WO2017022454A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2017022454A1
WO2017022454A1 PCT/JP2016/070956 JP2016070956W WO2017022454A1 WO 2017022454 A1 WO2017022454 A1 WO 2017022454A1 JP 2016070956 W JP2016070956 W JP 2016070956W WO 2017022454 A1 WO2017022454 A1 WO 2017022454A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
battery
capacity
Prior art date
Application number
PCT/JP2016/070956
Other languages
English (en)
French (fr)
Inventor
健児 小原
創平 須賀
功一 篠原
堀内 俊宏
成則 青柳
淳子 西山
Original Assignee
オートモーティブエナジーサプライ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートモーティブエナジーサプライ株式会社 filed Critical オートモーティブエナジーサプライ株式会社
Priority to CN201680043740.0A priority Critical patent/CN107851838B/zh
Priority to EP16832733.6A priority patent/EP3333957A4/en
Priority to US15/749,817 priority patent/US20180241075A1/en
Publication of WO2017022454A1 publication Critical patent/WO2017022454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte battery, particularly a lithium ion secondary battery.
  • Non-aqueous electrolyte batteries have been put into practical use as automobile batteries including hybrid cars and electric cars.
  • Lithium ion secondary batteries are used as such on-vehicle power supply batteries. As the development of lithium ion secondary batteries progresses, the capacity is increased, and accordingly, ensuring safety is essential.
  • a battery that has been further charged to a fully charged lithium ion secondary battery is generally considered to be in an overcharged state and can be said to be in an unstable state.
  • a lithium ion secondary battery using a lithium composite oxide having a layered crystal structure with a high energy density as a positive electrode material is overcharged, lithium ions can move from the positive electrode to the negative electrode without limit.
  • the negative electrode capacity since there is a limit to the capacity of lithium ions that can be accommodated in the negative electrode (that is, the negative electrode capacity), lithium ions that are not accommodated in the negative electrode may be deposited.
  • Measures for overcharge include a method for preventing overcharge by monitoring the voltage of a lithium ion secondary battery, and a method for electrochemically protecting overcharge by adding a specific additive to the electrolyte.
  • JP-A-2013-178936 proposes a lithium ion secondary battery in which a reversible redox agent (redox shuttle additive) is added to an electrolytic solution.
  • the lithium ion secondary battery proposed in JP2013-178936A uses lithium transition metal lithium as a positive electrode material, and the negative electrode has a negative electrode capacity to positive electrode capacity ratio of 105% or more and 180% or less in terms of unit area.
  • lithium fluoroborate is added to the electrolyte as a redox shuttle additive.
  • JP 2013-178936 A does not disclose the use of a lithium composite oxide having a layered crystal structure with a high energy density as the positive electrode material.
  • the present invention provides a lithium ion secondary battery that can prevent heat generation that may occur when the battery is overcharged and maintain safety.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material layer is disposed on a positive electrode current collector, a negative electrode in which a negative electrode active material layer is disposed on a negative electrode current collector, a separator, and an electrolyte solution And a power generation element including.
  • the negative electrode active material layer includes graphite.
  • the excess ratio which is the ratio between the positive electrode specific capacity and the negative electrode specific capacity when the lithium ion secondary battery of the embodiment is charged to 5 V, is 1 or more, and the thermal contraction rate of the separator is 13% or less.
  • the lithium ion secondary battery of the present invention can maintain safety and suppress an increase in battery temperature because an exothermic reaction hardly occurs inside the battery even in an overcharged state.
  • FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention.
  • the positive electrode is a thin plate in which a positive electrode active material layer, a binder, and, if necessary, a mixture of a conductive additive are applied to a positive electrode current collector such as a metal foil or rolled and dried to form a positive electrode active material layer.
  • a positive electrode current collector such as a metal foil or rolled and dried to form a positive electrode active material layer.
  • a sheet-like battery member a sheet-like battery member.
  • the negative electrode is a thin plate-like or sheet-like battery member in which a negative electrode active material layer is formed by applying a mixture of a negative electrode active material, a binder, and, if necessary, a conductive additive to a negative electrode current collector.
  • the separator is a film-like battery member for separating the positive electrode and the negative electrode and ensuring the conductivity of lithium ions between the negative electrode and the positive electrode.
  • the electrolytic solution is an electrically conductive solution in which an ionic substance is dissolved in a solvent. In this embodiment, a nonaqueous electrolytic solution can be used in particular.
  • the power generation element including the positive electrode, the negative electrode, the separator, and the electrolytic solution is a unit of the main constituent member of the battery. Usually, the positive electrode and the negative electrode are stacked (stacked) with the separator interposed therebetween. Is immersed in the electrolyte.
  • the lithium ion secondary battery of the embodiment is configured such that the power generation element is included in the exterior body, and preferably the power generation element is sealed inside the exterior body.
  • sealed means that the power generation element is encased in an exterior body material so as not to touch the outside air. That is, the exterior body has a bag shape capable of sealing the power generation element therein.
  • the negative electrode that can be used in all the embodiments includes a negative electrode in which a negative electrode active material layer including a negative electrode active material is disposed on a negative electrode current collector.
  • the negative electrode has a negative electrode active material layer obtained by applying or rolling a mixture of a negative electrode active material, a binder, and optionally a conductive additive to a negative electrode current collector made of a metal foil such as copper foil, and drying. ing.
  • a negative electrode active material contains graphite.
  • Graphite has a stable structure and is suitable as a negative electrode material for high capacity batteries.
  • the negative electrode active material can also contain amorphous carbon in addition to graphite particles. When a mixed carbon material containing both graphite and amorphous carbon is used, the battery regeneration performance is improved.
  • Graphite is a carbon material of hexagonal hexagonal plate crystal, and is sometimes referred to as graphite or graphite.
  • the graphite is preferably in the form of particles.
  • Amorphous carbon means a carbon material that is amorphous as a whole and has a structure in which microcrystals are randomly bonded to form a network. Further, the amorphous carbon may have a structure partially similar to graphite. Examples of the amorphous carbon include carbon black, coke, activated carbon, carbon fiber, hard carbon, soft carbon, and mesoporous carbon.
  • the amorphous carbon is preferably in the form of particles.
  • Examples of conductive auxiliary agents used in the negative electrode active material layer include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and ketjen black, carbon materials such as activated carbon, mesoporous carbon, fullerenes, and carbon nanotubes. It is done.
  • additives generally used for electrode formation such as a thickener, a dispersant, and a stabilizer, can be appropriately used for the negative electrode active material layer.
  • fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), and conductive materials such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • conductive materials such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles.
  • Polymer synthetic rubber such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), or carboxymethyl cellulose (CMC), xanthan gum, guar gum, Polysaccharides such as pectin can be used.
  • SBR styrene
  • the positive electrode that can be used in all embodiments includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is disposed on a positive electrode current collector.
  • the positive electrode has a positive electrode active material layer obtained by applying or rolling a mixture of a positive electrode active material, a binder, and optionally a conductive additive to a positive electrode current collector made of a metal foil such as an aluminum foil, and drying. ing.
  • a lithium transition metal oxide can be used as the positive electrode active material.
  • a lithium / nickel-based oxide for example, LiNiO 2
  • a lithium cobalt-based oxide for example, LiCoO 2
  • a lithium manganese-based oxide for example, LiMn 2.
  • a lithium nickel cobalt manganese composite oxide represented by the general formula Li x Ni y Co z Mn (1-yz) O 2 can be used as the positive electrode active material.
  • x in the general formula is 1 ⁇ x ⁇ 1.2
  • y and z are positive numbers that satisfy y + z ⁇ 1, and the value of y is 0.5 or less.
  • 1-yz ⁇ 0.4 is desirable.
  • the cost increases and the capacity decreases when the proportion of cobalt increases it is desirable to satisfy z ⁇ y and z ⁇ 1-yz. In order to obtain a high-capacity battery, it is particularly preferable to satisfy y> 1-yz and y> z.
  • the lithium nickel cobalt manganese composite oxide preferably has a layered crystal structure.
  • Carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and ketjen black, activated carbon, graphite, mesoporous carbon, fullerenes, carbon nanotubes and other carbon materials as conductive aids optionally used in the positive electrode active material layer Is mentioned.
  • additives generally used for electrode formation such as thickeners, dispersants, and stabilizers, can be appropriately used for the positive electrode active material layer.
  • fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), and conductive materials such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • conductive materials such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles.
  • Polymer synthetic rubber such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), or carboxymethyl cellulose (CMC), xanthan gum, guar gum, Polysaccharides such as pectin can be used.
  • SBR styrene
  • the electrolyte that can be used in all the embodiments is a non-aqueous electrolyte, which is dimethyl carbonate (hereinafter referred to as “DMC”), diethyl carbonate (hereinafter referred to as “DEC”), di-n-propyl.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • EC ethylene carbonate
  • the electrolytic solution is obtained by dissolving a lithium salt such as lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), or lithium perchlorate (LiClO 4 ) in such a carbonate mixture.
  • a lithium salt such as lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), or lithium perchlorate (LiClO 4 ) in such a carbonate mixture.
  • the electrolytic solution can contain additives in addition to the above components.
  • the additive that can be added to the electrolyte is preferably a substance that can be electrochemically decomposed to form a film on the electrode and the like in the process of charging and discharging the battery.
  • Such additives include cyclic disulfonates (eg, methylenemethane disulfonate, ethylenemethane disulfonate, propylenemethane disulfonate), cyclic sulfonates (eg, sultone), chain sulfonates (eg, , An additive containing a compound containing sulfur in the molecule, such as methylene bisbenzene sulfonate, methylene bisphenyl methane sulfonate, methylene bis ethane sulfonate, etc. (hereinafter referred to as “sulfur-containing additive”). ).
  • cyclic disulfonates eg, methylenemethane disulfonate, ethylenemethane disulfonate, propylenemethane disulfonate
  • cyclic sulfonates eg, sultone
  • chain sulfonates eg,
  • vinylene carbonate, vinyl ethylene carbonate, methacrylic acid propylene carbonate, acrylic acid propylene carbonate, and the like can also be added as an additive capable of forming a protective film for the positive electrode and the negative electrode in the charge / discharge process of the battery.
  • other additives for forming a protective film for the positive electrode and the negative electrode in the charge / discharge process of the battery include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, trichloroethylene carbonate, and the like. .
  • These additives are additives that can prevent the sulfur-containing additive from attacking the positive electrode active material containing the lithium / nickel composite oxide.
  • the additive is contained in a proportion of 20% by weight or less, preferably 15% by weight or less, and more preferably 10% by weight or less, based on the weight of the whole electrolyte solution.
  • the separator is composed of an olefin resin layer.
  • the olefin resin layer is a layer composed of a polyolefin obtained by polymerizing or copolymerizing an ⁇ -olefin such as ethylene, propylene, butene, pentene, hexene or the like.
  • a structure having pores that are blocked when the battery temperature rises that is, a layer composed of a porous or microporous polyolefin is preferable. Since the olefin resin layer has such a structure, even if the battery temperature rises, the separator is closed (shuts down), and the ion flow can be cut off. In order to exert a shutdown effect, it is very preferable to use a porous polyethylene film.
  • a separator obtained by crosslinking an olefin resin It is preferable to use a separator obtained by crosslinking an olefin resin.
  • Polymers that have been chemically cross-linked with polyfunctional substances trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, etc.
  • polyfunctional substances trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, etc.
  • An electron-crosslinked polymer polymerized by irradiation to generate radicals can be used.
  • the thermal contraction rate of the separator is 13% or less.
  • the thermal shrinkage ratio of the film material including the separator or the like is a numerical value indicating how much the dimension changes (decreases) when the film material is heated.
  • JIS-C-2151, JIS- It can be measured according to C-2318, ASTM DDD-1204, and the like.
  • the value of thermal shrinkage is measured after a film material test piece is suspended in a hot-air circulating thermostat, heated from 25 ° C. to 180 ° C. over 30 minutes, and then cooled to room temperature. It represents the shrinkage rate of the area of the test piece.
  • the heat shrinkage rate is expressed by the following formula: 100 ⁇ [(Area of film material before test) ⁇ (Area of film material after test)] / (Area of film material before test) Can be calculated with In a separator having a thermal shrinkage rate exceeding 13%, the membrane breakage area of the separator increases due to heat generated by a short circuit, and there is a possibility that a large current flows.
  • the separator may have an olefin resin layer and a heat-resistant fine particle layer.
  • the separator having the heat-resistant fine particle layer can prevent heat generation of the battery and can also suppress the thermal contraction of the separator.
  • the heat-resistant fine particles inorganic fine particles having a heat resistance of 150 ° C. or more and stable in electrochemical reaction can be used.
  • inorganic fine particles inorganic oxides such as silica, alumina ( ⁇ -alumina, ⁇ -alumina, ⁇ -alumina), iron oxide, titanium oxide, barium titanate, zirconium oxide; boehmite, zeolite, apatite, kaolin, Mention may be made of minerals such as spinel, mica and mullite.
  • a separator having an olefin-based resin layer and a heat-resistant resin layer may be referred to as a “ceramic separator” in this specification.
  • a ceramic separator having an olefin resin layer and a heat resistant fine particle layer has a form in which a heat resistant fine particle layer is laminated on the surface of an olefin resin film.
  • the heat-resistant fine particle layer can be provided only on one side of the olefin-based resin film, or can be provided on both sides.
  • the ratio of the thickness of the entire heat-resistant fine particle layer is preferably about 1/10 to 1/2, preferably about 1/8 to 1/3 of the thickness of the olefin resin layer. If the thickness of the heat-resistant fine particle layer is too thick, the decomposition product of the sulfur-containing additive contained in the electrolytic solution may increase, and if it is too thin, the effect of improving the heat resistance of the separator cannot be expected.
  • FIG. 1 shows an example of a cross-sectional view of a lithium ion secondary battery.
  • the lithium ion secondary battery 10 includes a negative electrode current collector 11, a negative electrode active material layer 13, a separator 17, a positive electrode current collector 12, and a positive electrode active material layer 15 as main components.
  • the negative electrode active material layer 13 is provided on both surfaces of the negative electrode current collector 11 and the positive electrode active material layer 15 is provided on both surfaces of the positive electrode current collector 12, but only on one side of each current collector.
  • An active material layer can also be formed.
  • the negative electrode current collector 11, the positive electrode current collector 12, the negative electrode active material layer 13, the positive electrode active material layer 15, and the separator 17 are constituent units of one battery, that is, a power generation element (unit cell 19 in the figure).
  • the separator 17 may be composed of a heat-resistant fine particle layer and an olefin resin film (both not shown). A plurality of such unit cells 19 are stacked via the separator 17.
  • the extending portion extending from each negative electrode current collector 11 is collectively bonded onto the negative electrode lead 25, and the extending portion extending from each positive electrode current collector 12 is collectively bonded to the positive electrode lead 27.
  • An aluminum plate is preferably used as the positive electrode lead, and a copper plate is preferably used as the negative electrode lead, and in some cases, it may have a partial coating with another metal (for example, nickel, tin, solder) or a polymer material.
  • the positive electrode lead and the negative electrode lead are welded to the positive electrode and the negative electrode, respectively.
  • a battery formed by laminating a plurality of single cells in this manner is packaged by an outer package 29 so that the welded negative electrode lead 25 and positive electrode lead 27 are drawn out to the outside.
  • An electrolytic solution 31 is injected into the exterior body 29.
  • the exterior body 29 has a shape in which two laminated bodies are overlapped and the peripheral portion is heat-sealed. In FIG.
  • the negative electrode lead 25 and the positive electrode lead 27 are respectively provided on opposite sides of the exterior body 29 (referred to as “both tabs”), but the negative electrode lead 25 and the positive electrode lead 27 are connected to the exterior body 29. (Ie, the negative electrode lead 25 and the positive electrode lead 27 are pulled out from one side of the outer package 29. This is referred to as “one-tab type”).
  • the ratio of the positive electrode specific capacity to the negative electrode specific capacity is preferably 1 or more. “When the lithium ion secondary battery is charged to 5 V” is an indication that the battery has been charged to an overcharged state. When charged to an overcharged state, the positive electrode specific capacity (that is, how much lithium ions can be released per unit volume) and the negative electrode specific capacity (that is, how much lithium ions the negative electrode can tolerate per unit volume) It is important to maintain the balance of the battery properly in order to maintain the safety of the battery in an overcharged state.
  • the ratio of the positive electrode specific capacity to the negative electrode specific capacity is less than 1, the negative electrode is excessive with respect to the positive electrode capacity, and the capacity of the battery may be reduced.
  • the ratio of the positive electrode specific capacity to the negative electrode specific capacity can be set to 1 or more by selecting each electrode active material or by appropriately mixing the electrode active material and other additives. For example, the amount of the positive electrode active material applied to the positive electrode current collector can be increased, or the amount of the negative electrode active material applied to the negative electrode current collector can be decreased. In addition, it is preferable that the ratio of the positive electrode specific capacity and the negative electrode specific capacity when the lithium ion secondary battery is charged to 5 V is 2 or less from the viewpoint of maintaining a proper balance of the specific capacity of the positive electrode and the negative electrode.
  • the ratio between the positive electrode specific capacity and the negative electrode specific capacity is more preferably 1.5 or less, and even more preferably 1.1 or less.
  • the ratio between the positive electrode specific capacity and the negative electrode specific capacity when the lithium ion secondary battery is charged to 5 V may be referred to as “excess ratio”.
  • a / C ratio the ratio of the negative electrode capacity (A) to the positive electrode capacity (C) (hereinafter referred to as “A / C ratio”) is 1.25 or less.
  • a large A / C ratio means that the amount of lithium ions received by one negative electrode is larger than the amount of lithium ions released by one positive electrode, that is, a large amount of lithium ions can be received by the negative electrode. If the negative electrode capacity is too large, it may be difficult to maintain safety when the battery is overcharged, so it is important to maintain the A / C ratio at an appropriate value. In order to obtain a high battery capacity, the A / C ratio is desirably 1.05 or more.
  • the value (W / Wh) of the battery output to capacity is less than 25.
  • the output of the battery represents an average output for 10 seconds.
  • an assembled battery (battery pack) in which a plurality of batteries (cells) are combined is used.
  • the output required for each battery need not be higher than necessary.
  • the ratio between the output and capacity of the battery is preferably in the range of 2 or more and less than 25.
  • the output capacity ratio is less than 2
  • the resistance is too high to follow the load characteristics when used as a vehicle battery.
  • a battery having an output capacity ratio of 25 or more generally uses a thin film electrode, so that the capacity per area may be insufficient.
  • the output capacity ratio is preferably 5 or more and 20 or less, and more preferably 10 or more and 15 or less.
  • the capacity of the battery is 5 Ah or more.
  • the battery capacity is preferably 5 Ah or more and 70 Ah or less.
  • the battery capacity is more preferably 45 Ah or more and 55 Ah or less.
  • the negative electrode active material layer was pressed so as to have a porosity of 35%, and a negative electrode in which the negative electrode active material layer was applied on one surface of the negative electrode current collector was produced.
  • This negative electrode is described as “Gr” in the table.
  • Another type of negative electrode was prepared.
  • As a negative electrode active material hard carbon (400 mAh / g), carbon black powder as a conductive auxiliary agent, PVDF as a binder resin, added to ion-exchanged water in a ratio of 94: 6 in terms of solid content, and stirred. A material was uniformly dispersed in water to prepare a slurry. The obtained slurry was applied onto a copper foil having a thickness of 8 ⁇ m serving as a negative electrode current collector.
  • the electrode was heated at 125 ° C. for 10 minutes to evaporate water, thereby forming a negative electrode active material layer. Furthermore, the negative electrode active material layer was pressed so as to have a porosity of 35%, and a negative electrode in which the negative electrode active material layer was applied on one surface of the negative electrode current collector was produced. This negative electrode is described as “HC” in the table.
  • NMP N-methyl-pyrrolidone
  • a mixed positive electrode was produced.
  • a mixed positive electrode active material mixed at a ratio, carbon black powder as a conductive auxiliary agent, and PVDF (Kureha W # 7200, Kureha Battery Materials Japan Co., Ltd.) as a binder resin, the positive electrode active at a solid mass ratio.
  • Substance: conductive auxiliary agent: binder resin 90: 5: 5
  • the ratio was added to NMP as a solvent.
  • ⁇ Separator> The following five types of separators were prepared: PP01: Polypropylene, thickness 25 ⁇ m, heat shrinkage 40%, piercing elongation 50% CL01: Polypropylene (with electronic crosslinking), thickness 25 ⁇ m, heat shrinkage 12%, piercing elongation 2% CL02: Polypropylene (with electronic crosslinking), thickness 25 ⁇ m, heat shrinkage 13%, piercing elongation 1% CL03: Polypropylene (with electronic crosslinking), thickness 25 ⁇ m, heat shrinkage 17%, puncture elongation 5% CC01: polypropylene / polyethylene / polypropylene laminate (with aluminum oxide coating), thickness 20 ⁇ m, heat shrinkage 13%, puncture elongation 30% In addition, the measuring method of the thermal contraction rate and piercing elongation of a separator is mentioned later.
  • Ethylene carbonate hereinafter referred to as “EC”
  • PC propylene carbonate
  • DEC diethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • a nonaqueous solvent mixed at a ratio of 70 (volume ratio) so that the concentration becomes 0.9 mol / L
  • a cyclic disulfonic acid ester methylenemethane disulfonate (MMDS) and vinylene carbonate (VC) dissolved in a concentration of 1% by weight was used.
  • MMDS methylenemethane disulfonate
  • VC vinylene carbonate
  • Each of the negative electrode plate and the positive electrode plate produced as described above was cut into a rectangle of a predetermined size (negative electrode: 254 mm ⁇ 184 mm, positive electrode: 250 mm ⁇ 180 mm).
  • an aluminum positive electrode lead terminal was ultrasonically welded to an uncoated portion for connecting the terminal.
  • a nickel negative electrode lead terminal having the same size as the positive electrode lead terminal was ultrasonically welded to an uncoated portion of the negative electrode plate.
  • the negative electrode plate and the positive electrode plate were placed on both sides of the separator so that both active material layers overlapped with the separator therebetween, and the positive electrode lead and the negative electrode lead were both aligned on one side to obtain an electrode plate laminate.
  • a bag-like laminate outer package was prepared by bonding one side of the two aluminum laminate films except for one of the long sides by heat fusion.
  • the electrode laminate was inserted into the laminate outer package. After injecting the electrolyte solution and impregnating it in a vacuum, the opening was sealed by heat sealing under reduced pressure to obtain a so-called single-tab type laminated lithium ion battery.
  • the multilayer lithium ion battery was initially charged and discharged, and then subjected to high temperature aging to obtain a multilayer lithium ion battery having a battery capacity of 5 Ah.
  • Initial charge / discharge was performed from 0% to 100% of the remaining capacity of the battery (hereinafter referred to as “SOC”) at an atmospheric temperature of 55 ° C.
  • SOC the remaining capacity of the battery
  • the charge / discharge conditions are as follows: constant current charge (CC charge) to 4.1V at 0.1C current, then constant voltage charge (CV charge) at 4.1V, then at 0.1C current Constant current discharge (CC discharge) is performed up to 2.5V.
  • ⁇ Warming test> The produced battery was discharged to a battery voltage of 4.15 V, and the temperature was raised to 150 ° C. at a rate of 1 ° C. per minute in a thermostatic chamber. The change in battery voltage when the ambient temperature reached 150 ° C. was measured. The state of the battery at this time was classified into three types: a case where the battery is ignited (ignition), a case where the battery is generating heat (heat generation), and a change in battery voltage and battery temperature (no change).
  • the excess ratio which is the value of the positive electrode overcharge specific capacity with respect to the negative electrode specific capacity, is an index representing the balance between the lithium ion release capacity of the positive electrode and the allowable amount of lithium ion of the negative electrode, as described above. .
  • CC charging was performed at a current of 0.2 CC until the SOC reached 50% from the state where the battery voltage was 3V.
  • the battery voltage after standing for 1 hour in this state was defined as 50% SOC-OCV (unit: V), that is, the value of the open circuit voltage of the battery having a remaining capacity of 50%.
  • ⁇ Puncture strength> A sample separator is fixed, a semicircular needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is inserted into the sample surface at a speed of 50 ⁇ 0.5 mm per minute, and the maximum load until the needle penetrates is measured. did.
  • Examples 1 to 5 are experimental examples using a separator having a heat shrinkage rate of 13% or less. In any of the examples, no exotherm was observed in the heating test. All of the batteries according to these examples have an excess ratio exceeding 100%, but it can be seen that the use of the separator can suppress the temperature rise of the battery. On the other hand, it can be seen that in Comparative Example 1 using a separator having an excess ratio exceeding 100% and a heat shrinkage ratio exceeding 13%, heat generation is observed in the heating test. That is, by selecting an appropriate separator in consideration of the combination of each electrode material and the ratio of each electrode specific capacity, a battery having high capacity, high energy density, and high safety can be obtained.
  • Example of this invention was described, the said Example was only an example of Embodiment of this invention, and in the meaning which limits the technical scope of this invention to specific embodiment or a specific structure. Absent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本発明のリチウムイオン二次電池は、正極活物質層が正極集電体に配置された正極と、負極活物質層が負極集電体に配置された負極と、セパレータと、電解液と、を含む発電要素を含む。ここで負極活物質層は黒鉛を含む。そして実施形態のリチウムイオン二次電池を5Vまで充電した時の正極比容量と負極比容量との比である過剰比は1以上であり、セパレータの熱収縮率は13%以下であることを特徴とする。本発明は、電池が過充電状態になったときに起こりうる発熱を防止し、安全性を維持することができるリチウムイオン二次電池を提供する。

Description

リチウムイオン二次電池
 本発明は、非水電解質電池、特にリチウムイオン二次電池に関する。
 非水電解質電池は、ハイブリッド自動車や電気自動車等を含む自動車用電池として実用化されている。このような車載電源用電池としてリチウムイオン二次電池が使用されている。リチウムイオン二次電池は、開発が進むにしたがい高容量化が図られ、それに伴い安全性の確保が必須となっている。
 満充電状態のリチウムイオン二次電池に更に充電されてしまった電池は、一般に過充電状態にあるとされ、不安定な状態にあるといえる。正極材料としてエネルギー密度の高い層状結晶構造を有するリチウム複合酸化物を用いたリチウムイオン二次電池を過充電状態にすると、正極からリチウムイオンが際限なく負極に移動しうる。ところが負極に収容できるリチウムイオンの容量(すなわち負極容量)には限度があるため、負極に収容されなかったリチウムイオンが析出するおそれがある。
 過充電対策として、リチウムイオン二次電池の電圧を監視して過充電を防止する方法や、特定の添加剤を電解液に加えることによって電気化学的に過充電を保護する方法がある。
 特開2013-178936号には、可逆的酸化還元剤(レドックスシャトル添加剤)を電解液に添加したリチウムイオン二次電池が提案されている。特開2013-178936号に提案されるリチウムイオン二次電池は、正極材料としてリン酸遷移金属リチウムを用い、負極は、正極容量に対する負極容量の比率が単位面積換算で105%以上180%以下とし、そして電解液にレドックスシャトル添加剤としてリチウムフルオロボレートを添加している。特開2013-178936号には正極材料としてエネルギー密度の高い層状結晶構造を有するリチウム複合酸化物を用いることは開示されていない。
 本発明は、電池が過充電状態になったときに起こりうる発熱を防止し、安全性を維持することができるリチウムイオン二次電池を提供する。
 本発明の実施形態におけるリチウムイオン二次電池は、正極活物質層が正極集電体に配置された正極と、負極活物質層が負極集電体に配置された負極と、セパレータと、電解液と、を含む発電要素を含む。ここで負極活物質層は黒鉛を含む。そして実施形態のリチウムイオン二次電池を5Vまで充電した時の正極比容量と負極比容量との比である過剰比は1以上であり、セパレータの熱収縮率は13%以下であることを特徴とする。
 本発明のリチウムイオン二次電池は、安全性を維持することができると共に、過充電状態になっても電池内部での発熱反応が起こりにくいため、電池の温度の上昇を抑制することができる。
図1は、本発明の一の実施形態のリチウムイオン二次電池を表す模式断面図である。
 本発明の実施形態を以下に説明する。本実施形態において正極とは、正極活物質と、バインダーと、必要な場合導電助剤との混合物を金属箔等の正極集電体に塗布または圧延および乾燥して正極活物質層を形成した薄板状あるいはシート状の電池部材である。負極とは、負極活物質と、バインダーと、必要な場合導電助剤との混合物を負極集電体に塗布して負極活物質層を形成した薄板状あるいはシート状の電池部材である。セパレータとは、正極と負極とを隔離して負極・正極間のリチウムイオンの伝導性を確保するための膜状の電池部材である。電解液とは、イオン性物質を溶媒に溶解させた電気伝導性のある溶液のことであり、本実施形態においては特に非水電解液を用いることができる。正極と負極とセパレータと電解液とを含む発電要素とは、電池の主構成部材の一単位であり、通常、正極と負極とがセパレータを介して重ねられて(積層されて)、この積層物が電解液に浸漬されている。
 実施形態のリチウムイオン二次電池は、外装体の内部に該発電要素が含まれて成り、好ましくは、発電要素は該外装体内部に封止されている。封止されているとは、発電要素が外気に触れないように、外装体材料により包まれていることを意味する。すなわち外装体は、発電要素をその内部に封止することが可能な袋形状をしている。
 すべての実施形態において用いることができる負極は、負極活物質を含む負極活物質層が負極集電体に配置された負極を含む。好ましくは、負極は、負極活物質、バインダーおよび場合により導電助剤の混合物を銅箔などの金属箔からなる負極集電体に塗布または圧延し、乾燥して得た負極活物質層を有している。各実施形態において、負極活物質が、黒鉛を含むことが好ましい。黒鉛は構造が安定しており、高容量電池の負極材料に適している。負極活物質は黒鉛粒子のほか非晶質炭素を含むこともできる。黒鉛と非晶質炭素とをともに含む混合炭素材を用いると、電池の回生性能が向上する。
 黒鉛は、六方晶系六角板状結晶の炭素材料であり、石墨、グラファイト等と称されることがある。黒鉛は粒子の形状をしていることが好ましい。また非晶質炭素は、微結晶がランダムに結合してネットワークを形成した構造をとった、全体として非晶質である炭素材料のことを意味する。さらに非晶質炭素は、部分的に黒鉛に類似する構造を有していてもよい。非晶質炭素として、カーボンブラック、コークス、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボン等が挙げられる。非晶質炭素は粒子の形状をしていることが好ましい。
 負極活物質層に場合により用いられる導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、メゾポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。その他、負極活物質層には増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる添加剤を適宜使用することができる。
 負極活物質層に用いられるバインダーとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブタジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を用いることができる。
 すべての実施形態において用いることができる正極は、正極活物質を含む正極活物質層が正極集電体に配置された正極を含む。好ましくは、正極は、正極活物質、バインダーおよび場合により導電助剤の混合物をアルミニウム箔などの金属箔からなる正極集電体に塗布または圧延し、乾燥して得た正極活物質層を有している。正極活物質として、リチウム遷移金属酸化物を用いることができ、たとえば、リチウム・ニッケル系酸化物(たとえばLiNiO)、リチウムコバルト系酸化物(たとえばLiCoO)、リチウムマンガン系酸化物(たとえばLiMn)およびこれらの混合物を使用することが好ましい。また正極活物質として、一般式LiNiCoMn(1-y-z)で表されるリチウムニッケルコバルトマンガン複合酸化物を用いることができる。ここで、一般式中のxは1≦x≦1.2であり、yおよびzはy+z<1を満たす正の数であり、yの値が0.5以下である。なお、マンガンの割合が大きくなると単一相の複合酸化物が合成されにくくなるため、1-y-z≦0.4とすることが望ましい。また、コバルトの割合が大きくなると高コストとなり容量も減少するため、z<y、z<1-y-zとすることが望ましい。高容量の電池を得るためには、y>1-y-z、y>zとすることが特に好ましい。リチウムニッケルコバルトマンガン複合酸化物は、層状結晶構造を有することが好ましい。
 正極活物質層に場合により用いられる導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メゾポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。その他、正極活物質層には増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる添加剤を適宜使用することができる。
 正極活物質層に用いられるバインダーとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブタジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を用いることができる。
 すべての実施形態において用いることができる電解液は、非水電解液であって、ジメチルカーボネート(以下「DMC」と称する。)、ジエチルカーボネート(以下「DEC」と称する。)、ジ-n-プロピルカーボネート、ジ-t-プロピルカーボネート、ジ-n-ブチルカーボネート、ジ-イソブチルカーボネート、またはジ-t-ブチルカーボネート等の鎖状カーボネートと、プロピレンカーボネート(以下「PC」と称する。)、エチレンカーボネート(以下「EC」と称する。)等の環状カーボネートとを含む混合物であることが好ましい。電解液は、このようなカーボネート混合物に、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、過塩素酸リチウム(LiClO)等のリチウム塩を溶解させたものである。
 電解液は、上記の成分の他、添加剤を含有することができる。電解液に加えることができる添加剤は、電池の充放電の過程で、電気化学的に分解し、電極その他に被膜を形成することができる物質であることが好ましい。とりわけ、負極表面上に負極構造を安定化させることができる添加剤を用いることが特に望ましい。このような添加剤として、環状ジスルホン酸エステル(たとえば、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル、プロピレンメタンジスルホン酸エステル)、環状スルホン酸エステル(たとえば、スルトン)、鎖状スルホン酸エステル(たとえば、メチレンビスベンゼンスルホン酸エステル、メチレンビスフェニルメタンスルホン酸エステル、メチレンビスエタンスルホン酸エステル)等の、分子内に硫黄を含有する化合物を含む添加剤(以下、「含硫黄添加剤」と称する。)を挙げることができる。この他、電池の充放電過程において正極ならびに負極の保護被膜を形成することができる添加剤として、ビニレンカーボネート、ビニルエチレンカーボネート、メタクリル酸プロピレンカーボネート、アクリル酸プロピレンカーボネート等を加えることもできる。さらに電池の充放電過程において正極ならびに負極の保護被膜を形成する他の添加剤として、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、クロロエチレンカーボネート、ジクロロエチレンカーボネート、トリクロロエチレンカーボネート等を挙げることができる。これらの添加剤は、含硫黄添加剤の、リチウム・ニッケル系複合酸化物を含有する正極活物質への攻撃を防ぐことができる添加剤である。添加剤は、電解液全体の重量に対して、20重量%以下、好ましくは15重量%以下、さらに好ましくは10重量%以下の割合で含まれている。
 実施形態において、セパレータはオレフィン系樹脂層から構成される。ここでオレフィン系樹脂層は、エチレン、プロピレン、ブテン、ペンテン、へキセンなどのα-オレフィンを重合または共重合させたポリオレフィンから構成される層である。実施形態では、電池温度上昇時に閉塞される空孔を有する構造、すなわち多孔質あるいは微多孔質のポリオレフィンから構成される層であることが好ましい。オレフィン系樹脂層がこのような構造を有していることにより、万一電池温度が上昇しても、セパレータが閉塞して(シャットダウンして)、イオン流を寸断することができる。シャットダウン効果を発揮するためには、多孔質のポリエチレン膜を用いることが非常に好ましい。
 オレフィン系樹脂に架橋を施したセパレータを用いることが好ましい。一分子中に複数の重合基を有する多官能性物質(トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート等)による化学架橋を施したポリマーや、電離放射線を照射してラジカルを生成することにより重合した電子架橋ポリマー等を用いることができる。
 特にセパレータの熱収縮率が13%以下であることが好ましい。ここでセパレータ等を含むフィルム材料の熱収縮率は、フィルム材料に熱をかけたときに、どれだけ寸法が変化する(減少する)かを表す数値であり、たとえばJIS-C-2151、JIS-C-2318、ASTMDD-1204等に準じて測定することができる。本明細書では、熱収縮率の値は、フィルム材料の試験片を熱風循環式恒温槽内に懸垂して、25℃から180℃まで30分間かけて昇温し、次いで室温まで冷却した後に測定した試験片の面積の収縮率を表す。すなわち熱収縮率は、以下の式:
 100×[(試験前のフィルム材料の面積)-(試験後のフィルム材料の面積)]/(試験前のフィルム材料の面積)
 で計算することができる。熱収縮率が13%を超えるセパレータは、微小短絡で生じる発熱によりセパレータの破膜面積が広がり、大電流が流れるおそれがある。
 セパレータはオレフィン系樹脂層と耐熱性微粒子層とを有していてもよい。耐熱性微粒子層を有しているセパレータは、電池の発熱を防止することができるほか、セパレータの熱収縮を抑制することもできる。耐熱性微粒子として、耐熱温度が150℃以上の耐熱性を有し、電気化学反応に安定な無機微粒子を用いることができる。このような無機微粒子として、シリカ、アルミナ(α-アルミナ、β-アルミナ、θ-アルミナ)、酸化鉄、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物;ベーマイト、ゼオライト、アパタイト、カオリン、スピネル、マイカ、ムライトなどの鉱物を挙げることができる。このように、オレフィン系樹脂層と耐熱性樹脂層とを有するセパレータを、本明細書では「セラミックセパレータ」と称することがある。
 オレフィン系樹脂層と耐熱性微粒子層とを有するセラミックセパレータは、オレフィン系樹脂膜の表面上に耐熱性微粒子層を積層した形態を有する。耐熱性微粒子層は、オレフィン系樹脂膜の片面上にのみ設けることができ、両面上に設けることもできる。耐熱性微粒子層全体の厚さの割合は、オレフィン系樹脂層の厚さの1/10から1/2、好ましくは1/8から1/3程度であることが好適である。耐熱性微粒子層の厚さを厚くしすぎると、電解液中に含まれる含硫黄添加剤の分解物が増加する可能性があり、薄くしすぎるとセパレータの耐熱性の向上効果が期待できない。
 ここで、本実施形態にかかるリチウムイオン二次電池の構成例を、図面を用いて説明する。図1はリチウムイオン二次電池の断面図の一例を表す。リチウムイオン二次電池10は、主な構成要素として、負極集電体11、負極活物質層13、セパレータ17、正極集電体12、正極活物質層15を含む。図1では、負極集電体11の両面に負極活物質層13が設けられ、正極集電体12の両面に正極活物質層15が設けられているが、各々の集電体の片面上のみに活物質層を形成することもできる。負極集電体11、正極集電体12、負極活物質層13、正極活物質層15、及びセパレータ17が一つの電池の構成単位、すなわち発電要素である(図中、単電池19)。セパレータ17は、耐熱性微粒子層と、オレフィン系樹脂膜とから構成されていてよい(いずれも図示せず)。このような単電池19を、セパレータ17を介して複数積層する。各負極集電体11から延びる延出部を負極リード25上に一括して接合し、各正極集電体12から延びる延出部を正極リード27上に一括して接合してある。なお正極リードとしてアルミニウム板、負極リードとして銅板が好ましく用いられ、場合により他の金属(たとえばニッケル、スズ、はんだ)または高分子材料による部分コーティングを有していてもよい。正極リードおよび負極リードはそれぞれ正極および負極に溶接される。このように複数の単電池を積層してできた電池は、溶接された負極リード25および正極リード27を外側に引き出す形で、外装体29により包装される。外装体29の内部には電解液31が注入されている。外装体29は、2枚の積層体を重ね合わせ、周縁部を熱融着した形状をしている。なお図1では、負極リード25と正極リード27は、外装体29の対向する辺にそれぞれ設けられている(「両タブ型」という。)が、負極リード25と正極リード27とを外装体29の一の辺に設ける(すなわち負極リード25と正極リード27とを外装体29の一の辺から外側に引き出す。「片タブ型」という。)こともまた可能である。
 上記のように作成したリチウムイオン二次電池を5Vまで充電した時に、正極比容量と負極比容量との比が1以上であることが好ましい。「リチウムイオン二次電池を5Vまで充電した時」とは、電池を過充電状態にまで充電したことの目安である。過充電状態にまで充電した場合に、正極比容量(すなわち正極が単位体積あたりリチウムイオンをどれだけ放出できるか)と負極比容量(すなわち負極が単位体積あたりリチウムイオンをどれだけ許容できるか)とのバランスを適正に維持していることが、過充電状態の電池の安全性を保つために重要である。正極比容量と負極比容量との比が1未満となると、正極容量に対して負極が過剰にあることとなり、電池の容量が低下しうる。各電極活物質の選択や、電極活物質とその他の添加剤との配合を適正なものにする等の工夫により、正極比容量と負極比容量との比を1以上にすることができる。たとえば、正極活物質の正極集電体への塗工量を増やしたり、負極活物質の負極集電体への塗工量を減らしたりすることができる。なお、正極と負極の比容量のバランスを適正に維持するという観点から、リチウムイオン二次電池を5Vまで充電した時の正極比容量と負極比容量との比は2以下であることが好ましい。この正極比容量と負極比容量との比は、さらに好ましくは1.5以下、さらに好ましくは1.1以下である。本明細書では、リチウムイオン二次電池を5Vまで充電した時の、正極比容量と負極比容量との比を「過剰比」と記載することがある。
 上述の負極の容量(A)と正極の容量(C)との比(以下「A/C比」と称する。)が、1.25以下となるように負極と正極とを作成することが好ましい。A/C比が大きいことは1の負極のリチウムイオン受け入れ量が1の正極のリチウムイオン放出量に比べて大きいことを表し、すなわち負極にリチウムイオンが大量に受容されうることを意味する。負極容量が大き過ぎると電池の過充電時に安全性を維持することが困難になりうるため、A/C比は適正な値に保つことが重要である。なお、高い電池容量を得るためには、A/C比は1.05以上であることが望ましい。
 さらに別の実施形態において、電池の出力と容量との比(W/Wh)の値が25未満であることが好ましい。ここで電池の出力は、10秒間の平均出力を表している。航続距離が100kmを超えるような車両用の高容量リチウムイオン二次電池を提供するには、複数の電池(セル)を組み合わせた組電池(バッテリーパック)にする。この場合、一つ一つの電池に要求される出力は必要以上に高くする必要がない。ここで電池の出力と容量との比(出力容量比)は、2以上25未満の範囲にあることが好ましい。出力容量比が2未満であると、抵抗が高すぎて車両用電池として用いる際に負荷特性に追従できない。また出力容量比が25以上の電池は、一般的には薄膜の電極を使用するため、面積当たりの容量が不足しうる。出力容量比は、好ましくは5以上20以下であり、さらに好ましくは10以上15以下である。
 なお、高容量バッテリーパック用の電池として使用するためには、電池の容量が5Ah以上であることが非常に好ましい。先に述べた適正な出力容量比とのバランスを考慮すると、電池の容量は5Ah以上70Ah以下であることが好ましい。電池の容量は、45Ah以上55Ah以下であることがさらに好ましい。
<負極の作製>
 負極活物質として、表面被覆天然黒鉛粉末(比容量390mAh/g)、導電助剤としてカーボンブラック粉末、バインダー樹脂としてポリフッ化ビニリデン樹脂(PVDF、クレハW#7200、クレハ・バッテリー・マテリアルズ・ジャパン株式会社)とを、固形分質量比で94:6の割合でイオン交換水中に添加して撹拌し、これらの材料を水中に均一に分散させてスラリーを作製した。得られたスラリーを、負極集電体となる厚み8μmの銅箔上に塗布した。次いで、125℃にて10分間、電極を加熱し、水を蒸発させることにより負極活物質層を形成した。更に、負極活物質層を空孔率35%となるようにプレスして、負極集電体の片面上に負極活物質層を塗布した負極を作製した。この負極を表中では「Gr」と記載する。
 もう一種類の負極を作成した。負極活物質として、ハードカーボン(400mAh/g)、導電助剤としてカーボンブラック粉末、バインダー樹脂としてPVDFとを、固形分質量比で94:6の割合でイオン交換水中に添加して撹拌し、これらの材料を水中に均一に分散させてスラリーを作製した。得られたスラリーを、負極集電体となる厚み8μmの銅箔上に塗布した。次いで、125℃にて10分間、電極を加熱し、水を蒸発させることにより負極活物質層を形成した。更に、負極活物質層を空孔率35%となるようにプレスして、負極集電体の片面上に負極活物質層を塗布した負極を作製した。この負極を表中では「HC」と記載する。
<正極の作製>
 正極活物質として、ニッケル・コバルト・マンガン酸リチウム(NCM433、すなわちニッケル:コバルト:マンガン=4:3:3、以下、「NCM」と称する。)と、導電助剤としてカーボンブラック粉末と、バインダー樹脂としてPVDF(クレハW#7200、クレハ・バッテリー・マテリアルズ・ジャパン株式会社)とを、固形分質量比で93:3:4の割合で、溶媒であるN-メチル-ピロリドン(以下、「NMP」を称する。)に添加した。さらに、この混合物に有機系水分捕捉剤として無水シュウ酸(分子量90)を、上記混合物からNMPを除いた固形分100質量部に対して0.03質量部添加した上で撹拌することで、これらの材料を均一に分散させてスラリーを作製した。得られたスラリーを、正極集電体となる厚み15μmのアルミニウム箔上に塗布した。次いで、125℃にて10分間、電極を加熱し、NMPを蒸発させることにより正極活物質層を形成した。さらに、正極活物質層を空孔率25%となるようにプレスして、正極集電体の片面上に正極活物質層を塗布した正極を作製した。
 さらに混合正極を作製した。ニッケル・コバルト・マンガン酸リチウム(NCM433、すなわちニッケル:コバルト:マンガン=4:3:3)とD50粒子径が10μmのLiMnO(以下、「LMO1」と称する。)とを、それぞれ表に記載した割合で混合した混合正極活物質と、導電助剤としてカーボンブラック粉末と、バインダー樹脂としてPVDF(クレハW#7200、クレハ・バッテリー・マテリアルズ・ジャパン株式会社)とを、固形分質量比で正極活物質:導電助剤:バインダー樹脂=90:5:5の割合で、溶媒であるNMPに添加した。さらに、この混合物に有機系水分捕捉剤として無水シュウ酸(分子量90)を、上記混合物からNMPを除いた固形分100質量部に対して0.03質量部添加した上で撹拌することで、これらの材料を均一に分散させてスラリーを作製した。得られたスラリーを、正極集電体となる厚み15μmのアルミニウム箔上に塗布した。次いで、125℃にて10分間、電極を加熱し、NMPを蒸発させることにより正極活物質層を形成した。さらに、正極活物質層を空孔率30%となるようにプレスして、正極集電体の片面上に正極活物質層を塗布した正極を作製した。
<セパレータ>
 以下の5種類のセパレータを用意した:
 PP01:ポリプロピレン、厚み25μm、熱収縮率40%、突き刺し伸度50% 
 CL01:ポリプロピレン(電子架橋あり)、厚み25μm、熱収縮率12%、突き刺し伸度2% 
 CL02:ポリプロピレン(電子架橋あり)、厚み25μm、熱収縮率13%、突き刺し伸度1% 
 CL03:ポリプロピレン(電子架橋あり)、厚み25μm、熱収縮率17%、突き刺し伸度5% 
 CC01:ポリプロピレン/ポリエチレン/ポリプロピレン積層体(酸化アルミニウムコーティングあり)、厚み20μm、熱収縮率13%、突き刺し伸度30% 
 なお、セパレータの熱収縮率と突き刺し伸度の測定法については後述する。
<電解液>
 エチレンカーボネート(以下、「EC」と称する。)とプロピレンカーボネート(以下、「PC」と称する。)とジエチルカーボネート(以下、「DEC」と称する。)とを、EC:PC:DEC=25:5:70(体積比)の割合で混合した非水溶媒に、電解質塩としての六フッ化リン酸リチウム(LiPF)を濃度が0.9mol/Lとなるように溶解させたものに対して、添加剤として環状ジスルホン酸エステル(メチレンメタンジスルホンネート(MMDS)とビニレンカーボネート(VC)とをそれぞれ濃度が1重量%となるように溶解させたものを用いた。
<リチウムイオン二次電池の作製>
 上記のように作製した各負極板と正極板を、各々所定サイズ(負極:254mm×184mm、正極:250mm×180mm)の矩形に切り出した。このうち、端子を接続するための未塗布部にアルミニウム製の正極リード端子を超音波溶接した。同様に、正極リード端子と同サイズのニッケル製の負極リード端子を負極板における未塗布部に超音波溶接した。セパレータの両面に上記負極板と正極板とを両活物質層がセパレータを隔てて重なるようにし、正極リードと負極リードがともに一辺側に揃うように配置して、電極板積層体を得た。2枚のアルミニウムラミネートフィルムの長辺の一方を除いて三辺を熱融着により接着して袋状のラミネート外装体を作製した。ラミネート外装体に上記電極積層体を挿入した。電解液を注液して真空含浸させた後、減圧下にて開口部を熱融着により封止することによって、いわゆる片タブ型の積層型リチウムイオン電池を得た。この積層型リチウムイオン電池について初期充放電を行った後、高温エージングを行い、電池容量5Ahの積層型リチウムイオン電池を得た。
<初期充放電>
 電池の残容量(以下、「SOC」と称する。)0%から100%まで、雰囲気温度55℃で、初期充放電を行った。充放電の条件は、以下の通りである:0.1C電流で4.1Vまで定電流充電(CC充電)、その後4.1Vで定電圧充電(CV充電)し、次いで0.1C電流での定電流放電(CC放電)を、2.5Vまで行う。
<過充電容量>
 SOC0%から1C電流で電池電圧5Vまで充電した。電池電圧5V到達時の電池の容量(この値を「X」(mAh)とする。)を測定し、この値を正極の過充電容量とした。
<加温試験>
 作製した電池を電池電圧4.15Vまで放電し、恒温槽内で1分間に1℃の割合で150℃まで昇温した。周囲温度150℃に到達時の電池電圧変化を測定した。
 このときの電池の様子を、電池が発火している場合(発火)、電池が発熱している場合(発熱)、電池電圧および電池温度に変化なし(変化なし)の3種類に分類した。
<電極容量>
 SOC0%の電池を解体し、正極の総面積を測定した(a[cm])。上記のXの値を用いて過充電容量をx=X/aの式により計算し(単位:mAh/cm)、この値を正極の過充電比容量とした。
 一方、解体電池から取り出した負極をEC/DEC溶媒で洗浄し、直径12mmに打ち抜いて、金属リチウムを正極として用いたコインセルを作製した。このコイン電池を0.1C電流で24時間CC/CV充電し、コイン電池の容量を測定した(この値を「Y」(mAh)とする。)。そして負極の面積あたりの容量「y」を計算し(単位:mAh/cm)、これを負極の比容量とした。本明細書では、「y」の値が負極の過充電容量にほぼ等しいとして、以下の計算に用いるものとする。
<過剰比>
 上記のxおよびyの値からx/yを計算し、過剰比とした。なお、負極比容量に対する正極過充電比容量の値である過剰比とは、先にも説明したとおり、正極のリチウムイオンの放出容量と負極のリチウムイオンの許容量とのバランスを表す指標となる。
<SOC-OCV(残容量-開放電圧)の測定>
 電池電圧3Vの状態からSOCが50%となるまで0.2CC電流でCC充電した。この状態で1時間放置した後の電池電圧を、50%SOC-OCV(単位:V)、すなわち残容量50%の電池の開放電圧の値とした。
<電池容量>
 上記の50%SOC-OCVの値(単位:V)と、0.2C電流での充電による電池容量の値(単位:Ah)との積を、電池容量(単位:Wh)とした。
<出力の測定>
 上記の50%SOC-OCVの状態から25℃で10秒間で下限電圧(3V)に達するための最大電流値を測定した。このとき50%SOC-OCVの値と、最大電流値(単位:A)との積を、電池出力(単位:W)とした。
<熱収縮率>
 セパレータを熱風循環式恒温槽内に懸垂して、25℃から180℃まで30分間かけて昇温し、次いで室温まで冷却した後に測定した試験片の面積を測定した。熱収縮率は、100×[(試験前のセパレータの面積)-(試験後のセパレータの面積)]/(試験前のセパレータの面積)で計算した。
<突き刺し強度>
 試料であるセパレータを固定し、試料面に直径1.0mm、先端形状半径0.5mmの半円形の針を毎分50±0.5mmの速度で突き刺し、針が貫通するまでの最大荷重を測定した。
Figure JPOXMLDOC01-appb-T000001
 
 参考例1~8、ならびに比較例2および3は、上記したセパレータのうちPP01を用いて実験を行った。
 過剰比は、混合正極中のNCMの割合が増加するにつれて増加する。そして、負極材料として黒鉛を使用し、過剰比が100%を超える比較例2および3は、加温試験で発熱が観測された。一方、負極材料としてハードカーボンを使用し、過剰比が100%を超える参考例3および4は、加温試験において変化が見られなかった。このように、混合正極中のNCMの割合を少なくし、負極材料としてハードカーボンを用いれば、少なくとも加温試験においては良好な結果を得ることができると推定される。しかしながらリチウムイオン二次電池の車載用の大容量電池としての使用を考慮した場合、容量の増加と電極材料の劣化の防止の点から、(1)混合正極中のNCMの割合をできるだけ増加させること、および(2)負極材料として黒鉛を使用すること、の2点の要求を満たすことが必要である。そこでA/C比を調整することでこれら2点を維持することができるかどうか検討した。参考例5~8においては、A/C比を1.5に調整することで、過剰比が100%を超えないようにした。参考例5~8の加温試験の結果から、A/C比を大きくすることは上記2点の要求を満たすための一手段であることがわかった。A/C比を大きくすることは、負極活物質の負極集電体上への塗布量を増やすことを意味し、その分、負極の重量、すなわち電池の重量が増加しうる。そこで上記の2点の要求を満たすための、他の手段を検討した。
 実施例1~実施例5は、熱収縮率が13%以下であるセパレータを使用した実験例である。いずれの実施例でも加温試験で発熱が観測されなかった。これらの実施例に係る電池はいずれも過剰比が100%を超えるが、上記セパレータの使用により電池の温度上昇を抑制できることがわかる。一方で、過剰比が100%を超え、熱収縮率が13%を超えるセパレータを使用した比較例1は、加熱試験で発熱が観測されることがわかる。すなわち、各電極材料の組み合わせと各電極比容量の割合を考慮しつつ適切なセパレータを選択することにより、高容量、高エネルギー密度を有しかつ安全性の高い電池を得ることができる。
 以上、本発明の実施例について説明したが、上記実施例は本発明の実施形態の一例を示したに過ぎず、本発明の技術的範囲を特定の実施形態あるいは具体的構成に限定する趣旨ではない。

Claims (5)

  1.  正極活物質層が正極集電体に配置された正極と、
     負極活物質層が負極集電体に配置された負極と、
     セパレータと、
     電解液と、
    を含む発電要素を含むリチウムイオン二次電池であって、
     負極活物質層が黒鉛を含み、
     該電池を5Vまで充電した時の該正極比容量と該負極比容量との比である過剰比が1以上であり、
     該セパレータの熱収縮率が13%以下である
    前記リチウムイオン二次電池。
  2.  該電池の出力と容量との比(W/Wh)の値が25未満である、請求項1に記載のリチウムイオン二次電池。
  3.  該電池の容量が5Ah以上である、請求項1または2に記載のリチウムイオン二次電池。
  4.  正極活物質層が一般式LiNiCoMn(1-y-z)で表される層状結晶構造を有するリチウムニッケルマンガンコバルト複合酸化物を含む、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  該負極容量(A)と該正極容量(C)との比(A/C)が1.25以下である、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
PCT/JP2016/070956 2015-08-04 2016-07-15 リチウムイオン二次電池 WO2017022454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680043740.0A CN107851838B (zh) 2015-08-04 2016-07-15 锂离子二次电池
EP16832733.6A EP3333957A4 (en) 2015-08-04 2016-07-15 Lithium-ion secondary cell
US15/749,817 US20180241075A1 (en) 2015-08-04 2016-07-15 Lithium-Ion Secondary Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154088 2015-08-04
JP2015154088A JP6305961B2 (ja) 2015-08-04 2015-08-04 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2017022454A1 true WO2017022454A1 (ja) 2017-02-09

Family

ID=57944072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070956 WO2017022454A1 (ja) 2015-08-04 2016-07-15 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20180241075A1 (ja)
EP (1) EP3333957A4 (ja)
JP (1) JP6305961B2 (ja)
CN (1) CN107851838B (ja)
WO (1) WO2017022454A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006071A (ja) * 2016-06-29 2018-01-11 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
JP7283264B2 (ja) * 2019-06-27 2023-05-30 Tdk株式会社 リチウム二次電池
CN115295791A (zh) 2019-09-26 2022-11-04 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的电池模块、电池包、装置
JP2023500938A (ja) * 2019-11-08 2023-01-11 エルジー・ケム・リミテッド 架橋ポリオレフィン分離膜、架橋ポリオレフィン分離膜の製造方法及びそれを含む電気化学素子
CN116888752A (zh) 2021-02-10 2023-10-13 株式会社Aesc日本 电池
CN115312892B (zh) * 2022-10-10 2023-03-24 宁德新能源科技有限公司 电化学装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151075A (ja) * 2000-11-13 2002-05-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004227931A (ja) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2004091014A1 (ja) * 2003-04-09 2004-10-21 Nitto Denko Corporation 電池用セパレータのための接着剤担多孔質フィルムとその利用
JP2013157136A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 非水電解液二次電池
JP2013178936A (ja) * 2012-02-28 2013-09-09 Tdk Corp リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
JP2015046295A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147834A (ja) * 1995-11-24 1997-06-06 Shin Kobe Electric Mach Co Ltd 電 池
JP3141003B2 (ja) * 1998-08-21 2001-03-05 シャープ株式会社 非水電解液型二次電池
KR100587436B1 (ko) * 1999-12-14 2006-06-08 산요덴키가부시키가이샤 리튬 이온 이차 전지 및 이 전지를 구비한 전지 장치
JP2001319640A (ja) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd 非水系電解質二次電池
JP2002093464A (ja) * 2000-09-18 2002-03-29 Sony Corp 二次電池
JP2005285633A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP5448345B2 (ja) * 2007-01-30 2014-03-19 旭化成イーマテリアルズ株式会社 多層多孔膜及びその製造方法
US8896126B2 (en) * 2011-08-23 2014-11-25 Marvell World Trade Ltd. Packaging DRAM and SOC in an IC package
CN101752558A (zh) * 2008-12-22 2010-06-23 深圳市比克电池有限公司 一种锂离子电池正极材料及其制备方法
CN102544578B (zh) * 2012-03-16 2014-04-02 天津力神电池股份有限公司 一种能够提高综合性能的锂离子电池
CN107053774A (zh) * 2012-03-28 2017-08-18 旭化成株式会社 多孔膜及多层多孔膜
WO2014175355A1 (ja) * 2013-04-26 2014-10-30 日産自動車株式会社 非水電解質二次電池
JP5435760B2 (ja) * 2013-07-09 2014-03-05 日立マクセル株式会社 非水二次電池
US9331323B2 (en) * 2013-08-21 2016-05-03 GM Global Technology Operations LLC Cross-linked multilayer porous polymer membrane battery separators
CN104425812A (zh) * 2013-09-06 2015-03-18 中国科学院大连化学物理研究所 一种锂的过渡金属氧化物正极材料及其制备和应用
KR101783568B1 (ko) * 2013-10-07 2017-09-29 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지용 전극 재료, 및 이것을 사용한 비수전해질 이차 전지용 전극 및 비수전해질 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151075A (ja) * 2000-11-13 2002-05-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004227931A (ja) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2004091014A1 (ja) * 2003-04-09 2004-10-21 Nitto Denko Corporation 電池用セパレータのための接着剤担多孔質フィルムとその利用
JP2013157136A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 非水電解液二次電池
JP2013178936A (ja) * 2012-02-28 2013-09-09 Tdk Corp リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
JP2015046295A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333957A4 *

Also Published As

Publication number Publication date
EP3333957A4 (en) 2018-08-15
CN107851838A (zh) 2018-03-27
CN107851838B (zh) 2021-01-22
JP2017033827A (ja) 2017-02-09
JP6305961B2 (ja) 2018-04-04
US20180241075A1 (en) 2018-08-23
EP3333957A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
CN109088091B (zh) 锂离子二次电池元件及锂离子二次电池
JP6403278B2 (ja) リチウムイオン二次電池
JP6305961B2 (ja) リチウムイオン二次電池
US10153471B2 (en) Lithium ion secondary battery
CN106941192B (zh) 锂离子二次电池
EP3249734A1 (en) Lithium ion secondary battery
US10276889B2 (en) Lithium ion secondary battery
JP6654667B2 (ja) リチウムイオン二次電池
WO2017169417A1 (ja) リチウムイオン二次電池
JP6441778B2 (ja) リチウムイオン二次電池
CN109428083B (zh) 锂离子二次电池用正极及锂离子二次电池
JP6738865B2 (ja) リチウムイオン二次電池
EP3605667A1 (en) Lithium ion secondary battery, and manufacturing method and inspection method for negative electrode for lithium ion secondary battery
JP6578148B2 (ja) リチウムイオン二次電池
JP6989322B2 (ja) リチウムイオン二次電池用正極
JP6618387B2 (ja) リチウムイオン二次電池
JP6618386B2 (ja) リチウムイオン二次電池
JP6618385B2 (ja) リチウムイオン二次電池
CN110603684A (zh) 锂离子二次电池元件及锂离子二次电池
JP6616278B2 (ja) リチウムイオン二次電池用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15749817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832733

Country of ref document: EP