WO2019235476A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2019235476A1
WO2019235476A1 PCT/JP2019/022175 JP2019022175W WO2019235476A1 WO 2019235476 A1 WO2019235476 A1 WO 2019235476A1 JP 2019022175 W JP2019022175 W JP 2019022175W WO 2019235476 A1 WO2019235476 A1 WO 2019235476A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
inner peripheral
peripheral edge
winding
separator
Prior art date
Application number
PCT/JP2019/022175
Other languages
English (en)
French (fr)
Inventor
克弥 尾地
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201980036913.XA priority Critical patent/CN112204792A/zh
Priority to JP2020523121A priority patent/JP7264161B2/ja
Priority to US15/734,177 priority patent/US11837700B2/en
Priority to DE112019002837.5T priority patent/DE112019002837T5/de
Publication of WO2019235476A1 publication Critical patent/WO2019235476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/02Machines for winding capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device including an electrode body having a wound electrode plate and a separator.
  • Patent Document 1 discloses a battery in which a foil-like positive electrode plate and a foil-like negative electrode plate are wound around a winding core with a separator interposed therebetween, and have a power generation element formed in a flat shape. Yes.
  • the winding core is composed of a porous member, and the surface of the foil-shaped positive electrode plate and the foil-shaped negative electrode plate on which the active material layer is formed in the innermost circumference of the winding is the core. They are arranged in a state of facing each other. With this configuration, the foil-like positive electrode plate and the foil-like negative electrode plate function as a battery even at the innermost periphery of the power generation element.
  • the core material included in the power generation element in the conventional battery has flexibility. Therefore, there is a possibility that a gap is formed between the edge of the electrode plate and the separator, and when a conductive foreign matter (contamination) such as a metal piece or metal powder enters the gap, A malfunction may occur.
  • the present invention has been made in consideration of the above-described conventional problems, and an object of the present invention is to provide a highly reliable energy storage device including an electrode body having a wound electrode plate and a separator.
  • An electricity storage element is an electricity storage element including an electrode body having a cylindrical core material, and an electrode plate and a separator wound around the core material, wherein the core material includes the electrode
  • the first imaginary line and the second imaginary line extending respectively along the first imaginary line and the second imaginary line parallel to the long side surface of the container of the storage element, At least one of the first line part and the second line part has a curved part protruding toward the other beyond the first imaginary line or the second imaginary line, and winding of the electrode plate is started.
  • the inner peripheral edge at the position is located at a place other than the bending portion in at least one of the first line portion and the second line portion.
  • an electricity storage device including an electrode body having a wound electrode plate and a separator and having high reliability.
  • FIG. 1 is a perspective view showing an external appearance of a power storage device according to an embodiment.
  • FIG. 2 is a perspective view showing components arranged in the container of the energy storage device according to the embodiment.
  • FIG. 3 is a perspective view showing an appearance of the current collector according to the embodiment.
  • FIG. 4 is a perspective view showing a schematic configuration of the electrode body according to the embodiment.
  • FIG. 5 is a diagram showing a configuration outline when the electrode body according to the embodiment is viewed from the direction of the winding axis.
  • FIG. 6 is a diagram simply showing a method of manufacturing the electrode body according to the embodiment.
  • FIG. 7 is a diagram showing an outline of the configuration of the core material of the electrode body and its surroundings according to the embodiment.
  • FIG. 8 is a diagram illustrating a configuration outline of an electrode body according to a comparative example.
  • FIG. 9 is a diagram showing an outline of the configuration of the core material of the electrode body and the surroundings thereof according to Modification Example 1 of the embodiment.
  • FIG. 10 is a diagram illustrating a configuration outline of a core member of an electrode body and its surroundings according to a second modification of the embodiment.
  • the inventors of the present application have found that the following problems occur with respect to the battery in Patent Document 1.
  • the core material is formed in a cylindrical shape with a highly flexible material such as a resin film. Therefore, when the electrode body is formed in a flat shape by pressing from the direction orthogonal to the winding axis, for example, the core material does not damage the electrode plate and the separator.
  • the core material has flexibility, it is likely to be partially bent inward due to the tightening force from the separator and the electrode plate.
  • the edge on the inner peripheral side of the electrode plate may float from the adjacent separator (lift inward) outside the curved portion.
  • the edge on the inner peripheral side of the electrode plate may float from the adjacent separator (lift inward) outside the curved portion.
  • An electricity storage element is an electricity storage element including an electrode body having a cylindrical core material, and an electrode plate and a separator wound around the core material, wherein the core material includes the electrode
  • the first imaginary line and the second imaginary line extending respectively along the first imaginary line and the second imaginary line parallel to the long side surface of the container of the storage element, At least one of the first line part and the second line part has a curved part protruding toward the other beyond the first imaginary line or the second imaginary line, and winding of the electrode plate is started.
  • the inner peripheral edge at the position is located at a place other than the bending portion in at least one of the first line portion and the second line portion.
  • the inner peripheral edge of the electrode plate ( The edge at the beginning of winding is located.
  • the inner peripheral edge of the electrode plate is pressed outward by the inner (core material side) separator, and as a result, lifting of the inner peripheral edge is suppressed. Therefore, problems such as a fine short circuit due to contamination entering from the end of the electrode body hardly occur.
  • the power storage element according to this aspect is a highly reliable power storage element.
  • the core member has a fixing portion, which is a portion to which the separator is fixed, in the first line portion when viewed from the direction of the winding axis, and the bending portion is the fixing portion in the first line portion. It is good also as being formed adjacent to.
  • the fixing portion in the core material is a portion that is pulled directly in the winding direction by the separator in the winding process in which the separator and the electrode plate are wound around the core material. Therefore, a curved part is easily formed in the core material at a position adjacent to the fixed part. For example, a relatively large curved portion is easily formed on the side of the fixed portion in the winding direction of the electrode plate and the separator. Portions other than the curved portion tend to protrude outward. Therefore, by arranging the inner peripheral edge of the electrode plate at a position that avoids the outer region of the curved portion, the suppression of the floating of the inner peripheral edge is further ensured.
  • the inner peripheral edge may be located at the second line portion.
  • the fixed portion is disposed in the first line portion, and the inner peripheral edge of the electrode plate is disposed in the second line portion.
  • the fixed portion is arranged in one of the regions divided into two by the long axis, and the inner peripheral edge of the electrode plate is arranged in the other of the two regions divided. Therefore, the inner peripheral edge of the electrode plate is not easily affected by the curved portion located on the side of the fixed portion. Thereby, the floating of an inner peripheral edge is suppressed more reliably.
  • the fixed portion and the inner peripheral edge may be disposed at positions facing each other across the winding shaft.
  • the inner peripheral edge of the electrode plate is present at a position farthest from the fixing portion or in the vicinity thereof in the circumferential direction of the core member, and thus is affected by the curved portion positioned on the side of the fixing portion. Hateful. Thereby, the floating of an inner peripheral edge is suppressed more reliably.
  • the core material is a shape having a pair of curved portions that are elongated in a predetermined direction and opposed in the predetermined direction when viewed from the direction of the winding axis,
  • the inner peripheral edge may be disposed on one outer side of the pair of curved portions.
  • the outside of the curved portion of the core material is a portion where the tension of the electrode plate and the separator (lamination element) is easily applied during winding, that is, the density of the lamination element is high. Since the inner peripheral edge of the electrode plate is located at this part, the inner peripheral edge is firmly held inward by the outer separator and is also far from the fixed part. It is not easily affected by the side curve. Thereby, the floating of an inner peripheral edge is suppressed more reliably.
  • the inner space of the core member is divided into two spaces by a partition wall portion that crosses the inner space when viewed from the direction of the winding axis, and the fixing portion is outside one of the two spaces.
  • the inner peripheral edge may be located outside the other of the two spaces.
  • the inner peripheral edge of the electrode plate is disposed at a position where the separator on the inner side is difficult to float, and thereby, the lifting of the inner peripheral edge is more reliably suppressed.
  • the core material may be formed by winding a part of the separator.
  • the core material when the core material is formed by winding a part of the separator, the core material has a relatively high flexibility, and thus a curved portion is formed. Accordingly, by disposing the inner peripheral edge of the electrode plate at a place other than the curved portion, the lifting of the inner peripheral edge is suppressed. Thereby, generation
  • FIG. 1 is a perspective view showing an external appearance of a power storage element 10 according to the embodiment.
  • FIG. 2 is a perspective view showing components disposed in the container 100 of the electricity storage device 10 according to the embodiment.
  • FIG. 3 is a perspective view illustrating an appearance of the current collector 120 according to the embodiment.
  • the electricity storage element 10 is a secondary battery that can charge electricity and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 10 is used as a power source for automobiles (or for mobile objects) such as an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV), a power source for electronic devices, or a power storage power source.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the power storage element 10 may be mounted as a battery for starting an engine in a vehicle such as a gasoline vehicle or a diesel vehicle.
  • the storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery or a capacitor.
  • the electricity storage element 10 may be a primary battery that can use the stored electricity without being charged by the user.
  • the electricity storage element 10 includes a container 100, a negative electrode terminal 200, and a positive electrode terminal 300. As shown in FIG. 2, a negative electrode side current collector 120, a positive electrode side current collector 130, and an electrode body 400 are accommodated in the container 100.
  • the power storage element 10 is a spacer disposed on the side of the current collectors 120 and 130, a gas discharge valve for releasing the pressure when the pressure in the container 100 rises, or You may provide the insulating film etc. which wrap around the electrode body 400 grade
  • a liquid such as an electrolytic solution (non-aqueous electrolyte) is sealed inside the container 100 of the electricity storage element 10, but the illustration of the liquid is omitted.
  • the electrolytic solution sealed in the container 100 there is no particular limitation on the type as long as it does not impair the performance of the electricity storage device 10, and various types can be selected.
  • the container 100 includes a main body 111 having a rectangular cylindrical shape and a bottom, and a lid 110 that is a plate-like member that closes the opening of the main body 111.
  • the rectangular cylindrical main body 111 has a pair of long side surfaces 111a and a pair of short side surfaces 111b.
  • the container 100 has a structure in which the interior of the container 100 is sealed by welding the lid 110 and the main body 111 after the electrode body 400 and the like are accommodated therein.
  • the electrode body 400 includes a positive electrode plate, a negative electrode plate, and a separator, and is a member that can store electricity. The detailed configuration of the electrode body 400 will be described later with reference to FIG.
  • the negative electrode terminal 200 is an electrode terminal electrically connected to the negative electrode of the electrode body 400 via the current collector 120.
  • the positive electrode terminal 300 is an electrode terminal electrically connected to the positive electrode of the electrode body 400 via the current collector 130.
  • the negative electrode terminal 200 and the positive electrode terminal 300 are attached to the lid body 110 disposed above the electrode body 400 via an insulating gasket (not shown).
  • the current collector 120 is disposed between the negative electrode of the electrode body 400 and the wall surface of the main body 111 of the container 100, and has electrical conductivity and rigidity that are electrically connected to the negative electrode terminal 200 and the negative electrode of the electrode body 400. It is a member.
  • the current collector 130 is disposed between the positive electrode of the electrode body 400 and the wall surface of the main body 111 of the container 100, and has electrical conductivity and rigidity that are electrically connected to the positive electrode terminal 300 and the positive electrode of the electrode body 400. It is a member.
  • the current collectors 120 and 130 are fixed to the lid 110.
  • the current collector 120 is joined to the negative electrode side end portion of the electrode body 400, and the current collector 130 is joined to the positive electrode side end portion of the electrode body 400.
  • each of current collectors 120 and 130 is bonded to electrode body 400 by ultrasonic bonding.
  • the shapes and mounting structures of the current collector 120 and the current collector 130 are substantially the same. Therefore, the configuration of the current collector 120 on the negative electrode side will be described with reference to FIG. 3, and the description of the configuration of the current collector 130 on the positive electrode side will be omitted.
  • the current collector 120 in the present embodiment has a pair of legs 122 arranged so as to sandwich the negative electrode side end of the electrode body 400 from both sides, as shown in FIG.
  • the pair of leg portions 122 are long portions extending from the end portion of the terminal connection portion 121 included in the current collector 120.
  • the terminal connection part 121 is a part connected to the negative electrode terminal 200.
  • the negative terminal 200 and the current collector 120 are connected by caulking a rivet provided in the negative terminal 200 while penetrating through the through hole 121 a of the terminal connection portion 121.
  • the pair of leg portions 122 are joined to the negative electrode side end portion of the electrode body 400 by ultrasonic bonding. Thereby, the current collector 120 is electrically connected to the negative electrode of the electrode body 400.
  • a technique for joining the electrode body 400 and the current collectors 120 and 130 a technique such as resistance welding or clinch joining may be employed in addition to the ultrasonic joining.
  • FIG. 4 is a perspective view showing a schematic configuration of the electrode body 400 according to the embodiment.
  • elements such as electrode plates (stacked elements) that are stacked and wound are partially expanded and illustrated.
  • the alternate long and short dash line with the symbol W represents the winding axis of the electrode body 400.
  • the winding axis W is a virtual axis serving as a central axis when winding the electrode plate or the like, and is a straight line parallel to the X axis passing through the center of the electrode body 400 in the present embodiment. That is, in the present embodiment, the “direction of the winding axis W” is synonymous with the “X-axis direction”.
  • the electrode body 400 is an example of an electrode body formed by winding an electrode plate and a separator around a core material to be described later. As shown in FIG. 4, the electrode body 400 has a flat shape in a direction orthogonal to the winding axis W (in the present embodiment, the Z-axis direction). That is, when viewed from the direction of the winding axis W, the electrode body 400 has an oval shape as a whole, the oval straight portion is flat, and the oval curved portion is curved. Become. For this reason, the electrode body 400 includes a pair of opposed curved ends (portions facing in the Y-axis direction across the winding axis W) and a pair of intermediate portions (windings) between the pair of curved ends. And a portion facing in the Z-axis direction across the rotation axis W).
  • the positive electrode plate 410 includes a long strip-shaped metal foil (positive electrode base material layer 411) made of aluminum, and a positive electrode mixture layer 414 containing a positive electrode active material formed on the surface of the metal foil.
  • the negative electrode plate 420 has a long strip-shaped metal foil (negative electrode base material layer 421) made of copper and a negative electrode mixture layer 424 containing a negative electrode active material formed on the surface of the metal foil.
  • separators 430 and 450 have a microporous sheet made of resin as a base material.
  • the positive electrode plate 410 and the negative electrode plate 420 are wound while being shifted from each other in the direction of the winding axis W via the separator 430 or 450.
  • the positive electrode plate 410 and the negative electrode plate 420 have the compound-material layer non-formation part which is a part in which the compound-material layer is not formed in the base material layer in the edge part of each shifted direction.
  • the positive electrode plate 410 has, on one end in the direction of the winding axis W (the end on the plus side in the X-axis direction in FIG. 4), a mixture layer non-forming portion 411a in which no positive electrode mixture layer is formed.
  • the negative electrode plate 420 has, on the other end in the direction of the winding axis W (the end on the minus side in the X-axis direction in FIG. 4), a mixture layer non-forming portion 421a where no negative electrode mixture layer is formed. .
  • the positive electrode side end is formed by the layer of the exposed metal foil (mixed material layer non-formed portion 411a) of the positive electrode plate 410, and the exposed metal foil (mixed material layer non-formed portion 421a) of the negative electrode plate 420 is exposed.
  • a negative electrode side end is formed.
  • the positive electrode side end is bonded to the current collector 130, and the negative electrode side end is bonded to the current collector 120.
  • the edge of the electrode plate at the beginning of winding (in this embodiment, the inner peripheral edge of the negative electrode plate 420) is arranged at a position different from the outer region of the curved portion of the core material. Thus, the floating of the inner peripheral edge is suppressed. This structure will be described below with reference to FIGS.
  • FIG. 5 is a diagram showing a configuration outline when the electrode body 400 according to the embodiment is viewed from the direction of the winding axis W.
  • FIG. 6 is a diagram simply illustrating a method for manufacturing the electrode body 400 according to the embodiment.
  • FIG. 7 is a diagram illustrating a configuration outline of the core member 500 and the surroundings of the electrode body 400 according to the embodiment.
  • FIG. 8 is a diagram illustrating a schematic configuration of an electrode body 490 according to a comparative example.
  • FIGS. 6 and 450 show the separators 430 and 450 wound around the core 500 first, and the illustration of the negative electrode plate 420 and the positive electrode plate 410 wound between the separators 430 and 450 is omitted. 7 and 8, only a part of the beginning of winding of the negative electrode plate 420 and the separators 430 and 450 is shown, and the positive electrode plate 410 is not shown. 6 to 8, the separator 430 is represented by a solid line and the separator 450 is represented by a dotted line so that the separator 430 and the separator 450 can be easily distinguished. These supplementary matters regarding FIGS. 6 to 8 also apply to FIGS. 9 and 10 described later.
  • the electrode body 400 has an elliptical shape that is flat in the Z-axis direction when viewed from the direction of the winding axis W.
  • a shape is formed by winding an element (hereinafter, also referred to as “laminated element”) such as the negative electrode plate 420 that constitutes the electrode body 400 and then compressing in the Z-axis direction.
  • the electrode body 400 has a core member 500, and the core member 500 also has a shape that is roughly flat in the Z-axis direction.
  • the core member 500 includes a first line portion 501 extending along the first imaginary line VL1 and a second line portion 502 extending along the second imaginary line VL2.
  • the first virtual line VL ⁇ b> 1 and the second virtual line VL ⁇ b> 2 are virtual lines parallel to the long side surface 111 a (see FIG. 2) of the container 100 of the storage element 10. More specifically, the first imaginary line VL1 and the second imaginary line VL2 are parallel to the long side surface 111a and when viewed from the direction of the winding axis W, the thickness direction of the core material 500 (Z-axis direction) ) Of a pair of imaginary straight lines passing through both ends.
  • the core member 500 is formed in a cylindrical shape by winding a resin sheet 600 made of polypropylene or polyethylene. That is, the core material 500 is a member having relatively high flexibility. Therefore, when the electrode body 400 is compressed in the Z-axis direction as described above, the core member 500 is flattened according to the compression force without damaging the laminated elements such as the separator 430 around the core member 500. It transforms into a simple shape. That is, the core member 500 is formed in a shape having a pair of curved portions 531 and 532 that are elongated in the Y-axis direction and opposed in the Y-axis direction when viewed from the direction of the winding axis W.
  • the winding start portion of the resin sheet 600 is formed in an S shape, and, for example, two places P1 and P2 are provided as shown in FIG. Weld. Further, the resin sheet 600 is wound around the S-shaped portion.
  • the core member 500 is formed with a partition wall portion 520 that crosses the internal space when viewed from the direction of the winding axis W. That is, the internal space of the cylindrical core member 500 is divided into the first hollow portion 521 and the second hollow portion 522 by the partition wall portion 520 as shown in FIG.
  • the core member 500 is formed by winding the resin sheet 600 about one and a half times, but the number of turns of the resin sheet 600 forming the core member 500 is not particularly limited.
  • the core material 500 may be formed by winding the resin sheet 600 one or more times around the S-shaped portion. It is not essential that the core material 500 is formed by winding the resin sheet 600 one or more times.
  • a cylindrical body is manufactured by resin molding using a mold, and the cylindrical body is employed as the core material 500. Also good.
  • a winding device 700 that rotates the core member 500 is used in the step of winding the laminated element such as the separator 430 around the core member 500 (winding step).
  • the winding device 700 includes a pair of support members 710 that rotate the core member 500. That is, the core member 500 is supported by the support member 710 inserted into the first hollow portion 521 and the support member 710 inserted into the second hollow portion 522, and rotated around the winding axis W in this state.
  • the end portions of the separators 430 and 450 are fixed to the core material 500 by a predetermined method such as welding, and the rotation of the core material 500 is started in this state.
  • the negative electrode plate 420 is sandwiched outside the separator 430 and inside the separator 450
  • the positive electrode plate 410 is sandwiched outside the separator 450 and inside the separator 430.
  • an electrode body 400 is obtained in which the separator 430, the negative electrode plate 420, the separator 450, and the positive electrode plate 410 are wound around the core material 500.
  • only one layer of the separator 430 is disposed on the inner side of the negative electrode plate 420 (side closer to the core material 500), but a plurality of layers of separators 430 wound around the core material 500 are disposed on the inner side of the negative electrode plate 420. It may be arranged. On the inner side of the negative electrode plate 420, the separators 430 and 450 may be wound around the core member 500 in a state where they are stacked.
  • the core member 500 is supported at both ends in the longitudinal direction (lateral direction in FIG. 6) by the support members 710. At this time, the curved portion 510 is clearly formed on the core member 500. not exist. However, after that, when the pair of support members 710 is removed from the core material 500 around which the separator 430 or the like is wound, the core material 500 is partially curved inward by the force received from the laminated element such as the separator 430, As a result, a curved portion 510 is formed.
  • the core material 500 includes a fixing portion 560 to which the separators 430 and 450 are fixed.
  • the fixing portion 560 is wound in the winding direction (rightward in FIG. 7). ).
  • the pair of support members 710 are removed from the core member 500 in this state, the side in the winding direction of the fixing portion 560 is easily bent by the tension of the separators 430 and 450 acting on the fixing portion 560.
  • the tightening force by the laminated elements such as the separator 430 wound around the core material 500 acts on the core material 500, and as a result, the curved portion 510 is formed on the side of the fixing portion 560 in the winding direction.
  • a curved portion 510 that protrudes toward the second virtual line VL2 beyond the first virtual line VL1 is formed on the first line portion 501 of the core member 500.
  • the curved portion 510 is formed adjacent to the fixed portion 560 in the first line portion 501. Even when the electrode body 400 in which the curved portion 510 is formed is pressed in the Z-axis direction, the curved portion 510 is not flattened and the curved body 510 remains in the core member 500, and the electrode body 400 remains in the state.
  • Current collectors 120 and 130 are joined to each other and accommodated in the container 100 (see FIG. 2).
  • the separators 430 and 450 can move inward in the region just outside the outer region (outer region 550). It is easy to form a gap.
  • the inner peripheral edge 420a of the negative electrode plate 420 when the inner peripheral edge 420a of the negative electrode plate 420 is arranged in the outer region 550 as in the electrode body 490 according to the comparative example shown in FIG. 8, the inner peripheral edge 420a tends to float from the adjacent separator 450. A gap is also likely to occur between the inner peripheral edge 420a and the adjacent separator 430. In this case, for example, there is a high possibility that the following problems will occur. That is, for example, fine metal powder (contamination) generated when the current collector 120 and the electrode body 400 are joined enters from the end of the electrode body 400 and is ionized to come into contact with the negative electrode plate 420. As a result, dendrite is formed on the negative electrode plate 420, and this dendrite penetrates the separator 450 and causes a slight short circuit between the positive electrode plate 410 and the negative electrode plate 420.
  • a configuration is adopted in which the inner peripheral edge 420a at the winding start position of the negative electrode plate 420 is disposed at a location other than the curved portion 510 of the core member 500. . Specifically, a configuration in which the inner peripheral edge 420a is not disposed in the outer region 550 of the curved portion 510 in the core member 500 is employed.
  • the electricity storage device 10 includes a cylindrical core member 500 and an electrode body 400 including a pole plate and a separator wound around the core member 500.
  • the core member 500 When viewed from the direction of the winding axis W of the electrode body 400, the core member 500 has a first line portion 501 extending along the first imaginary line VL1 and the second imaginary line VL2 parallel to the long side surface 111a of the container 100, respectively. And a second line portion 502. At least one of the first line portion 501 and the second line portion 502 has a curved portion 510 that protrudes toward the other across the first virtual line VL1 or the second virtual line VL2.
  • the inner peripheral edge 420 a of the negative electrode plate 420 at the winding start position is located at a place other than the curved portion 510 in at least one of the first line portion 501 and the second line portion 502.
  • the first line portion 501 has a curved portion 510 that protrudes toward the second virtual line VL2 beyond the first virtual line VL1.
  • the inner peripheral edge 420a is disposed at a location other than the bending portion 510 in the first line portion 501.
  • the negative electrode plate 420 and the separator 430 are wound around the cylindrical core member 500 with the separator 430 inside. ing.
  • the inner peripheral edge 420 a of the negative electrode plate 420 is not located in the outer region 550 of the curved portion 510 of the core member 500. That is, the inner peripheral edge 420a is disposed at a place other than the curved portion 510, whereby the inner peripheral edge 420a of the negative electrode plate 420 is pressed outward by the separator 430 on the inner side (core member 500 side), As a result, the floating of the inner peripheral edge 420a is suppressed.
  • the power storage element 10 is a highly reliable power storage element.
  • the core member 500 has a fixed portion 560, which is a portion to which the separator 430 is fixed, in the first line portion 501 when viewed from the direction of the winding axis W.
  • the curved portion 510 is formed adjacent to the fixed portion 560 in the first line portion 501.
  • the end portions of the separators 430 and 450 are fixed to the fixing portion 560 by heat welding or the like.
  • the fixing portion 560 in the core member 500 is a portion that is directly pulled in the winding direction by the separators 430 and 450 in the winding step. Therefore, the curved portion 510 is easily formed in the core material 500 at a position adjacent to the fixed portion 560.
  • a relatively large curved portion 510 is easily formed on the side of the fixing portion 560 in the winding direction of the negative electrode plate 420 and the separator 430. Parts other than the curved portion 510 tend to protrude outward. Therefore, by disposing the inner peripheral edge 420a of the negative electrode plate 420 at a position that avoids the outer region 550 of the curved portion 510, the suppression of the floating of the inner peripheral edge 420a is further ensured.
  • the position of the bending portion 510 formed thereafter can be easily specified with the fixing portion 560 as a reference. Therefore, it is easy to manufacture the electrode body 400 in which the inner peripheral edge 420a of the negative electrode plate 420 is disposed at a place other than the curved portion 510.
  • the inner peripheral edge 420a is located at the second line portion 502.
  • the fixing portion 560 is disposed on the first line portion 501, and the inner peripheral edge 420 a of the negative electrode plate 420 is disposed on the second line portion 502.
  • the fixing portion 560 is disposed in one of the regions divided into two by the long axis L, and the inner peripheral edge 420a of the negative electrode plate 420 is disposed in the other of the regions divided into the two. (See FIG. 7). Therefore, the inner peripheral edge 420 a of the negative electrode plate 420 is not easily affected by the curved portion 510 located on the side of the fixed portion 560. Thereby, the floating of the inner peripheral edge 420a is more reliably suppressed.
  • the fixed portion 560 and the inner peripheral edge 420a are arranged at positions facing each other with the winding axis W interposed therebetween. That is, when the electrode body 400 is viewed from the direction of the winding axis W, the inner peripheral edge 420a of the negative electrode plate 420 is located on or in the vicinity of a straight line passing through the fixed portion 560 and the winding axis W.
  • the inner peripheral edge 420a of the negative electrode plate 420 exists at a position farthest from the fixing portion 560 or in the vicinity thereof in the circumferential direction of the core member 500, and thus is positioned on the side of the fixing portion 560. It is hard to be influenced by the curved portion 510 that does. Thereby, the floating of the inner peripheral edge 420a is more reliably suppressed.
  • the internal space of the core member 500 is divided into two spaces by a partition wall portion 520 that crosses the internal space when viewed from the direction of the winding axis W.
  • the fixing portion 560 is located outside one of the two spaces, and the inner peripheral edge 420a is located outside the other of the two spaces. More specifically, the internal space of the core member 500 is divided into a first hollow portion 521 and a second hollow portion 522 by a partition wall portion 520 as shown in FIG.
  • the fixing portion 560 is located outside the first hollow portion 521, and the inner peripheral edge 420 a is located outside the second hollow portion 522.
  • the curved portion 510 formed due to the fixing portion 560 being pulled in the winding direction (see FIG. 7) is opposite to the fixing portion 560 with the partition wall portion 520 sandwiched by the partition wall portion 520 being stretched. It is difficult to form on the side part. Therefore, according to power storage device 10 according to the present exemplary embodiment, inner peripheral edge 420a of negative electrode plate 420 is disposed at a position where separator 430 on the inner side is difficult to float. Thereby, the floating of the inner peripheral edge 420a is more reliably suppressed.
  • the power storage element 10 according to the embodiment has been described above, but the configuration of the electrode body 400 included in the power storage element 10 may be different from the configuration illustrated in FIGS. 5 to 7. Therefore, hereinafter, a modified example of the configuration of the electrode body 400 will be described focusing on differences from the above embodiment.
  • FIG. 9 is a diagram showing a configuration outline of the core member 500 of the electrode body 400a according to Modification 1 of the embodiment and the surroundings.
  • the fixed portion 560 and the inner periphery of the negative electrode plate 420 are located at positions facing each other in the longitudinal direction (Y-axis direction) of the core member 500.
  • An end edge 420a is arranged.
  • the core member 500 is elongated in a predetermined direction (Y-axis direction in this modification) when viewed from the direction of the winding axis W, and the Y-axis It is a shape having a pair of curved portions 531 and 532 facing in the direction.
  • the fixed portion 560 is disposed on one of the pair of curved portions 531 and 532, and the inner peripheral edge 420 a is disposed on the other outer side of the pair of curved portions 531 and 532.
  • the fixing portion 560 is disposed on the curved portion 531 of the core member 500, and the inner peripheral edge 420 a is disposed outside the curved portion 532.
  • the outer sides of the curved portions 531 and 532 are likely to be subjected to tension of the laminated elements such as the separator 430 during winding.
  • the outside of each of the curved portions 531 and 532 is a portion where the density of the laminated elements is high. Therefore, the inner peripheral edge 420a of the negative electrode plate 420 is positioned in this portion, so that the inner peripheral edge 420a is firmly pressed inward by the outer separator 450 and is also far from the fixing portion 560.
  • the influence of the curved portion 510 on the side of the fixed portion 560 is not easily affected. Thereby, the floating of the inner peripheral edge 420a is more reliably suppressed. Thereby, generation
  • FIG. 10 is a diagram illustrating a schematic configuration of an electrode body 400b according to the second modification of the embodiment.
  • the core member 580 is formed by a part of the laminated elements.
  • a core material 580 is formed by winding a part of the separator 430. That is, the electrode body 400b is formed by winding the negative electrode plate 420, the separator 450, the positive electrode plate 410, and the remaining part of the separator 430 around the outer periphery of the core member 580 formed by a part of the separator 430.
  • the “core material” may be defined from the edge at the beginning of winding of the separator to the position (electrode plate start position) to the side of the inner peripheral edge. Good. That is, in the case of this modification, as shown in FIG. 10, the part around which the separator 430 is wound and the part from the innermost peripheral edge Pa to the electrode plate start position Pb is handled as the core material 580. Can do.
  • the core member 580 has a relatively high flexibility, and thus the curved portion 510 is formed. That is, when the pair of support members 710 are removed from the core material 580 after the winding process using the winding device 700 (see FIG. 6), the core material 580 is partially inside due to the force received from the laminated element. As a result, a curved portion 510 is formed. Therefore, the inner peripheral edge 420a of the negative electrode plate 420 is disposed at a location other than the curved portion 510 (in FIG. 10, a position different from the outer region 550 of the curved portion 510 in the radial direction of the core member 580). The floating of the peripheral edge 420a is suppressed. Thereby, generation
  • the core material 580 is formed only by the separator 430, but the core material 580 may be formed by, for example, overlapping and winding the separators 430 and 450.
  • the winding start end of the separator 450 may be fixed to a core member 580 formed of one or more separators 430 on the inner side by welding or the like.
  • the portion of the core material 580 where the separator 450 is fixed is a fixing portion of the core material 580, and the curved portion 510 is formed adjacent to the fixing portion.
  • the inner peripheral edge 420a of the negative electrode plate 420 is a place other than the curved portion 510.
  • the inner peripheral edge 420 a of the negative electrode plate 420 may be disposed at a place other than the curved portion 510.
  • the partition wall portion 520 is not essential.
  • the cylindrical core member 500 that does not have a wall that crosses the internal space may be formed by simply winding the resin sheet 600.
  • the position of the inner peripheral edge 420a of the negative electrode plate 420 need not be the position shown in FIG.
  • the position of the fixing portion 560 and the position of the inner peripheral edge 420a are in the same region when the long axis L is referenced (for example, the region below the long axis L in FIG. 7). May be present. Even in this case, the inner peripheral edge 420a is arranged at a place other than the bending portion 510, so that the floating of the inner peripheral edge 420a is suppressed.
  • the power storage element 10 includes only one electrode body 400, but the number of electrode bodies 400 included in the power storage element 10 may be two or more.
  • the current collector 120 may have four leg portions 122 joined to the two electrode bodies 400.
  • the present invention can be realized not only as the above-described storage element but also as the electrode body 400 included in the storage element.
  • the present invention can also be realized as a power storage device including a plurality of the power storage elements.
  • the present invention can be applied to power storage elements such as lithium ion secondary batteries.
  • SYMBOLS 10 Storage element 100 Container 111a Long side surface 400, 400a, 400b Electrode body 410 Positive electrode plate 420 Negative electrode plate 420a Inner peripheral edge 430, 450 Separator 500, 580 Core material 501 First line part 502 Second line part 510 Bending part 520 Partition Wall portion 521 First hollow portion 522 Second hollow portion 531, 532 Curve portion 550 Outer region 560 Fixed portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

筒状の芯材(500)に巻回された負極板(420)及びセパレータ(430)を有する電極体(400)を備える。芯材(500)は、容器(100)の長側面(111a)に平行な第一仮想線(VL1)及び第二仮想線(VL2)にそれぞれ沿って延びる第一線部(501)及び第二線部(502)を有している。第一線部(501)及び第二線部(502)の少なくとも一方は、第一仮想線(VL1)または第二仮想線(VL2)を越えて他方に向けて突出する湾曲部(510)を有する。負極板(420)の内周端縁(420a)は、第一線部(501)及び第二線部(502)の少なくとも一方における、湾曲部(510)以外の箇所に位置する。

Description

蓄電素子
 本発明は、巻回された極板及びセパレータを有する電極体を備える蓄電素子に関する。
 特許文献1では、箔状正極板及び箔状負極板が、それらの間にセパレータを挟んだ状態で巻芯に捲回されると共に、扁平形状に形成された発電要素を有する電池が開示されている。この電池では、巻芯が多孔性の部材にて構成され、捲回の最内周において、箔状正極板と箔状負極板とが、夫々における活物質層を形成した面が前記巻芯を挟んで対向する状態で配置されている。この構成により、発電要素の最内周でも箔状正極板及び箔状負極板が電池として機能する。
国際公開第2011/148866号
 上記従来の電池における発電要素が備える芯材は、柔軟性を有する。そのため、極板の端縁とセパレータとの間に隙間が生じる可能性があり、この隙間に、例えば金属片または金属粉などの導電性の異物(コンタミネーション)が侵入した場合、微短絡等の不具合が生じる可能性がある。
 本発明は、上記従来の課題を考慮し、巻回された極板及びセパレータを有する電極体を備える蓄電素子であって、信頼性の高い蓄電素子を提供することを目的とする。
 本発明の一態様に係る蓄電素子は、筒状の芯材と、前記芯材に巻回された極板及びセパレータとを有する電極体を備える蓄電素子であって、前記芯材は、前記電極体の巻回軸の方向から見た場合、前記蓄電素子の容器の長側面に平行な第一仮想線及び第二仮想線にそれぞれ沿って延びる第一線部及び第二線部を有し、前記第一線部及び前記第二線部の少なくとも一方は、前記第一仮想線または前記第二仮想線を越えて他方に向けて突出する湾曲部を有し、前記極板の、巻回開始位置における内周端縁は、前記第一線部及び前記第二線部の少なくとも一方における、前記湾曲部以外の箇所に位置する。
 本発明によれば、巻回された極板及びセパレータを有する電極体を備える蓄電素子であって、信頼性の高い蓄電素子を提供できる。
図1は、実施の形態に係る蓄電素子の外観を示す斜視図である。 図2は、実施の形態に係る蓄電素子の容器内に配置されている構成要素を示す斜視図である。 図3は、実施の形態に係る集電体の外観を示す斜視図である。 図4は、実施の形態に係る電極体の構成概要を示す斜視図である。 図5は、実施の形態に係る電極体を巻回軸の方向から見た場合の構成概要を示す図である。 図6は、実施の形態に係る電極体の製造方法を簡易的に示す図である。 図7は、実施の形態に係る電極体の芯材及びその周囲の構成概要を示す図である。 図8は、比較例に係る電極体の構成概要を示す図である。 図9は、実施の形態の変形例1に係る電極体の芯材及びその周囲の構成概要を示す図である。 図10は、実施の形態の変形例2に係る電極体の芯材及びその周囲の構成概要を示す図である。
 本願発明者らは、特許文献1における電池に関し、以下の問題が生じることを見出した。特許文献1における発電要素のように、芯材に巻回された極板及びセパレータを有する電極体では、芯材は、例えば樹脂フィルムなどの柔軟性が高い素材で筒状に形成されている。そのため、電極体を、巻回軸と直交する方向から圧迫することで扁平形状に形成する場合に、例えば、芯材が極板及びセパレータを損傷させるようなことがない。しかし、芯材は、柔軟性を有するが故に、セパレータ及び極板からの締め付け力を受けて、一部が内側に湾曲した状態になりやすい。このように芯材の一部が内側に湾曲した場合、その湾曲した部分の外側では、例えば、極板の内周側の端縁が、隣接するセパレータから浮く(内側に持ち上がる)可能性がある。つまり、極板の端縁とセパレータとの間に隙間が生じる可能性があり、この隙間に、例えば金属片または金属粉などの導電性の異物(コンタミネーション)が侵入した場合、微短絡等の不具合が生じる可能性がある。
 本発明の一態様に係る蓄電素子は、筒状の芯材と、前記芯材に巻回された極板及びセパレータとを有する電極体を備える蓄電素子であって、前記芯材は、前記電極体の巻回軸の方向から見た場合、前記蓄電素子の容器の長側面に平行な第一仮想線及び第二仮想線にそれぞれ沿って延びる第一線部及び第二線部を有し、前記第一線部及び前記第二線部の少なくとも一方は、前記第一仮想線または前記第二仮想線を越えて他方に向けて突出する湾曲部を有し、前記極板の、巻回開始位置における内周端縁は、前記第一線部及び前記第二線部の少なくとも一方における、前記湾曲部以外の箇所に位置する。
 このように、本態様に係る蓄電素子では、筒状の芯材に巻回された極板及びセパレータを有する電極体において、芯材の湾曲部以外の箇所に、極板の内周端縁(巻き始めの端縁)が位置している。これにより、極板の内周端縁は、内側(芯材側)のセパレータによって外側に押さえられ、その結果、内周端縁の浮き上がりが抑制される。従って、電極体の端部から侵入するコンタミネーションに起因する微短絡等の不具合が生じ難い。このように、本態様に係る蓄電素子は、信頼性の高い蓄電素子である。
 前記芯材は、巻回軸の方向から見た場合、前記セパレータが固定された部分である固定部を前記第一線部に有し、前記湾曲部は、前記第一線部において前記固定部に隣接して形成されている、としてもよい。
 芯材における固定部は、セパレータ及び極板を芯材に巻回する巻回工程において、セパレータによって直接的に巻回方向に引っ張られる部分である。そのため、芯材には、固定部に隣接する位置に湾曲部が形成されやすい。例えば、固定部の、極板及びセパレータの巻回方向における側方に比較的に大きな湾曲部が形成されやすい。湾曲部以外の部分は外側に張り出した状態となりやすい。従って、極板の内周端縁を、この湾曲部の外側領域を避ける位置に配置することで、内周端縁の浮きの抑制がより確実化される。セパレータ及び極板を芯材に巻回する前の時点において、その後に形成される湾曲部の位置を、固定部を基準として特定しやすい。従って、第一線部における湾曲部以外の箇所に極板の内周端縁が配置された電極体の製造が容易である。
 前記電極体において、前記内周端縁は、前記第二線部に位置する、としてもよい。
 この構成によれば、固定部が第一線部に配置され、極板の内周端縁が第二線部に配置される。言い換えると、固定部が、長軸線によって2つに区分される領域の一方に配置され、極板の内周端縁が、当該2つに区分される領域の他方に配置される。従って、極板の内周端縁は、固定部の側方に位置する湾曲部の影響を受けにくい。これにより、内周端縁の浮き上がりがより確実に抑制される。
 前記電極体において、前記固定部及び前記内周端縁は、前記巻回軸を挟んで互いに対向する位置に配置されている、としてもよい。
 この構成によれば、極板の内周端縁は、芯材の周方向において、固定部から最も遠い位置またはその近傍に存在するため、固定部の側方に位置する湾曲部の影響を受けにくい。これにより、内周端縁の浮き上がりがより確実に抑制される。
 前記芯材は、前記巻回軸の方向から見た場合、所定の方向に長尺状で、かつ、前記所定の方向で対向する一対のカーブ部を有する形状であり、前記固定部は、前記一対のカーブ部の一方に配置され、前記内周端縁は、前記一対のカーブ部の他方の外側に配置される、としてもよい。
 芯材のカーブ部の外側は、巻回の際に、極板及びセパレータ(積層要素)の張力が掛かりやすく、すなわち、積層要素の密度が高い部分である。この部分に、極板の内周端縁が位置することで、内周端縁は、外側のセパレータにより内側にしっかりと押さえられ、かつ、固定部からも遠い位置であることで、固定部の側方の湾曲部の影響も受け難い。これにより、内周端縁の浮き上がりがより確実に抑制される。
 前記芯材の内部空間は、前記巻回軸の方向から見た場合において前記内部空間を横切る仕切壁部によって2つの空間に区分されており、前記固定部は、前記2つの空間の一方の外側に位置し、前記内周端縁は、前記2つの空間の他方の外側に位置する、としてもよい。
 固定部が巻回方向に引っ張られることに起因して形成される湾曲部は、仕切壁部が突っ張ることで、仕切壁部を挟んで固定部とは反対側の部分には形成され難い。従って、本態様に係る蓄電素子によれば、極板の内周端縁は、その内側のセパレータが浮きがたい位置に配置され、これにより、内周端縁の浮き上がりがより確実に抑制される。
 前記芯材は、前記セパレータの一部が巻かれることで形成されている、としてもよい。このように、セパレータの一部が巻かれることで芯材が形成されている場合、芯材は柔軟性が比較的に高いため、湾曲部が形成される。従って、極板の内周端縁を、湾曲部以外の箇所に配置することで、内周端縁の浮き上がりが抑制される。これにより、コンタミネーションに起因する微短絡等の不具合の発生が抑制される。
 以下、図面を参照しながら、本発明の実施の形態及び変形例に係る蓄電素子について説明する。各図は、模式図であり、必ずしも厳密に図示したものではない。
 以下で説明する実施の形態及び変形例のそれぞれは、本発明の一具体例を示している。以下の実施の形態及び変形例で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態及び変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 以下の実施の形態、変形例、及び請求の範囲において、平行及び直交などの、相対的な方向または姿勢を示す表現が用いられる場合がある。これらの表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が平行である、とは、当該2つの方向が完全に平行であることを意味するだけでなく、実質的に平行であること、すなわち、例えば数%程度の差異を含むことも意味する。
 (実施の形態)
 [1.蓄電素子の全般的な説明]
 まず、図1~図3を用いて、実施の形態に係る蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の容器100内に配置されている構成要素を示す斜視図である。図3は、実施の形態に係る集電体120の外観を示す斜視図である。
 蓄電素子10は、電気を充電し、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。蓄電素子10は、電気自動車(EV)、ハイブリッド電気自動車(HEV)またはプラグインハイブリッド電気自動車(PHEV)等の自動車用(または移動体用)電源、電子機器用電源、または電力貯蔵用電源などに適用される。蓄電素子10は、ガソリン車及びディーゼル車等の車両に、エンジンの始動用バッテリーとして搭載される場合もある。蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子10は、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。
 図1に示すように、蓄電素子10は、容器100と、負極端子200と、正極端子300とを備えている。図2に示すように、容器100の内部には、負極側の集電体120と、正極側の集電体130と、電極体400とが収容されている。
 蓄電素子10は、上記の構成要素の他、集電体120及び130の側方に配置されるスペーサ、容器100内の圧力が上昇したときに当該圧力を開放するためのガス排出弁、または、電極体400等を包み込む絶縁フィルムなどを備えてもよい。蓄電素子10の容器100の内部には電解液(非水電解質)などの液体が封入されているが、当該液体の図示は省略する。容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。
 容器100は、矩形筒状で底を備える本体111と、本体111の開口を閉塞する板状部材である蓋体110とを備える。矩形筒状の本体111は、図2に示すように、一対の長側面111a及び一対の短側面111bを有している。容器100は、電極体400等を内部に収容後、蓋体110と本体111とが溶接等されることにより、内部を密封する構造を有している。電極体400は、正極板と負極板とセパレータとを備え、電気を蓄えることができる部材である。電極体400の詳細な構成については、図4等を用いて後述する。
 負極端子200は、集電体120を介して電極体400の負極と電気的に接続された電極端子である。正極端子300は、集電体130を介して電極体400の正極と電気的に接続された電極端子である。負極端子200及び正極端子300は、電極体400の上方に配置された蓋体110に、絶縁性を有するガスケット(図示せず)を介して取り付けられている。
 集電体120は、電極体400の負極と容器100の本体111の壁面との間に配置され、負極端子200と電極体400の負極とに電気的に接続される導電性と剛性とを備えた部材である。
 集電体130は、電極体400の正極と容器100の本体111の壁面との間に配置され、正極端子300と電極体400の正極とに電気的に接続される導電性と剛性とを備えた部材である。
 具体的には、集電体120及び130は、蓋体110に固定されている。集電体120は、電極体400の負極側端部に接合され、集電体130は、電極体400の正極側端部に接合されている。本実施の形態では、集電体120及び130のそれぞれは、電極体400と、超音波接合によって接合されている。本実施の形態では、集電体120及び集電体130の形状および取り付け構造等は、実質的に同一である。そのため、図3を用いて負極側の集電体120の構成について説明し、正極側の集電体130の構成についての説明は省略する。
 本実施の形態における集電体120は、図3に示すように、電極体400の負極側端部を両側から挟むように配置された一対の脚部122を有する。一対の脚部122は、集電体120が有する端子接続部121の端部から延設された長尺状の部分である。端子接続部121は、負極端子200と接続される部分である。例えば、負極端子200に設けられたリベットが、端子接続部121の貫通孔121aを貫通した状態でかしめられることで、負極端子200と集電体120とが接続される。一対の脚部122は、電極体400の負極側端部と、超音波接合によって接合される。これにより、集電体120は、電極体400の負極に電気的に接続される。電極体400と集電体120及び130との接合の手法として、超音波接合以外に、抵抗溶接またはクリンチ接合等の手法が採用されてもよい。
 [1-1.電極体の基本構成]
 次に、以上のように構成された蓄電素子10が備える電極体400の基本的な構成について、図4を用いて説明する。図4は、実施の形態に係る電極体400の構成概要を示す斜視図である。図4では、積層されて巻回された極板等の要素(積層要素)を一部展開して図示している。図4において符号Wが付された一点鎖線は、電極体400の巻回軸を表している。巻回軸Wは、極板等を巻回する際の中心軸となる仮想的な軸であり、本実施の形態では、電極体400の中心を通るX軸に平行な直線である。つまり、本実施の形態において、「巻回軸Wの方向」は、「X軸方向」と同義である。
 電極体400は、極板及びセパレータが、後述する芯材に巻回されて形成された電極体の一例である。図4に示すように、電極体400は、巻回軸Wと直交する方向(本実施の形態ではZ軸方向)に扁平な形状である。つまり、電極体400は、巻回軸Wの方向から見た場合に、全体として長円形状であり、長円形状の直線部分が平坦な形状となり、長円形状の曲線部分が湾曲した形状となる。このため、電極体400は、対向する一対の湾曲端部(巻回軸Wを挟んでY軸方向で対向する部分)と、一対の湾曲端部の間の部分である一対の中間部(巻回軸Wを挟んでZ軸方向で対向する部分)とを有している。
 本実施の形態において、正極板410は、アルミニウムからなる長尺帯状の金属箔(正極基材層411)と、当該金属箔の表面に形成された、正極活物質を含む正極合材層414とを有する。負極板420は、銅からなる長尺帯状の金属箔(負極基材層421)と、当該金属箔の表面に形成された、負極活物質を含む負極合材層424とを有する。本実施の形態では、セパレータ430及び450は、樹脂からなる微多孔性のシートを基材として有している。
 このように構成された電極体400において、より具体的には、正極板410と負極板420とは、セパレータ430または450を介し、巻回軸Wの方向に互いにずらして巻回されている。そして、正極板410及び負極板420は、それぞれのずらされた方向の端部に、基材層における、合材層が形成されていない部分である合材層非形成部を有する。
 具体的には、正極板410は、巻回軸Wの方向の一端(図4ではX軸方向プラス側の端部)に、正極合材層が形成されていない合材層非形成部411aを有している。負極板420は、巻回軸Wの方向の他端(図4ではX軸方向マイナス側の端部)に、負極合材層が形成されていない合材層非形成部421aを有している。
 つまり、正極板410の露出した金属箔(合材層非形成部411a)の層によって正極側端部が形成され、負極板420の露出した金属箔(合材層非形成部421a)の層によって負極側端部が形成されている。正極側端部は集電体130と接合され、負極側端部は集電体120と接合される。
 [1-2.芯材及びその周囲の構造]
 以上のように構成された電極体400において、極板の巻き始めの端縁(本実施の形態では負極板420内周端縁)が、芯材の湾曲部の外側領域とは異なる位置に配置されており、これにより、内周端縁の浮きが抑制されている。この構造について、以下、図5~図8を用いて説明する。
 図5は、実施の形態に係る電極体400を巻回軸Wの方向から見た場合の構成概要を示す図である。図6は、実施の形態に係る電極体400の製造方法を簡易的に示す図である。図7は、実施の形態に係る電極体400の芯材500及びその周囲の構成概要を示す図である。図8は、比較例に係る電極体490の構成概要を示す図である。
 図6では、芯材500に最初に巻き付けられるセパレータ430及び450を図示し、セパレータ430及び450に挟まれて巻回される負極板420及び正極板410の図示は省略されている。図7及び図8では、負極板420、セパレータ430及び450それぞれの巻き始めの一部のみを図示し、正極板410の図示は省略されている。図6~図8では、セパレータ430とセパレータ450とを識別しやすいように、セパレータ430は実線で表され、セパレータ450は点線で表されている。これら図6~図8についての補足事項は、後述する図9及び図10についても適用される。
 本実施の形態に係る電極体400は、図5に示すように、巻回軸Wの方向から見た場合にZ軸方向に扁平な長円形状である。このような形状は、負極板420等の、電極体400を構成する要素(以下、「積層要素」ともいう。)を巻回した後に、Z軸方向に圧縮されることで形成される。本実施の形態では、電極体400は芯材500を有しており、芯材500も、大まかにはZ軸方向に扁平な形状を有している。芯材500は、図7に示すように、第一仮想線VL1に沿って延びる第一線部501と、第二仮想線VL2に沿って延びる第二線部502とを有している。第一仮想線VL1及び第二仮想線VL2は、蓄電素子10の容器100の長側面111a(図2参照)に平行な仮想線である。より具体的には、第一仮想線VL1及び第二仮想線VL2は、長側面111aに平行で、かつ、巻回軸Wの方向から見た場合に、芯材500の厚み方向(Z軸方向)の両端部を通過する一対の仮想的な直線である。
 本実施の形態では、芯材500として、ポリプロピレンまたはポリエチレン等を素材とする樹脂シート600を巻くことで筒状に形成されたものが採用されている。つまり、芯材500は比較的に柔軟性が高い部材である。そのため、上述のように電極体400がZ軸方向に圧迫された場合に、芯材500は、芯材500の周囲のセパレータ430等の積層要素を損傷させることなく、その圧迫力に応じて扁平な形状に変形する。つまり、芯材500は、巻回軸Wの方向から見た場合に、Y軸方向に長尺状で、かつY軸方向で対向する一対のカーブ部531及び532を有する形状に形成される。
 より具体的には、本実施の形態に係る芯材500を作製する場合、樹脂シート600の巻き始め部分をS字状にして、図5に示すように、例えばP1及びP2の2か所を溶着する。さらにそのS字状の部分を中心として樹脂シート600を巻き付ける。これにより、芯材500には、巻回軸Wの方向から見た場合に内部空間を横切る仕切壁部520が形成される。つまり、筒状の芯材500の内部空間は、図5に示すように、仕切壁部520によって第一中空部521と第二中空部522とに区分される。
 図5以降の図では、芯材500は、樹脂シート600が1周半程度巻かれることで形成されているが、芯材500を形成する樹脂シート600の巻き数に特に限定はない。例えば、樹脂シート600が、S字状の部分を中心として1周以上巻かれることで、芯材500が形成されてもよい。樹脂シート600を1周以上巻くことで芯材500が形成されることは必須ではなく、例えば、金型を用いた樹脂成型によって筒体を作製し、その筒体が芯材500として採用されてもよい。
 このように形成された芯材500を中心として、セパレータ430等の積層要素を巻回した場合、柔軟性が高い芯材500の一部は、積層要素の張力によって内側に湾曲する。その結果、芯材500には、図5に示すように湾曲部510が形成される。
 具体的には、芯材500を中心としてセパレータ430等の積層要素を巻回する工程(巻回工程)では、芯材500を回転させる巻回装置700が用いられる。巻回装置700は、図6に示すように、芯材500を回転させる一対の支持部材710を有する。つまり、芯材500は、第一中空部521に挿入された支持部材710と、第二中空部522に挿入された支持部材710とで支持され、その状態で巻回軸W周りに回転される。芯材500には、図6に示すように、セパレータ430及び450の端部が、例えば溶着等の所定の手法により固定されており、この状態で芯材500の回転が開始される。その後、セパレータ430の外側かつセパレータ450の内側に負極板420が挟み込まれ、セパレータ450の外側かつセパレータ430の内側に正極板410が挟み込まれる。これにより、芯材500を中心として、セパレータ430、負極板420、セパレータ450及び正極板410が巻回された電極体400が得られる。
 図7では、負極板420の内側(芯材500に近い側)に、セパレータ430が一層のみ配置されているが、負極板420の内側に、芯材500に巻かれた複数層のセパレータ430が配置されていてもよい。負極板420の内側において、セパレータ430及び450が重ねられた状態で、芯材500に巻回されていてもよい。
 上記の巻回工程では、芯材500は、長手方向(図6における横方向)の両端のそれぞれが支持部材710で支持されており、この時点では、芯材500に湾曲部510は明確には存在しない。しかし、その後に、セパレータ430等が巻き付けられた芯材500から一対の支持部材710が取り外された場合、芯材500は、セパレータ430等の積層要素から受ける力によって一部が内側に湾曲し、その結果、湾曲部510が形成される。
 より詳細には、図7に示すように、芯材500は、セパレータ430及び450が固定された固定部560を有し、巻回工程では、固定部560が巻回方向(図7では右方向)に引っ張られる状態となる。その状態で芯材500から一対の支持部材710が取り外された場合、固定部560に作用するセパレータ430及び450の張力により固定部560の巻回方向の側方が湾曲しやすい状態となる。さらに、芯材500に巻回されたセパレータ430等の積層要素による締め付け力が芯材500に作用し、その結果、固定部560の巻回方向の側方に湾曲部510が形成される。本実施の形態では、芯材500の第一線部501に、第一仮想線VL1を越えて第二仮想線VL2に向けて突出する湾曲部510が形成されている。湾曲部510は、第一線部501において固定部560に隣接して形成されている。湾曲部510が形成された電極体400がZ軸方向に圧迫された場合であっても、湾曲部510は平坦に矯正されず、芯材500に湾曲部510が残存した状態で、電極体400に集電体120及び130(図1及び図2参照)が接合され、容器100に収容される(図2参照)。
 このように、芯材500に湾曲部510が存在した場合、そのすぐ外側の領域(外側領域550)において、セパレータ430及び450は内側への移動が可能となり、これにより、セパレータ430及び450の間に隙間が形成されやすい。
 従って、図8に示す比較例に係る電極体490のように、外側領域550に、負極板420の内周端縁420aを配置した場合、内周端縁420aが隣接するセパレータ450から浮きやすい。内周端縁420aと隣接するセパレータ430との間にも隙間も生じやすい。この場合、例えば以下のような不具合が生じる可能性が高くなる。すなわち、例えば集電体120と電極体400との接合時において生じた微細な金属粉(コンタミネーション)が、電極体400の端部から侵入してイオン化し、負極板420に接触する。その結果、負極板420にデンドライトが形成され、このデンドライトが、セパレータ450を貫いて正極板410と負極板420との間の微短絡を発生させる。
 そこで、本実施の形態では、図7に示すように、負極板420の巻回開始位置における内周端縁420aを、芯材500の湾曲部510以外の箇所に配置する構成が採用されている。具体的には、内周端縁420aを、芯材500における湾曲部510の外側領域550に配置しない構成が採用されている。
 つまり、本実施の形態に係る蓄電素子10は、筒状の芯材500と、芯材500に巻回された極板及びセパレータを有する電極体400を備える。芯材500は、電極体400の巻回軸Wの方向から見た場合、容器100の長側面111aに平行な第一仮想線VL1及び第二仮想線VL2にそれぞれ沿って延びる第一線部501及び第二線部502を有している。第一線部501及び第二線部502の少なくとも一方は、第一仮想線VL1または第二仮想線VL2を越えて他方に向けて突出する湾曲部510を有する。負極板420の、巻回開始位置における内周端縁420aは、第一線部501及び第二線部502の少なくとも一方における、湾曲部510以外の箇所に位置する。本実施の形態では、第一線部501は、第一仮想線VL1を越えて第二仮想線VL2に向けて突出する湾曲部510を有している。内周端縁420aは、第一線部501における、湾曲部510以外の箇所に配置されている。
 具体的には、本実施の形態に係る電極体400では、図7に例示されるように、負極板420及びセパレータ430が、セパレータ430が内側の状態で筒状の芯材500に巻回されている。この電極体400において、芯材500の湾曲部510の外側領域550に、負極板420の内周端縁420aが位置していない。つまり、湾曲部510以外の箇所に内周端縁420aが配置されている、これにより、負極板420の内周端縁420aは、内側(芯材500側)のセパレータ430によって外側に押さえられ、その結果、内周端縁420aの浮き上がりが抑制される。つまり、内周端縁420aを含む負極板420の端部は、両側からセパレータ430及び450に挟まれた状態となり、電極体400の端部から侵入するコンタミネーションに起因する微短絡等の不具合が生じ難い。従って、本実施の形態に係る蓄電素子10は、信頼性の高い蓄電素子である。
 本実施の形態では、芯材500は、巻回軸Wの方向から見た場合、セパレータ430が固定された部分である固定部560を第一線部501に有する。湾曲部510は、第一線部501において固定部560に隣接して形成されている。本実施の形態では、固定部560には、セパレータ430及び450の端部が、熱溶着等によって固定されている。
 上述のように、芯材500における固定部560は、巻回工程においてセパレータ430及び450によって直接的に巻回方向に引っ張られる部分である。そのため、芯材500には、固定部560に隣接する位置に湾曲部510が形成されやすい。例えば、固定部560の、負極板420及びセパレータ430の巻回方向における側方に比較的に大きな湾曲部510が形成されやすい。湾曲部510以外の部分は外側に張り出した状態となりやすい。従って、負極板420の内周端縁420aを、この湾曲部510の外側領域550を避ける位置に配置することで、内周端縁420aの浮き上がりの抑制がより確実化される。例えば、巻回工程を開始する前の時点において、その後に形成される湾曲部510の位置を、固定部560を基準として特定しやすい。従って、湾曲部510以外の箇所に負極板420の内周端縁420aが配置された電極体400の製造が容易である。
 本実施の形態に係る蓄電素子10において、内周端縁420aは、第二線部502に位置する。
 このように、本実施の形態では、固定部560が、第一線部501に配置され、負極板420の内周端縁420aが第二線部502に配置される。言い換えると、固定部560が、長軸線Lによって2つに区分される領域の一方に配置され、負極板420の内周端縁420aが、当該2つに区分される領域の他方に配置される(図7参照)。従って、負極板420の内周端縁420aは、固定部560の側方に位置する湾曲部510の影響を受けにくい。これにより、内周端縁420aの浮き上がりがより確実に抑制される。
 本実施の形態に係る蓄電素子10では、電極体400において、固定部560及び内周端縁420aは、巻回軸Wを挟んで互いに対向する位置に配置されている。つまり、電極体400を巻回軸Wの方向から見た場合、固定部560と巻回軸Wとを通る直線上またはその近傍に、負極板420の内周端縁420aが位置している。
 すなわち、本実施の形態では、負極板420の内周端縁420aは、芯材500の周方向において、固定部560から最も遠い位置またはその近傍に存在するため、固定部560の側方に位置する湾曲部510の影響を受けにくい。これにより、内周端縁420aの浮き上がりがより確実に抑制される。
 本実施の形態に係る蓄電素子10において、芯材500の内部空間は、巻回軸Wの方向から見た場合において内部空間を横切る仕切壁部520によって2つの空間に区分されている。固定部560は、当該2つの空間の一方の外側に位置し、内周端縁420aは、当該2つの空間の他方の外側に位置している。より具体的には、芯材500の内部空間は、例えば図7に示すように、仕切壁部520によって第一中空部521と第二中空部522とに区分されている。固定部560は第一中空部521の外側に位置し、内周端縁420aは、第二中空部522の外側に位置している。
 固定部560が巻回方向(図7参照)に引っ張られることに起因して形成される湾曲部510は、仕切壁部520が突っ張ることで、仕切壁部520を挟んで固定部560とは反対側の部分には形成され難い。従って、本実施の形態に係る蓄電素子10によれば、負極板420の内周端縁420aは、その内側のセパレータ430が浮き難い位置に配置される。これにより、内周端縁420aの浮き上がりがより確実に抑制される。
 以上、実施の形態に係る蓄電素子10について説明したが、蓄電素子10が備える電極体400の構成は、図5~図7に示される構成とは異なっていてもよい。そこで、以下に、電極体400の構成についての変形例を、上記実施の形態との差分を中心に説明する。
 (変形例1)
 図9は、実施の形態の変形例1に係る電極体400aの芯材500及びその周囲の構成概要を示す図である。図9に示す電極体400aでは、巻回軸Wの方向から見た場合において、芯材500の長手方向(Y軸方向)で互いに対向する位置に、固定部560と、負極板420の内周端縁420aとが配置されている。
 つまり、本変形例に係る蓄電素子10において、芯材500は、巻回軸Wの方向から見た場合、所定の方向(本変形例ではY軸方向)に長尺状で、かつ、Y軸方向で対向する一対のカーブ部531及び532を有する形状である。固定部560は、一対のカーブ部531及び532の一方に配置され、内周端縁420aは、一対のカーブ部531及び532の他方の外側に配置されている。図9に示す例では、固定部560は、芯材500のカーブ部531に配置されており、内周端縁420aは、カーブ部532の外側に配置されている。
 巻回軸Wの方向から見た場合に長円状に形成された芯材500において、カーブ部531及び532それぞれの外側は、巻回の際に、セパレータ430等の積層要素の張力が掛かりやすい部分である。つまり、カーブ部531及び532それぞれの外側は、積層要素の密度が高い部分である。従って、この部分に負極板420の内周端縁420aが位置することで、内周端縁420aは、外側のセパレータ450により内側にしっかりと押さえられ、かつ、固定部560からも遠い位置であることで、固定部560の側方の湾曲部510の影響も受け難い。これにより、内周端縁420aの浮き上がりがより確実に抑制される。これにより、コンタミネーションに起因する微短絡等の不具合の発生が抑制される。
 (変形例2)
 図10は、実施の形態の変形例2に係る電極体400bの構成概要を示す図である。本変形例に係る電極体400bでは、上記実施の形態に係る電極体400とは異なり、芯材580は、積層要素の一部によって形成されている。具体的には、図10に示すように、セパレータ430の一部が巻かれることで芯材580が形成されている。つまり、セパレータ430の一部によって形成された芯材580の外周に、負極板420、セパレータ450、正極板410、及びセパレータ430の残りの部分が巻かれることで、電極体400bが形成されている。
 セパレータの一部によって芯材が形成される場合、例えば、セパレータの巻き始めの端縁から、内周端縁の側方の位置(極板開始位置)までを「芯材」と定義してもよい。つまり、本変形例の場合、図10に示すように、セパレータ430が巻かれた部分であって、最内周の端縁Paから極板開始位置Pbまでの部分を、芯材580として扱うことができる。
 このように、セパレータ430が巻かれることで芯材580が形成されている場合であっても、芯材580は柔軟性が比較的に高いため、湾曲部510が形成される。つまり、巻回装置700を用いた巻回工程(図6参照)の後に、芯材580から一対の支持部材710が取り外された場合、芯材580は、積層要素から受ける力によって一部が内側に湾曲し、その結果、湾曲部510が形成される。従って、負極板420の内周端縁420aを、湾曲部510以外の箇所(図10では、芯材580の径方向における湾曲部510の外側領域550とは異なる位置)に配置することで、内周端縁420aの浮き上がりが抑制される。これにより、コンタミネーションに起因する微短絡等の不具合の発生が抑制される。
 図10に示す例では、セパレータ430のみによって芯材580が形成されているが、例えば、セパレータ430及び450を重ねて巻くことで、芯材580が形成されてもよい。セパレータ450の巻き始めの端部が、その内側の一層以上のセパレータ430で形成される芯材580に、溶着等によって固定されていてもよい。この場合、芯材580におけるセパレータ450が固定された部分が、芯材580が有する固定部であり、固定部に隣接して湾曲部510が形成される。
 (他の実施の形態)
 以上、本発明に係る蓄電素子について、実施の形態及び変形例に基づいて説明した。しかしながら、本発明は、上記実施の形態及び変形例に限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態または変形例に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、実施の形態及び変形例では、負極板420及び正極板410のうち、内周側に配置される負極板420に着目し、負極板420の内周端縁420aが湾曲部510以外の箇所(例えば外側領域550とは異なる位置、以下同じ)に配置されること、及び、その効果を説明した。しかし、負極板420の内周端縁420aに加えてまたは替えて、正極板410の内周端縁を湾曲部510以外の箇所に配置してもよい。これにより、正極板410の内周端縁の近傍における隙間が生じ難く、その結果、コンタミネーションに起因する微短絡等の不具合の発生が抑制される。
 実施の形態に係る芯材500において、仕切壁部520は必須ではない。例えば、樹脂シート600を単純に巻くことで、内部空間を横切る壁を持たない筒状の芯材500が形成されてもよい。
 例えば、芯材500における固定部560の位置が、図7に示される位置である場合において、負極板420の内周端縁420aの位置は、図7に示す位置である必要はない。例えば、芯材500において、固定部560の位置と内周端縁420aの位置とが、長軸線Lを基準した場合における同じ側の領域(例えば図7における長軸線Lよりも下の領域)に存在してもよい。この場合であっても、内周端縁420aが、湾曲部510以外の箇所に配置されていることで、内周端縁420aの浮き上がりが抑制される。
 本実施の形態では、蓄電素子10は、電極体400を1つのみ備えているが、蓄電素子10が備える電極体400の数は2以上であってもよい。例えば、蓄電素子10が電極体400を2つ備える場合、集電体120は、2つの電極体400と接合される4つの脚部122を有してもよい。
 上記実施の形態に記載された構成を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、上記説明された蓄電素子として実現できるだけでなく、当該蓄電素子が備える電極体400としても実現できる。本発明は、当該蓄電素子を複数備える蓄電装置としても実現できる。
 本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。
  10 蓄電素子
 100 容器
 111a 長側面
 400、400a、400b 電極体
 410 正極板
 420 負極板
 420a 内周端縁
 430、450 セパレータ
 500、580 芯材
 501 第一線部
 502 第二線部
 510 湾曲部
 520 仕切壁部
 521 第一中空部
 522 第二中空部
 531、532 カーブ部
 550 外側領域
 560 固定部

Claims (6)

  1.  筒状の芯材と、前記芯材に巻回された極板及びセパレータとを有する電極体を備える蓄電素子であって、
     前記芯材は、前記電極体の巻回軸の方向から見た場合、前記蓄電素子の容器の長側面に平行な第一仮想線及び第二仮想線にそれぞれ沿って延びる第一線部及び第二線部を有し、
     前記第一線部及び前記第二線部の少なくとも一方は、前記第一仮想線または前記第二仮想線を越えて他方に向けて突出する湾曲部を有し、
     前記極板の、巻回開始位置における内周端縁は、前記第一線部及び前記第二線部の少なくとも一方における、前記湾曲部以外の箇所に位置する
     蓄電素子。
  2.  前記芯材は、前記巻回軸の方向から見た場合、前記セパレータが固定された部分である固定部を前記第一線部に有し、
     前記湾曲部は、前記第一線部において前記固定部に隣接して形成されている
     請求項1記載の蓄電素子。
  3.  前記電極体において、前記内周端縁は、前記第二線部に位置する
     請求項2記載の蓄電素子。
  4.  前記電極体において、前記固定部及び前記内周端縁は、前記巻回軸を挟んで互いに対向する位置に配置されている
     請求項2または3記載の蓄電素子。
  5.  前記芯材の内部空間は、前記巻回軸の方向から見た場合において前記内部空間を横切る仕切壁部によって2つの空間に区分されており、
     前記固定部は、前記2つの空間の一方の外側に位置し、
     前記内周端縁は、前記2つの空間の他方の外側に位置する
     請求項2~4のいずれか一項に記載の蓄電素子。
  6.  前記芯材は、前記セパレータの一部が巻かれることで形成されている
     請求項1記載の蓄電素子。
PCT/JP2019/022175 2018-06-07 2019-06-04 蓄電素子 WO2019235476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980036913.XA CN112204792A (zh) 2018-06-07 2019-06-04 蓄电元件
JP2020523121A JP7264161B2 (ja) 2018-06-07 2019-06-04 蓄電素子
US15/734,177 US11837700B2 (en) 2018-06-07 2019-06-04 Energy storage device
DE112019002837.5T DE112019002837T5 (de) 2018-06-07 2019-06-04 Energiespeichervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109250 2018-06-07
JP2018109250 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235476A1 true WO2019235476A1 (ja) 2019-12-12

Family

ID=68770930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022175 WO2019235476A1 (ja) 2018-06-07 2019-06-04 蓄電素子

Country Status (5)

Country Link
US (1) US11837700B2 (ja)
JP (1) JP7264161B2 (ja)
CN (1) CN112204792A (ja)
DE (1) DE112019002837T5 (ja)
WO (1) WO2019235476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176372A (zh) * 2021-01-07 2022-10-11 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及制造电极组件的方法和设备
JP2023063138A (ja) * 2021-10-22 2023-05-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115985682B (zh) * 2023-03-22 2023-06-02 深圳江浩电子有限公司 一种车载电容器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109869A (ja) * 2001-09-28 2003-04-11 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2003242970A (ja) * 2002-02-12 2003-08-29 Japan Storage Battery Co Ltd 電 池
JP2011077384A (ja) * 2009-09-30 2011-04-14 Nippon Chemicon Corp コンデンサ及びその製造方法
WO2012004886A1 (ja) * 2010-07-09 2012-01-12 日立ビークルエナジー株式会社 二次電池および扁平捲回形電極群の製造方法
WO2013164916A1 (ja) * 2012-05-01 2013-11-07 日立ビークルエナジー株式会社 扁平捲回形二次電池およびその製造方法
JP2017027950A (ja) * 2016-09-23 2017-02-02 株式会社Gsユアサ 蓄電素子
WO2018012465A1 (ja) * 2016-07-15 2018-01-18 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320513B2 (ja) 2001-05-18 2009-08-26 株式会社ジーエス・ユアサコーポレーション 密閉形電池
KR100515833B1 (ko) * 2003-05-26 2005-09-21 삼성에스디아이 주식회사 젤리-롤형의 전극조립체와 이를 채용한 이차전지
KR100563055B1 (ko) 2003-08-19 2006-03-24 삼성에스디아이 주식회사 권취형 전극 조립체 및 이를 구비한 이차 전지
WO2010087384A1 (ja) * 2009-01-29 2010-08-05 株式会社Gsユアサ 電池及び電池の製造方法と、電池における巻芯の製造方法及び巻芯製造装置並びに巻芯
KR101165507B1 (ko) * 2009-11-27 2012-07-13 삼성에스디아이 주식회사 이차전지
US9293785B2 (en) 2010-03-26 2016-03-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, vehicle, and battery mounting device
CN102893439B (zh) 2010-05-26 2015-11-25 株式会社杰士汤浅国际 电池
JP5777244B2 (ja) * 2011-07-06 2015-09-09 株式会社Gsユアサ 巻回型蓄電素子
JP5729320B2 (ja) 2012-02-08 2015-06-03 株式会社豊田自動織機 蓄電装置の製造方法
JP6019638B2 (ja) 2012-03-14 2016-11-02 株式会社Gsユアサ 蓄電素子
JP6474329B2 (ja) 2015-07-16 2019-02-27 日立オートモティブシステムズ株式会社 二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109869A (ja) * 2001-09-28 2003-04-11 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2003242970A (ja) * 2002-02-12 2003-08-29 Japan Storage Battery Co Ltd 電 池
JP2011077384A (ja) * 2009-09-30 2011-04-14 Nippon Chemicon Corp コンデンサ及びその製造方法
WO2012004886A1 (ja) * 2010-07-09 2012-01-12 日立ビークルエナジー株式会社 二次電池および扁平捲回形電極群の製造方法
WO2013164916A1 (ja) * 2012-05-01 2013-11-07 日立ビークルエナジー株式会社 扁平捲回形二次電池およびその製造方法
WO2018012465A1 (ja) * 2016-07-15 2018-01-18 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
JP2017027950A (ja) * 2016-09-23 2017-02-02 株式会社Gsユアサ 蓄電素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176372A (zh) * 2021-01-07 2022-10-11 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及制造电极组件的方法和设备
JP2023063138A (ja) * 2021-10-22 2023-05-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
JP7389780B2 (ja) 2021-10-22 2023-11-30 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
DE112019002837T5 (de) 2021-02-25
JPWO2019235476A1 (ja) 2021-06-17
CN112204792A (zh) 2021-01-08
JP7264161B2 (ja) 2023-04-25
US20210167425A1 (en) 2021-06-03
US11837700B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP6582500B2 (ja) 蓄電素子
KR102568341B1 (ko) 축전 소자
WO2011148866A1 (ja) 電池
US8530068B2 (en) Square battery and manufacturing method of the same
WO2017159760A1 (ja) 蓄電素子及び蓄電素子の製造方法
WO2019235476A1 (ja) 蓄電素子
JP2019029218A (ja) 蓄電装置及び絶縁ホルダ
JP2019061779A (ja) 蓄電装置及び蓄電装置の製造方法
CN110165275B (zh) 电池及电池的制造方法
JP7286991B2 (ja) 蓄電素子
JP6275956B2 (ja) 二次電池
US10615447B2 (en) Secondary cell and manufacturing method thereof
JP2018055893A (ja) 蓄電素子
WO2018012465A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP2018078053A (ja) 蓄電素子及び導電部材
WO2019131356A1 (ja) 蓄電装置
JP2019057444A (ja) 蓄電素子
JP2018022596A (ja) 蓄電素子及び蓄電素子の製造方法
JP6806142B2 (ja) 蓄電素子
JP6672607B2 (ja) 蓄電装置
JP2023066921A (ja) 電池
WO2017138583A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP2022110189A (ja) 蓄電素子
JP2022149967A (ja) 蓄電素子
JP2022071733A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523121

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19815289

Country of ref document: EP

Kind code of ref document: A1