separated by immersion in a non-soluble liquid such as water or cooling in air, and pores are formed in the insulating layer by extracting and removing the solvent with another volatile solvent.
  • hollow particles of the first embodiment, the foaming agent, the thermally expandable microcapsule, and the hollow filler described in the other embodiments may be appropriately mixed and used in the hollow forming particles of the first embodiment.
  • the insulated wire shown in 1 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, PMMA particles having an average particle diameter of 3 ⁇ m were used as the thermally decomposable resin particles, and the varnish was prepared by dispersing the calculated amount of the insulating layer having a porosity of 30% by volume.
  • the insulated wire shown in 2 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, core-shell particles having an average particle diameter of 3 ⁇ m whose core is PMMA particles and silicone is used as the hollow-forming particles, and in the resin composition, the amount by which the porosity of the insulating layer is calculated to be 30% by volume is calculated. A varnish was prepared by dispersing.
  • the insulated wire shown in 3 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, PMMA particles having an average particle diameter of 3 ⁇ m were used as the thermally decomposable resin particles, and a varnish was prepared by dispersing the calculated amount of the insulating layer so that the porosity of the insulating layer was 50% by volume. Using this varnish, using a saddle-type coating facility, a flat rectangular conductor with a cross section of 2 mm x 2 mm was immersed, and then a die having an opening similar to the conductor was passed at a speed of 3.5 m / min.
  • the insulated wire shown in 4 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, as hollow-forming particles, core-shell particles having an average particle diameter of 3 ⁇ m whose core is PMMA particles and silicone is silicone are used, and in the resin composition, the amount by which the porosity of the insulating layer is 53% by volume is calculated. A varnish was prepared by dispersing.
  • the insulated wire shown in 5 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, core-shell particles having an average particle diameter of 3 ⁇ m whose core is PMMA particles and silicone is used as the hollow-forming particles, and in the resin composition, the amount by which the porosity of the insulating layer is calculated to be 30% by volume is calculated. A varnish was prepared by dispersing.
  • the insulated wire shown in 6 was manufactured as follows. First, a resin composition was prepared by using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent and diluting the main polymer with this solvent. Next, core-shell particles having an average particle diameter of 3 ⁇ m whose core is PMMA particles and silicone is used as the hollow-forming particles, and in the resin composition, the amount by which the porosity of the insulating layer is calculated to be 30% by volume is calculated. A varnish was prepared by dispersing.
  • the insulated wire No. 6 was installed in a press machine so that a pressing pressure was applied to a part in the longitudinal direction.
  • a load (N) obtained by pressing pressure (MPa) ⁇ pressing area (mm 2 ) was applied so as to obtain a predetermined pressing pressure, and the pressing was performed for 10 seconds after the load was stabilized.
  • the average thickness T1 of the insulating layer at the pressed location and the average thickness T2 of the insulating layer at the non-pressed location are measured. From the measured values of T1 and T2, (T2-T1) ⁇ 100 / T2 (%) The thickness reduction rate after pressing was calculated by the following formula.
  • the thickness reduction rate after pressing was measured with the pressing pressure set to 0 MPa, 100 MPa, 200 MPa, and 300 MPa, respectively.
  • the average thicknesses T1 and T2 of the insulating layer were measured at three points in the cross-sectional direction of the insulated wire, and the average value was used.
  • FIG. 4 is a schematic diagram for explaining a dielectric constant measurement method.
  • symbol as FIG. 1 is attached
  • a silver sample P was applied to three places on the surface of an insulated wire, and a measurement sample was prepared in which the conductor 1 was exposed by peeling off the insulating layer 2 on one end side of the insulated wire.
  • the coating length in the longitudinal direction of the insulated wire of the silver paste P applied to the three places on the surface of the insulated wire was 10 mm, 100 mm, and 10 mm in order along the longitudinal direction.
  • the two silver pastes P applied with a length of 10 mm are grounded, and the electrostatic capacity between the silver paste P with a length of 100 mm applied between these two silver pastes and the exposed conductor 1 is determined. Measured with LCR meter M.
  • Insulated wires become high temperature when used with a high voltage applied.
  • the insulated wires may be used by being immersed in a solvent in order to cool the insulated wires. .
  • the insulated wire No. 6 promotes the lowering of the dielectric constant of the insulating layer and is excellent in insulation, mechanical strength and solvent resistance. This is considered to be due to the fact that the pores formed by the thermal decomposition of the core of the core-shell structure hollow-forming particles have very small variations in size and shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の気孔を含有し、上記気孔中の独立気孔率が80体積%以上である。

Description

絶縁電線
 本発明は、絶縁電線に関する。
 本出願は、2017年3月24日出願の日本出願第2017-58687号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 適用電圧が高い電気機器、例えば高電圧で使用されるモーター等では、電気機器を構成する絶縁電線に高電圧が印加されるため、その絶縁層表面で部分放電(コロナ放電)が発生し易くなる。コロナ放電の発生により、局部的な温度上昇、オゾンの発生、イオンの発生等が引き起こされると、早期に絶縁破壊を生じ、その結果、絶縁電線ひいては電気機器の寿命が短くなる。このため、適用電圧が高い電気機器に使用される絶縁電線には、優れた絶縁性、機械的強度等に加えてコロナ放電開始電圧の向上も求められる。
 コロナ放電開始電圧を上げる手段としては、絶縁層の低誘電率化が有効である。絶縁層の低誘電率化を実現するために、塗膜構成樹脂と、この塗膜構成樹脂の焼付温度よりも低い温度で分解する熱分解性樹脂とを含む絶縁ワニスにより加熱硬化膜(絶縁層)を形成する絶縁電線が提案されている(特開2012-224714号公報参照)。この絶縁電線では、上記熱分解性樹脂が塗膜構成樹脂の焼付時に熱分解してその部分が気孔となることを利用して加熱硬化膜内に気孔が形成されており、この気孔の形成により絶縁被膜の低誘電率化を実現している。
特開2012-224714号公報
 本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の気孔を含有し、上記気孔中の独立気孔率が80体積%以上である。
本発明の実施形態に係る絶縁電線の模式的断面図である。 図1の絶縁電線に含まれる気孔及び外殻の模式的断面図である。 図1の絶縁電線の形成に用いる絶縁層形成用ワニスに含まれる中空形成粒子の模式的断面図である。 実施例における誘電率の測定方法を説明するための模式図である。
[本開示が解決しようとする課題]
 上述のような従来の方法により形成される絶縁層において、低誘電率化を促進させるためには、気孔率を上げることが必要となる。しかし、気孔率を上げると、形成される気孔の大きさのばらつきが大きくなる等により、所望の誘電率とすることができず、そのため、コロナ放電開始電圧を上げる等、絶縁性を向上させることは難しい。加えて、絶縁電線を溶剤中に浸漬して使用する場合に必要な耐溶剤性が低下するという不都合がある。
 本発明は以上のような事情に基づいてなされたものであり、絶縁層の低誘電率化を促進すると共に、絶縁性、機械的強度及び耐溶剤性に優れる絶縁電線を提供することを目的とする。
[本開示の効果]
 本発明の一態様に係る絶縁電線は、絶縁層の低誘電率化を促進すると共に、絶縁性、機械的強度及び耐溶剤性に優れる。
[本発明の実施形態の説明]
 本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の気孔を含有し、上記気孔中の独立気孔率が80体積%以上である。
 当該絶縁電線としては、気孔同士の連通が抑制され上記独立気孔率を満たす絶縁層を備えていればよいが、特に、上記気孔が外殻を備え、この外殻がコアシェル構造の中空形成粒子のシェルに由来し、かつ上記気孔中の独立気孔率が上記値以上である絶縁電線が好ましい。上記外殻の存在により、気孔同士の連通が抑制されて形成された独立気孔を高い比率で含む絶縁層がより確実に得られる。このようにして形成された気孔は、大きさ及び形状のばらつきが非常に小さい。このような独立気孔を含む絶縁層を備えることにより、当該絶縁電線は、単一の熱分解性樹脂で形成された気孔を有する従来の絶縁電線よりも、低誘電率化を促進することができ、絶縁破壊電圧を高くすることができ、絶縁性に優れ、かつ機械的強度にも優れる。また、絶縁層が含む気孔が周縁部に外殻を備えていることにより、耐溶剤性を向上させることができる。ここで、「独立気孔率」とは、後述する測定方法により求められる値をいう。なお、ここで、コアシェル構造とは、粒子のコアを形成する材料とコアの周囲を取り囲むシェルの材料が異なる構造をいう。
 上記絶縁層の気孔率としては、20体積%以上が好ましい。このように、絶縁層の気孔率を上記値以上とすることにより、低誘電率化をより促進することができ、絶縁性をより向上させることができる。ここで、「気孔率」とは、絶縁層の気孔を含む体積に対する気孔の容積の百分率を意味する。
 上記気孔の形状は、扁平球体であることが好ましい。また、気孔の短軸が導体表面と垂直方向に配向していると、外力が作用し易い上記垂直方向に形成される気孔同士が当接し難くなるため、独立気孔率を向上させることができる。そのため、短軸が導体表面と垂直方向に配向している気孔の割合が大きいほど好ましい。このような気孔の割合、平均径等については、後述する。ここで、「扁平球体」とは、重心を通る最大対角線長さを長径、重心を通る最小対角線長さを短径(短軸の長さ)としたとき、短径が長径の所定割合以下の球体を意味し、例えば短径及び長径を含む断面における長径に対する短径の比が0.95以下の球体である。
 上記外殻の主成分がシリコーン(Silicone)であるとよい。このように上記外殻の主成分をシリコーンとすることにより、独立気孔率をより高めることができ、絶縁性及び機械的強度をより向上させることができる。また、耐溶剤性をより向上させることができ、加えて、外殻に弾性を付与すると共に耐熱性を向上させることができる。ここで「シリコーン」とは、ケイ素原子と酸素原子とが結合したシロキサン結合の繰り返し構造を含む高分子を意味する。また、「主成分」とは、最も含有量の多い成分であり、例えば50質量%以上含有される成分である。
[本発明の実施形態の詳細]
 以下、図面に示した絶縁電線等を代表例として、本発明の実施形態に係る絶縁電線及び絶縁層形成用ワニスを説明する。
[絶縁電線]
 図1の当該絶縁電線は、線状の導体1と、この導体1の外周面に積層される1層の絶縁層2とを備える。この絶縁層2は、複数の気孔3を含有する。また、当該絶縁電線は、気孔3の周縁部に外殻4を備える。
<導体>
 上記導体1は、例えば断面が方形状の角線とされるが、断面が円形状の丸線や、複数の素線を撚り合わせた撚り線であってもよい。
 導体1の材質としては、導電率が高くかつ機械的強度が大きい金属が好ましい。このような金属としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、銀、軟鉄、鋼、ステンレス鋼等が挙げられる。導体1は、これらの金属を線状に形成した材料や、このような線状の材料にさらに別の金属を被覆した多層構造のもの、例えばニッケル被覆銅線、銀被覆銅線、銅被覆アルミニウム線、銅被覆鋼線等を用いることができる。
 導体1の平均断面積の下限としては、0.01mmが好ましく、0.1mmがより好ましい。一方、導体1の平均断面積の上限としては、20mmが好ましく、5mmがより好ましい。導体1の平均断面積が上記下限未満であると、導体1に対する絶縁層2の体積が大きくなり、当該絶縁電線を用いて形成されるコイル等の体積効率が低くなるおそれがある。逆に、導体1の平均断面積が上記上限を超えると、誘電率を十分に低下させるために絶縁層2を厚く形成しなければならず、当該絶縁電線が不必要に大径化するおそれがある。
<絶縁層>
 上記絶縁層2は、図1に示すように、後述するコアシェル構造の中空形成粒子に由来する複数の気孔3を含有する。
 絶縁層2は、絶縁性を有する樹脂組成物、この樹脂組成物中に散在する気孔3、及び気孔3の周縁部の外殻4で形成される。この絶縁層2は、後述する絶縁層形成用ワニスの導体1外周面への塗布及び焼付により形成される。
 絶縁層2の気孔率の下限としては、20体積%が好ましく、25体積%がより好ましい。一方、絶縁層2の気孔率の上限としては、80体積%が好ましく、65体積%がより好ましい。絶縁層2の気孔率が上記下限未満であると、絶縁層2の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、絶縁層2の気孔率が上記上限を超えると、絶縁層2の機械的強度を維持できないおそれがある。絶縁層2の気孔率(体積%)は、絶縁層2についてその外形から算出される見かけの体積V1に絶縁層2の材質の密度ρ1を乗じて求められる気孔がない場合の質量W1と、絶縁層2の実際の質量W2とから、(W1-W2)×100/W1の式により求めることができる。
 上記気孔3中の独立気孔率の下限としては、80体積%であり、85体積%が好ましく、90体積%がより好ましい。一方、上記気孔中の独立気孔率の上限としては、例えば100体積%である。上記気孔中の独立気孔率が上記下限未満であると、当該絶縁電線の絶縁性及び耐溶剤性が低下する傾向にある。
 上記気孔3中の独立気孔率は、絶縁層2の試料の断面を、走査型電子顕微鏡(SEM)で観察した際、隣接する気孔との間に絶縁性を有する樹脂組成物を介することにより互いに開口していない気孔(独立気孔)の全気孔に対する体積%である。この独立気孔率(体積%)は、絶縁層の断面のSEM写真において、独立気孔と独立気孔以外の気孔とを区別するように二値化して算出することができる。
 複数の気孔3は、図2に示すようにそれぞれ外殻4で被覆され、この外殻4は図3に示すコアシェル構造の中空形成粒子5のコア6が除去されて中空となった焼付後のシェル7で構成される。つまり、外殻4はコアシェル構造の中空形成粒子5のシェル7に由来する。また、複数の気孔3の外殻4のうち少なくとも一部は、欠損を有している。上記欠損は、走査型電子顕微鏡(SEM)で観察した気孔断面のSEM写真により確認できる。
 複数の気孔3は、図2に示すように扁平球体である。また、気孔3の短軸が導体1表面と垂直方向に配向していると、外力が作用し易い上記垂直方向に形成される気孔同士が当接し難くなるため、独立気孔率を向上させることができる。そのため、短軸が導体1表面と垂直方向に配向している気孔3の割合が大きいほど好ましい。全気孔3の数に対する短軸が導体1表面と垂直方向に配向している気孔3の数の割合の下限としては、60%が好ましく、80%がより好ましい。短軸が導体1表面と垂直方向に配向している気孔3の割合が上記下限未満であると、形成される気孔同士で当接する気孔が増加し、独立気孔率が低くなるおそれがある。「気孔の短軸が導体表面と垂直方向に配向する」とは、気孔の短軸と導体表面に垂直な方向との角度差が20度以下であることを意味する。
 気孔3の短径及び長径を含む断面における長径に対する短径の長さの比の平均の下限としては、0.2が好ましく、0.3がより好ましい。一方、上記比の平均の上限としては、0.95が好ましく、0.9がより好ましい。上記比の平均が上記下限未満であると、ワニス焼付時の厚さ方向の収縮量を大きくする必要があるため、絶縁電線2の可撓性が低下するおそれがある。逆に、上記比の平均が上記上限を超えると、気孔率を高くする場合に、外力が作用し易い絶縁層2の厚さ方向に形成される気孔同士が当接し易くなり、独立気孔率が低くなるおそれがある。気孔3の短径及び長径は、絶縁層2の断面を走査型電子顕微鏡(SEM)で観察することにより求めることができる。なお、上記比は、絶縁層形成用ワニスに含まれる樹脂組成物の焼付時の収縮により中空形成粒子5に加わる圧力を変化させることで調節できる。この中空形成粒子5に加わる圧力は、例えば上記樹脂組成物の主成分となる材料の種類、絶縁層2の厚さ、中空形成粒子5の材料、焼付条件等により変化させることができる。ここで、「気孔の短径及び長径を含む断面における長径に対する短径の長さの比の平均」とは、絶縁層2に含まれる例えば30個の気孔3について、短径及び長径を含む断面における長径に対する短径の長さの比を算出し、平均した値を意味する。
 気孔3の長径の平均の下限としては、特に限定されないが、0.1μmが好ましく、1μmがより好ましい。一方、上記長径の平均の上限としては、10μmが好ましく、8μmがより好ましい。上記長径の平均が上記下限未満であると、絶縁層2に所望の気孔率が得られないおそれがある。逆に、上記長径の平均が上記上限を超えると、絶縁層2内における気孔3の分布を均一にし難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。ここで、「気孔の長径の平均」とは、絶縁層2に含まれる例えば30個の気孔3について、その長径を平均した値を意味する。
 気孔3における導体1表面と垂直方向の最大長さの平均の下限としては、特に限定されないが、0.1μmが好ましく、1μmがより好ましい。一方、上記垂直方向の最大長さの平均の上限としては、10μmが好ましく、8μmがより好ましい。また、気孔3における導体1表面と平行方向の最大長さの平均の下限としては、特に限定されないが、0.1μmが好ましく、1μmがより好ましい。一方、上記平行方向の最大長さの平均の上限としては、10μmが好ましく、8μmがより好ましい。気孔3における上記垂直方向の最大長さの平均と平行方向の最大長さの平均とが共に上記上限以下であることが好ましい。気孔3の垂直方向及び平行方向の最大長さの平均を上記上限以下とすることで、気孔3中の独立気孔率を向上させることができ、その結果、当該絶縁電線の絶縁性、機械的強度及び耐溶剤性をより向上させることができる。ここで、「気孔における垂直方向の最大長さの平均と平行方向の最大長さの平均」とは、絶縁層2に含まれる例えば30個の気孔3について、導体1表面と垂直方向の最大長さ、及び平行方向の最大長さをそれぞれ平均した値を意味する。
 気孔3の平均径の下限としては、0.1μmが好ましく、1μmがより好ましい。一方、上記平均径の上限としては、10μmが好ましく、8μmがより好ましい。上記気孔3の平均径が上記下限未満であると、絶縁層2に所望の気孔率が得られないおそれがある。逆に、上記長径の平均が上記上限を超えると、絶縁層2内における気孔3の分布を均一にし難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。ここで、「気孔の平均径」とは、絶縁層2に含まれる例えば30個の気孔3について、気孔の容積に相当する真球の直径を算出し、平均した値を意味する。気孔3の容積は、絶縁層2の断面を走査型電子顕微鏡(SEM)で観察することにより求めることができる。なお、気孔3の平均径は、例えば上記樹脂組成物の主成分となる材料の種類、絶縁層2の厚さ、中空形成粒子のコアとして用いられる熱分解性樹脂粒子の平均粒子径、焼付条件等を変化させることで調整できる。
 気孔3の平均径は、当該絶縁電線の絶縁性を高める観点からは、その分布は狭い方が好ましい。気孔3の平均径(D)に対する平均径の標準偏差(σ)の比(σ/D)の上限としては、0.3が好ましく、0.1がより好ましい。上記比の下限としては、例えば0.001である。
 複数の気孔3の周縁部に存在する複数の外殻4は、少なくとも一部が欠損を有する。気孔3及び外殻4は、図3に示すような熱分解性樹脂を主成分とするコア6と、この熱分解性樹脂より熱分解温度が高いシェル7とを有する中空形成粒子5に由来する。つまり、この中空形成粒子5を含むワニスの焼付時にコア6の主成分である熱分解性樹脂が熱分解によりガス化し、シェル7を通過して飛散することにより気孔3及び外殻4が形成される。このとき、シェル7における熱分解性樹脂の通過路が欠損として外殻4に存在する。この欠損の形状は、シェル7の材質や形状によって変化するが、形成される気孔の外殻4による連通防止効果を高める観点から、亀裂、割れ目及び孔が好ましい。
 なお、絶縁層2は、欠損のない外殻4を含んでいてもよい。コア6の熱分解性樹脂のシェル7外部への流出条件によっては外殻4に欠損が形成されない場合もある。また、絶縁層2は、外殻4に被覆されない気孔3を含んでいてもよい。
 絶縁層2の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、絶縁層2の平均厚さの上限としては、200μmが好ましく、120μmがより好ましい。絶縁層2の平均厚さが上記下限未満であると、絶縁層2に破れが生じ、導体1の絶縁が不十分となるおそれがある。逆に、絶縁層2の平均厚さが上記上限を超えると、当該絶縁電線を用いて形成されるコイル等の体積効率が低くなるおそれがある。
 当該絶縁電線が、絶縁層2と材質が同一でかつ気孔を含有しない層をさらに備える場合、この気孔を含有しない層の誘電率に対する絶縁層2の誘電率の比の上限としては、95%であり、90%が好ましく、80%がより好ましい。上記誘電率の比が上記上限を超えると、コロナ放電開始電圧を十分に向上できないおそれがある。
 当該絶縁電線は、このように、絶縁層2に含まれる気孔3が外殻4で囲まれており、かつ気孔3中の独立気孔率が高い。気孔3中の独立気孔率が高いため、当該絶縁電線は、絶縁層2の気孔率を高めた場合でも、絶縁性、機械的強度及び耐溶剤性に優れる。
 また、当該絶縁電線は、複数の気孔3が扁平球体であるので、形成された気孔同士が当接し難く、気孔3中の独立気孔率をより高くすることができる。
[絶縁層形成用ワニス]
<第一実施形態>
 当該絶縁層形成用ワニスは、上記絶縁電線の絶縁層2の形成に用いるワニスである。第一の実施形態に係る当該絶縁層形成用ワニスは、マトリックスを形成する樹脂組成物と、この樹脂組成物中に分散するコアシェル構造の中空形成粒子5とを含有し、中空形成粒子5のコア6が熱分解性樹脂を主成分とし、中空形成粒子5のシェル7の主成分の熱分解温度が上記熱分解性樹脂の熱分解温度より高い。
(樹脂組成物)
 上記樹脂組成物は、主ポリマーと、希釈用溶剤、硬化剤等とを含む組成物である。上記主ポリマーとしては、特に限定されないが、熱硬化性樹脂を使用する場合、例えばポリビニルホルマール前駆体、熱硬化ポリウレタン前駆体、熱硬化アクリル樹脂前駆体、エポキシ樹脂前駆体、フェノキシ樹脂前駆体、熱硬化ポリエステル前駆体、熱硬化ポリエステルイミド前駆体、熱硬化ポリエステルアミドイミド前駆体、熱硬化ポリアミドイミド前駆体、ポリイミド前駆体等が使用できる。また、主ポリマーとして熱可塑性樹脂を使用する場合、例えばポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリイミド等が使用できる。これらの中でも、絶縁層形成用ワニスを塗布し易くできると共に絶縁層2の強度及び耐熱性を向上させ易い点において、ポリイミド及びポリイミド前駆体が好ましい。
 希釈用溶剤としては、絶縁ワニスに従来より用いられている公知の有機溶剤を用いることができる。具体的には、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類;ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類;ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類;クレゾール、クロルフェノールなどのフェノール類;ピリジンなどの第三級アミン類等が挙げられ、これらの有機溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。
 また、上記樹脂組成物に、硬化剤を含有させてもよい。硬化剤としては、チタン系硬化剤、イソシアネート系化合物、ブロックイソシアネート、尿素やメラミン化合物、アミノ樹脂、アセチレン誘導体、メチルテトラヒドロ無水フタル酸などの脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物等が例示される。これらの硬化剤は、使用する樹脂組成物が含有する主ポリマーの種類に応じて、適宜選択される。例えば、ポリアミドイミド系の場合、硬化剤として、イミダゾール、トリエチルアミン等が好ましく用いられる。
 なお、上記チタン系硬化剤としては、テトラプロピルチタネート、テトライソプロピルチタネート、テトラメチルチタネート、テトラブチルチタネート、テトラヘキシルチタネート等が例示される。上記イソシアネート系化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、p-フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサンジイソシアネート、リジンジイソシアネートなどの炭素数3~12の脂肪族ジイソシアネート;1,4-シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、1,3-ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5-ビス(イソシアナトメチル)-ビシクロ[2,2,1]ヘプタン、2,6-ビス(イソシアナトメチル)-ビシクロ[2,2,1]ヘプタンなどの炭素数5~18の脂環式イソシアネート;キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート;これらの変性物等が例示される。上記ブロックイソシアネートとしては、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート等のイソシアネート基に、ジメチルピラゾール等のブロック剤が付加した化合物などが例示される。上記メラミン化合物としては、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミン等が例示される。上記アセチレン誘導体としては、エチニルアニリン、エチニルフタル酸無水物等が例示される。
(中空形成粒子)
 上記中空形成粒子5は、図3に示すように、熱分解性樹脂を主成分とするコア6と、この熱分解性樹脂より熱分解温度が高いシェル7とを有する。
(コア)
 コア6の主成分に用いる熱分解性樹脂としては、例えば上記主ポリマーの焼付温度よりも低い温度で熱分解する樹脂粒子が用いられる。上記主ポリマーの焼付温度は、樹脂の種類に応じて適宜設定されるが、通常200℃以上600℃以下程度である。従って、中空形成粒子5のコア6に用いる熱分解性樹脂の熱分解温度の下限としては200℃が好ましく、上限としては400℃が好ましい。ここで、熱分解温度とは、空気雰囲気下で室温から10℃/分で昇温し、質量減少率が50%となるときの温度を意味する。熱分解温度は、例えば熱重量測定-示差熱分析装置(エスアイアイ・ナノテクノロジー社の「TG/DTA」)を用いて熱重量を測定することにより求めることができる。
 上記中空形成粒子5のコア6に用いる熱分解性樹脂としては、特に限定されないが、例えばポリエチレングリコール、ポリプロピレングリコールなどの片方、両方の末端又は一部をアルキル化、(メタ)アクリレート化又はエポキシ化した化合物;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチルなどの炭素数1以上6以下のアルキル基を有する(メタ)アクリル酸エステルの重合体;ウレタンオリゴマー、ウレタンポリマー、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ε-カプロラクトン(メタ)アクリレートなどの変性(メタ)アクリレートの重合物;ポリ(メタ)アクリル酸;これらの架橋物;ポリスチレン、架橋ポリスチレン等が挙げられる。これらの中でも、主ポリマーの焼付温度で熱分解し易く絶縁層2に気孔3を形成させ易い点において、炭素数1以上6以下のアルキル基を有する(メタ)アクリル酸エステルの重合体が好ましい。このような(メタ)アクリル酸エステルの重合体として、例えばポリメチルメタクリレート(PMMA)が挙げられる。
 コア6の形状は、球状が好ましい。コア6の形状を球状とするために、例えば球状の熱分解性樹脂粒子をコア6として用いるとよい。球状の熱分解性樹脂粒子を用いる場合、この樹脂粒子の平均粒子径の下限としては、特に制限はないが、0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。一方、上記樹脂粒子の平均粒子径の上限としては、15μmが好ましく、10μmがより好ましい。上記樹脂粒子の平均粒子径が上記下限未満であると、この樹脂粒子をコア6とする中空形成粒子5が作製し難くなるおそれがある。逆に、上記樹脂粒子の平均粒子径が上記上限を超えると、この樹脂粒子をコア6とする中空形成粒子5が大きくなり過ぎるため、絶縁層2内における気孔3の分布が均一になり難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。ここで、上記樹脂粒子の平均粒子径とは、レーザー回折式粒度分布測定装置で測定した粒度分布において、最も高い体積の含有割合を示す粒径を意味する。
 シェル7の主成分として、上記熱分解性樹脂より熱分解温度が高い材料が用いられる。また、シェル7の主成分として、誘電率が低く、耐熱性が高いものが好ましい。シェル7の主成分として用いられるこのような材料としては、例えばポリスチレン、シリコーン、フッ素樹脂、ポリイミド等の樹脂が挙げられる。これらの中でも、シェル7に弾性を付与すると共に絶縁性及び耐熱性を向上させ易い点において、シリコーンが好ましい。ここで、「フッ素樹脂」とは、高分子鎖の繰り返し単位を構成する炭素原子に結合する水素原子の少なくとも1つが、フッ素原子又はフッ素原子を有する有機基(以下「フッ素原子含有基」ともいう)で置換されたものをいう。フッ素原子含有基は、直鎖状又は分岐状の有機基中の水素原子の少なくとも1つがフッ素原子で置換されたものであり、例えばフルオロアルキル基、フルオロアルコキシ基、フルオロポリエーテル基等を挙げることができる。なお、絶縁性を損なわない範囲でシェル7に金属が含まれてもよい。
 なお、シェル7の主成分の樹脂は、上記絶縁層形成用ワニスに含有させる樹脂組成物の主ポリマーと同種のものを用いてもよく、異なるものを用いてもよい。例えばシェル7の主成分の樹脂として、上記樹脂組成物の主ポリマーと同種のものを用いた場合でも、熱分解性樹脂より熱分解温度が高いので、熱分解性樹脂がガス化してもシェル7の主成分の樹脂は熱分解し難いため、気孔3中の独立気孔率を高くすることができる。このような絶縁層形成用ワニスで形成された当該絶縁電線は、電子顕微鏡で観察しても絶縁層2に含まれる気孔3の外殻の存在を確認できない場合がある。一方、シェル7の主成分の樹脂として上記樹脂組成物の主ポリマーと異なるものを用いることにより、シェル7を上記樹脂組成物と一体化され難くできるので、上記樹脂組成物の主ポリマーと同種の樹脂を用いる場合に比べて、気孔3中の独立気孔率は高くなる。
 シェル7の平均厚さの下限としては、特に制限はないが、例えば0.01μmが好ましく、0.02μmがより好ましい。一方、シェル7の平均厚さの上限としては、0.5μmが好ましく、0.4μmがより好ましい。シェル7の平均厚さが上記下限未満であると、気孔3中の独立気孔率が低くなるおそれがある。逆に、シェル7の平均厚さが上記上限を超えると、気孔3の体積が小さくなり過ぎるため、絶縁層2の気孔率を所定以上に高められないおそれがある。なお、シェル7は、1層で形成されてもよいし、複数の層で形成されてもよい。シェル7が複数の層で形成される場合、複数の層の合計厚さの平均が、上記厚さの範囲内であればよい。ここで、「シェルの平均厚さ」とは、例えば30個の中空形成粒子5について、シェル7の厚さを平均した値を意味する。
 中空形成粒子5のCV値の上限としては、30%が好ましく、20%がより好ましい。中空形成粒子5のCV値が上記上限を超えると、絶縁層2にサイズが異なる複数の気孔3が含まれるようになるため、誘電率の分布に偏りが生じ易くなるおそれがある。なお、中空形成粒子5のCV値の下限としては、特に制限はないが、1%が好ましい。中空形成粒子5のCV値が上記下限未満であると、中空形成粒子5のコストが高くなり過ぎるおそれがある。ここで、「CV値」とは、JIS-Z8825(2013)に規定される変動変数を意味する。
 なお、上記中空形成粒子5は、図3に示すように、コア6を1個の熱分解性樹脂粒子で形成する構成としてもよいし、コア6を複数の熱分解性樹脂粒子で形成し、シェル7の樹脂がこれらの複数の熱分解性樹脂粒子を被覆する構成としてもよい。
 また、上記中空形成粒子5の表面は、図3に示すように凹凸がなく滑らかであってもよいし、凹凸が形成されてもよい。
 また、上記有機溶剤により希釈し、中空形成粒子5を分散させることにより調製した当該絶縁層形成用ワニスの樹脂固形分濃度の下限としては、15質量%が好ましく、20質量%がより好ましい。一方、当該絶縁層形成用ワニスの樹脂固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。当該絶縁層形成用ワニスの樹脂固形分濃度が上記下限未満であると、1回のワニスの塗布で形成できる厚さが小さくなるため、所望の厚さの絶縁層2を形成するためのワニス塗布工程の繰り返し回数が多くなり、ワニス塗布工程の時間が長くなるおそれがある。逆に、当該絶縁層形成用ワニスの樹脂固形分濃度が上記上限を超えると、ワニスが増粘することにより、ワニスの保存安定性が悪化するおそれがある。
 また、当該絶縁層形成用ワニスに、中空形成粒子5に加えて、気孔形成のために熱分解性粒子等の気孔形成剤を混合してもよい。また、気孔形成のために、沸点の異なる希釈溶剤を組合せて上記絶縁層形成用ワニスを調製してもよい。気孔形成剤により形成された気孔や沸点の異なる希釈溶剤の組合せにより形成される気孔は、中空形成粒子5に由来する気孔とは連通し難い。従って、このように外殻4に被覆されない気孔を含む場合でも、外殻4に被覆される気孔の存在により、気孔3中の独立気孔率を高めることができる。
<第二実施形態>
 第二の実施形態に係る当該絶縁層形成用ワニスは、第一実施形態の絶縁層形成用ワニスと同様、上記絶縁電線の絶縁層の形成に用いるワニスである。第二実施形態の絶縁層形成用ワニスは、マトリックスを形成する樹脂組成物と、この樹脂組成物中に分散する中空粒子とを含有し、上記中空粒子の外殻の主成分が樹脂である。
 当該絶縁層形成用ワニスの樹脂組成物は、第一実施形態の絶縁層形成用ワニスと同様とすることができる。
 中空粒子の主成分の樹脂としては、例えばポリスチレン、シリコーン、フッ素樹脂、ポリイミド等が挙げられる。これらの中でも、外殻に弾性を付与すると共に絶縁性及び耐熱性を向上させ易い点において、シリコーンが好ましい。
 中空粒子の平均内径の下限としては、特に制限はないが、0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。一方、中空粒子の平均内径の上限としては、15μmが好ましく、10μmがより好ましい。上記中空粒子の平均内径が上記下限未満であると、所望の気孔率の絶縁層が得られないおそれがある。逆に、中空粒子の平均内径が上記上限を超えると、絶縁層内における気孔の分布が均一になり難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。中空粒子の平均内径は、例えば上記樹脂組成物の主成分となる材料の種類、絶縁層2の厚さ、中空形成粒子のコアとして用いられる熱分解性樹脂粒子の平均粒子径、焼付条件等を変化させることで調整できる。ここで、「中空粒子の平均内径」とは、例えば30個の中空粒子について、中空粒子の容積に相当する真球の直径を算出し、平均した値を意味する。
 中空粒子の外殻の平均厚さの下限としては、特に制限はないが、0.01μmが好ましく、0.02μmがより好ましい。一方、外殻の平均厚さの上限としては、0.5μmが好ましく、0.4μmがより好ましい。外殻の平均厚さが上記下限未満であると、形成される気孔3中の独立気孔率が低くなるおそれがある。逆に、外殻の平均厚さが上記上限を超えると、気孔の体積が小さくなり過ぎるため、絶縁層の気孔率を所定以上に高められないおそれがある。なお、外殻は、1層で形成されてもよいし、複数の層で形成されてもよい。外殻が複数の層で形成される場合、複数の層の合計厚さの平均が、上記厚さの範囲内であればよい。中空粒子の外殻の平均厚さは、例えば上記樹脂組成物の主成分となる材料の種類、絶縁層2の厚さ、中空形成粒子のシェルの平均厚さ、焼付条件等を変化させることで調整することができる。
 中空粒子のCV値は、上記第一実施形態の絶縁層形成用ワニスの中空形成粒子と同様とすることができる。
 なお、当該絶縁層形成用ワニスは、上記第一実施形態の絶縁層形成用ワニスを加熱することにより得られる。つまり、第一実施形態の絶縁層形成用ワニスの加熱により、中空形成粒子のコアの熱分解性樹脂をガス化し除去することで、本実施形態の中空粒子が得られる。すなわち、本実施形態の絶縁層形成用ワニスにおける中空粒子の外殻は、コアシェル構造の中空形成粒子のシェルに由来する。
[絶縁電線の製造方法]
 次に、当該絶縁電線の製造方法について説明する。当該絶縁電線の製造方法は、上記絶縁層2を形成するための主ポリマーを溶剤で希釈した樹脂組成物に、コアシェル構造の中空形成粒子5を分散させることで絶縁層形成用ワニスを調製する工程(ワニス調製工程)、上記絶縁層形成用ワニスを上記導体1の外周面に塗布する工程(ワニス塗布工程)、及び加熱により上記中空形成粒子5のコア6を除去する工程(加熱工程)を備える。
<ワニス調製工程>
 上記ワニス調製工程において、まず、絶縁層2を形成する主ポリマーを溶剤で希釈することにより、絶縁層2のマトリックスを形成する樹脂組成物を調製する。次に、この樹脂組成物に中空形成粒子5を分散させて絶縁層形成用ワニスを調製する。なお、樹脂組成物に中空形成粒子5を分散させるのではなく、主ポリマーを溶剤で希釈する際、同時に中空形成粒子5を混合することにより上記絶縁層形成用ワニスを調製してもよい。
<ワニス塗布工程>
 上記ワニス塗布工程において、上記ワニス調製工程で調製した絶縁層形成用ワニスを導体1の外周面に塗布した後、塗布ダイスにより導体1のワニスの塗布量の調節及び塗布されたワニス面の平滑化を行う。
 上記塗布ダイスは開口部を有し、絶縁層形成用ワニスを塗布した導体1がこの開口部を通過することで余分なワニスが除去され、ワニスの塗布量が調整される。これにより、当該絶縁電線は、絶縁層2の厚さが均一になり、均一な電気絶縁性が得られる。
<加熱工程>
 次に、上記加熱工程において、絶縁層形成用ワニスが塗布された導体1を焼付炉に通して絶縁層形成用ワニスを焼付けることで、導体1表面に絶縁層2を形成する。焼付の際、絶縁層形成用ワニスに含まれる中空形成粒子5のコア6の熱分解性樹脂が熱分解によりガス化し、このガス化した熱分解性樹脂がシェル7を通過して飛散する。このように、焼付時の加熱により、中空形成粒子5のコア6が除去される。その結果、絶縁層2中に中空形成粒子5に由来する中空粒子(外殻のみの粒子)が形成され、この中空粒子による気孔3が絶縁層2内に形成される。このように、上記加熱工程は、絶縁層形成用ワニスの焼付工程を兼ねる。
 導体1表面に積層される絶縁層2が所定の厚さとなるまで、上記ワニス塗布工程及び加熱工程を繰り返すことにより、当該絶縁電線が得られる。
 このように、当該絶縁層形成用ワニスを用いて形成した絶縁層2には、中空形成粒子5に由来する気孔3が含まれる。この気孔3は外殻4で囲まれているので、絶縁層2の気孔率が高くなるよう気孔を増やしても、独立気孔率を大きいものとすることができる。また、外殻4で囲まれた気孔3を有する絶縁層2は、単一の熱分解性樹脂で形成された気孔を有する絶縁層よりも絶縁破壊電圧を高くでき、絶縁性を優れたものとすることができる。このように、当該絶縁層形成用ワニスにより、絶縁層2の気孔率を高めた場合でも、絶縁性、機械的強度及び耐溶剤性を優れたものとすることができる。
 なお、上記加熱工程は、ワニス調製工程の前に行ってもよい。この場合、例えば恒温槽などを用いて上記中空形成粒子5を加熱することにより、コア6の熱分解性樹脂を熱分解によりガス化させ、コア6が除去された中空粒子を得る。上記ワニス調製工程では、絶縁層2のマトリックスを形成する上記樹脂組成物に、中空粒子を分散させて絶縁層形成用ワニスを調製する。この絶縁層形成用ワニスの塗布及び焼付後も、上記コア6が除去された中空粒子の中空構造が維持されるので、この絶縁層形成用ワニスの塗布及び焼付により、中空粒子による気孔3を含む絶縁層2を形成できる。ただし、このようにワニス調製工程の前に加熱工程を行う場合、加熱工程とは別に絶縁層形成用ワニスを焼付ける工程をワニス塗布工程の後に行う。
 このように、ワニス調製工程の前に加熱工程を行う場合、焼付時の加熱により中空形成粒子5のコア6を消失させる場合に比べて、より確実にコア6を消失させ易い。そのため、より確実に絶縁層2に気孔を形成できると共に、熱分解性樹脂の分解ガスによる絶縁層2の発泡を抑制できる。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 上記実施形態においては、1層の絶縁層が導体の外周面に積層される絶縁電線について説明したが、複数の絶縁層が導体の外周面に積層される絶縁電線としてもよい。つまり、図1の導体1と気孔3を含む絶縁層2との間に1又は複数の絶縁層が積層されてもよいし、図1の気孔3を含む絶縁層2の外周面に1又は複数の絶縁層が積層されてもよいし、図1の気孔3を含む絶縁層2の外周面及び内周面の両方に1又は複数の絶縁層が積層されてもよい。このように複数の絶縁層が積層される絶縁電線において、少なくとも1の絶縁層に外殻に囲まれる気孔(中空粒子による気孔)が含まれればよい。つまり、2以上の絶縁層に中空粒子による気孔が含まれてもよい。2以上の絶縁層に中空粒子による気孔が含まれる場合、これらのそれぞれの絶縁層が低誘電率化に寄与する。このように複数の絶縁層のうち少なくとも1層が当該絶縁層形成用ワニスで形成される絶縁電線も、本発明の意図する範囲内である。また、このように導体の外周面に複数の絶縁層を積層することにより、絶縁電線の機械的強度を向上できる。なお、これらの複数の絶縁層を形成する樹脂組成物として同種のものを用いてもよく、互いに異なるものを用いてもよい。
 また、上記実施形態では、絶縁層に含まれる気孔が扁平球体である絶縁電線について説明したが、気孔が扁平球体でなくてもよい。例えば、外殻に囲まれる気孔が扁平ではない多角体や球体であってもよい。気孔がこのような形状であっても、形成される気孔同士が外殻によって連通し難いので、絶縁層における気孔中の独立気孔率を高めることができる。従って、このような形状の気孔であっても、絶縁電線の絶縁性、機械的強度及び耐溶剤性を優れたものとすることができる。
 また、例えば当該絶縁電線において、導体と絶縁層との間にプライマー(Primer)層等のさらなる層が設けられてもよい。プライマー層は、層間の密着性を高めるために設けられる層であり、例えば公知の樹脂組成物により形成することができる。
 導体と絶縁層との間にプライマー層を設ける場合、このプライマー層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、プライマー層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体と絶縁層との間にプライマー層を形成することで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、当該絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。
 また、プライマー層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、プライマー層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。
 プライマー層の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。一方、プライマー層の平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。プライマー層の平均厚さが上記下限未満であると、導体との十分な密着性を発揮できないおそれがある。逆に、プライマー層の平均厚さが上記上限を超えると、当該絶縁電線が不必要に大径化するおそれがある。
 また、上記実施形態では、熱分解性樹脂を用いて絶縁層内に気孔を生成させる製造方法について説明したが、熱分解性樹脂の代わりに発泡剤や熱膨張性マイクロカプセルをワニスに混合し、発泡剤や熱膨張性マイクロカプセルにより絶縁層内に気孔を形成させる製造方法としてもよい。例えば上記製造方法において、絶縁層を形成する樹脂を溶剤で希釈したものを熱膨張性マイクロカプセルと混合して絶縁層形成用ワニスを調製し、この絶縁層形成用ワニスの導体の外周面への塗布及び焼付けにより絶縁層を形成してもよい。焼付けの際に、ワニスに含まれる熱膨張性マイクロカプセルが膨張又は発泡することによって絶縁層内に気孔が形成される。
 熱膨張性マイクロカプセルは、熱膨張剤からなる芯材(内包物)と、芯材を包む外殻とを有する。熱膨張性マイクロカプセルの熱膨張剤は、加熱により膨張又は気体を発生するものであればよく、その原理は問わない。熱膨張性マイクロカプセルの熱膨張剤としては、例えば低沸点液体、化学発泡剤又はこれらの混合物を使用することができる。
 低沸点液体としては、例えばブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等のアルカンや、トリクロロフルオロメタン等のフレオン類などが好適に用いられる。また、化学発泡剤としては、加熱によりNガスを発生するアゾビスイソブチロニトリル等の熱分解性を有する物質が好適に用いられる。
 熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度、つまり低沸点液体の沸点又は化学発泡剤の熱分解温度としては、後述する熱膨張性マイクロカプセルの外殻の軟化温度以上とされる。より詳しくは、熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の下限としては、60℃が好ましく、70℃がより好ましい。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の上限としては、200℃が好ましく、150℃がより好ましい。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記下限に満たない場合、絶縁電線の製造時、輸送時又は保管時に熱膨張性マイクロカプセルが意図せず膨張してしまうおそれがある。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記上限を超える場合、熱膨張性マイクロカプセルを膨張させるために必要なエネルギーコストが過大となるおそれがある。
 熱膨張性マイクロカプセルの外殻は、熱膨張剤の膨張時に破断することなく膨張し、発生したガスを包含するマイクロバルーンを形成できる延伸性を有する材質から形成される。熱膨張性マイクロカプセルの外殻を形成する材質としては、通常は、熱可塑性樹脂等の高分子を主成分とする樹脂組成物が用いられる。
 熱膨張性マイクロカプセルの外殻の主成分とされる熱可塑性樹脂としては、例えば塩化ビニル、塩化ビニリデン、アクリロニトリル、アクリル酸、メタアクリル酸、アクリレート、メタアクリレート、スチレン等の単量体から形成された重合体、あるいは2種以上の単量体から形成された共重合体が好適に用いられる。好ましい熱可塑性樹脂の一例としては、塩化ビニリデン-アクリロニトリル共重合体が挙げられ、この場合の熱膨張剤の膨張開始温度は、80℃以上150℃以下とされる。
 また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば気孔を中空フィラーで形成させた構成としてもよい。気孔を中空フィラーで形成させる場合、例えば絶縁層を形成する樹脂組成物と中空フィラーとを混練し、押出し成形により混練物を導体に被覆することで絶縁層に気孔を含む絶縁電線を製造できる。
 中空フィラーにより気孔を形成する場合、中空フィラーの内部の空洞部分が絶縁層に含まれる気孔となる。中空フィラーとしては、例えばシラスバルーン、ガラスバルーン、セラミックバルーン、有機樹脂バルーン等が挙げられる。絶縁電線に可撓性が要求される場合、これらの中で有機樹脂バルーンが好ましい。また、機械的強度が重視される絶縁電線の場合、入手が容易で破損し難いという点からガラスバルーンが好ましい。
 また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば相分離法を用いて気孔を形成させた構成としてもよい。相分離法を用いる一例として、絶縁層を形成する樹脂として熱可塑性樹脂を用い、溶剤と均質混合して加熱溶融状態で導体の外周面へ塗布する。そして、水等の非溶解性液体への浸漬又は空気中での冷却により樹脂と溶媒とを相分離させ、溶媒を別の揮発性溶剤で抽出除去することにより絶縁層に気孔が形成される。
 また、第一実施形態の中空形成粒子に第二実施形態の中空粒子やその他の実施形態で説明した発泡剤や熱膨張性マイクロカプセル、中空フィラーを適宜混合して用いても良い。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[絶縁電線の製造]
 表1のNo.1に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、熱分解性樹脂粒子として平均粒子径3μmのPMMA粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が30体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度6m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を15回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.1)を製造した。No.1の絶縁電線における絶縁層の平均厚さは99μmであった。
 表1のNo.2に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル構造の粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が30体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度6m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を15回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.2)を製造した。No.2の絶縁電線における絶縁層の平均厚さは100μmであった。
 表1のNo.3に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、熱分解性樹脂粒子として平均粒子径3μmのPMMA粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が50体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度3.5m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を15回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.3)を製造した。No.3の絶縁電線における絶縁層の平均厚さは99μmであった。
 表1のNo.4に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル構造の粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が53体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度6m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を15回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.4)を製造した。No.4の絶縁電線における絶縁層の平均厚さは101μmであった。
 表1のNo.5に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル構造の粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が30体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度6m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を12回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.5)を製造した。No.5の絶縁電線における絶縁層の平均厚さは80μmであった。
 表1のNo.6に示す絶縁電線を以下のようにして製造した。まず、主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル構造の粒子を用い、上記樹脂組成物に、計算値で絶縁層の気孔率が30体積%となる量を分散させてワニスを調製した。このワニスを用い、竪型塗装設備を使用して、断面が2mm×2mmの平角形状の導体を浸漬した後、導体と相似形状の開口部を有するダイスを、速度6m/分で通過させ、焼付炉中を通過させて、350℃で1分間焼付を行い、絶縁被膜を形成した。このワニスの塗布、ダイス通過、焼付を20回繰り返して、ポリイミド樹脂被膜を絶縁層とする絶縁電線(No.6)を製造した。No.6の絶縁電線における絶縁層の平均厚さは120μmであった。
[評価]
 上記得られたNo.1~No.6の絶縁電線について、絶縁層の気孔率、気孔中の独立気孔率、絶縁破壊電圧、プレス後皮膜厚減少率、絶縁層の誘電率及び溶剤浸漬試験後の絶縁層の誘電率を、下記方法に従い評価した。評価結果を表1に示す。
(絶縁層の気孔率)
 得られた絶縁層を導体から筒状に剥離し、この筒状の絶縁層の質量W2を測定した。また、筒状の絶縁層の外形から見かけの体積V1を求め、このV1に絶縁層の材質の密度ρ1を乗じて気孔がない場合の質量W1を算出した。これらW1及びW2の値から、下記式により気孔率を算出した。
 気孔率=(W1-W2)×100/W1 (体積%)
(気孔中の独立気孔率)
 上記筒状に剥離して得た絶縁層の断面を、走査型電子顕微鏡(SEM)で観察し、隣接する気孔との間に絶縁性を有する樹脂組成物を介することにより互いに開口していないもの(独立気孔)と独立気孔以外の気孔とを区別するように二値化して、気孔中の独立気孔率(体積%)を算出した。
(絶縁破壊電圧)
 絶縁破壊試験機(FAITH社の「BREAK-DOWN TESTER ”CONTROL UNIT F8150-1”」)を使用して測定した。No.1~No.6の絶縁電線に幅10mmのアルミ箔を巻き、電極の片方を導体に、もう一方の電極をアルミ箔に接続した。電極間に印加する電圧を昇圧速度500V/秒で昇圧して、15mA以上の電流が流れたときの電圧を読み取った。測定数n=5で実施し、その平均値で評価した。
(プレス後皮膜厚減少率)
 No.1~No.6の絶縁電線を、その長手方向の一部にプレス圧がかかるように、プレス加工機に設置した。所定のプレス圧になるように、プレス圧(MPa)×プレス面積(mm)で求められる荷重(N)をかけ、荷重が安定してから、10秒間プレスした。プレスした箇所の絶縁層の平均厚さT1と、プレスしていない箇所の絶縁層の平均厚さT2とを測定し、T1及びT2の測定値から(T2-T1)×100/T2(%)の式により、プレス後皮膜厚減少率を算出した。プレス後皮膜厚減少率の測定は、プレス圧を、0MPa、100MPa、200MPa、300MPaとしてそれぞれ行った。また、絶縁層の平均厚さT1及びT2は、絶縁電線の断面方向において3点測定し、その平均値を用いた。
(絶縁層の誘電率)
 No.1~No.6の絶縁電線について、絶縁層2の誘電率εを測定した。図4は、誘電率の測定方法を説明するための模式図である。図4では、絶縁電線に図1と同じ符号を付している。まず、絶縁電線の表面3カ所に銀ペーストPを塗布すると共に、絶縁電線の一端側の絶縁層2を剥離して導体1を露出させた測定用のサンプルを作製した。ここで、絶縁電線の表面3カ所に塗布した銀ペーストPの絶縁電線長手方向の塗布長さは、長手方向に沿って順に10mm、100mm、10mmとした。長さ10mmで塗布した2カ所の銀ペーストPを接地し、これらの2カ所の銀ペーストの間に塗布した長さ100mmの銀ペーストPと上記露出させた導体1との間の静電容量をLCRメータMで測定した。この測定した静電容量及び絶縁層2の平均厚さから絶縁層2の誘電率εを算出した。なお、上記誘電率εの測定は、105℃で1時間加熱した後に測定数n=3で実施し、その平均値を求めた。
(溶剤浸漬試験後の誘電率)
 絶縁電線は、高電圧が印加されるような使用では高温となるため、このような場合には、絶縁電線を冷却するために、例えば絶縁電線が溶剤中に浸漬して使用されることがある。このように絶縁電線が溶剤中に浸漬されて使用される場合でも、所望の特性が得られることを確認するため、溶剤浸漬試験を行った。具体的には、No.1~No.6の絶縁電線を試験用油IRM903に150℃で72時間浸漬させた後、各電線の誘電率εを測定した。この溶剤浸漬試験は、測定数n=3で実施し、その平均値を求めて、溶剤への浸漬前の誘電率εと比較した。
 表1の結果より、絶縁層における気孔中の独立気孔率が80体積%以上であるNo.2、No.4、No.5及びNo.6の絶縁電線は、上記特徴を有さないNo.1及びNo.3の絶縁電線に比べて絶縁破壊電圧が高く、プレス後の皮膜厚減少率が低く抑えられている。また、絶縁層に含まれる気孔の周辺部に外殻を備え、上記外殻が、コアシェル構造の中空形成粒子のシェルに由来するNo.2、No.4、No.5及びNo.6の絶縁電線は、誘電率が溶剤浸漬試験後においても維持されている。この結果から、上記特徴を有するNo.2、No.4、No.5及びNo.6の絶縁電線は、絶縁層の低誘電率化を促進すると共に、絶縁性、機械的強度及び耐溶剤性に優れることが分かる。これは、コアシェル構造の中空形成粒子のコアの熱分解により形成された気孔は、大きさ及び形状のばらつきが非常に小さいことに起因すると考えられる。
 1 導体、  2 絶縁層、  3 気孔、  4 外殻
 5 中空形成粒子、  6 コア、  7 シェル
 M LCRメータ、  P 銀ペースト

Claims (7)

  1.  線状の導体と、上記導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、
     上記1又は複数の絶縁層の少なくとも1層が複数の気孔を含有し、
     上記気孔中の独立気孔率が80体積%以上である絶縁電線。
  2.  上記絶縁層の気孔率が20体積%以上である請求項1に記載の絶縁電線。
  3.  上記気孔の周辺部に外殻を備え、上記外殻が、コアシェル構造の中空形成粒子のシェルに由来する請求項1又は請求項2に記載の絶縁電線。
  4.  上記外殻の主成分がシリコーンである請求項3に記載の絶縁電線。
  5.  上記気孔の平均径は0.1μm以上、10μm以下である請求項1から請求項4のいずれか1項に記載の絶縁電線。
  6.  上記気孔の平均径に対する平均径の標準偏差の比は0.3以下である請求項5に記載の絶縁電線。
  7.  上記導体と上記絶縁層の間にプライマー層を備える請求項1から請求項6のいずれか1項に記載の絶縁電線。
PCT/JP2018/011234 2017-03-24 2018-03-21 絶縁電線 WO2018174113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/484,201 US10607750B2 (en) 2017-03-24 2018-03-21 Insulated wire
CN201880016777.3A CN110419083B (zh) 2017-03-24 2018-03-21 绝缘电线
JP2019507725A JP7076429B2 (ja) 2017-03-24 2018-03-21 絶縁電線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-058687 2017-03-24
JP2017058687 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174113A1 true WO2018174113A1 (ja) 2018-09-27

Family

ID=63585471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011234 WO2018174113A1 (ja) 2017-03-24 2018-03-21 絶縁電線

Country Status (4)

Country Link
US (1) US10607750B2 (ja)
JP (1) JP7076429B2 (ja)
CN (1) CN110419083B (ja)
WO (1) WO2018174113A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002706B1 (ja) * 2021-05-13 2022-01-20 三菱電機株式会社 絶縁成形体および静止誘導器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565089A1 (de) * 2018-05-04 2019-11-06 Siemens Aktiengesellschaft Elektrisches isolationssystem eines elektromotors und herstellungsverfahren dazu
KR20240096871A (ko) 2019-08-23 2024-06-26 제우스 컴퍼니 엘엘씨 중합체-코팅된 와이어

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0877849A (ja) * 1994-09-07 1996-03-22 Sumitomo Electric Ind Ltd 絶縁電線の製造方法
JP2000297172A (ja) * 1999-04-13 2000-10-24 Mitsubishi Cable Ind Ltd ノルボルネン樹脂の発泡体、電気絶縁ケーブル、およびノルボルネン樹脂の発泡体の製造方法
JP2008019379A (ja) * 2006-07-14 2008-01-31 Fujikura Ltd 発泡用樹脂組成物用のマスターバッチ、発泡同軸ケーブル及びその製造方法
WO2014123122A1 (ja) * 2013-02-07 2014-08-14 古河電気工業株式会社 絶縁電線及びモータ
JP2017016862A (ja) * 2015-06-30 2017-01-19 住友電気工業株式会社 絶縁電線

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192834A (en) * 1989-03-15 1993-03-09 Sumitomo Electric Industries, Ltd. Insulated electric wire
EP1661942A1 (en) * 2003-08-25 2006-05-31 Daikin Industries, Ltd. Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission
KR101064102B1 (ko) * 2006-09-22 2011-09-08 쿠라베 가부시키가이샤 Ptfe 다공체, ptfe 혼합체, ptfe 다공체의 제조방법, 및 ptfe 다공체를 이용한 전선·케이블
JP2010097858A (ja) * 2008-10-17 2010-04-30 Hitachi Cable Ltd 多孔質体を用いた発泡電線の製造方法及び発泡電線
JP2011162685A (ja) * 2010-02-10 2011-08-25 Hitachi Cable Ltd 紫外線架橋発泡絶縁電線の製造方法
JP2012121995A (ja) * 2010-12-08 2012-06-28 Hitachi Cable Ltd 樹脂組成物及び発泡絶縁電線
JP5516474B2 (ja) * 2011-03-24 2014-06-11 日立金属株式会社 発泡同軸ケーブル及びその製造方法
JP2012224714A (ja) 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd 低誘電率用絶縁ワニス及びこれを用いた絶縁電線
US20130087361A1 (en) * 2011-10-11 2013-04-11 Hitachi Cable, Ltd. Foamed resin composition, wire and cable
KR102020066B1 (ko) * 2013-02-01 2019-09-10 엘에스전선 주식회사 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
JP6056041B1 (ja) * 2015-08-20 2017-01-11 株式会社潤工社 ケーブルコア及び伝送ケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0877849A (ja) * 1994-09-07 1996-03-22 Sumitomo Electric Ind Ltd 絶縁電線の製造方法
JP2000297172A (ja) * 1999-04-13 2000-10-24 Mitsubishi Cable Ind Ltd ノルボルネン樹脂の発泡体、電気絶縁ケーブル、およびノルボルネン樹脂の発泡体の製造方法
JP2008019379A (ja) * 2006-07-14 2008-01-31 Fujikura Ltd 発泡用樹脂組成物用のマスターバッチ、発泡同軸ケーブル及びその製造方法
WO2014123122A1 (ja) * 2013-02-07 2014-08-14 古河電気工業株式会社 絶縁電線及びモータ
JP2017016862A (ja) * 2015-06-30 2017-01-19 住友電気工業株式会社 絶縁電線

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002706B1 (ja) * 2021-05-13 2022-01-20 三菱電機株式会社 絶縁成形体および静止誘導器
WO2022239191A1 (ja) * 2021-05-13 2022-11-17 三菱電機株式会社 絶縁成形体および静止誘導器

Also Published As

Publication number Publication date
CN110419083A (zh) 2019-11-05
US20190371496A1 (en) 2019-12-05
JPWO2018174113A1 (ja) 2020-01-30
CN110419083B (zh) 2022-06-07
JP7076429B2 (ja) 2022-05-27
US10607750B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
JP6306220B2 (ja) 絶縁電線及び絶縁層形成用ワニス
JP7016860B2 (ja) 絶縁電線
JP2012224714A (ja) 低誘電率用絶縁ワニス及びこれを用いた絶縁電線
US10991477B2 (en) Insulated electrical cable
WO2018174113A1 (ja) 絶縁電線
JP6587383B2 (ja) 絶縁電線
WO2017138284A1 (ja) 絶縁電線
JP7214625B2 (ja) 絶縁電線
US10468153B2 (en) Insulated electric wire and method for producing insulated electric wire
JP2016046061A (ja) 絶縁電線及び絶縁電線の製造方法
JP6781569B2 (ja) 絶縁電線及び絶縁電線の製造方法
JP2018029004A (ja) 自己潤滑性絶縁電線
JP2016110847A (ja) 絶縁電線及び絶縁電線の製造方法
JP2017045662A (ja) 絶縁電線及び絶縁層形成用ワニス
JP6619614B2 (ja) 絶縁電線
JP6690986B2 (ja) 絶縁電線及び絶縁電線の製造方法
JP2016225046A (ja) 絶縁電線
WO2023153063A1 (ja) 絶縁電線及び絶縁電線の製造方法
JP2017212199A (ja) 絶縁電線、絶縁層形成用樹脂組成物及び絶縁電線の製造方法
JP2016110801A (ja) 絶縁電線及び絶縁電線の製造方法
CN117280429A (zh) 绝缘电线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771382

Country of ref document: EP

Kind code of ref document: A1