WO2017017950A1 - コンデンサおよびコンデンサの製造方法 - Google Patents

コンデンサおよびコンデンサの製造方法 Download PDF

Info

Publication number
WO2017017950A1
WO2017017950A1 PCT/JP2016/003455 JP2016003455W WO2017017950A1 WO 2017017950 A1 WO2017017950 A1 WO 2017017950A1 JP 2016003455 W JP2016003455 W JP 2016003455W WO 2017017950 A1 WO2017017950 A1 WO 2017017950A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
capacitor element
capacitor
electrode body
Prior art date
Application number
PCT/JP2016/003455
Other languages
English (en)
French (fr)
Inventor
正行 森
勝 齋藤
晃司 星野
隆史 黒木
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to CN201680043694.4A priority Critical patent/CN107851525A/zh
Priority to US15/745,547 priority patent/US20180211789A1/en
Publication of WO2017017950A1 publication Critical patent/WO2017017950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a technique for manufacturing a capacitor using a winding element such as an electric double layer capacitor or an electrolytic capacitor.
  • the area of the electrode body leads to the magnitude of the capacitance.
  • the electrode body having a large area is wound around the center of the element, thereby realizing a reduction in size and an increase in capacity.
  • a capacitor having a shape other than a cylindrical shape may be used depending on the installation space of the equipment or device on which the capacitor is mounted.
  • a capacitor having a shape other than the cylindrical shape for example, a flat capacitor element is used.
  • the capacitor element since the force acting on the wound electrode body is not uniform, there is a possibility that a restoring force is generated in a part thereof and the outer shape of the capacitor element is deformed.
  • the capacitor element may be deformed so as to expand due to the influence of vibration applied from the outside or expansion due to impregnation with the electrolytic solution.
  • Patent Document 1 cannot solve such a problem.
  • an object of the capacitor manufacturing method and the capacitor of the present invention is to stabilize the shape of the capacitor element.
  • the capacitor manufacturing method of the present invention and the purpose of the capacitor are to stabilize the connection state between the electrode portion and the terminal component.
  • one aspect of the capacitor of the present invention is a capacitor element in which a positive electrode body and a negative electrode body, which are laminated via a separator, are wound and formed into a flat shape having a curved portion and a flat portion.
  • An insulating interval between the positive electrode portion formed on the one end face of the capacitor element and drawn from the positive electrode body, and the positive electrode portion on the same end face as the positive electrode portion, and from the negative electrode body A positive electrode side connected to the negative electrode part formed by drawing, the positive electrode part and the flat part side on the negative electrode part by welding in a crossing direction to the stacked positive electrode body and the negative electrode body And a current collector plate on the negative electrode side.
  • the current collector plates on the positive electrode side and the negative electrode side may be disposed on the curved portion together with the flat portion, and the curved portion may be connected by welding.
  • the flat portion side facing the central portion of the current collector plate via the central portion of the capacitor element may be connected by a series of welding processes.
  • a spacer may be preferably arranged at the center of the capacitor element.
  • one aspect of a method for producing a capacitor according to the present invention is a flat capacitor element in which a positive electrode body and a negative electrode body, which are laminated via a separator, are wound, and includes a curved portion and a flat portion. And forming a negative electrode portion drawn from the negative electrode body by providing an insulating interval between the positive electrode portion drawn from the positive electrode body and the positive electrode portion on one end surface of the capacitor element.
  • a positive electrode terminal installed on a sealing plate that seals the case member that houses the capacitor element and the positive electrode portion are connected via a positive current collector plate, and the negative electrode terminal of the sealing plate and the negative electrode portion And connecting the current collector plate on the positive electrode part or the negative electrode by welding in a crossing direction to the stacked positive electrode body and the negative electrode body.
  • Connecting to the department It may also include a.
  • connection strength with respect to the positive electrode portion and the negative electrode portion can be improved and the electrical connectivity can be improved.
  • FIG. 1 is a diagram illustrating a configuration example of a capacitor element and a current collector plate according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the capacitor element.
  • FIG. 3 is a diagram illustrating an example of a welding process for the current collector plate.
  • FIG. 4 is a diagram illustrating a configuration example of a capacitor element and a current collector plate according to the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration example in which a spacer is inserted into a capacitor element.
  • FIG. 6 is a diagram illustrating an example of the connection between the capacitor element and the terminal component.
  • FIG. 1 shows a configuration example of a capacitor element and a current collector plate according to the first embodiment.
  • the configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • This capacitor element 2 is an example of a component of the capacitor of the present invention.
  • the capacitor element 2 is formed so that the flat portion 4 has a longer side than the width of the curved portion 6 when viewed from the element end face side, for example.
  • the capacitor element 2 is an example of an element such as an electric double layer capacitor, an electrolytic capacitor, or a hybrid capacitor.
  • This manufacturing process of the capacitor element 2 is an example of a method for manufacturing a capacitor of the present invention.
  • a positive electrode portion 8 and a negative electrode portion 10 are formed on a part of the left and right flat portions 4 and on the curved portion 6 side, with the central portion in the long side direction of the flat portion 4 as a boundary.
  • an insulating interval 12 that insulates the positive electrode portion 8 from the negative electrode portion 10 is provided in the central portion of the flat portion 4 in the long side direction.
  • a flat hollow portion 16 is formed as an element center portion. What is necessary is just to set the opening width and opening length of this hollow part 16 at the time of the shaping
  • the capacitor element 2 when the electrode element or the like is laminated or wound so as to have a flat shape in advance, the capacitor element 2 is set to have a length and thickness as a central axis. Further, when the capacitor element 2 formed in a cylindrical shape is pressed into a flat shape, for example, the length and width of the hollow portion 16 are set by a pressing force and a pressing range.
  • the current collector plates 18 and 19 are connected to the positive electrode portion 8 and the negative electrode portion 10, respectively, and terminal components for electrically connecting the capacitor to other electronic devices and the like are connected.
  • the current collecting plates 18 and 19 are formed of a conductive material such as metal and include a flat surface portion connected to the positive electrode portion 8 and the negative electrode portion 10 formed on the flat portion 4 with the hollow portion 16 interposed therebetween. That is, the flat surface portions of the current collector plates 18 and 19 are arranged on the end surface of the positive electrode portion 8 or the negative electrode portion 10 across the hollow portion 16 and connected.
  • connection part of the positive electrode part 8 or the negative electrode part 10 is just to form the connection part of the positive electrode part 8 or the negative electrode part 10, and the current collecting plates 18 and 19 by laser welding, for example.
  • the position of this connection part should just exist in the connection range 20A, 20B arrange
  • a connection part may form a predetermined distance with one welding process, for example with respect to the inside of connection range 20A, 20B, or may be formed by welding several places in connection range 20A, 20B. .
  • FIG. 2 shows a configuration example of the capacitor element.
  • the capacitor element 2 has a foil-like positive electrode body 22 and a negative electrode body 24 as polarizable electrode bodies, and a gap between the positive electrode body 22 and the negative electrode body 24 is greater than these.
  • the positive electrode body 22, the negative electrode body 24, and the separator 26 are wound.
  • the separator 26 should just be arrange
  • an aluminum foil is used as a collecting electrode, and an activated carbon layer is formed on both surfaces of the aluminum foil to form a polarizable electrode body.
  • the separator 26 is, for example, electrolytic paper.
  • the capacitor element 2 is formed in a flat columnar shape, for example, as shown in FIG. 2B.
  • the edge portions 30 and 32 of the positive electrode body 22 and the negative electrode body 24 are provided with an insulation interval 12 on one end surface side. Is exposed.
  • the positive electrode portion 8 and the negative electrode portion 10 are formed by bending the end surfaces of the edge portions 30 and 32 toward the hollow portion 16 and forming them flat.
  • FIG. 3 shows an example of connection processing between the capacitor element and the current collector plate.
  • connection portions 34A and 34B are formed by welding one place to the plane of the current collector plates 18 and 19, respectively.
  • the welding direction is welded to the stacked positive electrode body 22, negative electrode body 24 and separator 26 in the crossing direction.
  • the welding procedure may be, for example, welding from the outer periphery side of the capacitor element toward the hollow portion 16 or welding from the hollow portion 16 toward the outer periphery side of the capacitor element 2.
  • the welding procedure includes welding from one end side of the flat portion 4 toward the hollow portion 16 side, stopping the welding when entering the hollow portion 16, and starting welding at a timing beyond the hollow portion 16.
  • the welding may be performed from 16 toward the outer peripheral side of the capacitor element 2. That is, welding may be performed on both ends of the flat portion 4 of the capacitor element 2 while avoiding the hollow portion 16.
  • any of the terminal parts 48 and 49 connected to the current collector plates 18 and 19 shown in FIG. may be set, for example, on the plane of the current collector plates 18 and 19 and on the end side on the curved portion 6 side. Thereby, the current collecting plates 18 and 19 and the terminal components 48 and 49 can be connected by welding the respective side surfaces.
  • the welding direction may be set in a crossing direction with respect to, for example, the electrode body or the separator 26, and is not limited to being orthogonal.
  • the stacked electrode bodies and the separator 26 may be welded in an oblique direction.
  • connection process for example, as shown in FIG. 3B, a series of processes from the flat part 4 on one end side of the capacitor element 2 toward the flat part 4 on the other end side on the plane of the current collector plates 18 and 19. May be continuously welded to form a single connection 36.
  • the length of the connecting portion 36 may be set to a welding length such that at least the positive portion 8 or the negative portion 10 is welded to the flat portions 4 on both sides across the hollow portion 16.
  • the connecting portion 36 is welded linearly from the flat portion 4 to the hollow portion 16 side of the capacitor element 4, thereby realizing welding in the crossing direction with respect to the stacked electrode body and the separator 26.
  • the connecting portion 36 is not limited to being formed linearly with respect to the electrode body and the separator 26, for example, and may be welded by changing the angle in an oblique direction.
  • This capacitor manufacturing process is an example of the capacitor manufacturing method of the present invention.
  • the capacitor element 2 may be pressed from the outside in a predetermined direction and crushed into a flat shape including the flat portion 4 and the curved portion 6. At this time, an insulating plate-like spacer 44 shown in FIG. 5 may be inserted into the hollow portion 16 that is the center of the capacitor element 2.
  • the positive current collector 18 is connected to the positive electrode 8 of the capacitor element 2, and the negative current collector 19 is connected to the negative electrode 10 by laser welding.
  • the sealing element 46 shown in FIG. 6 is installed in the capacitor element 2 via the current collecting plates 18 and 19, and the current collecting plates 18 and 19 and the terminal parts 48 and 49 of the sealing body 46 are laser-welded. .
  • the sealing body 46 is welded from the case member exterior side, for example, or the sealing body 46 is subjected to a crimping process by pressing.
  • the sealing body 46 may be, for example, a sealing plate
  • the terminal component 48 may be, for example, a positive terminal
  • the terminal component 49 may be, for example, a negative terminal.
  • the terminal connection is simplified. In addition, the connection can be facilitated. Further, since a wide range of the electrode portion is connected to the current collector plate, a large number of lead portions can be secured, and the resistance can be reduced.
  • the capacitor By connecting the flat portions 4 of the capacitor element 2 to the current collector plates 18 and 19 disposed across the hollow portion 16, the capacitor can counter the restoring force generated in the electrode body, and the shape of the capacitor element 2 Can be maintained.
  • the spatter generated during welding is scattered in the hollow portion 16, and the particles scattered in the capacitor element 2 Can reduce the possibility of residual.
  • the laser output may be made weaker than the welding location when the laser beam scans the portion of the current collector plates 18 and 19 that faces the hollow portion 16. By doing so, spatter generated from the current collector plates 18 and 19 placed on the hollow portion 16 is suppressed, and spatter generated at the time of laser re-output when entering the welded portion. (Spatter) can be suppressed, and the possibility that spatter (Spatter) scatters in the hollow portion 16 and particles scattered in the capacitor element 2 remain can be reduced.
  • the current collector plates 18 and 19 are welded in an oblique direction to the stacked electrode bodies and separators 26 to increase the connection strength between the current collector plates and the electrode bodies, and to widen the current collection range. be able to.
  • the hollow portion 16 is filled with the spacer 44, so that the spatter can be suppressed from being scattered in the hollow portion 16. Further, by setting the protruding height of the spacer 44 according to the bent portions of the edge portions 30 and 32, the end surface of the edge portions 30 and 32 can be brought into contact with the end surface of the spacer 44 to perform the bending process. By doing in this way, the connection surface by the side of the hollow part 16 of the edge parts 30 and 32 is stabilized, and the positive electrode part 8 and the negative electrode part 10, and the current collecting plates 18 and 19 can be connected reliably.
  • FIG. 4 shows a configuration example of the capacitor element and the current collector plate according to the second embodiment.
  • the configuration shown in FIG. 4 is an example, and the present invention is not limited to such a configuration.
  • the current collector plates 40, 42 are provided not only on the flat portion 4 side of the electrode body on which the positive electrode portion 8 or the negative electrode portion 10 is formed but also on the curved portion 6 side. Connect. As described above, the current collector plates 40 and 42 include a flat surface portion that covers the flat portion 4 across the hollow portion 16 and a curved surface portion that is formed integrally with the flat surface portion and covers the curved portion 6. . What is necessary is just to form a curved surface part in a curved shape according to the shape of the curved part 6, for example.
  • connection between the current collector plates 40 and 42 and the electrode portion laser welding is used.
  • the welding position is, for example, in the connection range 20A, 20B arranged on the flat part 4 of the positive electrode part 8 or the negative electrode part 10 on the flat surface part of the current collector plates 40, 42, and further on the curved surface part.
  • the connection range 20 ⁇ / b> C on the bending portion 6 may be sufficient.
  • the connection portions formed by welding may be formed at a predetermined distance in a single welding process in each of the connection ranges 20A, 20B, and 20C, or a plurality of locations in the connection ranges 20A, 20B, and 20C. May be formed by welding.
  • the support strength of the current collector plates 40 and 42 with respect to the capacitor element 2 can be increased, and the shape of the capacitor element 2 can be stabilized.
  • the electrode part is formed by bending the edge parts 30 and 32 of the positive electrode body 22 and the negative electrode body 24 exposed to one end face side of the capacitor element 2 to the hollow part 16 side so as to be a flat surface.
  • the surface of is flatly formed.
  • the bent portion 6 is formed by overlapping the bent edges 30 and 32, so that the surface is hard and the connection surface with the current collector plates 18 and 19 is stable. Therefore, even if the current collecting plates 18 and 19 are placed, the stability is good and the connectivity is stable.
  • the flat portion 4 is on the center side of the capacitor element 2, the lead-out distance is short, and the internal resistance can be reduced and the ESR can be reduced.
  • Capacitor element 2 has been described as being formed into a flat shape by winding the laminated polarizable electrode body and the separator 26, but is not limited thereto.
  • Capacitor element 2 may be a laminated element formed through a separator 26 between a pair of polarizable electrode bodies, for example.
  • the case where the hollow portion 16 is a cavity or the electrode body on the flat portion 4 side facing the hollow portion 16 is shown in close contact is not limited thereto.
  • a spacer 44 shown in FIG. 5 may be inserted into the hollow portion 16.
  • the spacer 44 may be inserted into the hollow portion 16 when the electrode body is wound, when the capacitor element 2 is molded, or after the molding process, for example.
  • the spacer 44 may be formed of a material that is hard, insulating, high-strength, and lightweight, such as cardboard or a fluororesin plate.
  • the spacer 44 has a side surface in close contact with the inner wall side of the electrode body, and this width may be the distance between the hollow portions 16 of the capacitor element 2.
  • the shape of the capacitor element 2 can be maintained, the adhesion between the electrode bodies is increased, the internal resistance is lowered, and the electrode in which the spacer 44 faces the hollow portion 16. Since it contacts the body, it is possible to prevent the flat portion 4 side from being deformed in the direction away from the hollow portion 16 and to further stabilize the shape of the capacitor element 2.
  • the current collector plates 18 and 19 cover only the flat portion 4 side.
  • the present invention is not limited to this. It is good also as a shape which covers the curved part 6 like the shape of the current collecting plates 18 and 19 of 2nd Embodiment.
  • the terminal parts 48 and 49 of the sealing body 46 are arranged so as to be placed on the current collector plates 18 and 19, and the contact portions between the current collector plates 18 and 19 and the terminal parts 48 and 49 are connected by laser welding.
  • the capacitor element it is possible to prevent the capacitor element from being deformed so as to swell by welding at least the flat part side of the current collector plate arranged over the hollow part to the flat capacitor element, and the shape of the capacitor This is useful because it can stabilize the internal resistance and reduce the internal resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

コンデンサ素子の形状を安定化させる。 セパレータ(26)を介して積層された正極体(22)と負極体(24)とが巻回され、湾曲部(6)と平坦部(4)とを備える偏平形状に形成されたコンデンサ素子(2)と、コンデンサ素子の一端面上に正極体から引き出されて形成された正極部(8)と、正極部と同一の端面上に、正極部との間に絶縁間隔(12)を設け、負極体から引き出されて形成された負極部(10)と、正極部上および負極部上の平坦部側に、積層された正極体および負極体に対して交差方向への溶接により接続された正極側および負極側の集電板(18、19)とを備える。

Description

コンデンサおよびコンデンサの製造方法
 本発明は、電気二重層コンデンサや電解コンデンサなど巻回素子を用いたコンデンサの製造技術に関する。
 電気二重層コンデンサや電解コンデンサなどのコンデンサでは、電極体の面積が静電容量の大小に繋がる。コンデンサを製造するには、面積の大きな電極体を素子中心に対して巻回することで、小型化および大容量化を実現している。
 このようなコンデンサに関し、正極体と負極体とをセパレータを介して巻回したコンデンサ素子を用いるコンデンサがある(例えば、特許文献1)。
特開2001-068379号公報
 ところで、コンデンサを搭載させる機器や装置などの設置スペースなどに応じて円柱形状以外の形状のコンデンサを用いることがある。この円柱形状以外の形状のコンデンサではたとえば偏平形状のコンデンサ素子を用いる。このようなコンデンサ素子では、たとえば巻回した電極体に作用する力が均一でないため、その一部に復元力が生じてコンデンサ素子の外形が変形してしまうおそれがある。またコンデンサ素子は、外部から付加される振動や、電解液の含浸による膨張などの影響を受けることによっても広がるように変形するおそれがある。
 このように、変形として、たとえばコンデンサ素子が広がってしまうと、電極体同士の密着性が低下し、内部抵抗の増加や電気的機能の低下を招くおそれがあるなどの課題がある。また、コンデンサ素子の広がり変形に対抗するためにケース内に封入するなどの手段をとった場合、コンデンサ素子の一部に過大な応力がかかってしまうことで、コンデンサの内部抵抗の増加、電気的な特性の低下などが生じるおそれがある。そのほか、コンデンサ素子が変形すると、電極部と集電板や端子部品との接続位置がずれるほか、接続部分に過大な負荷がかかり、コンデンサ素子の破損や電気的特性の低下などの影響が生じるおそれがある。
 斯かる課題の開示や示唆はなく、特許文献1に開示された構成では斯かる課題を解決することができない。
 そこで、本発明のコンデンサの製造方法およびコンデンサの目的は、コンデンサ素子の形状を安定化させることにある。
 また本発明のコンデンサの製造方法およびコンデンサの目的は、電極部と端子部品との接続状態を安定化させることにある。
 上記目的を達成するため、本発明のコンデンサの一側面は、セパレータを介して積層された正極体と負極体とが巻回され、湾曲部と平坦部とを備える偏平形状に形成されたコンデンサ素子と、前記コンデンサ素子の一端面上に前記正極体から引き出されて形成された正極部と、前記正極部と同一の端面上に、前記正極部との間に絶縁間隔を設け、前記負極体から引き出されて形成された負極部と、前記正極部上および前記負極部上の前記平坦部側に、積層された前記正極体および前記負極体に対して交差方向への溶接により接続された正極側および負極側の集電板とを備えてもよい。
 上記コンデンサにおいて、好ましくは、前記正極側および前記負極側の前記集電板が前記平坦部とともに前記湾曲部上に配置され、前記湾曲部上を溶接により接続されてもよい。
 上記コンデンサにおいて、好ましくは、前記集電板上に対し、コンデンサ素子中心部を介して対向する前記平坦部側を一連の溶接処理により接続してもよい。
 上記コンデンサにおいて、好ましくは、前記コンデンサ素子中心部にスペーサを配置してもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法の一側面は、セパレータを介して積層された正極体と負極体とが巻回され、湾曲部と平坦部とを備える偏平形状のコンデンサ素子を形成する工程と、前記コンデンサ素子の一端面上に、前記正極体から引き出された正極部と、該正極部との間に絶縁間隔を設け、前記負極体から引き出された負極部を形成する工程と、前記コンデンサ素子を収納するケース部材を封口する封口板に設置された正極端子と前記正極部とを正極側の集電板を介して接続させ、該封口板の負極端子と前記負極部とを負極側の集電板を介して接続させる工程とを備え、積層された前記正極体および前記負極体に対して交差方向への溶接により、前記集電板を前記正極部上または前記負極部上に接続させる工程とを含んでもよい。
 本発明によれば、次のいずれかの効果が得られる。
 (1) コンデンサ素子の平坦部分同士を、コンデンサ素子中心部分を跨いで配置した集電板に接続させることで、電極体に生じる復元力に対抗でき、コンデンサ素子の形状を維持させることができる。
 (2) 集電板の接続により偏平部を変形させないので、積層された電極体の密着状態を維持でき、コンデンサ素子の内部抵抗の低下が図れる。
 (3) 集電板に対し、積層された正極体および負極体に対して交差方向に溶接することで、正極部および負極部に対する接続強度の向上、および電気的な接続性の向上が図れる。
図1は、第1の実施の形態に係るコンデンサ素子および集電板の構成例を示す図である。 図2は、コンデンサ素子の構成例を示す図である。 図3は、集電板に対する溶接処理の一例を示す図である。 図4は、第2の実施の形態に係るコンデンサ素子および集電板の構成例を示す図である。 図5は、コンデンサ素子にスペーサを挿入する構成例を示す図である。 図6は、コンデンサ素子と端子部品との接続の一例を示す図である。
 〔第1の実施形態〕
 図1は、第1の実施の形態に係るコンデンサ素子および集電板の構成例を示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
 このコンデンサ素子2は、本発明のコンデンサの構成部品の一例であり、たとえば図1に示すように、コンデンサ素子2を形成する電極体やセパレータなどが直線、またはそれに近い状態で積層された平坦部4と、この平坦部4の両端側に形成され、電極体を屈曲させて形成された湾曲部6を含む偏平形状の柱状である。また、このコンデンサ素子2は、たとえば素子端面側からみて、平坦部4が湾曲部6の幅よりも長辺となるように形成されている。コンデンサ素子2は、電気二重層コンデンサ、電解コンデンサまたはハイブリッドキャパシタなどの素子の一例である。このコンデンサ素子2の製造処理は、本発明のコンデンサの製造方法の一例である。
 コンデンサ素子2の一端面には、たとえば平坦部4の長辺方向の中心部分を境界として、左右の平坦部4の一部および湾曲部6側に、正極部8と負極部10とが形成される。また平坦部4の長辺方向の中心部分には、正極部8と負極部10とを絶縁させる絶縁間隔12を設ける。コンデンサ素子2には、素子中心部として、偏平形状の中空部16を形成する。この中空部16の開口幅や開口長さは、コンデンサ素子2の成形処理時に設定すればよい。コンデンサ素子2は、たとえば予め偏平形状になるように電極体などを積層または巻回する場合、中心軸として長さや厚さが設定される。また、筒状に形成されたコンデンサ素子2を押圧するなどして偏平形状に成形した場合には、たとえば押圧力や押圧範囲により中空部16の長さや幅が設定される。
 正極部8と負極部10には、それぞれ集電板18、19が接続され、コンデンサを他の電子機器などに電気的に接続するための端子部品が接続される。この集電板18、19は、金属などの導電性の材料で形成され、中空部16を挟んで平坦部4上に形成された正極部8、負極部10に接続する平坦面部を備える。すなわちこの集電板18、19の平坦面部は、中空部16を跨いで正極部8または負極部10の端面上に配置されて、接続される。
 正極部8または負極部10と集電板18、19との接続部は、たとえばレーザ溶接によって形成すればよい。この接続部の位置は、集電板18、19の平坦面部上に対し、少なくとも正極部8または負極部10の平坦部4上に配置される接続範囲20A、20Bにあればよい。また接続部は、たとえば接続範囲20A、20B内に対し、所定の距離を1回の溶接工程で形成してもよく、または接続範囲20A、20B内の複数箇所を溶接して形成してもよい。
 <コンデンサ素子2の構成について>
 図2は、コンデンサ素子の構成例を示している。
 コンデンサ素子2は、たとえば図2のAに示すように、分極性の電極体として箔状の正極体22および負極体24があり、この正極体22と負極体24との間に、これらよりも幅広なセパレータ26を積層した上で、正極体22、負極体24およびセパレータ26を巻回して形成されている。またセパレータ26は、たとえば正極体22と負極体24との間のみならず、巻回した状態でコンデンサ素子2の内層側および外層側に配置されればよい。
 正極体22および負極体24は、たとえばアルミニウム箔を集電極とし、そのアルミニウム箔の両面に活性炭層を形成して分極性の電極体としたものが用いられている。セパレータ26はたとえば、電解紙である。
 またコンデンサ素子2は、たとえば図2のBに示すように、偏平形状の柱状に形成されており、一端面側に、絶縁間隔12をもたせて正極体22および負極体24の縁部30、32を露出させている。この縁部30、32の端面を中空部16側に折り曲げて平坦に成形することで正極部8と負極部10が形成されている。
 <集電板と電極体との接続処理について>
 図3は、コンデンサ素子と集電板との接続処理の一例を示している。
 この接続処理では、たとえば図3のAに示すように、集電板18、19の平面上に対しそれぞれ1箇所ずつ溶接して接続部34A、34Bを形成している。溶接方向は、たとえば図3のAに示すように、積層された正極体22、負極体24およびセパレータ26に対して交差方向に溶接される。溶接の手順は、たとえばコンデンサ素子外周側から中空部16方向に向けて溶接してもよく、または中空部16からコンデンサ素子2の外周側に向けて溶接してもよい。または溶接の手順は、平坦部4の一端側から中空部16側に向けて溶接し、中空部16上に入ると溶接を中断させ、中空部16を越えたタイミングで溶接を開始し、中空部16からコンデンサ素子2の外周側に向けて溶接してもよい。すなわち、コンデンサ素子2の平坦部4の両端に対し、中空部16を回避させながら溶接を行なえばよい。
 溶接位置は、たとえば集電板18、19上に接続される図6に示す端子部品48、49の接続位置を避けて、いずれを溶接してもよく、また、複数箇所を溶接してもよい。端子部品48、49の接続位置は、たとえば集電板18、19の平面上であって、湾曲部6側の端部側に設定すればよい。これにより、集電板18、19と端子部品48、49とをそれぞれの側面側を溶接して接続させることができる。
 さらに溶接方向は、たとえば電極体やセパレータ26に対して交差方向に設定されればよく、直交させる場合に限られない。溶接処理では、たとえば集電板18、19の平面上において、積層された電極体やセパレータ26に対して斜め方向に溶接してもよい。このように斜め方向に溶接することで、接続部34A、34Bを長くとることができる。
 そのほか接続処理として、たとえば図3のBに示すように、集電板18、19の平面上に対しコンデンサ素子2の一端側の平坦部4から他端側の平坦部4に向けて一連の処理で連続して溶接し、単一の接続部36を形成してもよい。この接続部36の長さは、少なくとも、正極部8または負極部10に対し、中空部16を跨いで両側の平坦部4側を溶接するような溶接長さに設定すればよい。
 接続部36は、たとえばコンデンサ素子4の平坦部4から中空部16側に向けて直線状に溶接することで、積層された電極体及びセパレータ26に対して交差方向への溶接を実現している。また接続部36は、たとえば電極体およびセパレータ26に対して直線状に形成される場合に限られず、斜め方向に角度を変化させて溶接してもよい。
 <コンデンサの製造工程について>
 次に、コンデンサ素子2の形成処理および集電板18、19の接続処理を含むコンデンサの製造処理について説明する。このコンデンサの製造工程は、本発明のコンデンサの製造方法の一例である。
 (A) コンデンサの製造処理では、たとえば正極体22、負極体24、セパレータ26を積層し、巻回処理を行なう。
 (B) 巻回後、コンデンサ素子2の一端面側に正極体22および負極体24の縁部30、32を引出し、電極部として正極部8、負極部10を形成する。
 (C) コンデンサ素子2の成形処理として、たとえば外部側から所定方向にコンデンサ素子2を押圧し、押しつぶして平坦部4と湾曲部6を備える偏平形状に成形してもよい。このとき、コンデンサ素子2の中心である中空部16内に図5に示す絶縁性で板状のスペーサ44を挿入してもよい。
 (D) 成形処理の後、コンデンサ素子2の正極部8に正極側の集電板18を接続させ、かつ負極部10に負極側の集電板19をレーザ溶接によって接続させる。
 (E) コンデンサ素子2には、集電板18、19を介して図6に示す封口体46が設置され、集電板18、19と封口体46の端子部品48、49とをレーザ溶接する。
 (F) そして、コンデンサ素子2は、図6に示すケース部材50内に電解液とともに収納されると、封口体46によってケース部材50の開口部が封止される。封口体46は、たとえばケース部材外装側から溶接され、または封口体46に押圧による加締め処理が施される。なお、封口体46は、たとえば封口板であればよく、端子部品48は、たとえば正極端子であればよく、端子部品49は、たとえば負極端子であればよい。
 <第1の実施の形態の効果>
 斯かる構成によれば、次の効果が得られる。
 (1) 電極部と封口体46に設置された端子部品48、49とが集電板18、19を介して接続されるので、端子接続のシンプル化が図られている。しかも、接続を容易化することができる。また、電極部の広い範囲が集電板と接続しているため、引出し部分を多く確保でき、抵抗の低減化が図れる。
 (2) コンデンサ素子2の平坦部4同士を、中空部16を跨いで配置した集電板18、19に接続させることで、コンデンサは電極体に生じる復元力に対抗でき、コンデンサ素子2の形状を維持させることができる。
 (3) 集電板18、19により偏平部を変形させないので、積層された電極体の密着状態を維持でき、コンデンサ素子2の内部抵抗の低下が図れる。
 (4) 中空部16を跨いで配置した集電板18、19の端面上を溶接することで、対向する平坦部4間でコンデンサ素子2と集電板18、19との接続を堅牢化でき、コンデンサ素子2の形状を安定化できる。
 (5) 溶接方向を積層された電極体やセパレータ26に対して交差方向に設定することで、コンデンサ素子2の平坦部4が中空部16から離間する方向に変形するのを阻止することができる。すなわち、コンデンサ素子2は、電極体やセパレータ26を巻回していることから、たとえば巻回部分である湾曲部6側に張力が作用している。これにより湾曲部6には、電極体やセパレータ26の復元力が生じており、巻回状態を解除するように、広がる力が作用している。湾曲部6が広がると、湾曲部6の両側の平坦部4が中空部16から離間する方向に変位するとともに、平坦部4の両側から復元力を受けるので、直線形状が維持できなくなる。従って、コンデンサ素子2は、偏平形状が解除され、円形または楕円形状になり、幅広になってしまう。集電板18、19の溶接による素子の支持強度を高めることで、コンデンサ素子2の形状を維持させることができる。
 (6) 集電板18、19上の中空部16を跨ぐ部分を避けて溶接することで、溶接時に発生するスパッタ(Spatter)が中空部16内に飛散し、コンデンサ素子2内部に飛散した粒子が残留する可能性を減らすことができる。もしくは、集電板18、19の中空部16に対向する部分をレーザ光が走査する際にレーザの出力を溶接箇所よりも弱くしてもよい。このようにすることで、中空部16上に載置された集電板18、19からのスパッタ(Spatter)の発生を抑制するとともに、溶接部に突入する際のレーザの再出力時に発生するスパッタ(Spatter)を抑制でき、スパッタ(Spatter)が中空部16内に飛散し、コンデンサ素子2内部に飛散した粒子が残留する可能性を減らすことができる。
 (7) 中空部16を跨いで、集電板18、19上を一連の処理で溶接すれば、接続処理の容易化や製造の手間を減らすことができる。
 (8) 積層された電極体やセパレータ26に対して斜め方向に集電板18、19を溶接することで、集電板と電極体との接続強度が増加するほか、集電範囲を広く取ることができる。
 (9) コンデンサ素子2の中心側に近い位置で集電板18、19を溶接することで、電極体からの引出し距離が短くなり、内部抵抗の低減や低ESR(等価直列抵抗:Equivalent Series Resistance)化が図れる。
 (10) 中空部16にスペーサ44を挿入した場合、中空部16がスペーサ44で埋まるため、スパッタが中空部16内に飛散することを抑制できる。また、スペーサ44の突出高さを縁部30、32の折り曲げ部に合せて設定することで、スペーサ44の端面に縁部30、32の端面を接触させて折り曲げ処理を行える。このようにすることで、縁部30、32の中空部16側の接続面が安定し、正極部8、負極部10と集電板18、19とを確実に接続させることができる。
 (11) コンデンサ素子2の平坦部4側を溶接してコンデンサ素子2が膨らむのを阻止することで、コンデンサ素子2をケース部材50に封入にしたときに、コンデンサ素子2の外周部分がケース内壁に密着状態となるのを防止できる。これにより、ケース部材内においてガスが発生した場合でも、ケース内壁とコンデンサ素子2との間に隙間が維持できるので、ガスの排出を疎外せず、コンデンサの安定化および信頼性を維持することができる。
 〔第2の実施の形態〕
 図4は、第2の実施の形態に係るコンデンサ素子および集電板の構成例を示している。図4に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
 この実施の形態のコンデンサ素子2では、たとえば図4に示すように、正極部8または負極部10が形成された電極体の平坦部4側とともに、湾曲部6側にも集電板40、42を接続させる。この集電板40、42は、既述のように中空部16を跨いで平坦部4上を覆う平坦面部と、この平坦面部と一体に形成され、湾曲部6上を覆う湾曲面部とを備える。湾曲面部は、たとえば湾曲部6の形状に合わせて湾曲形状に形成すればよい。
 集電板40、42と電極部との接続には、レーザ溶接を利用する。溶接位置は、たとえば集電板40、42の平坦面部上に対し、少なくとも正極部8または負極部10の平坦部4上に配置される接続範囲20A、20Bにあり、さらに、湾曲面部上に対し、湾曲部6上の接続範囲20Cにあればよい。溶接により形成される接続部は、たとえば接続範囲20A、20B、20C内に対し、それぞれ所定の距離を1回の溶接工程で形成してもよく、または接続範囲20A、20B、20C内の複数箇所を溶接して形成してもよい。
 斯かる構成によれば、上記実施の形態の効果に加え、さらに、集電板40、42によるコンデンサ素子2に対する支持強度を高めることができ、コンデンサ素子2の形状の安定化を図ることができる。つまり、電極部は、コンデンサ素子2の一端面側に露出させた正極体22および負極体24の縁部30、32を平坦面になるように中空部16側に折り曲げることにより成形され、電極部の表面は平坦に成形される。このとき、湾曲部6は折り曲げた縁部30、32が重なりあって成形されるので、表面は硬く、集電板18、19との接続面が安定している。そのため、集電板18、19が載置しても安定がよく、接続性が安定する。一方で、平坦部4は、コンデンサ素子2の中心側であるため、引出し距離が短く、内部抵抗の低減や低ESR化が図れる。
 〔他の実施の形態〕
 (1) 上記実施の形態では、コンデンサ素子2は、積層された分極性の電極体およびセパレータ26を巻回して偏平形状にする場合を示したがこれに限られない。コンデンサ素子2は、たとえば一対の分極性電極体の間にセパレータ26を介して形成した積層素子であってもよい。
 (2) 上記実施の形態では、中空部16が空洞、または対向する平坦部4側の電極体を密着させる場合を示したがこれに限られない。中空部16には、たとえば図5に示すスペーサ44を挿入してもよい。スペーサ44は、たとえば電極体の巻回時やコンデンサ素子2の成形時、または成形処理後に中空部16に挿入すればよい。このスペーサ44は、たとえば厚紙やフッ素樹脂の板材など、硬質で絶縁性があり、かつ高強度で軽量な材料で形成されればよい。スペーサ44は、電極体の内壁側に側面を密着させており、この幅がコンデンサ素子2の中空部16の間隔となればよい。このように中空部16にスペーサ44を介在させることで、コンデンサ素子2の形状維持が図れるほか、電極体同士の密着性が高まり、内部抵抗が低下し、スペーサ44が中空部16に面した電極体に接触するので、平坦部4側が中空部16から離間する方向に変形するのを阻止し、コンデンサ素子2の形状の安定化をより高めることができる。
 (3) 上記第1の実施の形態では、集電板18、19は平坦部4側のみを覆う形状としたがこれに限らない。第2の実施の形態の集電板18、19の形状のように湾曲部6を覆うような形状としてもよい。集電板18、19に載置するように封口体46の端子部品48、49を配置し、この集電板18、19と端子部品48、49との接触部をレーザ溶接により接続するが、平坦部4及び湾曲部6を覆うように集電板18、19を配置することで、溶接工程の際に生じるスパッタがコンデンサ素子2へ飛散することを抑制できる。
 以上説明したように、本発明の最も好ましい実施形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明によれば、偏平形コンデンサ素子に対し、中空部に跨って配置した集電板の少なくとも平坦部側を溶接することで、コンデンサ素子が膨らむように変形するのを阻止でき、コンデンサの形状の安定化、内部抵抗の低下が図れるなど、有用である。
 2 コンデンサ素子
 4 平坦部
 6 湾曲部
 8 正極部
 10 負極部
 12 絶縁間隔
 16 中空部
 18、19、40、42 集電板
 20A、20B、20C 接続範囲
 22 正極体
 24 負極体
 26 セパレータ
 30、32 縁部
 34A、34B、36 接続部
 36 接続部
 44 スペーサ
 46 封口体
 48、49 端子部品
 50 ケース部材

Claims (5)

  1.  セパレータを介して積層された正極体と負極体とが巻回され、湾曲部と平坦部とを備える偏平形状に形成されたコンデンサ素子と、
     前記コンデンサ素子の一端面上に前記正極体から引き出されて形成された正極部と、
     前記正極部と同一の端面上に、前記正極部との間に絶縁間隔を設け、前記負極体から引き出されて形成された負極部と、
     前記正極部上および前記負極部上の前記平坦部側に、積層された前記正極体および前記負極体に対して交差方向への溶接により接続された正極側および負極側の集電板と
     を備えることを特徴とするコンデンサ。
  2.  前記正極側および前記負極側の前記集電板は、それぞれ前記平坦部とともに前記湾曲部上に配置され、前記湾曲部上を溶接して接続されることを特徴とする請求項1に記載のコンデンサ。
  3.  前記集電板上に対し、コンデンサ素子中心部を介して対向する前記平坦部側を一連の溶接処理により接続したことを特徴とする請求項1または請求項2に記載のコンデンサ。
  4.  前記コンデンサ素子中心部にスペーサを配置したことを特徴とする請求項1ないし3のいずれかに記載のコンデンサ。
  5.  セパレータを介して積層された正極体と負極体とが巻回され、湾曲部と平坦部とを備える偏平形状のコンデンサ素子を形成する工程と、
     前記コンデンサ素子の一端面上に、前記正極体から引き出された正極部と、該正極部との間に絶縁間隔を設け、前記負極体から引き出された負極部を形成する工程と、
     前記コンデンサ素子を収納するケース部材を封口する封口板に設置された正極端子と前記正極部とを正極側の集電板を介して接続させ、該封口板の負極端子と前記負極部とを負極側の集電板を介して接続させる工程と、
    を備え、
     積層された前記正極体および前記負極体に対して交差方向への溶接により、前記集電板を前記正極部上または前記負極部上に接続させる工程と、
     を含むことを特徴とするコンデンサの製造方法。

                                                                                    
PCT/JP2016/003455 2015-07-27 2016-07-26 コンデンサおよびコンデンサの製造方法 WO2017017950A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680043694.4A CN107851525A (zh) 2015-07-27 2016-07-26 电容器和电容器的制造方法
US15/745,547 US20180211789A1 (en) 2015-07-27 2016-07-26 Capacitor and capacitor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-147394 2015-07-27
JP2015147394A JP6668628B2 (ja) 2015-07-27 2015-07-27 コンデンサおよびコンデンサの製造方法

Publications (1)

Publication Number Publication Date
WO2017017950A1 true WO2017017950A1 (ja) 2017-02-02

Family

ID=57884471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003455 WO2017017950A1 (ja) 2015-07-27 2016-07-26 コンデンサおよびコンデンサの製造方法

Country Status (4)

Country Link
US (1) US20180211789A1 (ja)
JP (1) JP6668628B2 (ja)
CN (1) CN107851525A (ja)
WO (1) WO2017017950A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904009A (zh) * 2019-02-12 2019-06-18 河南天一航天科技有限公司 一种超级电容器端盖集流板总成

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272513A (ja) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd 二次電池
JP2011502360A (ja) * 2007-10-31 2011-01-20 コーニング インコーポレイテッド 長円形電気化学二重層コンデンサ
JP2012160658A (ja) * 2011-02-02 2012-08-23 Nippon Chemicon Corp コンデンサの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345298A (en) * 1980-09-19 1982-08-17 General Electric Company Modified round roll capacitor and method of making
JP5127271B2 (ja) * 2007-03-12 2013-01-23 株式会社東芝 捲回型電極電池およびその製造方法
CN103210459B (zh) * 2010-11-09 2016-08-10 日本贵弥功株式会社 电容器及其制造方法
CN103620824B (zh) * 2011-06-28 2017-07-04 日本贵弥功株式会社 蓄电器件以及蓄电器件的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502360A (ja) * 2007-10-31 2011-01-20 コーニング インコーポレイテッド 長円形電気化学二重層コンデンサ
JP2010272513A (ja) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd 二次電池
JP2012160658A (ja) * 2011-02-02 2012-08-23 Nippon Chemicon Corp コンデンサの製造方法

Also Published As

Publication number Publication date
JP2017028186A (ja) 2017-02-02
US20180211789A1 (en) 2018-07-26
CN107851525A (zh) 2018-03-27
JP6668628B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6225421B2 (ja) 蓄電素子、及び、蓄電素子の製造方法
US10468204B2 (en) Capacitor and manufacturing method therefor
US20160155998A1 (en) Secondary battery
JP2017050069A (ja) 蓄電装置
US20130052531A1 (en) Electric storage device
US20060168787A1 (en) Process for manufacturing an electrochemical cell and an electrochemical cell
JP6032077B2 (ja) 蓄電装置
JP2007258414A (ja) 電気二重層コンデンサ
JP4894543B2 (ja) キャパシタ
JP4451654B2 (ja) リチウム二次電池
WO2019235476A1 (ja) 蓄電素子
JP2019067762A (ja) 蓄電素子の製造方法、蓄電素子及び蓄電装置
WO2017017950A1 (ja) コンデンサおよびコンデンサの製造方法
JP5979273B2 (ja) コンデンサの製造方法
JP2015106614A (ja) 蓄電デバイスおよびその製造方法
JP2018018666A (ja) 蓄電装置及び蓄電装置の製造方法
JP6123544B2 (ja) 蓄電素子および蓄電素子の製造方法
JP2016046388A (ja) コンデンサおよびその製造方法
US9030805B2 (en) Capacitor and capacitor module using the same
JP2018056482A (ja) 蓄電デバイス、蓄電デバイスの製造方法、集電板および集電板の製造方法
JP2017028184A (ja) コンデンサの製造方法およびコンデンサ
JP6390266B2 (ja) コンデンサの製造方法
JP5834617B2 (ja) コンデンサの製造方法
WO2023080144A1 (ja) 蓄電デバイスおよびその製造方法
JPWO2019131356A1 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745547

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830055

Country of ref document: EP

Kind code of ref document: A1