WO2017018324A1 - ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス - Google Patents

ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス Download PDF

Info

Publication number
WO2017018324A1
WO2017018324A1 PCT/JP2016/071460 JP2016071460W WO2017018324A1 WO 2017018324 A1 WO2017018324 A1 WO 2017018324A1 JP 2016071460 W JP2016071460 W JP 2016071460W WO 2017018324 A1 WO2017018324 A1 WO 2017018324A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
glass
glass antenna
antenna
wide
Prior art date
Application number
PCT/JP2016/071460
Other languages
English (en)
French (fr)
Inventor
橋本 直樹
彰一 竹内
ダン リス
グーカン ゴック
マシュー ドイル
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP16830429.3A priority Critical patent/EP3327862B1/en
Priority to JP2017530825A priority patent/JP6614237B2/ja
Priority to CN201680042988.5A priority patent/CN107851889B/zh
Publication of WO2017018324A1 publication Critical patent/WO2017018324A1/ja
Priority to US15/877,690 priority patent/US10297897B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1278Supports; Mounting means for mounting on windscreens in association with heating wires or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths

Definitions

  • the present invention relates to a glass antenna and a vehicle window glass provided with the glass antenna.
  • connected car technology in which the vehicle itself has a function of collecting information from the outside and a function of distributing information.
  • vehicle efficiency is improved by two-way communication between location information, vehicle conditions, road surface conditions, and other data transmitted by the vehicle, and map information, traffic information, and weather information collected from the outside.
  • Telematics services such as traffic congestion relief and driving support that improve safety and safety will be provided.
  • connected cars are also expected to provide solutions / services and the like as tools for improving user convenience, such as music / video distribution services.
  • the communication wave used for such two-way communication has a different use frequency defined for each country, and a different frequency band is used for each carrier in one country. Therefore, an antenna corresponding to a wide band is preferable so that a plurality of communication waves can be received.
  • FIG. 1 a technique for mounting a communication antenna on the roof of a vehicle has been proposed so that a bidirectional communication function between the vehicle and the outside can be realized.
  • an antenna unit having a diversity structure having a first antenna 81 and a second antenna 82 erected on a ground plate 83 on a roof 91 of a vehicle 90 and spaced apart in the front-rear direction of the vehicle 90. 80 is installed.
  • These antennas 81 and 82 are built in the case 84.
  • one ends of the first radiation pattern 121 and the second radiation pattern 122 having different lengths are joined to each other and arranged in a V shape in the vertical direction of the glass surface.
  • a glass antenna 100 in which a grounding pattern 110 is disposed below a character pattern 120 Patent Document 2.
  • a frequency-switchable glass antenna for a car phone for dealing with a plurality of frequencies for example, radio waves with resonance frequencies of 800 MHz and 1.5 GHz are transmitted and received.
  • JP 2012-054915 A Japanese Patent Laid-Open No. 06-291530
  • the glass antenna 100 is configured by the radiation pattern 120 (121, 122) and the ground pattern 110 and the two elements, a large arrangement space is required.
  • the radiation pattern 120 is a metal wire conductor, so that interference from the side edge portion 710 d of the vehicle housing provided with the window and interference from the defogger arranged on the rear glass 600 are prevented.
  • the glass antenna 100 has to be arranged at a predetermined distance from the side edge 710d and the defogger. If the antenna is separated from the side edge portion, it will stand out and the appearance will be poor. When the antenna is separated from the defogger by a predetermined distance, the defogger is made smaller, so that the degree of freedom in designing the defogger is lowered.
  • an object of the present invention is to provide a glass antenna and a vehicle window glass capable of improving the appearance and communicating in a wide band.
  • one embodiment of the present invention is a glass antenna provided on a vehicle window glass, including a slot antenna formed by cutting out a conductive film and a pair of power feeding portions that feed power to the slot antenna.
  • the slot antenna is A first slot extending in a first direction; A second slot connected to one end of the first slot and extending in a second direction that is a different direction relative to the first direction; A first wide slot connected to the other end of the first slot directly or via a first connection slot, the slot width being wider than the slot width of the first slot; A second wide slot connected to an end of the extension of the second slot directly or via a second connection slot, the slot width being wider than the slot width of the second slot.
  • the pair of power feeding units are arranged so as to straddle the first slot.
  • a glass antenna and a vehicle window glass including the glass antenna are provided.
  • the glass antenna provided on the window glass for a vehicle can improve the appearance and communicate in a wide band.
  • 1st Embodiment it is a schematic diagram which shows current distribution when a frequency is 0.698 GHz. In a 1st embodiment, it is a mimetic diagram showing current distribution when frequency is 0.83 GHz and 0.96 GHz. In 1st Embodiment, it is a schematic diagram which shows electric current distribution when a frequency is 1.71 GHz, 1.94 GHz, and 2.17 GHz. In 1st Embodiment, it is a schematic diagram which shows current distribution when a frequency is 2.4 GHz, 2.545 GHz, and 2.69 GHz. It is a graph which shows the return loss of the glass antenna of 1st Embodiment shown in FIG.4 and FIG.5.
  • the glass antenna of a 1st embodiment it is a graph which shows a return loss when changing the installation position of an electric power feeding part.
  • 10 is a graph showing the return loss of glass antennas having different wide slot shapes according to the fourth to sixth embodiments. It is a graph which shows the return loss of the glass antenna from which the angle of bending of 4th, 7th, 8th embodiment differs. It is a graph which shows the return loss of the glass antenna of 1st Embodiment when changing the distance from a vehicle housing
  • FIG. 20 is a schematic diagram showing an example of current distribution when the frequency is 0.698 GHz to 0.96 GHz in the ninth embodiment.
  • FIG. 16 is a schematic diagram showing an example of current distribution when the frequency is 1.71 GHz to 2.17 GHz in the ninth embodiment.
  • FIG. 20 is a schematic diagram showing an example of current distribution when the frequency is 2.4 GHz to 2.69 GHz in the ninth embodiment.
  • the window glass according to the present invention is mainly a rear glass attached to the rear part of the vehicle, and the left-right direction on the drawing corresponds to the vehicle width direction.
  • directions such as parallel and right angle allow a deviation that does not impair the effects of the present invention.
  • FIG. 3 is an overall plan view of the rear window glass provided with the glass antenna (communication glass antenna) according to the embodiment of the present invention.
  • the window glass is an example of a window plate that covers the opening of the vehicle body.
  • the window glass is a plate-like member, and the material is not limited to glass, and may be a resin, a film, or the like.
  • a window glass 60 at the rear of the vehicle (also referred to as a vehicle window glass or a rear glass) is attached to a casing opening (also referred to as an opening or window opening) formed by a vehicle casing (body or vehicle body).
  • An outer peripheral edge 61 of the window glass 60 is shown by a solid line in FIG.
  • a vehicle housing 70 (a body body or hatchback door made of metal or partially resin including a resin around the opening in a metal frame) has an edge (body flange) 71a that forms a window opening of the body. 71b, 71c, 71d (see dotted lines in FIG. 3).
  • the lower edge 71c of the vehicle casing 70 is shown curved because of the plan view of the window glass 60.
  • the lower edge 71c when the window glass 60 is attached to the vehicle, the lower edge 71c However, it extends in a substantially horizontal direction. Therefore, the second slot 12 (see FIG. 4) of the glass antenna 1 provided substantially parallel to the adjacent lower edge portion 71c extends in the vehicle width direction and substantially in the horizontal direction.
  • a glass antenna 1 which is a glass antenna for a vehicle is formed by being mounted on one surface (particularly, the vehicle interior surface) of a window plate (window glass) by printing, embedding, attaching or the like.
  • a rectangular metal film for example, a conductive film formed by firing a silver paste or the like
  • the electrically conductive film of this invention is not limited to a metal film, For example, a conductive resin film may be sufficient.
  • the cut-out portion radiates as a slot and functions as a slot antenna.
  • a shielding part (shielding film) 65 of black or brown or the like is formed in the peripheral area on the surface of the window glass 60, and the whole (or part of) the antenna 1 may be formed on the shielding part 65. ) Is provided.
  • the shielding portion 65 include ceramics such as a black ceramic film.
  • FIG. 3 is a view from the inside of the vehicle and the metal film 20 forming the slot antenna is attached to the vehicle inner surface of the window glass 60, all the components of the glass antenna 1 are arranged on the vehicle inner side than the window glass 60. . Further, in the glass antenna 1, at least a portion on which the resistor 8 and the coaxial cable 8 c (see FIG. 5) are mounted, or the entire glass antenna 1 is provided in the region of the shielding portion 65.
  • the glass antenna 1 is provided on the vehicle inner surface of the window glass 60 in this way, there is no component that forms the antenna 1 on the vehicle outer side, and the glass antenna 1 is provided on the shielding portion 65 to provide a window.
  • the glass is viewed from the outside of the vehicle, all or part of the metal film 20 cannot be visually recognized, so that the window glass has an excellent design.
  • a portion away from the vehicle housing 70 may be formed by the shielding dot portion so that it gradually becomes thinner (becomes a gradation) as it becomes near the center of the window.
  • a defogger 40 having a plurality of parallel running heater wires 42 and a plurality of strip-shaped bus bars 41 for supplying power to the heater wires 42 may be provided on the window glass 60 that is a rear glass.
  • the heater wire 42 and the bus bar 41 constituting the defogger 40 are conductive heating type conductive patterns.
  • the glass antenna 1 is located below the defogger 40 in the window glass 60, that is, the lowermost heater line (heating line) 42 c of the defogger 40 and the lower edge 71 c of the opening of the vehicle housing 70. It is provided in the blank area between.
  • the metal portion of the rear tray portion (a part of the metal body that supports the rear tray portion or In some cases, the metal frame portion and the metal portion of the speaker embedded in the rear tray portion protrude above the lower edge portion 71c of the opening of the vehicle casing 70 and are arranged close to the glass antenna.
  • the glass antenna is affected by the metal part of the rear tray part rather than the lower edge part 71 c of the opening part of the vehicle casing 70.
  • the glass antenna 1 when the glass antenna 1 is attached to a vehicle that is easily affected by the metal portion of the rear tray portion, the glass antenna 1 is not shown in the blank area between the lowermost heater line 42c and the lower edge portion 71c. 3 may be disposed at a position above the position shown in FIG. 3 and close to the lowermost heater line 42c or near the center.
  • the glass antenna 1 is, for example, a corner portion (lower left corner indicated by a solid line in FIG. 3) between the lower edge portion 71c of the opening of the vehicle casing 70 and the side edge portion 71d connected to the lower edge portion 71c. Or the vicinity of the corner between the lower edge 71c and the side edge 71b connected to the lower edge 71c (the lower right position indicated by the dotted line in FIG. 3).
  • the glass antenna 1 may be provided in the vicinity of either one of the left and right corners of the upper edge portion 71a of the vehicle casing 70, and in that case, the configuration is turned upside down.
  • MIMO Multiple-Input
  • two glass antennas 1 having a symmetrical configuration may be provided. Or you may install two antennas in combination with the glass antenna of other embodiment.
  • the configuration of the glass antenna 1 on the premise that the glass antenna 1 is disposed at the lower left position indicated by the solid line in FIG. 3 will be described.
  • FIG. 4 is an enlarged view of the glass antenna 1 according to the first embodiment installed on the window glass 60 for a vehicle.
  • the glass antenna 1 functions as a slot antenna by forming the cutout portion 10 in the metal film (conductive film) 20.
  • the metal film 20 includes a first slot 11, a second slot 12, a first connection slot 13, a first wide slot 14, and a second wide slot 15, which are cut out portions 10. It is formed as.
  • a pair of power supply units (power supply points) 7 are arranged so as to straddle the first slot 11.
  • the first slot 11 arranged so as to straddle the pair of power feeding portions 7 extends from the lower end (one end) a to the upper end (other end) b in a substantially vertical direction (first direction).
  • the extending direction of the first slot 11 is a substantially vertical direction on the surface of the window glass 60.
  • the first connection slot 13 is connected to the other end b of the first slot 11 and extends to the width changing portion c in a direction different from the first direction.
  • the extending direction of the first connection slot 13 is a substantially horizontal direction (third direction).
  • the first wide slot 14 is connected to the end portion (width changing portion) c of the first connection slot 13, and the slot width is wider than those of the first slot 11 and the first connection slot 13.
  • the second slot 12 is connected to one end a of the first slot 11 and extends in a substantially horizontal direction, which is a direction different from the first direction, in the vehicle width direction (second direction). .
  • the second wide slot 15 is directly connected to the end e (extended end portion) of the second slot 12 and has a wider slot width than the second slot 12.
  • the slot width of the second wide slot 15 gradually increases as it extends.
  • each slot may be bent with a curvature.
  • the end portion may be an end at which each slot extends, or may be in the vicinity of the end that is a slot before the end.
  • substantially upward means that it is relatively upward with respect to the other end portion
  • substantially downward includes the upper direction in the vertical direction and the diagonally upward direction. And includes vertically downward and diagonally downward.
  • the attachment angle of the window glass 60 to the vehicle is preferably 15 ° to 90 ° with respect to the ground plane, for example.
  • the vertical direction of the glass antenna is the vertical direction on the surface of the window glass 60 and has the same inclination as the window glass.
  • the glass antenna 1 shown in FIG. 4 is disposed in the vicinity of the corner between the lower edge portion 71c of the opening of the vehicle casing 70 and the side edge portion 71d connected to the lower edge portion 71c. (See solid line in FIG. 3). Therefore, the left side of the glass antenna 1 shown in FIG. 4 is close to the side edge 71d of the corner of the opening of the vehicle casing 70, and the lower side is close to the lower edge 71c of the corner.
  • the first wide slot 14 is open on the side (upper side) away from the lower edge portion 71 c of the corner of the vehicle housing 70 where the glass antenna 1 is disposed close (open). Part d).
  • the second wide slot 15 is open on the side (upper side) away from the lower edge portion 71c of the corner of the vehicle housing 70 where the glass antenna 1 is disposed close (opening portion f).
  • the side closer to the corner between the lower edge portion 71c and the side edge portion 71d where the glass antenna 1 is disposed in the vicinity than the second slot 12 and the first slot 11 is the ground side. It functions as the conductor 21.
  • the side farther from the corner than the second slot 12 and the first slot 11 functions as the core side conductor 22.
  • the power feeding unit 7 is a pair of power feeding units having a core wire side power feeding unit and a ground side power feeding unit, and is arranged so as to straddle the first slot 11 between the pair of power feeding units, whereby the ground side conductor 21 and the core wire are arranged. Power is supplied to the side conductor 22.
  • the opening d is provided above the first wide slot 14 and the opening f is provided above the second wide slot 15 is shown.
  • the position of the part f is not limited to the upper side.
  • the opening d and the opening f are separated from the corner of the vehicle housing 70 where the glass antenna 1 is disposed in proximity. Therefore, as a modification of the present embodiment, the first wide slot 14 and the second wide slot 15 are opened on the side away from the side edge portion 71d of the corner portion of the vehicle housing 70 (the right side in FIG. 4). It may be.
  • the upper part of the ground-side conductor 21 of the metal film 20 has a linear shape due to the shape and arrangement of the first connection slot 13. Therefore, the filament grounding side conductor 21L has a function of radiating radio waves at a specific frequency like a filament element.
  • the filament grounding side conductor 21L is located on the side away from the corner of the vehicle casing 70 in which the glass antenna 1 is provided in the vicinity, interference from the vehicle casing 70 that affects the filament element is avoided. Not easily affected.
  • the ground-side conductor 21 and the core-wire-side conductor 22 of the metal film 20 are provided with a wide solid portion (painted portion).
  • the area of the solid portion is too wide, the difference in heat absorption between the glass and the metal may adversely affect the molding of the glass and cause distortion.
  • a grid-like (grid) grid is provided in a place where the power feeding unit 7 and the resistor 9 are not installed.
  • Cutout portions (perforated portions, notched portions) 23 and 24 may be formed (see FIG. 5).
  • the hollow portions 23 and 24 are not limited to the lattice shape, and may be a triangle, a circle, or other shapes. Further, the cutout portions 23 and 24 are set to be shorter than the shortest slot (the first slot 11 in FIG. 4) so as not to affect other slots.
  • FIG. 5 shows an on-glass connector for connecting a coaxial cable (hereinafter also simply referred to as a connector) in which the hollow portions 23 and 24 are formed in the glass antenna 1 shown in FIG. 4 and the resistor 9 and the feeding portion 7 are connected to the coaxial cable 8c. ) Is an enlarged view in which 8 is installed.
  • a coaxial cable hereinafter also simply referred to as a connector
  • the ground-side conductor 21, the core-side conductor 22, the feeding portion 7, the resistor 9, the coaxial cable 8 c, and the on-glass connector 8 for connecting the coaxial cable are provided on one surface (same as the conductor) of the window glass 60. Surface).
  • the on-glass connector 8 for connecting the coaxial cable is soldered to the power feeding portion 7 arranged so as to straddle the first slot 11 with the solder 8s.
  • the inner conductor of the coaxial cable 8c is connected to the core conductor 22 of the metal film 20, and the outer conductor such as a braided wire of the coaxial cable 8c is connected to the ground conductor 21 and soldered. .
  • the communication antenna that is the subject of the present invention transmits and receives information including a telematics service.
  • a connection detecting resistor 9 may be provided in order to detect that at least the antenna is connected.
  • the resistor 9 is assumed to be a resistor module having a large size with respect to the wavelength.
  • this resistor module is arranged on the antenna, the antenna characteristics change, so the resistor 9 and the connector 8 are separated from each other. It is preferable to arrange it at a position. Therefore, as shown in FIG. 5, the glass antenna 1 of the present embodiment is configured on the premise that the resistor 9 and the connector 8 are attached at positions separated from each other.
  • the coaxial cable 8c is routed from the side edge portion 71d side of the metal casing, the left end of the glass antenna 1 in FIG. 5 on the side close to the side edge portion 71d (see FIG. 3) in the glass antenna 1.
  • a connector 8 connected to the coaxial cable 8c is provided.
  • the resistor 9 is attached so as to straddle the wide slot 15 so as to be as far as possible from the first slot 11 in which the coaxial cable 8c and the connector 8 are provided.
  • the resistor installation portion 15 ⁇ which is a portion for installing the resistor 9 is a slot whose peripheral edge is the same width as the opening f and is narrower than the periphery. It is a substantially parallel rectangular slot shape that is the width.
  • the second wide slot 15 includes a resistance portion 15 ⁇ having the same width as the opening f, a triangular portion 15 ⁇ in which the triangular portion and the widest portion of the triangle extend, and a resistance facing portion facing the resistance installation portion 15 ⁇ .
  • the expansion part 15 ⁇ and the wide connection part 15 ⁇ between the triangular part 15 ⁇ and the resistance facing extension part 15 ⁇ are included. Since the width of the resistance facing extension 15 ⁇ is wide, the corresponding portion of the ground-side conductor 21 becomes thin in the form of a line (the line corner conductor 21Lc).
  • the ground-side conductor 21 and the core-side conductor 22 of the metal film 20 include a resistor 9, and a closed circuit is formed by a route connecting the internal conductor of the coaxial cable 8 c connected to the connector 8 with an external conductor such as a braided wire. Configure to form.
  • the ground side conductor 21 and the core side conductor 22 are metal films formed by printing and baking a paste containing a conductive metal such as a silver paste on the inside surface of the window glass 60.
  • a conductive metal such as a silver paste
  • the present invention is not limited to this method, and a linear body or a foil-like body made of a conductive material such as copper is bonded to the window glass on either the inner surface or the outer surface of the window glass. It may be formed by pasting with an agent or the like, and when the window glass is laminated glass, it may be provided inside.
  • resistor 9, X shown in FIG. 5 can function as a disconnection detection path for detecting breakage of the window glass 60 for a vehicle.
  • the window glass 60 is a rear glass, and since tempered glass is generally used, the window glass becomes fine granular fragments when broken. Therefore, when the window glass 60 is damaged, the silver paste-like core wire side conductor 22 and the ground side conductor 21 printed on the window glass 60 are also granulated and damaged.
  • the disconnection detection path X is formed by connecting the core wire side conductor 22 and the ground side conductor 21 by the connector 8 and the resistor 9 connected to the power supply unit 7, the disconnection detection path X is disconnected.
  • the resistance value becomes infinite, and it can be detected that the window glass 60 is broken.
  • the breakage of the glass can be detected by detecting the disconnection by the antenna of the present invention, it is not necessary to provide a separate glass breakage detection means in the window glass 60. Therefore, since the number of parts arrange
  • the resistor 9 is disposed away from the power feeding unit 7, so that the current near the power feeding unit 7 can be prevented from receiving interference from the resistor 9. it can.
  • the radiation element of the silver paste-like linear antenna is provided on the window glass at a position close to the vehicle casing, the reception gain of the antenna is increased due to interference with the metal. There is a tendency to decrease.
  • the radiating element is a slot antenna, so that a current is generated inside the metal film 20 forming the slot. Because the electric field created by is closed, it is less susceptible to interference with metals and resins.
  • the antenna according to the embodiment of the present invention can obtain stable characteristics even when a metal such as a defogger or a vehicle casing is close to the periphery of the antenna or even when a resin portion of the vehicle casing is close to the antenna. Furthermore, even if a metal film such as a transparent conductive film is formed around the periphery, an antenna that is similarly less susceptible to interference can be configured.
  • Communication waves use different frequencies for each country, and each country uses different carrier frequency bands. Therefore, an antenna corresponding to a wide band is preferable so that a plurality of communication waves can be transmitted and received.
  • the glass antenna of the present invention has three bands (0.698 GHz to 0.96 GHz (Band 1), 1 of the bands used for LTE (Long Term Evolution), for example. .71 GHz to 2.17 GHz (Band 2), 2.4 GHz to 2.69 GHz (Band 3)).
  • the glass antenna of the present invention is set so that it can communicate even in an ISM (Industry Science Medical) band as a frequency band used for communication.
  • the ISM band used for communication is 0.863 GHz to 0.870 GHz (Europe), 0.902 GHz to 0.928 GHz (US), 2.4 GHz to 2.5 GHz (common to the world).
  • Communication standards using the 2.4 GHz band include a DSSS wireless LAN that conforms to IEEE 802.11b, Bluetooth (registered trademark), and some FWA systems.
  • the ISM band in the US and Europe overlaps with the Band 1 band of LTE, and the ISM band common to the world overlaps with Band 3 of LTE. Therefore, the glass antenna of the embodiment of the present invention can be applied to the ISM band for communication.
  • a plurality of slots 11, 12, 13 and wide slots 14, 15 having different lengths and thicknesses are formed in the metal film 20 as a glass antenna. It becomes an antenna corresponding to a wide frequency band.
  • the second slot 12, the first connection slot 13, the first wide slot 14, and the second wide slot 15 extend substantially in the horizontal direction, and therefore transmit and receive vertically polarized radio waves. can do.
  • the glass antenna according to the embodiment of the present invention is provided in the vicinity of the outer peripheral edge 61 of the window glass 60 without affecting the vehicle design and aerodynamic characteristics as in the conventional example of FIG. It is possible to deal with a plurality of bands and a wide band without doing so.
  • the second slot 12, the first connection slot 13, the first wide slot 14, and the second wide slot 15 are extended in a substantially horizontal direction.
  • the antenna mainly supports vertical polarization.
  • the second slot 12, the first connection slot 13, the first wide slot 14, and the second wide slot 15 extend in a substantially vertical direction, an antenna corresponding to horizontally polarized waves can be obtained. .
  • the vehicle is a mobile body, it is preferable to provide a plurality of communication antennas and to have a radio wave selection ability that can be switched to one of the antennas having good reception sensitivity depending on the location.
  • a MIMO configuration that is a function of increasing communication capacity by a plurality of antennas is more preferable.
  • a broadband antenna having the same configuration as that of the antenna 1 of the present invention can be provided substantially symmetrical with respect to the center line in the width direction of the window glass 60 (see FIG. 3).
  • the plurality of antennas be installed at a predetermined distance (for example, 86 mm or more, which is a 0.2 wavelength of 0.7 GHz).
  • a predetermined distance for example, 86 mm or more, which is a 0.2 wavelength of 0.7 GHz.
  • FIG. 6 is an enlarged view of a glass antenna 1A according to the second embodiment of the present invention.
  • the wide slot has a quadrangular shape for the first wide slot and a triangular shape for the second wide slot, but the shape of the wide slot is not limited to this.
  • the first wide slot 14A has a triangular shape that gradually expands as it extends.
  • FIG. 7 is an enlarged view of the glass antenna 1B according to the third embodiment of the present invention.
  • the second wide slot 15 ⁇ / b> B has a quadrangular shape that spreads rapidly in the width changing portion e.
  • the first connection slot 13 is shorter than the second slot 12. Therefore, the first wide slot 14 (14A) connected to the first connection slot 13 has the first slot 11 and the second wide slot in the vehicle width direction (direction substantially parallel to the lower edge portion 71c). 15 (15B).
  • the metal film 20 (20A, 20B) constituting the slot antenna can be formed into a horizontally long rectangular shape, and the arrangement space of the metal film 20 (20A, 20B) forming the glass antennas 1, 1A, 1B can be reduced.
  • the vertical direction can be shortened.
  • the glass antenna 1 having a short installation space in the vertical direction is arranged in a slight blank area of the window glass 60. can do.
  • FIG. 8 is an enlarged view of the glass antenna 2 according to the fourth embodiment of the present invention.
  • the first slot 11C is directly connected to the first wide slot 14C directly at the end g without the first connection slot 13 being interposed.
  • the connection is different.
  • the second wide slot 15C is connected to the second slot 12C.
  • the arrangement space is short in the vertical direction and long in the horizontal direction.
  • the horizontal length of the arrangement space is limited, and the vertical This can be applied to the case where the length can be secured. It is preferable to select an appropriate form according to the shape of the place where the antenna is installed.
  • both the first wide slot 14C and the second wide slot 15C are a combination of a triangular portion and a square portion that gradually expands as it extends. It is.
  • both the first wide slot 14C and the second wide slot 15C may be formed in a triangular shape that gradually spreads as it extends. Further, in order to install the resistor 9, in the second wide slot 15 ⁇ / b> C, a portion away from the corner where the glass antenna 2 is provided in the vicinity may be provided with an opening as shown in FIG. 5. Furthermore, the shape of the second wide slot 15C may be a shape combined with another square.
  • FIG. 9 is an enlarged view of a glass antenna 2A according to the fifth embodiment of the present invention. This embodiment is different from the fourth embodiment shown in FIG. 8 in that the shape of the second wide slot 15D is a square shape.
  • FIG. 10 is an enlarged view of the glass antenna 2B according to the sixth embodiment of the present invention. This embodiment is different from the fourth embodiment shown in FIG. 8 in that the shape of the first wide slot 14E is a square shape.
  • FIG. 11 is an enlarged view of a glass antenna 2C according to the seventh embodiment of the present invention.
  • the bent portion a is bent at a right angle.
  • the angle of the bending may be changed in accordance with the shape of the flange of the window to be arranged, the arrangement position of other members, and the position of the wiring.
  • This embodiment is different from the configuration of FIG. 8 in that the bending angle ⁇ b of the bent portion a is an obtuse angle.
  • FIG. 12 is an enlarged view of a glass antenna 2D according to the eighth embodiment of the present invention. This embodiment is different from the configuration of FIG. 8 in that the bending angle ⁇ b of the bent portion a between the first slot 11C and the second slot 12C is an acute angle.
  • the first to eighth embodiments have been described on the assumption that they are installed at the lower left corner of the window shown in FIG. 3. However, the above-described glass antenna is reversed left and right to the lower right corner shown in FIG. It can also be installed.
  • the position where the feeding point is connected and the arrangement position with respect to the window glass 60 are horizontally reversed from the above-described embodiments (glass antennas 1, 1A, 1B).
  • a description will be given using an example of the glass antenna (3, 3A) disposed at the position of the dotted line in the lower right of FIG.
  • the glass antennas 3 and 3A may be disposed so as to be horizontally reversed so as to be disposed in the lower left of FIG.
  • FIG. 13 is an enlarged view of a glass antenna according to a ninth embodiment of the present invention installed on a window glass 60 for a vehicle.
  • the glass antenna 3 functions as a slot antenna by forming the cutout portion 10F in the metal film (conductive film) 20F.
  • a first slot 11F, a second slot 12F, a first wide slot 14F, and a second wide slot 15F are formed as a cutout portion 10F in the metal film 20F.
  • a pair of electric power feeding parts (feeding point) 7F is arrange
  • the metal film 20F constituting the slot antenna is open in the side edge direction and the upper direction.
  • the first wide slot 14 ⁇ / b> F opens on the side (right side in FIG. 13) close to the side edge portion 71 b of the corner of the vehicle housing 70 where the glass antenna 3 is disposed in proximity. (Opening g).
  • the second wide slot 15F is opened on the side (upper side in FIG. 13) away from the lower edge portion 71c of the corner of the vehicle housing 70 where the glass antenna 3 is disposed close (opening). Part h).
  • the first slot 11F which is arranged so as to straddle the pair of power supply portions 7F, extends from the lower end (one end) to the upper end (the other end) in a substantially vertical direction (first direction).
  • the extending direction of the first slot 11 ⁇ / b> F is a substantially vertical direction on the surface of the window glass 60.
  • the first wide slot 14F is connected to the other end (upper end) of the first slot 11F, and the slot width is wider than that of the first slot 11F.
  • the second slot 12F is connected to one end (lower end) of the first slot 11F and extends in the vehicle width direction (second direction) in a substantially horizontal direction that is a different direction from the first direction. Exists.
  • the second wide slot 15F is connected to an end portion (extended end portion) of the second slot 12F, and the slot width is wider than that of the second slot 12F.
  • the slot width of the second wide slot 15F increases gradually and stepwise as it extends across the constricted portion 15F2 that is once narrowed.
  • the second wide slot 15F of the present embodiment includes a first gradually expanding portion 15F1, a constricted portion 15F2, a second gradually expanding portion 15F3, and a rectangular portion 15F4.
  • the first progressive extension 15F1 is connected to the end of the second slot 12F, and the slot width gradually increases as it extends in the lateral direction.
  • the constricted portion 15F2 is connected to the widened end portion of the first progressively extending portion 15F1, and the portion extending from the widened slot width of the first progressively extending portion 15F1 is removed from the end portion of the second slot 12F.
  • the slot width is narrowed.
  • the second gradually expanding portion 15F3 is connected to the end portion of the constricted portion 15F2, and gradually widens the slot width as it extends.
  • a rectangular portion (portion opening upward) 15F4 is connected to the widened end portion of the second gradually expanding portion 15F3, and extends upward while forming the width of the opening h in a rectangular shape.
  • a substantially U-shaped conductor that is below the second slot 12F and the first slot 11F functions as the ground-side conductor 21F.
  • a conductor which is on the upper side of the second slot 12F and the first slot 11F and has a shape in which a part of the conductor is fitted into the U shape functions as the core side conductor 22F.
  • the metal film 20F of the present embodiment is not rectangular.
  • a part of the core wire side conductor 22F protrudes (protrudes) to the side edge 71b side (right side in FIG. 13) of the metal housing 70 from the ground side conductor 21F.
  • a part of the core wire side conductor 22F protrudes above the ground side conductor 21F.
  • the antenna characteristics of the glass antenna 3 can be adjusted by adjusting the positional relationship between the ground-side conductor 21F and the core-side conductor 22F and the amount protruding sideways or upward.
  • power is supplied to the ground-side conductor 21F and the core-side conductor 22F by the pair of power supply portions 7F arranged so as to straddle the first slot 11F.
  • FIG. 14 is an enlarged view in which a coaxial cable connecting on-glass connector (connector) 8F connected to the resistor 9F and the coaxial cable 8cF is installed on the communication glass antenna shown in FIG.
  • the resistor 9F and the power feeding unit 7F to which the connector 8F is attached can be brought close to each other.
  • the connector 8F is soldered with the solder 8sF to the power feeding portion 7F arranged so as to straddle the first slot 11F.
  • the inner conductor of the coaxial cable 8cF is connected to the core-side conductor 22F of the metal film 20F, and the outer conductor such as a braided wire of the coaxial cable 8cF is connected to the ground-side conductor 21F and soldered.
  • the resistor 9F is disposed not across the second wide slot 15F but across the second slot 12F connected to the lower end of the first slot 11F.
  • the ground-side conductor 21F and the core-side conductor 22F of the metal film 20F include the resistor 9F, and a closed circuit is formed by a route connecting the internal conductor of the coaxial cable 8cF connected to the connector 8F and the external conductor such as a braided wire. Configure to form.
  • the disconnection detection path in which the core side conductor 22F and the ground side conductor 21 are connected by the connector 8F and the resistor 9F by a communication device (not shown) provided in the vehicle and connected to the coaxial cable 8cF.
  • a communication device not shown
  • the circuit when a resistance value in a predetermined range cannot be obtained, it can be detected that the antenna is not connected and communication cannot be performed.
  • the resistor 9F can be used for connection detection in order to detect that at least the antenna is connected.
  • lattice-shaped hollow portions 23F and 24F may be formed in the ground side conductor 21F and the core wire side conductor 22F at locations where the feeding portion 7F and the resistor 9F are not installed (see FIG. 14). .
  • the protruding portion (upper right portion in FIG. 14) of the core wire side conductor 22F is thin, the protruding portion is not provided with the cutout portion 24F, and the portion having a shape that fits into the recess of the ground side conductor 21F (the center portion in FIG. 14). ) May be provided with a cutout portion 24F only.
  • the formation example of the hollow parts 23F and 24F is an example, and may be provided in another part.
  • FIG. 15 is an enlarged view of a glass antenna 3A according to a tenth embodiment of the present invention that is installed on a window glass 60 for a vehicle.
  • the glass antenna 3A functions as a slot antenna by forming a cutout portion 10G in a metal film (conductive film) 20G.
  • a first slot 11G, a second slot 12G, a first wide slot 14G, and a second wide slot 15G are formed in the metal film 20G as a cutout portion 10G.
  • a pair of power supply portions (power supply points) 7G is arranged so as to straddle the first slot 11G.
  • the metal film 20G constituting the slot is open in the side edge direction and the upper direction. Specifically, in FIG. 15, the first wide slot 14G is opened on the side (right side in FIG. 15) close to the side edge 71b of the corner of the vehicle housing 70 where the glass antenna 3A is disposed in proximity. (Opening i).
  • the second wide slot 15G is opened on the side (upper side in FIG. 15) away from the lower edge portion 71c of the corner of the vehicle housing 70 where the glass antenna 3A is disposed in the vicinity (opening). Part j).
  • the extending direction of the first slot 11 ⁇ / b> G is a substantially vertical direction that is the first direction on the surface of the window glass 60.
  • the first wide slot 14G is connected to the other end (upper end) of the first slot 11G, and the slot width is wider than that of the first slot 11G.
  • the first wide slot 14G extends in a direction different from the first direction.
  • the extending direction of the first wide slot 14G is a substantially horizontal direction, and the vehicle width Direction (second direction).
  • the second slot 12G is connected to one end (lower end) of the first slot 11G and extends in the vehicle width direction (second direction) in a substantially horizontal direction that is a direction different from the first direction.
  • the extending direction of the second slot 12G shows an example substantially parallel to the extending direction of the first wide slot 14G, but the extending direction may be different.
  • the second connection slot 16 is connected to the other end of the second slot 12G and extends in a direction different from the second direction (fourth direction).
  • the extending direction of the second connection slot 16 is substantially parallel to the first direction and substantially vertical.
  • the second wide slot 15G is connected to an end portion (extended end portion) of the second connection slot 16, and the slot width is wider than that of the second connection slot 16.
  • the slot width of the second wide slot 15G gradually increases with the constricted portion 15G2 interposed therebetween.
  • the second wide slot 15G of the present embodiment includes a first wide portion 15G1, a constricted portion 15G2, a constricted portion 12G2, a second wide portion 15G3, and a rectangular portion (third wide portion) 15G4. Including.
  • the first wide portion 15G1 is connected to the end portion of the second connection slot 16, has a slot width wider than that of the second connection slot 16, and extends in the vertical direction.
  • the constricted portion 15G2 is connected to the end (upper end) of the first wide portion 15G1, and cuts a portion extending from the end of the second connection slot 16 from the widened slot width of the first wide portion 15G1.
  • the slot width is narrowed.
  • the second wide portion 15G3 is connected to the end of the constricted portion 15G2 whose slot width is partially narrowed, and has a wider slot width in the lateral direction than the constricted portion 15G2, and extends in the vertical direction.
  • the rectangular portion (portion that opens upward) 15G4 is connected to the end (upper end) of the second wide portion 15G3, has a slot width wider than the wide portion 15G3 in the lateral direction, and has a rectangular shape with the width of the opening j. While forming, it extends upward.
  • a substantially U-shaped conductor below the second slot 12G and the first slot 11G functions as the ground-side conductor 21G.
  • a conductor that is on the upper side of the second slot 12G and the first slot 11G and has a shape in which a part of the conductor is fitted into the U shape functions as the core wire side conductor 22G.
  • the metal film 20G of the present embodiment is not rectangular, and a part of the core wire side conductor 22G protrudes to the side edge 71b side (right side in FIG. 15) of the metal housing 70 from the ground side conductor 21G. A part of the ground side conductor 21G protrudes slightly above the core wire side conductor 22G.
  • the antenna characteristics of the glass antenna 3A can be adjusted by adjusting the positional relationship between the ground-side conductor 21G and the core-wire-side conductor 22G and the upward and lateral protrusion amounts.
  • the grid-shaped cutouts 23G and 24G may be formed in a place where the feeding portion 7G and the resistor are not installed.
  • the core wire side conductor 22G fitted in that portion is not provided with the hollow portion 24G, and protrudes from the hollow.
  • the cutout portion 24G may be provided only in the portion (upper right portion in FIG. 15).
  • the formation example of the hollow parts 23G and 24G is an example, and may be provided in another part.
  • the metal films 20F and 20G constituting the slot antenna can be formed in a horizontally long shape, and the arrangement space of the metal films 20F and 20G forming the glass antennas 3 and 3A can be shortened.
  • a glass antenna 3 (3A) can be disposed.
  • At least the second slot 12 and the second wide slot 15 (15B, 15C, 15D) extend in a substantially horizontal direction. In any of the embodiments, it becomes easier to transmit and receive vertically polarized radio waves.
  • the second slot 12G and the first wide slot 14G extend substantially in the horizontal direction, so that it becomes easier to transmit and receive vertically polarized radio waves.
  • the second slots 12, 12F), the second wide slots 15, 15B, 15F and the first wide slots 14, 14A. , 14F extend substantially in the horizontal direction, and in any of the embodiments, it becomes easier to transmit and receive vertically polarized radio waves.
  • an antenna for a different application from the antenna of the present invention for example, an antenna for receiving broadcast waves (TV, AM, FM, DTV, DAB, etc.) may be provided on the rear glass.
  • an antenna for receiving broadcast waves TV, AM, FM, DTV, DAB, etc.
  • a remote keyless entry antenna or smart entry antenna that opens and closes a door of a vehicle without a key may be provided on the rear glass.
  • the other glass antenna is installed in a distant place in the window glass.
  • the other glass antenna is installed near the lower edge.
  • the vehicle window glass (rear glass) 60 is provided with a metal film (conductive film) that is a conductor (for example, silver foil or copper foil) in which the cutout portion 10 is formed by punching or etching. That made up a glass antenna.
  • the glass antenna of this invention was comprised by the printing by a screen plate similarly to the conventional glass antenna and defogger formed by baking silver paste. In this case, the glass antenna of the present invention can be formed together with other glass antennas and defoggers, and the system is excellent in mass productivity.
  • a synthetic resin film or a flexible circuit board provided with a conductor layer having a cut-out portion similar to that described above inside or on the surface of the synthetic resin film is either on the inside or outside surface of the window glass. It is good also as a glass antenna by installing (attaching) in one predetermined place.
  • the synthetic resin film or a flexible circuit board provided with a conductor layer having a cut-out portion similar to that described above inside or on the surface of the synthetic resin film is either on the inside or outside surface of the window glass. It is good also as a glass antenna by installing (attaching) in one predetermined place.
  • the cutout portion described above may be formed in a part of the thin film of the metal layer to function as a glass antenna.
  • the components of the glass antenna and the connectors and resistors to be connected are arranged on one surface (preferably the vehicle interior surface) of the window glass. .
  • this glass antenna can be formed on only one side of the glass, the production efficiency is higher than that on both sides, and it can be retrofitted onto the glass of an existing vehicle.
  • the antenna is composed of only one side, there is no need to consider pattern misalignment between the front and back sides.
  • three antennas (0.698 GHz to 0.96 GHz (Band 1), 1.71 GHz to 2.17 GHz (Band 2) among the bands used for LTE communication are used as antennas for communication waves used for bidirectional communication.
  • 2.4 GHz to 2.69 GHz (Band3)) or ISM communication wave bandwidth (0.863 GHz to 0.870 GHz, 0.902 GHz to 0.928 GHz, 2.4 GHz to 2.5 GHz) Mainly used.
  • the glass antenna 1 having the form shown in FIG. 5 was attached to a glass imitating the window glass 60, and the current distribution was calculated (simulated) on the computer.
  • the end angle of the first wide slot 14 was 94.5 °, and the angle at which the second wide slot 15 gradually expanded was 42.7 °.
  • the glass antenna used in this example used a configuration in which the latticed cutouts 23 and 24 having a size of 5 mm ⁇ 5 mm or less were provided as in the example shown in FIG.
  • the cut-out portions 23 and 24 are disposed at least 2.3 mm away from the slot end portions constituting the slots in the metal film 20, and are disposed at least 3 mm away from the four sides of the rectangular metal film 20. Further, the cutout portions 23 and 24 are not formed in a portion where the power feeding portion 7 and the resistor 9 are installed, and the cutout portions 23 and 24 are configured not to directly contact the power feeding portion 7 and the resistor 9.
  • the magnitude and direction of the current shown in FIGS. 16 to 19 are examples, and the magnitude and direction of the generated current periodically change. Even if the magnitude and direction of the current change, the position where the current flows in the metal film 20 at the frequency does not change substantially.
  • FIG. 16 is a schematic diagram (simulation diagram) showing a current distribution when the frequency is 0.698 GHz (Band 1).
  • a current flows through the second slot 12, the first wide slot 14, and the second wide slot 15 and radiates.
  • FIG. 17 is a schematic diagram showing a current distribution when the frequencies are 0.83 GHz and 0.96 GHz (Band 1). When the frequencies are 0.83 GHz and 0.96 GHz, current flows and radiates through the first connection slot 13 and the first wide slot 14.
  • FIG. 18 is a schematic diagram showing a current distribution when the frequency is 1.71 GHz to 2.17 GHz (Band 2).
  • the frequencies are 1.71 GHz, 1.94 GHz, and 2.17 GHz, the current exhibits approximately the same magnitude and orientation.
  • Band 2 current flows and radiates to the periphery of the first slot 11, the second slot 12, the first connection slot 13, and the first wide slot 14.
  • FIG. 19 is a simulation diagram corresponding to the band (Band 3) of 2.4 GHz to 2.69 GHz, and the currents have almost the same distribution when the frequencies are 2.4 GHz, 2.545 GHz, and 2.69 GHz.
  • Band 3 current flows and radiates through the first slot 11, the second slot 12, the first connection slot 13, the first wide slot 14, the second wide slot 15, and the periphery thereof.
  • the glass antenna 1 according to the embodiment of the present invention has a plurality of slots having different lengths and thicknesses. Can communicate.
  • the glass antenna according to the embodiment of the present invention can support a plurality of bands and a wide band without affecting the vehicle design and aerodynamic characteristics as shown in FIG. Furthermore, since it is provided in the vicinity of the outer peripheral edge 61 of the window glass 60, it does not deteriorate the appearance on the window glass as shown in FIG.
  • ⁇ Return loss> The return loss (reflection coefficient) of the glass antenna according to the embodiment of the present invention set to a numerical value as described later in the following Examples 2 to 7 at the frequency of 0.5 GHz to 3.0 GHz by electromagnetic field simulation based on the FI method. was calculated numerically.
  • the return loss is generally ⁇ 7 dB or less, preferably ⁇ 10 dB or less.
  • FIG. 20 shows a simulation result of the return loss of the glass antenna 1 shown in FIGS. 4 and 5 in the frequency band (Frequency) used for communication.
  • FIG. 21 shows the return loss in the frequency band used for communication when the installation position of the power feeding unit 7 is changed in the glass antenna 1 of the first embodiment.
  • the installation position of the power feeding unit 7 is 8 ⁇ D f ⁇ 18, that is, upper and lower corners A distance of 8 mm or more from (ends a and b) is more preferable.
  • FIG. 22 shows the return loss in the frequency band used for communication of the glass antennas 2, 2A, 2B having different wide slot shapes in the fourth to sixth embodiments. The dimension of each part at this time is shown.
  • the glass antenna 2, the glass antenna 2A, and the glass antenna 2B are bent once. However, even if the bending is performed twice, the performance of the antenna is ensured in the same manner. As shown in the third embodiment, the shape of the wide slot that is bent twice may be changed.
  • FIG. 23 shows the return loss in the frequency band used for communication of the glass antennas 2, 2 ⁇ / b> C, and 2 ⁇ / b> D having different bending angles in the fourth, seventh, and eighth embodiments.
  • the angle of bending may be changed according to the shape of the flange of the window to be arranged, the place where other members are arranged, and the position of the wiring.
  • FIG. 24 shows the return loss in the frequency band used for communication of the glass antenna 1 of the first embodiment when the distance from the vehicle housing 70 is changed when the vehicle housing 70 is made of metal. . At this time, simulation was performed using a single glass and a metal imitating a housing.
  • D e represents lower edge of the vehicle chassis 70 and (edge) 71c, the distance between the lower side of the metal film 20 of the glass antenna 1.
  • the distance D e was varied with 3,10,50Mm.
  • the glass antenna 1 which is a slot antenna can be brought close to the vehicle casing 70 while preserving the antenna performance in Band 1 to Band 3. Therefore, for example, by arranging in the vicinity of the lower edge portion of the rear glass, the glass antenna 1 becomes difficult to be seen by the passenger and becomes a window glass having an excellent design.
  • FIG. 25 shows the return loss in the frequency band used for communication of the glass antenna 1 of the first embodiment when the distance from the defogger is changed. At this time, the simulation was performed by placing a single glass and a metal wire imitating a heater wire on the surface of the glass.
  • D h indicates the distance between the lowermost heater wire (for example, the heater wire 42 c in FIG. 3) in the defogger and the upper side of the metal film 20 of the glass antenna 1.
  • the distance D h was varied with 20,30,50Mm.
  • FIG. 26 is a graph showing the actual return loss in the glass antenna 1 of the first embodiment.
  • the return loss shown in the above-described Examples 2 to 7 was simulated by providing a glass antenna on a single glass separately from the vehicle, but in FIG. 26, a window glass 60 is installed in an actual vehicle casing 70, and the window The glass antenna 1 was provided on the glass 60, and the return loss was measured.
  • the dimensions of the glass antenna 1 were the same as in Example 1.
  • the distance from the lower edge 71c of the vehicle casing 70 to the lower edge of the metal film 20 is 6.0 mm as the position where the glass antenna 1 is disposed on the window glass 60, and the metal from the side edge 71d of the vehicle casing 70 is metal.
  • the distance to the side of the film 20 was 58.9 mm.
  • FIG. 27 is a schematic diagram showing experimental conditions, and is a diagram for explaining the state of the vehicle 50 and the transmitting antenna Tx used for measurement.
  • the antenna gain was measured by assembling a vehicle window glass having a glass antenna formed on a vehicle window frame on a turntable. At this time, the window glass is inclined by about 20 ° with respect to the horizontal plane.
  • the antenna gain was expressed in absolute gain after the measurement system was previously calibrated with a standard gain antenna.
  • FIG. 28 shows the gain when the vertically polarized wave from the transmitting antenna Tx is received by the glass antenna 1 (all-round and elevation average gain measurement results), and FIG. 29 shows the horizontally polarized wave from the transmitting antenna Tx as a glass antenna.
  • 1 indicates the gain when received.
  • the average gain characteristic of the measured data is shown.
  • the dimensions of the glass antenna 1 of the embodiment shown in FIG. 5 are the same as those in Example 1.
  • the power feeding unit 7 was used by soldering an on-glass connector 8 for connecting a coaxial cable.
  • Table 1 shows the gain of the communication wave shown in FIG. 28.
  • Table 1 shows the gain of the communication wave shown in FIG. 28.
  • the average gain (Average Gain) of vertical polarization received by the glass antenna 1 and the average value (arithmetic average value) (3Band Average) of the gains of the three bands at .4 to 2.69 GHz (Band 3) are shown.
  • Table 2 shows the average gain of the horizontally polarized waves received by the glass antenna 1 and the average value of the three bands for the gains of the communication waves in the three bands shown in FIG.
  • the average gain of all bands of Band1, Band2, and Band3 that is, the average value of the three bands is ⁇ 10 dBi or more, It can be seen that a good average gain is obtained for receiving waves and horizontally polarized waves.
  • Example 1 ⁇ Current Simulation of Ninth Embodiment> Similarly to Example 1, the glass antenna 3 of the ninth embodiment shown in FIG. 13 was attached to a glass imitating the window glass 60, and calculation (simulation) and numerical calculation were performed on the current distribution on the computer.
  • the glass antenna used in this example also had a configuration in which the latticed cutouts 23 and 24 having a size of 5 mm ⁇ 5 mm or less were provided.
  • the cut-out portions 23F and 24F are arranged at least 2.3 mm away from the slot ends constituting the slots in the metal film 20 and at least 3 mm away from the four sides of the rectangular metal film 20. Is done.
  • the cutout portions 23 and 24 are not formed in a portion where the power supply portion 7F and the resistor 9F are installed, and the cutout portions 23 and 24 are configured not to directly contact the power supply portion 7F and the resistor 9F.
  • the magnitude and direction of the current shown in FIGS. 30 to 32 are examples, and the magnitude and direction of the generated current change periodically. Even if the magnitude and direction of the current change, the position where the current flows in the metal film 20 at the frequency does not change substantially.
  • FIG. 30 is a schematic diagram (simulation diagram) showing a current distribution when the frequency is 0.698 GHz to 0.96 GHz (Band 1).
  • FIG. 31 is a schematic diagram showing a current distribution when the frequency is 1.71 GHz to 2.17 GHz (Band 2).
  • FIG. 32 is a schematic diagram showing a current distribution in a band (Band 3) of 2.4 GHz to 2.69 GHz.
  • the openings g and h which are the end portions of the entire slot are defined with the vicinity of the power feeding unit 7 being the largest portion (current antinode).
  • the currents are distributed so as to have a distribution of one wavelength in the entire slots 14F, 11F, 12F, and 15F so that the current gradually decreases toward.
  • Band2 shown in FIG. 31 is a current flowing toward the portion (node) between the abdomen and the openings g and h, where the vicinity of the power supply unit 7, the end of the second slot 12F, and the first wide slot 14F is the abdomen of the current.
  • the current is distributed by repeating the abdomen and node several times so as to gradually decrease.
  • Band3 shown in FIG. 32 is near the power feeding portion 7, near the connection portion between the first slot 11F and the second slot 12F, near the first gradually expanding portion 15F1 and the constricted portion 15F2 of the second wide slot 15F,
  • the side closer to the first slot 11F of the first wide slot 14F is the current abdomen, so that the current gradually decreases toward the part (node) between the abdomen and the openings g and h, as compared to FIG. Current is distributed by repeating the belly and nodes at short distances.
  • the slot is bent so that the current flows intensively so as to resonate the bent portion and the portion where the slot width is changed with respect to the target Band frequency. It can operate as an antenna for a wide frequency band.
  • the glass antenna 3 according to the embodiment of the present invention can correspond to a wide band with a plurality of bands in a small space in the vertical direction without affecting the design and aerodynamic characteristics of the vehicle.
  • FIG. 33 is a graph showing the actual return loss in the glass antenna 3 of the ninth embodiment.
  • the window glass 60 was installed in the actual vehicle casing 70, the glass antenna 3 was provided on the window glass 60, and the return loss was measured. It is assumed that the vehicle used in the eighth embodiment is different from the vehicle used in the eleventh embodiment.
  • the dimensions of the glass antenna 3 were the same as in Example 10.
  • the distance from the lower side of the window glass 60 along the lower edge 71c of the vehicle casing 70 to the lower side of the metal film 20F is 51.5 mm.
  • the distance from the side of the window glass 60 along the side edge 71d to the side of the metal film 20F was 116 mm.
  • the experimental conditions are the same as the conditions shown in FIG. In the present embodiment, the window glass is inclined by about 21 ° with respect to the horizontal plane.
  • the dimensions of the glass antenna 3 of the ninth embodiment shown in FIG. 13 are the same as those of Example 10 in the shape.
  • the power feeding unit 7F was used by soldering an on-glass connector 8F for connecting a coaxial cable.
  • Table 3 shows the gain of the communication wave shown in FIG. 34. For example, the average gain of the vertical polarization received by the glass antenna 3 in the three bands Band1, Band2, and Band3 of the band used as LTE, and the three bands. The average gain is shown.
  • Table 4 shows the average gain of the horizontal polarization received by the glass antenna 3 and the average value of the three bands for the gains of the communication waves of the three bands shown in FIG.
  • the average gain of all bands of Band1, Band2, and Band3 that is, the average value of the three bands is ⁇ 10 dBi or more. It can be seen that a good average gain for receiving vertical polarization and horizontal polarization can be obtained.
  • FIG. 36 is a graph showing the actual return loss in the glass antenna 3A of the tenth embodiment.
  • the window glass 60 was installed in the actual vehicle casing 70, the glass antenna 3A was provided on the window glass 60, and the return loss was measured. It is assumed that the vehicle used in Example 13 and the vehicle used in Example 11 are the same vehicle type (see FIG. 27).
  • the dimensions in the shape of the glass antenna 3A of the tenth embodiment shown in FIG. L11G (slot length): 25 W11G (slot line width): 1.0 L12G: 50 W12G: 3.0 L14G: 21 W14G: 6 L16: 19 W16: 5 H15G (second wide slot height): 32 Width of first wide portion 15G1: 11 Constriction 15G2 width: 5 Width of second wide portion 15G3: 14 Width of rectangular portion 15G4 (distance of opening j): 26.5 W21Gl (the longer width of the ground-side conductor): 138.0 W21Gs (shorter width of ground-side conductor): 67 H21Gl (the longer height of the ground-side conductor): 70 H21Gs (the shorter height of the ground-side conductor): 44.0 P21G (Ground-side conductor protrusion amount): 1.0 P6 (amount of lateral side protrusion of the core wire side conductor):
  • the distance from the lower side of the window glass 60 along the lower edge portion 71c of the vehicle casing 70 to the lower side of the metal film 20G is 57.7 mm.
  • the distance from the side of the window glass 60 along the side edge 71d to the side of the metal film 20G was 120 mm.
  • the window glass is inclined by approximately 21 ° with respect to the horizontal plane.
  • FIG. 37 shows the gain when the vertically polarized wave from the transmitting antenna Tx is received by the glass antenna 3A (all-round and elevation average gain measurement results), and FIG. 38 shows the horizontally polarized wave from the transmitting antenna Tx as a glass antenna.
  • the gain when received at 3A is shown.
  • the average gain characteristic of the measured data is shown.
  • the power feeding unit 7G was used by soldering an on-glass connector for connecting a coaxial cable.
  • Table 5 shows the gain of the communication wave shown in FIG. 37, for example, the average gain of the vertical polarization received by the glass antenna 3A in the three bands Band1, Band2, and Band3 among the bands used as LTE, and the three bands. The average gain is shown.
  • Table 6 shows the average gain of the horizontal polarization received by the glass antenna 3A and the average value of the three bands with respect to the gains of the communication waves of the three bands shown in FIG.
  • the average gain of all bands of Band1, Band2, and Band3 that is, the average value of the three bands is ⁇ 10 dBi or more. It can be seen that a good average gain is obtained for receiving waves and horizontally polarized waves.
  • communication waves are usually more resistant to noise, have higher frequencies than broadcast waves, and have a frequency that is significantly different from the wavelengths used in electronic equipment. The value is not significantly affected.

Abstract

【課題】見栄えを向上させ、広帯域で通信することができる、車両用窓ガラスに設けられるガラスアンテナの提供。 【解決手段】導電膜20を切り抜くことで形成されるスロットアンテナ(20,10)及び該スロットアンテナに給電する一対の給電部7を備え、車両用窓ガラス60に設けられるガラスアンテナ1であって、スロットアンテナは、第1の方向に延在する第1のスロット11と、第1のスロットの一端に接続され第1の方向に対して異なる方向である第2の方向に延在する第2のスロット12と、第1のスロット11の他端に直接又は第1の接続スロット13を介在して接続され、スロット幅が第1のスロット11のスロット幅より広い第1の幅広スロット14と、第2のスロット12の延在の端部に直接又は第2の接続スロットを介在して接続され、スロット幅が第2のスロット12のスロット幅より広い第2の幅広スロット15と、を備え、一対の給電部7は第1のスロット11を跨ぐように配置されている、ガラスアンテナ1。

Description

ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス
 本発明は、ガラスアンテナ、及びガラスアンテナを備える車両用窓ガラスに関する。
 近年、通信技術の発展に伴い、車両に携帯機器等を持ち込み、車両と携帯機器との間及び車両と外部との間で通信を行うことがある。
 また、車両自体が外部から情報を収集する機能と情報を配信する機能とを備える、所謂コネクテッドカーの技術が提案されている。コネクテッドカーでは、車両が発信する位置情報、車両コンディション、及び路面状況等のデータと、外部から収集される、地図情報、交通情報、及び天候情報等とを双方向通信することで、車両の効率性や安全性を高める渋滞緩和、運転支援等のテレマティクスサービスが提供される。さらに、コネクテッドカーでは、音楽・動画配信サービスなど、利用者の利便性を高める道具(デバイス)としてのソリューション/サービス等の提供をすることも期待されている。
 このような双方向の通信に用いる通信波は、国ごとに規定される利用周波数が異なり、また1つの国においてもキャリアごとに利用される周波数帯が異なる。従って、複数の通信波を受信できるように広帯域に対応するアンテナが好ましい。
 ここで、車両と外部との双方向の通信機能が実現できるように、図1に示すように、車両のルーフに通信用アンテナを搭載する技術が提案されている。
 図1に示した例では、車両90のルーフ91上に、車両90の前後方向に離間して、地板83上に立設された第1アンテナ81及び第2アンテナ82を有するダイバーシティ構造のアンテナユニット80が搭載されている。これらのアンテナ81,82はケース84に内蔵されている。
 また、図2に示す例では、長さの異なる第1放射用パターン121と第2放射用パターン122との一端同士を結合させガラス面の上下方向に対しV字状に配設し、このV字状パターン120の下方に接地用パターン110を配設したガラスアンテナ100が提案されている(特許文献2)。この例では、複数の周波数に対応するための周波数切換式自動車電話用ガラスアンテナとして、例えば、共振周波数が800MHz及び1.5GHzの電波を送受信する。
特開2012-054915号公報 特開平06-291530号公報
 しかし、特許文献1の例では、ルーフ91からアンテナユニット80が突出しているため、車両のデザインや車両の空力特性に影響を与えるおそれがあった。
 また、特許文献2の図2の例では、放射用パターン120(121,122)及び接地用パターン110と2つのエレメントによってガラスアンテナ100が構成されるため、配置スペースが広く必要になる。
 さらに、図2の例では、放射用パターン120は金属の線条の導線であるため、窓が設けられる車両筐体の側縁部710dからの干渉及びリアガラス600に配置されるデフォッガーからの干渉を防ぐため、ガラスアンテナ100は、側縁部710d及びデフォッガーから所定距離離間して配置する必要があった。アンテナを側縁部から離間させると目立つため見栄えが悪くなる。アンテナをデフォッガーから所定距離を離す場合はデフォッガーを小さくすることになるため、デフォッガーの設計の自由度が低下した。
 そこで、本発明は上記事情に鑑み、見栄えを向上させ、広帯域で通信することができる、ガラスアンテナ及び車両用窓ガラスの提供を目的とする。
 上記課題を解決するため、本発明の一態様は、導電膜を切り抜くことで形成されるスロットアンテナ及び該スロットアンテナに給電する一対の給電部を備え、車両用窓ガラスに設けられるガラスアンテナであって、
 前記スロットアンテナは、
 第1の方向に延在する第1のスロットと、
 前記第1のスロットの一端に接続され、第1の方向に対して異なる方向である第2の方向に延在する第2のスロットと、
 前記第1のスロットの他端に、直接又は第1の接続スロットを介在して接続され、スロット幅が前記第1のスロットのスロット幅より広い、第1の幅広スロットと、
 前記第2のスロットの延在の終端部に、直接又は第2の接続スロットを介在して接続され、スロット幅が前記第2のスロットのスロット幅より広い、第2の幅広スロットと、を備え、
 前記一対の給電部は、前記第1のスロットを跨ぐように配置されている、
 ガラスアンテナ、及び該ガラスアンテナを備える車両用窓ガラスを提供する。
 一態様によれば、車両用窓ガラスに設けられたガラスアンテナにおいて、見栄えを向上させ、広帯域で通信することができる。
従来例1の通信用アンテナが設置された車両の全体図である。 従来例2の電話用アンテナが設置された後方窓ガラスの全体図である。 本発明の実施形態である通信用ガラスアンテナが設置された後方窓ガラスの全体平面図である。 本発明の第1実施形態に係る通信用のガラスアンテナの拡大図である。 図4に示す通信用ガラスアンテナにくり抜き部を形成し、抵抗及び給電部を設置した拡大図である。 本発明の第2実施形態に係るガラスアンテナの拡大図である。 本発明の第3実施形態に係るガラスアンテナの拡大図である。 本発明の第4実施形態に係るガラスアンテナの拡大図である。 本発明の第5実施形態に係るガラスアンテナの拡大図である。 本発明の第6実施形態に係るガラスアンテナの拡大図である。 本発明の第7実施形態に係るガラスアンテナの拡大図である。 本発明の第8実施形態に係るガラスアンテナの拡大図である。 本発明の第9実施形態に係るガラスアンテナの拡大図である。 図13に示す通信用ガラスアンテナに、抵抗及び給電部を設置した拡大図である。 本発明の第10実施形態に係るガラスアンテナの拡大図である。 第1実施形態で、周波数が0.698GHzのときの電流分布を示す模式図である。 第1実施形態で、周波数が0.83GHz及び0.96GHzのときの電流分布を示す模式図である。 第1実施形態で、周波数が1.71GHz及び1.94GHz及び2.17GHzのときの電流分布を示す模式図である。 第1実施形態で、周波数が2.4GHz及び2.545GHz及び2.69GHzのときの電流分布を示す模式図である。 図4及び図5に示す第1実施形態のガラスアンテナのリターンロスを示すグラフである。 第1実施形態のガラスアンテナにおいて、給電部の設置位置を変えたときのリターンロスを示すグラフである。 第4~第6実施形態の幅広スロットの形状が異なるガラスアンテナのリターンロスを示すグラフである。 第4、第7、第8実施形態の屈曲の角度が異なるガラスアンテナのリターンロスを示すグラフである。 車両筐体からの距離を変化させたときの、第1実施形態のガラスアンテナのリターンロスを示すグラフである。 デフォッガーからの距離を変化させたときの、第1実施形態のガラスアンテナのリターンロスを示すグラフである。 第1実施形態のガラスアンテナにおける、実測のリターンロスを示すグラフである。 測定に用いた車両及び送信用アンテナの状態を説明する図である。 第1実施形態のガラスアンテナの垂直偏波の利得特性を示すグラフである。 第1実施形態のガラスアンテナの水平偏波の利得特性を示すグラフである。 第9実施形態で、周波数が0.698GHz~0.96GHzのときの電流分布の例を示す模式図である。 第9実施形態で、周波数が1.71GHz~2.17GHzのときの電流分布の例を示す模式図である。 第9実施形態で、周波数が2.4GHz~2.69GHzのときの電流分布の例を示す模式図である。 第9実施形態のガラスアンテナにおける、実測のリターンロスを示すグラフである。 第9実施形態のガラスアンテナの垂直偏波の利得特性を示すグラフである。 第9実施形態のガラスアンテナの水平偏波の利得特性を示すグラフである。 第10実施形態のガラスアンテナにおける、実測のリターンロスを示すグラフである。 第10実施形態のガラスアンテナの垂直偏波の利得特性を示すグラフである。 第10実施形態のガラスアンテナの水平偏波の利得特性を示すグラフである。
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。なお、形態を説明するための図面において、方向について特に記載しない場合には図面上での方向をいうものとする。また、それらの図面は、窓ガラスの面を対向して見たときの図であって、窓ガラスが車両に取り付けられた状態での車内視(又は、車外視)の図であり、図面上での左右方向(横方向)が水平方向に相当し、上下方向が垂直方向に相当する。しかし、これらの図面を車外視の図として参照してもよい。
 例えば、本発明に係る窓ガラスは、主に、車両の後部に取り付けられるリアガラスであり、図面上での左右方向が車幅方向に相当する。ここで、平行、直角などの方向は、本発明の効果を損なわない程度のズレを許容するものである。
 図3は、本発明の実施形態であるガラスアンテナ(通信用ガラスアンテナ)が設置された後方窓ガラスの全体平面図である。
 本発明において、窓ガラスは車両ボディの開口部を覆う窓板の一例である。窓ガラスは板状部材であって、素材はガラスに限られず、樹脂、フィルム等であってもよい。車両後方の窓ガラス60(車両用窓ガラス又はリアガラスともいう)は、車両筐体(ボディー、車体)によって形成される筐体開口部(開口部、窓開口部ともいう)に取り付けられている。窓ガラス60の外周縁61は図3の実線で図示されている。車両筐体70(金属製若しくは、金属枠内で開口部周辺に樹脂を含む一部樹脂製の、車体ボディ若しくはハッチバックドア)は、車体の窓開口部を形成する縁部(ボディフランジ)71a,71b,71c,71dを有している(図3の点線参照)。
 図3において、窓ガラス60の平面図のため、車両筐体70の下縁部71cは湾曲して示しているが、窓ガラス60が車両に取り付けられると、下縁部71cは、車幅方向であって略水平方向に延在する。そのため、近接する下縁部71cと略平行に設けられている、ガラスアンテナ1の第2のスロット12(図4参照)は、車幅方向であって、略水平方向に延在する。
 図3において、車両用ガラスアンテナであるガラスアンテナ1は窓板(窓ガラス)の一方の表面(特に、車内側表面)にプリント、埋め込み、貼り付け等により組み込まれることにより形成される。例えば、車両用の窓ガラス(リアガラス)60の一表面に、切り抜き部10が形成された導体である矩形の金属膜(例えば、銀ペースト等を焼成して形成される導電膜)30を設けることで構成される。なお、本発明の導電膜は金属膜に限定されず、例えば導電性の樹脂膜でも良い。
 ここで、金属膜20が細長く切り抜かれることで(スリットが刻まれることによって)、切り抜かれた部分がスロットとして放射し、スロットアンテナとして機能する。
 図3において、窓ガラス60の面上の周縁領域に黒色又は茶色等の遮蔽部(遮蔽膜)65を形成し、この遮蔽部65の上にアンテナ1の全体(または一部であってもよい)が設けられている。遮蔽部65は黒色セラミックス膜等のセラミックスが挙げられる。
 また、図3を車内視の図として、スロットアンテナを形成する金属膜20を窓ガラス60の車内側表面に取り付けると、ガラスアンテナ1の構成要素が全て窓ガラス60よりも車内側に配置される。さらに、ガラスアンテナ1において、少なくとも抵抗8及び同軸ケーブル8c(図5参照)が搭載される部分が、あるいはガラスアンテナ1全体が、遮蔽部65の領域内に設けられている。
 このようにガラスアンテナ1を窓ガラス60の車内側表面に設ける場合、車外側にはアンテナ1を形成する構成物が存在せず、さらに、ガラスアンテナ1を遮蔽部65上に設けることにより、窓ガラスを車外から見ると、金属膜20の全部又は一部が視認できないため、デザインの優れた窓ガラスとなる。
 さらに、遮蔽部65において、窓の中央部付近になるにつれ、徐々に薄く(グラデーションになるように)なるように、車両筐体70から離れた部分が遮蔽ドット部によって形成されていてもよい。
 図3に示すように、リアガラスである窓ガラス60には、複数の並走するヒーター線42とヒーター線42に給電する複数の帯状のバスバー41とを有するデフォッガー(Defogger)40が設けられてよい。デフォッガー40を構成するヒーター線42及びバスバー41は、通電加熱式の導電パターンである。
 図3において、ガラスアンテナ1が、窓ガラス60においてデフォッガー40よりも下側、即ち、デフォッガー40の最下のヒーター線(加熱線)42cと車両筐体70の開口部の下縁部71cとの間の余白領域に設けられている。
 ここで、窓ガラスの形状が同様であっても、例えば、後部座席のリアトレイ部が上方に盛り上がった形状であるような場合、リアトレイ部の金属部(リアトレイ部を支持する金属ボディの一部又は金属枠部分や、リアトレイ部に埋め込まれるスピーカーの金属部分も含む)が車両筐体70の開口部の下縁部71cよりも上方に突出して、ガラスアンテナに近接して配置されることがある。この場合、ガラスアンテナは、車両筐体70の開口部の下縁部71cよりも、リアトレイ部の金属部からの影響を受けることになる。
 そのため、リアトレイ部の金属部からの影響を受けやすい構成の車両にガラスアンテナ1を取り付ける場合は、最下のヒーター線42cと下縁部71cとの間の余白領域において、ガラスアンテナ1は、図3に示す位置よりも上側であって、最下のヒーター線42cに近接する位置や、中央に近い位置に配設される場合もありうる。
 いずれの場合も、ガラスアンテナ1は、例えば、車両筐体70の開口部の下縁部71cと該下縁部71cに連なる側縁部71dとの間の角部(図3の実線で示す左下の位置)、又は下縁部71cと該下縁部71cに連なる側縁部71bとの間の角部の近傍(図3の点線で示す右下の位置)のどちらか一方に配置される。
 あるいは、窓ガラス60において、ガラスアンテナ1は、車両筐体70の上縁部71aの左右のどちらか一方の角部の近傍に設けられてもよく、その場合は構成を上下反転させる。
 なお、ガラスアンテナ1は1つでも機能するが、さらなる通信容量の向上や別の用途のために、図3に示す窓ガラス60の開口部の角部近傍の左右両方に、MIMO(Multiple-Input Multiple-Output)構成として、左右対称の構成のガラスアンテナ1を2つ設けてもよい。あるいは、他の実施形態のガラスアンテナと組み合わせてアンテナを2つ設置してもよい。
 なお、下記第1実施形態の説明では、図3の実線で示す左下の位置に配置することを前提とする、ガラスアンテナ1の構成について説明する。
 <第1実施形態>
 図4は、車両用の窓ガラス60に設置される第1実施形態であるガラスアンテナ1の拡大図である。
 ガラスアンテナ1は、金属膜(導電膜)20に切り抜き部10が形成されることでスロットアンテナとして機能する。詳しくは、金属膜20に、第1のスロット11と、第2のスロット12と、第1の接続スロット13と、第1の幅広スロット14と、第2の幅広スロット15と、が切り抜き部10として形成されている。そして、一対の給電部(給電点)7が、第1のスロット11を跨ぐように配置されている。
 一対の給電部7が跨ぐように配置される、第1のスロット11は、略上下方向(第1の方向)に、下端(一端)aから上端(他端)bまで延在する。本実施形態において、第1のスロット11の延在方向は窓ガラス60の表面において、略垂直方向である。
 第1の接続スロット13は、第1のスロット11の他端bに接続され、第1の方向に対して異なる方向に幅変更部cまで延在する。第1の実施形態では、第1の接続スロット13の延在方向は、略水平方向(第3の方向)である。
 第1の幅広スロット14は、第1の接続スロット13の端部(幅変更部)cに接続され、スロット幅が第1のスロット11及び第1の接続スロット13よりも広い。
 第2のスロット12は、第1のスロット11の一端aに接続され、第1の方向に対して異なる方向である略水平方向であって、車幅方向(第2の方向)に延在する。
 第2の幅広スロット15は、第2のスロット12の端部e(延在の終端部)に直接接続され、スロット幅が第2のスロット12よりも広い。本実施形態において、第2の幅広スロット15のスロット幅は、延在するほど漸進的に広がっている。
 なお、各スロットの角は曲率を有して折れ曲がっていてもよい。また端部とは、各スロットの延在する終端であってもよいし、その端部手前のスロットである終端近傍であってもよい。
 ここで、略上方は、他の端部よりも相対的に上方向になることを意味し、垂直方向上方及び斜め上方を含む、略下方は、他の端部よりも相対的に下方向になることを意味し、垂直方向下方及び斜め下方を含む。
 例えば、車両に対する窓ガラス60の取り付け角度は、例えば、地平面に対し、15°~90°が好ましい。ガラスアンテナの上下方向とは、窓ガラス60の表面における上下方向であって、窓ガラスと同じ傾きを有している。
 上述のように、図4に示すガラスアンテナ1は、車両筐体70の開口部の下縁部71cと、該下縁部71cに連なる側縁部71dとの間の角部の近傍に配置される(図3、実線参照)。そのため、図4に示すガラスアンテナ1の左側が車両筐体70の開口部の角部の側縁部71dに近接し、下側が該角部の下縁部71cに近接している。
 図4において、第1の幅広スロット14は、ガラスアンテナ1が近接して配置される、車両筐体70の角部の下縁部71cから離れた側(上側)に、開口している(開口部d)。
 第2の幅広スロット15は、ガラスアンテナ1が近接して配置される、車両筐体70の角部の下縁部71cから離れた側(上側)に、開口している(開口部f)。
 金属膜20において、第2のスロット12及び第1のスロット11よりも、ガラスアンテナ1が近傍に配置される下縁部71cと側縁部71dとの間の角部に近接する側が、接地側導体21として機能する。一方、第2のスロット12及び第1のスロット11よりも、前記角部から離れた側が、芯線側導体22として機能する。
 給電部7は、芯線側給電部と接地側給電部とを有する一対の給電部であり、第1のスロット11を一対の給電部で跨ぐように配置されることで、接地側導体21及び芯線側導体22に給電する。
 なお、本実施形態では、第1の幅広スロット14の上側に開口部dが設けられ、第2の幅広スロット15の上側に開口部fが設けられる例を示しているが、開口部d及び開口部fの位置は上側に限定されない。
 本実施形態では、開口部d及び開口部fは、ガラスアンテナ1が近接して配置される、車両筐体70の角部から離れていると好適である。よって、本実施形態の変形として、第1の幅広スロット14及び第2の幅広スロット15は、車両筐体70の角部の側縁部71dから離れた側(図4の右側)に、開口していてもよい。
 開口部dが形成されると、第1の接続スロット13の形状及び配置により、金属膜20の接地側導体21の上部は線条形状となる。そのため、この線条接地側導体21Lは、線条エレメントのように、特定の周波数において電波を放射する機能を備える。
 なお、この線条接地側導体21Lは、ガラスアンテナ1が近傍に設けられる車両筐体70の角部から離れた側に位置するので、線条エレメントが影響を受ける車両筐体70からの干渉の影響は受けにくい。
 また、図4において、第1の実施形態のガラスアンテナ1において、金属膜20の接地側導体21及び芯線側導体22は、幅の広いベタ部(塗りつぶし部)を備えている。
 しかし、ベタ部の面積が広すぎると、ガラスと金属との熱吸収の違いにより、ガラスの成形に悪影響を及ぼし、ひずみが生じる恐れがある。
 そこで、ガラスの成形性を保ちながら、金属膜20の幅を広くできるように、接地側導体21及び芯線側導体22において、給電部7及び抵抗9を設置しない場所に、格子状(Grid)のくり抜き部(孔あき部、切り欠け部)23,24を形成してもよい(図5参照)。ただし、くり抜き部23,24は格子状に限らず、三角形や円形、その他の形状でもよい。また、くり抜き部23,24は他のスロットに影響を与えない程度に、最も短いスロット(図4では第1のスロット11)よりも短くなるように設定される。
 図5は、図4に示すガラスアンテナ1にくり抜き部23,24を形成し、抵抗9及び給電部7に、同軸ケーブル8cに接続された同軸ケーブル接続用オンガラスコネクタ(下記、単にコネクタともいう)8を設置した拡大図である。
 本発明において、接地側導体21、芯線側導体22、給電部7、抵抗9、同軸ケーブル8c、及び,同軸ケーブル接続用オンガラスコネクタ8は、導電体である窓ガラス60の一方の表面(同一表面)である内側表面に設けられている。
 本発明の実施形態では、上述のように、第1のスロット11を跨ぐように配置されている給電部7に同軸ケーブル接続用オンガラスコネクタ8がはんだ8sによってはんだ付けされている。同軸ケーブル接続用オンガラスコネクタ8は、同軸ケーブル8cの内部導体が、金属膜20の芯線側導体22に、同軸ケーブル8cの編組線等の外部導体が接地側導体21に接続、はんだ付けされる。
 本発明の対象である通信用のアンテナでは、テレマティクスサービスを含む情報の送受信を行う。テレマティクスサービスの性質として、リアルタイム性や緊急性が求められることから、ネットワークの接続状態が維持されている必要がある。そこで、本発明の実施形態では、少なくともアンテナが接続されていることを検知するために接続検出用の抵抗9を設けてもよい。
 なお、本実施形態では、抵抗9は波長に対して大きなサイズの抵抗モジュールを前提としており、アンテナ上にこの抵抗モジュールを配置するとアンテナ特性が変化するため、抵抗9とコネクタ8とが離間された位置に配置されると好ましい。そのため、図5に示すように、本実施形態のガラスアンテナ1では、抵抗9とコネクタ8とを離れた位置に取り付けることを前提とした構成になっている。
 詳しくは、同軸ケーブル8cは金属筐体の側縁部71d側から配策されるため、ガラスアンテナ1において、側縁部71d(図3参照)に近い側の、ガラスアンテナ1の図5の左端に同軸ケーブル8cに接続されるコネクタ8が設けられる。同軸ケーブル8c及びコネクタ8が設けられる第1のスロット11からできるだけ離間するように、本実施形態では、抵抗9は幅広スロット15を跨ぐように取り付けられる。
 本実施形態の構成では、第2の幅広スロット15において、抵抗9を設置するための部分である抵抗設置部15δは、スロットの周縁が開口部fと同じ幅であって、周囲よりも狭いスロット幅となる、略平行の長方形形状のスロット形状である。
 第2の幅広スロット15は、開口部fと同じ幅の抵抗設置部15δの他に、三角の部分及び三角の最も広い部分が延在する三角部15α、該抵抗設置部15δに対向する抵抗対向拡張部15γ、及び三角部15αと抵抗対向拡張部15γとの間にある幅広接続部15βを含んでいる。抵抗対向拡張部15γの幅が広いため、接地側導体21において、対応する箇所が線条に細くなる(線条角部導体21Lc)。
 この構成により、金属膜20の接地側導体21及び芯線側導体22は、抵抗9を含み、コネクタ8に接続される同軸ケーブル8cの内部導体と編組線等の外部導体で繋ぐルートで閉回路を形成するように構成する。
 このような構成において、車両に設けられ、同軸ケーブルに接続される通信機器(図示しない)により抵抗9を含む回路による所定の範囲の抵抗値が得られない場合、アンテナが接続されていないことを検知し、通信が行えないことを検出する。
 ここで、接地側導体21と芯線側導体22とは、銀ペースト等の、導電性金属を含有するペーストを窓ガラス60の車内側表面にプリントし、焼き付けて形成されている金属膜である。なお、この形成方法に限定されず、銅等の導電性物質からなる、線状体又は箔状体を、窓ガラスの車内側表面又は車外側表面のどちらか一方の面に、窓ガラスに接着剤等により貼付して形成してもよく、窓ガラスが合わせガラスの場合にはその内部に設けてもよい。
 また、抵抗9を設けることで、図5に示すXが、車両用の窓ガラス60の破損を検出するための断線検出経路として機能できる。
 窓ガラス60はリアガラスであり、一般的に強化ガラスが使用されるため、破損時は、窓ガラスが細かい粒状の破片となる。そのため、窓ガラス60が破損すると、窓ガラス60にプリントされた銀ペースト状の芯線側導体22及び接地側導体21も一緒に粒状になり、破損する。
 よって、給電部7に接続されたコネクタ8及び抵抗9によって、芯線側導体22と接地側導体21とを接続することより、断線検出経路Xを形成している場合、断線検出経路Xが断線すると、抵抗値が無限大となり、窓ガラス60が破損したことを検出できる。
 従って、本発明のアンテナが断線の検出をすることで、ガラスの割れを検知できるため、窓ガラス60において、別途ガラス割れ検知手段を設けなくて済む。そのため、窓ガラスに配設する部品点数を削減することができるため、アンテナ及びガラス割れ検知機能について省スペース化が可能となり、窓ガラスにおける見栄えを向上する。
 さらに、本発明の第1実施形態では、図5からわかるように、抵抗9が給電部7から離れて配置されるため、給電部7付近の電流が抵抗9から干渉を受けることを防ぐことができる。
 ここで、車両筐体が金属製である場合、窓ガラス上において、銀ペースト状の線条アンテナの放射エレメントを車両筐体に近い位置に設けると、金属との干渉により、アンテナの受信利得が低下する傾向がある。
 しかし、本発明の実施形態において、図4、図6~図14に示す何れの実施形態を用いたとしても、放射エレメントは、スロットアンテナであるため、スロットを形成する金属膜20の内部に電流で作る電界が閉じて形成されるため、金属や樹脂との干渉を受けにくい。
 よって、本発明の実施形態のアンテナはその周囲部にデフォッガーや車両筐体等の金属が近接していても、あるいは車両筐体の樹脂の部分が近接しても、安定的な特性が得られ、さらにはその周囲部に透明導電膜等の金属膜が形成されても、同様に干渉を受けにくいアンテナが構成できる。
 通信波は、国ごとに規定される利用周波数が異なり、また1つの国においてもキャリアごとに利用される周波数帯が異なる。従って、複数の通信波を送受信できるように広帯域に対応するアンテナが好ましい。
 通信に用いられるUHF(Ultra High Frequency)波において、本発明のガラスアンテナは、例えばLTE(Long Term Evolution)に用いられる帯域のうち、3つの帯域(0.698GHz~0.96GHz(Band1)、1.71GHz~2.17GHz(Band2)、2.4GHz~2.69GHz(Band3))において、通信できるように設定される。
 さらに、本発明のガラスアンテナは、通信に用いられる周波数帯としてのISM(Industry Science Medical)帯でも通信できるように設定されている。通信に用いられるISM帯は0.863GHz~0.870GHz(欧州)、0.902GHz~0.928GHz(米国)2.4GHz~2.5GHz(世界共通)である。ISM帯の一例である2.4GHz帯を使う通信規格としては、IEEE 802.11bに準拠するDSSS方式の無線LAN、Bluetooth(登録商標)、一部のFWAシステムなどがある。
 したがって、米国、欧州のISM帯は、LTEのBand1の帯域と重複しており、世界共通のISM帯は、LTEのBand3と重複している。よって、本発明の実施形態のガラスアンテナは通信用のISM帯に対しても適用できる。
 具体的には、本発明の実施形態では、ガラスアンテナとして、金属膜20に、長さ及び太さの異なるスロット11,12,13と、幅広スロット14,15とを形成することで、複数の、広い周波数帯域に対応したアンテナとなる。
 さらに、近年の通信サービスのフィールドテストにおいて、低周波帯では垂直偏波が重視される傾向がある。そこで、本実施形態において、第2のスロット12、第1の接続スロット13、第1の幅広スロット14及び第2の幅広スロット15は略水平方向に延在するため、垂直偏波の電波を送受信することができる。
 従って、本発明の実施形態のガラスアンテナは、図1の従来例のように車両のデザインや空力特性に影響を与えることなく、さらに窓ガラス60の外周縁61近傍に設けられるため、見栄えを低下させることなく、複数の帯域であって広帯域に対応することができる。
 なお、本実施形態では、ガラスアンテナ取り付け態様において、第2のスロット12、第1の接続スロット13、第1の幅広スロット14及び第2の幅広スロット15を略水平方向に延在させることとし、低周波域において、主に垂直偏波に対応するアンテナとしている。しかし、第2のスロット12、第1の接続スロット13、第1の幅広スロット14及び第2の幅広スロット15を略垂直方向に延在すれば、水平偏波に対応するアンテナとすることもできる。
 ここで、車両は移動体であるため、複数の通信用アンテナを設け、場所によって受信感度の良い何れか一方のアンテナに切り替え可能な電波選択能を備えると好ましい。または、複数のアンテナにより通信容量を増加する機能であるMIMO構成とするとさらに好ましい。
 そのため、本発明において、窓ガラス60の幅方向の中心線で概略線対称に本発明のアンテナ1と同様構成の広帯域のアンテナを設けることもできる(図3参照)。この際、複数のアンテナは互いに干渉を避けるため、所定距離(例えば、0.7GHzの0.2波長である86mm以上)離れて設置すると好ましい。このように、窓ガラス60に複数のガラスアンテナを設置して、アンテナ切り替えにより通信性能を向上させる、またはMIMO構成とすることで移動体である車両においても広帯域で通信容量の向上の効果を得られる。
 <第2実施形態>
 図6は、本発明の第2実施形態に係るガラスアンテナ1Aの拡大図である。
 第1の実施形態において、幅広スロットの形状は、第1の幅広スロットは四角形状、第2の幅広スロットは三角形の形状であったが、幅広スロットの形状はこれに限られない。
本実施形態において、第1の幅広スロット14Aが、延在するほど漸進的に広がるような、三角形状である。
 <第3実施形態>
 図7は、本発明の第3実施形態に係るガラスアンテナ1Bの拡大図である。
本実施形態において、第2の幅広スロット15Bが幅変更部eにおいて、急激に広がるような四角形状である。
 ここで、第1~第3実施形態において、第1の接続スロット13は、第2のスロット12よりも短い。そのため、第1の接続スロット13に接続される第1の幅広スロット14(14A)は、車幅方向(下縁部71cと略平行な方向)において、第1のスロット11と第2の幅広スロット15(15B)との間に設けられている。
 この構成により、スロットアンテナを構成する金属膜20(20A,20B)を横長の矩形形状とすることができ、ガラスアンテナ1,1A,1Bを形成する金属膜20(20A,20B)の配置スペースの縦方向を短くすることができる。
 よって、デフォッガー40が窓ガラス(リアガラス)60の上下方向において、大部分を占めている場合であっても、窓ガラス60の僅かな空白領域に、設置スペースが上下方向に短いガラスアンテナ1を配置することができる。
 <第4実施形態>
 図8は、本発明の第4実施形態に係るガラスアンテナ2の拡大図である。
 本実施形態において、上記第1~第3の実施形態と比較して、第1の接続スロット13を介在させず、第1のスロット11Cが直接、端部gにおいて第1の幅広スロット14Cに直接、接続されている点が異なる。なお、第2の幅広スロット15Cは、第2のスロット12Cへ接続されている。
 上述の第1~第3の実施形態では、配置スペースの縦方向が短く、横方向に長い横長の例を説明したが、下記の実施形態は、配置スペースの横の長さが限定され、縦の長さが確保できる場合等に適用できる。アンテナを設置する場所の形状に応じて、適宜、形態を選択すると好ましい。
 なお、図8に示す本実施形態では、第1の幅広スロット14C,第2の幅広スロット15Cともに、延在するほど漸進的に広がるような、三角の部分と、四角の部分とを組み合わせた形状である。
 なお、変形例として、第1の幅広スロット14C,第2の幅広スロット15Cともに、延在するほど漸進的に広がるような、三角の形状によって形成されてもよい。また、抵抗9を設置するために、第2の幅広スロット15Cにおいて、ガラスアンテナ2が近傍に設けられる角部から離れた部分は、図5で示すように開口部を設けてもよい。さらに第2の幅広スロット15Cの形状は他の四角形と組み合わせた形であってもよい。
 <第5実施形態>
 図9は、本発明の第5実施形態に係るガラスアンテナ2Aの拡大図である。
本実施形態は、図8に示す第4実施形態と比較して、第2の幅広スロット15Dの形状が四角形状である点が異なる。
 <第6実施形態>
 図10は、本発明の第6実施形態に係るガラスアンテナ2Bの拡大図である。
本実施形態は、図8に示す第4実施形態と比較して、第1の幅広スロット14Eの形状が、四角形状である点が異なる。
 <第7実施形態>
 図11は、本発明の第7実施形態に係るガラスアンテナ2Cの拡大図である。
 上述の実施形態では、屈曲部aの折れ曲がりは直角であったが、配置する窓のフランジの形状、他の部材の配置場所、配線の位置に合わせて折れ曲がりの角度を変えてもよい。
本実施形態において、図8の構成と比較して、屈曲部aの折れ曲がり角度θbが鈍角である点が異なる。
 <第8実施形態>
 図12は、本発明の第8実施形態に係るガラスアンテナ2Dの拡大図である。
本実施形態において、図8の構成と比較して、第1のスロット11Cと第2のスロット12Cとの屈曲部aの折れ曲がり角度θbが鋭角である点が異なる。
 上記第1実施形態~第8実施形態では、図3に示す窓の左下角部に設置することを前提として説明したが、上述のガラスアンテナを左右反転して、図3に示す右下角部に設置することもできる。
 下記の第9、第10実施形態では、給電点が接続される位置、及び窓ガラス60に対する配置位置が、上述の実施形態(ガラスアンテナ1,1A,1B)とは、左右反転している、図3の右下の点線の位置に配置されるガラスアンテナ(3,3A)の例を用いて説明する。ただし、第9及び第10実施形態の構成においても、図3の左下に配置するようにガラスアンテナ3,3Aを、左右反転して配置してもよい。
 <第9実施形態>
 図13は、車両用の窓ガラス60に設置される本発明の第9実施形態に係るガラスアンテナの拡大図である。
 ガラスアンテナ3は、金属膜(導電膜)20Fに切り抜き部10Fが形成されることでスロットアンテナとして機能する。
 詳しくは、金属膜20Fに、第1のスロット11Fと、第2のスロット12Fと、第1の幅広スロット14Fと、第2の幅広スロット15Fと、が切り抜き部10Fとして形成されている。そして、一対の給電部(給電点)7Fが、第1のスロット11Fを跨ぐように配置されている。
 本実施形態では、上記スロットアンテナを構成する金属膜20Fは、側縁方向と、上方向が開口している。詳しくは、図13において、第1の幅広スロット14Fは、ガラスアンテナ3が近接して配置される、車両筐体70の角部の側縁部71bに近接する側(図13右側)に、開口している(開口部g)。
 また、第2の幅広スロット15Fは、ガラスアンテナ3が近接して配置される、車両筐体70の角部の下縁部71cから離れた側(図13上側)に、開口している(開口部h)。
 一対の給電部7Fが跨ぐように配置される、第1のスロット11Fは、略上下方向(第1の方向)に、下端(一端)から上端(他端)まで延在する。本実施形態において、第1のスロット11Fの延在方向は窓ガラス60の表面において、略垂直方向である。
 第1の幅広スロット14Fは、第1のスロット11Fの他端(上端)に接続され、スロット幅が第1のスロット11Fよりも広い。
 第2のスロット12Fは、第1のスロット11Fの一端(下端)に接続され、第1の方向に対して異なる方向である略水平方向であって、車幅方向(第2の方向)に延在する。
 第2の幅広スロット15Fは、第2のスロット12Fの端部(延在の終端部)に接続され、スロット幅が第2のスロット12Fよりも広い。
 本実施形態において、第2の幅広スロット15Fのスロット幅は、一度狭くなるくびれ部15F2を挟んで、延在するほど漸進的に、及び段階的に広がっている。詳しくは、本実施形態の第2の幅広スロット15Fは、第1の漸進拡張部15F1と、くびれ部15F2と、第2の漸進拡張部15F3と、矩形部15F4とを含む。
 第1の漸進拡張部15F1は、第2のスロット12Fの端部と接続され、横方向に延在するにつれ徐々にスロット幅が広がっている。くびれ部15F2は、第1の漸進拡張部15F1の広がった端部と接続され、第1の漸進拡張部15F1の広がったスロット幅から第2のスロット12Fの端部から延長される部分を削ることでスロット幅を狭めている。第2の漸進拡張部15F3は、くびれ部15F2の端部と接続され、延在するにつれ徐々にスロット幅を広げる。矩形部(上方に開口する部分)15F4は第2の漸進拡張部15F3の広がった端部と接続され、矩形形状に、開口部hの幅を形成しながら、上方に延在する。
 本実施形態では、金属膜20Fにおいて、第2のスロット12F及び第1のスロット11Fよりも、下側であって、略コの字形状の導体が、接地側導体21Fとして機能する。一方、第2のスロット12F及び第1のスロット11Fよりも、上側であって、該コの字に窪み形状に、導体の一部が嵌りこむ形状の導体が、芯線側導体22Fとして機能する。
 なお、本実施形態の金属膜20Fでは矩形ではない。芯線側導体22Fの一部が接地側導体21Fよりも金属筐体70の側縁部71b側(図13中右側)へ突出している(飛び出している)。また、芯線側導体22Fの一部が接地側導体21Fよりも上側へ突出している。
 接地側導体21Fと芯線側導体22Fとの位置関係や側方や上方への突出する量を調整することで、ガラスアンテナ3のアンテナ特性を調整することができる。
 また、本実施形態においても、第1のスロット11Fを跨ぐように配置される一対の給電部7Fによって、接地側導体21F及び芯線側導体22Fに給電する。
 図14は、図13に示す通信用ガラスアンテナに、抵抗9F、及び同軸ケーブル8cFに接続された同軸ケーブル接続用オンガラスコネクタ(コネクタ)8Fを設置した拡大図である。
 上述の実施形態に抵抗9を設ける場合は、図5に示すように給電部7と抵抗9とを離間して設置していた。
 しかし、本実施形態では、抵抗モジュールのサイズが小さく、アンテナ上に配置したときのアンテナ特性の変化が小さいため、抵抗9Fと、コネクタ8Fが取り付けられる給電部7Fとを近づけることができる。
 本発明の実施形態では、上述のように、第1のスロット11Fを跨ぐように配置されている給電部7Fにコネクタ8Fがはんだ8sFによってはんだ付けされている。コネクタ8Fは、同軸ケーブル8cFの内部導体が、金属膜20Fの芯線側導体22Fに、同軸ケーブル8cFの編組線等の外部導体が接地側導体21Fに接続、はんだ付けされる。
 本実施形態において、抵抗9Fは、第2の幅広スロット15Fではなく、第1のスロット11Fの下端に接続された第2のスロット12Fを跨いで配置されている。
 この構成でも、金属膜20Fの接地側導体21F及び芯線側導体22Fは、抵抗9Fを含み、コネクタ8Fに接続される同軸ケーブル8cFの内部導体と編組線等の外部導体で繋ぐルートで閉回路を形成するように構成する。
 このような構成においても、車両に設けられ、同軸ケーブル8cFに接続される通信機器(図示しない)によって、コネクタ8F及び抵抗9Fによって芯線側導体22Fと接地側導体21とが接続された断線検出経路回路において、所定の範囲の抵抗値が得られない場合、アンテナが接続されていないことを検知し、通信が行えないことを検出することができる。
 よって、本実施形態においても、第1実施形態と同様に、抵抗9Fは、少なくともアンテナが接続されていること検知するために接続検出用に用いることができる。
 また、本実施形態においても、接地側導体21F及び芯線側導体22Fにおいて、給電部7F及び抵抗9Fを設置しない場所に、格子状のくり抜き部23F,24Fを形成してもよい(図14参照)。ただし、芯線側導体22Fの突出部分(図14右上部)が細い場合は、その突出部分にはくり抜き部24Fを設けず、接地側導体21Fの窪みに、嵌り込む形状の部分(図14中央部)のみに、くり抜き部24Fを設けてもよい。くり抜き部23F,24Fの形成例は一例であって、他の部分に設けてもよい。
 <第10実施形態>
 図15は、車両用の窓ガラス60に設置される本発明の第10実施形態に係るガラスアンテナ3Aの拡大図である。
 ガラスアンテナ3Aは、金属膜(導電膜)20Gに切り抜き部10Gが形成されることでスロットアンテナとして機能する。
 詳しくは、金属膜20Gに、第1のスロット11Gと、第2のスロット12Gと、第1の幅広スロット14Gと、第2の幅広スロット15Gと、が切り抜き部10Gとして形成されている。そして、一対の給電部(給電点)7Gが、第1のスロット11Gを跨ぐように配置されている。
 本実施形態では、上記スロットを構成する金属膜20Gは、側縁方向と、上方向が開口している。詳しくは、図15において、第1の幅広スロット14Gは、ガラスアンテナ3Aが近接して配置される、車両筐体70の角部の側縁部71bに近接する側(図15右側)に、開口している(開口部i)。
 また、第2の幅広スロット15Gは、ガラスアンテナ3Aが近接して配置される、車両筐体70の角部の下縁部71cから離れた側(図15上側)に、開口している(開口部j)。
 一対の給電部7Gが跨ぐように配置される、第1のスロット11Gは、略上下方向(第1の方向)に、下端(一端)から上端(他端)まで延在する。本実施形態において、第1のスロット11Gの延在方向は窓ガラス60の表面において、第1の方向である略垂直方向である。
 第1の幅広スロット14Gは、第1のスロット11Gの他端(上端)に接続され、スロット幅が第1のスロット11Gよりも広い。本実施形態では、第1の幅広スロット14Gは、第1の方向に対して異なる方向に延在し、例えば、第1の幅広スロット14Gの延在方向は、略水平方向であって、車幅方向(第2の方向)である。
 第2のスロット12Gは、第1のスロット11Gの一端(下端)に接続され、第1の方向に対して異なる方向である略水平方向であって、車幅方向(第2の方向)に延在する。図15では、第2のスロット12Gの延在方向は、第1の幅広スロット14Gの延在方向と略平行な例を示しているが、延在方向は異なる方向であってもよい。
 第2の接続スロット16は、第2のスロット12Gの他端に接続され、第2の方向に対して異なる方向(第4の方向)に延在する。第9実施形態では、第2の接続スロット16の延在方向は、第1の方向と略平行で、略垂直方向である。
 第2の幅広スロット15Gは、第2の接続スロット16の端部(延在の終端部)に接続され、スロット幅が第2の接続スロット16よりも広い。
 本実施形態において、第2の幅広スロット15Gのスロット幅は、くびれ部15G2を挟んで段階的に広がっている。詳しくは、本実施形態の、第2の幅広スロット15Gは、第1の幅広部15G1、くびれ部15G2と、くびれ部12G2、第2の幅広部15G3と、矩形部(第3の幅広部)15G4とを含む。
 第1の幅広部15G1は、第2の接続スロット16の端部と接続され、前記第2の接続スロット16よりも横方向にスロット幅が広く、縦方向に延在する。くびれ部15G2は、第1の幅広部15G1の端部(上端)と接続され、第1の幅広部15G1の広がったスロット幅から第2の接続スロット16の端部から延長される部分を削ることでスロット幅を狭めている。第2の幅広部15G3は、部分的にスロット幅が狭められたくびれ部15G2の端部と接続され、くびれ部15G2よりも横方向にスロット幅が広く、縦方向に延在する。矩形部(上方に開口する部分)15G4は第2の幅広部15G3の端部(上端)と接続され、幅広部15G3よりも横方向にスロット幅が広く、矩形形状に、開口部jの幅を形成しながら、上方に延在する。
 本実施形態では、金属膜20Gにおいて、第2のスロット12G及び第1のスロット11Gよりも、下側であって、略コの字形状の導体が、接地側導体21Gとして機能する。一方、第2のスロット12G及び第1のスロット11Gよりも、上側であって、該コの字に窪み形状に、導体の一部が嵌りこむ形状の導体が、芯線側導体22Gとして機能する。
 なお、本実施形態の金属膜20Gでは矩形ではなく、芯線側導体22Gの一部が接地側導体21Gよりも金属筐体70の側縁部71b側(図15右側)へ突出している。また、接地側導体21Gの一部が芯線側導体22Gよりも僅かに上側へ突出している。
 接地側導体21Gと芯線側導体22Gとの位置関係及び上方や側方への突出量を調整することで、ガラスアンテナ3Aのアンテナ特性を調整することができる。
 本実施形態における、抵抗、コネクタ等の構成や取り付け位置等は第9実施形態と同様である。
 また、本実施形態でも、接地側導体21G及び芯線側導体22Gにおいて、給電部7G及び抵抗を設置しない場所に、格子状のくり抜き部23G,24Gを形成してもよい。ただし、図15に示すように、接地側導体21Gにおいてコの字形状の窪み部分が小さい場合には、その部分に嵌めこまれる芯線側導体22Gにはくり抜き部24Gを設けず、窪みから突出している部分(図15右上部)のみに、くり抜き部24Gを設けてもよい。くり抜き部23G,24Gの形成例は一例であって、他の部分に設けてもよい。
 ここで、第9実施形態及び第10実施形態では、縦方向(略垂直方向)において、スロットの折り返し(重なり)が存在しない。この構成により、スロットアンテナを構成する金属膜20F,20Gを横長の形状とすることができ、ガラスアンテナ3,3Aを形成する金属膜20F,20Gの配置スペースの縦方向を短くすることができる。
 よって、デフォッガー40が、窓ガラス(リアガラス)60の上下方向において、大部分を占めている場合であっても、窓ガラス60の僅かな空白領域に、見栄えを低下することなく、上下方向に短いガラスアンテナ3(3A)を配置することができる。
 第1~第8のいずれの実施形態を用いた場合であっても、少なくとも、第2のスロット12、及び第2の幅広スロット15(15B,15C,15D)は略水平方向に延在するため、いずれの実施形態においても、垂直偏波の電波を一層送受信しやすくなる。
 また、第10実施形態を用いた場合であっては、第2のスロット12G、及び第1の幅広スロット14Gは略水平方向に延在するため、垂直偏波の電波を一層送受信しやすくなる。
 さらに、第1~第4実施形態、及び第9実施形態を用いた場合では、第2のスロット12,12F)、及び第2の幅広スロット15,15B,15F及び第1の幅広スロット14,14A,14Fは略水平方向に延在するため、いずれの実施形態においても、垂直偏波の電波を一層送受信しやすくなる。
 また、図3において、本発明のアンテナとは異なる用途のアンテナ、例えば、放送波(テレビ、AM、FM、DTV、DAB等)を受信するためのアンテナをリアガラスに設けてもよい。あるいは、キーレスで車両のドアの開閉等を行うリモートキーレスエントリー用アンテナ、スマートエントリー用アンテナをリアガラスに設けてもよい。
 上述のように、リアガラスにおいて、本発明のガラスアンテナと異なる用途のガラスアンテナを設ける場合、別のガラスアンテナは窓ガラスにおいて、離れた場所に設置されると好ましい。例えば、図3の場合は、別のガラスアンテナは上縁部近傍、本発明のアンテナが上縁部近傍に設置される場合は、別のアンテナは下縁部近傍に設置される。
 また、上述の実施形態では車両用の窓ガラス(リアガラス)60に、打ち抜きやエッチング加工により、切り抜き部10が形成された導体(例えば、銀箔や銅箔)である金属膜(導電膜)を設けることでガラスアンテナを構成していた。さらには、銀ペーストを焼成して形成される、従来のガラスアンテナやデフォッガーと同様にスクリーン版によるプリントにより、本発明のガラスアンテナを構成した。この場合には、他のガラスアンテナやデフォッガーと一括して本発明のガラスアンテナの形成が可能であり、量産性に優れた方式となる。
 しかし、上述と同様の切り抜き部を形成した導体層を合成樹脂製フィルムの内部又はその表面に設けた、合成樹脂製フィルムやフレキシブル回路基板などを窓ガラスの車内側表面又は車外側表面のいずれか一方の所定の場所に設置して(貼りつけて)、ガラスアンテナとしてもよい。なお、車外側表面に設置する場合は筐体の下部が樹脂等で窓ガラスの一部が隠れる場合に限られ、それ以外の場合は、視認性及び耐久性の面から、車内側表面に取り付けられると好ましい。
 また、車内の温度上昇の抑制や紫外線対策のため、紫外線透過率が低く、太陽光の赤外線を反射する、薄膜の金属層で窓全体をコーティングした窓も存在する。この場合、金属層の薄膜の一部に上述の切り抜き部を形成して、ガラスアンテナとして機能させてもよい。
 また、上述の第1~第10のいずれの実施形態においても、ガラスアンテナの構成要素及び接続されるコネクタや抵抗は、窓ガラスの一方の表面(好ましくは、車内側表面)に配置されている。
 したがって、このガラスアンテナは、ガラスに対して片面だけでアンテナを形成できるため、両面で構成するよりも、生産効率が高く、既存の車両のガラスに、後付けすることも可能である。
 さらに、片面だけでアンテナを構成するので、表面と裏面側とのパターンズレ等を考慮する必要がない。
 以上、ガラスアンテナ及び窓ガラスを複数の実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 本発明は、双方向の通信に用いる通信波用のアンテナとして、LTE通信に用いられる帯域のうち、3つの帯域(0.698GHz~0.96GHz(Band1)、1.71GHz~2.17GHz(Band2)、2.4GHz~2.69GHz(Band3))、あるいはISM通信波の帯域(0.863GHz~0.870GHz,0.902GHz~0.928GHz,2.4GHz~2.5GHz)の双方向の通信に主に利用される。
 <<実施例>>
 <第1実施形態の電流シミュレーション>
 後述するような数値に設定した本発明の実施形態のガラスアンテナを、FI(Finite Integration)法に基づいてシミュレーションしたことによる、金属膜20における電流分布について説明する。
 図5に示した形態のガラスアンテナ1について、窓ガラス60に模したガラスに取り付けて、コンピュータ上で電流分布について演算(シミュレーション)数値計算を行った。
 図5で示した実施形態のガラスアンテナ1の形状において寸法は、単位をmmとして、
L11(スロット長さ):25.8
W11(スロット線幅):2.7
L12:58.4
W12:2.7
L13:33.3
W13:2.7
L14:27.3
W14:26.0
L15:59.7
第2の幅広スロット15の三角部15αの幅:24.7
第2の幅広スロット15の幅広接続部15βの幅:17.2
第2の幅広スロット15の抵抗対向拡張部15γの幅:34.5
開口部d: 9.6
開口部f(第2の幅広スロット15の抵抗設置部15δの幅):7.8
線条接地側導体21Lの幅:0.8
金属膜20の縦の長さ:50
金属膜20の横の長さ:132.7
とした。
 第1の幅広スロット14における終端の角度を94.5°、第2の幅広スロット15が徐々に広がる角度を42.7°とした。
 また、本実施例で用いたガラスアンテナは、図5に示す例のように格子状の、5mmx5mm以下の寸法のくり抜き23,24を設けた構成を用いた。くり抜き部23,24は、金属膜20における各スロットを構成するスロット端部から少なくとも2.3mm離れて配置され、矩形形状の金属膜20の四辺から少なくとも3mm離れて配置される。また、くり抜き部23,24は、給電部7及び抵抗9を設置する部分には形成せず、くり抜き部23,24が給電部7及び抵抗9と直接接触しないように構成されている。
 ここで、図16~図19を用いて、各周波数帯におけるシミュレーションによる電流分布を説明する。図16~図19において、矢印が太いほど電流が集中していることを示している。
 なお、図16~図19で示す電流の大きさと向きは一例であり、発生する電流は周期的に大きさと向きが変化する。電流の大きさと向きが変わっても、その周波数での、金属膜20における電流が流れる位置はほぼ変わらない。
 図16は、周波数が0.698GHz(Band1)のときの電流分布を示す模式図(シミュレーション図)である。周波数が0.698GHzのときは、第2のスロット12及び第1の幅広スロット14及び第2の幅広スロット15に電流が流れ、放射している。
 図17は、周波数が0.83GHz及び0.96GHz(Band1)のときの電流分布を示す模式図である。周波数が0.83GHz及び0.96GHzのとき、第1の接続スロット13及び第1の幅広スロット14に電流が流れ、放射している。
 図18は、周波数が1.71GHz~2.17GHz(Band2)のときの電流分布を示す模式図である。周波数が1.71GHz、1.94GHz、及び2.17GHzのとき、電流はほぼ同じ大きさ及び向きを示す。Band2のとき、第1のスロット11、第2のスロット12、第1の接続スロット13、及び第1の幅広スロット14の周縁に電流が流れ、放射している。
 図19は2.4GHz~2.69GHzの帯域(Band3)に対応するシミュレーション図であって、周波数が2.4GHz、2.545GHz、及び2.69GHzのときも、電流はほぼ同じ分布となる。Band3のとき、第1のスロット11、第2のスロット12、第1の接続スロット13、第1の幅広スロット14、第2の幅広スロット15及びその周縁に電流が流れ、放射している。
 図16~図19のシミュレーション図でわかるように、本発明の実施形態のガラスアンテナ1は、長さ及び太さの異なる複数のスロットが形成されているため、広い周波数帯域に対して、アンテナとして通信することができる。
 従って、本発明の実施形態のガラスアンテナは、図1のように車両のデザインや空力特性に影響を与えることなく、複数の帯域であって広帯域に対応することができる。さらに窓ガラス60の外周縁61近傍に設けられるため、広帯域に対応しつつ、図2のように窓ガラス上において見栄えを低下させることはない。
 <リターンロス>
 後述するような数値に設定した本発明の実施形態のガラスアンテナをFI法に基づく電磁界シミュレーションによって、周波数0.5GHz~3.0GHzにおいて、下記実施例2~7において、リターンロス(反射係数)を数値計算した。
 通信に用いる周波数帯において、リターンロスは、一般的に-7dB以下、好ましくは-10dB以下であると好ましい。
 <第1実施形態のシミュレーションによるリターンロス>
 図20に、通信に用いる周波数帯(Frequency)における、図4及び図5で示すガラスアンテナ1のリターンロスのシミュレーション結果を示す。
 グラフにおける2つの凡例の違いは、上述の実施例1の寸法のガラスアンテナ1におけるくり抜き部(Grid)23,24の有無である。
 図20からわかるように、接地側導体21及び芯線側導体22に夫々くり抜き部23,24が形成されていても、所望の周波数帯域である、Band1~Band3における、リターンロスは-7dB以下であり、アンテナの性能は保存されている。
 <給電部の位置を変えたときのシミュレーションによるリターンロス>
 図21に、第1実施形態のガラスアンテナ1において、給電部7の設置位置を変えたときの、通信に用いる周波数帯におけるリターンロスを示す。
 図21において、Dは、第1のスロット11の下側の端部a(図4参照)から給電部(Feeding Point)7までの距離を示す。D=13の設計値とすると、上方の角部からの距離は12.8mmである。D=8であるとき、上方の角部(上側の端部b)から給電部7の距離は、17.8mmである。D=18であるとき、上方の角部から給電部7までの距離は、7.8mmである。
 図21に示すように、給電部7の位置を移動しても、所望の周波数帯域である、Band1~Band3における、アンテナの性能は保存されている。
 よって、製造工程において、給電部の設置位置が、設計値の給電位置(D=13mmの位置)に対してずれても性能が保存されるため、位置ロバスト性を高めることができる。
 なお、D<8、18<Dのときリターンロスの所望値である-7dBを満足しないため、給電部7の設置位置は、8<D<18、つまり、上部及び下部の角部(端部a,b)から8mm以上離れていると、より好適である。
 <幅広スロットの形状を変えたときのシミュレーションによるリターンロス>
 図22に、第4~第6実施形態の幅広スロットの形状が異なるガラスアンテナ2,2A,2Bの、通信に用いる周波数帯におけるリターンロスを示す。
このときの各部の寸法を示す。単位をmmとして
 {例1:図8}
L11C:52
W11C:3
L12C:68
W12C:4
L14C(三角部):25
L14C(長方形部):25
W14C:60
L15C(三角部):31
L15C(長方形部):75
W15C:104
 {例2:図9}
L11C:44
W11C:2
L12C:70
W12C:4
L14C(三角部):26
L14C(長方形部):27
W14C:61
L15D:120
W15D:63
 {例3:図10}
L11C:50
W11C:3
L12C:62
W12C:4
L14E:47
W14E:52
L15C(三角部):29
L15C(長方形部):84
W15C:72
 図22に示すように、幅広の形状を、四角形や三角部と長方形を組み合わせた形状へと変化させても、所望の周波数帯域である、Band1~Band3における、アンテナの性能は保存されている。
 なお、本実施例において、折れ曲がりが1回のガラスアンテナ2、ガラスアンテナ2A、ガラスアンテナ2Bを用いて説明したが、折れ曲がりが2回であっても同様にアンテナの性能は確保され、第1~第3実施形態に示すように、折り曲がりが2回の幅広スロットの形状を変更してもよい。
 <接続の屈曲の角度を変えたときのシミュレーションによるリターンロス>
 図23に、第4、第7、第8実施形態の屈曲の角度が異なるガラスアンテナ2,2C,2Dの、通信に用いる周波数帯におけるリターンロスを示す。
 図23において、屈曲の角度(bent angle)を、θb=60°(図12のガラスアンテナ2C)、90°(図8のガラスアンテナ2)、135°(図11のガラスアンテナ2D)と変化させた。
 図23に示すように、屈曲の角度を60°、90°、135°と変化させても、所望の周波数帯域である、Band1~Band3における、アンテナの性能は保存されている。
 よって、配置する窓のフランジの形状、他の部材の配置場所、配線の位置に合わせて折れ曲がりの角度を変えてもよい。
 なお、実施例において、折れ曲がりが1回の第4、第7、第8実施形態を用いて説明したが、折れ曲がりが2回の第1~第3実施形態であっても同様に、屈曲の角度を変更してもよい。
 <金属筐体からの距離を変えたときのシミュレーションによるリターンロス>
 図24に、車両筐体70が金属製である場合に、車両筐体70からの距離を変化させたときの、第1実施形態のガラスアンテナ1の、通信に用いる周波数帯におけるリターンロスを示す。このとき、ガラス単体と筐体を模した金属とを用いてシミュレーションした。
 図24において、Dは、車両筐体70の下縁部(edge)71cと、ガラスアンテナ1の金属膜20の下辺との距離を示す。距離Dを、3、10、50mmと変化させた。
 図24に示すように、下縁部71cに対する、ガラスアンテナ1の位置(距離)Dを移動しても、所望の周波数帯域である、Band1~Band3における、アンテナの性能は保存されている。
 よって、線条エレメントで構成されるアンテナとは異なり、スロットアンテナであるガラスアンテナ1は、Band1~Band3においてアンテナの性能を保存したまま、車両筐体70へ近接させることができる。よって、例えば、リアガラス下縁部近傍に配置することで、ガラスアンテナ1は、搭乗者から見えづらくなり、デザインの優れた窓ガラスとなる。
 なお、Band1において、車両筐体70の下縁部71cに対するガラスアンテナ1の位置が近づくにつれ、リターンロスの値が大きくなる傾向にある。d=3mmで-7dBぎりぎりになるため、設計値として3mm以上離れているとより好ましい。
 <金属線からの距離を変えたときのシミュレーションによるリターンロス>
 図25に、デフォッガーからの距離を変化させたときの、第1実施形態のガラスアンテナ1の、通信に用いる周波数帯におけるリターンロスを示す。このとき、ガラス単体とガラスの表面上にヒーター線を模した金属線とを配置して、シミュレーションした。
 図25において、Dは、デフォッガーにおける最も下に配置されるヒーター線(例えば、図3におけるヒーター線42c)と、ガラスアンテナ1の金属膜20の上辺との距離を示す。距離Dを、20、30、50mmと変化させた。
 図25に示すように、デフォッガー40に対する、ガラスアンテナ1の位置(距離)Dを20、30、50mmと移動しても、所望の周波数帯域である、Band1~Band3における、アンテナの性能は保存されている。
 なお、Band1において、デフォッガー40に対するガラスアンテナ1の位置Dが近づくにつれ、リターンロスの値が大きくなる傾向にある。d=20mmで-7dBぎりぎりになるため、ガラスアンテナ1はデフォッガー40の最も下側のヒーター線42cから20mm以上離れていると、より好ましい。
 <第1実施形態の実測によるリターンロス>
 図26は、第1実施形態のガラスアンテナ1における、実測のリターンロスを示すグラフである。上述の実施例2~7に示すリターンロスは、車両とは別に、ガラス単体にガラスアンテナを設けてシミュレーションしたが、図26では、実際の車両筐体70に窓ガラス60を設置し、その窓ガラス60に、ガラスアンテナ1を設けて、リターンロスを測定した。
 ガラスアンテナ1の寸法は、実施例1と同様とした。
 実測において、ガラスアンテナ1を窓ガラス60に配置する位置として、車両筐体70の下縁部71cから金属膜20の下辺までの距離を6.0mm、車両筐体70の側縁部71dから金属膜20の側辺までの距離を58.9mmとした。
 図26に示すように、所望の周波数帯域である、Band1~Band3におけるリターンロスは-7dB以下であるため、所望の周波数帯域で所望のアンテナ性能を得ることができる。
 よって、ガラスアンテナ1を、車両筐体70に設置された構成で実測しても、ガラス単体のシミュレーション同様に、所望のリターンロスを得ることができる。
 <第1実施形態の実測によるアンテナ利得>
 上述したガラスアンテナの形態を実際の車両用窓ガラス(リアガラス)に取り付けて作製された車両用ガラスアンテナについて、そのアンテナ利得の実測結果について説明する。
 図27は、実験条件を示す概略図であって、測定に用いた車両50及び送信用アンテナTxの状態を説明する図である。アンテナ利得は、ガラスアンテナが形成された車両用窓ガラスを、ターンテーブル上の車両の窓枠に組みつけて実測された。このとき窓ガラスは水平面に対して約20°傾いた状態となる。
 ガラスアンテナが形成された車両用窓ガラスを組みつけた車両50の左右、前後車軸中央をターンテーブル中心に合わせて、ターンテーブルを回転させることで、車両50を水平方向に360°回転させて行った。
 ターンテーブル回転角度θr=0°~360°(2°毎)、送信アンテナTxからの電波の送信仰角θe=0°~30°(2°毎)、におけるアンテナ利得を所定の周波数範囲において10MHz毎に測定した。仰角θeは、地面と平行な方向をθe=0°、天頂方向をθe=90°とする。アンテナ利得は、測定系をあらかじめ標準利得アンテナによる校正を行い絶対利得で標記した。
 図28に、送信アンテナTxからの垂直偏波をガラスアンテナ1で受信したときの利得(全周及び仰角平均利得測定結果)を示し、図29に、送信アンテナTxからの水平偏波をガラスアンテナ1で受信したときの利得を示す。詳しくは、送信アンテナTxを仰角θe=0°~30°まで2°毎とし、各仰角θeにおいて、車両50を360°回転(θr=0~360°(全周)、2°毎)させ、測定したデータの平均利得特性を示す。
 本発明における、図28、図29の利得の計測において、図5で示した実施形態のガラスアンテナ1の形状において寸法は、実施例1と同様である。
 本実施例において、一例として、抵抗9は、抵抗値=100kΩ、誤差±5%の抵抗器(抵抗モジュール素子)を用いた。また、給電部7は、同軸ケーブル接続用のオンガラスコネクタ8をはんだ付けして用いた。
Figure JPOXMLDOC01-appb-T000001
 表1は、図28で示した通信波の利得で、例えばLTEとして用いられる帯域のうち、3つの帯域0.698GHz~0.96GHz(Band1)、1.71GHz~2.17GHz(Band2)、2.4~2.69GHz(Band3)において、ガラスアンテナ1が受信する垂直偏波の平均利得(Average Gain)、及び3つの帯域の利得の平均値(算術平均値)(3Band Average)を示す。
Figure JPOXMLDOC01-appb-T000002
 表2は、図29で示した上記3つの帯域の通信波の利得について、ガラスアンテナ1が受信する水平偏波の平均利得、及び3つの帯域の平均値を示す。
 図28、図29、表1及び表2から、本発明のガラスアンテナ1では、Band1、Band2、Band3の全帯域の平均利得、即ち、3つの帯域の平均値は-10dBi以上であり、垂直偏波及び水平偏波を受信する、良好な平均利得が得られることがわかる。
 <第9実施形態の電流シミュレーション>
 実施例1と同様に、図13に示した第9実施形態のガラスアンテナ3について、窓ガラス60に模したガラスに取り付けて、コンピュータ上で電流分布について演算(シミュレーション)、数値計算を行った。
 図13で示した実施形態のガラスアンテナ3の形状において寸法は、単位をmmとして、
L11F(スロット長さ):26
W11F(スロット線幅):1.0
L12F:33.4
W12F:2.0
L14F:20.5
W14F:4.3
W15F(第2の幅広スロット15Fの幅(長さ)):36.9
W15F1(第1の漸進拡張部15F1の幅(長さ):8.1
第1の漸進拡張部15F1の最大高さ:9.0くびれ部15F2の高さ:4.5
第2の漸進拡張部15F3の高さ:15
矩形部15F4の高さ:29.9
W15F4(開口部h間距離):15.6
W21Fl(接地側導体の長い方の幅):121.8
W21Fs(接地側導体の短い方の幅):30
H21Fl(接地側導体の長い方の高さ):56.5
H21Fs(接地側導体の短い方の高さ):50
P1(芯線側導体の側方側飛出し量):9.3
P2(芯線側導体の側方飛出し区間):12.7
P3(芯線側導体の上方飛出し区間):49.5
P4(芯線側導体の上方飛出し量):10.5
P5(芯線側導体の飛び出していない部分の長さ):36
とした。
 また、本実施例で用いたガラスアンテナにおいても、格子状の5mmx5mm以下の寸法のくり抜き23,24を設けた構成を用いた。図13に示すように、くり抜き部23F,24Fは、金属膜20における各スロットを構成するスロット端部から少なくとも2.3mm離れて配置され、矩形状の金属膜20の四辺から少なくとも3mm離れて配置される。また、くり抜き部23,24は、給電部7F及び抵抗9Fを設置する部分には形成せず、くり抜き部23,24が給電部7F及び抵抗9Fと直接接触しないように構成されている。
 ここで、図30~図32を用いて、各周波数帯におけるシミュレーションによる電流分布を説明する。図30~図32において、矢印が太いほど電流が集中していることを示している。
 なお、図30~図32で示す電流の大きさと向きは一例であり、発生する電流は周期的に大きさと向きが変化する。電流の大きさと向きが変わっても、その周波数での、金属膜20における電流が流れる位置はほぼ変わらない。
 図30は、周波数が0.698GHz~0.96GHz(Band1)のときの電流分布を示す模式図(シミュレーション図)である。図31は、周波数が1.71GHz~2.17GHz(Band2)のときの電流分布を示す模式図である。図32は2.4GHz~2.69GHzの帯域(Band3)のときの電流分布を示す模式図である。
 図30~図32のシミュレーション図でわかるように、本実施形態においては、ガラスアンテナ3では、屈曲しながら延在するスロット(第1の幅広スロット14F⇔第1のスロット11F⇔第2のスロット12F⇔第2の幅広スロット15F)の周囲に沿うように、ほとんどの電流が流れる。
 図30~図32を比較して、図30に示す周波数が低い場合(Band1)は、給電部7付近を最大の部分(電流の腹部)として、スロット全体の端部である開口部g,hに向かって電流が徐々に少なくなるように、例えばスロット14F,11F,12F,15Fの全体で一波長の分布になるように電流が分布している。
 図31に示すBand2は、給電部7付近、第2のスロット12Fの終端付近、第1の幅広スロット14Fが電流の腹部として、腹部間の部分(節)及び開口部g,hに向かって電流が徐々少なくなるように、複数回腹や節を繰り返して電流が分布している。
 図32に示すBand3は、給電部7付近、第1のスロット11Fと第2のスロット12Fとの接続部付近、第2の幅広スロット15Fの、第1の漸進拡張部15F1及びくびれ部15F2付近、第1の幅広スロット14Fの第1のスロット11Fに近い側を、電流の腹部として、腹部間の部分(節)及び開口部g,hに向かって電流が徐々少なくなるように、図32よりも短い距離で腹や節を繰り返して電流が分布している。
 本実施形態のガラスアンテナ3では、狙いとするBandの周波数に対して、折り曲げ部分やスロット幅が変更になる部分を共振するように、スロットを屈曲させて電流を集中的に流しているため、広い周波数帯域に対して、アンテナとして動作することができる。
 従って、本発明の実施形態のガラスアンテナ3は、車両のデザインや空力特性に影響を与えることなく、上下方向に小さいスペースで、複数の帯域であって広帯域に対応することができる。
 <ガラスアンテナ3の実測によるリターンロス>
 図33は、第9実施形態のガラスアンテナ3における、実測のリターンロスを示すグラフである。本実施例では、図26に示す実施例8同様に、実際の車両筐体70に窓ガラス60を設置し、その窓ガラス60に、ガラスアンテナ3を設けて、リターンロスを測定した。なお、実施例8で用いた車両と、実施例11で用いた車両とは異なる車種であるとする。
 ガラスアンテナ3の寸法は、実施例10と同様とした。
 実測において、ガラスアンテナ3を窓ガラス60に配置する位置として、車両筐体70の下縁部71cに沿う窓ガラス60の下辺から金属膜20Fの下辺までの距離を51.5mm、車両筐体70の側縁部71dに沿う窓ガラス60の側辺から金属膜20Fの側辺までの距離を116mmとした。
 図33に示すように、所望の周波数帯域である、Band1~Band3におけるリターンロスは-7dB以下であるため、所望の周波数帯域で所望のアンテナ性能を得ることができる。
 よって、ガラスアンテナ3を、車両筐体70に設置された構成で実測すると、所望のリターンロスを得られることがわかる。
 <第9実施形態の実測によるアンテナ利得>
 上述したガラスアンテナの形態を実際の車両用窓ガラス(リアガラス)に取り付けて作製された車両用ガラスアンテナについて、そのアンテナ利得の実測結果について説明する。
 実験条件は、図27に示す条件と同様であるとする。なお、本実施例では、窓ガラスは水平面に対して約21°傾いた状態となっている。
 図34に、送信アンテナTxからの垂直偏波をガラスアンテナ3で受信したときの利得(全周及び仰角平均利得測定結果)を示し、図35に、送信アンテナTxからの水平偏波をガラスアンテナ3で受信したときの利得を示す。詳しくは、送信アンテナTxを仰角θe=0°~30°まで2°毎とし、各仰角θeにおいて、車両50(図27参照)を360°回転(θr=0~360°(全周)、2°毎)させ、測定したデータの平均利得特性を示す。
 本実施例における、図34、図35の利得の計測において、図13で示した第9実施形態のガラスアンテナ3の形状において寸法は、実施例10と同様である。
 本実施例において、一例として、抵抗9Fは、抵抗値=100kΩ、誤差±5%の抵抗器(抵抗モジュール素子)を用いた。また、給電部7Fは、同軸ケーブル接続用のオンガラスコネクタ8Fをはんだ付けして用いた。
Figure JPOXMLDOC01-appb-T000003
 表3は、図34で示した通信波の利得で、例えばLTEとして用いられる帯域の、3つの帯域Band1、Band2、Band3において、ガラスアンテナ3が受信する垂直偏波の平均利得、及び3つの帯域の利得の平均値を示す。
Figure JPOXMLDOC01-appb-T000004
 表4は、図35で示した上記3つの帯域の通信波の利得について、ガラスアンテナ3が受信する水平偏波の平均利得、及び3つの帯域の平均値を示す。
 図34、図35、表3及び表4から、本発明の図13に示すガラスアンテナ3では、Band1、Band2、Band3の全帯域の平均利得、即ち、3つの帯域の平均値は-10dBi以上であり、垂直偏波及び水平偏波を受信する、良好な平均利得が得られることがわかる。
 <第10実施形態の実測によるリターンロス>
 図36は、第10実施形態のガラスアンテナ3Aにおける、実測のリターンロスを示すグラフである。本実施例では、図33に示す実施例11同様に、実際の車両筐体70に窓ガラス60を設置し、その窓ガラス60に、ガラスアンテナ3Aを設けて、リターンロスを測定した。なお、実施例13で用いた車両と、実施例11で用いた車両とは同じ車種であるとする(図27参照)。
 本実施例において、図15に示した第10実施形態のガラスアンテナ3Aの形状における寸法は、単位をmmとして、
L11G(スロット長さ):25
W11G(スロット線幅):1.0
L12G:50
W12G:3.0
L14G:21
W14G:6
L16:19
W16:5
H15G(第2の幅広スロットの高さ):32
第1の幅広部15G1の幅:11
くびれ部15G2の幅:5
第2の幅広部15G3の幅:14
矩形部15G4の幅(開口部jの距離):26.5
W21Gl(接地側導体の長い方の幅):138.0
W21Gs(接地側導体の短い方の幅):67
H21Gl(接地側導体の長い方の高さ):70
H21Gs(接地側導体の短い方の高さ):44.0
P21G(接地側導体の飛出し量):1.0
P6(芯線側導体の側方側飛出し量):6.5
P7(芯線側導体の側方飛出し区間):19
W22G(芯線側導体の上方幅):51.5
とした。
 実測において、ガラスアンテナ1を窓ガラス60に配置する位置として、車両筐体70の下縁部71cに沿う窓ガラス60の下辺から金属膜20Gの下辺までの距離を57.7mm、車両筐体70の側縁部71dに沿う窓ガラス60の側辺から金属膜20Gの側辺までの距離を120mmとした。
 図36に示すように、所望の周波数帯域である、Band1~Band3におけるリターンロスは-7dB以下であるため、所望の周波数帯域で所望のアンテナ性能を得ることができる。
 よって、ガラスアンテナ3Aを、車両筐体70に設置された構成で実測すると、所望のリターンロスを得られることがわかる。
 <第10実施形態の実測によるアンテナ利得>
 図15に示すガラスアンテナ3Aを実際の車両用窓ガラス(リアガラス)に取り付けて作製された車両用ガラスアンテナについて、そのアンテナ利得の実測結果について説明する。
 実験条件は、図27に示す条件と同様であるとする。なお、本実施例では、実施例12と同様に、窓ガラスは水平面に対して約21°傾いた状態となっている。
 図37に、送信アンテナTxからの垂直偏波をガラスアンテナ3Aで受信したときの利得(全周及び仰角平均利得測定結果)を示し、図38に、送信アンテナTxからの水平偏波をガラスアンテナ3Aで受信したときの利得を示す。詳しくは、送信アンテナTxを仰角θe=0°~30°まで2°毎とし、各仰角θeにおいて、車両50を360°回転(θr=0~360°(全周)、2°毎)させ、測定したデータの平均利得特性を示す。
 本発明における、図37、図38の利得の計測において、図15で示した第10実施形態のガラスアンテナ3Aの形状において寸法は、実施例13と同様である。
 本実施例において、一例として、抵抗は、抵抗値=100kΩ、誤差±5%の抵抗器(抵抗モジュール素子)を用いた。また、給電部7Gは、同軸ケーブル接続用のオンガラスコネクタをはんだ付けして用いた。
Figure JPOXMLDOC01-appb-T000005
 表5は、図37で示した通信波の利得、例えばLTEとして用いられる帯域のうち、3つの帯域Band1、Band2、Band3において、ガラスアンテナ3Aが受信する垂直偏波の平均利得、及び3つの帯域の利得の平均値を示す。
Figure JPOXMLDOC01-appb-T000006
 表6は、図38で示した上記3つの帯域の通信波の利得について、ガラスアンテナ3Aが受信する水平偏波の平均利得、及び3つの帯域の平均値を示す。
 図37、図38、表5及び表6から、本発明のガラスアンテナ3Aでは、Band1、Band2、Band3の全帯域の平均利得、即ち、3つの帯域の平均値は-10dBi以上であり、垂直偏波及び水平偏波を受信する、良好な平均利得が得られることがわかる。
 なお、通信波は通常、ノイズ耐性が強く、用いる周波数が放送波よりも高く、電子機器で用いる波長とは周波数が大きく異なるため、ワイパー等と近接して配置しても、リターンロス及び利得の値はあまり影響を受けない。
 以上、ガラスアンテナ及び車両用窓ガラスを実施形態及び実施例により説明したが、本発明は上記実施形態及び実施例に限定されるものではない。他の実施形態及び実施例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 本出願は、2015年7月24日に日本国特許庁に出願された特願2015-147254号に基づく優先権を主張するものであり、特願2015-147254号の全内容を本出願に援用する。
1,1A,1B,2,2A,2B,2C,2D,3,3A ガラスアンテナ
10,10F,10G 切り抜き部
11,11C,11F,11G 第1のスロット
12,12C,12F,12G 第2のスロット
13 第1の接続スロット
14,14A,14C,14E,14F,14G 第1の幅広スロット
15,15B,15C,15D,15F,15G 第2の幅広スロット
15F2,15G2 くびれ部
15F4,15G4 矩形部(上方に開口する部分)
16 第2の接続スロット
20,20F,20G 金属膜(導電膜)
21,21F,21G 接地側導体
22,22F,22G 芯線側導体
23,24,23F,24F,23G,24G くり抜き部
7,7F,7G 給電部
8,8F 同軸ケーブル接続用オンガラスコネクタ(コネクタ)
8c,8cF 同軸ケーブル
8s,8sF はんだ
9,9F 抵抗
40 デフォッガー
41 バスバー
42 ヒーター線(加熱線)
50 車両
60 窓ガラス(リアガラス,車両用窓ガラス)
61 窓ガラスの外周縁
65 遮蔽部(遮蔽膜)
70 車両筐体
71c 車両筐体(車体フランジ)の下縁部
71d 車両筐体の側縁部
a 第1スロットの一端
b 第1スロットの他端
c 幅変更部
d 第1の幅広スロットの開口部
e 端部(幅変更部、延在の終端部)
f 第2の幅広スロットの開口部(抵抗設置部)
g 第1の幅広スロットの開口部
h 第2の幅広スロットの開口部
i 第3の幅広スロットの開口部
j 第4の幅広スロットの開口部
 

Claims (21)

  1.  導電膜を切り抜くことで形成されるスロットアンテナ及び該スロットアンテナに給電する一対の給電部を備え、車両用窓ガラスに設けられるガラスアンテナであって、
     前記スロットアンテナは、
     第1の方向に延在する第1のスロットと、
     前記第1のスロットの一端に接続され、第1の方向に対して異なる方向である第2の方向に延在する第2のスロットと、
     前記第1のスロットの他端に、直接又は第1の接続スロットを介在して接続され、スロット幅が前記第1のスロットのスロット幅より広い、第1の幅広スロットと、
     前記第2のスロットの延在の終端部に、直接又は第2の接続スロットを介在して接続され、スロット幅が前記第2のスロットのスロット幅より広い、第2の幅広スロットと、を備え、
     前記一対の給電部は、前記第1のスロットを跨ぐように配置されている、
     ガラスアンテナ。
  2.  前記第1のスロットが延在する前記第1の方向は、前記車両用窓ガラスの表面において略上下方向である、
     請求項1に記載のガラスアンテナ。
  3.  前記第2のスロットが延在する前記第2の方向は、前記車両用窓ガラスの表面において略水平方向である、
     請求項1又は2に記載のガラスアンテナ。
  4.  前記車両用窓ガラスは車両筐体の開口部に設置される場合、
     当該ガラスアンテナは、前記開口部の下縁部と、該下縁部に連なる側縁部との間の角部の近傍に配置される、
     請求項1から3のいずれか一項に記載のガラスアンテナ。
  5.  前記第1の幅広スロット及び前記第2の幅広スロットは、前記近傍に設けられる前記角部から離れた側に夫々開口しており、
     前記導電膜において、前記第2のスロット及び前記第1のスロットよりも前記近傍に配置された前記角部に近接する側が接地側導体として機能し、前記第2のスロット及び前記第1のスロットよりも前記近傍に配置された角部から離れた側が芯線側導体として機能し、
     前記一対の給電部は、前記第1のスロットを跨いで配置されることで、前記接地側導体と前記芯線側導体とに給電する、
     請求項4に記載のガラスアンテナ。
  6.  前記第2の幅広スロットは上方に開口しており、
     前記第2の幅広スロットの前記開口部を跨いで接続された抵抗が設けられている、
     請求項5に記載のガラスアンテナ。
  7.  前記第1のスロットの前記他端は、前記第1の接続スロットを介在して、前記第1の幅広スロットが接続され、
     前記第1の接続スロットは、前記第1のスロットの延在方向と異なる第3の方向に延在し、
     前記第1の幅広スロットの前記スロット幅は、前記第1の接続スロットのスロット幅よりも広い、
     請求項1から6のいずれか一項に記載のガラスアンテナ。
  8.  前記第1の接続スロットが延在する前記第3の方向は前記第2の方向と略平行である、
     請求項7に記載のガラスアンテナ。
  9.  前記第1の接続スロットのスロット長は前記第2のスロットよりも短く、
     前記第1の接続スロットに接続される前記第1の幅広スロットは、前記第2の方向において、前記第1のスロットと前記第2の幅広スロットとの間に設けられ、
     前記導電膜は矩形形状である、
     請求項7又は8に記載のガラスアンテナ。
  10.  前記第1の幅広スロット及び前記第2の幅広スロットの少なくとも一方のスロット幅は、延在するほど漸進的又は段階的に広がっている、
     請求項1から9のいずれか一項に記載のガラスアンテナ。
  11.  前記第1の幅広スロットは、前記車両筐体の前記開口部の前記側縁部に対向して開口し、前記第2の幅広スロットは、前記開口部の前記下縁部から離れた上方に開口しており、
     前記導電膜において、前記第2のスロットよりも下側が接地側導体として機能し、前記第2のスロットよりも上側が芯線側導体として機能し、
     前記一対の給電部は、前記第1のスロットを跨いで配置されることで、前記接地側導体と前記芯線側導体とに給電する、
     請求項4に記載のガラスアンテナ。
  12.  前記芯線側導体の一部は、前記接地側導体よりも、前記開口部の前記側縁部側へ突出している、
     請求項11に記載のガラスアンテナ。
  13.  前記第2の幅広スロットは、接続される前記第2のスロット又は前記第2の接続スロットと接続する部分と、前記上方に開口する部分との間に、部分的にスロット幅が狭くなるくびれ部を含んでおり、
     前記第2の幅広スロットでは、前記くびれ部から前記上方に開口する部分に向けて、スロット幅は、延在するほど漸進的又は段階的に広がっている、
     請求項11又は12に記載のガラスアンテナ。
  14.  前記第2のスロットを跨いで接続された抵抗が設けられている、
     請求項11から13のいずれか一項に記載のガラスアンテナ。
  15.  前記第2のスロットの前記他端は、前記第2の接続スロットを介在して、前記第2の幅広スロットが接続され、
     前記第2の接続スロットは、前記第2のスロットの延在方向と異なる第4の方向に延在し、
     前記第2の幅広スロットの前記スロット幅は、前記第2の接続スロットのスロット幅よりも広い、
     請求項11から13のいずれか一項に記載のガラスアンテナ。
  16.  前記第2の接続スロットを跨いで接続された抵抗が設けられている、
     請求項15に記載のガラスアンテナ。
  17.  前記第2の接続スロットが延在する前記第4の方向は前記第1の方向と略平行である、
     請求項15又は16に記載のガラスアンテナ。
  18.  前記導電膜において、前記各スロットと接触しない部分に、各スロットのスロット長よりも短いくり抜き部が形成されている、
     請求項1から17のいずれか一項に記載のガラスアンテナ。
  19.  当該ガラスアンテナは0.698GHz~0.96GHz、1.710GHz~2.17GHz、及び2.4GHz~2.69GHzの周波数帯域に亘って通信波を送受信可能である、
     請求項1から18のいずれか一項に記載のガラスアンテナ。
  20.  請求項1から19のいずれか一項に記載のガラスアンテナを備える、
     車両用窓ガラス。
  21.  車両筐体の開口部に取り付けられる前記車両用窓ガラスは、車両後方の窓ガラスであって、該窓ガラスは車幅方向に延在する複数の加熱線を有するデフォッガーを備え、
     前記ガラスアンテナは、最下の前記加熱線と前記車両筐体の開口部の下縁部との間に設けられている、
     請求項20に記載の車両用窓ガラス。
PCT/JP2016/071460 2015-07-24 2016-07-21 ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス WO2017018324A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16830429.3A EP3327862B1 (en) 2015-07-24 2016-07-21 Glass antenna and vehicle window glass including glass antenna
JP2017530825A JP6614237B2 (ja) 2015-07-24 2016-07-21 ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス
CN201680042988.5A CN107851889B (zh) 2015-07-24 2016-07-21 玻璃天线和具有玻璃天线的车辆用窗玻璃
US15/877,690 US10297897B2 (en) 2015-07-24 2018-01-23 Glass antenna and vehicle window glass provided with glass antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015147254 2015-07-24
JP2015-147254 2015-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/877,690 Continuation US10297897B2 (en) 2015-07-24 2018-01-23 Glass antenna and vehicle window glass provided with glass antenna

Publications (1)

Publication Number Publication Date
WO2017018324A1 true WO2017018324A1 (ja) 2017-02-02

Family

ID=57884759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071460 WO2017018324A1 (ja) 2015-07-24 2016-07-21 ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス

Country Status (5)

Country Link
US (1) US10297897B2 (ja)
EP (1) EP3327862B1 (ja)
JP (1) JP6614237B2 (ja)
CN (1) CN107851889B (ja)
WO (1) WO2017018324A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135020A (ja) * 2017-02-22 2018-08-30 日本板硝子株式会社 リアガラス
JP2018535615A (ja) * 2015-11-27 2018-11-29 エージーシー グラス ユーロップAgc Glass Europe 接続制御手段を含む高周波および広帯域アンテナ
WO2019093271A1 (ja) * 2017-11-07 2019-05-16 Agc株式会社 アンテナ及び車両用窓ガラス
WO2023068151A1 (ja) * 2021-10-18 2023-04-27 Agc株式会社 平面アンテナ及び車両用窓ガラス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3381081B1 (en) * 2015-11-27 2021-08-04 AGC Glass Europe A two bidimensional multiband antenna and a glazing panel with the antenna printed thereon
JP7195006B2 (ja) * 2017-04-20 2022-12-23 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー ミリ波誘電体導波路によって実現された大口径のスケーラブルなミリ波アレイ
US10923795B2 (en) * 2018-04-12 2021-02-16 Pittsburgh Glass Works, Llc Hidden multi-band window antenna
US11264693B2 (en) * 2019-12-05 2022-03-01 Deere & Company Antenna mounting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283230A (ja) * 2002-03-04 2003-10-03 Ma Com Inc アンテナ
JP2005223879A (ja) * 2004-01-05 2005-08-18 Alps Electric Co Ltd スロットアンテナ
WO2014129588A1 (ja) * 2013-02-21 2014-08-28 旭硝子株式会社 車両用窓ガラス及びアンテナ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264858A (en) 1990-07-31 1993-11-23 Asahi Glass Company Ltd. Glass antenna for a telephone of an automobile
JPH06291530A (ja) 1993-04-02 1994-10-18 Nippon Sheet Glass Co Ltd 周波数切換式ガラスアンテナ
JP2001185928A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd 車両用ガラスアンテナ
DE60009874T2 (de) * 2000-05-26 2005-03-31 Sony International (Europe) Gmbh V-Schlitz-Antenne für zirkulare Polarisation
JP2005142616A (ja) * 2003-11-04 2005-06-02 Nippon Sheet Glass Co Ltd 車両用ガラスアンテナおよび車両用ガラスアンテナ装置
JP4064978B2 (ja) * 2004-05-28 2008-03-19 株式会社デンソー 車載アンテナの搭載構造
US7348928B2 (en) 2004-12-14 2008-03-25 Intel Corporation Slot antenna having a MEMS varactor for resonance frequency tuning
JP4883573B2 (ja) 2006-12-06 2012-02-22 独立行政法人産業技術総合研究所 アンテナとそれを用いた発振器
JP2009171017A (ja) 2008-01-11 2009-07-30 Panasonic Corp 平面アンテナ装置
JP5246115B2 (ja) 2008-09-30 2013-07-24 日立電線株式会社 アンテナ及びアンテナを備えた電子機器
JP5527584B2 (ja) 2009-09-28 2014-06-18 アイシン精機株式会社 アンテナ装置
JP5493750B2 (ja) * 2009-11-17 2014-05-14 旭硝子株式会社 車両用ガラスアンテナ及び車両用窓ガラス
GB0922191D0 (en) * 2009-12-21 2010-02-03 Pilkington Group Ltd Vehicle glazing
JP2012054915A (ja) 2010-08-06 2012-03-15 Nippon Soken Inc アンテナ構造及びダイバーシティアンテナ構造
US8466842B2 (en) * 2010-10-22 2013-06-18 Pittsburgh Glass Works, Llc Window antenna
JP2014045230A (ja) * 2010-12-28 2014-03-13 Asahi Glass Co Ltd アンテナ装置
JP2012169896A (ja) 2011-02-15 2012-09-06 Hitachi Metals Ltd マルチバンドアンテナ
JP5777096B2 (ja) 2011-07-21 2015-09-09 株式会社スマート 万能icタグとその製造法、及び通信管理システム
EP2811573B1 (en) 2013-06-03 2018-05-30 BlackBerry Limited A coupled-feed wideband antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283230A (ja) * 2002-03-04 2003-10-03 Ma Com Inc アンテナ
JP2005223879A (ja) * 2004-01-05 2005-08-18 Alps Electric Co Ltd スロットアンテナ
WO2014129588A1 (ja) * 2013-02-21 2014-08-28 旭硝子株式会社 車両用窓ガラス及びアンテナ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535615A (ja) * 2015-11-27 2018-11-29 エージーシー グラス ユーロップAgc Glass Europe 接続制御手段を含む高周波および広帯域アンテナ
JP2018135020A (ja) * 2017-02-22 2018-08-30 日本板硝子株式会社 リアガラス
JP6998661B2 (ja) 2017-02-22 2022-02-10 日本板硝子株式会社 リアガラス
WO2019093271A1 (ja) * 2017-11-07 2019-05-16 Agc株式会社 アンテナ及び車両用窓ガラス
CN111279553A (zh) * 2017-11-07 2020-06-12 Agc株式会社 天线和车辆用窗玻璃
JPWO2019093271A1 (ja) * 2017-11-07 2020-11-26 Agc株式会社 アンテナ及び車両用窓ガラス
US11171404B2 (en) 2017-11-07 2021-11-09 AGC Inc. Antenna and window glass for vehicle
JP7103370B2 (ja) 2017-11-07 2022-07-20 Agc株式会社 アンテナ及び車両用窓ガラス
DE112018005303B4 (de) 2017-11-07 2023-09-14 AGC Inc. Antenne und fensterscheibe für ein fahrzeug
WO2023068151A1 (ja) * 2021-10-18 2023-04-27 Agc株式会社 平面アンテナ及び車両用窓ガラス

Also Published As

Publication number Publication date
JPWO2017018324A1 (ja) 2018-06-07
JP6614237B2 (ja) 2019-12-04
EP3327862A4 (en) 2019-04-10
CN107851889B (zh) 2020-10-30
US10297897B2 (en) 2019-05-21
CN107851889A (zh) 2018-03-27
EP3327862A1 (en) 2018-05-30
US20180151939A1 (en) 2018-05-31
EP3327862B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6614237B2 (ja) ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス
US10290932B2 (en) Glass antenna and vehicle window glass provided with glass antenna
US9985333B2 (en) Window glass for vehicle and glass antenna
JP6323455B2 (ja) アンテナ装置
JP2017005354A (ja) 車両用ガラスアンテナ及び車両用アンテナを備えた後部窓ガラス
JP2009246844A (ja) 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
JP6330811B2 (ja) アンテナ装置
US11171404B2 (en) Antenna and window glass for vehicle
EP2136434B1 (en) Structure for rectangular loop antenna
US9379430B2 (en) Multiband antenna
JP2008278481A (ja) 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
EP3761448B1 (en) Antenna module and in-vehicle infotainment device
JP5495015B2 (ja) 多周波共用アンテナ
JP6639933B2 (ja) 車載用アンテナ装置
JP6610390B2 (ja) 車両用窓ガラス及びガラスアンテナ
JP2012104980A (ja) 車両用アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE