JP2018059629A - 転がり軸受用保持器および転がり軸受 - Google Patents

転がり軸受用保持器および転がり軸受 Download PDF

Info

Publication number
JP2018059629A
JP2018059629A JP2017188146A JP2017188146A JP2018059629A JP 2018059629 A JP2018059629 A JP 2018059629A JP 2017188146 A JP2017188146 A JP 2017188146A JP 2017188146 A JP2017188146 A JP 2017188146A JP 2018059629 A JP2018059629 A JP 2018059629A
Authority
JP
Japan
Prior art keywords
cage
rolling bearing
fluororesin
layer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017188146A
Other languages
English (en)
Inventor
晶美 多田
Masami Tada
晶美 多田
佐藤 洋司
Yoji Sato
洋司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to PCT/JP2017/035281 priority Critical patent/WO2018062407A1/ja
Publication of JP2018059629A publication Critical patent/JP2018059629A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する転がり軸受用保持器およびこの保持器を用いた転がり軸受を提供する。
【解決手段】油潤滑環境下で使用される転がり軸受の転動体を保持する複数のポケット部2を円筒体の外径面5に備えた保持器1であり、この円筒体は、基材と、この基材表面に形成された摺動層とから構成され、この摺動層は少なくとも表面が架橋されたフッ素樹脂被膜であり、円筒体の外径面における摺動層の融点が円筒体の端面における摺動層の融点よりも低い。
【選択図】図1

Description

本発明は転がり軸受用保持器および転がり軸受に関し、特に保持器表面の耐摩耗性に優れ、その優れた耐摩耗性を長期間維持できる転がり軸受用保持器、この保持器を用いた転がり軸受に関する。
転がり軸受や保持器などの摺動面は、潤滑油や潤滑グリースなどが供給されて転がり摩擦またはすべり摩擦を低減している。また、更に摺動性を向上させるための表面処理が摺動面になされている。表面処理の1つにフッ素系樹脂被膜を形成する方法がある。例えば、摺動部材の摺動部に形成したポリテトラフルオロエチレン(以下、PTFEという)被膜に50〜250kGyの線量の放射線を照射することにより、耐摩耗性および基材との密着性を高める方法が知られている(特許文献1)。
ポリイミド樹脂、銅、アルミニウムおよびそれらの合金等の金属材料、セラミックス、およびガラスから選択された、耐熱性に優れた基材の表面にフッ素樹脂の被膜を形成し、フッ素樹脂の融点以上の温度で電離性放射線を照射する改質フッ素樹脂被覆材の製造方法が知られている(特許文献2)。
無潤滑軸受やダイナミックシール等に使用されるフッ素樹脂からなる摺動部材として、フッ素樹脂をその結晶融点以上に加熱し、酸素不在のもとで電離性放射線を照射したフッ素樹脂が知られている(特許文献3)。
一方、自動車、バイク等のエンジンに用いられる転がり軸受、特に保持器付き針状ころ軸受があり、この保持器表面の焼付きを防止するために保持器表面に銀めっきがなされている。この保持器付き針状ころ軸受は、針状ころを等間隔に保持するプレス製金属保持器から構成され、この保持器の表面全体に銀めっきが施されている(特許文献4)。
特開2010−155443号公報 特開2002−225204号公報 特開平9−278907号公報 特許第5189427号公報
しかしながら、特許文献1に示す製造方法は、無潤滑下、低面圧の条件下で使用するため、基材との密着性を高める方法であり、転がり軸受用保持器の摺動面に要求される潤滑油中、高滑り速度、高面圧の条件の場合は適用が困難である。
特許文献2に記載のフッ素樹脂被膜は、フッ素樹脂の架橋反応およびフッ素樹脂と基材表面との化学反応を同時に生じさせ、それによって両者の強固な接着を達成することを目的としており、転がり軸受や保持器などの鉄基材の場合、基材表面との化学反応を生成することが困難であり、強固な接着は達成できないという問題がある。
特許文献3に記載の摺動部材は、無潤滑軸受やダイナミックシール等に使用され、被膜の形状ではなくフッ素樹脂からなる摺動部材に関する。そのため、被覆材としての特性は不明であり、更に潤滑油中、高滑り速度、高面圧を要求される転がり軸受用保持器に適用が困難である。
特許文献4に記載の銀めっきが施されている保持器においては、摺動面の摩耗量の経時変化がより少ない保持器が求められており、銀めっきに代わる摺動材が要求されている。また、銀めっきは、エンジンオイル中に含まれる硫黄成分によって硫化するという問題を有している。保持器表面に施された銀めっきが硫化すると、保持器から剥離や脱落が発生し、保持器の素地が露出する。
本発明はこのような問題に対処するためになされたものであり、潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する転がり軸受用保持器およびこの保持器を用いた転がり軸受の提供を目的とする。
本発明の転がり軸受用保持器は、油潤滑環境下で使用される転がり軸受の転動体を保持するために、外径面とこの外径面に隣接する端面とを有する円筒体からなる。この円筒体は、基材と、この基材表面に形成された摺動層とから構成される。この摺動層は少なくとも表面が架橋されたフッ素樹脂被膜であり、上記円筒体の外径面における摺動層の融点が上記円筒体の端面における摺動層の融点よりも低いことを特徴とする。特に、上記外径面の摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が227〜312℃、上記端面の摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が259〜315℃であることを特徴とする。また、上記端面における融点が左右両端面で略同一であることを特徴とする。
本発明の転がり軸受用保持器における上記摺動層は、上記基材の表面に形成される耐熱性樹脂および第一のフッ素樹脂を含む下地層と、この下地層表面に形成される第二のフッ素樹脂層とからなり、この第二のフッ素樹脂層の少なくとも表面が架橋されていることを特徴とする。
また、本発明の転がり軸受用保持器における上記摺動層の層厚さが10μm以上40μm未満であることを特徴とする。また、上記基材が鉄系金属材であることを特徴とする。
本発明の転がり軸受は、回転運動を出力するクランク軸を支持し、直線往復運動を回転運動に変換するコンロッドの端部に設けられる係合穴、または上記クランク軸に取り付けられる転がり軸受であり、この転がり軸受の転動体を保持する保持器が上記本発明の保持器であることを特徴とする。
本発明の転がり軸受用保持器は、保持器円筒体の外径面における摺動層の融点が上記円筒体の端面における摺動層の融点よりも低いので、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制でき軸受の寿命を長期間にわたり維持できる。この摺動層を有する鉄系金属材製保持器は、銀めっき層を有する保持器に比較して、同等以上の摺動性を示す。また、この保持器を用いた転がり軸受は、潤滑油中で使用されるコンロッド用転がり軸受として、潤滑油中での摺動性に優れる。
ニードル軸受用保持器の斜視図である。 電子線照射部の断面を示す図である。 PTFE樹脂未照射時のNMRチャートの拡大図である。 500kGy照射時のNMRチャートの拡大図である。 1000kGy照射時のNMRチャートの拡大図である。 架橋に伴い強度が増加するシグナル強度のグラフである。 針状ころ軸受を示す斜視図である。 4サイクルエンジンの縦断面図である。 摩耗量試験装置の概要を示す図である。 比較例5の電子線照射に用いた装置を示す図である。
転がり軸受用保持器の一例を図1に示す。図1はニードル軸受用保持器の斜視図である。図1に示すように、ニードル軸受用保持器1は、転動体を保持する複数のポケット部2と、各ポケット部2の間に位置する軸方向に沿った柱部3と、柱部3を軸方向両側で固定する円筒部4とを備えている。柱部3および円筒部4には外径面5および内径面6を有し、円筒部4は外径面5に隣接する2つの端面7aおよび7bからなる端面7を有している。
本発明の転がり軸受用保持器は、ニードル軸受用保持器に限らず、ポケット部が円形の玉軸受用保持器をも含む。
転がり軸受用保持器の材質としては、鉄系金属材が好ましい。
鉄系金属材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属材は摺動部材の形状に加工後、焼入焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属材製保持器の場合、Hv値を484〜595に調整した鉄系金属材を使用することが好ましい。
転動体を保持する複数のポケット部2を有する保持器1は、素形材より円筒を削り出し、ポケット部2をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円筒状に丸めて溶接により接合する方法などにより製造できる。
保持器1は、その表面に形成された摺動層を有している。この摺動層は少なくとも表面が架橋されたフッ素樹脂被膜である。また、円筒体の外径面における摺動層の融点が端面における融点よりも低い。ここで、融点は、示差走査熱量分析計(エスアイアイ・ナノテクノロジー社製、製品名「DSC6220」)を用いて測定できる。より詳細には、上記融点の関係を満たしつつ、円筒体の外径面における摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が227〜312℃であり、円筒体の端面の摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が259〜315℃であることが好ましい。
少なくとも表面が架橋されたフッ素樹脂被膜は、好ましくは上記鉄系金属材の表面に形成された下地層とこの下地層表面に形成された架橋フッ素樹脂層からなる。また、下地層は、耐熱性樹脂およびこの耐熱性樹脂と混合できるフッ素樹脂(以下、第一のフッ素樹脂という)を含む混合物層であり、鉄系金属材と摺動層表面の架橋フッ素樹脂層との密着性を向上させる。
耐熱性樹脂は、下地層および上層膜を形成する時の焼成工程において熱分解しない樹脂である。ここで熱分解しないとは、下地層および上層膜を焼成する温度および時間内において、熱分解を開始しない樹脂である。また耐熱性樹脂は、鉄系金属材との密着性に優れた官能基および第一のフッ素樹脂とも反応する官能基を分子主鎖内または分子端部に有する樹脂であることが好ましい。
耐熱性樹脂としては、エポキシ樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリイミダゾール樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、シリコーン樹脂等が挙げられる。また、フッ素樹脂が塗膜形成時の収縮を防ぐウレタン樹脂、アクリル樹脂を併用することができる。
第一のフッ素樹脂は、下地層を形成する水系塗布液に粒子状に分散できる樹脂であれば使用できる。第一のフッ素樹脂としては、PTFE粒子、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)粒子、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下、FEPという)粒子、またはこれらの2種以上が好ましく使用できる。
下地層を形成する水系塗布液には、耐熱性樹脂および第一のフッ素樹脂以外に、ポリオキシエチレンアルキルエーテルなどの非イオン界面活性剤、カーボンブラックなどの無機顔料、N−メチル−2−ピロリドンなどの水に任意に混合する非プロトン系極性溶剤、主溶剤としての水が配合される。また、消泡剤、乾燥剤、増粘剤、レベリング剤、ハジキ防止剤などを配合できる。下地層を形成する水系塗布液としては、例えば、ダイキン工業株式会社製プライマー塗料EKシリーズ、EDシリーズが挙げられる。
摺動層を形成する表面のフッ素樹脂(以下、第二のフッ素樹脂という)層は、下地層の表面に形成され放射線により架橋できるフッ素樹脂の層である。第一のフッ素樹脂と第二のフッ素樹脂とは同一であっても異なっていてもよいが、同一のフッ素樹脂を使用することが好ましい。第二のフッ素樹脂としては、PTFE、PFA、FEP、エチレン・テトラフルオロエチレン共重合体(ETFE)等が挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、融点付近で電子線照射を行なうことにより架橋反応が進行し、耐熱性および摺動性に優れるPTFEが好ましい。
第二のフッ素樹脂層は、PTFE樹脂粒子を分散させた水分散液を塗布乾燥することにより得られる。PTFE樹脂粒子を分散させた水分散液としては、例えば、ダイキン工業株式会社製ポリフロン=PTFEエナメルが挙げられる。
鉄系金属材表面への摺動層の形成方法について以下説明する。
(1)鉄系金属材の表面処理
鉄系金属材は、摺動層形成前にショットブラスト等を用いて、予め金属材表面の粗さ(Ra)を1.0〜2.0μmに調整し、その後、エアーブローまたは石油ベンジン等の有機溶剤内に浸漬させ、5分〜1時間程度超音波洗浄を行なうことが好ましい。
(2)下地層を形成する水系塗布液の塗装
下地層を形成する水系塗布液を塗布前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗布する。
(3)下地層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の下地層の層厚さは5μm以上20μm未満、好ましくは10〜15μmの範囲内である。5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上20μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
(4)第二のフッ素樹脂層を形成する水系塗布液の塗装
第二のフッ素樹脂層を形成する水系塗布液前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗装する。
(5)第二のフッ素樹脂層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の第二のフッ素樹脂層の層厚さは5μm以上20μm未満、好ましくは10〜15μmの範囲内である。5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上20μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
なお、下地層および第二のフッ素樹脂層の塗装方法としては、スプレー法以外にディッピング法、刷毛塗り法など被膜を形成できるものであれば使用できる。被膜の表面粗さ、塗布形状をできるだけ小さくし、層厚さの均一性を考慮するとスプレー法が好ましい。
(6)焼成
第二のフッ素樹脂層の乾燥後、加熱炉内、空気中で第二のフッ素樹脂の融点以上の温度、好ましくは(融点(Tm)+30℃)〜(融点(Tm)+100℃)、5〜40分の範囲内で焼成する。第一および第二のフッ素樹脂がPTFEの場合、好ましくは380℃の加熱炉内で30分間焼成する。
(7)第二のフッ素樹脂表面層の低融点化
第二のフッ素樹脂表面に放射線を照射して低融点化させる。放射線照射によりフッ素樹脂が架橋して表面層の融点が低下する。架橋することでフッ素樹脂の非晶質化が進むためと考えられる。放射線としては、α線(α崩壊を行なう放射性核種から放出されるヘリウム−4の原子核の粒子線)、β線(原子核から放出される陰電子および陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線を用いることができる。これらの放射線の中でも、架橋効率や操作性の観点から、電子線およびγ線が好ましく、電子線がより好ましい。特に電子線は、電子線照射装置が入手しやすいこと、照射操作が簡単であること、連続的な照射工程を採用することができることなどの利点を有している。放射線照射のほかにプラズマ照射やラジカル発生剤の添加によっても同様の効果を得ることができる。
照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の20℃高い温度以下の温度範囲以外ではフッ素樹脂層の低融点化が十分に進まない。また、照射雰囲気は外径面と端面に塗布した被膜の低融点化を効率的に行なうため、不活性ガス注入により照射領域の酸素濃度を低くする必要がある。酸素濃度の範囲は0〜300ppmが好ましい。酸素濃度を以上のような濃度範囲に維持するには操作性やコスト面の観点から窒素ガス注入による不活性雰囲気が好ましい。
電子線照射するための方法について図2を参照して説明する。図2は電子線照射装置を示す図であり、図2(a)は正面概要図であり、図2(b)は保持器固定治具の直径方向断面を示す図である。図2(c)はフィルム線量計を貼付ける場所を示す図である。
電子線照射チャンバー8内に保持器1が複数個同軸に配置され、保持器1の円筒軸を中心に回転させながら電子線照射窓8aより電子線が外径面5に対して垂直方向に向かって照射される。保持器1は、その内径面に嵌合して配置された円柱状の保持器固定治具9の回転軸10に接続されたモーター11から得た回転動力により回転される。保持器固定治具9は、保持器1の内径部に対して保持器が空転しない程度に嵌合され、保持器固定治具9の回転軸10は電子線照射方向に対して垂直方向に配置される固定具である。また、10aは回転軸の接続部である。
保持器固定治具9の内部には、カートリッジヒータなどの加熱源12およびヒータ制御用熱電対などの制御装置13とを備えている。また、加熱源12および制御装置13はロータリーコネクタ14を介して外部の電源および温度制御装置に接続されている。保持器固定治具9の線膨張係数は、保持器1の材質の線膨張係数よりも大きいことが好ましい。保持器固定治具9および保持器1の線膨張係数を上記範囲とすることにより、加熱しながら電子線照射する時に保持器1を固定すると共に、効率的に加熱することができる。
保持器固定治具9の材質は、保持器1の材質、大きさ、形状等によって変動するが、保持器1の材質が鋼の場合、線膨張係数、熱伝導度、電子線照射により変質しない物質の観点から好ましくはアルミニウム系、さらに好ましくは経済性の観点から純度99.00%以上の純アルミニウムである1000系のアルミニウムがよい。
電子線照射チャンバー8の内部8bは窒素により満たされる。窒素雰囲気下で電子線照射することにより、保持器1の外径面5と共に、保持器1の2つの端面7aおよび7b方向にも電子線が照射される。好ましい窒素雰囲気としては、チャンバー内を酸素濃度が300ppmとなるように対流させることが挙げられる。また、好ましい回転軸の回転数としては60〜70rpmが挙げられる。
保持器外径面への照射線量は230〜2400kGyとすることが好ましい。この照射線量の範囲内で摺動層表面の融点を調整できる。
また、電子線照射の加速電圧は、10〜300kVであることが好ましく、より好ましくは10〜100kVである。本発明は加速電圧が数10kV程度の低エネルギー電子線照射であっても、保持器1の外径面5と共に、2つの端面7a、7bにも照射できる。電子線照射は、外径面5へは電子線が垂直に侵入する直接照射であり、端面7a、7bへは電子線の散乱による照射であるので、保持器の両端面7a、7bよりも外径面5の方が照射線量が大きくなる。その結果、転がり軸受保持器の中で最も摺動特性が要求される外径面樹脂層に対して、電子線のエネルギー付与率が高くなので、転がり軸受用保持器にとって好適な照射方法となる。照射の結果、外径面5および端面7a、7bに照射を施すことにより、外径面5の摩耗量を小さくでき、金属基材の露出を防ぐことができるとともに、端面の被膜とバランスウェイトまたはサイドワッシャとの摺動に対しても被膜が摩耗により消失することはない。
次に本発明の転がり軸受用保持器表面の第二のフッ素樹脂層が架橋構造を有していることについて説明する。一般に、フッ素系樹脂、特にPTFE樹脂は化学的に非常に安定で、有機溶媒などに対しても極めて安定であるため、分子構造あるいは分子量などを同定することは困難である。さらに本発明の保持器表面は架橋による三次元構造を形成しているため、さらに溶媒に溶解し難くなり、構造分析はいっそう困難となる。しかしながら19F Magic angle Spinning)(MAS)核磁気共鳴(NMR)法(High speed magic angle nuclear magnetic resonance)による測定ならびに解析により、本発明の保持器表面の三次元構造を同定することが可能となる。
測定は、日本電子株式会社製NMR装置JNM−ECX400を用いて、好適な測定核種(19F)、共鳴周波数(376.2MHz)、MAS(Magic Angle Spinning)回転数(15および12kHz)、サンプル量(4mm固体NMR管に約70μL)、待ち時間(recycle delay time)(10秒)ならびに測定温度(約24℃)で行なった。結果を図3〜図6に示す。図3はPTFE樹脂未照射時のNMR、図4はPTFE樹脂に500kGy照射時のNMR、図5はPTFE樹脂に1000kGy照射時のNMRチャートの拡大図をそれぞれ表す。図3〜図5において上段はMAS回転数15kHz、下段はMAS回転数12kHzをそれぞれ表す。図6は架橋に伴い強度が増加する−82ppmでのシグナル強度を主シグナルである−122ppmでのシグナル強度で規格化し、グラフにしたものである。図6において上段は測定値、下段はグラフを表す。このシグナル強度比が高いほど架橋度が進行しているものと考えられる。
放射線照射を行なっていない第二のフッ素樹脂層(0kGy)を上記の条件で測定すると、MAS回転数15kHzにおいて、化学シフト値(δppm)である、−82ppm、−122ppm、−162ppmのシグナルが観測された(図3上段)。また、MAS回転数12kHzにおいて、同じく、−58ppm、−82ppm、−90ppm、−122ppm、−154ppm、−186ppmのシグナルが観測された(図3下段)。−122ppmは−CF2−CF2−結合におけるF原子のシグナルであり、−82ppmは−CF2−CF3結合における−CF3のF原子のシグナルであることが知られている。このことから、MAS回転数15kHzにおける−82ppmおよび−162ppm、MAS回転数12kHzにおける−58ppm、−90ppm、−154ppm、−186ppmのシグナルはスピニングサイドバンド(Spinning Side Band:SSB)である。なお、−122ppm〜−130ppmの領域で−122ppmのシグナルに隠れてブロードになっているシグナルが観測されている。このシグナルは−126ppmに観測されるはずの−CF2−CF3結合における−CF2−のF原子のシグナルである。従って、放射線照射を行なっていない未架橋のPTFE樹脂層は−CF2−CF2−結合に帰属する−122ppm、−CF2−CF3に帰属する−82ppmおよび−126ppmのシグナルを有するNMRチャートで表される。
500kGyの線量の放射線を照射した第二のフッ素樹脂層(500kGy)の固体19F MAS NMRを未架橋の第二のフッ素樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、−68ppm、−70ppm、−80ppm、−82ppm、−109ppm、−112ppm、−122ppm、−126ppm、−152ppm、および−186ppmのシグナルが観測された(図4上段)および図4下段)。−68ppm、−70ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmのシグナルが放射線照射により新たに出現し、−82ppmのシグナルはそのシグナル強度が未照射より増加していた。
1000kGyの線量の放射線を照射した第二のフッ素樹脂層(1000kGy)の固体19F MAS NMRを未架橋のPTFE樹脂と同じ条件で測定すると、スピニングサイドバンドを除いて、−68ppm、−70ppm、−77ppm、−80ppm、−82ppm、−109ppm、−112ppm、−122ppm、−126ppm、−152ppm、および−186ppmのシグナルが観測された(図5上段および図5下段)。−68ppm、−70ppm、−77ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmのシグナルが放射線照射により新たに出現し、−82ppmのシグナルはそのシグナル強度が500kGy照射時より増加していた。
上記シグナルは、帰属するF原子を下線で表せば、例えば−70ppmは=CF−C 3、−109ppmは−C 2−CF(CF3)−C 2−、−152ppmは=C−C=、−186ppmは≡Cに帰属されることが知られている(Beate Fuchs and Ulrich Scheler., Branching and Cross−Linking in Radiation−Modified Poly(tetrafluoroethylene):A Solid−State NMR Investigation.Macromolecules,33,120−124.2000年)。
これらのシグナルは化学的に非等価なフッ素原子の存在を示すと同時にPTFE樹脂層が架橋による三次元構造を形成していることを示す。また、上記文献によれば、観測されるシグナルのシグナル強度は照射線量500kGyよりも照射線量1000kGyの方が強くなり、少なくとも照射線量3000kGyまでは、照射線量の増加に伴ってシグナルのシグナル強度が高くなることが知られている。なお、上記文献に記載されていないシグナルについては、放射線の照射条件の違いによりフッ素樹脂層の構造が異なっていることが考えられるが、架橋構造が形成されていることは、=CF−C 3、−C 2−CF(CF3)−C 2−、=C−C=、≡C等の構造が存在することから明白である。
図6に示すように、規格化シグナル強度比は、照射線量が増加するに従って増加している。照射線量が500kGyで明らかに架橋構造が出現し、照射線量が1000kGyに2倍になると、規格化シグナル強度比は約3倍になっており、架橋がより進行していることが分かった。
上述した方法により得られた摺動層の層厚さは、10μm以上40μm未満、好ましくは15μm以上30μm未満である。層厚さが10μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを10μm以上40μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
本発明の転がり軸受け用保持器は、摺動層が鉄系金属材料との密着性に優れ、また摺動面が油中においても耐摩耗性に優れているので、この保持器を備えた転がり軸受に好適である。特に油中で使用され、針状ころを転動体とした転がり軸受であるエンジンのコンロッド大端部軸受、コンロッド小端部軸受またはクランクシャフト支持軸である場合に好適である。
図7は転がり軸受の一実施例である針状ころ軸受を示す斜視図である。図7に示すように、針状ころ軸受15は複数の針状ころ16と、この針状ころ16を一定間隔、もしくは不等間隔で保持する保持器1とで構成される。エンジンのコンロッド部用軸受の場合、軸受内輪および軸受外輪は設けられず、直接に、保持器1の内径側にクランク軸やピストンピン等の軸が挿入され、保持器1の外径側がハウジングであるコンロッドの係合穴に嵌め込まれて使用される。内外輪を有さず、長さに比べて直径が小さい針状ころ16を転動体として用いるので、この針状ころ軸受15は、内外輪を有する一般の転がり軸受に比べて、コンパクトなものとなる。
上記針状ころ軸受を使用した4サイクルエンジンの縦断面図を図8に示す。
図8は本発明の転がり軸受の一例として針状ころ軸受を使用した4サイクルエンジンの縦断面図である。4サイクルエンジンは、吸気バルブ17aを開き、排気バルブ18aを閉じてガソリンと空気を混合した混合気を吸気管17を介して燃焼室19に吸入する吸入行程と、吸気バルブ17aを閉じてピストン20を押し上げて混合気を圧縮する圧縮行程と、圧縮された混合気を爆発させる爆発行程と、爆発した燃焼ガスを排気バルブ18aを開き排気管18を介して排気する排気行程とを有する。そして、これらの行程で燃焼により直線往復運動を行なうピストン20と、回転運動を出力するクランク軸21と、ピストン20とクランク軸21とを連結し、直線往復運動を回転運動に変換するコンロッド22とを有する。クランク軸21は、回転中心軸23を中心に回転し、バランスウェイト24によって回転のバランスをとっている。
コンロッド22は、直線状棒体の下方に大端部25を、上方に小端部26を設けたものからなる。クランク軸21は、コンロッド22の大端部25の係合穴に取り付けられた針状ころ軸受15aを介して回転自在に支持されている。なお、必要に応じてバランスウェイトとコンロッド大端部側面および軸受端面との間に鋼製か銅合金製のサイドワッシャを配置する。ピストン20とコンロッド22を連結するピストンピン27は、コンロッド22の小端部26の係合穴に取り付けられた針状ころ軸受15bを介して回転自在に支持されている。
摺動性に優れた針状ころ軸受を使用することにより、小型化あるいは高出力化された2サイクルエンジンや4サイクルエンジンであっても耐久性に優れる。
図7では軸受として針状ころ軸受について例示したが、本発明の転がり軸受は、上記以外の円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受等としても使用できる。特に、油潤滑環境下で使用され、鉄系金属材料製保持器を使用する転がり軸受に好適に使用できる。
実施例1〜実施例5
浸炭焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器(基材表面硬度 Hv:484〜595)を準備した。それぞれブラスト処理により表面を表面粗さRa1μm程度に粗面化し、洗浄した後、下地層はダイキン社製プライマー塗料(型番:EK−1909S21R)、第二のフッ素樹脂層にはダイキン社製トップ塗料(型番:EK−3700C21R)を用いて摺動層をそれぞれ約10μmの厚さに形成した。乾燥時間はそれぞれ90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。その後、摺動層の外径面および両端面の融点が表2に示す融点となるように図2に示す方法で電子線を照射した。
カートリッジヒータ12を挿入したアルミ製の保持器固定治具9に未照射摺動層を表面に有する保持器1を挿入し、保持器の温度を被膜の融点より30℃低い温度から融点よりも20℃高い温度の範囲に調整する。保持器固定治具9はモーター11に接続され、電子線照射時には60〜70回/分の回転数で回転しながら電子線発生源を通過することにより被膜全体に電子線を照射した。すなわち、図2において、電子線はいずれも図面上方から照射し、保持器固定治具9を図面垂直方向にスライドさせた。また、ヒータ12により保持器の温度を被膜の融点より30℃低い温度から融点よりも20℃度高い温度の範囲にあらかじめ設定した。保持器外径面への照射線量は、実施例1が236kGy、実施例2が944kGy、実施例3が1652kGy、実施例4および実施例5が2360kGyで行なった。照射雰囲気は、外径面と端面に塗布した被膜の低融点化を効率的に行なうため、不活性ガス注入により照射領域の酸素濃度が300ppm以下となるように、チャンバー8内を窒素で充満した。
また、事前に電子線の保持器への照射線量を把握するため、外径面に5a〜5gの7ヶ所(図2(c))、両端面に7aおよび7bの2ヶ所(図2(a))、合計9ヶ所にフィルム線量計(FWT社製ラジオクロミックフィルム「FWT−60−810」)を貼付した保持器に電子線を照射した。なおフィルム線量計を貼付した場合は保持器を加熱していない。電子線照射後のフィルム線量計を用いて、線量測定器(FWT−92D型ラジオクロミックフィルムリーダー)により照射線量の測定を行なった。結果を表1に示す。
また、SCM415製3mm×3mm×20mmの角棒を3本ずつ(合計表面積774mm2)準備して、実施例1〜実施例5と同様の条件で表面フッ素樹脂被膜を形成し、実施例1〜実施例5と同様の条件で電子線を照射して、潤滑油浸漬試験片とした。
得られたニードル軸受保持器および潤滑油浸漬試験片を以下の方法で評価した。
[融点]
電子線照射後の外径面被膜および端面被膜の融点測定による架橋状態の調査を行なった。融点測定は、示差走査熱量分析計(エスアイアイ・ナノテクノロジー社製、製品名「DSC6220」)を用いて行なった。測定試料には、フッ素樹脂被膜10〜15mgを同社製密封式アルミ製試料容器(以下、アルミパンという)に封入したものを使用し、リファレンスにはフッ素樹脂被膜と同量の酸化アルミニウム(Al23)をアルミパンに封入したものを使用した。測定条件に関しては、窒素フロー(200mL/分)雰囲気下で、2℃/分の昇温速度にて30℃から370℃まで昇温し、その温度で20分間保持した後、2℃/分の降温速度にて370℃から40℃まで降温させたことにより測定した数値である。昇温時の吸熱ピークのピークトップを融解ピーク温度とし融点とした。なお外径面被膜、端面被膜を別々に測定した。結果を表2に示す。
[摩耗量および剥離量]
摩耗量試験装置の概要を図9に示す。
SUJ2製、焼入れ焼戻し処理HRC62、凹部表面粗さ0.1〜0.2μmRaの凹状相手材28を垂直方向から回転軸に取り付けた保持器1に所定の荷重29の力で押し付けた状態で、回転軸とともに保持器1を回転させることにより保持器1表面に施した被膜の摩擦特性を評価し摩耗量を測定した。測定条件は、荷重:440N、潤滑油:鉱油(10W−30)、滑り速度:930.6m/分、測定時間:100時間である。また、その時の剥離量を目視で観察することでPTFE被膜の密着性についても評価した。剥離量が重度とは金属基材が露出する場合であり、軽度とは金属基材の露出が生じない場合である。なお凹R部半径は、保持器半径よりも20〜55μm大きい寸法で設定した。潤滑油は保持器の半分の高さまで浸漬する量を使用した。結果を表2に示す。
[溶出量]
潤滑油浸漬試験片3本を150℃の潤滑油〔ポリ−α−オレフィン:ルーカントHL−10(三井化学社製)にZnDTP(LUBRIZOL677A、LUBRIZOL社製)を1重量%添加したもの〕2.2gに200時間浸漬した後、潤滑油中に溶出した被膜成分の濃度(溶出量の単位、ppm)を測定した。濃度測定は、蛍光X線測定〔蛍光X線測定装置:Rigaku ZSX100e(リガク社製)〕により定量した。結果を表2に示す。
比較例1
電子線を照射しない以外は、実施例1と同じ試料を用いて、実施例1と同じ評価をした。結果を表2に示す。
比較例2〜3
電子線の照射線量を実施例1よりも少なくして、融点を実施例1よりも高くする以外は、実施例1と同じ試料を用いて、実施例1と同じ評価をした。結果を表2に示す。
比較例4〜5
電子線の照射線量を実施例4よりも多くして、融点を実施例4よりも低くする以外は、実施例1と同じ試料を用いて、実施例1と同じ評価をした。結果を表2に示す。
比較例6
摺動層の厚さを40μmとする以外は、実施例1と同じ試料を用いて摺動層を形成したが、摺動被膜の焼成段階でクラックが発生したため以後の電子線照射、評価試験は中止した。
比較例7
実施例1と同一の金属基材を用いて、下地層を形成することなく、直接第二のフッ素樹脂層を各実施例と同一の塗布液および条件で形成し、実施例2と同一の融点となるように電子線照射した。実施例1と同じ評価をした結果を表2に示す。
比較例8
実施例1と同一の未照射の摺動被膜を形成し、図10に示す照射装置を用いて電子線を照射した。保持器1の片側端面7b’が設置面になるよう保持器1を設置台30に置き、保持器内径部を保持器が空転しない程度にアルミニウム製の保持器固定治具9’で満たし、この保持器固定治具にカードリッジヒータ12およびシース熱電対13を差し込んでフッ素樹脂被膜の融点より30℃低い温度から該融点の20℃高い温度範囲に調整し、電子線照射窓8aより電子線を照射した。このときの照射雰囲気は、外径面5と端面7a’に塗布した被膜の低融点化を効率的に行なうため、チャンバーの内部8bの雰囲気は実施例1と同じくした。実施例1と同じ評価をした結果を表2に示す。
また、事前に電子線の保持器への照射線量を把握するため、保持器外径面の照射窓に近い側5’、中間部5’’、設置台に近い側5’’’の3ヶ所、両端面7a’および7b’に1ヶ所ずつの計5ヶ所に実施例1と同一のフィルム線量計を貼付した。保持器外径面のフィルム線量計はそれぞれ半周分貼付した。なおフィルム線量計を貼付した場合は保持器を加熱していない。電子線照射後のフィルム線量計を用いて、線量測定器(FWT−92D型ラジオクロミックフィルムリーダー)により実施例1と同様に照射線量の測定を行なった。結果を表3に示す。
比較例9
浸炭焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器表面に銀めっき層を有する例である。実施例1と同じ評価をした結果を表2に示す。
Figure 2018059629
Figure 2018059629
Figure 2018059629
表2に示すように、被膜に照射された照射線量に対応し、融点が減少していることがわかる。フッ素樹脂は架橋反応によって樹脂内で分子が配向しにくくなり、結果的に結晶化度が下がる。その結果、融点が減少するため、物性測定による被膜の架橋状態を判断できたといえる。比較例8に関しては、外径面の照射窓に近い側と遠い側で融点が異なり、端面の照射窓に近い側と設置台設置側で融点が異なった。さらに設置台設置側の端面の融点は電子線未照射と時と同様で融点の減少がなかった。
保持器回転試験の結果を見ると、外径面の照射線量236kGy〜2360kGyに対応した融点227℃〜312℃の範囲内で良好な試験結果が得られた。一方、その範囲外である比較例2〜5の架橋PTFE被膜は、被膜の摩耗や剥離が進み基材が露出した。
外径面の架橋状態が均一となる各実施例に関しては、外径面の箇所によって結果に差が出ない。これに対して、外径面の架橋状態が均一にならない比較例8に関しては、照射線量および電子線の侵入深さが小さい設置台側の外径面で被膜損傷が大きくなり、転がり軸受保持器で最も摺動特性が要求される外径部で性能が不十分であった。なお、比較例1の未照射PTFE被膜は摩耗量が多く、比較例9の銀めっきは潤滑油中に銀が溶出し、被膜が劣化していた。
本発明の転がり軸受用保持器およびこの保持器を有する転がり軸受けは、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制できるので、特に、潤滑油中で使用される転がり軸受の分野で使用できる。
1 ニードル軸受用保持器
2 ポケット部
3 柱部
4 円筒部
5 外径面
6 内径面
7 端面
8 電子線照射チャンバー
9 保持器固定治具
10 回転軸
11 モーター
12 加熱源
13 制御装置
14 ロータリーコネクタ
15 針状ころ軸受
16 針状ころ
17 吸気管
18 排気管
19 燃焼室
20 ピストン
21 クランク軸
22 コンロッド
23 回転中心軸
24 バランスウェイト
25 大端部
26 小端部
27 ピストンピン
28 凹状相手材
29 荷重

Claims (7)

  1. 油潤滑環境下で使用される転がり軸受の転動体を保持するために、外径面と、この外径面に隣接する端面とを有する円筒体からなる転がり軸受用保持器であって、
    前記円筒体は、基材と、この基材表面に形成された摺動層とから構成され、この摺動層は少なくとも表面が架橋されたフッ素樹脂被膜であり、前記円筒体の外径面における摺動層の融点が前記円筒体の端面における摺動層の融点よりも低いことを特徴とする転がり軸受用保持器。
  2. 前記外径面の摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が227〜312℃、前記端面の摺動層の少なくとも表面が架橋されたフッ素樹脂被膜の融点が259〜315℃であることを特徴とする請求項1記載の転がり軸受用保持器。
  3. 前記端面における融点が左右両端面で略同一であることを特徴とする請求項1または請求項2記載の転がり軸受用保持器。
  4. 前記摺動層は、前記基材の表面に形成される耐熱性樹脂および第一のフッ素樹脂を含む下地層と、この下地層表面に形成される第二のフッ素樹脂層とからなり、この第二のフッ素樹脂層の少なくとも表面が架橋されていることを特徴とする請求項1から請求項3のいずれか1項記載の転がり軸受用保持器。
  5. 前記摺動層の層厚さが10μm以上40μm未満であることを特徴とする請求項1から請求項4のいずれか1項記載の転がり軸受用保持器。
  6. 前記基材が鉄系金属材であることを特徴とする請求項1から請求項5のいずれか1項記載の転がり軸受用保持器。
  7. 回転運動を出力するクランク軸を支持し、直線往復運動を回転運動に変換するコンロッドの端部に設けられる係合穴、または前記クランク軸に取り付けられる転がり軸受において、
    前記転がり軸受の転動体を保持する保持器が請求項1から請求項6のいずれか1項記載の転がり軸受用保持器であることを特徴とする転がり軸受。
JP2017188146A 2016-09-28 2017-09-28 転がり軸受用保持器および転がり軸受 Pending JP2018059629A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035281 WO2018062407A1 (ja) 2016-09-28 2017-09-28 転がり軸受用保持器および転がり軸受

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190193 2016-09-28
JP2016190193 2016-09-28

Publications (1)

Publication Number Publication Date
JP2018059629A true JP2018059629A (ja) 2018-04-12

Family

ID=61908358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188146A Pending JP2018059629A (ja) 2016-09-28 2017-09-28 転がり軸受用保持器および転がり軸受

Country Status (1)

Country Link
JP (1) JP2018059629A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015863A (zh) * 2018-11-16 2021-06-22 舍弗勒技术股份两合公司 平衡轴
US11754145B2 (en) 2018-11-16 2023-09-12 Schaeffler Technologies AG & Co. KG Balance shaft assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015863A (zh) * 2018-11-16 2021-06-22 舍弗勒技术股份两合公司 平衡轴
US11754145B2 (en) 2018-11-16 2023-09-12 Schaeffler Technologies AG & Co. KG Balance shaft assembly

Similar Documents

Publication Publication Date Title
JP6769775B2 (ja) 摺動部材、転がり軸受および保持器
WO2015115655A1 (ja) 摺動部材、転がり軸受および保持器
WO2017022795A1 (ja) フォイル軸受
JP2018059629A (ja) 転がり軸受用保持器および転がり軸受
JP6457285B2 (ja) 転がり軸受用保持器および転がり軸受
WO2018062407A1 (ja) 転がり軸受用保持器および転がり軸受
Kürten et al. Tribochemical degradation of vacuum‐stable lubricants: A comparative study between multialkylated cyclopentane and perfluoropolyether in a vacuum ball‐on‐disc and full‐bearing tests
JP6517523B2 (ja) 摺動部材、転がり軸受および保持器
JP2017032142A (ja) 摺動部材、転がり軸受および保持器
JP2018059628A (ja) 転がり軸受用保持器および転がり軸受
WO2017022794A1 (ja) 転がり軸受用保持器および転がり軸受
JP6577193B2 (ja) 転がり軸受用保持器および転がり軸受
WO2017022801A1 (ja) 摺動部材、転がり軸受および保持器
JP2017032143A (ja) 摺動部材、転がり軸受および保持器
US7258926B2 (en) Solid lubricant and sliding members
JP2007002912A (ja) 転がり軸受
JP2020051439A (ja) 摺動部材、転がり軸受および保持器
JP2016186354A (ja) 主電動機用軸受
JP2020051506A (ja) 転がり軸受用保持器および転がり軸受
JP2017032092A (ja) 転がり軸受用保持器および転がり軸受
JP2017032093A (ja) 転がり軸受用保持器および転がり軸受
Watanuki et al. Fracture mechanics‐based criteria for fatigue fracture of rolling bearings under the influence of defects
JP2020051444A (ja) 駆動車輪用軸受装置
JP2018025246A (ja) 転がり軸受用保持器の加熱方法
JP6855974B2 (ja) 転がり軸受及びその製造方法