WO2017029900A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2017029900A1
WO2017029900A1 PCT/JP2016/069932 JP2016069932W WO2017029900A1 WO 2017029900 A1 WO2017029900 A1 WO 2017029900A1 JP 2016069932 W JP2016069932 W JP 2016069932W WO 2017029900 A1 WO2017029900 A1 WO 2017029900A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
thin film
water
organic solvent
Prior art date
Application number
PCT/JP2016/069932
Other languages
English (en)
French (fr)
Inventor
正幸 尾辻
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201680044083.1A priority Critical patent/CN107851571B/zh
Priority to US15/743,713 priority patent/US11201067B2/en
Priority to KR1020187002775A priority patent/KR102113931B1/ko
Publication of WO2017029900A1 publication Critical patent/WO2017029900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing an upper surface of a substrate using a processing liquid.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate, ceramic substrate, solar cell substrate and the like are examples of substrates to be processed.
  • a processing liquid is supplied to the surface of a substrate such as a semiconductor wafer, and the surface of the substrate is processed using the processing liquid.
  • a single-wafer type substrate processing apparatus that processes substrates one by one, a spin chuck that rotates the substrate while holding the substrate substantially horizontal, and a processing liquid on the upper surface of the substrate that is rotated by the spin chuck. And a nozzle for supplying.
  • the chemical liquid is supplied to the substrate held by the spin chuck, and then the rinse liquid is supplied, whereby the chemical liquid on the substrate is replaced with the rinse liquid. Thereafter, a drying process for removing the rinse liquid from the upper surface of the substrate is performed.
  • a technique is known in which vapor of isopropyl alcohol (IPA) having a boiling point lower than that of water is supplied to the surface of a rotating substrate in order to suppress the generation of watermarks.
  • IPA isopropyl alcohol
  • rotagoni drying is an example of this method.
  • a liquid film of a treatment liquid is formed on the upper surface of the substrate, and a low surface tension liquid (IPA) vapor is sprayed on the liquid film of the treatment liquid, A liquid film removal region is formed. Then, the upper surface of the substrate is dried by expanding the liquid film removal region and expanding the liquid film removal region over the entire upper surface of the substrate.
  • IPA low surface tension liquid
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of drying the upper surface of a substrate while suppressing or preventing the generation of particles.
  • the present invention includes a substrate holding step for horizontally holding a substrate, a liquid film forming step for supplying a processing liquid to the upper surface of the substrate to form a liquid film of the processing liquid covering the upper surface of the substrate, and the processing liquid
  • the gas is supplied to the substrate in parallel with the vapor atmosphere filling step.
  • the thin film region expanding step for expanding the thin film region toward the outer periphery of the substrate, and after the thin film is expanded over the entire upper surface by the thin film region expanding step, the thin film is removed from the upper surface.
  • a thin film removing step to provide a substrate processing method.
  • the entire periphery of the liquid film of the processing liquid covering the upper surface of the substrate is filled with a vapor atmosphere containing vapor of a low surface tension liquid (hereinafter simply referred to as “vapor atmosphere”; the same applies in this section).
  • vapor atmosphere a vapor atmosphere containing vapor of a low surface tension liquid
  • the thin film of the treatment liquid contains the low surface tension liquid in a high concentration. Since the periphery of the entire upper surface of the substrate is maintained in a vapor atmosphere, the diffusion of the vapor of the low surface tension liquid does not proceed, and as a result, the progress of the evaporation of the low surface tension liquid contained in the thin film is suppressed or prevented. The Accordingly, it is not possible to completely remove all of the processing liquid in the part of the liquid film of the processing liquid, and the thin film of the processing liquid is held in the part.
  • a thin film region is formed in the part.
  • the thin film region forming step and the thin film region expanding step are sequentially performed while keeping the periphery of the entire liquid film of the processing liquid covering the upper surface of the substrate in a vapor atmosphere. Therefore, regardless of the state of expansion of the thin film region, until the end of the expansion of the thin film region, the portion of the liquid film of the processing liquid near the boundary (hereinafter referred to as “boundary”) with the thin film of the processing liquid (hereinafter referred to as “boundary”).
  • boundary the portion of the liquid film of the processing liquid near the boundary
  • the particles included in the vicinity of the boundary of the liquid film of the processing liquid are subjected to Marangoni convection and move in a direction away from the boundary. Therefore, the particles are taken into the liquid film of the processing liquid.
  • the boundary moves outward in the radial direction of the substrate.
  • the thin film region expands while particles are taken into the liquid film of the processing liquid.
  • the particles contained in the liquid film of the processing liquid are discharged from the upper surface of the substrate together with the liquid film of the processing liquid without appearing in the thin film region. Thereafter, the upper surface of the substrate is dried by removing the thin film from the upper surface of the substrate.
  • the thin film contains a large amount of low surface tension liquid, it is possible to suppress the generation of watermarks after drying.
  • the method further includes a blocking step of setting a space including the upper space of the substrate to a blocking state blocked from outside, and supplying the gas to the space after the blocking step. Thereby, the said steam atmosphere filling process is performed.
  • the space including the space above the substrate is blocked, so that the space is hardly affected by external disturbance.
  • the periphery of the liquid film of the processing liquid can be filled with a vapor atmosphere.
  • the method may include an opening high-speed rotation step of rotating the substrate at a predetermined high rotation speed while opening the space to the outside.
  • the method may further include a paddle step of making the substrate stationary or rotating the substrate at a paddle speed around the rotation axis in parallel with the liquid film forming step.
  • the thickness in the vicinity of the boundary of the liquid film of the processing liquid formed on the upper surface of the substrate can be kept thick. If the thickness in the vicinity of the boundary of the liquid film of the processing liquid is large, the concentration gradient of the low surface tension liquid in the liquid film of the processing liquid and the thin film of the processing liquid can be kept large in the thin film region expansion process. The Marangoni convection generated in the liquid film of the treatment liquid can be strengthened.
  • the thin film region expanding step may include a first high-speed rotation step of rotating the substrate at a first high speed that is faster than the thin film region formation speed.
  • the substrate is rotated at a high speed during the drying region expansion process, a strong centrifugal force acts on the substrate, and this centrifugal force causes a difference in film thickness in the vicinity of the interface of the liquid film of the processing liquid. It can be even more prominent.
  • the concentration gradient of the low surface tension liquid generated in the vicinity of the interface of the liquid film of the processing liquid can be kept large, and therefore the Marangoni convection generated in the vicinity of the interface of the liquid film of the processing liquid is further enhanced. be able to.
  • the thin film removing step is performed in parallel with the second high speed rotation step of rotating the substrate at a second high speed faster than the thin film region formation speed, and the second high speed rotation step.
  • An atmosphere replacement step for replacing the atmosphere around the upper surface with an atmosphere of a gas other than the low surface tension liquid from the vapor atmosphere may be included.
  • the substrate is rotated at a high speed while the atmosphere around the upper surface of the substrate is replaced with a gas atmosphere other than the low surface tension liquid.
  • the fresh gas comes into contact with the upper surface of the substrate, diffusion of the low surface tension liquid proceeds at various locations on the upper surface of the substrate, and evaporation of the thin film containing the low surface tension liquid proceeds. Therefore, the thin film can be shaken off by the high-speed rotation of the substrate, whereby the upper surface of the substrate can be dried.
  • the treatment liquid may contain water, and the low surface tension liquid may contain an organic solvent.
  • organic solvent vapor atmosphere a vapor atmosphere containing organic solvent vapor
  • the water thin film contains the organic solvent in a high concentration. Since the periphery of the entire upper surface of the substrate is maintained in the organic solvent vapor atmosphere, the diffusion of the organic solvent vapor does not proceed, and as a result, the progress of the evaporation of the organic solvent contained in the thin film is suppressed or prevented. Therefore, in the part of the liquid film of water, all of the water cannot be completely removed, and the thin film of water is retained in the part. That is, a thin film region is formed in the part.
  • the thin film region forming step and the thin film region expanding step are sequentially performed while the periphery of the entire liquid film of water covering the upper surface of the substrate is maintained in an organic solvent vapor atmosphere. Therefore, regardless of the state of expansion of the thin film region, until the end of expansion of the thin film region, the area around the boundary with the thin film of water (the vicinity of the boundary) and the periphery of the thin film of water are organic. A solvent vapor atmosphere is maintained.
  • the particles included in the vicinity of the boundary of the liquid film of water move in a direction away from the boundary due to Marangoni convection. Therefore, particles are taken into the liquid film of water.
  • the boundary moves outward in the radial direction of the substrate.
  • the thin film region expands while particles are taken into the liquid film of water.
  • the particle contained in the liquid film of water is discharged
  • the thin film contains a large amount of organic solvent, the generation of watermarks can be suppressed after drying.
  • the present invention also provides a substrate holding unit for horizontally holding a substrate, a processing liquid supply unit for supplying a processing liquid to the upper surface of the substrate, and a surface tension lower than water around the upper surface of the substrate.
  • a gas supply unit that supplies a gas including a vapor of low surface tension liquid, and a control device that controls the treatment liquid supply unit and the gas supply unit, and the control device is disposed on the upper surface of the substrate.
  • the processing is performed by partially removing the processing liquid by rotating the substrate at a predetermined thin film region forming speed without blowing gas to the substrate.
  • a substrate processing apparatus that executes a thin film region forming step of forming a thin film region in the liquid film and a thin film region expanding step of expanding the thin film region toward the outer periphery of the substrate in parallel with the vapor atmosphere filling step I will provide a.
  • the thin film of the treatment liquid contains the low surface tension liquid in a high concentration. Since the periphery of the entire upper surface of the substrate is maintained in a vapor atmosphere, the diffusion of the vapor of the low surface tension liquid does not proceed, and as a result, the progress of the evaporation of the low surface tension liquid contained in the thin film is suppressed or prevented. The Accordingly, it is not possible to completely remove all of the processing liquid in the part of the liquid film of the processing liquid, and the thin film of the processing liquid is held in the part.
  • a thin film region is formed in the part.
  • the thin film region forming step and the thin film region expanding step are sequentially performed while keeping the periphery of the entire liquid film of the processing liquid covering the upper surface of the substrate in a vapor atmosphere. Therefore, regardless of the state of expansion of the thin film region, until the end of the expansion of the thin film region, the portion of the liquid film of the processing liquid near the boundary (hereinafter referred to as “boundary”) with the thin film of the processing liquid (hereinafter referred to as “boundary”).
  • boundary the portion of the liquid film of the processing liquid near the boundary
  • the particles included in the vicinity of the boundary of the liquid film of the processing liquid are subjected to Marangoni convection and move in a direction away from the boundary. Therefore, the particles are taken into the liquid film of the processing liquid.
  • the boundary moves outward in the radial direction of the substrate.
  • the thin film region expands while particles are taken into the liquid film of the processing liquid.
  • the particles contained in the liquid film of the processing liquid are discharged from the upper surface of the substrate together with the liquid film of the processing liquid without appearing in the thin film region. Thereafter, the upper surface of the substrate is dried by removing the thin film from the upper surface of the substrate.
  • the thin film contains a large amount of low surface tension liquid, it is possible to suppress the generation of watermarks after drying.
  • the substrate processing apparatus further includes a sealed chamber having an internal space sealed from the outside, and housing the substrate holding unit in the internal space.
  • the entire area of the internal space of the sealed chamber can be made a vapor atmosphere. Therefore, the periphery of the entire upper surface of the substrate can be reliably maintained in a vapor atmosphere.
  • the internal space of the sealed chamber can be made a vapor atmosphere only by the presence of the low surface tension liquid in the internal space of the sealed chamber.
  • the first gas supply unit may include an internal gas supply unit that supplies the gas to the internal space.
  • the gas supply unit may include an internal gas supply unit that supplies the gas to the internal space.
  • the entire internal space of the sealed chamber can be made into a vapor atmosphere.
  • steam atmosphere is easily realizable.
  • the gas supply unit further includes a nozzle for discharging the low surface tension liquid, and a low surface tension liquid supply unit for supplying the low surface tension liquid to the nozzle.
  • the substrate processing apparatus may further include a storage container capable of receiving the liquid of the low surface tension liquid discharged from the nozzle and storing the liquid.
  • the entire interior space of the sealed chamber can be made into a vapor atmosphere using the low surface tension liquid vapor generated by the evaporation of the low surface tension liquid stored in the storage container.
  • the entire interior space of the sealed chamber can be made into a vapor atmosphere by using the low surface tension liquid vapor generated by the evaporation of the low surface tension liquid stored in the storage container.
  • steam atmosphere is easily realizable.
  • the substrate processing apparatus further includes a processing chamber that houses the substrate holding unit, and a facing member having a facing surface facing the upper surface of the substrate, and the gas supply unit opens to the facing surface, and the gas The gas discharge port which discharges may be included.
  • the vapor of the low surface tension liquid discharged from the gas discharge port is supplied to the space between the facing surface and the upper surface of the substrate.
  • the space between the opposing surface and the upper surface of the substrate can be blocked from the outside, and thereby, the periphery of the entire upper surface of the substrate can be maintained in the vapor atmosphere.
  • the facing member is opposed to the peripheral edge of the upper surface of the substrate, and forms a narrow gap between the peripheral edge of the upper surface and the central portion of the opposing surface and the central portion of the upper surface of the substrate. You may have an opposing peripheral part.
  • the narrow gap is formed between the opposing peripheral edge of the opposing member and the upper peripheral edge of the substrate, the low surface tension liquid supplied to the space between the opposing surface and the upper surface of the substrate. Is difficult to exhaust from the space. Therefore, it is possible to further suppress the outflow of the low surface tension liquid vapor from the space. Thereby, the circumference
  • a plurality of the gas discharge ports may be distributed on the facing surface.
  • the gas from the gas discharge ports can be uniformly supplied to the liquid film of the processing liquid on the substrate.
  • the plurality of gas discharge ports dispersedly arranged are not oriented locally on the upper surface of the substrate.
  • the control unit may further include an elevating unit that elevates and lowers the facing member, and the control unit controls the elevating unit to elevate the height of the elevating unit according to a change in the rotation speed of the substrate.
  • the thickness of the liquid film of the processing liquid becomes thin. Therefore, even if the volume of the space between the upper surface of the substrate and the facing surface is the same, the space between the upper surface of the processing solution liquid film and the facing surface is equivalent to the thinning of the processing solution liquid film. The volume increases. In this case, the concentration of the low surface tension liquid contained in the space between the upper surface and the opposing surface of the substrate may be lowered.
  • the height of the lifting unit is raised and lowered according to the change in the rotation speed of the substrate.
  • the elevating unit is lowered, and when lowering the rotation speed of the substrate, the elevating unit is raised.
  • FIG. 1 is an illustrative plan view for explaining the internal layout of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus.
  • 5 is a time chart for explaining details of a rinse process (S3 in FIG. 4) and a spin dry process (S4 in FIG. 4) executed in the substrate processing apparatus.
  • FIG. 6A is a schematic cross-sectional view for explaining the state of the paddle rinse process (T1 in FIG. 5).
  • FIG. 6B and 6C are schematic cross-sectional views for explaining the state of the thin film region forming step (T2 in FIG. 5) and the thin film region expanding step (T3 in FIG. 5).
  • 6D and 6E are schematic cross-sectional views for explaining the state of the thin film region expansion step (T3 in FIG. 5).
  • FIG. 7 is an enlarged cross-sectional view showing the state of the liquid film of water during the thin film region expansion step.
  • FIG. 8 is a diagram for explaining the mechanism of Marangoni convection generation in the inner peripheral portion of the liquid film of water.
  • 9A and 9B are plan views showing the state of the inner peripheral portion of the liquid film of water during expansion of the thin film region.
  • FIG. 10 is a diagram showing a flow distribution model at the gas-liquid-solid interface in the liquid film of water on the upper surface of the substrate according to the reference embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the movement of fine particles contained in the inner peripheral portion of the liquid film of water according to the reference embodiment.
  • FIG. 12 is a schematic plan view showing movement of fine particles contained in the inner peripheral portion of the liquid film of water according to the reference embodiment.
  • 13A and 13B are plan views showing the state of the inner peripheral portion of the liquid film of water during expansion of the liquid film removal region according to the reference embodiment.
  • FIG. 14 is an illustrative cross-sectional view for explaining a configuration example of a processing unit of a substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 15A is an illustrative sectional view for explaining a configuration example of a processing unit of a substrate processing apparatus according to a third embodiment of the present invention.
  • FIG. 15B is a bottom view of the facing member.
  • FIG. 16 is a time chart for explaining the rinsing step (S3) and the spin dry step (S4) executed in the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 17 is a cross-sectional view illustrating a state in which the facing member is disposed at the second proximity position.
  • FIG. 18 is a cross-sectional view showing a modification of the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to a first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port It includes transfer robots IR and CR that transfer the substrate W between the LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 has a box-shaped processing chamber (sealed chamber) 4 having an internal space SP, and holds a single substrate W in a horizontal posture in the processing chamber 4 and rotates vertically through the center of the substrate W.
  • a spin chuck (substrate holding unit) 5 that rotates the substrate W around the axis A 1
  • a chemical solution supply unit 6 for supplying a chemical solution to the upper surface of the substrate W held by the spin chuck 5, and a spin chuck 5.
  • the processing chamber 4 includes a box-shaped partition wall 12 that houses the spin chuck 5 and the like, and clean air (atmosphere of a gas other than the low surface tension liquid) from above the partition wall 12 into the partition wall 12 (corresponding to the processing chamber 4)
  • a blower unit 40 to be sent a shutter 13 that opens and closes a carry-in / out port provided in the partition wall 12, and an exhaust unit 14 that exhausts the gas in the processing chamber 4 from the lower part of the partition wall 12.
  • the blower unit 40 is disposed above the partition wall 12, is attached to the ceiling of the partition wall 12, and sends clean air from the ceiling into the processing chamber 4.
  • the blower unit 40 includes a clean air pipe 41 through which clean air flows, and a clean air valve 42 that switches between supply and stop of supply of organic solvent vapor (IPA Vapor) from the clean air pipe 41 to the internal space SP.
  • IPA Vapor organic solvent vapor
  • the first organic solvent vapor supply unit 8 is disposed above the partition wall 12 and attached to the ceiling of the partition wall 12.
  • the first organic solvent vapor supply unit 8 includes a first organic solvent vapor pipe 15 through which the organic solvent vapor flows.
  • the downstream end of the first organic solvent vapor pipe 15 is connected to the internal space SP.
  • the first organic solvent vapor supply unit 8 further includes a first organic solvent vapor valve 16 for switching supply and stop of supply of organic solvent vapor from the first organic solvent vapor pipe 15 to the internal space SP,
  • a first flow rate adjusting valve 17 for adjusting the flow rate of the organic solvent vapor supplied to the internal space SP by adjusting the opening degree of the organic solvent vapor piping 15 and the first organic solvent vapor piping 15 are circulated.
  • the first flow rate adjusting valve 17 includes a valve body provided with a valve seat therein, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position. Including. The same applies to other flow rate adjusting valves.
  • the organic solvent vapor (clean organic solvent vapor from which dust and dust have been removed) is sent to the internal space SP via the first organic solvent vapor pipe 15.
  • the processing chamber 4 includes a rectifying plate 18 that rectifies the gas (clean air or organic solvent vapor) supplied to the internal space SP by the first organic solvent vapor supply unit 8.
  • the rectifying plate 18 is disposed in the internal space SP. Specifically, the rectifying plate 18 disposed at a height between the first organic solvent vapor supply unit 8 and the spin chuck 5 is: It is held in a horizontal position.
  • the rectifying plate 18 partitions the inside of the partition wall 12 into a space SP1 above the rectifying plate 18 and a space SP2 below the rectifying plate 18.
  • An upper space SP ⁇ b> 1 between the ceiling surface 12 a of the partition wall 12 and the rectifying plate 18 is a diffusion space for diffusing supplied gas (clean air or organic solvent vapor), and the floor surface of the rectifying plate 18 and the partition wall 12.
  • the lower space SP2 between 12b is a processing space in which the substrate W is processed.
  • the height of the upper space SP1 is smaller than the height of the lower space SP2.
  • the lower surface 18a of the current plate 18 includes a facing portion that overlaps the spin chuck in plan view.
  • the current plate 18 is a perforated plate in which a plurality of through holes 18b penetrating in the vertical direction are formed over the entire area.
  • the organic solvent vapor valve 16 when the first organic solvent vapor valve 16 is opened with the clean air valve 42 closed, the organic solvent vapor is sent to the upper space SP1.
  • the organic solvent vapor fills the upper space SP1, and the organic solvent vapor passes through the through-hole 18b and flows downward from the entire rectifying plate 18. Thereby, a uniform flow of the organic solvent vapor directed downward from the entire area of the rectifying plate 18 is formed in the lower space SP2.
  • the exhaust unit 14 includes an exhaust duct 19 connected to the inside of the processing cup 11, an exhaust device 20 such as a suction device that sucks the atmosphere of the internal space SP of the processing chamber 4 through the exhaust duct 19, and an exhaust duct 19. And an exhaust pipe 21 for connecting the exhaust pipe 20 and an exhaust valve 22 for opening and closing the exhaust pipe 21.
  • the exhaust valve 22 In the state in which the exhaust valve 22 is opened, the atmosphere in the internal space SP (lower space SP2) is discharged out of the processing chamber 4, and a downflow (downflow) is formed in the inner space SP (lower space SP2).
  • the exhaust valve 22 is closed, the atmosphere in the internal space SP (lower space SP2) is not discharged out of the processing chamber 4.
  • the internal space SP is closed from the outside, and the processing chamber 4 functions as a sealed chamber closed from the outside.
  • the spin chuck 5 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed.
  • the spin chuck 5 includes a spin motor 23, a spin shaft 24 integrated with a drive shaft of the spin motor 23, and a disk-shaped spin base attached to the upper end of the spin shaft 24 substantially horizontally. 25.
  • the spin base 25 includes a horizontal circular upper surface 25a having an outer diameter larger than the outer diameter of the substrate W.
  • a plurality (three or more, for example, six) of clamping members 26 are arranged on the periphery of the upper surface 25a.
  • the plurality of sandwiching members 26 are arranged, for example, at equal intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the periphery of the upper surface of the spin base 25.
  • the chemical solution supply unit 6 includes a chemical solution nozzle 27.
  • the chemical nozzle 27 is, for example, a straight nozzle that discharges liquid in a continuous flow state, and is fixedly disposed above the spin chuck 5 with its discharge port directed toward the center of the upper surface of the substrate W.
  • a chemical liquid pipe 28 to which a chemical liquid from a chemical liquid supply source is supplied is connected to the chemical liquid nozzle 27.
  • a chemical solution valve 29 for switching supply / stop of supply of the chemical solution from the chemical solution nozzle 27 is interposed in the middle of the chemical solution pipe 28.
  • the chemical liquid valve 29 is opened, the continuous flow of chemical liquid supplied from the chemical liquid pipe 28 to the chemical liquid nozzle 27 is discharged from the discharge port set at the lower end of the chemical liquid nozzle 27. Further, when the chemical liquid valve 29 is closed, the supply of the chemical liquid from the chemical liquid pipe 28 to the chemical liquid nozzle 27 is stopped.
  • the chemical solution is an etching solution and a cleaning solution. More specifically, the chemical solution includes hydrofluoric acid, SC1 (ammonia hydrogen peroxide aqueous solution mixture), SC2 (hydrochloric hydrogen peroxide aqueous solution mixture), ammonium fluoride, buffered hydrofluoric acid (hydrofluoric acid and ammonium fluoride and Or a mixture thereof.
  • hydrofluoric acid includes hydrofluoric acid, SC1 (ammonia hydrogen peroxide aqueous solution mixture), SC2 (hydrochloric hydrogen peroxide aqueous solution mixture), ammonium fluoride, buffered hydrofluoric acid (hydrofluoric acid and ammonium fluoride and Or a mixture thereof.
  • the water supply unit 7 includes a water nozzle 30.
  • the water nozzle 30 is, for example, a straight nozzle that discharges liquid in a continuous flow state, and is fixedly disposed above the spin chuck 5 with its discharge port directed toward the center of the upper surface of the substrate W.
  • a water pipe 31 to which water from a water supply source is supplied is connected to the water nozzle 30.
  • a water valve 32 for switching between supply / stop of water from the water nozzle 30 is interposed in the middle of the water pipe 31. When the water valve 32 is opened, the continuous flow of water supplied from the water pipe 31 to the water nozzle 30 is discharged from the discharge port set at the lower end of the water nozzle 30.
  • the water supplied to the water nozzle 30 is, for example, deionized water (DIW), but is not limited to DIW, but includes carbonated water, electrolytic ionic water, hydrogen water, ozone water, and diluted concentrations (for example, about 10 ppm to 100 ppm). It may be either hydrochloric acid water.
  • DIW deionized water
  • the water supplied to the water nozzle 30 is, for example, deionized water (DIW), but is not limited to DIW, but includes carbonated water, electrolytic ionic water, hydrogen water, ozone water, and diluted concentrations (for example, about 10 ppm to 100 ppm). It may be either hydrochloric acid water.
  • the chemical nozzle 27 and the water nozzle 30 do not need to be fixedly arranged with respect to the spin chuck 5.
  • the chemical nozzle 27 and the water nozzle 30 are attached to an arm that can swing in a horizontal plane above the spin chuck 5.
  • a so-called scan nozzle configuration may be employed in which the position of the treatment liquid (chemical liquid or water) on the upper surface of the substrate W is scanned by the swing of the arm.
  • the processing cup 11 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5.
  • the processing cup 11 surrounds the spin base 25.
  • the processing liquid supplied to the substrate W is shaken off around the substrate W.
  • the upper end portion 11 a of the processing cup 11 that opens upward is disposed above the spin base 25. Accordingly, the processing liquid such as chemical liquid or water discharged around the substrate W is received by the processing cup 11. Then, the processing liquid received by the processing cup 11 is sent to a collection device or a waste liquid device (not shown).
  • FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control device 3 controls operations of the spin motor 23, the exhaust device 20, the first nozzle moving unit 34, and the like according to a predetermined program. Further, the control device 3 controls the opening / closing operation of the chemical liquid valve 29, the water valve 32, the first organic solvent vapor valve 16, the first flow rate adjustment valve 17, the clean air valve 42, and the like.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • FIG. 5 is a time chart for explaining the rinse process (S3) and the spin dry process (S4) executed in the substrate processing apparatus 301.
  • 6A to 6E are schematic diagrams for explaining a paddle rinse process (liquid film forming process, vapor atmosphere filling process, paddle process) T1, a thin film area forming process T2, and a thin film area expanding process (high-speed rotation process) T3. It is.
  • the substrate processing will be described with reference to FIGS. 1 to 6E.
  • the unprocessed substrate W is transferred from the carrier C to the processing unit 2 by the transfer robots IR and CR, and is transferred into the processing chamber 4, and the substrate W has its surface (processing target surface, for example, pattern formation surface) facing upward.
  • the wafer is delivered to the spin chuck 5 and the substrate W is held on the spin chuck 5 (S1: substrate loading step (substrate holding step)).
  • the first organic solvent vapor valve 16 Prior to the loading of the substrate W, the first organic solvent vapor valve 16 is closed, the clean air valve 42 is opened, and the exhaust valve 22 is opened. Therefore, a downflow (downflow) of clean air is formed in the inner space SP (lower space SP2) in the lower space SP2.
  • step S2 the control device 3 drives the spin motor 23 to rotate the spin base 25 at a predetermined liquid processing speed (for example, about 800 rpm). Further, the control device 3 opens the chemical liquid valve 29. Thereby, the chemical solution is supplied from the chemical solution nozzle 27 toward the upper surface of the substrate W in the rotating state. The supplied chemical solution spreads over the entire surface of the substrate W by centrifugal force, and the chemical treatment using the chemical solution is performed on the substrate W. When a predetermined period has elapsed from the start of the discharge of the chemical liquid, the control device 3 closes the chemical liquid valve 29 and stops the discharge of the chemical liquid from the chemical liquid nozzle 27.
  • a predetermined liquid processing speed for example, about 800 rpm
  • the rinsing step is a step of removing the chemical solution from the substrate W by replacing the chemical solution on the substrate W with water.
  • the control device 3 opens the water valve 32. Thereby, water is supplied from the water nozzle 30 toward the upper surface of the rotating substrate W. The supplied water is distributed over the entire surface of the substrate W by centrifugal force. The chemical solution adhering to the substrate W is washed away by this water.
  • the control device 3 controls the spin motor 23 so that the rotation speed of the substrate W is changed from the liquid processing speed while the entire upper surface of the substrate W is covered with water. Decrease in steps to a paddle speed (zero or a low rotational speed of about 40 rpm or less, for example, about 10 rpm). Thereafter, the rotation speed of the substrate W is maintained at the paddle speed (paddle rinsing step T1). As a result, as shown in FIG. 6A, a liquid film of water covering the entire upper surface of the substrate W is supported on the upper surface of the substrate W in a paddle shape.
  • the centrifugal force acting on the water liquid film (treatment liquid liquid film) 50 on the upper surface of the substrate W is smaller than the surface tension acting between the water and the upper surface of the substrate W, or the above-mentioned centrifugal force is applied.
  • the force and the surface tension are almost antagonistic. Due to the deceleration of the substrate W, the centrifugal force acting on the water on the substrate W is weakened, and the amount of water discharged from the substrate W is reduced. Since the rinsing step is performed after the chemical step of removing particles from the upper surface of the substrate W with the chemical solution, particles may be included in the liquid film 50 of water. Further, in the paddle rinsing step T1, the supply of water to the substrate W may be continued after the paddle-like water liquid film 50.
  • control device 3 closes the clean air valve 42 and opens the first organic solvent vapor valve 16 in synchronization with the start of the paddle rinse process T1. Thereby, the supply of clean air to the internal space SP is stopped, and the supply of the organic solvent vapor to the internal space SP is started. Thereby, the organic solvent vapor is supplied to the lower space SP2 through the through hole 18b (see FIG. 2). Further, the control device 3 closes the exhaust valve 22. Thereby, the internal space SP of the processing chamber 4 is closed from the outside, and the processing chamber 4 functions as a sealed chamber.
  • the lower space SP2 (the space including the space above the substrate W) is blocked from the outside of the processing chamber 4 (blocking step), and therefore, the organic solvent vapor supplied to the lower space SP2 is in the lower space. It spreads over the entire area of SP2 and fills the lower space SP2. As a result, the periphery of the liquid film 50 of water on the substrate W can be filled with an organic solvent vapor atmosphere (vapor atmosphere filling step).
  • the lower space SP2 cut off from the external space is hardly affected by external disturbances. Therefore, thereafter, the periphery of the entire upper surface of the substrate W is maintained in an atmosphere containing organic solvent vapor at a high concentration (hereinafter referred to as “organic solvent vapor atmosphere”).
  • organic solvent vapor atmosphere an atmosphere containing organic solvent vapor at a high concentration
  • the control device 3 closes the water valve 32 and stops discharging water from the water nozzle 30.
  • the paddle rinsing step T1 ends (the rinsing step (S3) ends).
  • the control device 3 executes a spin dry process (step S4). Specifically, the control device 3 first executes a thin film region forming step T2. In the thin film region forming step T2, as shown in FIG. 6B, a very thin ultrathin film (water thin film) 56 (see FIG. 7) is obtained by removing most of the water at the central portion of the liquid film 50 of the substrate W. ) Is a step of forming a circular thin film region 55 in which the remaining portion is left. Specifically, the control device 3 controls the spin motor 23 to accelerate the substrate W to a predetermined thin film region formation speed (for example, about 50 rpm).
  • a predetermined thin film region formation speed for example, about 50 rpm
  • the thin film region formation speed for example, about 50 rpm
  • a relatively strong centrifugal force acts on the liquid film 50 of the water on the substrate W and exists at the center of the upper surface of the substrate W.
  • the circular thin film region 55 is formed at the center of the upper surface of the substrate W by the water being pushed away radially outward.
  • the thin film region forming speed is about 50 rpm, but it may be a rotational speed higher than that.
  • the organic solvent vapor fills the entire lower space SP2. Therefore, the water liquid film 50 is not deformed by being pushed by the discharge pressure of the organic solvent vapor. Therefore, in the thin film region forming step T2, the liquid film 50 (bulk 72) of water can be kept as thick as possible, and the film thickness drop between the bulk 72 and the thin film region 55 can be kept large. Thereby, the Marangoni convection 65 generated in the inner peripheral portion 70 of the liquid film of water can be strengthened.
  • a thin film region expanding step T3 is performed.
  • the control device 3 controls the spin motor 23 to increase the rotation speed of the substrate W to a predetermined drying speed (first high speed, second high speed, for example, 1000 rpm). .
  • a predetermined drying speed first high speed, second high speed, for example, 1000 rpm.
  • the thin film region 55 expands as shown in FIGS. 6C and 6D.
  • the boundary 60 between the liquid film 50 and the thin film region 55 moves outward in the radial direction of the substrate W.
  • FIG. 6E the thin film region 55 is expanded over the entire area of the substrate W, whereby the entire liquid film 50 of water is discharged out of the substrate W.
  • the liquid film 50 of water is not deformed because a strong discharge pressure of the organic solvent vapor is not applied to the liquid film. Therefore, the liquid film 50 (bulk 72) of water can be kept as thick as possible, and a drop in film thickness between the bulk 72 and the thin film region 55 can be kept large. Thereby, the Marangoni convection 65 generated in the inner peripheral portion 70 of the liquid film of water can be strengthened.
  • the organic solvent concentration on the central portion of the substrate W is about 300 ppm or more
  • the organic solvent concentration on the peripheral portion of the substrate W is about 300 ppm or more
  • the intermediate portion of the substrate W (the central portion and the peripheral portion) The concentration of the organic solvent on the intermediate position is about 300 ppm or more.
  • the supply of the organic solvent vapor to the internal space SP from the first organic solvent vapor supply unit 8 is continued over the entire period of the thin film region expansion step T3. Therefore, the entire upper surface of the substrate W is held in the organic solvent vapor over the entire period of the thin film region expansion step T3. Therefore, regardless of the expansion state of the thin film region 55, the atmosphere around the inner peripheral part (part near the boundary) 70 of the liquid film of water (part of the liquid film where the ultrathin film 56 is not formed) is changed to the organic solvent. It can be kept in a steam atmosphere.
  • the control device 3 ends the thin film region expansion step T3.
  • the control device 3 closes the first organic solvent vapor valve 16 and stops the supply of the organic solvent vapor from the first organic solvent vapor supply unit 8 to the internal space SP.
  • the control device 3 opens the clean air valve 42 and the exhaust valve 22 to form a clean air downflow (downflow) in the internal space SP (lower space SP2). Thereby, the atmosphere of the internal space SP (lower space SP2) is replaced with clean air from the organic solvent vapor.
  • the control device 3 continues the rotation of the substrate W while maintaining the speed of about 1000 rpm (thin film removal step).
  • fresh clean air taken into the lower space SP2 comes into contact with the upper surface of the substrate W. Therefore, the diffusion of water vapor proceeds at various locations on the upper surface of the substrate W, and as a result, the evaporation of water proceeds at these various locations.
  • the water on the upper surface of the substrate W can be shaken off by the high-speed rotation of the substrate W. Thereby, the ultrathin film 56 is completely removed from the upper surface of the substrate W, and therefore, the upper surface of the substrate W can be satisfactorily dried.
  • the control device 3 controls the spin motor 23 to stop the rotation of the spin chuck 5. Thereafter, the transfer robot CR enters the processing unit 2 and carries the processed substrate W out of the processing unit 2 (step S5).
  • the substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
  • FIG. 7 is an enlarged cross-sectional view showing the state of the liquid film 50 of water during the thin film region expansion step T3.
  • the ultra-thin water film 56 Since the periphery of the ultra-thin water film 56 is maintained in an organic solvent vapor atmosphere, a large amount of the organic solvent is dissolved in the ultra-thin water film 56, and thus the ultra-thin water film 56 contains the organic solvent at a high concentration. Since the periphery of the entire upper surface of the substrate W is maintained in the organic solvent vapor atmosphere, the diffusion of the organic solvent vapor does not proceed, and as a result, the progress of the evaporation of the organic solvent contained in the ultrathin film 56 is suppressed or Is prevented. Therefore, in the central portion of the water liquid film 50, all of the water cannot be completely removed, and the ultrathin film 56 of water is held in that part. That is, the thin film region 55 is formed in the part.
  • the thickness of the ultra-thin water film 56 is not more than a wavelength of visible light or less (for example, several nm). It is desirable that the thickness of the ultrathin film 56 be as thin as possible. There are two reasons for this.
  • the first reason is as follows. That is, in order to strengthen the Marangoni convection 65, it is necessary to increase the concentration difference between the water liquid film 50 and the water ultrathin film 56 (that is, to further increase the organic solvent concentration of the water ultrathin film 56). . By further reducing the thickness of the water ultrathin film 56, the amount of the organic solvent per unit volume increases, and the concentration of the organic solvent in the water ultrathin film 56 can be increased.
  • the second reason is as follows. That is, when the water ultrathin film 56 is thick, the concentration of the organic solvent is relatively high in the surface layer portion of the water ultrathin film 56 and relatively low in the base layer portion of the water ultrathin film 56. As a result, Marangoni convection is generated even in the ultrathin film 56 of water, and the Marangoni convection 65 flowing from the ultrathin film 56 to the bulk 72 is weakened.
  • FIG. 8 is a diagram for explaining a mechanism of generating Marangoni convection 65 inside the inner peripheral portion 70 of the liquid film of water.
  • the thickness of the water liquid film 50 is reduced due to the centrifugal force generated by the rotation of the substrate W.
  • the liquid film thickness H 1 is very thin in the region 71 near the boundary 60 (hereinafter, simply referred to as “border boundary region 71”), and the liquid 72 is in the bulk 72 of the water liquid film 50.
  • an ultra-thin film 56 of water is formed in the vicinity region 71 of the boundary 60.
  • the surroundings of the liquid film 50 of water and the ultrathin film 56 of water are kept in a high concentration state of the organic solvent vapor.
  • the organic solvent vapor is uniformly dissolved in the liquid film 50 of water and the ultrathin film 56 of water.
  • the organic solvent concentration in the ultrathin film 56 of water is relatively higher than the organic solvent concentration in the bulk 72.
  • a concentration gradient is generated inside the liquid film 50 of water and the ultrathin film 56 of water, and as a result, Marangoni convection 65 flowing from the ultrathin film 56 toward the bulk 72 is generated.
  • This Marangoni convection 65 not only cancels out the thermal convection 76 (see FIG. 10) generated in the second portion 70B (see FIG.
  • FIG. 9A and 9B are plan views showing the state of the inner peripheral portion 70 of the liquid film of water while the thin film region 55 is enlarged.
  • FIG. 9A shows a state in which fine particles P2 are contained in the inner peripheral portion 70 (specifically, the second portion 70B shown in FIG. 10) of the water liquid film.
  • the fine particles P2 are arranged along the boundary 60.
  • the fine particles P2 included in the inner peripheral portion 70 (second portion 70B) of the liquid film of water are subjected to Marangoni convection 65 (see FIG. 7) flowing in a direction away from the boundary 60, and are radially outside.
  • the boundary 60 moves toward the outer side in the radial direction of the substrate W (the direction toward the bulk 72).
  • the thin particle region 55 remains with the fine particles P2 being taken into the bulk 72. Expands. That is, when the boundary 60 moves outward in the radial direction of the substrate W as the thin film region 55 expands, the fine particles P2 also move outward in the radial direction as shown in FIG. 9B. To do.
  • region 55 is expanded to the whole region of the board
  • the liquid film 50 having water is removed.
  • the fine particles P2 contained in the bulk 72 of the water liquid film 50 are removed from the upper surface of the substrate W together with the water liquid film 50 without appearing in the thin film region 55.
  • the atmosphere in the internal space SP (lower space SP2) is replaced with clean air from the organic solvent vapor. Further, the rotation of the substrate W is continued at a high speed of about 1000 rpm. Thereby, the ultrathin film 56 is completely removed from the upper surface of the substrate W, and therefore, the upper surface of the substrate W can be satisfactorily dried.
  • the substrate W is rotated at a high speed while the atmosphere around the upper surface of the substrate W is replaced with clean air.
  • the atmosphere around the upper surface of the substrate W is replaced with clean air.
  • the ultrathin film 56 of water can be shaken off by the high-speed rotation of the substrate W, whereby the upper surface of the substrate W can be completely dried.
  • the thin film region forming step T2 and the thin film region expanding step T3 are sequentially executed while the periphery of the entire liquid film 50 of water covering the upper surface of the substrate W is filled with the organic solvent vapor atmosphere. Therefore, the periphery of the inner peripheral portion 70 of the liquid film of water and the periphery of the ultrathin film 56 of water are maintained in the organic solvent vapor atmosphere until the end of the expansion of the thin film region 55 regardless of the expansion state of the thin film region 55.
  • the substrate W When the substrate W is rotated in a state where the periphery of the inner peripheral portion 70 of the water liquid film and the periphery of the ultra-thin water film 56 are maintained in an organic solvent vapor atmosphere, the water liquid film 50 and the ultra-thin water film 56 are connected to each other.
  • the Marangoni convection 65 flowing in the Therefore, the Marangoni convection 65 from the ultrathin film 56 toward the bulk 72 of the water liquid film 50 can be continuously generated over the entire period of the thin film region forming step T2 and the thin film region expanding step T3.
  • the fine particles P2 included in the inner peripheral portion 70 of the liquid film of water receive the Marangoni convection 65 and move toward the bulk 72, that is, away from the boundary 60. Therefore, the particles are taken into the liquid film 50 of water.
  • the boundary 60 moves toward the outside in the radial direction of the substrate W (the direction toward the bulk 72), but the fine particle P2 is still taken into the liquid film 50 of water and the thin film region 55 is enlarged.
  • the fine particles P ⁇ b> 2 included in the water liquid film 50 are discharged from the upper surface of the substrate W together with the water liquid film 50 without appearing in the thin film region 55. Thereafter, the ultrathin film 56 is removed from the upper surface of the substrate W, whereby the upper surface of the substrate W is dried.
  • fine particles P2 do not remain on the upper surface of the substrate W after the substrate W is dried. Therefore, the entire upper surface of the substrate W can be dried while suppressing or preventing the generation of the fine particles P2.
  • the ultrathin film 56 contains a large amount of organic solvent, it is possible to suppress the generation of watermarks after drying.
  • the thickness of the liquid film 50 of water formed on the upper surface of the substrate W can be kept thick. If the thickness of the water liquid film 50 is large, the concentration gradient of the organic solvent generated in the water liquid film 50 and the water ultrathin film 56 that are connected to each other in the thin film region expansion step T3 can be kept large.
  • the Marangoni convection 65 generated in the inner peripheral portion 70 of the water liquid film can be strengthened.
  • the substrate W is accommodated in the internal space SP of the processing chamber 4 which is a sealed chamber, and the organic solvent vapor is supplied from the first organic solvent vapor supply unit 8 to the internal space SP, so that the entire area of the internal space SP is obtained. Can be made into an organic solvent vapor atmosphere, whereby the periphery of the entire upper surface of the substrate W can be reliably maintained in the organic solvent vapor atmosphere.
  • FIG. 10 is a diagram showing a flow distribution model at the gas-liquid solid interface in the water liquid film (processing liquid liquid film) 50 on the upper surface of the substrate W according to the reference embodiment.
  • the paddle rinse step T1 the liquid film removal region forming step (corresponding to the thin film region forming step T2) and the liquid film removal region expanding step (the thin film region expanding step T3 Equivalent).
  • the liquid film removal region forming step and the liquid film removal region expansion step in this case, the entire area around the upper surface of the substrate W is not made an organic solvent vapor atmosphere, but the entire area around the upper surface is dried air (Dry Air)
  • the thin-film region forming step T2 is performed with respect to the central portion of the upper surface of the substrate W.
  • the organic solvent vapor atmosphere is not sprayed, and the liquid film removal region 155 (corresponding to the thin film region 55 in the above-described embodiment) is formed only by the centrifugal force generated by the rotation of the substrate W.
  • heat convection 76 is generated inside the inner peripheral portion 70 of the liquid film of water.
  • the thermal convection 76 in the inner peripheral portion 70 of the liquid film of water flows in a direction away from the boundary 60 side in the first region 70A located on the bulk 72 side, but as shown in FIG. In the second portion 70B on the boundary 60 side including the vicinity region 71, the flow flows from the bulk 72 side toward the boundary 60 side. Therefore, when the fine particle P2 (see FIGS. 11 to 13A and the like) is included in the second portion 70B of the inner peripheral portion 70, the fine particle P2 is attracted to the boundary 60 side, and enters the boundary vicinity region 71. Aggregates. Such agglomeration of the fine particles P2 is considered to be caused not only by the above-described thermal convection 76 but also by van der Waals force and Coulomb force between the adjacent fine particles P2.
  • FIG. 11 is a schematic cross-sectional view showing the movement of the fine particles P2 contained in the inner peripheral portion 70 of the liquid film of water according to the reference embodiment.
  • FIG. 12 is a schematic plan view showing the movement of the fine particles P2 contained in the inner peripheral portion 70 of the water liquid film according to the reference embodiment.
  • the inner peripheral portion 70 of the liquid film of water is a boundary layer 73 formed near the boundary with the upper surface of the substrate W, and on the opposite side of the upper surface of the substrate W with respect to the boundary layer 73. And a flowing layer 74 to be formed.
  • the particles P2 are included in the inner peripheral portion 70 of the water liquid film, the particles P are strongly influenced by the flow in the flow layer 74 regardless of the size of the particle size. Therefore, the particles P in the flow layer 74 can move along the direction along the flow.
  • the large particles P1 are affected by the flow, but the fine particles P2 are hardly affected by the flow. That is, the large particles P1 in the boundary layer 73 can move in the boundary layer 73 along the flow direction, but the fine particles P2 in the boundary layer 73 in the direction F along the flow (see FIG. 12). Do not move to. However, the fine particles P2 are not attached to the upper surface of the substrate W, but are provided on the upper surface of the substrate W with a minute interval.
  • the boundary layer 73 shown in FIG. 11 most of the inner peripheral portion 70 of the liquid film of water is the boundary layer 73 shown in FIG. 11.
  • the ratio of the flow layer 74 increases from the boundary vicinity region 71 toward the bulk 72 side. Accordingly, the fine particles P2 in the boundary vicinity region 71 do not move in the direction along the flow unless another large force is applied.
  • an interference fringe 75 is seen with the naked eye due to the difference in thickness of the liquid film 50 in the boundary vicinity region 71.
  • the interference fringes 75 are contour lines.
  • the fine particles P2 do not move in the direction F (see FIG. 12) along the flow, but can move in the tangential directions D1 and D2 of the interference fringes 75.
  • the fine particles P2 are arranged in a line along the tangential directions D1 and D2 of the interference fringes 75 in the boundary vicinity region 71.
  • the fine particles P ⁇ b> 2 are arranged along the line of the boundary 60.
  • the fine particles P2 form a line for each size of the particles P themselves.
  • the fine particles P21 having a relatively large diameter are disposed radially outward than the fine particles P22 having a relatively small diameter.
  • FIGS. 13A and 13B are plan views showing the state of the inner peripheral portion 70 of the liquid film of water during expansion of the liquid film removal region 155 (corresponding to the thin film region 55 of the above-described embodiment) according to the reference embodiment. .
  • FIG. 13A shows a state in which fine particles P2 are contained in the inner peripheral portion 70 (specifically, the second portion 70B shown in FIG. 10) of the water liquid film.
  • the fine particles P2 are arranged along the boundary 60.
  • the fine particles P ⁇ b> 2 included in the boundary vicinity region 71 move from the boundary 60 to the liquid film removal region 155 and are deposited on the liquid film removal region 155. Then, fine particles P2 remain on the upper surface of the substrate W after the liquid film 50 of water is removed.
  • FIG. 14 is a schematic cross-sectional view for explaining a configuration example of the processing unit 202 of the substrate processing apparatus 201 according to the second embodiment of the present invention.
  • the processing unit 202 is different from the processing unit 2 according to the first embodiment in that the first organic solvent vapor supply unit 8 is abolished and as an example of an organic solvent liquid as a low surface tension liquid.
  • the organic solvent liquid discharge unit (low surface tension liquid supply unit) 203 for discharging the IPA liquid is provided.
  • the organic solvent liquid discharge unit 203 includes an organic solvent liquid nozzle 204 (nozzle) that discharges IPA liquid, a second nozzle arm 205 having the organic solvent liquid nozzle 204 attached to the tip, and a second nozzle arm 205.
  • the second nozzle moving unit 206 for moving the organic solvent liquid nozzle 204, the standby pot 207 (storage container) arranged around the processing cup 11 in plan view, and the liquid in the standby pot 207
  • a drainage valve 208 for switching between drainage / drainage stop.
  • the organic solvent liquid discharge unit 203, the organic solvent liquid nozzle 204, and the standby pot 207 constitute a gas supply unit.
  • the organic solvent liquid nozzle 204 is connected to an organic solvent pipe 209 that supplies a liquid organic solvent (IPA) at room temperature from an organic solvent supply source to the organic solvent liquid nozzle 204.
  • the organic solvent pipe 209 is provided with an organic solvent valve 210 that switches between supplying and stopping the supply of the organic solvent liquid from the organic solvent pipe 209 to the organic solvent liquid nozzle 204.
  • IPA liquid organic solvent
  • the standby pot 207 is a pot for receiving the liquid of the organic solvent discharged from the organic solvent liquid nozzle 204 disposed at the retreat position where the standby pot evacuates from the upper surface of the substrate W.
  • the standby pot 207 includes a box-shaped housing 212 that partitions the internal space 211.
  • the housing 212 has an opening 213 formed on the upper surface of the housing 212 and a discharge port 214 formed on the bottom wall 212 a of the housing 212.
  • One end of a drainage pipe 215 is connected to the discharge port 214 of the standby pot 207.
  • the other end of the drainage pipe 215 is connected to a waste liquid treatment facility outside the apparatus.
  • a drain valve 208 is interposed in the middle of the drain pipe 215.
  • the control device 3 controls the opening / closing operation of the drain valve 208.
  • the controller 3 opens the organic solvent valve 210 and discharges the organic solvent liquid from the organic solvent liquid nozzle 204 while closing the drain valve 208.
  • the organic solvent liquid can be stored in the internal space 211 of the standby pot 207.
  • the difference between the substrate processing executed in the substrate processing apparatus 201 and the substrate processing apparatus 1 according to the first embodiment is that the organic solvent vapor is supplied from the first organic solvent vapor supply unit 8 to the internal space SP. Rather than storing the organic solvent liquid in the internal space 211 of the standby pot 207 and filling the internal space SP with the organic solvent vapor generated by evaporation of the organic solvent liquid, This is the point that the whole area around the is kept in an organic solvent vapor atmosphere.
  • control device 3 closes the clean air valve 42 in synchronization with the start of the paddle rinse process T1.
  • the internal space SP is closed from the outside, and the processing chamber 4 functions as a sealed chamber closed from the outside.
  • control device 3 opens the organic solvent valve 210 while closing the drainage valve 208 in synchronization with the start of the paddle rinse process T1.
  • the liquid of the organic solvent is stored in the internal space 211 of the standby pot 207.
  • the organic solvent liquid stored in the internal space 211 reaches a predetermined amount, the discharge of the organic solvent liquid from the organic solvent liquid nozzle 204 is stopped.
  • the organic solvent stored in the internal space 211 has a boiling point lower than that of water, and therefore has a large evaporation amount.
  • the organic solvent vapor generated by the evaporation of the organic solvent liquid is supplied to the internal space SP and is filled in the entire internal space SP.
  • control device 3 opens the drainage valve 208 after the thin film region expansion step T3 is completed.
  • the drainage pipe 215 is opened, and the organic solvent liquid stored in the internal space 211 is sent to the waste liquid treatment facility outside the apparatus through the drainage pipe 215.
  • the control device 3 opens the clean air valve 42 and the exhaust valve 22 to replace the atmosphere of the internal space SP with clean air from the organic solvent vapor.
  • FIG. 15A is an illustrative sectional view for explaining a configuration example of the processing unit 302 of the substrate processing apparatus 301 according to the third embodiment of the present invention.
  • FIG. 15B is a bottom view of the facing member 305.
  • processing unit 302 is different from the processing unit 2 according to the first embodiment is that a processing chamber 304 that is not a sealed chamber is provided as a chamber. That is, the first organic solvent vapor supply unit 8 and the air blowing unit 40 are not coupled to the processing chamber 304, and instead the processing chamber 304 has an FFU as an air blowing unit that sends clean air into the partition wall 12. (Fan filter unit) 320 is provided. Unlike the case of the first embodiment, the exhaust pipe 21 of the exhaust unit 14 is not provided so as to be openable and closable.
  • the processing unit 302 is different from the processing unit 2 according to the first embodiment in that a counter member 305 facing the upper surface of the substrate W held by the spin chuck 5 is provided in the processing chamber 304. It is a prepared point.
  • a second organic solvent vapor supply unit (gas supply unit) 330 that supplies an IPA vapor (IPA Vapor) as an example of an organic solvent vapor as a low surface tension liquid to the gas discharge port 310.
  • IPA Vapor IPA Vapor
  • the FFU 320 is disposed above the partition wall 12 and attached to the ceiling of the partition wall 12.
  • the FFU 320 sends clean air from the ceiling of the partition wall 12 into the processing chamber 304.
  • a down flow (downflow) is formed in the processing chamber 304 by the FFU 320 and the exhaust unit 14.
  • the facing member 305 has a disk shape.
  • the diameter of the facing member 305 is equal to or larger than the diameter of the substrate W.
  • a circular facing surface 306 made of a flat surface is formed facing the upper surface of the substrate W held by the spin chuck 5.
  • the facing surface 306 faces the entire upper surface of the substrate W.
  • a large number (a plurality of) of gas discharge ports 310 are distributed and arranged at equal density on the opposing surface 306 across the entire region except for the central portion (the portion facing the rotation center of the substrate W). .
  • the facing member 305 is formed using a resin material such as PFA (perfluoroalkoxyethylene), PTFE (polytetrafluoroethylene), PVC (polyvinyl chloride), for example.
  • the facing member 305 is hollow.
  • a disk-shaped first gas supply path 333 is formed inside the facing member 305.
  • the first gas supply path 333 communicates with all the gas discharge ports 310.
  • a holder 307 having a vertical axis passing through the center of the opposing member 305 (a vertical axis coinciding with the rotation axis A1 of the spin chuck 5) as a central axis is fixed to the upper surface of the opposing member 305.
  • An elevating unit 308 is coupled to the holder 307.
  • the facing member 305 is supported by the holder 307 in a horizontal posture so that the center axis of the facing member 305 is positioned on the rotation axis A1 of the spin chuck 5.
  • the holder 307 is formed in a hollow shape, and a second gas supply path 309 is inserted into the holder 307 in a state extending in the vertical direction.
  • the second gas supply path 309 communicates with the first gas supply path 333.
  • the second organic solvent vapor supply unit 330 includes a second organic solvent vapor pipe 311 connected to the second gas supply path 309.
  • the organic solvent vapor is supplied to the second organic solvent vapor pipe 311 from an organic solvent vapor supply source.
  • the second organic solvent vapor valve 312 for opening and closing the second organic solvent vapor pipe 311 and the opening degree of the second organic solvent vapor pipe 311 are adjusted,
  • the second flow rate adjusting valve 313 for adjusting the flow rate of the organic solvent vapor discharged from each gas discharge port 310 and the organic solvent vapor flowing through the second organic solvent vapor pipe 311 capture dust and dust.
  • the second filter 311A is interposed.
  • the organic solvent vapor (clean organic solvent vapor from which dust and dust have been removed) supplied from the second organic solvent vapor pipe 311 to the second gas supply path 309. Is discharged downward from the gas discharge port 310.
  • the elevating unit 308 is connected to the control device 3 (see FIG. 2 and the like).
  • the control device 3 controls the elevating unit 308 so that the opposing surface 306 of the opposing member 305 is in the first to third proximity positions (for example, the second proximity positions) where the opposing surface 306 is close to the upper surface of the substrate W held by the spin chuck 5 Is moved up and down between a position shown in FIG. 17 and a retracted position (position shown in FIG. 15) that is largely retracted above the spin chuck 5.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program executed by the arithmetic unit.
  • the control device 3 controls the operation of the lifting unit 308 according to a predetermined program. Furthermore, the control device 3 controls the opening / closing operations and the like of the second organic solvent vapor valve 312 and the second flow rate adjustment valve 313.
  • substrate processing equivalent to that of the substrate processing apparatus 1 according to the first embodiment (S1 to S5 in FIG. 4) is performed.
  • the substrate processing executed in the substrate processing apparatus 301 according to the third embodiment will be described focusing on the differences from the substrate processing apparatus 1 according to the first embodiment.
  • an unprocessed substrate W is loaded into the processing unit 302 and loaded into the processing chamber 304.
  • the facing member 305 is disposed at the retracted position.
  • the control device 3 sequentially executes a chemical solution process (S2 in FIG. 4) and a rinse process (S3 in FIG. 4).
  • FIG. 16 is a time chart for explaining the rinse process (S3 in FIG. 4) and the spin dry process (S4 in FIG. 4) executed in the substrate processing apparatus 301.
  • the control device 3 controls the spin motor 23 to control the rotation speed of the substrate W while the entire upper surface of the substrate W is covered with water.
  • the liquid processing speed is gradually reduced from the paddle speed (zero or a low rotation speed of about 40 rpm or less, for example, about 10 rpm). That is, the paddle rinse process T11 is performed.
  • the paddle rinse process T11 is a process equivalent to the paddle rinse process T1 (see FIG. 5).
  • the control device 3 controls the lifting unit 308 to lower the facing member 305 to the first proximity position as shown in FIG.
  • the first proximity position of the opposing member 305 is such a height that the opposing surface 306 does not come into contact with the upper surface of the liquid film 50 of water during the paddle rinsing step T11, and the opposing member 305 is in the first proximity position.
  • the distance between the opposing surface 306 and the upper surface of the substrate W is about 7 mm, and the narrow space (substrate W) that is blocked from the periphery (external) between the opposing surface 306 and the upper surface of the substrate W. (Upper space) 321 is formed (blocking step).
  • control device 3 opens the second organic solvent vapor valve 312 and discharges the organic solvent vapor from the gas discharge port 310 in synchronization with the start of the paddle rinse step T11.
  • the total discharge flow rate of the organic solvent vapor from the gas discharge port 310 at this time is L1 (L / min), which is a low flow rate.
  • the discharge flow rates of the organic solvent vapor from the gas discharge ports 310 are equal to each other.
  • the organic solvent vapor discharged from each gas discharge port 310 is supplied to the narrow space 321. Since the narrow space 321 is blocked from the surroundings, the supplied organic solvent vapor fills the narrow space 321. As a result, the periphery of the liquid film 50 of water is filled with the organic solvent vapor (steam atmosphere filling step).
  • the narrow space 321 blocked from the surroundings is hardly affected by the disturbance of the surrounding atmosphere. Therefore, the periphery of the entire upper surface of the substrate W is maintained in an organic solvent vapor atmosphere. In other words, the entire area around the upper surface of the substrate W on which the paddle-like water liquid film 50 is formed is maintained in an organic solvent vapor atmosphere.
  • the gas discharge ports 310 are distributed in a plurality, the organic solvent vapor from the gas discharge ports 310 can be uniformly supplied to the liquid film 50 of water on the substrate W. Moreover, since the discharge flow rates of the organic solvent vapor from the gas discharge ports 310 are small flow rates equal to each other, the discharge pressures of the organic solvent vapor from the gas discharge ports 310 are equal to each other. Thereby, the liquid film 50 of water can be reliably prevented from being deformed by being pushed by the discharge pressure of the organic solvent vapor. In other words, the plurality of gas discharge ports 310 dispersedly arranged are not oriented locally on the upper surface of the substrate W.
  • the control device 3 closes the water valve 32 and stops discharging water from the water nozzle 30. Thereby, the paddle rinse process T11 is completed.
  • control device 3 executes a spin dry process (S4 in FIG. 4). First, the control device 3 executes a thin film region forming step T12.
  • control device 3 controls the elevating unit 308 in synchronization with the increase in the rotation speed of the substrate W, so that the opposing member 305 is moved to the second proximity position set below the first proximity position. Lower.
  • the distance between the facing surface 306 and the upper surface of the substrate W is about 5 mm, and the narrow space 321 is further narrowed than before.
  • the control device 3 controls the spin motor 23 to accelerate the substrate W to a predetermined speed (for example, about 50 rpm).
  • a predetermined speed for example, about 50 rpm
  • a relatively strong centrifugal force acts on the liquid film 50 of water on the substrate W.
  • a circular thin film region 55 is formed at the center of the upper surface of the substrate W.
  • the liquid film 50 of water is not deformed because a strong discharge pressure of the organic solvent vapor is not applied to the liquid film. Therefore, the liquid film 50 (bulk 72) of water can be kept as thick as possible, and a drop in film thickness between the bulk 72 and the thin film region 55 can be kept large. Thereby, the Marangoni convection 65 generated in the inner peripheral portion 70 of the liquid film of water can be strengthened.
  • the rotation speed of the substrate W is increased in a state where the water liquid film 50 is formed on the upper surface of the substrate W. Also become thinner. Therefore, in the thin film region forming step T12, if the height of the facing member 305 is maintained at the first proximity position, the upper surface of the water liquid film 50 is reduced by the amount of the water liquid film 50 thinned. The volume of the space between the facing surface 306 increases. In this case, the concentration of the IPA vapor contained in the space between the upper surface of the substrate W and the opposing surface 306 may be lowered. In this case, the amount of the organic solvent vapor supplied to the upper surface of the substrate W decreases, and as a result, all or a part of the ultrathin film 56 constituting the thin film region 55 may disappear (film breakage, hole opening). .
  • the control device 3 controls the elevating unit 308 to lower the opposing member 305 to the second proximity position.
  • the volume of the space between the upper surface of the liquid film 50 of the water and the opposed surface 306 is kept equal to that in the paddle step T11.
  • substrate W and the opposing surface 306 is kept high.
  • the progress of the evaporation of the ultra thin film 56 constituting the thin film region 55 can be suppressed, and thereby the disappearance of the ultra thin film 56 in the thin film region forming step T12 can be prevented.
  • a thin film region expanding step T13 is performed.
  • the control device 3 controls the spin motor 23 to increase the rotation speed of the substrate W to a predetermined drying speed (for example, 1000 rpm). As the rotation speed of the substrate W increases, the thin film region 55 expands (see FIGS. 6D and 6E).
  • control device 3 controls the elevating unit 308 in synchronization with the increase in the rotation speed of the substrate W, so that the opposing member 305 is moved to the third proximity position set below the second proximity position. Lower.
  • the distance between the facing surface 306 and the upper surface of the substrate W is about 3 mm, and the narrow space 321 is further narrowed than before.
  • the boundary 60 of the liquid film 50 of water with the thin film region 55 and the upper surface of the substrate W moves outward in the radial direction of the substrate W. Then, when the thin film region 55 is expanded over the entire area of the substrate W (see FIG. 6E), the entire liquid film 50 of water is discharged out of the substrate W.
  • the liquid film 50 of water does not deform because a strong discharge pressure of the organic solvent vapor is not applied to the liquid film. Therefore, the liquid film 50 (bulk 72) of water can be kept as thick as possible, and a drop in film thickness between the bulk 72 and the thin film region 55 can be kept large. Thereby, the Marangoni convection 65 generated in the inner peripheral portion 70 of the liquid film of water can be strengthened.
  • the rotational speed of the substrate W is increased in a state where the water liquid film 50 is formed on the upper surface of the substrate W. Thinner than time. Therefore, in the thin film region expanding step T13, if the height of the facing member 305 is kept at the second proximity position, the upper surface of the water liquid film 50 is reduced by the amount of the thin liquid film 50 of water. The volume of the space between the facing surface 306 increases. In this case, the concentration of the organic solvent vapor contained in the space between the upper surface of the substrate W and the opposing surface 306 may be reduced. In this case, the amount of the organic solvent vapor supplied to the upper surface of the substrate W decreases, and as a result, all or a part of the ultrathin film 56 constituting the thin film region 55 may disappear (film breakage, hole opening). .
  • the control device 3 controls the lifting unit 308 to lower the facing member 305 to the third proximity position.
  • the volume of the space between the upper surface of the water liquid film 50 and the facing surface 306 is kept equal to that in the thin film region formation step T12.
  • substrate W and the opposing surface 306 is kept high. Therefore, in the thin film region expanding step T13, the progress of evaporation of the ultra thin film 56 constituting the thin film region 55 can be suppressed, and thereby the disappearance of the ultra thin film 56 in the thin film region expanding step T13 can be prevented.
  • the discharge of the organic solvent vapor from the gas discharge port 310 is continued over the entire period of the thin film region expansion step T13. Therefore, the entire upper surface of the substrate W is held in the organic solvent vapor over the entire period of the thin film region expansion step T13. Therefore, the atmosphere around the inner peripheral portion 70 of the liquid film of water can be kept in the organic solvent vapor atmosphere regardless of the expansion state of the thin film region 55.
  • the control device 3 After the thin film region 55 has expanded to the entire upper surface of the substrate W, the control device 3 ends the thin film region expansion step T13. With the completion of the thin film region expansion step T13, the control device 3 closes the second organic solvent vapor valve 312 and stops the discharge of the organic solvent vapor from the gas discharge port 310. Further, the control device 3 controls the elevating unit 308 to raise the facing member 305 from the third proximity position to the separation position. Thereby, the atmosphere of the entire upper surface of the substrate W is replaced with clean air from the organic solvent vapor.
  • control device 3 continues to rotate the substrate W at a rotation speed of about 1000 rpm (thin film removal step). Thereby, the ultrathin film 56 is completely removed from the upper surface of the substrate W, and therefore, the upper surface of the substrate W can be satisfactorily dried.
  • the control device 3 controls the spin motor 23 to stop the rotation of the spin chuck 5. Thereafter, the processed substrate W is carried out of the processing unit 302 by the transfer robot CR (S5 in FIG. 4).
  • FIG. 18 is a view showing a modification of the substrate processing apparatus 301 according to the third embodiment of the present invention.
  • FIG. 18 the same reference numerals as those in FIGS. 15 to 17 are assigned to portions common to the third embodiment, and description thereof is omitted.
  • a facing member 305 ⁇ / b> A is provided instead of the facing member 305 according to the third embodiment.
  • the facing member 305A has a disk shape.
  • the diameter of the facing member 305A may be equal to the diameter of the substrate W, or may be larger than the diameter of the substrate W as shown in FIG.
  • an opposing surface 306A that faces the upper surface of the substrate W held by the spin chuck 5 is formed on the lower surface of the opposing member 305A.
  • the central portion of the facing surface 306A is formed in a horizontal flat shape.
  • An annular protrusion 352 (opposing peripheral edge) is formed on the peripheral edge of the opposing surface 306A.
  • a tapered surface 353 is formed on the lower surface of the annular protrusion 352 so as to go downward in the radial direction.
  • the peripheral edge of the opposing member 305A projects outward from the peripheral edge of the substrate W in plan view. .
  • the outer peripheral end 353a of the tapered surface 353 is positioned below the upper surface of the substrate W in the vertical direction as shown in FIG. ing. Therefore, the narrow space (the upper space of the substrate W) 371 defined by the facing surface 306A and the upper surface of the substrate W forms a sealed space that is almost sealed from the periphery (outside), and is almost completely cut off from the periphery. (Blocking process).
  • the gap between the peripheral edge of the upper surface of the substrate W and the annular protrusion 352 is much narrower than the distance between the central portion of the opposing surface 306A and the central portion of the upper surface of the substrate W. It has been.
  • the organic solvent vapor supplied to the narrow space 371 is almost discharged from the narrow space 371. Not. Moreover, it is not affected by the disturbance of the surrounding atmosphere. Accordingly, the entire upper surface of the substrate W can be reliably kept in the organic solvent vapor atmosphere.
  • each gas discharge port 310 discharges organic solvent vapor vertically downward has been described as an example. It is also possible to adopt a configuration in which the organic solvent vapor is discharged in an oblique direction toward the outer peripheral direction as 310 is directed downward.
  • the gas discharge port 310 may be disposed at the center of the opposing surfaces 306 and 306A.
  • the discharge pressure of the organic solvent vapor from the gas discharge port 310 disposed in the central portion of the opposing surfaces 306 and 306A may be lower than the organic solvent vapor from the other gas discharge ports 310. preferable.
  • the gas discharge port 310 can be disposed other than the facing surfaces 306 and 306A.
  • the gas discharge port 310 is provided around the spin base 25 and below the substrate W supported by the spin base 25. You may make it provide.
  • the first organic solvent vapor supply unit 8 has been described as a unit that supplies organic solvent vapor. However, the supply unit 8 is inactive with the organic solvent vapor.
  • the structure which supplies mixed gas with gas may be sufficient.
  • the organic solvent vapor is supplied to the gas discharge port 310. However, a mixed gas of the organic solvent vapor and an inert gas (for example, nitrogen gas) is supplied. Also good.
  • the rotation speed (first high speed) of the substrate W in the thin film region expansion step T3 and the rotation speed of the substrate W (in the thin film removal step) for removing the ultrathin film 56 (first step). 2) is set to an equivalent speed (1000 rpm), but the first high speed and the second high speed may be different from each other.
  • the paddle-shaped water liquid film 50 is formed on the upper surface of the substrate W by maintaining the rotational speed of the substrate W at the paddle speed, and the thin film region is formed on the paddle-shaped water liquid film 50.
  • the water liquid film 50 is not limited to the paddle shape, and the thin film region 55 may be provided on the liquid film of water rotating at a higher speed than the paddle speed.
  • IPA which is an example of an organic solvent
  • organic solvents such as methanol, ethanol, acetone, and HFE (hydrofluoroether) can be employed.
  • the treatment liquid constituting the liquid film of the treatment liquid (water liquid film 50) is water
  • the treatment liquid constituting the liquid film is IPA. (Liquid) may be sufficient.
  • HFE can be employed as the vapor of the low surface tension liquid.
  • the substrate processing apparatuses 1, 201, and 301 are apparatuses that process the disk-shaped substrate W has been described.
  • the substrate processing apparatuses 1, 201, and 301 are used for liquid crystal display devices.
  • An apparatus for processing a polygonal substrate such as a glass substrate may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板処理方法は、基板を水平に保持する基板保持工程と、前記基板の上面に処理液を供給して、当該基板の上面を覆う処理液の液膜を形成する液膜形成工程と、前記処理液の液膜の周囲を、当該処理液よりも低い表面張力を有する低表面張力液の蒸気を含む蒸気雰囲気で満たす蒸気雰囲気充満工程と、前記蒸気雰囲気充満工程に並行して、前記基板に気体を吹き付けることなく前記基板を所定の薄膜領域形成速度で回転させて処理液を部分的に排除することにより、前記処理液の液膜に薄膜領域を形成する薄膜領域形成工程と、前記蒸気雰囲気充満工程に並行して、前記薄膜領域を前記基板の外周に向けて拡大させる薄膜領域拡大工程と、前記薄膜領域拡大工程によって前記薄膜を前記上面の全域に拡げた後に、前記上面から当該薄膜を除去する薄膜除去工程とを含む。

Description

基板処理方法および基板処理装置
 本発明は、処理液を用いて基板の上面を処理する基板処理方法および基板処理装置に関する。処理対象となる基板の例には、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
 半導体装置の製造工程では、半導体ウエハ等の基板の表面に処理液を供給して、その基板の表面が処理液を用いて処理される。
 たとえば、基板を1枚ずつ処理する枚葉式の基板処理装置は、基板をほぼ水平に保持しつつ、その基板を回転させるスピンチャックと、このスピンチャックによって回転される基板の上面に処理液を供給するためのノズルとを備えている。たとえば、スピンチャックに保持された基板に対して薬液が供給され、その後にリンス液が供給されることにより、基板上の薬液がリンス液に置換される。その後、基板の上面上からリンス液を排除するための乾燥処理が行われる。
 乾燥処理として、ウォーターマークの発生を抑制するべく、水よりも沸点が低いイソプロピルアルコール(isopropyl alcohol:IPA)の蒸気を、回転状態にある基板の表面に供給する手法が知られている。たとえば、ロタゴニ乾燥(特許文献1参照)はこの手法の一つの例である。
特開2013-131783号公報
 このような乾燥方法として、具体的には、基板の上面に処理液(リンス液)の液膜を形成し、その処理液の液膜に低表面張力液(IPA)の蒸気を吹き付けることにより、液膜除去領域を形成する。そして、液膜除去領域を拡大させ、液膜除去領域を基板の上面の全域に拡げることにより、基板の上面が乾燥される。
 しかしながら、このような乾燥方法では、処理液に含まれるパーティクルが、基板の上面に出現してしまい、その結果、乾燥後の基板の表面(処理対象面)にパーティクルが発生するおそれがある。
 そこで、本発明の目的は、パーティクルの発生を抑制または防止しながら、基板の上面を乾燥できる基板処理方法および基板処理装置を提供することである。
 この発明は、基板を水平に保持する基板保持工程と、前記基板の上面に処理液を供給して、当該基板の上面を覆う処理液の液膜を形成する液膜形成工程と、前記処理液の液膜の周囲を、当該処理液よりも低い表面張力を有する低表面張力液の蒸気を含む蒸気雰囲気で満たす蒸気雰囲気充満工程と、前記蒸気雰囲気充満工程に並行して、前記基板に気体を吹き付けることなく前記基板を所定の薄膜領域形成速度で回転させて処理液を部分的に排除することにより、前記処理液の液膜に薄膜領域を形成する薄膜領域形成工程と、前記蒸気雰囲気充満工程に並行して、前記薄膜領域を前記基板の外周に向けて拡大させる薄膜領域拡大工程と、前記薄膜領域拡大工程によって前記薄膜を前記上面の全域に拡げた後に、前記上面から当該薄膜を除去する薄膜除去工程とを含む、基板処理方法を提供する。
 この方法によれば、基板の上面を覆う処理液の液膜の全域の周囲を、低表面張力液の蒸気を含む蒸気雰囲気(以下、単に「蒸気雰囲気」という。この項において同じ)で満たしながら、基板の速度を上昇させると、液膜の一部分の処理液が、基板の回転による遠心力を受けて径方向外方に押し拡げられる。その結果、当該一部分の液膜の厚みが薄くなり、処理液の薄膜が形成される。
 処理液の薄膜の周囲が蒸気雰囲気に保たれているために、処理液の薄膜に低表面張力液が多量に溶け込み、そのため、処理液の薄膜は、低表面張力液を高い濃度で含む。基板の上面全域の周囲が蒸気雰囲気に保たれているために、低表面張力液の蒸気の拡散は進行せず、その結果、薄膜に含まれる低表面張力液の蒸発の進行が抑制または防止される。したがって、処理液の液膜の当該一部分において、処理液の全てを完全に除去することはできず、当該一部分に処理液の薄膜が保持される。すなわち、当該一部分に薄膜領域が形成される。
 そして、基板の上面を覆う処理液の液膜の全域の周囲を蒸気雰囲気に保ちながら、薄膜領域形成工程および薄膜領域拡大工程を順次実行する。そのため、薄膜領域の拡大状況に依らずに、薄膜領域の拡大終了まで、処理液の液膜における、処理液の薄膜との境界(以下、「境界」という)の付近の部分(以下、「境界付近部分」という)の周囲および処理液の薄膜の周囲が蒸気雰囲気に保たれる。
 処理液の液膜の境界付近部分の周囲および処理液の薄膜の周囲を蒸気雰囲気に保った状態で基板を回転させると、互いに連なる処理液の液膜および処理液の薄膜の局所的な厚みの差に基づく低表面張力液の濃度差に起因して、処理液の薄膜から、境界付近部分を介して処理液の液膜の内部に向かう方向に流れるマランゴニ対流が発生する。そのため、薄膜領域形成工程および薄膜領域拡大工程の全期間に亘って、処理液の薄膜から処理液の液膜の内部へと向かうマランゴニ対流を発生させ続けることができる。
 したがって、処理液の液膜の境界付近部分に含まれているパーティクルは、マランゴニ対流を受けて、境界から離反する方向に向けて移動する。そのため、パーティクルが処理液の液膜に取り込まれる。薄膜領域の拡大に伴って、基板の径方向外方に向けて境界が移動するが、パーティクルが処理液の液膜に取り込まれたまま、薄膜領域が拡大する。そして、処理液の液膜に含まれているパーティクルは、薄膜領域に出現することなく処理液の液膜と共に基板の上面から排出される。その後、基板の上面から薄膜が除去されることにより、基板の上面が乾燥される。
 これにより、基板の乾燥後において、基板の上面にパーティクルが残存することがない。ゆえに、パーティクルの発生を抑制または防止しながら、基板の上面の全域を乾燥できる。
 また、薄膜が低表面張力液を多量に含むために、乾燥後にウォーターマークの発生を抑制することもできる。
 この発明の一実施形態では、前記方法は、前記基板の上方空間を含む空間を、外部から遮断された遮断状態とする遮断工程をさらに含み、前記遮断工程の後に前記空間に前記気体を供給することにより、前記蒸気雰囲気充満工程が実行される。
 この方法によれば、基板の上方空間を含む空間を遮断状態とすることにより、当該空間が外部の雰囲気の外乱の影響をほとんど受けない。当該空間に前記気体を供給することにより、処理液の液膜の周囲を蒸気雰囲気で満たすことができる。
 前記方法は、前記空間を前記外部に開放させながら、前記基板を所定の高回転速度で回転させる開放高速回転工程を含んでいてもよい。
 この方法によれば、前記空間を外部に開放させることにより、新鮮な気体が基板の上面に接触する。そのため、基板の上面の各所で処理液の蒸気の拡散が進み、その結果、当該各所で処理液の蒸発が進行する。そして、基板の高速回転により、基板の上面上の処理液を振り切ることができる。これにより、基板の上面から、有機溶剤の薄膜が完全に除去され、ゆえに、基板の上面を乾燥させることができる。
 また、前記方法は、前記液膜形成工程に並行して、前記基板を静止状態とさせまたは前記回転軸線回りにパドル速度で前記基板を回転させるパドル工程をさらに含んでいてもよい。
 この方法によれば、液膜形成工程に並行してパドル工程を実行するから、基板の上面に形成される処理液の液膜の境界付近部分の厚みを、分厚く保つことができる。処理液の液膜の境界付近部分の厚みが大きければ、薄膜領域拡大工程において、互いに連なる処理液の液膜および処理液の薄膜における低表面張力液の濃度勾配を大きく保つことができ、これにより、処理液の液膜中に発生するマランゴニ対流を強めることができる。
 前記薄膜領域拡大工程は、前記基板を前記薄膜領域形成速度よりも速い第1の高速度で回転させる第1の高速回転工程を含んでいてもよい。
 この方法によれば、乾燥領域拡大工程時に、基板を高速度で回転させるので、基板に強い遠心力が作用し、この遠心力により、処理液の液膜の界面付近部分における膜厚の差異をより一層顕著にできる。これにより、処理液の液膜の界面付近部分中に生じる低表面張力液の濃度勾配を大きく保つことができ、ゆえに、処理液の液膜の界面付近部分中に発生するマランゴニ対流をさらに一層強めることができる。
 また、前記薄膜除去工程は、前記基板を前記薄膜領域形成速度よりも速い第2の高速度で回転させる第2の高速回転工程と、前記第2の高速回転工程に並行して、前記基板の上面の周囲の雰囲気を、前記蒸気雰囲気から前記低表面張力液以外の気体の雰囲気に置換する雰囲気置換工程を含んでいてもよい。
 この方法によれば、基板の上面の周囲の雰囲気を、低表面張力液以外の気体の雰囲気に置換した状態で、基板を高速回転させる。この場合、新鮮な前記気体が基板の上面に接触するために、基板の上面の各所で低表面張力液の拡散が進み、当該低表面張力液を含む薄膜の蒸発が進行する。そのため、基板の高速回転により薄膜を振り切ることができ、これにより、基板の上面を乾燥させることができる。
 前記処理液は水を含み、前記低表面張力液は有機溶剤を含んでいてもよい。
 この方法によれば、基板の上面を覆う水の液膜の全域の周囲を、有機溶剤蒸気を含む蒸気雰囲気(以下、単に「有機溶剤蒸気雰囲気」という。この項において同じ)に保ちながら、基板の速度を上昇させると、液膜の一部分の水が、基板の回転による遠心力を受けて径方向外方に押し拡げられる。その結果、当該一部分の液膜の厚みが薄くなり、水の薄膜が形成される。
 水の薄膜の周囲が蒸気雰囲気に保たれているために、水の薄膜に有機溶剤が多量に溶け込み、そのため、水の薄膜は、有機溶剤を高い濃度で含む。基板の上面全域の周囲が有機溶剤蒸気雰囲気に保たれているために、有機溶剤蒸気の拡散は進行せず、その結果、薄膜に含まれる有機溶剤の蒸発の進行が抑制または防止される。したがって、水の液膜の当該一部分において、水の全てを完全に除去することはできず、当該一部分に水の薄膜が保持される。すなわち、当該一部分に薄膜領域が形成される
 そして、基板の上面を覆う水の液膜の全域の周囲を有機溶剤蒸気雰囲気に保ちながら、薄膜領域形成工程および薄膜領域拡大工程を順次実行する。そのため、薄膜領域の拡大状況に依らずに、薄膜領域の拡大終了まで、水の液膜における、水の薄膜との境界の付近の部分(境界付近部分)の周囲および水の薄膜の周囲が有機溶剤蒸気雰囲気に保たれる。
 水の液膜の境界付近部分の周囲および水の薄膜の周囲を有機溶剤蒸気雰囲気に保った状態で基板を回転させると、互いに連なる水の液膜および水の薄膜の局所的な厚みの差に基づく有機溶剤の濃度差に起因して、水の薄膜から、境界付近部分を介して水の液膜の内部に向かう方向に流れるマランゴニ対流が発生する。そのため、薄膜領域形成工程および薄膜領域拡大工程の全期間に亘って、水の薄膜から水の液膜の内部へと向かうマランゴニ対流を発生させ続けることができる。
 したがって、水の液膜の境界付近部分に含まれているパーティクルは、マランゴニ対流を受けて、境界から離反する方向に向けて移動する。そのため、パーティクルが水の液膜に取り込まれる。薄膜領域の拡大に伴って、基板の径方向外方に向けて境界が移動するが、パーティクルが水の液膜に取り込まれたまま、薄膜領域が拡大する。そして、水の液膜に含まれているパーティクルは、薄膜領域に出現することなく水の液膜と共に基板の上面から排出される。その後、基板の上面から薄膜が除去されることにより、基板の上面が乾燥される。
 これにより、基板の乾燥後において、基板の上面にパーティクルが残存することがない。ゆえに、パーティクルの発生を抑制または防止しながら、基板の上面の全域を乾燥できる。
 また、薄膜が有機溶剤を多量に含むために、乾燥後にウォーターマークの発生を抑制することもできる。
 また、この発明は、基板を水平に保持する基板保持ユニットと、前記基板の上面に処理液を供給するための処理液供給ユニットと、前記基板の上面の周囲に、水よりも低い表面張力を有する低表面張力液の蒸気を含む気体を供給する気体供給ユニットと、前記処理液供給ユニットおよび前記の気体供給ユニットを制御する制御装置とを含み、前記制御装置は、前記基板の上面に処理液を供給して、当該基板の上面を覆う処理液の液膜を形成する液膜形成工程と、前記処理液の液膜の周囲を、前記低表面張力液の蒸気を含む蒸気雰囲気で満たす蒸気雰囲気充満工程と、前記蒸気雰囲気充満工程に並行して、前記基板に気体を吹き付けることなく前記基板を所定の薄膜領域形成速度で回転させて処理液を部分的に排除することにより、前記処理液の液膜に薄膜領域を形成する薄膜領域形成工程と、前記蒸気雰囲気充満工程に並行して、前記薄膜領域を前記基板の外周に向けて拡大させる薄膜領域拡大工程とを実行する、基板処理装置を提供する。
 この構成によれば、基板の上面を覆う処理液の液膜の全域の周囲を、低表面張力液の蒸気を含む蒸気雰囲気で満たしながら、基板の速度を上昇させると、液膜の一部分の処理液が、基板の回転による遠心力を受けて径方向外方に押し拡げられる。その結果、当該一部分の液膜の厚みが薄くなり、処理液の薄膜が形成される。
 処理液の薄膜の周囲が蒸気雰囲気に保たれているために、処理液の薄膜に低表面張力液が多量に溶け込み、そのため、処理液の薄膜は、低表面張力液を高い濃度で含む。基板の上面全域の周囲が蒸気雰囲気に保たれているために、低表面張力液の蒸気の拡散は進行せず、その結果、薄膜に含まれる低表面張力液の蒸発の進行が抑制または防止される。したがって、処理液の液膜の当該一部分において、処理液の全てを完全に除去することはできず、当該一部分に処理液の薄膜が保持される。すなわち、当該一部分に薄膜領域が形成される。
 そして、基板の上面を覆う処理液の液膜の全域の周囲を蒸気雰囲気に保ちながら、薄膜領域形成工程および薄膜領域拡大工程を順次実行する。そのため、薄膜領域の拡大状況に依らずに、薄膜領域の拡大終了まで、処理液の液膜における、処理液の薄膜との境界(以下、「境界」という)の付近の部分(以下、「境界付近部分」という)の周囲および処理液の薄膜の周囲が蒸気雰囲気に保たれる。
 処理液の液膜の境界付近部分の周囲および処理液の薄膜の周囲を蒸気雰囲気に保った状態で基板を回転させると、互いに連なる処理液の液膜および処理液の薄膜の局所的な厚みの差に基づく低表面張力液の濃度差に起因して、処理液の薄膜から、境界付近部分を介して処理液の液膜の内部に向かう方向に流れるマランゴニ対流が発生する。そのため、薄膜領域形成工程および薄膜領域拡大工程の全期間に亘って、処理液の薄膜から処理液の液膜の内部へと向かうマランゴニ対流を発生させ続けることができる。
 したがって、処理液の液膜の境界付近部分に含まれているパーティクルは、マランゴニ対流を受けて、境界から離反する方向に向けて移動する。そのため、パーティクルが処理液の液膜に取り込まれる。薄膜領域の拡大に伴って、基板の径方向外方に向けて境界が移動するが、パーティクルが処理液の液膜に取り込まれたまま、薄膜領域が拡大する。そして、処理液の液膜に含まれているパーティクルは、薄膜領域に出現することなく処理液の液膜と共に基板の上面から排出される。その後、基板の上面から薄膜が除去されることにより、基板の上面が乾燥される。
 これにより、基板の乾燥後において、基板の上面にパーティクルが残存することがない。ゆえに、パーティクルの発生を抑制または防止しながら、基板の上面の全域を乾燥できる。
 また、薄膜が低表面張力液を多量に含むために、乾燥後にウォーターマークの発生を抑制することもできる。
 この発明の一実施形態では、前記基板処理装置は、外部から密閉された内部空間を有し、当該内部空間に前記基板保持ユニットを収容する密閉チャンバをさらに含む。
 この構成によれば、密閉チャンバの内部空間に基板を収容することにより、密閉チャンバの内部空間の全域を蒸気雰囲気とすることができる。そのため、基板の上面全域の周囲を蒸気雰囲気に確実に保持できる。
 また、密閉チャンバの内部空間内に低表面張力液の液体が存在するだけで、密閉チャンバの内部空間を蒸気雰囲気とすることができる。
 また、前記第1の気体供給ユニットは、前記内部空間に前記気体を供給する内部気体供給ユニットを含んでいてもよい。
 また、前記気体供給ユニットは、前記内部空間に前記気体を供給する内部気体供給ユニットを含んでいてもよい。
 この構成によれば、内部気体供給ユニットから内部空間に低表面張力液の蒸気を含む気体を供給することにより、密閉チャンバの内部空間の全域を蒸気雰囲気とすることができる。これにより、基板の上面全域の周囲を蒸気雰囲気に保つ構成を簡単に実現できる。
 また、前記気体供給ユニットは、前記低表面張力液の液体を吐出するためのノズルと、前記ノズルに前記低表面張力液の前記液体を供給するための低表面張力液供給ユニットとをさらに含み、前記基板処理装置は、前記ノズルから吐出される前記低表面張力液の前記液体を受け入れて、当該液体を溜めることが可能な貯留容器をさらに含んでいてもよい。
 この方法によれば、貯留容器に貯留された低表面張力液の液体の蒸発により生じた低表面張力液の蒸気を用いて、密閉チャンバの内部空間の全域を蒸気雰囲気とすることができる。これにより、基板の上面全域の周囲を蒸気雰囲気に保つ構成を簡単に実現できる。
 この構成によれば、貯留容器に貯留された低表面張力液の液体の蒸発により生じた低表面張力液の蒸気を用いて、密閉チャンバの内部空間の全域を蒸気雰囲気とすることができる。これにより、基板の上面全域の周囲を蒸気雰囲気に保つ構成を簡単に実現できる。
 前記基板処理装置は、前記基板保持ユニットを収容する処理チャンバと、前記基板の上面に対向する対向面を有する対向部材とをさらに含み、前記気体供給ユニットは、前記対向面に開口し、前記気体を吐出する気体吐出口を含んでいてもよい。
 この構成によれば、気体吐出口から吐出された低表面張力液の蒸気が、対向面と基板の上面との間の空間に供給される。当該空間の全域を蒸気雰囲気とすることにより、対向面と基板の上面との間の空間をその外部から遮断することができ、これにより、基板の上面全域の周囲を蒸気雰囲気に保つことができる。
 前記対向部材は、前記基板の上面周縁部に対向し、当該上面周縁部との間で、前記対向面の中央部と前記基板の上面中央部との間の間隔よりも狭い狭間隔を形成する対向周縁部を有していてもよい。
 この構成によれば、対向部材の対向周縁部と基板の上面周縁部との間に狭間隔が形成されているので、対向面と基板の上面との間の空間に供給された低表面張力液の蒸気が、当該空間から排出され難い。そのため、当該空間から低表面張力液の蒸気が流出するのを、より一層抑制できる。これにより、基板の上面全域の周囲を、より確実に蒸気雰囲気に保つことができる。
 前記気体吐出口は、前記対向面に複数個分散配置されていてもよい。
 この構成によれば、気体吐出口が複数個に分散配置されているので、気体吐出口からの気体を、基板上の処理液の液膜に均一に供給できる。この場合、各気体吐出口からの気体の吐出圧力を互いに等しくすることも可能であり、これにより、処理液の液膜が、気体の吐出圧力に押されて変形することを確実に防止できる。換言すると、複数個に分散配置された気体吐出口は、基板の上面の局所指向しない形態である。
 また、前記対向部材を昇降させる昇降ユニットをさらに含み、前記制御ユニットは、前記昇降ユニットを制御して、前記昇降ユニットの高さを前記基板の回転速度の変化に応じて昇降させてもよい。
 基板の上面に処理液の液膜が形成されている状態で、基板の回転速度を上昇させると、処理液の液膜の厚みが薄くなる。そのため、基板の上面と対向面との間の空間の容積は同じであっても、処理液の液膜が薄化した分だけ、処理液の液膜の上面と対向面との間の空間の容積が大きくなる。この場合、基板の上面と対向面との間の空間に含まれる低表面張力液の濃度が低下するおそれもある。
 この構成によれば、昇降ユニットの高さを、基板の回転速度の変化に応じて昇降させる。基板の回転速度を上昇させる場合には昇降ユニットを下降させ、基板の回転速度を低下させる場合には昇降ユニットを上昇させる。これにより、この場合、基板の上面と対向面との間の空間に含まれる低表面張力液の蒸気の濃度を高く保つことが可能である。したがって、薄膜領域を構成する薄膜の蒸発の進行を抑制でき、これにより、薄膜の消失を防止できる。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1の実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。 図2は、前記基板処理装置に備えられた処理ユニットの構成例を説明するための図解的な断面図である。 図3は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。 図4は、前記基板処理装置による基板処理の一例を説明するための流れ図である。 前記基板処理装置において実行される、リンス工程(図4のS3)およびスピンドライ工程(図4のS4)の詳細を説明するためのタイムチャートである。 図6Aは、パドルリンス工程(図5のT1)の様子を説明するための図解的な断面図である。 図6B,6Cは、薄膜領域形成工程(図5のT2)および薄膜領域拡大工程(図5のT3)の様子を説明するための図解的な断面図である。 図6D,6Eは、薄膜領域拡大工程(図5のT3)の様子を説明するための図解的な断面図である。 図7は、薄膜領域拡大工程中における、水の液膜の状態を拡大して示す断面図である。 図8は、水の液膜の内周部分の内部における、マランゴニ対流の発生メカニズムを説明するための図である。 図9A,9Bは、薄膜領域の拡大中における、水の液膜の内周部分の状態を示す平面図である。 図10は、参考形態に係る、基板の上面上の水の液膜における、気液固界面における流れ分布モデルを示す図である。 図11は、参考形態に係る、水の液膜の内周部分に含まれる微細パーティクルの移動を示す模式的な断面図である。 図12は、参考形態に係る、水の液膜の内周部分に含まれる微細パーティクルの移動を示す模式的な平面図である。 図13A,13Bは、参考形態に係る、液膜除去領域の拡大中における、水の液膜の内周部分の状態を示す平面図である。 図14は、本発明の第2の実施形態に係る基板処理装置の処理ユニットの構成例を説明するための図解的な断面図である。 図15Aは、本発明の第3の実施形態に係る基板処理装置の処理ユニットの構成例を説明するための図解的な断面図である。 図15Bは、対向部材の底面図である。 図16は、本発明の第3の実施形態に係る基板処理装置において実行される、リンス工程(S3)およびスピンドライ工程(S4)を説明するためのタイムチャートである。 図17は、対向部材を第2の近接位置に配置した状態を示す断面図である。 図18は、本発明の第3の実施形態に係る基板処理装置の変形例を示す断面図である。
 図1は、この発明の第1の実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御する制御装置3とを含む。搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。
 処理ユニット2は、内部空間SPを有する箱形の処理チャンバ(密閉チャンバ)4と、処理チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面に薬液を供給するための薬液供給ユニット6と、スピンチャック5に保持されている基板Wの上面に水(処理液)を供給するための水供給ユニット(処理液供給ユニット)7と、低表面張力液としての有機溶剤蒸気の一例としてのIPAの蒸気(IPA Vapor)を内部空間SPに供給する第1の有機溶剤蒸気供給ユニット(内部気体供給ユニット、気体供給ユニット)8と、スピンチャック5を取り囲む筒状の処理カップ11とを含む。
 処理チャンバ4は、スピンチャック5等を収容する箱型の隔壁12と、隔壁12の上部から隔壁12内(処理チャンバ4内に相当)に清浄空気(低表面張力液以外の気体の雰囲気)を送る送風ユニット40と、隔壁12に設けられた搬出搬入口を開閉するシャッタ13と、隔壁12の下部から処理チャンバ4内の気体を排出する排気ユニット14とを含む。
 送風ユニット40は、隔壁12の上方に配置されており、隔壁12の天井に取り付けられ、当該天井から処理チャンバ4内に清浄空気を送る。送風ユニット40は、清浄空気が流通する清浄空気配管41と、清浄空気配管41から内部空間SPへの有機溶剤蒸気(IPA Vapor)の供給および供給停止を切り換える清浄空気バルブ42とを含む。清浄空気配管41の下流端は、内部空間SPに接続されている。清浄空気バルブ42が開かれると、清浄空気が、清浄空気配管41を介して内部空間SPに送られる。
 第1の有機溶剤蒸気供給ユニット8は、隔壁12の上方に配置されており、隔壁12の天井に取り付けられている。第1の有機溶剤蒸気供給ユニット8は、有機溶剤蒸気が流通する第1の有機溶剤蒸気配管15を含む。第1の有機溶剤蒸気配管15の下流端は、内部空間SPに接続されている。第1の有機溶剤蒸気供給ユニット8は、さらに、第1の有機溶剤蒸気配管15から内部空間SPへの有機溶剤蒸気の供給および供給停止を切り換える第1の有機溶剤蒸気バルブ16と、第1の有機溶剤蒸気配管15の開度を調節して、内部空間SPに供給される有機溶剤蒸気の流量を調整するための第1の流量調整バルブ17と、第1の有機溶剤蒸気配管15を流通する有機溶剤蒸気に含まれる塵や埃を捕獲する第1のフィルタ15Aとを含む。図示はしないが、第1の流量調整バルブ17は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。他の流量調整バルブについても同様である。
 第1の有機溶剤蒸気バルブ16が開かれると、有機溶剤蒸気(塵や埃が除去された清浄な有機溶剤蒸気)が、第1の有機溶剤蒸気配管15を介して内部空間SPに送られる。
 処理チャンバ4は、第1の有機溶剤蒸気供給ユニット8によって内部空間SPに供給された気体(清浄空気や有機溶剤蒸気)を整流する整流板18を含む。整流板18は、内部空間SPに配置されており、具体的には、第1の有機溶剤蒸気供給ユニット8と、スピンチャック5との間の高さに配置されている、整流板18は、水平な姿勢で保持されている。整流板18は、隔壁12の内部を、整流板18の上方の空間SP1と、整流板18の下方の空間SP2とに仕切っている。隔壁12の天井面12aと整流板18との間の上方空間SP1は、供給された気体(清浄空気や有機溶剤蒸気)が拡散するための拡散空間であり、整流板18と隔壁12の床面12bとの間の下方空間SP2は、基板Wの処理が行われる処理空間である。上方空間SP1の高さは下方空間SP2の高さよりも小さい。整流板18の下面18aは、平面視でスピンチャックに重なる対向部を含む。整流板18は、上下方向に貫通する複数の貫通孔18bがその全域に形成された多孔プレートである。
 第1の有機溶剤蒸気バルブ16が閉じられた状態で清浄空気バルブ42が開かれると、上方空間SP1に清浄空気が送られる。清浄空気バルブ42の開放が継続されることにより、上方空間SP1に清浄空気が充満し、清浄空気は貫通孔18bを通過して整流板18の全域から下方に流れる。これにより、整流板18の全域から下方向に向かう均一な清浄空気の流れが、下方空間SP2に形成される。
 一方、清浄空気バルブ42が閉じられた状態で第1の有機溶剤蒸気バルブ16が開かれると、上方空間SP1に有機溶剤蒸気が送られる。第1の有機溶剤蒸気バルブ16の開放が継続されることにより、有機溶剤蒸気が上方空間SP1に充満し、有機溶剤蒸気は貫通孔18bを通過して整流板18の全域から下方に流れる。これにより、整流板18の全域から下方向に向かう均一な有機溶剤蒸気の流れが、下方空間SP2に形成される。
 排気ユニット14は、処理カップ11内に接続された排気ダクト19と、排気ダクト19を介して、処理チャンバ4の内部空間SPの雰囲気を吸引する、吸引装置等の排気装置20と、排気ダクト19と排気装置20とを接続する排気配管21と、排気配管21を開閉する排気バルブ22とを含む。排気バルブ22が開かれた状態では、内部空間SP(下方空間SP2)の雰囲気が処理チャンバ4外に排出されると共に、内部空間SP(下方空間SP2)にダウンフロー(下降流)が形成される。一方、排気バルブ22が閉じられた状態では、内部空間SP(下方空間SP2)の雰囲気が処理チャンバ4外に排出されない。
 清浄空気バルブ42が閉じられた状態で、かつ排気バルブ22が閉じられると、内部空間SPが外部から閉塞された閉状態となり、処理チャンバ4は、外部から閉塞された密閉チャンバとして機能する。
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ23と、このスピンモータ23の駆動軸と一体化されたスピン軸24と、スピン軸24の上端に略水平に取り付けられた円板状のスピンベース25とを含む。
 スピンベース25は、基板Wの外径よりも大きな外径を有する水平な円形の上面25aを含む。上面25aには、その周縁部に複数個(3個以上。たとえば6個)の挟持部材26が配置されている。複数個の挟持部材26は、スピンベース25の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けてたとえば等間隔に配置されている。
 薬液供給ユニット6は、薬液ノズル27を含む。薬液ノズル27は、たとえば、連続流の状態で液を吐出するストレートノズルであり、スピンチャック5の上方で、その吐出口を基板Wの上面中央部に向けて固定的に配置されている。薬液ノズル27には、薬液供給源からの薬液が供給される薬液配管28が接続されている。薬液配管28の途中部には、薬液ノズル27からの薬液の供給/供給停止を切り換えるための薬液バルブ29が介装されている。薬液バルブ29が開かれると、薬液配管28から薬液ノズル27に供給された連続流の薬液が、薬液ノズル27の下端に設定された吐出口から吐出される。また、薬液バルブ29が閉じられると、薬液配管28から薬液ノズル27への薬液の供給が停止される。
 薬液の具体例は、エッチング液および洗浄液である。さらに具体的には、薬液は、フッ酸、SC1(アンモニア過酸化水素水混合液)、SC2(塩酸過酸化水素水混合液)、フッ化アンモニウム、バッファードフッ酸(フッ酸とフッ化アンモニウムとの混合液)などであってもよい。
 水供給ユニット7は、水ノズル30を含む。水ノズル30は、たとえば、連続流の状態で液を吐出するストレートノズルであり、スピンチャック5の上方で、その吐出口を基板Wの上面中央部に向けて固定的に配置されている。水ノズル30には、水供給源からの水が供給される水配管31が接続されている。水配管31の途中部には、水ノズル30からの水の供給/供給停止を切り換えるための水バルブ32が介装されている。水バルブ32が開かれると、水配管31から水ノズル30に供給された連続流の水が、水ノズル30の下端に設定された吐出口から吐出される。また、水バルブ32が閉じられると、水配管31から水ノズル30への水の供給が停止される。水ノズル30に供給される水は、たとえば脱イオン水(DIW)であるが、DIWに限らず、炭酸水、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。
 なお、薬液ノズル27および水ノズル30は、それぞれ、スピンチャック5に対して固定的に配置されている必要はなく、たとえば、スピンチャック5の上方において水平面内で揺動可能なアームに取り付けられて、このアームの揺動により基板Wの上面における処理液(薬液または水)の着液位置がスキャンされる、いわゆるスキャンノズルの形態が採用されてもよい。
 図2に示すように、処理カップ11は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ11は、スピンベース25を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wの周囲に振り切られる。処理液が基板Wに供給されるとき、上向きに開いた処理カップ11の上端部11aは、スピンベース25よりも上方に配置される。したがって、基板Wの周囲に排出された薬液や水などの処理液は、処理カップ11によって受け止められる。そして、処理カップ11に受け止められた処理液は、図示しない回収装置または廃液装置に送られる。
 図3は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。
 制御装置3は、予め定められたプログラムに従って、スピンモータ23、排気装置20、第1のノズル移動ユニット34等の動作を制御する。さらに、制御装置3は、薬液バルブ29、水バルブ32、第1の有機溶剤蒸気バルブ16、第1の流量調整バルブ17、清浄空気バルブ42等の開閉動作等を制御する。
 図4は、基板処理装置1による基板処理の一例を説明するための流れ図である。図5は、基板処理装置301において実行される、リンス工程(S3)およびスピンドライ工程(S4)を説明するためのタイムチャートである。図6A~6Eは、パドルリンス工程(液膜形成工程、蒸気雰囲気充満工程、パドル工程)T1、薄膜領域形成工程T2および薄膜領域拡大工程(高速回転工程)T3を説明するための図解的な図である。
 図1~図6Eを参照しながら基板処理について説明する。
 未処理の基板Wは、搬送ロボットIR,CRによってキャリヤCから処理ユニット2に搬入され、処理チャンバ4内に搬入され、基板Wがその表面(処理対象面。たとえばパターン形成面)を上方に向けた状態でスピンチャック5に受け渡され、スピンチャック5に基板Wが保持される(S1:基板搬入工程(基板保持工程))。基板Wの搬入に先立って、第1の有機溶剤蒸気バルブ16は閉じられ、清浄空気バルブ42は開かれ、かつ排気バルブ22は開かれている。そのため、下方空間SP2には、内部空間SP(下方空間SP2)に清浄空気のダウンフロー(下降流)が形成される。
 搬送ロボットCRが処理ユニット2外に退避した後、制御装置3は、薬液工程(ステップS2)を実行する。具体的には、制御装置3は、スピンモータ23を駆動してスピンベース25を所定の液処理速度(たとえば約800rpm)で回転させる。また、制御装置3は、薬液バルブ29を開く。それにより、回転状態の基板Wの上面に向けて、薬液ノズル27から薬液が供給される。供給された薬液は遠心力によって基板Wの全面に行き渡り、基板Wに薬液を用いた薬液処理が施される。薬液の吐出開始から予め定める期間が経過すると、制御装置3は、薬液バルブ29を閉じて、薬液ノズル27からの薬液の吐出を停止する。
 次いで、制御装置3は、リンス工程(ステップS3)を実行する。リンス工程は、基板W上の薬液を水に置換して基板W上から薬液を排除する工程である。具体的には、制御装置3は、水バルブ32を開く。それにより、回転状態の基板Wの上面に向けて、水ノズル30から水が供給される。供給された水は遠心力によって基板Wの全面に行き渡る。この水によって、基板W上に付着している薬液が洗い流される。
 水の供給開始から予め定める期間が経過すると、基板Wの上面全域が水に覆われている状態で、制御装置3は、スピンモータ23を制御して、基板Wの回転速度を液処理速度からパドル速度(零または約40rpm以下の低回転速度。たとえば約10rpm)まで段階的に減速させる。その後、基板Wの回転速度をパドル速度に維持する(パドルリンス工程T1)。これにより、図6Aに示すように、基板Wの上面に、基板Wの上面全域を覆う水の液膜がパドル状に支持される。この状態では、基板Wの上面の水の液膜(処理液の液膜)50に作用する遠心力が水と基板Wの上面との間で作用する表面張力よりも小さいか、あるいは前記の遠心力と前記の表面張力とがほぼ拮抗している。基板Wの減速により、基板W上の水に作用する遠心力が弱まり、基板W上から排出される水の量が減少する。基板Wの上面から薬液によりパーティクルを取り除く薬液工程に次いでリンス工程が実行されるから、水の液膜50にパーティクルが含まれることがある。また、パドルリンス工程T1において、パドル状の水の液膜50の後も基板Wへの水の供給が続行されてもよい。
 また、制御装置3は、パドルリンス工程T1の開始に同期して、清浄空気バルブ42を閉じると共に、第1の有機溶剤蒸気バルブ16を開ける。これにより、内部空間SPへの清浄空気の供給は停止され、内部空間SPへの有機溶剤蒸気の供給が開始される。これにより、有機溶剤蒸気が貫通孔18b(図2参照)を介して下方空間SP2に供給される。また、制御装置3は、排気バルブ22を閉じる。これにより、処理チャンバ4の内部空間SPが外部から閉塞され、処理チャンバ4は密閉チャンバとして機能する。この状態では、下方空間SP2(基板Wの上方の空間を含む空間)は、処理チャンバ4の外部と遮断されており(遮断工程)、そのため、下方空間SP2に供給された有機溶剤蒸気が下方空間SP2の全域に行き渡り、下方空間SP2に充満する。その結果、基板W上の水の液膜50の周囲を有機溶剤蒸気雰囲気で満たすことができる(蒸気雰囲気充満工程)。
 外部空間から遮断された下方空間SP2は、外部の雰囲気の外乱の影響をほとんど受けない。そのため、これ以降、基板Wの上面全域の周囲が有機溶剤蒸気を高濃度に含む雰囲気(以下、「有機溶剤蒸気雰囲気」という。)に保たれる。パドル状の水の液膜50の形成後、制御装置3は、水バルブ32を閉じて、水ノズル30からの水の吐出を停止する。下方空間SP2に有機溶剤蒸気が充満した後、パドルリンス工程T1が終了する(リンス工程(S3)が終了する)。
 次いで、制御装置3は、スピンドライ工程(ステップS4)を実行する。具体的には、制御装置3は、まず薄膜領域形成工程T2を実行する。薄膜領域形成工程T2は、図6Bに示すように、基板Wの水の液膜50の中央部に、水の大部分が除去されて非常に薄い超薄膜(水の薄膜)56(図7参照)が残存する円形の薄膜領域55を形成する工程である。具体的には、制御装置3は、スピンモータ23を制御して基板Wを所定の薄膜領域形成速度(たとえば約50rpm)まで加速させる。基板Wの回転速度が前記の薄膜領域形成速度(たとえば約50rpm)に達することにより、基板W上の水の液膜50に比較的強い遠心力が作用し、基板Wの上面中央部に存在する水が径方向外方に押し退けられることにより、基板Wの上面中央部に円形の薄膜領域55が形成される。薄膜領域形成速度は、約50rpmとしたが、それ以上の回転速度であってもよい。
 前述のように、有機溶剤蒸気が下方空間SP2の全域に充満している。そのため、水の液膜50が、有機溶剤蒸気の吐出圧力に押されて変形することはない。したがって、薄膜領域形成工程T2において、水の液膜50(バルク72)を可能な限り厚く保つことができ、バルク72と薄膜領域55との膜厚の落差を大きく保つことができる。これにより、水の液膜の内周部分70に発生するマランゴニ対流65を強めることができる。
 薄膜領域形成工程T2に次いで薄膜領域拡大工程T3が実行される。
 薄膜領域拡大工程T3では、制御装置3は、スピンモータ23を制御して、基板Wの回転速度を、所定の乾燥速度(第1の高速度。第2の高速度。たとえば1000rpm)まで上昇させる。この基板Wの回転速度の上昇に伴って、図6C,6Dに示すように薄膜領域55が拡大する。薄膜領域55の拡大により、水の液膜50と薄膜領域55との境界60が基板Wの径方向外方に向けて移動する。そして、図6Eに示すように、薄膜領域55が基板Wの全域に拡大させられることにより、水の液膜50が全て基板W外に排出される。
 薄膜領域拡大工程T3では、水の液膜50は、当該液膜に有機溶剤蒸気の強い吐出圧力が加わらないために変形しない。そのため、水の液膜50(バルク72)を可能な限り厚く保つことができ、バルク72と薄膜領域55との膜厚の落差を大きく保つことができる。これにより、水の液膜の内周部分70に発生するマランゴニ対流65を強めることができる。
 薄膜領域拡大工程T3における、基板W中央部上の有機溶剤濃度は約300ppm以上であり、基板W周縁部上の有機溶剤濃度は約300ppm以上であり、基板W中間部(中央部と周縁部との中間位置)上の有機溶剤濃度は約300ppm以上である。
 薄膜領域拡大工程T3の全期間に亘って、第1の有機溶剤蒸気供給ユニット8からの内部空間SPに対する有機溶剤蒸気の供給が続行されている。そのため、薄膜領域拡大工程T3の全期間に亘って、基板Wの上面の全域が、有機溶剤蒸気に保持されている。そのため、薄膜領域55の拡大状況によらずに、水の液膜(液膜のうち、超薄膜56が形成されていない部分)の内周部分(境界付近部分)70の周囲の雰囲気を有機溶剤蒸気雰囲気に保ち続けることができる。
 薄膜領域55が基板Wの上面の全域に拡大した後、制御装置3は、薄膜領域拡大工程T3を終了させる。薄膜領域拡大工程T3の終了に伴い、制御装置3は、第1の有機溶剤蒸気バルブ16を閉じて、第1の有機溶剤蒸気供給ユニット8からの内部空間SPへの有機溶剤蒸気の供給を停止させる。また、制御装置3は、清浄空気バルブ42および排気バルブ22を開くことにより、内部空間SP(下方空間SP2)に清浄空気のダウンフロー(下降流)を形成する。これにより、内部空間SP(下方空間SP2)の雰囲気が、有機溶剤蒸気から清浄空気に置換される。
 その後、制御装置3は、基板Wを、約1000rpmのまま回転続行させる(薄膜除去工程)。これにより、下方空間SP2に取り入れられた新鮮な清浄空気が基板Wの上面に接触する。そのため、基板Wの上面の各所で水蒸気の拡散が進み、その結果、当該各所で水の蒸発が進行する。そして、基板Wの高速回転により、基板Wの上面上の水を振り切ることができる。これにより、基板Wの上面から超薄膜56が完全に除去され、ゆえに、基板Wの上面を良好に乾燥させることができる。
 スピンドライ工程(S4)の開始から予め定める期間が経過すると、制御装置3は、スピンモータ23を制御してスピンチャック5の回転を停止させる。その後、搬送ロボットCRが、処理ユニット2に進入して、処理済みの基板Wを処理ユニット2外へと搬出する(ステップS5)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。
 図7は、薄膜領域拡大工程T3中における、水の液膜50の状態を拡大して示す断面図である。
 基板Wの回転速度が薄膜形成速度まで加速されることにより、水の液膜50の中央部の水が、基板Wの回転による遠心力を受けて径方向外方に押し拡げられる。その結果、基板Wの上面中央部における水の液膜50の厚みが薄くなり、当該部分に、水の超薄膜56が形成される。
 水の超薄膜56の周囲が有機溶剤蒸気雰囲気に保たれているために、水の超薄膜56に有機溶剤が多量に溶け込み、そのため、水の超薄膜56は、有機溶剤を高い濃度で含む。基板Wの上面全域の周囲が有機溶剤蒸気雰囲気に保たれているために、有機溶剤蒸気の拡散は進行せず、その結果、水の超薄膜56に含まれる有機溶剤の蒸発の進行が抑制または防止される。したがって、水の液膜50の中央部において、水の全てを完全に除去することはできず、当該一部分に水の超薄膜56が保持される。すなわち、当該一部分に薄膜領域55が形成される。
 内部空間SPに有機溶剤蒸気が充満している状態では、基板Wの上面を覆う水の液膜50の全域の周囲および水の超薄膜56の全域の周囲が、有機溶剤蒸気雰囲気に保たれる。そのため、水の液膜50および水の超薄膜56に有機溶剤蒸気が溶け込む。そのため、水の液膜の内周部分70の内部に、互いに連なる水の液膜50および水の超薄膜56の局所的な厚みの差に基づく有機溶剤の濃度差に起因して、水の超薄膜56から水の液膜50のバルク72側に向かって流れるマランゴニ対流65が発生する。
 水の超薄膜56の厚みは、可視光以下の波長以下の厚み(たとえば数nm)である。水の超薄膜56の厚みはできるだけ薄いことが望ましい。これには、2つの理由がある。
 1つ目の理由は、次に述べる通りである。すなわち、マランゴニ対流65を強めるためには、水の液膜50と水の超薄膜56との濃度差を大きくする(すなわち、水の超薄膜56の有機溶剤濃度をより一層濃くする)必要がある。水の超薄膜56をより一層薄膜化することにより、単位体積当たりの有機溶剤の量が増大し、水の超薄膜56の有機溶剤濃度を濃くできる。
 2つ目の理由は、次に述べる通りである。すなわち、水の超薄膜56が厚いと、有機溶剤濃度は、水の超薄膜56の表層部分で相対的に高く、水の超薄膜56の基層部分で相対的に低くなる。その結果、水の超薄膜56中でもマランゴニ対流が発生し、水の超薄膜56からバルク72に流れるマランゴニ対流65を弱める結果になる。
 図8は、水の液膜の内周部分70の内部における、マランゴニ対流65の発生メカニズムを説明するための図である。
 基板Wが回転し、かつ水の液膜50に薄膜領域55(図7参照)が形成された状態では、基板Wの回転により発生する遠心力に起因して、水の液膜50に厚みの異なる部分ができる。すなわち、水の液膜50における、境界60の近傍領域71(以下、単に「境界近傍領域71」という。)では液膜の厚みH1が非常に薄く、かつ水の液膜50のバルク72では液膜の厚みH2が厚い(H2>H1)。たとえば、H1=数nmであり、H2=約7mmである。
 また、境界60の近傍領域71に連なって水の超薄膜56が形成される。水の超薄膜56の厚みは、H3に設定されている。H3=数nmである。
 水の液膜50および水の超薄膜56の周囲が、有機溶剤蒸気の高濃度状態に保たれている。この状態では、有機溶剤蒸気が、水の液膜50および水の超薄膜56の各所に均一に溶け込む。水の超薄膜56における有機溶剤濃度が、バルク72における有機溶剤濃度に比べて相対的に高い。その結果、互いに連なる水の液膜50および水の超薄膜56の内部に濃度勾配が生じ、その結果、超薄膜56からバルク72に向けて流れるマランゴニ対流65が発生する。このマランゴニ対流65は、後述する第2の部分70B(図10参照)に発生する熱対流76(図10参照)を打ち消すだけでなく、マランゴニ対流65によって、当該第2の部分70B(図10参照)に、境界近傍領域71からバルク72に向けて流れる新たな流れを作る。したがって、水の液膜の内周部分70(具体的には、図10に示す第2の部分70B)に微細パーティクルP2が含まれている場合において、図8に示すように、微細パーティクルP2に、マランゴニ対流65を受けて境界近傍領域71からバルク72に向かう方向、すなわち、境界60から離反する方向の強い力が作用する。これにより、境界近傍領域71に含まれている微細パーティクルP2は、径方向外方(境界60から離反する方向)に向けて移動する。
 図9A,9Bは、薄膜領域55の拡大中における、水の液膜の内周部分70の状態を示す平面図である。図9Aでは、水の液膜の内周部分70(具体的には、図10に示す第2の部分70B)に微細パーティクルP2が含まれている状態である。微細パーティクルP2は境界60のラインに沿って並んでいる。
 この場合、水の液膜の内周部分70(第2の部分70B)に含まれる微細パーティクルP2は、境界60から離反する方向に流れるマランゴニ対流65(図7参照)を受けて、径方向外方(境界60から離反する方向)に向けて移動して、その結果、水の液膜50のバルク72に取り込まれる。そして、薄膜領域55の拡大に伴って、基板Wの径方向外方(バルク72に向かう方向)に向けて境界60が移動するが、微細パーティクルP2がバルク72に取り込まれたまま、薄膜領域55が拡大する。すなわち、薄膜領域55の拡大に伴って境界60が基板Wの径方向外方に向けて移動すると、これに併せて、図9Bに示すように、微細パーティクルP2も径方向外方に向けて移動する。
 そして、薄膜領域55が基板Wの全域に拡大させられ、水の液膜50が基板Wの上面から完全に排出される(図6Eに示す状態)ことにより、基板Wの上面から、大きな厚みを有する水の液膜50が除去される。水の液膜50のバルク72中に含まれる微細パーティクルP2は、薄膜領域55に出現することなく、水の液膜50と共に基板Wの上面から除去される。
 また、薄膜領域拡大工程T3の終了後には、内部空間SP(下方空間SP2)の雰囲気が、有機溶剤蒸気から清浄空気に置換される。また、基板Wが約1000rpmの高速のまま回転続行させられる。これにより、基板Wの上面から超薄膜56が完全に除去され、ゆえに、基板Wの上面を良好に乾燥させることができる。
 基板Wの上面の周囲の雰囲気を清浄空気に置換した状態で、基板Wを高速回転させる。この場合、新鮮な清浄空気が基板Wの上面に接触するために、基板Wの上面の各所で有機溶剤の拡散が進み、当該有機溶剤を含む水の超薄膜56の蒸発が進行する。そのため、基板Wの高速回転により水の超薄膜56を振り切ることができ、これにより、基板Wの上面を完全に乾燥させることができる。
 以上により、この実施形態によれば、基板Wの上面を覆う水の液膜50の全域の周囲を有機溶剤蒸気雰囲気で満たしながら、薄膜領域形成工程T2および薄膜領域拡大工程T3を順次実行する。そのため、薄膜領域55の拡大状況に依らずに、薄膜領域55の拡大終了まで、水の液膜の内周部分70の周囲および水の超薄膜56の周囲が有機溶剤蒸気雰囲気に保たれる。
 水の液膜の内周部分70の周囲および水の超薄膜56の周囲を有機溶剤蒸気雰囲気に保った状態で基板Wを回転させると、互いに連なる水の液膜50および水の超薄膜56の、局所的な厚みの差に基づく有機溶剤の濃度差に起因して、水の超薄膜56から、水の液膜の内周部分70を介して水の液膜50のバルク72へと向かう方向に流れるマランゴニ対流65が発生する。そのため、薄膜領域形成工程T2および薄膜領域拡大工程T3の全期間に亘って、水の超薄膜56から水の液膜50のバルク72へと向かうマランゴニ対流65を発生させ続けることができる。
 したがって、水の液膜の内周部分70に含まれている微細パーティクルP2は、マランゴニ対流65を受けて、バルク72に向かう方向、すなわち、境界60から離反する方向に向けて移動する。そのため、パーティクルが水の液膜50に取り込まれる。薄膜領域55の拡大に伴って、基板Wの径方向外方(バルク72に向かう方向)に向けて境界60が移動するが、微細パーティクルP2が水の液膜50に取り込まれたまま、薄膜領域55が拡大する。そして、水の液膜50に含まれている微細パーティクルP2は、薄膜領域55に出現することなく水の液膜50と共に基板Wの上面から排出される。その後、基板Wの上面から超薄膜56が除去されることにより、基板Wの上面が乾燥される。
 これにより、基板Wの乾燥後において、基板Wの上面に微細パーティクルP2が残存することがない。ゆえに、微細パーティクルP2の発生を抑制または防止しながら、基板Wの上面の全域を乾燥できる。
 また、超薄膜56が有機溶剤を多量に含むために、乾燥後にウォーターマークの発生を抑制することもできる。
 また、パドルリンス工程T1では、基板Wに大きな遠心力が作用しないから、基板Wの上面に形成される水の液膜50の厚みを、分厚く保つことができる。水の液膜50の厚みが大きければ、薄膜領域拡大工程T3において、互いに連なる水の液膜50および水の超薄膜56中に生じる、有機溶剤の濃度勾配を大きく保つことができ、これにより、水の液膜の内周部分70中に発生するマランゴニ対流65を強めることができる。
 また、薄膜領域拡大工程T3時に、基板Wを高速度で回転させるので、基板Wに強い遠心力が作用し、この遠心力により、互いに連なる水の液膜50および水の超薄膜56における膜厚の差異をより一層顕著にできる。これにより、水の液膜の内周部分70中に生じる有機溶剤の濃度勾配を大きく保つことができ、ゆえに、水の液膜の内周部分70中に発生するマランゴニ対流65をさらに一層強めることができる。
 また、密閉チャンバである処理チャンバ4の内部空間SPに基板Wを収容し、かつ第1の有機溶剤蒸気供給ユニット8から内部空間SPに有機溶剤蒸気を供給することにより、当該内部空間SPの全域を、有機溶剤蒸気雰囲気とすることができ、これにより、基板Wの上面全域の周囲を、有機溶剤蒸気雰囲気に確実に保持することができる。
 次に、スピンドライ工程(S4)に伴うパーティクル発生のメカニズムについて説明する。
 図10は、参考形態に係る、基板Wの上面上の水の液膜(処理液の液膜)50における、気液固界面における流れ分布モデルを示す図である。
 この参考形態では、前述の実施形態に係る処理例と同様、パドルリンス工程T1、液膜除去領域形成工程(薄膜領域形成工程T2に相当)および液膜除去領域拡大工程(薄膜領域拡大工程T3に相当)を実行する。しかしながら、液膜除去領域形成工程および液膜除去領域拡大工程(において、基板Wの上面の周囲の全域を有機溶剤蒸気雰囲気とするのではなく、当該上面の周囲の全域を乾燥空気(Dry Air)の雰囲気とする点で、この参考形態は前述の実施形態と相違している。また、この参考形態では、薄膜領域形成工程T2において、前述の実施形態と異なり、基板Wの上面の中央部に対する、有機溶剤蒸気雰囲気の吹き付けも行っておらず、基板Wの回転による遠心力のみで液膜除去領域155(前述の実施形態の薄膜領域55に相当)を形成している。
 この場合、図10に示すように、液膜除去領域拡大工程において、水の液膜の内周部分70の内部には、熱対流76が発生している。水の液膜の内周部分70中の熱対流76は、バルク72側に位置する第1の領域70Aでは、境界60側から離反する方向に向かって流れるが、図10に示すように、境界近傍領域71を含む、境界60側の第2の部分70Bでは、バルク72側から境界60側に向けて流れている。したがって、内周部分70の第2の部分70Bに微細パーティクルP2(図11~図13A等参照)が含まれている場合、この微細パーティクルP2は、境界60側に引き寄せられ、境界近傍領域71に凝集するようになる。このような微細パーティクルP2の凝集は、前述の熱対流76だけでなく、隣接する微細パーティクルP2同士のファンデルワールス力やクーロン力にも起因しているものと考えられる。
 図11は、参考形態に係る、水の液膜の内周部分70に含まれる微細パーティクルP2の移動を示す模式的な断面図である。図12は、参考形態に係る、水の液膜の内周部分70に含まれる微細パーティクルP2の移動を示す模式的な平面図である。
 図11に示すように、水の液膜の内周部分70は、基板W上面との境界付近に形成される境界層(Boundary layer)73と、境界層73に対し基板W上面と反対側に形成される流れ層(Flowing layer)74とを含む。水の液膜の内周部分70に微細パーティクルP2が含まれる場合、流れ層74では、パーティクルPは、その粒径の大小によらずに、流れの影響を強く受ける。そのため、流れ層74にあるパーティクルPは、流れに沿う方向に沿って移動可能である。
 一方、境界層73では、大きなパーティクルP1は流れの影響を受けるが、微細パーティクルP2は、流れの影響をほとんど受けない。すなわち、境界層73にある大きなパーティクルP1は、境界層73内を流れに沿う方向に沿って移動可能であるが、微細パーティクルP2は、境界層73内を流れに沿う方向F(図12参照)に移動しない。しかし、微細パーティクルP2は基板Wの上面に付着しているわけではなく、基板Wの上面に微小間隔を空けて設けられている。
 図10に示す境界近傍領域71においては、水の液膜の内周部分70の大部分が、図11に示す境界層73である。そして、図10において、境界近傍領域71からバルク72側に向うに従って、流れ層74(図11参照)の割合が増大する。したがって、境界近傍領域71にある微細パーティクルP2は、別の大きな力が作用しない限り、流れに沿う方向に移動しない。
 図12に示すように、境界近傍領域71では、液膜50の厚み差により肉眼視で干渉縞75が見られる。干渉縞75は、等高線になっている。
 微細パーティクルP2は、前述のように、流れに沿う方向F(図12参照)に移動しないのであるが、干渉縞75の接線方向D1,D2には移動可能である。微細パーティクルP2は、境界近傍領域71において、干渉縞75の接線方向D1,D2に沿って列をなすように並ぶ。換言すると、微細パーティクルP2は境界60のラインに沿って並んでいる。微細パーティクルP2は、パーティクルP自身の大きさ毎に列をなす。比較的大径を有する微細パーティクルP21は、比較的小径を有する微細パーティクルP22よりも径方向外方に配置されている。
 図13A,13Bは、参考形態に係る、液膜除去領域155(前述の実施形態の薄膜領域55に相当)の拡大中における、水の液膜の内周部分70の状態を示す平面図である。
 図13Aでは、水の液膜の内周部分70(具体的には、図10に示す第2の部分70B)に微細パーティクルP2が含まれている状態である。微細パーティクルP2は境界60のラインに沿って並んでいる。
 図13Bに示すように、液膜除去領域155の拡大に伴って、基板Wの径方向外方(バルク72に向かう方向)に向けて境界60が移動すると、境界近傍領域71では、バルク72側から境界60側に向けて流れる熱対流76(図10参照)が生じているために、微細パーティクルP2に径方向内方に押す力が作用する。液膜除去領域155の拡大に伴って、基板Wの径方向外方(バルク72に向かう方向)に向けて境界60が移動する。しかし、微細パーティクルP2が径方向(流れに沿う方向)に移動できないので、境界60が移動しても微細パーティクルP2は移動しない。そのため、境界近傍領域71に含まれる微細パーティクルP2が境界60から液膜除去領域155に移動し、液膜除去領域155上に析出する。そして、水の液膜50が除去された後の基板Wの上面に、微細パーティクルP2が残存する。
 図14は、本発明の第2の実施形態に係る基板処理装置201の処理ユニット202の構成例を説明するための図解的な断面図である。
 第2の実施形態において、前述の第1の実施形態に示された各部に対応する部分には、図1~図9の場合と同一の参照符号を付して示し、説明を省略する。
 処理ユニット202が、第1の実施形態に係る処理ユニット2と相違する点は、第1の有機溶剤蒸気供給ユニット8を廃止した点、および低表面張力液としての有機溶剤の液体の一例としてのIPAの液体を吐出する有機溶剤液体吐出ユニット(低表面張力液供給ユニット)203を備えた点である。
 有機溶剤液体吐出ユニット203は、IPAの液体を吐出する有機溶剤液体ノズル204(ノズル)と、有機溶剤液体ノズル204が先端部に取り付けられた第2のノズルアーム205と、第2のノズルアーム205を移動させることにより、有機溶剤液体ノズル204を移動させる第2のノズル移動ユニット206と、平面視で処理カップ11のまわりに配置された待機ポット207(貯留容器)と、待機ポット207内の液の排液/排液停止を切り換えるための排液バルブ208とを含む。有機溶剤液体吐出ユニット203、有機溶剤液体ノズル204および待機ポット207によって、気体供給ユニットが構成されている。
 有機溶剤液体ノズル204には、有機溶剤供給源からの常温の液体の有機溶剤(IPA)を有機溶剤液体ノズル204に供給する有機溶剤配管209が接続されている。有機溶剤配管209には、有機溶剤配管209から有機溶剤液体ノズル204への有機溶剤の液体の供給および供給停止を切り換える有機溶剤バルブ210が介装されている。
 待機ポット207は、基板Wの上面から退避する退避位置に配置されている有機溶剤液体ノズル204から吐出される有機溶剤の液体を受け止めるためのポットである。待機ポット207は、内部空間211を区画する箱状のハウジング212を含む。ハウジング212は、ハウジング212の上面に形成された開口213と、ハウジング212の底壁212aに形成された排出口214とを有する。待機ポット207の排出口214には、排液配管215の一端が接続されている。排液配管215の他端は、機外の廃液処理設備に接続されている。排液配管215の途中部に、排液バルブ208が介装されている。制御装置3は、排液バルブ208の開閉動作を制御する。
 有機溶剤液体ノズル204が退避位置に配置されている状態で、制御装置3が排液バルブ208を閉じながら、有機溶剤バルブ210を開いて有機溶剤液体ノズル204から有機溶剤の液体を吐出することにより、待機ポット207の内部空間211に有機溶剤の液体を貯留できる。
 基板処理装置201において実行される基板処理が、第1の実施形態に係る基板処理装置1の場合と相違する点は、第1の有機溶剤蒸気供給ユニット8から内部空間SPに有機溶剤蒸気を供給する手法ではなく、待機ポット207の内部空間211に有機溶剤の液体を貯留しておき、この有機溶剤の液体の蒸発により生じた有機溶剤蒸気を内部空間SPに充満させる手法により、基板Wの上面の周囲の全域を有機溶剤蒸気雰囲気に保つようにした点である。
 具体的には、制御装置3は、パドルリンス工程T1の開始に同期して、清浄空気バルブ42を閉じる。これにより、内部空間SPが外部から閉塞された閉状態となり、処理チャンバ4は、外部から閉塞された密閉チャンバとして機能する。
 また、制御装置3は、パドルリンス工程T1の開始に同期して、排液バルブ208を閉じながら、有機溶剤バルブ210を開く。これにより、待機ポット207の内部空間211に有機溶剤の液体が貯留される。内部空間211に貯留されている有機溶剤の液体が所定量に達すると、有機溶剤液体ノズル204からの有機溶剤の液体の吐出が停止される。内部空間211に貯留されている有機溶剤は、沸点が水よりも低く、そのため、蒸発量が多い。有機溶剤の液体の蒸発により生じた有機溶剤蒸気は、内部空間SPに供給され、内部空間SPの全域に充満させられる。
 また、制御装置3は、薄膜領域拡大工程T3の終了後、排液バルブ208を開く。これにより、排液配管215が開かれ、内部空間211に貯留されていた有機溶剤の液体が、排液配管215を通して機外の廃液処理設備へと送られる。また、制御装置3は、清浄空気バルブ42および排気バルブ22を開いて、内部空間SPの雰囲気を、有機溶剤蒸気から清浄空気に置換する。
 図15Aは、本発明の第3の実施形態に係る基板処理装置301の処理ユニット302の構成例を説明するための図解的な断面図である。図15Bは、対向部材305の底面図である。
 第3の実施形態において、前述の第1の実施形態に示された各部に対応する部分には、図1~図9の場合と同一の参照符号を付して示し、説明を省略する。
 処理ユニット302が、第1の実施形態に係る処理ユニット2と相違する一つの点は、密閉チャンバではない処理チャンバ304をチャンバとして備えた点である。つまり、処理チャンバ304には、第1の有機溶剤蒸気供給ユニット8および送風ユニット40は結合されておらず、それらに代えて処理チャンバ304は、隔壁12内に清浄空気を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)320を備えている。また、第1の実施形態の場合と異なり、排気ユニット14の排気配管21は開閉可能に設けられていない。
 また、処理ユニット302が、第1の実施形態に係る処理ユニット2と相違する他の点は、処理チャンバ304内に、スピンチャック5に保持されている基板Wの上面に対向する対向部材305を備えた点である。対向部材305には、低表面張力液としての有機溶剤蒸気の一例としてのIPAの蒸気(IPA Vapor)を気体吐出口310に供給する第2の有機溶剤蒸気供給ユニット(気体供給ユニット)330が接続されている。
 FFU320は隔壁12の上方に配置されており、隔壁12の天井に取り付けられている。FFU320は、隔壁12の天井から処理チャンバ304内に清浄空気を送る。FFU320および排気ユニット14により、処理チャンバ304内にダウンフロー(下降流)が形成される。
 対向部材305は円板状である。対向部材305の直径は、基板Wの直径と同等か、基板Wの直径よりも大きい。対向部材305の下面には、スピンチャック5に保持されている基板Wの上面に対向する、平坦面からなる円形の対向面306が形成されている。対向面306は、基板Wの上面の全域と対向している。図15Bに示すように、対向面306には、その中央部(基板Wの回転中心に対向する部分)を除く全域に、多数(複数)の気体吐出口310が等密度で分散配置されている。
 対向部材305はたとえば、PFA(パーフルオロアルコキシエチレン)やPTFE(ポリテトラフルオロエチレン)、PVC(ポリ塩化ビニル)などの樹脂材料を用いて形成されている。対向部材305は中空である。詳しくは、対向部材305の内部には、円板状の第1の気体供給路333が形成されている。第1の気体供給路333は、全ての気体吐出口310と連通している。
 対向部材305の上面には、対向部材305の中心を通る鉛直軸線(スピンチャック5の回転軸線A1と一致する鉛直軸線)を中心軸線とするホルダ307が固定されている。ホルダ307には、昇降ユニット308が結合されている。対向部材305は、ホルダ307によって、対向部材305の中心軸線がスピンチャック5の回転軸線A1上に位置するように、かつ水平姿勢で支持されている。ホルダ307は、中空に形成されており、その内部には、第2の気体供給路309が鉛直方向に延びた状態で挿通されている。第2の気体供給路309は、第1の気体供給路333と連通している。
 第2の有機溶剤蒸気供給ユニット330は、第2の気体供給路309に接続された第2の有機溶剤蒸気配管311を備えている。第2の有機溶剤蒸気配管311には、有機溶剤蒸気供給源から、有機溶剤蒸気が供給される。第2の有機溶剤蒸気配管311には、第2の有機溶剤蒸気配管311を開閉するための第2の有機溶剤蒸気バルブ312と、第2の有機溶剤蒸気配管311の開度を調節して、各気体吐出口310から吐出される有機溶剤蒸気の流量を調整するための第2の流量調整バルブ313と、第2の有機溶剤蒸気配管311を流通する有機溶剤蒸気に含まれる塵や埃を捕獲する第2のフィルタ311Aとが介装されている。第2の有機溶剤蒸気バルブ312が開かれると、第2の有機溶剤蒸気配管311から第2の気体供給路309に供給された有機溶剤蒸気(塵や埃が除去された清浄な有機溶剤蒸気)が、気体吐出口310から下向きに吐出される。
 昇降ユニット308は、制御装置3(図2等参照)に接続されている。制御装置3は、昇降ユニット308を制御して、対向部材305の対向面306が、スピンチャック5に保持されている基板Wの上面に近接する第1~第3の近接位置(たとえば、第2の近接位置は図17に示す位置)と、スピンチャック5の上方に大きく退避した退避位置(図15に示す位置)との間で昇降させる。
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。
 制御装置3は、予め定められたプログラムに従って、昇降ユニット308の動作を制御する。さらに、制御装置3は、第2の有機溶剤蒸気バルブ312、第2の流量調整バルブ313等の開閉動作等を制御する。
 第3の実施形態に係る基板処理装置301では、第1の実施形態に係る基板処理装置1の場合と同等の基板処理(図4のS1~S5)が実行される。以下、第3の実施形態に係る基板処理装置301において実行される基板処理が、第1の実施形態に係る基板処理装置1と相違する部分を中心に説明する。
 基板処理では、未処理の基板Wが、処理ユニット302に搬入され、処理チャンバ304内に搬入される。基板Wの搬入時には、対向部材305が退避位置に配置されている。基板Wの搬入後、制御装置3は、薬液工程(図4のS2)およびリンス工程(図4のS3)を順次実行する。
 図16は、基板処理装置301において実行される、リンス工程(図4のS3)およびスピンドライ工程(図4のS4)を説明するためのタイムチャートである。
 リンス工程では、水の供給開始から予め定める期間が経過すると、基板Wの上面全域が水に覆われている状態で、制御装置3は、スピンモータ23を制御して、基板Wの回転速度を液処理速度からパドル速度(零または約40rpm以下の低回転速度。たとえば約10rpm)まで段階的に減速させる。すなわち、パドルリンス工程T11が実行される。パドルリンス工程T11は、パドルリンス工程T1(図5参照)と同等の工程である。
 また、制御装置3は、パドルリンス工程T11の開始に先立って、昇降ユニット308を制御して、図17に示すように、対向部材305を第1の近接位置まで下降させる。対向部材305の第1の近接位置は、対向面306が、パドルリンス工程T11中の水の液膜50の上面に接液しないような高さであり、対向部材305が第1の近接位置に位置するとき、対向面306と基板Wの上面との間の間隔は約7mmであり、対向面306と基板Wの上面との間に、その周囲(外部)から遮断された狭空間(基板Wの上方空間)321が形成される(遮断工程)。
 また、制御装置3は、パドルリンス工程T11の開始に同期して、第2の有機溶剤蒸気バルブ312を開けて、気体吐出口310から有機溶剤蒸気を吐出する。このときの気体吐出口310からの有機溶剤蒸気の総吐出流量は、低流量であるL1(L/min)である。また、各気体吐出口310からの有機溶剤蒸気の吐出流量は、互いに等しい。各気体吐出口310から吐出された有機溶剤蒸気は狭空間321に供給される。狭空間321が周囲から遮断されているので、供給された有機溶剤蒸気は、狭空間321に充満する。その結果、水の液膜50の周囲が、有機溶剤蒸気で満たされる(蒸気雰囲気充満工程)。
 周囲から遮断された狭空間321は、周囲の雰囲気の外乱の影響をほとんど受けない。そのため、基板Wの上面全域の周囲が有機溶剤蒸気雰囲気に保たれる。換言すると、パドル状の水の液膜50が形成された基板Wの上面の周囲の全域が、有機溶剤蒸気雰囲気に保たれる。
 また、気体吐出口310が複数個に分散配置されているので、気体吐出口310からの有機溶剤蒸気を、基板Wの上の水の液膜50に均一に供給できる。また、各気体吐出口310からの有機溶剤蒸気の吐出流量は、互いに等しい小流量であるから、各気体吐出口310からの有機溶剤蒸気の吐出圧力が互いに等しい。これにより、水の液膜50が、有機溶剤蒸気の吐出圧力に押されて変形することを確実に防止できる。換言すると、複数個に分散配置された気体吐出口310は、基板Wの上面の局所指向しない形態である。
 パドル状の水の液膜50の形成後、制御装置3は、水バルブ32を閉じて、水ノズル30からの水の吐出を停止する。これにより、パドルリンス工程T11が終了する。
 次いで、制御装置3は、スピンドライ工程(図4のS4)を実行する。制御装置3は、まず、薄膜領域形成工程T12を実行する。
 また、制御装置3は、基板Wの回転速度の上昇に同期して、昇降ユニット308を制御して、対向部材305を、第1の近接位置よりも下方に設定された第2の近接位置まで下降させる。対向部材305が第2の近接位置に位置するとき、対向面306と基板Wの上面との間の間隔は約5mmであり、狭空間321はそれまでよりもさらに一層狭くされる。
 第3の実施形態では、制御装置3は、スピンモータ23を制御して基板Wを所定の速度(たとえば約50rpm)まで加速させる。基板Wの回転速度が所定の速度(たとえば約50rpm)に達することにより、基板W上の水の液膜50に比較的強い遠心力が作用する。これらにより、基板Wの上面中央部に円形の薄膜領域55が形成される。
 薄膜領域形成工程T12では、前述のように、水の液膜50は、当該液膜に有機溶剤蒸気の強い吐出圧力が加わらないために変形しない。そのため、水の液膜50(バルク72)を可能な限り厚く保つことができ、バルク72と薄膜領域55との膜厚の落差を大きく保つことができる。これにより、水の液膜の内周部分70に発生するマランゴニ対流65を強めることができる。
 また、薄膜領域形成工程T12では、基板Wの上面に水の液膜50が形成されている状態で基板Wの回転速度を上昇させるため、水の液膜50の厚みは、パドル工程T11時よりも薄くなる。そのため、薄膜領域形成工程T12において、仮に、対向部材305の高さを第1の近接位置のまま保っていると、水の液膜50が薄化した分だけ、水の液膜50の上面と対向面306との間の空間の容積が大きくなる。この場合、基板Wの上面と対向面306との間の空間に含まれるIPA蒸気の濃度が低下するおそれもある。この場合、基板Wの上面に供給される有機溶剤蒸気の量が減少し、その結果、薄膜領域55を構成する超薄膜56の全部または一部が消失する(膜切れ、穴開き)おそれもある。
 しかしながら、制御装置3は、基板Wの回転速度の上昇に伴って、昇降ユニット308を制御して、対向部材305を第2の近接位置まで下降させている。これにより、薄膜領域形成工程T12において、水の液膜50の上面と対向面306との間の空間の容積が、パドル工程T11時と同等に保たれている。これにより、基板Wの上面と対向面306との間の空間に含まれる有機溶剤蒸気の濃度が高く保たれる。したがって、薄膜領域形成工程T12において、薄膜領域55を構成する超薄膜56の蒸発の進行を抑制でき、これにより、薄膜領域形成工程T12における、超薄膜56の消失を防止できる。
 薄膜領域形成工程T12に次いで薄膜領域拡大工程T13が実行される。
 薄膜領域拡大工程T13では、制御装置3は、スピンモータ23を制御して、基板Wの回転速度を、所定の乾燥速度(たとえば1000rpm)まで上昇させる。この基板Wの回転速度の上昇に伴って、薄膜領域55が拡大する(図6D,6E参照)。
 また、制御装置3は、基板Wの回転速度の上昇に同期して、昇降ユニット308を制御して、対向部材305を、第2の近接位置よりも下方に設定された第3の近接位置まで下降させる。対向部材305が第3の近接位置に位置するとき、対向面306と基板Wの上面との間の間隔は約3mmであり、狭空間321はそれまでよりもさらに一層狭くされる。
 薄膜領域55の拡大により、水の液膜50の、薄膜領域55および基板W上面との境界60が基板Wの径方向外方に向けて移動する。そして、薄膜領域55が基板Wの全域に拡大させられることにより(図6E参照)、水の液膜50が全て基板W外に排出される。
 薄膜領域拡大工程T13では、前述のように、水の液膜50は、当該液膜に有機溶剤蒸気の強い吐出圧力が加わらないために変形しない。そのため、水の液膜50(バルク72)を可能な限り厚く保つことができ、バルク72と薄膜領域55との膜厚の落差を大きく保つことができる。これにより、水の液膜の内周部分70に発生するマランゴニ対流65を強めることができる。
 また、薄膜領域拡大工程T13では、基板Wの上面に水の液膜50が形成されている状態で基板Wの回転速度を上昇させるため、水の液膜50の厚みは、薄膜領域形成工程T12時よりも薄くなる。そのため、薄膜領域拡大工程T13において、仮に、対向部材305の高さを第2の近接位置のまま保っていると、水の液膜50が薄化した分だけ、水の液膜50の上面と対向面306との間の空間の容積が大きくなる。この場合、基板Wの上面と対向面306との間の空間に含まれる有機溶剤蒸気の濃度が低下するおそれもある。この場合、基板Wの上面に供給される有機溶剤蒸気の量が減少し、その結果、薄膜領域55を構成する超薄膜56の全部または一部が消失する(膜切れ、穴開き)おそれもある。
 しかしながら、制御装置3は、基板Wの回転速度の上昇に伴って、昇降ユニット308を制御して、対向部材305を第3の近接位置まで下降させている。これにより、薄膜領域拡大工程T13において、水の液膜50の上面と対向面306との間の空間の容積が、薄膜領域形成工程T12時と同等に保たれている。これにより、基板Wの上面と対向面306との間の空間に含まれる有機溶剤蒸気の濃度が高く保たれる。したがって、薄膜領域拡大工程T13において、薄膜領域55を構成する超薄膜56の蒸発の進行を抑制でき、これにより、薄膜領域拡大工程T13における、超薄膜56の消失を防止できる。
 薄膜領域拡大工程T13の全期間に亘って、気体吐出口310からの有機溶剤蒸気の吐出が続行されている。そのため、薄膜領域拡大工程T13の全期間に亘って、基板Wの上面の全域が、有機溶剤蒸気に保持されている。そのため、薄膜領域55の拡大状況によらずに、水の液膜の内周部分70の周囲の雰囲気を有機溶剤蒸気雰囲気に保ち続けることができる。
 薄膜領域55が基板Wの上面の全域に拡大した後、制御装置3は、薄膜領域拡大工程T13が終了する。薄膜領域拡大工程T13の終了に伴い、制御装置3は、第2の有機溶剤蒸気バルブ312を閉じて、気体吐出口310からの有機溶剤蒸気の吐出を停止させる。また、制御装置3は、昇降ユニット308を制御して、対向部材305を第3の近接位置から離反位置まで上昇させられる。これにより、基板Wの上面の全域の雰囲気が、有機溶剤蒸気から清浄空気に置換される。
 その後、制御装置3は、基板Wを約1000rpmの回転速度のまま回転続行させる(薄膜除去工程)。これにより、基板Wの上面から超薄膜56が完全に除去され、ゆえに、基板Wの上面を良好に乾燥させることができる。
 スピンドライ工程(図4のS4)の開始から予め定める期間が経過すると、制御装置3は、スピンモータ23を制御してスピンチャック5の回転を停止させる。その後、搬送ロボットCRにより、処理済みの基板Wを処理ユニット302外へと搬出される(図4のS5)。
 以上、この発明の3つの実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。
 図18は、本発明の第3の実施形態に係る基板処理装置301の変形例を示す図である。
 図18において、第3の実施形態と共通する部分には、図15~図17の場合と同一の参照符号を付し説明を省略する。図18に示す変形例では、第3の実施形態に係る対向部材305に代えて対向部材305Aが設けられている。
 対向部材305Aは、円板状である。対向部材305Aの直径は、基板Wの直径と同等であってもよいし、図18に示すように基板Wの直径よりも大きくてもよい。対向部材305Aの下面には、スピンチャック5に保持されている基板Wの上面に対向する、対向面306Aが形成されている。対向面306Aの中央部は、水平平坦状に形成されている。対向面306Aの周縁部に、環状突部352(対向周縁部)が形成されている。環状突部352の下面には、径方向外方に向かうに従って下がるテーパ面353が形成されている。図18に示すように、対向部材305Aの直径が基板Wの直径よりも大きい場合には、対向部材305Aの周端縁が、平面視で基板Wの周端縁よりも外方に張り出している。
 対向部材305Aが第1~第3の近接位置に配置されている状態では、図18に示すように、テーパ面353の外周端353aが、上下方向に関し、基板Wの上面よりも下方に位置している。したがって、対向面306Aと基板Wの上面とによって区画される狭空間(基板Wの上方空間)371は、その周囲(外部)からほぼ密閉された密閉空間を形成し、当該周囲からほぼ完全に遮断されている(遮断工程)。そして、基板Wの上面の周縁部と、環状突部352(すなわちテーパ面353)との間は、対向面306Aの中央部と基板Wの上面の中央部との間の間隔よりも著しく狭く設けられている。
 この場合、対向面306Aと基板Wの上面とによって区画される狭空間371が、その外側空間からほぼ密閉されているので、狭空間371に供給された有機溶剤蒸気が当該狭空間371からほとんど排出されない。また、周囲の雰囲気の外乱の影響を受けることもない。これらにより、基板Wの上面の全域を、有機溶剤蒸気雰囲気に確実に保ち続けることができる。
 また、第3の実施形態およびその変形例である図18の形態において、各気体吐出口310が鉛直下方に向けて有機溶剤蒸気を吐出する構成を例に挙げて説明したが、各気体吐出口310が、下方に向うに従って外周方向に向かう斜め方向に有機溶剤蒸気を吐出する構成を採用することもできる。
 また、第3の実施形態およびその変形例である図18の形態において、気体吐出口310は、対向面306,306Aの中央部に配置されていてもよい。この場合、対向面306,306Aの中央部に配置された気体吐出口310からの有機溶剤蒸気の吐出圧力は、他の気体吐出口310からの有機溶剤蒸気と比較して弱圧力であることが好ましい。
 また、気体吐出口310は対向面306,306A以外に配置することもでき、たとえば、スピンベース25の周囲で、かつ当該スピンベース25に支持される基板Wより下方位置に、気体吐出口310を設けるようにしてもよい。
 また、前述の第1および第2の実施形態において、第1の有機溶剤蒸気供給ユニット8を、有機溶剤蒸気を供給するユニットであるとして説明したが、供給ユニット8が、有機溶剤蒸気と不活性ガス(たとえば窒素ガス)との混合ガスを供給する構成であってもよい。同様に、前述の第3の実施形態において、気体吐出口310に有機溶剤蒸気を供給するとして説明したが、有機溶剤蒸気と不活性ガス(たとえば窒素ガス)との混合ガスを供給するようにしてもよい。
 また、前述の各実施形態において、薄膜領域拡大工程T3における基板Wの回転速度(第1の高速度)と、超薄膜56の除去のための(薄膜除去工程における)基板Wの回転速度(第2の高速度)とを同等の速度(1000rpm)としたが、第1の高速度と第2の高速度とを互いに異ならせるようにしてもよい。
 また、前述の各実施形態において、基板Wの回転速度をパドル速度に維持することにより基板W上面にパドル状の水の液膜50を形成し、このパドル状の水の液膜50に薄膜領域55を設ける構成について説明したが、水の液膜50はパドル状に限られず、パドル速度よりも高速で回転されている水の液膜に薄膜領域55を設けるようにしてもよい。
 また、前述の各実施形態では、水より低い表面張力を有する低表面張力液として、有機溶剤の一例であるIPAを例に挙げて説明したが、このような低表面張力液として、IPA以外に、たとえば、メタノール、エタノール、アセトン、およびHFE(ハイドロフルオロエーテル)などの有機溶剤を採用できる。
 また、前述の各実施形態では、処理液の液膜(水の液膜50)を構成する処理液が水である場合を例に挙げて説明したが、液膜を構成する処理液が、IPA(液体)であってもよい。この場合、低表面張力液の蒸気として、HFEを採用できる。
 また、前述の各実施形態では、基板処理装置1,201,301が円板状の基板Wを処理する装置である場合について説明したが、基板処理装置1,201,301が、液晶表示装置用ガラス基板などの多角形の基板を処理する装置であってもよい。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2015年8月18日に日本国特許庁に提出された特願2015-161326号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
  1  基板処理装置
  4  処理チャンバ(密閉チャンバ)
  5  スピンチャック(基板保持ユニット)
  7  水供給ユニット(処理液供給ユニット)
  8  第1の有機溶剤蒸気供給ユニット(内部気体供給ユニット、気体供給ユニット)
201  基板処理装置
203  有機溶剤液体吐出ユニット(低表面張力液供給ユニット、気体供給ユニット)
204  有機溶剤液体ノズル(ノズル、気体供給ユニット)
207  待機ポット(貯留容器、気体供給ユニット)
301  基板処理装置
304  処理チャンバ
330  第2の有機溶剤蒸気供給ユニット(気体供給ユニット)
352  突部(対向周縁部)
 SP  内部空間
  W  基板

Claims (15)

  1.  基板を水平に保持する基板保持工程と、
     前記基板の上面に処理液を供給して、当該基板の上面を覆う処理液の液膜を形成する液膜形成工程と、
     前記処理液の液膜の周囲を、当該処理液よりも低い表面張力を有する低表面張力液の蒸気を含む蒸気雰囲気で満たす蒸気雰囲気充満工程と、
     前記蒸気雰囲気充満工程に並行して、前記基板に気体を吹き付けることなく前記基板を所定の薄膜領域形成速度で回転させて処理液を部分的に排除することにより、前記処理液の液膜に薄膜領域を形成する薄膜領域形成工程と、
     前記蒸気雰囲気充満工程に並行して、前記薄膜領域を前記基板の外周に向けて拡大させる薄膜領域拡大工程と、
     前記薄膜領域拡大工程によって前記薄膜を前記上面の全域に拡げた後に、前記上面から当該薄膜を除去する薄膜除去工程とを含む、基板処理方法。
  2.  前記基板の上方空間を含む空間を、外部から遮断された遮断状態とする遮断工程をさらに含み、前記遮断工程の後に前記空間に前記気体を供給することにより、前記蒸気雰囲気充満工程が実行される、請求項1に記載の基板処理方法。
  3.  前記薄膜除去工程は、前記空間を前記外部に開放させながら、前記基板を所定の高回転速度で回転させる開放高速回転工程を含む、請求項1または2に記載の基板処理方法。
  4.  前記液膜形成工程に並行して、前記基板を静止状態とさせまたは前記回転軸線回りにパドル速度で前記基板を回転させるパドル工程をさらに含む、請求項1または2に記載の基板処理方法。
  5.  前記薄膜領域拡大工程は、前記基板を前記薄膜領域形成速度よりも速い第1の高速度で回転させる第1の高速回転工程を含む、請求項1または2に記載の基板処理方法。
  6.  前記薄膜除去工程は、
     前記基板を前記薄膜領域形成速度よりも速い第2の高速度で回転させる第2の高速回転工程と、
     前記第2の高速回転工程に並行して、前記基板の上面の周囲の雰囲気を、前記蒸気雰囲気から前記低表面張力液以外の気体の雰囲気に置換する雰囲気置換工程を含む、請求項1または2に記載の基板処理方法。
  7.  前記処理液は水を含み、
     前記低表面張力液は有機溶剤を含む、請求項1または2に記載の基板処理方法。
  8.  基板を水平に保持する基板保持ユニットと、
     前記基板の上面に処理液を供給するための処理液供給ユニットと、
     前記基板の上面の周囲に、水よりも低い表面張力を有する低表面張力液の蒸気を含む気体を供給する気体供給ユニットと、
     前記処理液供給ユニットおよび前記の気体供給ユニットを制御する制御装置とを含み、
     前記制御装置は、前記基板の上面に処理液を供給して、当該基板の上面を覆う処理液の液膜を形成する液膜形成工程と、前記処理液の液膜の周囲を、前記低表面張力液の蒸気を含む蒸気雰囲気で満たす蒸気雰囲気充満工程と、前記蒸気雰囲気充満工程に並行して、前記基板に気体を吹き付けることなく前記基板を所定の薄膜領域形成速度で回転させて処理液を部分的に排除することにより、前記処理液の液膜に薄膜領域を形成する薄膜領域形成工程と、前記蒸気雰囲気充満工程に並行して、前記薄膜領域を前記基板の外周に向けて拡大させる薄膜領域拡大工程とを実行する、基板処理装置。
  9.  前記基板処理装置は、外部から密閉された内部空間を有し、当該内部空間に前記基板保持ユニットを収容する密閉チャンバをさらに含む、請求項8に記載の基板処理装置。
  10.  前記気体供給ユニットは、前記内部空間に前記気体を供給する内部気体供給ユニットを含む、請求項9に記載の基板処理装置。
  11.  前記気体供給ユニットは、
     前記低表面張力液の液体を吐出するためのノズルと、
     前記ノズルに前記低表面張力液の前記液体を供給するための低表面張力液供給ユニットとをさらに含み、
     前記基板処理装置は、前記ノズルから吐出される前記低表面張力液の前記液体を受け入れて、当該液体を溜めることが可能な貯留容器をさらに含む、請求項9または10に記載の基板処理装置。
  12.  前記基板処理装置は、
     前記基板保持ユニットを収容する処理チャンバと、
     前記基板の上面に対向する対向面を有する対向部材とをさらに含み、
     前記気体供給ユニットは、前記対向面に開口し、前記気体を吐出する気体吐出口を含む、請求項8または9に記載の基板処理装置。
  13.  前記対向部材は、前記基板の上面周縁部に対向し、当該上面周縁部との間で、前記対向面の中央部と前記基板の上面中央部との間の間隔よりも狭い狭間隔を形成する対向周縁部を有する、請求項12に記載の基板処理装置。
  14.  前記気体吐出口は、前記対向面に複数個分散配置されている、請求項12に記載の基板処理装置。
  15.  前記対向部材を昇降させる昇降ユニットをさらに含み、
     前記制御装置は、前記昇降ユニットを制御して、前記昇降ユニットの高さを前記基板の回転速度の変化に応じて昇降させる、請求項12に記載の基板処理装置。
PCT/JP2016/069932 2015-08-18 2016-07-05 基板処理方法および基板処理装置 WO2017029900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680044083.1A CN107851571B (zh) 2015-08-18 2016-07-05 基板处理方法及基板处理装置
US15/743,713 US11201067B2 (en) 2015-08-18 2016-07-05 Substrate treatment method and substrate treatment device
KR1020187002775A KR102113931B1 (ko) 2015-08-18 2016-07-05 기판 처리 방법 및 기판 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161326A JP6593920B2 (ja) 2015-08-18 2015-08-18 基板処理方法および基板処理装置
JP2015-161326 2015-08-18

Publications (1)

Publication Number Publication Date
WO2017029900A1 true WO2017029900A1 (ja) 2017-02-23

Family

ID=58051604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069932 WO2017029900A1 (ja) 2015-08-18 2016-07-05 基板処理方法および基板処理装置

Country Status (6)

Country Link
US (1) US11201067B2 (ja)
JP (1) JP6593920B2 (ja)
KR (1) KR102113931B1 (ja)
CN (1) CN107851571B (ja)
TW (2) TWI681453B (ja)
WO (1) WO2017029900A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235594B2 (ja) * 2019-05-30 2023-03-08 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR102342742B1 (ko) * 2019-11-14 2021-12-28 한국과학기술원 무동력 미소액적 혼합 및 유동제어 기법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145099A (ja) * 1997-11-07 1999-05-28 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2004128495A (ja) * 2002-09-30 2004-04-22 Samsung Electronics Co Ltd ウェーハ乾燥装置
JP2007158270A (ja) * 2005-12-08 2007-06-21 Ses Co Ltd 枚葉式基板処理装置
JP2008034612A (ja) * 2006-07-28 2008-02-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2008034455A (ja) * 2006-07-26 2008-02-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2009238793A (ja) * 2008-03-26 2009-10-15 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271774A (en) * 1990-03-01 1993-12-21 U.S. Philips Corporation Method for removing in a centrifuge a liquid from a surface of a substrate
US5660642A (en) * 1995-05-26 1997-08-26 The Regents Of The University Of California Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
US6701941B1 (en) * 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
US7614411B2 (en) * 2002-09-30 2009-11-10 Lam Research Corporation Controls of ambient environment during wafer drying using proximity head
JP4498893B2 (ja) * 2004-11-11 2010-07-07 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
US8211242B2 (en) * 2005-02-07 2012-07-03 Ebara Corporation Substrate processing method, substrate processing apparatus, and control program
US8070884B2 (en) * 2005-04-01 2011-12-06 Fsi International, Inc. Methods for rinsing microelectronic substrates utilizing cool rinse fluid within a gas enviroment including a drying enhancement substance
KR100696378B1 (ko) * 2005-04-13 2007-03-19 삼성전자주식회사 반도체 기판을 세정하는 장치 및 방법
JP4886544B2 (ja) * 2007-02-09 2012-02-29 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
US7964042B2 (en) * 2007-07-30 2011-06-21 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus and substrate processing method
JP5188216B2 (ja) * 2007-07-30 2013-04-24 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
EP2051285B1 (en) 2007-10-17 2011-08-24 Ebara Corporation Substrate cleaning apparatus
JP5242242B2 (ja) 2007-10-17 2013-07-24 株式会社荏原製作所 基板洗浄装置
JP4927158B2 (ja) * 2009-12-25 2012-05-09 東京エレクトロン株式会社 基板処理方法、その基板処理方法を実行させるためのプログラムを記録した記録媒体及び基板処理装置
JP6304592B2 (ja) * 2014-03-25 2018-04-04 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6418554B2 (ja) * 2015-06-10 2018-11-07 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145099A (ja) * 1997-11-07 1999-05-28 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2004128495A (ja) * 2002-09-30 2004-04-22 Samsung Electronics Co Ltd ウェーハ乾燥装置
JP2007158270A (ja) * 2005-12-08 2007-06-21 Ses Co Ltd 枚葉式基板処理装置
JP2008034455A (ja) * 2006-07-26 2008-02-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2008034612A (ja) * 2006-07-28 2008-02-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2009238793A (ja) * 2008-03-26 2009-10-15 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
KR102113931B1 (ko) 2020-05-21
JP2017041510A (ja) 2017-02-23
TW201909271A (zh) 2019-03-01
US11201067B2 (en) 2021-12-14
TWI681453B (zh) 2020-01-01
US20180269079A1 (en) 2018-09-20
CN107851571B (zh) 2021-12-24
CN107851571A (zh) 2018-03-27
JP6593920B2 (ja) 2019-10-23
TW201717273A (zh) 2017-05-16
KR20180021184A (ko) 2018-02-28
TWI643257B (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
JP6611172B2 (ja) 基板処理方法
JP5253592B2 (ja) 基板処理方法
JP6945314B2 (ja) 基板処理装置
JP2008124429A (ja) 基板処理装置および基板処理方法
KR101866640B1 (ko) 기판 처리 방법 및 기판 처리 장치
TWI636158B (zh) Substrate processing method and substrate processing device
WO2018037982A1 (ja) 基板処理装置および基板処理方法
TWI775574B (zh) 基板處理方法及基板處理裝置
JP2013172080A (ja) 基板処理装置および基板処理方法
JP6642868B2 (ja) 基板処理方法および基板処理装置
WO2017029861A1 (ja) 基板処理方法および基板処理装置
JP2010123884A (ja) 基板処理方法および基板処理装置
WO2017029900A1 (ja) 基板処理方法および基板処理装置
JP6817821B2 (ja) 基板処理装置および基板処理方法
JP6536994B2 (ja) 基板処理方法および基板処理装置
JP2017175041A (ja) 基板処理装置および基板処理方法
JP5641592B2 (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743713

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187002775

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836892

Country of ref document: EP

Kind code of ref document: A1