WO2017014180A1 - 2-ヒドロキシエステルの製造方法 - Google Patents
2-ヒドロキシエステルの製造方法 Download PDFInfo
- Publication number
- WO2017014180A1 WO2017014180A1 PCT/JP2016/070983 JP2016070983W WO2017014180A1 WO 2017014180 A1 WO2017014180 A1 WO 2017014180A1 JP 2016070983 W JP2016070983 W JP 2016070983W WO 2017014180 A1 WO2017014180 A1 WO 2017014180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- substituent
- mmol
- butyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/333—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
- C07C67/343—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
- C07C69/675—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/732—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to an industrially suitable method for producing 2-hydroxyester.
- 2-Hydroxyesters are important compounds as pharmaceuticals, cosmetics, agricultural chemicals and their intermediates.
- 2-hydroxy-9- (Z) -octadecenoic acid which is easily derived from 2-hydroxy esters, has been subjected to clinical trials as an anticancer agent.
- 2-hydroxy fatty acids having 10 or more carbon atoms derived from 2-hydroxyester are used as a cosmetic raw material as a constituent of ceramide.
- Examples of the method for producing 2-hydroxyester include a method for producing cyanohydrin from aldehyde and hydrocyanic acid to convert a cyano group into an ester, a method for reducing 2-ketoester, and a method for converting the ⁇ -position of the ester to a hydroxyl group after halogenation. Methods are known. Among them, a method of reacting a cuprate prepared from a Grignard reagent and a copper salt with a glycidic acid ester is also one of effective production methods.
- Patent Document 1 As a specific example of the reaction between this cuprate and glycidic acid ester, in Patent Document 1, CuI (3 mmol) and methylmagnesium bromide (60 mmol) are mixed at ⁇ 15 ° C. or lower, and the mixed solution is cooled to ⁇ 78 ° C. By adding n-butyl (S) -glycidate (21 mmol), n-butyl (S) -2-hydroxybutanoate (21 mmol) is obtained as a product.
- Patent Document 2 Li 2 CuCl 4 (25 mmol) and cyclopentylmagnesium bromide (270 mmol) are mixed at 50 ° C., the mixed solution is cooled to ⁇ 78 ° C., and (R) -methyl glycidate (245 mmol) is added. Gave methyl (R) -2-hydroxy-3-cyclopentylpropionate (159-172 mmol) as product.
- the problem to be solved by the present inventors with respect to the above prior art is to avoid the low-temperature conditions that hinder the implementation of the industrial scale in the reaction of the glycidic acid ester used in the production of 2-hydroxyester and the Grignard reagent. There is. Another object is to improve the yield based on the Grignard reagent in the reaction between the glycidic acid ester and the Grignard reagent.
- the present inventors have adopted a reagent addition order different from that of the prior art for preparing cuprate, thereby yielding a yield based on the Grignard reagent.
- reaction control in the temperature range which is easy to implement on an industrial scale, was achieved. This has led to the establishment of an efficient method for producing 2-hydroxyesters. That is, the present invention provides the following formula (1):
- R 1 may have a substituent, an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms which may have a substituent, or a substituent.
- R 2 may have an alkyl group having 1 to 30 carbon atoms which may have a substituent, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, or a substituent.
- X represents a chlorine atom, a bromine atom, or an iodine atom.
- the reaction can be controlled within a temperature range that can be easily carried out on an industrial scale.
- the yield based on the Grignard reagent can be made the same level as before, and more preferably, the yield can be improved as compared with the conventional case.
- R 1 is an alkyl group having 1 to 15 carbon atoms which may have a substituent, and an alkenyl having 2 to 15 carbon atoms which may have a substituent.
- Group, an aryl group having 6 to 15 carbon atoms which may have a substituent, an aralkyl group having 7 to 15 carbon atoms which may have a substituent, or 3 to 15 carbon atoms which may have a substituent Represents a cycloalkyl group.
- substituents in R 1 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; alkoxy group such as methoxy group and ethoxy group; methylthio group; trifluoromethyl group; acetyl group; A cyano group; a nitro group; a carboxyl group; an alkoxycarbonyl group such as a methoxycarbonyl group and an ethoxycarbonyl group; The number of substituents and the substitution position are not particularly limited.
- R 1 is preferably an alkyl group having 1 to 15 carbon atoms which may have a substituent, more preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent.
- R 2 is an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an alkenyl having 2 to 30 carbon atoms which may have a substituent.
- the number of carbon atoms of the alkyl group in R 2 is preferably 1-20.
- Specific examples of the alkyl group having 1 to 30 carbon atoms include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert, -Butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-octadecyl group, n-icosyl group and the like.
- the carbon number of the alkenyl group in R 2 is preferably 2-15.
- Preferred examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group, an allyl group, a 3-butenyl group, a 4-pentenyl group, a 5-hexenyl group, a 6-heptenyl group, and a 7-octenyl group.
- the number of carbon atoms of the alkynyl group in R 2 is preferably 2-15.
- Preferred examples of the alkynyl group having 2 to 30 carbon atoms include ethynyl group, 2-propynyl group, 3-butynyl group, 4-pentynyl group, 5-hexynyl group, 6-heptynyl group, and 7-octynyl group. .
- the carbon number of the aralkyl group in R 2 is preferably 7 to 15.
- Preferred examples of the aralkyl group having 7 to 30 carbon atoms include benzyl group and 1-phenethyl group.
- the number of carbon atoms of the aryl group in R 2 is preferably 6-15.
- Preferred examples of the aryl group having 6 to 30 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
- the carbon number of the heteroaryl group in R 2 is preferably 6-15.
- Preferred examples of the heteroaryl group having 4 to 30 carbon atoms include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-thiophenyl group, 2-furyl group and the like.
- the number of carbon atoms of the cycloalkyl group in R 2 is preferably 3-15.
- Preferred examples of the cycloalkyl group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
- substituent in R 2 examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group and ethoxy group; methylthio group; trifluoromethyl group; acetyl group; Cyano group; nitro group; carboxyl group; alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group.
- the number of substituents and the substitution position are not particularly limited.
- R 2 is preferably an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted alkenyl group having 2 to 30 carbon atoms, more preferably an n-butyl group. N-pentyl group, n-hexyl group, allyl group, or 3-butenyl group.
- X represents a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom.
- the glycidic acid ester represented by the formula (1) may be either R-form or S-form, and the glycidic acid ester represented by the formula (1) used as a raw material is racemic. Or an optically active substance.
- a racemate Heterocycles, 2014, 89 (2), 487-493.
- a sodium hypochlorite aqueous solution may be allowed to act on an easily available acrylic ester in the presence of an ammonium salt catalyst.
- This reaction prepares a solution (preliminary mixture) in which the glycidic acid ester represented by the formula (1) and a copper salt are mixed in advance together with a solvent if necessary.
- the preliminary mixture is then mixed with the Grignard reagent represented by the formula (2) as it is or diluted with a solvent as necessary.
- the mixing method of the said compound (1) and copper salt there is no restriction
- the said compound (2) may be added with respect to the mixture (mixed solution) containing the said compound (1) and a copper salt, and the said compound (2) is the said. You may add the mixture (mixed solution) containing a compound (1) and copper salt.
- the compound (2) may be added to a mixture (mixed solution) containing the compound (1) and a copper salt.
- the addition time of the compound (2) is preferably 0.1 minutes or longer, more preferably 5 minutes or longer, particularly preferably 30 minutes or longer.
- the use amount of the glycidic acid ester represented by the formula (1) in this reaction is not preferable in terms of cost and post-treatment if it is too much, so the upper limit is preferably 20 equivalents to the compound (2), More preferably, it is 10 equivalents, and particularly preferably 3 equivalents.
- the lower limit is preferably 0.7 equivalents, more preferably 0.8 equivalents, and particularly preferably 0.9 equivalents relative to the compound (2).
- the copper salt is not particularly limited as long as it is a salt containing a copper ion as a cation, and may be either acceptable monovalent copper or acceptable divalent copper.
- CuCl, CuBr, CuI, CuCl 2, CuBr 2, Cu (OAc), Cu (OAc) 2, CuCN, Cu 2 O is CuO, or CuSO 4, more preferably CuCl, CuBr, CuI, CuCl 2 or CuBr 2 , particularly preferably CuCl, CuBr, or CuI, still more preferably CuBr or CuI, and most preferably CuI.
- these copper salts may form a complex with lithium chloride, dimethyl sulfide, pyridine and the like for stabilization.
- the upper limit is preferably 50 equivalents, more preferably 10 equivalents, particularly preferably 3 equivalents to the compound (2). Is equivalent.
- the lower limit is preferably 0.01 equivalents relative to the compound (2), more preferably 0.1 equivalents, and particularly preferably 0.5 equivalents.
- the reaction solvent for this reaction is not particularly limited as long as it does not affect the reaction, and specifically, for example, tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether, etc.
- Ether solvents such as acetonitrile, nitrile solvents such as acetonitrile and propionitrile; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene Halogen compounds such as methylene chloride and 1,2-dichloroethane; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2- Pi It can be used phosphonic acid triamide solvents such as hexamethylphosphoric acid triamide; pyrrolidone, N- methyl - ⁇ - caprolactam, hexamethylphosphoramide system such as an amide solvent; urea solvents such as dimethyl propylene urea
- the mixing ratio of the reaction solvent is not particularly limited.
- the upper limit is preferably 100 times the weight of the compound (2), and more preferably 50 times the weight. Particularly preferred is 20 times the weight.
- the lower limit is preferably 0.1 times the weight of the compound (2), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
- the reaction temperature in this reaction is preferably ⁇ 20 ° C. as the lower limit, more preferably ⁇ 10 ° C., from the viewpoint of not requiring special cooling equipment and lowering energy consumption when carried out on an industrial scale. Yes, particularly preferably 0 ° C.
- it is 120 degreeC, More preferably, it is 80 degreeC, Especially preferably, it is 50 degreeC.
- the yield of the 2-hydroxyester represented by the formula (3) based on the Grignard reagent can be made to be the same level as that of the prior art, and further improved. Contrary to conventional knowledge, this is unexpected.
- the reaction time in this reaction is not particularly limited and may be appropriately set.
- the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours.
- the lower limit is preferably 0.1 hour, more preferably 1 hour, still more preferably 3 hours, and particularly preferably 10 hours.
- a general process for obtaining the product from the reaction solution may be performed.
- water or an aqueous ammonium chloride solution is added to the reaction solution after completion of the reaction, and an extraction operation is performed using a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane, or the like.
- a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane, or the like.
- the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
- the target product obtained in this way has sufficient purity that can be used in subsequent steps, but in order to further increase the purity, general purification techniques such as crystallization, fractional distillation, column chromatography, etc. The purity may be further increased.
- Example 1 Production of n-butyl 2-hydroxynonanoate Tetrahydrofuran (5 mL) was added to CuI (190 mg, 1 mmol) and n-butyl glycidate (141 mg, 1 mmol), and the temperature was set to ⁇ 5 ° C. Subsequently, a 1M tetrahydrofuran solution of n-hexylmagnesium bromide (1 mL, 1 mmol) was added dropwise over 5 minutes, and the mixture was stirred at ⁇ 5 ° C. for 23 hours (Yield based on Grignard reagent: 72%).
- Example 7 Production of n-butyl 2-hydroxyheptanoate THF (5 mL) was added to CuI (190 mg, 1 mmol) and n-butyl glycidate (141 mg, 1 mmol), and the temperature was set to 20 ° C. Subsequently, a 2M tetrahydrofuran solution (0.5 mL, 1 mmol) of n-butylmagnesium chloride was added dropwise over 5 minutes, followed by stirring at 20 ° C. for 19 hours (Yield based on Grignard reagent: 74%).
- Example 8 Preparation of n-butyl 2-hydroxy-5-hexenoate Tetrahydrofuran (5 mL) was added to CuI (190 mg, 1 mmol) and n-butyl glycidate (141 mg, 1 mmol), and the temperature was set to 20 ° C. did. Subsequently, a 0.7M diethyl ether solution (1.4 mL, 1 mmol) of allylmagnesium bromide was added dropwise over 5 minutes, followed by stirring at 20 ° C. for 17 hours (yield based on Grignard reagent: 60%).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
2-ヒドロキシエステルの製造に用いられるグリシド酸エステルとグリニャール試薬の反応において、2-ヒドロキシエステルを安価、且つ効率よく、工業的規模で実施できる製造方法を提供する。 本願発明によれば、グリシド酸エステルと銅塩とを含む混合物と、-20℃以上の温度で、グリニャール試薬を混合することにより、生成物である2-ヒドロキシエステルのグリニャール試薬を基準とした収率を高めることができる。
Description
本発明は、2-ヒドロキシエステルの工業的に好適な製造方法に関する。
2-ヒドロキシエステルは、医薬品、化粧品、農薬、及びそれらの中間体として重要な化合物である。例えば、2-ヒドロキシエステルから容易に誘導される2-ヒドロキシ-9-(Z)-オクタデセン酸は抗がん剤として臨床試験に付されている。また2-ヒドロキシエステルから誘導される炭素数が10以上の2-ヒドロキシ脂肪酸類は、セラミドの構成成分として化粧品原料として利用されている。
2-ヒドロキシエステルの製造法としては例えば、アルデヒドと青酸からシアンヒドリンを製造してシアノ基をエステルに変換する方法、2-ケトエステルを還元する方法、エステルのα位をハロゲン化した後に水酸基に変換する方法などが知られている。中でも、グリニャール試薬と銅塩から調製したキュープラートとグリシド酸エステルを反応させる方法も有効な製造法の一つに挙げられる。
このキュープラートとグリシド酸エステルとの反応の具体例として特許文献1では、CuI(3mmol)とメチルマグネシウムブロミド(60mmol)を-15℃以下で混合し、混合溶液を-78℃に冷却した後、(S)-グリシド酸n-ブチル(21mmol)を加えることにより、(S)-2-ヒドロキシブタン酸n-ブチル(21mmol)を生成物として得ている。
特許文献2では、Li2CuCl4(25mmol)とシクロペンチルマグネシウムブロミド(270mmol)を50℃で混合し、混合溶液を-78℃に冷却した後、(R)-グリシド酸メチル(245mmol)を加えることにより、(R)-2-ヒドロキシ-3-シクロペンチルプロピオン酸メチル(159~172mmol)を生成物として得ている。
特許文献3では、CuBr2・SMe2錯体(51mmol)とn-ブチルマグネシウムクロリド(97mmol)を-78℃で混合し、(R)-グリシド酸ベンジル(47mmol)を加えることにより、(R)-ヒドロキシヘプタン酸ベンジル(47mmol)を生成物として得ている。
以上のグリニャール試薬と銅塩から調製したキュープラートとグリシド酸エステルを反応させる先行技術は、いずれもグリシド酸エステルに対してグリニャール試薬を過剰量用いており、グリシド酸エステルを基準にした収率は高いが、グリニャール試薬を基準とした収率は、特許文献1では35%、特許文献2では59~64%、特許文献3では48%にすぎず、最高でも64%(特許文献2)である。一般にグリニャール試薬は高価なので、グリニャール試薬を基準とした収率において、いずれの先行技術も十分な収率を達成しているとは言い難い。またいずれの先行技術も、-78℃といった極端な低温条件を必要としており、超低温設備が必要となるため工業的規模での実施には適さない。
上記先行技術に対し本発明者らが解決しようとする課題は、2-ヒドロキシエステルの製造に用いられるグリシド酸エステルとグリニャール試薬の反応において、工業的規模の実施に際し障害となる低温条件を回避することにある。また、グリシド酸エステルとグリニャール試薬の反応において、グリニャール試薬を基準とした収率を向上させることにある。
本発明者らは、グリシド酸エステルとグリニャール試薬の反応に関して鋭意検討を行った結果、キュープラートを調製する先行技術とは異なる試剤の添加順序を採用することにより、グリニャール試薬を基準とした収率を向上させることに成功し、同時に工業的規模で実施容易な温度領域での反応制御も達成した。これにより、効率的な2-ヒドロキシエステルの製造方法を確立するに至った。
即ち本発明は、下記式(1);
即ち本発明は、下記式(1);
(式中、R1は、置換基を有しても良い炭素数1~15のアルキル基、置換基を有しても良い炭素数2~15のアルケニル基、置換基を有しても良い炭素数6~15のアリール基、置換基を有しても良い炭素数7~15のアラルキル基、又は置換基を有しても良い炭素数3~15のシクロアルキル基を表す。)で表されるグリシド酸エステルと銅塩とを含む混合物と、-20℃以上の温度で、下記式(2);
(式中、R2は、置換基を有しても良い炭素数1~30のアルキル基、置換基を有しても良い炭素数2~30のアルケニル基、置換基を有しても良い炭素数2~30のアルキニル基、置換基を有しても良い炭素数6~30のアリール基、置換基を有しても良い炭素数4~30のヘテロアリール基、置換基を有しても良い炭素数7~30のアラルキル基、又は置換基を有しても良い炭素数3~30のシクロアルキル基を表す。Xは塩素原子、臭素原子、又はヨウ素原子を表す。)で表されるグリニャール試薬を混合することを特徴とする、下記式(3);
本発明によれば、工業的規模で実施容易な温度範囲で反応を制御できる。更に好ましい態様では、温度範囲を高くしても、グリニャール試薬を基準とした収率を従来と同程度にすることができ、より好ましくは該収率を従来に比して向上させることができる。
以下に、本発明について詳述する。
本発明では、下記式(1);
本発明では、下記式(1);
前記化合物(1)、及び前記化合物(3)において、R1は、置換基を有しても良い炭素数1~15のアルキル基、置換基を有しても良い炭素数2~15のアルケニル基、置換基を有しても良い炭素数6~15のアリール基、置換基を有しても良い炭素数7~15のアラルキル基、又は置換基を有しても良い炭素数3~15のシクロアルキル基を表す。具体的には例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-デシル基、n-ドデシル基等の炭素数1~15のアルキル基;ビニル基、アリル基等の炭素数2~15のアルケニル基;ベンジル基、1-フェネチル基等の炭素数7~15のアラルキル基;フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~15のアリール基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数3~15のシクロアルキル基;等である。
前記R1における置換基としては例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;水酸基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基;トリフルオロメチル基;アセチル基;ベンゾイル基;シアノ基;ニトロ基;カルボキシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等が挙げられる。置換基の数及び置換位置は特に限定されない。
R1としては、好ましくは置換基を有しても良い炭素数1~15のアルキル基であり、より好ましくは置換基を有しても良い炭素数1~12のアルキル基であり、更に好ましくはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-デシル基又はn-ドデシル基であり、特に好ましくはメチル基、エチル基、n-ブチル基、n-ヘキシル基、又はn-ドデシル基である。
前記化合物(2)、及び前記化合物(3)において、R2は、置換基を有しても良い炭素数1~30のアルキル基、置換基を有しても良い炭素数2~30のアルケニル基、置換基を有しても良い炭素数2~30のアルキニル基、置換基を有しても良い炭素数6~30のアリール基、置換基を有しても良い炭素数4~30のヘテロアリール基、置換基を有しても良い炭素数7~30のアラルキル基、又は置換基を有しても良い炭素数3~30のシクロアルキル基を表す。
R2におけるアルキル基の炭素数は、好ましくは1~20である。該炭素数1~30のアルキル基としては、具体的には例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-オクタデシル基、n-イコシル基等が挙げられる。
R2におけるアルケニル基の炭素数は、好ましくは2~15である。該炭素数2~30のアルケニル基としては、ビニル基、アリル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基、6-ヘプテニル基、7-オクテニル基等が好ましく例示される。
R2におけるアルキニル基の炭素数は、好ましくは2~15である。該炭素数2~30のアルキニル基としては、エチニル基、2-プロピニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、6-ヘプチニル基、7-オクチニル基等が好ましく例示される。
R2におけるアラルキル基の炭素数は、好ましくは7~15である。該炭素数7~30のアラルキル基としては、ベンジル基、1-フェネチル基等が好ましく例示される。
R2におけるアリール基の炭素数は、好ましくは6~15である。該炭素数6~30のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が好ましく例示される。
R2におけるヘテロアリール基の炭素数は、好ましくは6~15である。該炭素数4~30のヘテロアリール基としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-チオフェニル基、2-フリル基等が好ましく例示される。
R2におけるシクロアルキル基の炭素数は、好ましくは3~15である。該炭素数3~30のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、又はシクロヘキシル基等が好ましく例示される。
前記R2における置換基としては例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基;トリフルオロメチル基;アセチル基;ベンゾイル基;シアノ基;ニトロ基;カルボキシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等が挙げられる。置換基の数及び置換位置は特に限定されない。
R2としては、好ましくは置換基を有しても良い炭素数1~30のアルキル基又は置換基を有しても良い炭素数2~30のアルケニル基であり、より好ましくはn-ブチル基、n-ペンチル基、n-ヘキシル基、アリル基、又は3-ブテニル基である。
前記化合物(2)において、Xは、塩素原子、臭素原子、又はヨウ素原子を表し、好ましくは塩素原子、又は臭素原子である。
ここで、前記式(1)で表されるグリシド酸エステルは、R体或いはS体のいずれであってもよく、原料として使用される前記式(1)で表されるグリシド酸エステルは、ラセミ体、又は光学活性体のいずれであっても構わない。ラセミ体の場合は、Heterocycles,2014,89(2),487-493.(落合ら)に記載の方法に従って、簡便に製造することができる。具体的には、入手容易なアクリル酸エステルに、アンモニウム塩触媒存在下、次亜塩素酸ナトリウム水溶液を作用させるとよい。
次に本発明の反応条件について説明する。本反応は、前記式(1)で表されるグリシド酸エステルと銅塩を、必要により溶媒と共に予め混合させた溶液(予備混合物)を調製する。この予備混合物と、前記式(2)で表されるグリニャール試薬を、そのまま又は必要により溶媒で希釈したものとを次に混合することを特徴とする。前記化合物(1)と銅塩の混合方法には特に制限はない。前記化合物(2)の混合方法については、前記化合物(1)と銅塩とを含む混合物(混合溶液)に対し、前記化合物(2)を添加してもよく、また前記化合物(2)に前記化合物(1)と銅塩とを含む混合物(混合溶液)を添加してもよい。好ましくは、前記化合物(1)と銅塩とを含む混合物(混合溶液)に対して、前記化合物(2)を添加するとよい。
なお、前記予備混合物に必要に応じて混合される溶媒としては、後述する反応溶媒と同様のものが好ましく使用される。
前記化合物(2)の添加時間は、好ましくは0.1分以上、更に好ましくは5分以上、特に好ましくは30分以上かけて添加するとよい。
本反応における前記式(1)で表されるグリシド酸エステルの使用量は、多すぎるとコストや後処理の点で好ましくないため、上限として好ましくは前記化合物(2)に対し20当量であり、更に好ましくは10当量であり、特に好ましくは3当量である。下限として好ましくは前記化合物(2)に対し0.7当量であり、更に好ましくは0.8当量であり、特に好ましくは0.9当量である。
前記銅塩としては、銅イオンをカチオンとして含む塩であれば特に制限はなく、許容される一価の銅、許容される二価の銅のいずれでも構わない。具体的には例えば、CuF、CuCl、CuBr、CuI、CuF2、CuCl2、CuBr2、CuI2、Cu(OAc)、Cu(OCOCF3)、Cu(OAc)2、Cu(OCOCF3)2、Cu(acac)2、CuCN、Cu(CN)2、CuCO3、CuOMe、Cu(OMe)2、CuClO4、Cu(ClO4)2、CuSCF3、Cu2O、CuO、Cu2S、CuS、Cu2SO4、CuSO4、CuNO3、Cu(NO3)2、Cu(BF4)2、CuOTf、Cu(OTf)2などが挙げられる。好ましくは、CuCl、CuBr、CuI、CuCl2、CuBr2、Cu(OAc)、Cu(OAc)2、CuCN、Cu2O、CuO、又はCuSO4であり、更に好ましくはCuCl、CuBr、CuI、CuCl2、又はCuBr2であり、特に好ましくはCuCl、CuBr、又はCuIであり、より更に好ましくはCuBr又はCuIであり、最も好ましくはCuIである。また、これらの銅塩は安定化のために、塩化リチウム、ジメチルスルフィド、ピリジンなどと錯体を形成していてもよい。
前記銅塩の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限として好ましくは前記化合物(2)に対し50当量であり、更に好ましくは10当量であり、特に好ましくは3当量である。下限として好ましくは前記化合物(2)に対し0.01当量であり、更に好ましくは0.1当量であり、特に好ましくは0.5当量である。
本反応の反応溶媒としては、反応に影響を与えない限りにおいて特に制限はなく、具体的には例えば、テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、反応溶媒の混合比は特に制限されない。好ましくはテトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒であり、更に好ましくはテトラヒドロフラン、ジエチルエーテル、又はメチルテトラヒドロフランである。
前記反応溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(2)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(2)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。
本反応における反応温度は、工業的規模での実施に際し、特別な冷却設備を必要とせず、更にエネルギー消費も低く抑える観点で、下限として好ましくは-20℃であり、更に好ましくは-10℃であり、特に好ましくは0℃である。また、反応時間を短縮し、且つ副生成物の生成を少なくするため、上限として好ましくは120℃であり、更に好ましくは80℃であり、特に好ましくは50℃である。また、反応温度を高くしてもグリニャール試薬を基準とした式(3)で表される2-ヒドロキシエステルの収率を従来と同程度にすることができ、更には向上させることもできるという効果は、従来の知見に反し、意外なものである。
本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは100時間であり、更に好ましくは50時間であり、特に好ましくは25時間である。下限として好ましくは0.1時間であり、より好ましくは1時間であり、更に好ましくは3時間であり、特に好ましくは10時間である。
反応後の反応液から生成物を取得する方法としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、又は塩化アンモニウム水溶液を加え、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。このようにして得られた目的物は、後続の工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。
本願は、2015年7月17日に出願された日本国特許出願第2015-143463号に基づく優先権の利益を主張するものである。2015年7月17日に出願された日本国特許出願第2015-143463号の明細書の全内容が、本願に参考のため援用される。
以下に、実施例を示して本発明を更に詳細に説明するが、これら実施例は本発明を何ら限定するものではない。
(参考例1)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けてn-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下した。-5℃で1時間撹拌した後、グリシド酸n-ブチル(141mg,1mmol)を添加し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:1%)。
CuI(190mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けてn-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下した。-5℃で1時間撹拌した後、グリシド酸n-ブチル(141mg,1mmol)を添加し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:1%)。
(参考例2)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を40℃に設定した。続けてn-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下した。40℃で1時間撹拌した後、グリシド酸n-ブチル(141mg,1mmol)を添加し、40℃で23時間撹拌した(グリニャール試薬基準の収率:0%)。
CuI(190mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を40℃に設定した。続けてn-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下した。40℃で1時間撹拌した後、グリシド酸n-ブチル(141mg,1mmol)を添加し、40℃で23時間撹拌した(グリニャール試薬基準の収率:0%)。
(参考例3)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1.5mL,1.5mmol)を5分かけて滴下し、-5℃で21時間撹拌した(グリニャール試薬基準の収率:53%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1.5mL,1.5mmol)を5分かけて滴下し、-5℃で21時間撹拌した(グリニャール試薬基準の収率:53%)。
(参考例4)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(2mL,2mmol)を5分かけて滴下し、-5℃で1時間撹拌した(グリニャール試薬基準の収率:45%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(2mL,2mmol)を5分かけて滴下し、-5℃で1時間撹拌した(グリニャール試薬基準の収率:45%)。
(実施例1)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:72%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:72%)。
(実施例2)2-ヒドロキシノナン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を40℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、40℃で17時間撹拌した(グリニャール試薬基準の収率:78%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を40℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、40℃で17時間撹拌した(グリニャール試薬基準の収率:78%)。
(実施例3)2-ヒドロキシノナン酸n-ブチルの製造
CuI(19mg,0.1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を10分かけて滴下し、-5℃で2時間撹拌した(グリニャール試薬基準の収率:55%)。
CuI(19mg,0.1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を10分かけて滴下し、-5℃で2時間撹拌した(グリニャール試薬基準の収率:55%)。
(実施例4)2-ヒドロキシノナン酸n-ブチルの製造
CuBr(143mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:68%)。
CuBr(143mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:68%)。
(実施例5)2-ヒドロキシノナン酸n-ブチルの製造
CuCl(99mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:52%)。
CuCl(99mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を-5℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、-5℃で23時間撹拌した(グリニャール試薬基準の収率:52%)。
(実施例6)2-ヒドロキシノナン酸n-ブチルの製造
CuBr2(223mg,1.0mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を20℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、20℃で7時間撹拌した(グリニャール試薬基準の収率:50%)。
CuBr2(223mg,1.0mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を20℃に設定した。続けて、n-ヘキシルマグネシウムブロミドの1Mテトラヒドロフラン溶液(1mL,1mmol)を5分かけて滴下し、20℃で7時間撹拌した(グリニャール試薬基準の収率:50%)。
(実施例7)2-ヒドロキシヘプタン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にTHF(5mL)を添加し、温度を20℃に設定した。続けて、n-ブチルマグネシウムクロリドの2Mテトラヒドロフラン溶液(0.5mL,1mmol)を5分かけて滴下し、20℃で19時間撹拌した(グリニャール試薬基準の収率:74%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にTHF(5mL)を添加し、温度を20℃に設定した。続けて、n-ブチルマグネシウムクロリドの2Mテトラヒドロフラン溶液(0.5mL,1mmol)を5分かけて滴下し、20℃で19時間撹拌した(グリニャール試薬基準の収率:74%)。
(実施例8)2-ヒドロキシ-5-ヘキセン酸n-ブチルの製造
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を20℃に設定した。続けて、アリルマグネシウムブロミドの0.7Mジエチルエーテル溶液(1.4mL,1mmol)を5分かけて滴下し、20℃で17時間撹拌した(グリニャール試薬基準の収率:60%)。
CuI(190mg,1mmol)、グリシド酸n-ブチル(141mg,1mmol)にテトラヒドロフラン(5mL)を添加し、温度を20℃に設定した。続けて、アリルマグネシウムブロミドの0.7Mジエチルエーテル溶液(1.4mL,1mmol)を5分かけて滴下し、20℃で17時間撹拌した(グリニャール試薬基準の収率:60%)。
Claims (7)
- 下記式(1);
(式中、R1は、置換基を有しても良い炭素数1~15のアルキル基、置換基を有しても良い炭素数2~15のアルケニル基、置換基を有しても良い炭素数6~15のアリール基、置換基を有しても良い炭素数7~15のアラルキル基、又は置換基を有しても良い炭素数3~15のシクロアルキル基を表す。)で表されるグリシド酸エステルと銅塩とを含む混合物と、-20℃以上の温度で、下記式(2);
(式中、R2は、置換基を有しても良い炭素数1~30のアルキル基、置換基を有しても良い炭素数2~30のアルケニル基、置換基を有しても良い炭素数2~30のアルキニル基、置換基を有しても良い炭素数6~30のアリール基、置換基を有しても良い炭素数4~30のヘテロアリール基、置換基を有しても良い炭素数7~30のアラルキル基、又は置換基を有しても良い炭素数3~30のシクロアルキル基を表す。Xは塩素原子、臭素原子、又はヨウ素原子を表す。)で表されるグリニャール試薬を混合することを特徴とする、下記式(3);
(式中、R1、R2は前記に同じである。)で表される2-ヒドロキシエステルの製造方法。 - 前記銅塩がCuCl、CuBr、又はCuIである、請求項1に記載の製造方法。
- 前記銅塩を、前記化合物(2)に対して0.1当量以上用いることを特徴とする、請求項1又は2に記載の製造方法。
- 前記化合物(1)を、前記化合物(2)に対して0.7当量以上用いることを特徴とする、請求項1~3のいずれかに記載の製造方法。
- 前記R1がメチル基、エチル基、n-ブチル基、n-ヘキシル基、又はn-ドデシル基である、請求項1~4のいずれかに記載の製造方法。
- 前記R2がn-ブチル基、n-ペンチル基、n-ヘキシル基、アリル基、又は3-ブテニル基であり、前記Xが塩素原子、又は臭素原子である、請求項1~5のいずれかに記載の製造法。
- 前記化合物(1)と銅塩とを含む混合物に対して、前記化合物(2)を添加する請求項1~6のいずれかに記載の製造法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-143463 | 2015-07-17 | ||
JP2015143463A JP2018138519A (ja) | 2015-07-17 | 2015-07-17 | 2−ヒドロキシエステルの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014180A1 true WO2017014180A1 (ja) | 2017-01-26 |
Family
ID=57834341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070983 WO2017014180A1 (ja) | 2015-07-17 | 2016-07-15 | 2-ヒドロキシエステルの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018138519A (ja) |
WO (1) | WO2017014180A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62212329A (ja) * | 1986-03-14 | 1987-09-18 | Sankyo Co Ltd | α−ハイドロキシカルボン酸誘導体の製法 |
JPH0853394A (ja) * | 1994-08-09 | 1996-02-27 | Nitto Chem Ind Co Ltd | フェニル乳酸誘導体の製造方法 |
JPH08208585A (ja) * | 1994-11-14 | 1996-08-13 | Sumitomo Chem Co Ltd | α−シアノ−tert−ブチル酢酸の低級アルキルエステルの製造法 |
WO2007013555A1 (ja) * | 2005-07-28 | 2007-02-01 | Kowa Co., Ltd. | 光学活性2-ヒドロキシ酪酸エステルの製造法 |
-
2015
- 2015-07-17 JP JP2015143463A patent/JP2018138519A/ja active Pending
-
2016
- 2016-07-15 WO PCT/JP2016/070983 patent/WO2017014180A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62212329A (ja) * | 1986-03-14 | 1987-09-18 | Sankyo Co Ltd | α−ハイドロキシカルボン酸誘導体の製法 |
JPH0853394A (ja) * | 1994-08-09 | 1996-02-27 | Nitto Chem Ind Co Ltd | フェニル乳酸誘導体の製造方法 |
JPH08208585A (ja) * | 1994-11-14 | 1996-08-13 | Sumitomo Chem Co Ltd | α−シアノ−tert−ブチル酢酸の低級アルキルエステルの製造法 |
WO2007013555A1 (ja) * | 2005-07-28 | 2007-02-01 | Kowa Co., Ltd. | 光学活性2-ヒドロキシ酪酸エステルの製造法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018138519A (ja) | 2018-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5444237B2 (ja) | R−(+)−2−(4−(4−シアノ−2−フルオロフェノキシ)フェノキシ)プロピオン酸エステルの改良された製造方法 | |
CN105330609B (zh) | 一种制备lcz696的方法 | |
JP7059265B2 (ja) | (1r,3r)-および(1s,3s)-2,2-ジハロ-3-(置換フェニル)シクロプロパンカルボン酸の製造方法 | |
CN106660959A (zh) | 3‑羟基吡啶甲酸的制备方法 | |
WO2017014180A1 (ja) | 2-ヒドロキシエステルの製造方法 | |
CN104045596B (zh) | 制备依托考昔中间体1‑(6‑甲基吡啶‑3‑基)‑2‑[4‑(甲磺酰基)苯基]乙酮的方法 | |
CN104447281A (zh) | 由生物基原材料制备丙烯酸的方法 | |
CN105566260B (zh) | 一种呋塞米的制备方法 | |
WO2011021492A1 (ja) | ホルミル基置換芳香族化合物の製造方法 | |
JP6310937B2 (ja) | 4−ハロアルキル−3−メルカプト−置換された2−ヒドロキシ安息香酸誘導体の製造方法 | |
CN108689874B (zh) | 一种制备2-芳基丙二酰胺的方法及其应用 | |
WO2016043079A1 (ja) | 2'-トリフルオロメチル基置換芳香族ケトンの製造方法 | |
JP5736201B2 (ja) | 2,3−ジクロロピリジンの製造方法 | |
CN1186310C (zh) | 制备3,3-二甲基-2-甲酰基环丙烷羧酸酯的方法 | |
CN105237466B (zh) | 一种合成三取代吡啶衍生物的方法 | |
CN104844410B (zh) | 一种1,1‑二氟‑1,3‑烯炔化合物的合成方法 | |
CN106431979A (zh) | 一种2‑硝基‑4‑三氟甲基苯腈的制备方法 | |
CN110028448B (zh) | 一种3-羟基-2,3-二氢异喹啉-1,4-二酮化合物的制备方法 | |
CN109651194B (zh) | 一种(e)-4-芳基-3-丁烯腈化合物的合成方法 | |
CN104591939B (zh) | 一种制备联苯基丙烯酸醚类化合物的方法 | |
CN113121354A (zh) | 一种取代联苯化合物的合成方法 | |
KR20120041161A (ko) | 3-(2-시아노-1-프로페닐)-2,2-디메틸시클로프로판카르복실산 또는 그 염의 제조 방법 | |
TW201825470A (zh) | 環氧化合物的製造方法 | |
CN101824045B (zh) | 双(4-氟苯基)-(1h-1,2,4-三唑-1-基甲基)甲硅烷的制备方法 | |
CN105646119A (zh) | 一种肉桂酸及其衍生物脱羧上氟的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827740 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827740 Country of ref document: EP Kind code of ref document: A1 |