WO2017022803A1 - 摺動部材、転がり軸受および保持器 - Google Patents

摺動部材、転がり軸受および保持器 Download PDF

Info

Publication number
WO2017022803A1
WO2017022803A1 PCT/JP2016/072826 JP2016072826W WO2017022803A1 WO 2017022803 A1 WO2017022803 A1 WO 2017022803A1 JP 2016072826 W JP2016072826 W JP 2016072826W WO 2017022803 A1 WO2017022803 A1 WO 2017022803A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ppm
fluororesin
sliding
sliding member
Prior art date
Application number
PCT/JP2016/072826
Other languages
English (en)
French (fr)
Inventor
晶美 多田
佐藤 洋司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201680051973.5A priority Critical patent/CN108026973B/zh
Publication of WO2017022803A1 publication Critical patent/WO2017022803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/30Fluoropolymers
    • F16C2208/32Polytetrafluorethylene [PTFE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/58Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/06Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Definitions

  • the present invention relates to a sliding member, a rolling bearing, and a cage, and in particular, a sliding member that has excellent wear resistance on the surface of the sliding member and can maintain the excellent wear resistance for a long period of time, such as a rolling bearing cage,
  • the present invention relates to a rolling bearing using a cage.
  • ⁇ Sliding surfaces such as rolling bearings and cages are supplied with lubricating oil or lubricating grease to reduce rolling friction or sliding friction. Further, a surface treatment for improving the slidability is applied to the sliding surface.
  • One of the surface treatments is a method of forming a fluorine resin film. For example, a method of improving wear resistance and adhesion to a substrate by irradiating a polytetrafluoroethylene (hereinafter referred to as PTFE) coating formed on a sliding portion of a sliding member with a dose of 50 to 250 kGy. Is known (Patent Document 1).
  • a fluororesin film is formed on the surface of a base material excellent in heat resistance selected from metal materials such as polyimide resin, copper, aluminum and alloys thereof, ceramics, and glass, and at a temperature equal to or higher than the melting point of the fluororesin.
  • a base material excellent in heat resistance selected from metal materials such as polyimide resin, copper, aluminum and alloys thereof, ceramics, and glass, and at a temperature equal to or higher than the melting point of the fluororesin.
  • the fluororesin As a sliding member made of fluororesin used for non-lubricated bearings, dynamic seals, etc., the fluororesin is heated above its crystalline melting point, and ionizing radiation is emitted within the range of irradiation dose of 1 kGy to 10 MGy in the absence of oxygen. Irradiated fluororesins are known (Patent Document 3).
  • Patent Document 1 is a method for improving adhesion to a base material because it is used under non-lubricated and low surface pressure conditions.
  • Lubricating oil required for sliding surfaces of various machines It is difficult to apply in the case of medium, high slip speed and high surface pressure.
  • the fluororesin coating described in Patent Document 2 is intended to simultaneously cause a cross-linking reaction of a fluororesin and a chemical reaction between the fluororesin and a substrate surface, thereby achieving strong adhesion between the two.
  • an iron substrate such as a cage or a cage, it is difficult to generate a chemical reaction with the surface of the substrate, and there is a problem that strong adhesion cannot be achieved.
  • the sliding member described in Patent Document 3 is used for a non-lubricated bearing, a dynamic seal, and the like, and relates to a sliding member made of a fluororesin rather than a film shape. Therefore, the characteristics as a coating material are unknown, and it is difficult to apply to rolling bearing applications that require high slip speed and high surface pressure in lubricating oil. Similar to the coating produced by the method described in Patent Literature 1, the coating described in Patent Literature 4 is evaluated with a flat plate test piece, a low surface pressure, a low sliding speed, and no lubrication. It is not known whether it can be used under pressure, high slip speed and oil lubrication.
  • the present invention has been made in order to cope with such problems, and a sliding member having a sliding surface excellent in slidability even under conditions of lubricating oil, high sliding speed, and high surface pressure,
  • the purpose is to provide rolling bearings and cages.
  • the sliding member of the present invention is a sliding member that is used in an oil lubricated environment and has a sliding layer formed on an iron-based metal substrate.
  • the sliding layer has a base layer containing a heat-resistant resin and a first fluororesin on the surface of the iron-based metal substrate, and a second fluororesin layer on the surface of the base layer.
  • a resin containing at least one atom of oxygen atom, nitrogen atom and sulfur atom in the main chain of the polymer structure together with carbon atoms, and the second fluororesin layer is crosslinked at least near the surface of the sliding layer It is a crosslinked fluororesin layer formed.
  • the vicinity means a layer less than 2.5 ⁇ m from the target surface.
  • the iron-based metal substrate, the base layer, and the second fluororesin layer are in close contact with each other without providing an adhesive layer.
  • the sliding layer is characterized in that the cross-linking ratio of the first and second fluororesins decreases from the surface layer of the second fluororesin layer toward the surface of the iron-based metal substrate. To do.
  • the second fluororesin is a polytetrafluoroethylene resin, and this second fluororesin is solid 19 F Magic angle Spinning (MAS) nuclear magnetic resonance (NMR) as compared to an uncrosslinked polytetrafluoroethylene resin.
  • the chemical shift value ( ⁇ ppm) appearing in the chart is -68 ppm, -70 ppm, -77 ppm, -80 ppm, -109 ppm, -112 ppm, in addition to -82 ppm, -122 ppm, -126 ppm of the uncrosslinked polytetrafluoroethylene resin.
  • At least one chemical shift value selected from ⁇ 152 ppm and ⁇ 186 ppm appears, or the signal intensity of a signal that is a chemical shift value appearing at ⁇ 82 ppm is compared with the signal intensity of the uncrosslinked polytetrafluoroethylene resin. And increase Characterized in that it.
  • the heat-resistant resin is at least one aromatic resin selected from an aromatic amide imide resin and an aromatic imide resin, and the thickness of the sliding layer is 5 ⁇ m or more and less than 40 ⁇ m.
  • An iron-based metal cage of the present invention is a cage for holding rolling elements of a rolling bearing, and the iron-based metal cage is formed by the sliding member of the present invention. .
  • the sliding layer forming the surface of the ferrous metal cage is characterized in that the indentation hardness measured by the ISO14577 method of the sliding layer after irradiation is 58 to 82 MPa.
  • the other sliding layer forming the surface of the iron-based metal cage has a melting point of 285 to 317 ° C. at least near the surface of the second fluororesin after irradiation.
  • the rolling bearing of the present invention is a rolling bearing using the iron-based metal cage of the present invention, and in particular, a rolling bearing for the connecting rod large end of the engine, a rolling bearing for the connecting rod small end, or a rolling bearing for the crankshaft support shaft. It is characterized by being.
  • the sliding member of the present invention has a sliding layer formed on an iron-based metal substrate, the sliding layer is composed of an underlayer and a fluororesin layer, and at least the surface vicinity of the fluororesin layer is crosslinked. Therefore, wear can be suppressed even under conditions of high slip speed and high surface pressure in the lubricating oil, and the life of the sliding component and the bearing can be maintained over a long period of time.
  • the ferrous metal cage formed of this sliding member exhibits a sliding property equal to or higher than that of a cage having a silver plating layer. Moreover, the rolling bearing using this ferrous metal cage is excellent in slidability in lubricating oil as a connecting rod rolling bearing used in lubricating oil.
  • FIG. 2 is an enlarged view of an NMR chart of Experimental Example 1.
  • FIG. It is an enlarged view of the NMR chart of Experimental example 2.
  • the sliding member of the present invention has a sliding layer formed on an iron-based metal substrate.
  • This sliding layer is composed of a base layer and a cross-linked fluororesin layer formed on the surface of the base layer and having a cross-section in the vicinity of the surface layer.
  • the iron-based metal base material include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structure, cold rolled steel, hot rolled steel, and the like.
  • the ferrous metal base material is adjusted to a predetermined surface hardness by quenching and tempering after processing into the shape of the sliding member. For example, in the case of an iron-based metal cage using chromium molybdenum steel (SCM415), it is preferable to use an iron-based metal substrate whose Hv value is adjusted to 484 to 595.
  • the sliding layer 2 constituting the sliding member 1 includes a base layer 4 formed on the surface of the iron-based metal substrate 3 and a second fluororesin layer 5 formed on the surface of the base layer 4.
  • the underlayer 4 is formed on the surface of the iron-based metal substrate 3 and is a mixed resin layer of a heat-resistant resin represented by a white circle on the drawing and a first fluororesin also represented by a black circle on the drawing.
  • the fluororesin contained in the second fluororesin layer 5 is a crosslinked fluororesin layer formed by crosslinking at least the vicinity of the surface of the sliding layer.
  • the sliding layer 2 has a three-dimensional structure in which the second fluororesin present in the surface layer and its neighboring layers. Moreover, the 1st fluororesin contained in the 2nd fluororesin layer 5 and the foundation
  • substrate layer 4 can be made into the inclination material from which a crosslinking ratio decreases toward the surface of the iron-type metal base material 3 from the surface. Note that the fluororesin present on the surface of the sliding layer and its neighboring layers has a three-dimensional structure is not limited to the fact that the entire portion of the fluororesin layer is made of only a three-dimensional fluoropolymer. A part of the two-dimensional fluororesin may be included.
  • the layer thickness t 1 of the cross-linked fluororesin layer 5 is 10 to 90%, preferably 25 to 25% of the layer thickness t of the sliding layer, which is the total thickness with the layer thickness t 2 of the underlayer 4. 75%.
  • the layer thickness t of the sliding layer 2 is 5 ⁇ m or more and less than 40 ⁇ m, preferably 15 ⁇ m or more and less than 30 ⁇ m. If the layer thickness is less than 5 ⁇ m, the metal substrate may be exposed due to peeling due to poor adhesion of the coating or due to initial wear. If it is 40 ⁇ m or more, cracks during film formation or peeling during operation may deteriorate the lubrication state. By setting the layer thickness in the range of 5 ⁇ m or more and less than 40 ⁇ m, it is possible to prevent the metal substrate from being exposed due to initial wear and to prevent peeling during operation over a long period of time.
  • the heat resistant resin is a resin containing at least one atom of an oxygen atom, a nitrogen atom and a sulfur atom together with carbon atoms in at least the main chain of the polymer structure. Further, it is a resin that does not thermally decompose when fired to form a sliding layer.
  • “not thermally decomposed” means a resin that does not start thermal decomposition within the temperature and time for firing the underlayer and the upper layer film.
  • the functional group By being a heat-resistant resin containing at least one atom of oxygen atom, nitrogen atom and sulfur atom in the main chain of the polymer structure together with the carbon atom, the functional group having excellent adhesion to the iron-based metal substrate and the second It can have a functional group that reacts with one fluororesin in the molecular main chain or at the molecular end.
  • the heat resistant resin examples include epoxy resin, polyester resin, amideimide resin, imide resin, etherimide resin, imidazole resin, polyethersulfone resin, polysulfone resin, polyetheretherketone resin, and silicone resin.
  • the urethane resin and acrylic resin which prevent the shrinkage
  • a resin mainly containing an aromatic ring is preferable because of excellent heat resistance.
  • Preferred heat resistant resins include aromatic amide imide resins and aromatic imide resins.
  • the first fluororesin can be used as long as it is a resin that can be dispersed in the form of particles in the aqueous coating liquid that forms the base layer.
  • PTFE particles tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA) particles, tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP) particles, Or these 2 or more types can be used preferably.
  • the aqueous coating solution for forming the underlayer includes a nonionic surfactant such as polyoxyethylene alkyl ether, an inorganic pigment such as carbon black, N-methyl-2-pyrrolidone
  • a nonionic surfactant such as polyoxyethylene alkyl ether
  • an inorganic pigment such as carbon black
  • An aprotic polar solvent that is arbitrarily mixed with water, such as water, and water as a main solvent are blended.
  • an antifoamer, a desiccant, a thickener, a leveling agent, a repellency inhibitor, etc. can be mix
  • examples of the aqueous coating solution for forming the undercoat layer include primer paints EK series and ED series manufactured by Daikin Industries, Ltd.
  • a solution type coating solution in which a fluororesin is dissolved in a resin solution in which the above heat-resistant resin is dissolved in an aprotic polar solvent or a dispersion type coating solution in which fine particles of the fluororesin are dispersed is used. be able to.
  • the second fluororesin layer is a fluororesin layer that is formed on the surface of the underlayer and can be cross-linked by radiation.
  • the first fluororesin and the second fluororesin may be the same or different, but it is preferable to use the same fluororesin.
  • the second fluororesin include PTFE, PFA, FEP, ethylene / tetrafluoroethylene copolymer (ETFE), and the like. These resins can be used alone or as a mixture. Of these, PTFE which is excellent in heat resistance and slidability is preferable.
  • the second fluororesin layer can be obtained by applying and drying an aqueous dispersion in which PTFE resin particles are dispersed.
  • the iron-based metal substrate, the base layer, and the second fluororesin layer are in close contact with each other without providing an adhesive layer.
  • a method for bringing them into close contact with each other will be described.
  • the iron-based metal substrate has a surface roughness (Ra) of 1.0 to 2.0 ⁇ m in advance using shot blasting or the like before forming the sliding layer. After that, it is preferably immersed in an organic solvent such as petroleum benzine and subjected to ultrasonic degreasing for about 5 minutes to 1 hour.
  • aqueous coating solution for forming the underlayer Before applying the aqueous coating solution for forming the underlayer, in order to improve the dispersibility of the aqueous dispersion, use a ball mill, for example, to rotate at 40 rpm for 1 hour. Redistribute. This re-dispersed aqueous coating solution is filtered using a 100 mesh wire netting and applied using a spray method. (3) Drying the aqueous coating solution for forming the undercoat layer After coating the aqueous coating solution, it is dried. As drying conditions, for example, drying in a thermostat at 90 ° C. for about 30 minutes is preferable.
  • the layer thickness of the underlying layer after drying is in the range of 2.5 to 20 ⁇ m, preferably 5 to 20 ⁇ m, more preferably 10 to 15 ⁇ m. If it is 2.5 ⁇ m or less, the metal substrate may be exposed due to peeling or initial wear due to poor adhesion of the coating. If the thickness is 20 ⁇ m or more, cracks during film formation or peeling during operation may deteriorate the lubrication state. By setting the layer thickness in the range of 2.5 to 20 ⁇ m, exposure of the metal substrate due to initial wear can be prevented, and peeling during operation can be prevented over a long period of time.
  • aqueous coating solution for forming the second fluororesin layer Before applying the aqueous coating solution for forming the second fluororesin layer, a ball mill is used to improve the dispersibility of the aqueous dispersion. Then, for example, it is rotated at 40 rpm for 1 hour and redispersed. Without firing the underlayer, the re-dispersed aqueous coating solution is filtered using a 100-mesh wire mesh on the surface of the dried underlayer, and is applied using a spray method. (5) Drying of the aqueous coating solution for forming the second fluororesin layer The aqueous coating solution is applied and then dried. As drying conditions, for example, drying in a thermostat at 90 ° C.
  • the thickness of the second fluororesin layer after drying is in the range of 2.5 to 20 ⁇ m, preferably 5 to 20 ⁇ m, more preferably 10 to 15 ⁇ m. If the thickness is 2.5 ⁇ m or less, the metal substrate may be exposed due to peeling due to poor adhesion of the coating or wear due to initial wear. If the thickness is 20 ⁇ m or more, cracks during film formation or peeling during operation may deteriorate the lubrication state. By setting the layer thickness in the range of 2.5 to 20 ⁇ m, exposure of the metal substrate due to initial wear can be prevented, and peeling during operation can be prevented over a long period of time.
  • a coating method of a base layer and a 2nd fluororesin layer what can form a film, such as a dipping method and a brush coating method other than a spray method, can be used.
  • the spray method is preferable in view of making the surface roughness and coating shape of the coating as small as possible and considering the uniformity of the layer thickness.
  • a temperature equal to or higher than the melting point of the second fluororesin preferably (melting point (Tm) + 30 ° C.) to (melting point (Tm) + 100 ° C.
  • the base layer and the second fluororesin layer are fired simultaneously within a range of 5 to 40 minutes.
  • the first and second fluororesins are PTFE, they are preferably fired in a heating furnace at 380 ° C. for 30 minutes. Rather than firing the first and second fluororesins after coating and drying, the base layer and the second fluororesin layer can be adhered to each other without providing an adhesive layer by firing both simultaneously.
  • the irradiation temperature is 30 ° C lower than the melting point of the second fluororesin layer to a temperature not higher than 50 ° C of the melting point, preferably the second fluororesin
  • the fluororesin layer is crosslinked by irradiation with radiation at a temperature 20 ° C. lower than the melting point of the layer to 30 ° C. higher than the melting point and an irradiation dose of 250 kGy to 800 kGy, preferably more than 250 kGy and 750 kGy or less.
  • Examples of radiation include ⁇ rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo ⁇ decay), ⁇ rays (negative electrons and positrons emitted from nuclei), and electron beams (almost constant kinetic energy).
  • Particle beam such as electron beam, generally generated by accelerating thermionic electrons in vacuum; gamma ray (emitted and absorbed by transitions between energy levels of nuclei and elementary particles, pair annihilation of elementary particles, pair production, etc.) Ionizing radiation such as an electromagnetic wave having a short wavelength).
  • electron beams and ⁇ rays are preferable, and electron beams are more preferable.
  • an electron beam has advantages such as easy availability of an electron beam irradiation apparatus, simple irradiation operation, and the ability to employ a continuous irradiation process.
  • the cross-linking of the fluororesin layer does not proceed sufficiently except in the temperature range where the irradiation temperature is 30 ° C. lower than the melting point of the second fluororesin layer to 50 ° C. higher than the melting point.
  • the hardness of the fluororesin layer does not advance sufficiently.
  • the range of oxygen concentration is preferably 0 to 300 ppm.
  • an inert atmosphere by nitrogen gas injection is preferable from the viewpoint of operability and cost.
  • the irradiation dose When the irradiation dose is less than 250 kGy, crosslinking is insufficient, the wear amount is large, and the metal substrate may be exposed. Further, if the irradiation dose exceeds 800 kGy, the crosslinking proceeds more than necessary, and the hardness of the coating increases, so that the coating becomes brittle and damage to the coating such as peeling may easily occur.
  • the irradiation dose is 250 to 800 kGy and the fluororesin layer is cross-linked by irradiation.
  • the surface hardness of the sliding layer expressed by indentation hardness can be 58 to 82 MPa.
  • the melting point on the surface of the sliding layer can be lowered to 285 to 317 ° C.
  • Acceleration voltage at the time of irradiation is 40 kV or more and less than 500 kV, preferably 40 kV or more and 300 kV or less, more preferably 50 kV or more and less than 100 kV.
  • the penetration of the electron beam into the vicinity of the surface layer of the second fluororesin layer becomes shallow, and when it is 500 kV or more, the entire first and second fluororesin layers are cross-linked.
  • the intensity of the radiation is attenuated inside the fluororesin, so that radiation can reach the vicinity of the irradiated surface sufficiently, but radiation cannot reach other surfaces.
  • the vicinity of the surface of the second fluororesin layer can be crosslinked.
  • a sliding member that irradiates an electron beam in a direction perpendicular to the irradiation surface by irradiating an electron beam in an inert atmosphere by nitrogen gas injection at an acceleration voltage of 40 kV or more and less than 500 kV when irradiating.
  • the irradiation dose on the surface can be increased, and a surface parallel to the electron beam irradiation direction adjacent to the surface of the sliding member is also irradiated with an electron beam by scattering of the electron beam.
  • Electron beam irradiation on parallel surfaces decreases as the irradiation distance increases.
  • the irradiation dose of the portion near the electron beam irradiation window on the parallel plane can be changed to 500 kGy and 300 kGy as the distance from 750 kGy increases.
  • test piece A sliding layer was formed on a metal flat plate of 30 mm ⁇ 30 mm and 2 mm thickness made of SPCC.
  • a primer coating model number: EK-1909S21R
  • a top coating model number: EK-3700C21R manufactured by Daikin was used for the second fluororesin layer.
  • the drying time was 30 minutes in a constant temperature bath at 90 ° C., and the base layer and the second fluororesin layer were simultaneously fired in a heating furnace at 380 ° C. for 30 minutes. Thereafter, the specimen was irradiated with an electron beam from the surface side of the sliding layer under the following conditions.
  • Equipment used EB engine manufactured by Hamamatsu Photonics Co., Ltd.
  • Test piece coating example of experiment example 1 PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 ⁇ m)
  • Experimental Example 2 PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 ⁇ m)
  • Experimental Example 3 PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 ⁇ m)
  • Table 1 shows the test results.
  • the specific wear amount is a value obtained by dividing the wear volume by the sliding distance and the load, and the wear volume was calculated from the short diameter of the formed wear scar and the geometry of the mating material ( ⁇ 40 mm and R60 mm).
  • Table 1 shows the specific wear amount and friction coefficient of Experimental Example 2 when the specific wear amount and friction coefficient of Experimental Example 1 are 1.000.
  • the measurement is performed using an NMR apparatus JNM-ECX400 manufactured by JEOL Ltd., and a suitable measurement nuclide ( 19 F), resonance frequency (376.2 MHz), MAS (Magic Angle Spinning) rotation speed (15 and 12 kHz), sample amount (About 70 ⁇ L in a 4 mm solid state NMR tube), a cycle time (10 seconds) and a measurement temperature (about 24 ° C.).
  • FIGS. FIG. 2 shows NMR of the surface layer of Experimental Example 1
  • FIG. 3 shows an enlarged view of the NMR chart of Experimental Example 2.
  • the NMR of the surface layer of Experimental Example 3 is shown in FIG. 2 to 4, the upper row represents the MAS rotation speed 15 kHz, and the lower row represents the MAS rotation speed 12 kHz.
  • FIG. 2 shows NMR of the surface layer of Experimental Example 1
  • FIG. 3 shows an enlarged view of the NMR chart of Experimental Example 2.
  • the NMR of the surface layer of Experimental Example 3 is shown in FIG. 2 to 4, the upper row represents the MAS rotation
  • FIG. 5 is a graph obtained by normalizing the signal intensity at ⁇ 82 ppm, the intensity of which increases with crosslinking, with the signal intensity at ⁇ 122 ppm as the main signal.
  • the upper part represents measured values, and the lower part represents graphs. It is considered that the higher the signal intensity ratio is, the more the degree of crosslinking proceeds.
  • ⁇ 122 ppm is the signal of the F atom in the —CF 2 —CF 2 — bond
  • ⁇ 82 ppm is the signal of the F atom of —CF 3 in the —CF 2 —CF 3 bond. Therefore, the signals of ⁇ 82 ppm and ⁇ 162 ppm at a MAS rotational speed of 15 kHz, and ⁇ 58 ppm, ⁇ 90 ppm, ⁇ 154 ppm and ⁇ 186 ppm at a MAS rotational speed of 12 kHz are spinning side bands (SSB). A broad signal is observed in the range of ⁇ 122 ppm to ⁇ 130 ppm hidden by the ⁇ 122 ppm signal.
  • SSB spinning side bands
  • This signal is the signal of the F atom of —CF 2 — in the —CF 2 —CF 3 bond that should be observed at ⁇ 126 ppm. Therefore, the uncrosslinked second fluororesin layer not irradiated with radiation has signals of ⁇ 122 ppm attributed to —CF 2 —CF 2 — bonds, ⁇ 82 ppm and ⁇ 126 ppm attributed to —CF 2 —CF 3 , respectively. Represented by NMR chart.
  • the normalized signal intensity ratio increases as the irradiation dose increases. It can be seen that a crosslinked structure appears clearly at an irradiation dose of 500 kGy.
  • the surface hardness in Experimental Examples 1 to 3 was measured.
  • the surface hardness was measured by a method based on ISO14577, using the indentation hardness of a flat plate test piece, manufactured by Agilent Technologies, Inc .: Nanoindenter (G200).
  • the measured value has shown the average value of the depth (location where hardness is stable) which is not influenced by surface roughness and a base material (SPCC), and measured 10 each test piece.
  • the measurement conditions are such that the indenter shape is a Barkovic type, the indentation depth is a depth at which the load is 5 mN, the load load speed is 10 mN / min, and the measurement temperature is 25 ° C.
  • the indentation hardness was calculated from the indentation load and displacement (area). The measurement results are shown in Table 2.
  • FIG. 6 is a graph of the results in Table 2.
  • FIG. 6A shows indentation hardness on the vertical axis and irradiation dose on the horizontal axis. Since the indentation hardness and the irradiation dose show a good correlation, the indentation hardness at the irradiation doses of 250 kGy and 800 kGy was calculated from the regression line of both. The results are shown in FIG.
  • the surface hardness expressed by indentation hardness increases by crosslinking the surface of the fluororesin and as the degree of crosslinking increases.
  • the fluororesin layer is hardened by irradiating with radiation so that the indentation hardness of the coating is 58 to 82 MPa, preferably 58.5 to 79.8 MPa.
  • the irradiation dose is preferably 250 to 800 kGy.
  • the surface hardness of the sliding layer can be adjusted within this irradiation dose range. If the indentation hardness is lower than 58 MPa as a result of irradiation, the wear amount is large and the metal substrate may be exposed. On the other hand, if the indentation hardness is higher than 82 MPa, the hardness of the coating increases, and the coating becomes brittle and damage to the coating such as peeling may easily occur.
  • a fluororesin can bridge
  • the melting point was measured using a differential scanning calorimeter (product name “DSC6220” manufactured by SII Nano Technology).
  • the measurement sample with only the irradiated surface layer shaved off is a fluororesin coating 10-15 mg sealed in a sealed aluminum sample container (hereinafter referred to as an aluminum pan) manufactured by the same company.
  • the reference is the same amount as the fluororesin coating.
  • aluminum oxide (Al 2 O 3 ) enclosed in an aluminum pan was used.
  • the temperature was raised from 30 ° C. to 370 ° C.
  • FIG. 7 is a graph of the results in Table 3.
  • FIG. 7A shows the melting point on the vertical axis and the irradiation dose on the horizontal axis. Since the melting point and the irradiation dose showed a good correlation, the melting points at the irradiation doses of 250 kGy and 800 kGy were calculated from the regression lines of both. The results are shown in FIG.
  • the melting point of the surface decreases as the surface is crosslinked and as the degree of crosslinking increases.
  • the coating film after baking has an irradiation temperature of 30 ° C. lower than the melting point of the second fluororesin layer before irradiation to 50 ° C. or less, and the melting point of the coating is 285.
  • the fluororesin layer is made to have a low melting point by irradiating with radiation so as to be ⁇ 317 ° C., preferably 289 to 311 ° C.
  • the irradiation dose is preferably 250 kGy to 800 kGy or less.
  • the melting point is higher than 317 ° C., the wear amount is large, and the metal substrate may be exposed.
  • the melting point is lower than 285 ° C., the hardness of the film increases, and the film becomes brittle and damage to the film such as peeling may easily occur.
  • the iron-based metal base material having the above sliding layer is excellent in adhesion to the iron-based metal base material, and the sliding surface is excellent in wear resistance even in oil.
  • the present invention can be suitably used for a made cage and a rolling bearing having the cage. It is particularly suitable for a connecting rod large end bearing, a connecting rod small end bearing, or a crankshaft support shaft, which is a rolling bearing that uses needle rollers as rolling elements and is used in oil.
  • FIG. 8 shows the structure of a rolling bearing cage having the sliding layer.
  • FIG. 8 is a perspective view of a ferrous metal cage for rolling bearings using needle rollers as rolling elements.
  • the cage 6 is provided with pockets 7 for holding needle rollers, and each needle includes a column portion 8 positioned between the pockets, and ring portions 9 and 10 on both sides for fixing the column portion 8. Maintain the distance between the rollers.
  • the column portion 8 is bent into a mountain fold or a valley fold at the center portion of the column portion, and has a complicated shape of a flat plate having a circular bulge in a plan view at the joint portion with both annular portions 9 and 10. It is said that.
  • the manufacturing method of this cage is a method in which an annulus is cut out from a base material and a pocket 7 is formed by punching by pressing, a flat plate is pressed, cut into an appropriate length, and then rolled into an annular shape.
  • a method of joining by welding can be employed.
  • a sliding layer of a fluororesin film is formed on the surface portion of the cage 6.
  • the surface portion of the cage that forms the sliding layer is a portion that contacts the lubricating oil or grease, and the sliding layer is formed on the entire surface of the cage 6 including the surface of the pocket 7 that contacts the needle roller. Is preferred.
  • FIG. 9 is a perspective view showing a needle roller bearing which is an embodiment of a rolling bearing.
  • the needle roller bearing 11 includes a plurality of needle rollers 12 and a cage 6 that holds the needle rollers 12 at regular intervals or at unequal intervals.
  • a shaft such as a crankshaft or a piston pin is inserted directly into the inner diameter side of the cage 6, and the outer diameter side of the cage 6 is a housing. It is used by being fitted into the engagement hole of a certain connecting rod. Since the needle roller 12 having no inner and outer rings and having a smaller diameter than the length is used as a rolling element, the needle roller bearing 11 is more compact than a general rolling bearing having inner and outer rings. Become.
  • FIG. 10 is a longitudinal sectional view of a four-cycle engine using the needle roller bearing.
  • FIG. 10 is a longitudinal sectional view of a 4-cycle engine using a needle roller bearing as an example of the rolling bearing of the present invention.
  • the intake valve 13a is opened, the exhaust valve 14a is closed, and an air-fuel mixture obtained by mixing gasoline and air is sucked into the combustion chamber 15 via the intake pipe 13, and the intake valve 13a is closed and the piston 16 is closed.
  • a compression stroke in which the air-fuel mixture is compressed an explosion stroke in which the compressed air-fuel mixture is exploded, and an exhaust stroke in which the exploded combustion gas is exhausted through the exhaust pipe 14 by opening the exhaust valve 14a.
  • the crankshaft 17 rotates about a rotation center shaft 19 and balances rotation by a balance weight 20.
  • the connecting rod 18 is formed by providing a large end portion 21 below the linear rod body and a small end portion 22 above.
  • the crankshaft 17 is rotatably supported via a needle roller bearing 11 a attached to the engagement hole of the large end portion 21 of the connecting rod 18.
  • the piston pin 23 that connects the piston 16 and the connecting rod 18 is rotatably supported via a needle roller bearing 11b attached to the engaging hole of the small end portion 22 of the connecting rod 18.
  • FIG. 9 illustrates a needle roller bearing as the bearing
  • the rolling bearing of the present invention is a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a needle roller bearing, a thrust cylindrical roller bearing, or a thrust cone other than those described above. It can also be used as a roller bearing, a thrust needle roller bearing, a thrust self-aligning roller bearing or the like. In particular, it can be suitably used for a rolling bearing that is used in an oil lubrication environment and that uses a ferrous metal cage.
  • the iron-based metal retainer since the iron-based metal base material having the sliding layer has excellent wear resistance even under grease lubrication composed of a base oil and a thickener, the iron-based metal retainer, this retainer It can use suitably for the rolling bearing which has. Grease deteriorates due to the temperature rise of the bearing due to heat generated during high-speed rotation and the inclusion of metal wear powder generated by the friction of rolling elements and cages made of steel.
  • the sliding layer of the present invention on at least one of the iron-based metal base materials that slide relative to each other, the amount of metal wear powder increases over time as compared to the case where iron slides relative to each other. The amount (mixed amount of grease) can be suppressed. As a result, deterioration of the grease can be suppressed and the lubrication life of the grease can be extended.
  • a bearing for a main motor of a railway vehicle is adapted for expansion and contraction in the axial direction of the main shaft caused by a temperature change.
  • a cylindrical roller bearing that can cope with expansion and contraction of the main shaft is used.
  • the ball bearing on the fixed side is, for example, a deep groove ball bearing, and includes a steel ball and an iron plate wave cage.
  • the free-side cylindrical roller bearing includes a steel cylindrical roller and a brass punched cage.
  • the lubrication life of grease in such a bearing for a main motor of a railway vehicle is shorter than the rolling fatigue life of the bearing, at present, the grease refilling operation ( Maintenance) is performed. Also, in the current maintenance cycle, the grease is often deteriorated due to the above-mentioned reasons.
  • the rolling bearing of the present invention as this bearing, the lubrication life of the grease can be extended and the maintenance cycle can be extended.
  • Example 1 to Example 7 A needle bearing cage (base surface hardness Hv: 484 to 595) made of chromium molybdenum steel (SCM415) ⁇ 44 mm ⁇ width 22 mm, which has been quenched and tempered, was prepared, and the underlayer and second fluorine used in Experimental Example 1 above were prepared.
  • the PTFE surface sliding layer was applied, dried and baked under the same conditions as in Experimental Example 1 using the same coating liquid as that used for forming the resin layer.
  • electron beam irradiation was performed according to Experimental Example 2.
  • the acceleration voltage of the electron beam is 70 kV.
  • Table 4 shows the irradiation dose. Table 4 shows the indentation hardness and melting point of the surface obtained from the results of FIGS.
  • the surface-treated needle bearing cage was evaluated by the following method.
  • An outline of the wear amount test apparatus is shown in FIG. In a state where a concave mating member 24 made of SUJ2, quenching and tempering treatment HRC62, and having a concave surface roughness of 0.1 to 0.2 ⁇ mRa is pressed from the vertical direction to the cage 6 attached to the rotary shaft with a predetermined load 25, together with the rotary shaft
  • the friction characteristics of the coating applied to the surface of the cage 6 were evaluated by rotating the cage 6 and the amount of wear was measured.
  • the measurement conditions are load: 440 N, lubricating oil: mineral oil (10W-30), sliding speed: 930.6 m / min, measurement time: 100 hours.
  • the adhesiveness of the PTFE coating was also evaluated by visually observing the amount of peeling at that time.
  • the peeling amount is “large” when the peeling area at the maximum peeling location is 1 mm 2 or more, and the “small” is when the peeling area at the maximum peeling location is less than 1 mm 2 .
  • the radius of the concave R portion was set to a size 20 to 55 ⁇ m larger than the cage radius. Lubricating oil was used in an amount soaking up to half the height of the cage. The results are shown in Table 4.
  • Lubricating oil immersion test pieces were prepared and subjected to a lubricating oil immersion test by the following method. Details of test conditions, test pieces, measurement methods and the like are shown below. 1. Three coated square bars with 150 ° C. lubricating oil (poly- ⁇ -olefin: Lucant HL-10 (Mitsui Chemicals) added with 1% by weight of ZnDTP (LUBRIZOL677A, LUBRIZOL)) After immersing in 2 g for 200 hours, the concentration of the coating component eluted in the lubricating oil (unit of elution amount, ppm) was measured.
  • lubricating oil poly- ⁇ -olefin: Lucant HL-10 (Mitsui Chemicals) added with 1% by weight of ZnDTP (LUBRIZOL677A, LUBRIZOL)
  • the concentration was quantified by fluorescent X-ray measurement [fluorescent X-ray measurement apparatus: Rigaku ZSX100e (manufactured by Rigaku Corporation)].
  • fluorescent X-ray measurement apparatus Rigaku ZSX100e (manufactured by Rigaku Corporation)
  • three 3 mm ⁇ 3 mm ⁇ 20 mm square bars made of SCM415 total surface area of 774 mm 2
  • an electron beam irradiation film was formed in the same manner as in Examples 1 to 4, respectively.
  • the results are shown in Table 4.
  • Comparative Example 1 and Comparative Example 2 A needle bearing cage identical to that of Example 1 was obtained except that the electron beam irradiation dose was changed to the dose shown in Table 4. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
  • Comparative Example 3 A needle bearing cage identical to that of Example 1 was obtained except that the surface-uncrosslinked PTFE coating was used without irradiation with an electron beam. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
  • Comparative Example 4 A needle bearing cage was manufactured in the same manner as in Example 1 except that the thickness of the sliding layer was 40 ⁇ m. Since cracks occurred during the firing stage of the sliding coating, the subsequent electron beam irradiation and evaluation tests were stopped.
  • Comparative Example 5 A second fluororesin layer was directly formed under the same coating solution and the same conditions as in Example 1 without forming an underlayer, and irradiated with an electron beam at the irradiation dose shown in Table 4. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
  • Comparative Example 6 It is an example which has a silver plating layer on the surface of a needle bearing cage of ⁇ 44 mm ⁇ width 22 mm made of chromium molybdenum steel (SCM415) subjected to quenching and tempering treatment. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
  • the present invention can suppress wear even under conditions of high sliding speed and high surface pressure in a lubricating oil and a sliding material can be obtained, it is particularly used in lubricating oil using a ferrous metal cage. It can be used in the field of cages and rolling bearings using this cage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Rolling Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する摺動部材、転がり軸受および保持器を提供する。油潤滑環境下で使用され、鉄系金属基材上に形成された摺動層を有する摺動部材であり、この摺動層は、鉄系金属基材表面に耐熱性樹脂および第一のフッ素樹脂を含む下地層と、この下地層表面に第二のフッ素樹脂層とを有し、耐熱性樹脂は、炭素原子と共に、酸素原子、窒素原子および硫黄原子の少なくとも1つの原子を高分子構造の主鎖に含む樹脂であり、第二のフッ素樹脂層は少なくとも表面層近傍が架橋されてなる架橋フッ素樹脂層である。

Description

摺動部材、転がり軸受および保持器
 本発明は摺動部材、転がり軸受および保持器に関し、特に摺動部材表面の耐摩耗性に優れ、その優れた耐摩耗性を長期間維持できる摺動部材、例えば、転がり軸受用保持器、この保持器を用いた転がり軸受に関する。
 転がり軸受や保持器などの摺動面は、潤滑油や潤滑グリースなどが供給されて転がり摩擦またはすべり摩擦を低減している。また、更に摺動性を向上させるための表面処理が摺動面になされている。表面処理の1つにフッ素系樹脂被膜を形成する方法がある。例えば、摺動部材の摺動部に形成したポリテトラフルオロエチレン(以下、PTFEという)被膜に50~250kGyの線量の放射線を照射することにより、耐摩耗性および基材との密着性を高める方法が知られている(特許文献1)。
 ポリイミド樹脂、銅、アルミニウムおよびそれらの合金等の金属材料、セラミックス、およびガラスから選択された、耐熱性に優れた基材の表面にフッ素樹脂の被膜を形成し、フッ素樹脂の融点以上の温度で電離性放射線を照射する改質フッ素樹脂被覆材の製造方法が知られている(特許文献2)。
 無潤滑軸受やダイナミックシール等に使用されるフッ素樹脂からなる摺動部材として、フッ素樹脂をその結晶融点以上に加熱し、酸素不在のもとで照射線量1kGy~10MGyの範囲内において電離性放射線を照射したフッ素樹脂が知られている(特許文献3)。
 PTFEにより構成されるフィルムまたはシート状傾斜材料と、アルミニウム、鉄、ステンレス、ポリイミドおよびセラミックスからなる群より選択される基材とが積層されているフィルムまたはシート状製品であって、該材料の、基材と接していない一の面ならびにその近傍層に存在するポリマーが三次元構造を有し、該材料の基材と接している他の面ならびにその近傍層に存在するポリマーが二次元構造を有し該一の面と該他の面との間に存在するポリマーの三次元構造の含率が連続的に変化しており、該材料の厚さが5~500μmであるフィルムまたはシート状製品が知られている(特許文献4)。
 一方、自動車、バイク等のエンジンに用いられる転がり軸受、特に保持器付き針状ころ軸受があり、この保持器表面の焼付きを防止するために保持器表面に銀めっきがなされている。この保持器付き針状ころ軸受は、針状ころを等間隔に保持するプレス製金属保持器から構成され、この保持器の表面全体に銀めっきが施されている(特許文献5)。
特開2010-155443号公報 特開2002-225204号公報 特開平9-278907号公報 特許第5454903号公報 特許第5189427号公報
 しかしながら、特許文献1に示す製造方法は、無潤滑下、低面圧の条件下で使用するため、基材との密着性を高める方法であり、各種機械の摺動面に要求される潤滑油中、高滑り速度、高面圧の条件の場合は適用が困難である。
 特許文献2に記載のフッ素樹脂被膜は、フッ素樹脂の架橋反応およびフッ素樹脂と基材表面との化学反応を同時に生じさせ、それによって両者の強固な接着を達成することを目的としており、転がり軸受や保持器などの鉄基材の場合、基材表面との化学反応を生成することが困難であり、強固な接着は達成できないという問題がある。
 特許文献3に記載の摺動部材は、無潤滑軸受やダイナミックシール等に使用され、被膜の形状ではなくフッ素樹脂からなる摺動部材に関する。そのため、被覆材としての特性は不明であり、更に潤滑油中、高滑り速度、高面圧を要求される転がり軸受用途に適用が困難である。
 特許文献4に記載の被膜も特許文献1に記載の方法で製造される被膜と同様、平板試験片、低面圧、低滑り速度、無潤滑での評価であり、保持器試験片、高面圧、高滑り速度、油潤滑下で使用できるか否かは知られていない。
 特許文献5に記載の銀めっきが施されている保持器においては、摺動面の摩耗量の経時変化がより少ない保持器が求められており、銀めっきに代わる摺動材が要求されている。また、銀めっきは、エンジンオイル中に含まれる硫黄成分によって硫化するという問題を有している。保持器表面に施された銀めっきが硫化すると、保持器から剥離や脱落が発生し、保持器の素地が露出する。
 本発明はこのような問題に対処するためになされたものであり、潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する摺動部材、転がり軸受および保持器の提供を目的とする。
 本発明の摺動部材は、油潤滑環境下で使用され、鉄系金属基材上に形成された摺動層を有する摺動部材である。この摺動層は、上記鉄系金属基材表面に耐熱性樹脂および第一のフッ素樹脂を含む下地層と、この下地層表面に第二のフッ素樹脂層とを有し、上記耐熱性樹脂は、炭素原子と共に、酸素原子、窒素原子および硫黄原子の少なくとも1つの原子を高分子構造の少なくとも主鎖に含む樹脂であり、上記第二のフッ素樹脂層は少なくとも上記摺動層の表面近傍が架橋されてなる架橋フッ素樹脂層であることを特徴とする。また、本発明における近傍とは対象面から2.5μm未満の層をいう。
 本発明の摺動部材において、上記鉄系金属基材、上記下地層および上記第二のフッ素樹脂層は、接着剤層を設けることなく相互に密着していることを特徴とする。また、上記摺動層は、上記第二のフッ素樹脂層の表面層より上記鉄系金属基材の表面に向かって、上記第一および第二のフッ素樹脂の架橋割合が少なくなることを特徴とする。
 上記第二のフッ素樹脂がポリテトラフルオロエチレン樹脂であり、この第二のフッ素樹脂は、未架橋ポリテトラフルオロエチレン樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が上記未架橋ポリテトラフルオロエチレン樹脂の-82ppm、-122ppm、-126ppmに加えて、-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または-82ppmに出現する化学シフト値であるシグナルのシグナル強度が、上記未架橋ポリテトラフルオロエチレン樹脂のシグナル強度に比較して、増加することを特徴とする。
 また、上記耐熱性樹脂は、芳香族アミドイミド樹脂および芳香族イミド樹脂から選ばれる少なくとも1つの芳香族樹脂であり、上記摺動層の層厚さは5μm以上40μm未満であることを特徴とする。
 本発明の鉄系金属製保持器は、転がり軸受の転動体を保持する保持器であって、この鉄系金属製保持器が上記本発明の摺動部材により形成されていることを特徴とする。
 上記鉄系金属製保持器表面を形成する摺動層は、放射線照射後の摺動層のISO14577法により測定される押し込み硬さが58~82MPaであることを特徴とする。
 また、上記鉄系金属製保持器表面を形成する他の摺動層は、放射線照射後の第二のフッ素樹脂の少なくとも表面近傍の融点が285~317℃であることを特徴とする。
 本発明の転がり軸受は上記本発明の鉄系金属製保持器を使用した転がり軸受であり、特にエンジンのコンロッド大端部用転がり軸受、コンロッド小端部用転がり軸受またはクランクシャフト支持軸用転がり軸受であることを特徴とする。
 本発明の摺動部材は、鉄系金属基材上に形成された摺動層を有し、この摺動層が下地層とフッ素樹脂層とからなり、このフッ素樹脂層の少なくとも表面近傍が架橋されているので、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制でき摺動部品および軸受の寿命を長期間にわたり維持できる。この摺動部材により形成されている鉄系金属製保持器は、銀めっき層を有する保持器に比較して、同等以上の摺動性を示す。また、この鉄系金属製保持器を用いた転がり軸受は、潤滑油中で使用されるコンロッド用転がり軸受として、潤滑油中での摺動性に優れる。
摺動部材の断面図である。 実験例1のNMRチャートの拡大図である。 実験例2のNMRチャートの拡大図である。 実験例3のNMRチャートの拡大図である。 架橋に伴なう-82ppmの規格化シグナル強度比である。 押し込み硬さと照射線量との関係を表す図である。 融点と照射線量との関係を表す図である。 針状ころを転動体とする転がり軸受用保持器の斜視図である。 針状ころ軸受を示す斜視図である。 4サイクルエンジンの縦断面図である。 摩耗量試験装置の概要を示す図である。
 本発明の摺動部材は、鉄系金属基材上に形成された摺動層を有している。この摺動層は、下地層とこの下地層表面に形成され、かつ表面層近傍が架橋された架橋フッ素樹脂層とからなる。
 鉄系金属基材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属基材は摺動部材の形状に加工後、焼入れ焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属製保持器の場合、Hv値を484~595に調整した鉄系金属基材を使用することが好ましい。
 本発明の摺動部材の断面図を図1に示す。摺動部材1を構成する摺動層2は、鉄系金属基材3の表面に形成された下地層4と、この下地層4の表面に形成された第二のフッ素樹脂層5からなる。下地層4は鉄系金属基材3の表面に形成され、図面上白丸で表される耐熱性樹脂と、同じく図面上黒丸で表される第一のフッ素樹脂との混合樹脂層である。第二のフッ素樹脂層5に含まれるフッ素樹脂は少なくとも摺動層の表面近傍が架橋されてなる架橋フッ素樹脂層である。摺動層2は表面層ならびにその近傍層に存在する第二のフッ素樹脂が三次元構造を有している。また、第二のフッ素樹脂層5および下地層4に含まれる第一のフッ素樹脂は、表面より鉄系金属基材3の表面に向かって架橋割合が少なくなる傾斜材料とすることができる。
 なお、摺動層表面ならびにその近傍層に存在するフッ素樹脂が三次元構造を有するとは、フッ素樹脂層におけるこの部分全体が三次元構造のフッ素樹脂のみからなることに限定されず、この部分に二次元構造のフッ素樹脂が一部含まれていてもよい。
 架橋フッ素樹脂層5の層厚さt1は、下地層4の層厚さt2との合計厚さである摺動層の層厚さtに対して、10~90%、好ましくは25~75%である。
 摺動層2の層厚さtは、5μm以上40μm未満、好ましくは15μm以上30μm未満である。層厚さが5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上40μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
 耐熱性樹脂は、炭素原子と共に、酸素原子、窒素原子および硫黄原子の少なくとも1つの原子を高分子構造の少なくとも主鎖に含む樹脂である。また、焼成して摺動層を形成する時に熱分解しない樹脂である。ここで熱分解しないとは、下地層および上層膜を焼成する温度および時間内において、熱分解を開始しない樹脂である。炭素原子と共に、酸素原子、窒素原子および硫黄原子の少なくとも1つの原子を高分子構造の主鎖に含む耐熱性樹脂であることにより、鉄系金属基材との密着性に優れた官能基および第一のフッ素樹脂とも反応する官能基を分子主鎖内または分子端部に有することができる。
 耐熱性樹脂としては、エポキシ樹脂、ポリエステル樹脂、アミドイミド樹脂、イミド樹脂、エーテルイミド樹脂、イミダゾール樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、シリコーン樹脂等が挙げられる。また、フッ素樹脂が塗膜形成時の収縮を防ぐウレタン樹脂、アクリル樹脂を併用することができる。
 耐熱性樹脂の中でも芳香族環を主として含む樹脂が耐熱性に優れるため好ましい。好ましい耐熱性樹脂としては、芳香族アミドイミド樹脂、芳香族イミド樹脂が挙げられる。
 第一のフッ素樹脂は、下地層を形成する水系塗布液に粒子状に分散できる樹脂であれば使用できる。第一のフッ素樹脂としては、PTFE粒子、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(以下、FEPという)粒子、またはこれらの2種以上が好ましく使用できる。
 下地層を形成する水系塗布液には、耐熱性樹脂および第一のフッ素樹脂以外に、ポリオキシエチレンアルキルエーテルなどの非イオン界面活性剤、カーボンブラックなどの無機顔料、N-メチル-2-ピロリドンなどの水に任意に混合する非プロトン系極性溶剤、主溶剤としての水が配合される。また、消泡剤、乾燥剤、増粘剤、レベリング剤、ハジキ防止剤などを配合できる。下地層を形成する水系塗布液としては、例えば、ダイキン工業株式会社製プライマー塗料EKシリーズ、EDシリーズが挙げられる。
 また、水系塗布液に代わり、上記耐熱性樹脂を非プロトン極性溶媒に溶解させた樹脂溶液に、フッ素樹脂を溶解した溶液型塗布液、またはフッ素樹脂の微粒子を分散させた分散型塗布液を用いることができる。
   
 第二のフッ素樹脂層は、下地層の表面に形成され放射線により架橋できるフッ素樹脂の層である。第一のフッ素樹脂と第二のフッ素樹脂とは同一であっても異なっていてもよいが、同一のフッ素樹脂を使用することが好ましい。第二のフッ素樹脂としては、PTFE、PFA、FEP、エチレン・テトラフルオロエチレン共重合体(ETFE)等が挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、耐熱性および摺動性に優れるPTFEが好ましい。
 第二のフッ素樹脂層は、PTFE樹脂粒子を分散させた水分散液を塗布乾燥することにより得られる。PTFE樹脂粒子を分散させた水分散液としては、例えば、ダイキン工業株式会社製ポリフロン=PTFEエナメルが挙げられる。
 本発明の摺動部材において、鉄系金属基材、下地層および第二のフッ素樹脂層は、接着剤層を設けることなく相互に密着している。鉄系金属基材表面への摺動層の形成方法において、相互に密着させるための方法について以下説明する。
(1)鉄系金属基材の表面処理
 鉄系金属基材は、摺動層形成前にショットブラスト等を用いて、予め金属基材表面の粗さ(Ra)を1.0~2.0μmに調整し、その後、石油ベンジン等の有機溶剤内に浸漬させ、5分~1時間程度超音波脱脂を行なうことが好ましい。
(2)下地層を形成する水系塗布液の塗装
 下地層を形成する水系塗布液を塗布前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗布する。
(3)下地層を形成する水系塗布液の乾燥
 水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の下地層の層厚さは2.5~20μm、好ましくは5~20μm、より好ましくは10~15μmの範囲内である。2.5μm以下であると、被膜の密着不良による剥離や初期摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを2.5~20μmの範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
(4)第二のフッ素樹脂層を形成する水系塗布液の塗装
 第二のフッ素樹脂層を形成する水系塗布液を塗布する前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。下地層を焼成することなく、乾燥された下地層表面に、この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗装する。
(5)第二のフッ素樹脂層を形成する水系塗布液の乾燥
 水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の第二のフッ素樹脂層の層厚さは2.5~20μm、好ましくは5~20μm、より好ましくは10~15μmの範囲内である。2.5μm以下であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを2.5~20μmの範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
 なお、下地層および第二のフッ素樹脂層の塗装方法としては、スプレー法以外にディッピング法、刷毛塗り法など被膜を形成できるものであれば使用できる。被膜の表面粗さ、塗布形状をできるだけ小さくし、層厚さの均一性を考慮するとスプレー法が好ましい。
(6)焼成
 第二のフッ素樹脂層の乾燥後、加熱炉内、空気中で第二のフッ素樹脂の融点以上の温度、好ましくは(融点(Tm)+30℃)~(融点(Tm)+100℃)、5~40分の範囲内で、下地層および第二のフッ素樹脂層を同時に焼成する。第一および第二のフッ素樹脂がPTFEの場合、好ましくは380℃の加熱炉内で30分間焼成する。第一および第二のフッ素樹脂を塗布・乾燥後それぞれ焼成するのではなく、両者を同時に焼成することで、下地層および第二のフッ素樹脂層が接着剤層を設けることなく相互に密着できる。
(7)第二のフッ素樹脂層の架橋
 焼成後の被膜に、照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下、好ましくは第二のフッ素樹脂層の融点より20℃低い温度から該融点の30℃高い温度以下にて、また、照射線量が250kGy~800kGy、好ましくは250kGy超750kGy以下で放射線を照射してフッ素樹脂層を架橋させる。放射線としては、α線(α崩壊を行なう放射性核種から放出されるヘリウム-4の原子核の粒子線)、β線(原子核から放出される陰電子および陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線を用いることができる。これらの放射線の中でも、架橋効率や操作性の観点から、電子線およびγ線が好ましく、電子線がより好ましい。特に電子線は、電子線照射装置が入手しやすいこと、照射操作が簡単であること、連続的な照射工程を採用することができることなどの利点を有している。
 照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下の温度範囲以外ではフッ素樹脂層の架橋が十分に進まない。フッ素樹脂層の高硬度化が十分に進まない。また、照射雰囲気は架橋を効率的に行なうため、真空引きや不活性ガス注入により照射領域の酸素濃度を低くする必要がある。酸素濃度の範囲は0~300ppmが好ましい。酸素濃度を以上のような濃度範囲に維持するには操作性やコスト面の観点から窒素ガス注入による不活性雰囲気が好ましい。
 照射線量が250kGy未満であると架橋が不十分となり、摩耗量が大きく、金属基材が露出してしまう場合がある。また、照射線量が800kGy超であると架橋が必要以上に進み、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。
 照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下の温度範囲内、照射線量が250~800kGyの条件で放射線を照射してフッ素樹脂層を架橋させることにより、押し込み硬さで表される摺動層の表面硬度を58~82MPaにできる。また、摺動層の表面の融点 を285~317℃に低融点化できる。
 照射するときの加速電圧は40kV以上500kV未満、好ましくは40kV以上300kV以下、より好ましくは50kV以上100kV未満である。40kV未満であると第二のフッ素樹脂層の表面層近傍への電子線の侵入が浅くなり、500kV以上であると第一および第二のフッ素樹脂層全体に架橋が進む。放射線をフッ素樹脂層に照射すると、フッ素樹脂内部で放射線の強度が減衰するため、放射線を照射した表面近傍には放射線が充分届くが、他の面には放射線が届かないことを利用して第二のフッ素樹脂層の表面近傍を架橋できる。
 また、照射するときの加速電圧を40kV以上500kV未満にて、窒素ガス注入による不活性雰囲気にて電子線を照射することにより、電子線が照射面に対して垂直方向に照射される摺動部材表面の照射線量を高くすることができると共に、この摺動部材表面に隣接する電子線照射方向に平行な面にも電子線の散乱により電子線が照射される。平行な面への電子線照射は照射距離が遠くなるに従って少なくなる。例えば上記平行な面における電子線照射窓に近い部分の照射線量を750kGyから離れるに従って500kGy、300kGyに変化させることができる。
 上述した方法により得られた摺動層の無潤滑および油潤滑中での耐摩耗性を評価するため、サバン型摩擦摩耗試験にて比摩耗量および摩擦係数を測定した。試験片、相手材などの試験条件を以下に示す。
(1)試験片の作成
 試験片:SPCC製30mm×30mm、厚さ2mmの金属平板に摺動層を形成した。下地層はダイキン社製プライマー塗料(型番:EK-1909S21R)、第二のフッ素樹脂層にはダイキン社製トップ塗料(型番:EK-3700C21R)を用いた。乾燥時間はそれぞれ90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間下地層および第二のフッ素樹脂層を同時に焼成した。
 その後、以下の条件で試験片に摺動層表面側から電子線照射を行なった。
 使用装置:浜松ホトニクス株式会社製EBエンジン
 照射線量:実験例1が0kGy(未照射)、実験例2が500kGy、実験例3が1000kGy
 加速電圧:70kV
 照射時の被膜温度:340℃
 照射時のチャンバー内雰囲気:加熱窒素
(2)実験例の試験片被膜
実験例1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例2:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例3:PTFE被膜(照射線量:1000kGy、層厚さ:20μm)
(3)サバン型摩擦摩耗試験の条件
 相手材:焼入れ焼戻し処理したSUJ2製φ40mm×幅10mm×副曲率R60mmのリング
 潤滑油:無潤滑およびモービルベロシティオイルNo.3(VG2)潤滑の2水準
 滑り速度:0.05m/s
 荷重:50N
 摺動時間:実験例1の潤滑有りが600分、実験例1の潤滑無しが5分、実験例2の潤滑有りが600分、実験例2の潤滑無しが60分
(4)試験結果
 試験結果を表1に示す。比摩耗量は摩耗体積を摺動距離と荷重で除した値であり、形成された摩耗痕の短径、相手材の形状寸法(φ40mmおよびR60mm)から摩耗体積を算出した。なお、表1は、実験例1の比摩耗量および摩擦係数を1.000した場合の実験例2の比摩耗量および摩擦係数を示した。
Figure JPOXMLDOC01-appb-T000001
 次に本発明に用いる摺動部材の第二のフッ素樹脂層の表面層近傍が架橋構造を有していることについて説明する。一般に、フッ素系樹脂、特にポリテトラフルオロエチレン樹脂は化学的に非常に安定で、有機溶媒などに対しても極めて安定であるため、分子構造あるいは分子量などを同定することは困難である。しかしながら19F Magic angle Spinning(MAS)核磁気共鳴(NMR)法(High speed magic angle nuclear magnetic resonance)による測定ならびに解析により、本発明の摺動部材の架橋構造を同定することが可能となる。
 測定は、日本電子株式会社製NMR装置JNM-ECX400を用いて、好適な測定核種(19F)、共鳴周波数(376.2MHz)、MAS(Magic Angle Spinning)回転数(15および12kHz)、サンプル量(4mm固体NMR管に約70μL)、待ち時間(recycle delay time)(10秒)ならびに測定温度(約24℃)で行なった。結果を図2~図5に示す。図2は実験例1の表面層のNMR、図3は実験例2のNMRチャートの拡大図をそれぞれ表す。また、実験例3の表面層のNMRを図4に表す。図2~図4において上段はMAS回転数15kHz、下段はMAS回転数12kHzをそれぞれ表す。図5は架橋に伴い強度が増加する-82ppmでのシグナル強度を主シグナルである-122ppmでのシグナル強度で規格化し、グラフにしたものである。図5において上段は測定値、下段はグラフを表す。このシグナル強度比が高いほど架橋度が進行しているものと考えられる。
 放射線照射を行なっていない第二のフッ素樹脂層(実験例1、0kGy)を上記の条件で測定すると、MAS回転数15kHzにおいて、-82ppm、-122ppm、-162ppmのシグナルが観測された(図2上段)。また、MAS回転数12kHzにおいて、同じく、-58ppm、-82ppm、-90ppm、-122ppm、-154ppm、-186ppmのシグナルが観測された(図2下段)。-122ppmは-CF2-CF2-結合におけるF原子のシグナルであり、-82ppmは-CF2-CF3結合における-CF3のF原子のシグナルであることが知られている。このことから、MAS回転数15kHzにおける-82ppmおよび-162ppm、MAS回転数12kHzにおける-58ppm、-90ppm、-154ppm、-186ppmのシグナルはスピニングサイドバンド(Spinning Side Band:SSB)である。なお、-122ppm~-130ppmの領域で-122ppmのシグナルに隠れてブロードになっているシグナルが観測されている。このシグナルは-126ppmに観測されるはずの-CF2-CF3結合における-CF2-のF原子のシグナルである。従って、放射線照射を行なっていない未架橋の第二のフッ素樹脂層は-CF2-CF2-結合に帰属する-122ppm、-CF2-CF3に帰属する-82ppmおよび-126ppmのシグナルを有するNMRチャートで表される。
 500kGyの線量の放射線を照射した第二のフッ素樹脂の表面層(実験例2、500kGy)の固体19F MAS NMRを未架橋の第二のフッ素樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、-68ppm、-70ppm、-80ppm、-82ppm、-109ppm、-112ppm、-122ppm、-126ppm、-152ppm、および-186ppmのシグナルが観測された(図3上段および図3下段)。-68ppm、-70ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmのシグナルが放射線照射により新たに出現し、-82ppmのシグナルはその強度が未照射より増加していた。
 1000kGyの線量の放射線を照射した第二のフッ素樹脂の表面層(実験例3、1000kGy)の固体19F MAS NMRを未架橋の第二のフッ素樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、-68ppm、-70ppm、-77ppm、-80ppm、-82ppm、-109ppm、-112ppm、-122ppm、-126ppm、-152ppm、および-186ppmのシグナルが観測された(図4上段および図4下段)。-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmのシグナルが放射線照射により新たに出現し、-82ppmのシグナルはそのシグナル強度が500kGy照射時より増加していた。
 上記シグナルは、帰属するF原子を下線で表せば、例えば-70ppmは=CF-C 3、-109ppmは-C 2-CF(CF3)-C 2-、-152ppmは=C-C=、-186ppmは≡Cに帰属されることが知られている(Beate Fuchs and Ulrich Scheler., Branching and Cross-Linking in Radiation-Modified Poly(tetrafluoroethylene):A Solid-State NMR Investigation.Macromolecules,33,120-124.2000年)。
 これらのシグナルは化学的に非等価なフッ素原子の存在を示すと同時に第二のフッ素樹脂の表面層が架橋による三次元構造を形成していることを示す。また、上記文献によれば、観測されるシグナルの強度は照射線量500kGyよりも照射線量1000kGyの方が強くなり、少なくとも照射線量3000kGyまでは、照射線量の増加に伴ってシグナルが強くなることが知られている。なお、上記文献に記載されていないシグナルについては、放射線の照射条件の違いにより第二のフッ素樹脂層の構造が異なっていることが考えられるが、架橋構造が形成されていることは、=CF-C 3、-C 2-CF(CF3)-C 2-、=C-C=、≡C等の構造が存在することから明白である。
 図5に示すように、規格化シグナル強度比は、照射線量が増加するに従って増加している。照射線量が500kGyで明らかに架橋構造が出現していることが分かる。
 上記実験例に用いた第二のフッ素樹脂層を形成する水系塗布液を90℃の恒温槽内で30分程度の乾燥条件により塗布後乾燥後、空気中で380℃の加熱炉内で30分間焼成して、厚さ4μmの未架橋フッ素樹脂被膜を作製した。このフィルムを5枚密接して積層し、一方の面から、上記第2の実験条件にて電子線照射を行なった。照射後、フッ素樹脂被膜を分離して、それぞれのフィルムについて、日本電子株式会社製NMR装置JNM-ECX400を用いて、上記実験例に従いNMR測定を行なった。測定の結果、照射面から照射と反対側の面に存在するフィルムに向かって架橋に伴うシグナル強度が低下し、傾斜構造を有していることが分かった。
 放射線照射によりフッ素樹脂の表面が架橋して表面硬度が高くなる。実験例1~実験例3における表面硬度を測定した。表面硬度は、平板試験片の押し込み硬さをアジレントテクノロジー社製:ナノインデンタ(G200)を用いて、ISO14577に準拠した方法で測定した。なお、測定値は表面粗さおよび基材(SPCC)の影響を受けない深さ(硬さが安定している箇所)の平均値を示しており、各試験片10箇所ずつ測定した。測定条件は、圧子形状がバーコビッチ型であり、押し込み深さが荷重5mNとなる深さであり、荷重負荷速度が10mN/分であり、測定温度が25℃である。押し込み硬さは、押し込み荷重と変位(面積)から硬度を算出した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果をグラフ化したのが図6である。図6(a)は押し込み硬さを縦軸に、照射線量を横軸に表している。押し込み硬さと照射線量とは良好な相関性を示していることから、両者の回帰直線より照射線量が250kGy、800kGy時の押し込み硬さを算出した。結果を図6(b)に示す。
 表2および図6に示すように、フッ素樹脂の表面を架橋することにより、また架橋度が高くなるに従って押し込み硬さで表される表面硬度が高くなる。本願発明においては、被膜の押し込み硬さが58~82MPa、好ましくは58.5~79.8MPaとなるように放射線を照射してフッ素樹脂層を高硬度化させる。照射線量は250~800kGyとすることが好ましい。この照射線量の範囲内で摺動層の表面硬度を調整できる。
 照射の結果、押し込み硬さが58MPaよりも低いと、摩耗量が大きく、金属基材が露出してしまう場合がある。また、押し込み硬さが82MPaよりも高いと、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。
 また、放射線照射によりフッ素樹脂が架橋して融点を低下させることができる。融点の測定は、示差走査熱量分析計(エスアイアイ・ナノテクノロジー社製、製品名「DSC6220」)を用いて行なった。照射表面層のみを削り取った、測定試料は、フッ素樹脂被膜10~15mgを同社製密封式アルミ製試料容器(以下、アルミパン)に封入したものを使用し、リファレンスにはフッ素樹脂被膜と同量の酸化アルミニウム(Al23)をアルミパンに封入したものを使用した。測定条件に関しては、窒素フロー(200mL/分)雰囲気下で、2℃/分の昇温速度にて30℃から370℃まで昇温し、その温度で20分間保持した後、2℃/分の降温速度にて370℃から40℃まで降温させたことにより測定した数値である。昇温時の吸熱ピークのピークトップを融解ピーク温度とし、融点とした。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果をグラフ化したのが図7である。図7(a)は融点を縦軸に、照射線量を横軸に表している。融点と照射線量とは良好な相関性を示していることから、両者の回帰直線より照射線量が250kGy、800kGy時の融点を算出した。結果を図7(b)に示す。
 表3および図7に示すように、表面が架橋することにより、また架橋度が高くなるに従って表面の融点が低くなる。本発明にあっては、焼成後の被膜に、照射温度が第二のフッ素樹脂層の放射線照射前の融点より30℃低い温度から該融点の50℃高い温度以下であり、被膜の融点が285~317℃、好ましくは289~311℃となるように放射線を照射してフッ素樹脂層を低融点化させる。照射線量は250kGy~800kGy以下とすることが好ましい。照射の結果、融点が317℃よりも高いと、摩耗量が大きく、金属基材が露出してしまう場合がある。また、融点が285℃よりも低いと、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。
 上記摺動層を有する鉄系金属基材は、摺動層が鉄系金属基材との密着性に優れ、また摺動面が油中においても耐摩耗性に優れているので、鉄系金属製保持器、この保持器を有する転がり軸受に好適に用いることができる。特に油中で使用され、針状ころを転動体とした転がり軸受であるエンジンのコンロッド大端部軸受、コンロッド小端部軸受またはクランクシャフト支持軸である場合に好適である。
 上記摺動層を有する転がり軸受用保持器の構造を図8に示す。図8は針状ころを転動体とする転がり軸受用鉄系金属製保持器の斜視図である。
 保持器6は、針状ころを保持するためのポケット7が設けられ、各ポケットの間に位置する柱部8と、この柱部8を固定する両側円環部9、10とで、各針状ころの間隔を保持する。柱部8は針状ころを保持するため、柱部の中央部で山折・谷折に屈曲され、両側円環部9、10との結合部において平面視円形の膨らみを有する平板の複雑な形状とされている。本保持器の製造方法は、素形材より円環を削り出し、ポケット7をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円環状に丸めて溶接により接合する方法などを採用することができる。この保持器6の表面部位にフッ素樹脂被膜の摺動層が形成されている。摺動層を形成する保持器の表面部位は潤滑油またはグリースと接触する部位であり、針状ころと接触するポケット7の表面を含めた保持器6の全表面に摺動層を形成することが好ましい。
 図9は転がり軸受の一実施例である針状ころ軸受を示す斜視図である。図9に示すように、針状ころ軸受11は複数の針状ころ12と、この針状ころ12を一定間隔、もしくは不等間隔で保持する保持器6とで構成される。エンジンのコンロッド部用軸受の場合、軸受内輪および軸受外輪は設けられず、直接に、保持器6の内径側にクランク軸やピストンピン等の軸が挿入され、保持器6の外径側がハウジングであるコンロッドの係合穴に嵌め込まれて使用される。内外輪を有さず、長さに比べて直径が小さい針状ころ12を転動体として用いるので、この針状ころ軸受11は、内外輪を有する一般の転がり軸受に比べて、コンパクトなものとなる。
 上記針状ころ軸受を使用した4サイクルエンジンの縦断面図を図10に示す。
図10は本発明の転がり軸受の一例として針状ころ軸受を使用した4サイクルエンジンの縦断面図である。4サイクルエンジンは、吸気バルブ13aを開き、排気バルブ14aを閉じてガソリンと空気を混合した混合気を吸気管13を介して燃焼室15に吸入する吸入行程と、吸気バルブ13aを閉じてピストン16を押し上げて混合気を圧縮する圧縮行程と、圧縮された混合気を爆発させる爆発行程と、爆発した燃焼ガスを排気バルブ14aを開き排気管14を介して排気する排気行程とを有する。そして、これらの行程で燃焼により直線往復運動を行なうピストン16と、回転運動を出力するクランク軸17と、ピストン16とクランク軸17とを連結し、直線往復運動を回転運動に変換するコンロッド18とを有する。クランク軸17は、回転中心軸19を中心に回転し、バランスウェイト20によって回転のバランスをとっている。
 コンロッド18は、直線状棒体の下方に大端部21を、上方に小端部22を設けたものからなる。クランク軸17は、コンロッド18の大端部21の係合穴に取り付けられた針状ころ軸受11aを介して回転自在に支持されている。また、ピストン16とコンロッド18とを連結するピストンピン23は、コンロッド18の小端部22の係合穴に取り付けられた針状ころ軸受11bを介して回転自在に支持されている。
 摺動性に優れた針状ころ軸受を使用することにより、小型化あるいは高出力化された2サイクルエンジンや4サイクルエンジンであっても耐久性に優れる。
 図9では軸受として針状ころ軸受について例示したが、本発明の転がり軸受は、上記以外の円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受等としても使用できる。特に、油潤滑環境下で使用され、鉄系金属製保持器を使用する転がり軸受に好適に使用できる。
 また、上記摺動層を有する鉄系金属基材は、基油と増ちょう剤とから構成されるグリース潤滑下においても耐摩耗性に優れているので、鉄系金属製保持器、この保持器を有する転がり軸受に好適に用いることができる。グリースは、高速回転時の発熱による軸受の昇温や、鋼からなる転動体および保持器の摩擦により生じる金属摩耗粉が混入することに起因して劣化する。これに対して、本発明の摺動層を相互に摺動する鉄系金属基材の少なくとも一方に設けることで、鉄同士が相互に摺動する場合よりも、金属摩耗粉の経時的な増加量(グリースへの混入量)を抑えることができる。この結果、グリースの劣化を抑制でき、グリースの潤滑寿命を延伸できる。
 グリース潤滑される軸受の一例として、鉄道車両の主電動機用の軸受は、温度変化に起因した主軸の軸方向への膨張および収縮に対応するため、固定側の軸受として玉軸受が用いられる一方で、自由側の軸受としては主軸の膨張および収縮に対応可能な円筒ころ軸受が用いられる。固定側の玉軸受は、例えば深溝玉軸受であり、鋼球と鉄板波型保持器とを備えている。また、自由側の円筒ころ軸受は、鋼製の円筒ころと黄銅揉抜保持器とを備えている。これらの主電動機用軸受が高温、高速回転下で使用される場合には、例えば、リチウム石けんおよび鉱油を有するグリースが潤滑剤として用いられる。
 このような鉄道車両の主電動機用軸受におけるグリースの潤滑寿命は、軸受の転動疲労寿命に対して短いため、現状では所定の走行距離毎に実施される車両の分解検査においてグリースの詰め替え作業(メンテナンス)が行なわれる。また、現状のメンテナンス周期においても、上記の理由等により、グリースの劣化が進行している場合が多い。この軸受として本発明の転がり軸受を適用することで、グリースの潤滑寿命を延伸でき、上記メンテナンス周期を延伸できる。
実施例1~実施例7
 焼入れ焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器(基材表面硬度 Hv:484~595)を準備して、上記実験例1で用いた下地層および第二のフッ素樹脂層形成に用いた塗布液と同一の塗布液を用いて、実験例1と同一の条件でPTFE表面摺動層を塗布・乾燥・焼成した。実験例2で用いた電子線照射装置を用いて、実験例2に準じて電子線照射した。なお、電子線の加速電圧は70kVである。照射線量を表4に示す。また、図6および図7の結果より得られる表面の押し込み硬さ、および融点を同時に表4に示す。
 表面処理されたニードル軸受保持器を以下の方法で評価した。摩耗量試験装置の概要を図11に示す。
 SUJ2製、焼入れ焼戻し処理HRC62、凹部表面粗さ0.1~0.2μmRaの凹状相手材24を垂直方向から回転軸に取り付けた保持器6に所定の荷重25で押し付けた状態で、回転軸とともに保持器6を回転させることにより保持器6表面に施した被膜の摩擦特性を評価し摩耗量を測定した。測定条件は、荷重:440N、潤滑油:鉱油(10W-30)、滑り速度:930.6m/分、測定時間:100時間である。また、その時の剥離量を目視で観察することでPTFE被膜の密着性についても評価した。剥離量が「大」とは最大剥離箇所の剥離面積が1mm2以上の場合であり、「小」とは最大剥離箇所の剥離面積が1mm2未満の場合である。なお凹R部半径は、保持器半径よりも20~55μm大きい寸法で設定した。潤滑油は保持器の半分の高さまで浸漬する量を使用した。結果を表4に示す。
 潤滑油浸漬試験片を用意し、以下に示す手法にて潤滑油浸漬試験に供した。試験条件、試験片、測定方法等について以下に詳細を示す。
 被膜を施した角棒3本を150℃の潤滑油〔ポリ-α-オレフィン:ルーカントHL-10(三井化学社製)にZnDTP(LUBRIZOL677A、LUBRIZOL社製)を1重量%添加したもの〕2.2gに200時間浸漬した後、潤滑油中に溶出した被膜成分の濃度(溶出量の単位、ppm)を測定した。濃度測定は、蛍光X線測定〔蛍光X線測定装置:Rigaku ZSX100e(リガク社製)〕により定量した。試験片はSCM415製3mm×3mm×20mmの角棒を3本ずつ(合計表面積774mm2)用い、実施例1~実施例4と同様な方法でそれぞれ電子線照射被膜を形成した。結果を表4に示す。
比較例1および比較例2
 電子線照射線量を表4に記載の線量にする以外は、実施例1と同一のニードル軸受保持器を得た。実施例1と同様に評価した。結果を表4に示す。
比較例3
 電子線を照射することなく、表面未架橋のPTFE被膜とする以外は、実施例1と同一のニードル軸受保持器を得た。実施例1と同様に評価した。結果を表4に示す。
比較例4
 摺動層の厚さを40μmとする以外は実施例1と同様にニードル軸受保持器を製造した。摺動被膜の焼成段階でクラックが発生したため以後の電子線照射、評価試験は中止した。
比較例5
 下地層を形成することなく、直接第二のフッ素樹脂層を実施例1と同一の塗布液および同一の条件で形成し、表4に示す照射線量で電子線照射した。実施例1と同様に評価した。結果を表4に示す。
比較例6
 焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器表面に銀メッキ層を有する例である。実施例1と同様に評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明は、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制でき摺動材が得られるので、特に、鉄系金属製保持器を用いた潤滑油中で使用される保持器およびこの保持器を用いた転がり軸受の分野で使用できる。
 1 摺動部材
 2 摺動層
 3 鉄系金属基材
 4 下地層
 5 架橋フッ素樹脂層
 6 保持器
 7 ポケット
 8 柱部
 9 円環部
 10 円環部
 11 針状ころ軸受
 12 針状ころ
 13 吸気管
 14 排気管
 15 燃焼室
 16 ピストン
 17 クランク軸
 18 コンロッド
 19 回転中心軸
 20 バランスウェイト
 21 大端部
 22 小端部
 23 ピストンピン
 24 凹状相手材
 25 荷重

Claims (11)

  1.  油潤滑環境下で使用され、鉄系金属基材の表面に摺動層を有する摺動部材であって、
     前記摺動層は、前記鉄系金属基材の表面に耐熱性樹脂および第一のフッ素樹脂を含む下地層と、この下地層表面に第二のフッ素樹脂層とを有し、
     前記耐熱性樹脂は、炭素原子と共に、酸素原子、窒素原子および硫黄原子の少なくとも1つの原子を高分子構造の少なくとも主鎖に含む樹脂であり、
     前記第二のフッ素樹脂層は少なくとも前記摺動層の表面近傍が架橋されてなる架橋フッ素樹脂層であることを特徴とする摺動部材。
  2.  前記鉄系金属基材、前記下地層および前記第二のフッ素樹脂層は、接着剤層を設けることなく相互に密着していることを特徴とする請求項1記載の摺動部材。
  3.  前記摺動層は、前記第二のフッ素樹脂層の表面層より前記鉄系金属基材の表面に向かって、前記第一および第二のフッ素樹脂の架橋割合が少なくなることを特徴とする請求項1または請求項2記載の摺動部材。
  4.  前記第二のフッ素樹脂がポリテトラフルオロエチレン樹脂であることを特徴とする請求項1、請求項2または請求項3記載の摺動部材。
  5.  前記第二のフッ素樹脂の表面層近傍は、未架橋ポリテトラフルオロエチレン樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が前記未架橋ポリテトラフルオロエチレン樹脂の-82ppm、-122ppm、-126ppmに加えて、-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または-82ppmに出現する化学シフト値のシグナル強度が、前記未架橋ポリテトラフルオロエチレン樹脂のシグナル強度に比較して、増加していることを特徴とする請求項4記載の摺動部材。
  6.  前記耐熱性樹脂は、芳香族アミドイミド樹脂および芳香族イミド樹脂から選ばれる少なくとも1つの芳香族樹脂であることを特徴とする請求項1記載の摺動部材。
  7.  前記摺動層の層厚さが5μm以上40μm未満であることを特徴とする請求項1記載の摺動部材。
  8.  転がり軸受の転動体を保持する鉄系金属製保持器であって、
     この鉄系金属材保持器が請求項1記載の摺動部材により形成され、放射線照射後の摺動層のISO14577法により測定される押し込み硬さが58~82MPaであることを特徴とする鉄系金属製保持器。
  9.  転がり軸受の転動体を保持する鉄系金属製保持器であって、
     この鉄系金属材保持器が請求項1記載の摺動部材により形成され、放射線照射後の前記第二のフッ素樹脂表面層近傍の融点が285~317℃であることを特徴とする鉄系金属製保持器。
  10.  請求項8または請求項9記載の鉄系金属製保持器を使用した転がり軸受。
  11.  前記転がり軸受がエンジンのコンロッド大端部用転がり軸受、コンロッド小端部用転がり軸受またはクランクシャフト支持軸用転がり軸受であることを特徴とする請求項10記載の転がり軸受。
PCT/JP2016/072826 2015-08-03 2016-08-03 摺動部材、転がり軸受および保持器 WO2017022803A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680051973.5A CN108026973B (zh) 2015-08-03 2016-08-03 滑动构件、滚动轴承及保持器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015153735 2015-08-03
JP2015-153735 2015-08-03

Publications (1)

Publication Number Publication Date
WO2017022803A1 true WO2017022803A1 (ja) 2017-02-09

Family

ID=57943154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072826 WO2017022803A1 (ja) 2015-08-03 2016-08-03 摺動部材、転がり軸受および保持器

Country Status (3)

Country Link
JP (1) JP6769775B2 (ja)
CN (1) CN108026973B (ja)
WO (1) WO2017022803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090789A (ja) * 2018-12-03 2020-06-11 株式会社Lixil 回転体および建具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137963A (ja) * 2018-05-22 2021-09-16 住友電工ファインポリマー株式会社 摺動部材及び摺動部材の製造方法
US11542985B2 (en) * 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device
CN109372889B (zh) * 2018-11-08 2020-02-11 西安交通大学 利用磁致伸缩效应调控轴承多孔保持架润滑性能的方法
JP2021056023A (ja) * 2019-09-27 2021-04-08 大同メタル工業株式会社 摺動部材の損傷を監視するための自己検知材料を含む内燃機関の摺動部材
JP7409395B2 (ja) * 2019-12-12 2024-01-09 住友電気工業株式会社 摺動部材及びその製造方法
JP7335178B2 (ja) * 2020-02-06 2023-08-29 大同メタル工業株式会社 摺動部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269280A (ja) * 1998-03-23 1999-10-05 Nippon Pillar Packing Co Ltd フッ素樹脂系リング状摺動部材
JP2005201367A (ja) * 2004-01-15 2005-07-28 Daikin Ind Ltd 摺動部材、摺動部材の製造方法及び摺動部材用塗料
JP2009156295A (ja) * 2007-12-25 2009-07-16 Ntn Corp 風力発電装置用転がり軸受

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX172740B (es) * 1979-07-12 1994-01-10 Glyco Metall Werke PROCEDIMIENTO MEJORADO PARA FABRICAR UN MATERIA L AGLUTINANTE EN CAPAS lúmen con respecto a la capa de fricción.
JPS61197637A (ja) * 1985-02-27 1986-09-01 Oiles Ind Co Ltd 積層摺動部材の製造方法
NL8502650A (nl) * 1985-09-27 1987-04-16 Pelt & Hooykaas Gasleger alsmede hiervoor geschikt legerdeel.
DE3913893A1 (de) * 1989-04-27 1990-10-31 Kolbenschmidt Ag Werkstoff fuer mehrschicht-gleitlager
US5056938A (en) * 1990-10-04 1991-10-15 The Torrington Company Track roller bearing floating sleeve system
CN1126286A (zh) * 1995-01-05 1996-07-10 孟凡昌 复合材料轴承及其制备工艺
US6994474B2 (en) * 2001-05-29 2006-02-07 Nsk Ltd. Rolling sliding member and rolling apparatus
DE602005022751D1 (de) * 2004-10-27 2010-09-16 Toyota Jidoshokki Kk Gleitelement und herstellungsverfahren dafür
JP5076276B2 (ja) * 2005-01-17 2012-11-21 オイレス工業株式会社 複層摺動部材
PL2702285T3 (pl) * 2011-04-29 2018-01-31 Saint Gobain Performance Plastics Corp Niewymagające konserwacji łożysko ślizgowe z fep i pfa w warstwie adhezyjnej
WO2013094064A1 (ja) * 2011-12-22 2013-06-27 千住金属工業株式会社 摺動部材及び軸受
US9012025B2 (en) * 2012-04-05 2015-04-21 Xerox Corporation Fuser member
JP2014046673A (ja) * 2012-09-04 2014-03-17 Sumitomo Electric Fine Polymer Inc 摺動部材
JP2015067645A (ja) * 2013-09-26 2015-04-13 住友電工ファインポリマー株式会社 混合樹脂組成物、混合樹脂成形体及び混合樹脂被覆物
CN105980456B (zh) * 2014-02-03 2019-09-24 Ntn株式会社 滑动部件、滚动轴承及保持器
JP6457285B2 (ja) * 2014-03-24 2019-01-23 Ntn株式会社 転がり軸受用保持器および転がり軸受

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269280A (ja) * 1998-03-23 1999-10-05 Nippon Pillar Packing Co Ltd フッ素樹脂系リング状摺動部材
JP2005201367A (ja) * 2004-01-15 2005-07-28 Daikin Ind Ltd 摺動部材、摺動部材の製造方法及び摺動部材用塗料
JP2009156295A (ja) * 2007-12-25 2009-07-16 Ntn Corp 風力発電装置用転がり軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090789A (ja) * 2018-12-03 2020-06-11 株式会社Lixil 回転体および建具
JP7274281B2 (ja) 2018-12-03 2023-05-16 株式会社Lixil 防火用建具

Also Published As

Publication number Publication date
JP6769775B2 (ja) 2020-10-14
JP2017032141A (ja) 2017-02-09
CN108026973A (zh) 2018-05-11
CN108026973B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2017022803A1 (ja) 摺動部材、転がり軸受および保持器
WO2015115655A1 (ja) 摺動部材、転がり軸受および保持器
JP6591820B2 (ja) フォイル軸受
JP2009150518A (ja) スラスト軸受用摺動部材
Akram et al. Tribological performance of environmentally friendly refrigerant HFO-1234 yf under starved lubricated conditions
JP6457285B2 (ja) 転がり軸受用保持器および転がり軸受
JP2018059629A (ja) 転がり軸受用保持器および転がり軸受
JP6517523B2 (ja) 摺動部材、転がり軸受および保持器
JP2017032142A (ja) 摺動部材、転がり軸受および保持器
WO2017022794A1 (ja) 転がり軸受用保持器および転がり軸受
WO2018062407A1 (ja) 転がり軸受用保持器および転がり軸受
JP6577193B2 (ja) 転がり軸受用保持器および転がり軸受
WO2017022801A1 (ja) 摺動部材、転がり軸受および保持器
JP2017032143A (ja) 摺動部材、転がり軸受および保持器
US7258926B2 (en) Solid lubricant and sliding members
JP2020051439A (ja) 摺動部材、転がり軸受および保持器
JP2020051444A (ja) 駆動車輪用軸受装置
JP2007002912A (ja) 転がり軸受
JP2018059628A (ja) 転がり軸受用保持器および転がり軸受
JP2020051506A (ja) 転がり軸受用保持器および転がり軸受
JP2017032092A (ja) 転がり軸受用保持器および転がり軸受
JP2005036959A (ja) 転動装置
JP2017032093A (ja) 転がり軸受用保持器および転がり軸受
JP6517562B2 (ja) 主電動機用軸受
JP2007238686A (ja) 塗料組成物及び塗装物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833082

Country of ref document: EP

Kind code of ref document: A1