WO2017010511A1 - 樹脂組成物の製造方法 - Google Patents

樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2017010511A1
WO2017010511A1 PCT/JP2016/070680 JP2016070680W WO2017010511A1 WO 2017010511 A1 WO2017010511 A1 WO 2017010511A1 JP 2016070680 W JP2016070680 W JP 2016070680W WO 2017010511 A1 WO2017010511 A1 WO 2017010511A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
kneading
powder
resin
zone
Prior art date
Application number
PCT/JP2016/070680
Other languages
English (en)
French (fr)
Inventor
眞田 隆
嶌野 光吉
幸司 亀尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US15/743,846 priority Critical patent/US10676603B2/en
Priority to CN201680041006.0A priority patent/CN107835732B/zh
Priority to EP16824491.1A priority patent/EP3323579B1/en
Priority to ES16824491T priority patent/ES2895035T3/es
Priority to JP2017528705A priority patent/JP6506396B2/ja
Publication of WO2017010511A1 publication Critical patent/WO2017010511A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/484Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with two shafts provided with screws, e.g. one screw being shorter than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler

Definitions

  • the present invention relates to a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded using a biaxial kneader.
  • Resin compositions filled with powder reinforcing materials such as inorganic fillers have achieved steady performance by overcoming the challenges of many thermoplastic resins such as rigidity, heat resistance, and dimensional stability as technological developments have advanced in recent years. Improvement has been achieved and it is widely used as an industrial member represented by automobile parts. Also, a polymerized resin, such as polyphenylene ether or polyphenylene sulfide, which is powdery and bulky is compounded with a kneader and used in various applications because of its excellent characteristics.
  • productivity improvement techniques of the method of melt-kneading powder raw materials.
  • Patent Document 1 discloses a screw having a configuration in which a single screw having a wide flight width and a kneading disk having a specific twist angle are combined for the purpose of improving the productivity of a resin composition containing a filler component at a high concentration.
  • a method for producing a resin composition using a twin screw extruder housed in a barrel is described.
  • Patent Document 2 discloses a resin using a twin-screw extruder provided with a screw having a combination of a single screw and a specific kneading disk for the purpose of improving productivity in the production of a resin composition using a powder raw material. A method for producing the composition is described.
  • Patent Document 3 air contained in the material is discharged downstream from the material supply port of the barrel for the purpose of increasing the extrusion amount at the time of extrusion molding of the fine powder raw material or the synthetic resin material containing a large amount of fine powder.
  • an extrusion molding method in which a synthetic resin is melt-kneaded using a twin-screw extruder provided with an opening that does not provide a pressurizing region that gives strong compression between the material supply port and the opening.
  • Patent Document 4 for the purpose of improving the productivity of a resin composition containing a polypropylene resin and an inorganic filler, a raw material is melt-kneaded using a twin-screw kneading extruder under a condition where the resin pressure in the plasticizing region is 1 MPa or less. A method for producing a resin composition is described.
  • Patent Document 5 in the method for producing a resin composition containing a powdered polyphenylene ether and other thermoplastic resin, in order to improve the conveying ability of the powdered polyphenylene ether, the molten thermoplastic resin is transported in a region.
  • a method of supplying powdery polyphenylene ether from the side of a twin screw extruder using a forced side feeder is described.
  • an opening hole for venting gas is provided on the upstream side of the upper lid of the extruder barrel at the site where the forced side feeder is connected. Is preferably performed.
  • an object of the present invention is to provide a method for producing a resin composition stably and with high productivity in a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded. is there.
  • the present inventors have intensively studied and completed the present invention.
  • the present invention is a method for producing a resin composition in which a thermoplastic resin having a transition temperature of less than 200 ° C. and powder are melt kneaded using a biaxial kneading extruder,
  • the powder is a kind selected from the group consisting of an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher.
  • the biaxial kneading extruder includes, in order from the upstream, a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port,
  • the thermoplastic resin having a transition temperature of less than 200 ° C.
  • the present invention relates to a method for producing a resin composition for removing gas from the vent port.
  • the transition temperature of the thermoplastic resin is the melting peak temperature of the resin in the case of a crystalline thermoplastic resin, and the glass transition temperature of the resin in the case of an amorphous thermoplastic resin. It is determined by differential scanning calorimetry. More specifically, the melting peak temperature means a temperature corresponding to a melting peak of a crystal measured by differential scanning calorimetry according to JIS K7122 and observed in a range of ⁇ 50 ° C. or higher and 200 ° C. or lower. The glass transition temperature means a glass transition temperature measured by differential scanning calorimetry according to JIS K7121. Specific examples of thermoplastic resins having a transition temperature of less than 200 ° C.
  • polyolefin resins high density polyethylene, low density polyethylene, polypropylene, etc.
  • cyclic olefin resins include polylactic acid, etc.), fat Group polycarbonate, polyoxymethylene (polyacetal, etc.), styrene resin (polystyrene, SEBS, acrylonitrile-butadiene-styrene copolymer), etc.
  • polystyrene resin polystyrene, SEBS, acrylonitrile-butadiene-styrene copolymer
  • an olefin-based, styrene-based, acrylic-based, urethane-based, or engineering plastic-based elastomer may be added to improve impact strength and impart flexibility.
  • the transition temperature of the thermoplastic resin is preferably 190 ° C. or lower, preferably 0 ° C. or higher, and preferably 30 ° C. or higher.
  • the state of the thermoplastic resin when it is supplied to the biaxial kneading extruder is not particularly limited, and for example, a pellet shape, a granule shape, a powder (powder) shape, or the like can be adopted.
  • the powder to be melt-kneaded with the thermoplastic resin having a transition temperature of less than 200 ° C. may be an inorganic filler having an apparent density of 0.1 to 1.5 g / ml.
  • Natural silicates or natural silicates such as talc, kaolinite, clay, pyrophyllite, sericite, bentonite, silica, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, aluminum hydroxide, magnesium hydroxide, etc.
  • Hydroxide zinc oxide, iron oxide, magnesium oxide, aluminum oxide, titanium oxide, mullite and other oxides, hydrous silicic acid, synthetic silicic acid such as anhydrous silicic acid or particulate filler such as mica, flakes such as mica Filler, basic magnesium sulfate whisker, calcium titanate whisker, chita
  • Examples include potassium filler whiskers, aluminum borate whiskers, wollastonite, sepiolite, zeolite, attapulgite, zonotlite, rock wool, glass wool and other amorphous fillers such as carbon black, mesoporous carbon and activated carbon. .
  • the apparent density of the inorganic filler is preferably from 0.1 to 1.0 g / ml, more preferably from 0.1 to 0.8 g / ml.
  • the inorganic filler having an apparent density of 0.1 to 1.5 g / ml is more prominent in improving productivity by the production method of the present invention. It is preferable in that it can be seen.
  • the apparent density of a powder is an apparent density measured by the method of JIS K7365: 1999.
  • the true density is a density calculated from the volume of the container excluding the gap portion when the container is filled with the powder.
  • the true density of the powder is JIS Z8807: 2012. It refers to the density measured by the method.
  • the powder that is melt-kneaded together with the thermoplastic resin having a transition temperature of less than 200 ° C. may be a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or more.
  • the thermoplastic resin powder include polyphenylene ether, polyphenylene sulfide, polyether ketone, polyamide resin (nylon 6, nylon 66, etc.), aromatic polyester resin (polyethylene terephthalate, polybutylene terephthalate, poly Butylene naphthalate, etc.), aromatic polycarbonate, liquid crystalline polymer and the like.
  • the effects of the present invention are high, such as polyphenylene ether, polyphenylene sulfide, liquid crystalline polymer, etc., which have a high melting point and glass transition temperature, do not enter a melt flow state until a relatively high temperature, and maintain powder fluidity. It is done.
  • the transition temperature of the thermoplastic resin constituting the thermoplastic resin powder is 200 ° C. or higher, preferably 210 ° C. or higher, preferably 450 ° C. or lower, more preferably 400 ° C. or lower.
  • the preferred range of the amount of the powder is 5 to 80% by weight, more preferably 10 to 70% by weight. %, More preferably 15 to 60% by weight.
  • the biaxial kneading extruder of the present invention includes a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port in order from the upstream.
  • the supply port is located in the most upstream part of the twin-screw kneading extruder. It is preferable that a weight type feeder is connected to the supply port.
  • thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the supply port to the biaxial kneading extruder, and is kneaded and sufficiently melted in the first kneading zone under the condition that the resin pressure is 1 MPa or more.
  • a weight type feeder is connected to the supply port, a thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the weight type feeder to the twin-screw kneading extruder through the supply port.
  • the resin pressure in the first kneading zone is preferably 2 MPa or more.
  • the resin pressure in the first kneading zone is usually 10 MPa or less, preferably 8 MPa or less.
  • the screw of the twin-screw kneading extruder according to the present invention is preferably a screw having two kneading segments from the viewpoint of increasing productivity.
  • a segment or resin that pushes the resin back in the upstream direction by the rotation of the screw is provided on the downstream side in the first kneading zone of the screw of the biaxial kneading extruder.
  • a reverse flight a disk generally referred to as a reverse kneading disk whose twist angle exceeds 90 ° with respect to the feed direction (hereinafter referred to as “reverse disk”).
  • a reverse disk a disk generally referred to as a reverse kneading disk whose twist angle exceeds 90 ° with respect to the feed direction (hereinafter referred to as “reverse disk”).
  • An example of the segment having an effect of blocking the resin is a seal ring.
  • forward disk By placing a so-called forward kneading disk (hereinafter referred to as “forward disk”) having a twist angle of less than 90 ° with respect to the feed direction on the upstream side in the first kneading zone of the screw, the resin pressure can be efficiently obtained. It is possible to melt while increasing the pressure.
  • a so-called orthogonal disk having a twist angle of 90 ° can be further disposed in the first kneading zone of the screw as necessary.
  • the position where the orthogonal disk is arranged is preferably between the above-described reverse disk and the sequential disk, or between the sequential disk and the sequential disk.
  • the pressure in the kneading zone of the twin-screw kneading extruder can be measured by a pressure sensor installed in the kneading zone of the cylinder.
  • a predetermined amount of powder is supplied from the weight-type feeder to the screw-type side feeder, and further supplied from the screw-type side feeder to the twin-screw kneading extruder.
  • the conveying ability of the screw-type side feeder at this time is at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder.
  • the conveying capacity of the screw-type side feeder is the volume per unit time of the powder supplied from the screw-type side feeder to the twin-screw kneading extruder, and this is the front while the screw of the screw-type side feeder rotates once.
  • the product of the volume of space to be sent to the screw and the rotational speed of the screw, or the difference between the volume of the cylinder barrel per lead length of the screw of the screw-type side feeder and the volume of the screw per lead length of the screw-type side feeder, and the screw-type side It can be determined as the product of the screw rotation speed of the feeder.
  • the effective volume of the powder must be evaluated based on the volume actually supplied to the side feeder.
  • the powder is weighed by a weight-type feeder connected to the upper part of the screw-type side feeder and supplied to the screw-type side feeder by natural fall.
  • the effective volume per unit time of the powder supplied from the gravimetric feeder to the screw side feeder is the apparent density of the powder per unit time of the powder supplied from the gravimetric feeder to the screw side feeder.
  • the apparent density of the powder used for calculating the effective volume is the same height as when the powder is actually supplied from the weight type feeder to the screw type side feeder, and the powder is transferred to a measuring container such as a measuring cylinder. It is a value obtained by dropping and dividing the weight of the powder in the measuring container by the volume of the powder measured in the measuring container.
  • the conveying capacity of the screw-type side feeder depends on the specifications of the apparatus, but is preferably at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder, preferably at least four times Moreover, it is preferably less than 10 times, more preferably less than 8 times.
  • the powder when the powder is supplied to the twin-screw kneading extruder using a screw-type side feeder, resin pellets or the like different from the powder may be supplied together with the powder.
  • the conveying capacity of the screw-type side feeder sufficiently exceeds the total amount of the effective volume of the powder supplied from the weight-type feeder to the screw-type side feeder and the volume of the resin pellets, It is not necessary to consider the volume of the resin pellets when setting the conveyance capacity. From the viewpoint of supplying the powder more stably to the twin-screw kneading extruder, the powder and the resin pellet of 25 parts by weight or more with respect to 100 parts by weight of the powder are passed through the screw type side feeder from the weight type feeder.
  • the resin pellets supplied from the weight type feeder to the biaxial kneading extruder through the screw type side feeder are preferably 200 parts by weight or less with respect to 100 parts by weight of the powder.
  • Examples of the resin pellet supplied from the weight type feeder to the twin screw kneading extruder through the screw type side feeder include thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more, and a transition temperature. There is no limit.
  • a second kneading zone is provided on the downstream side of the position where the powder is fed by the side feeder, but the powder is fed to the twin-screw kneading extruder.
  • a conveyance zone may be provided between the position and the second kneading zone.
  • the resin pressure in the second kneading zone is set to less than 3 MPa, and the rate at which the gas mixed into the biaxial kneading extruder and the volatile components contained in the raw material escape to the downstream side of the biaxial kneading extruder with the powder supply is increased.
  • the amount of the gas or volatile component flowing back upstream is reduced. It is possible to set a resin pressure of less than 3 MPa by appropriately arranging a segment that pushes the resin back in the upstream direction by rotation of the screw or a segment that has an effect of blocking the resin on the downstream side in the second kneading zone. it can. From the viewpoint of sufficiently dispersing the powder supplied from the screw-type side feeder, the resin pressure in the second kneading zone is preferably 0.02 MPa or more, more preferably 0.1 MPa or more. The resin pressure in the second kneading zone is preferably 32 MPa or less.
  • the gap distance (chip clearance) from the stirring edge, which is the outermost peripheral end surface of the segment such as a reverse disk installed downstream of the second kneading zone, to the inner wall of the cylinder is equivalent to the gap distance from the flight top to the inner wall of the cylinder.
  • the gap distance of the kneading disk used in the second kneading zone is two to three times the usual distance. Is preferably used.
  • the normal gap distance varies depending on the manufacturer of the biaxial kneading extruder, the cylinder diameter, the characteristics of the product to be produced, etc., but is generally about 0.2 to 1.5 mm.
  • the thickness (disk width) of each kneading disk is usually about 1 / 5D (D is the screw diameter), but in the second kneading zone according to the present invention, 2 / 5D or more is preferable.
  • a vent port is provided downstream from the second kneading zone to remove the gas and volatile components out of the system.
  • This vent (that is, removal to the outside of the system) may be a normal release to the atmosphere or a vent drawn under reduced pressure.
  • the biaxial kneading extruder may further be provided with a third kneading zone downstream of the vent port.
  • the resin pressure in the third kneading zone is preferably about 1 to 6 MPa.
  • the biaxial kneading extruder may be further provided with a reduced pressure vent port downstream from the third kneading zone.
  • the screw configuration of the first kneading zone preferably includes a forward disc, an orthogonal disc, and a reverse disc so that the resin pressure can be quickly increased to 1 MPa or more so that the resin can be plasticized quickly and reliably in a short section.
  • the thickness of the disk is small because the purpose can be achieved in a short section.
  • the gap distance (chip clearance) is preferably as narrow as usual.
  • the purpose of the second kneading zone is to gradually knead the powder into the molten resin while letting some volatile components escape to the vent port downstream from the second kneading zone. Therefore, a wide disk is preferred, mainly a forward disk. In addition, it is preferable that the gap distance (chip clearance) is wider than usual.
  • the third kneading zone since the resin has already been melted and the powder has been taken into the molten resin by the second kneading zone, a screw configuration necessary for normal dispersion mixing can be adopted.
  • a full flight screw in a screw other than the kneading zone described here, that is, in a feed zone, a conveyance zone between the kneading unit and the kneading unit, a pressure zone at the tip, and the like.
  • a full flight screw in a screw other than the kneading zone described here, that is, in a feed zone, a conveyance zone between the kneading unit and the kneading unit, a pressure zone at the tip, and the like.
  • two full flight screws are used.
  • one full flight screw may be used.
  • another arbitrary component may be mix
  • optional components include antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, antistatic agents, colorants, conductive agents, dispersants, printability-imparting agents, and organic fillings.
  • additives may be supplied together with the thermoplastic resin from the supply port in the first conveying zone of the biaxial kneading extruder into the biaxial kneading extruder, or in the second conveying zone or the third conveying zone.
  • a supply port may be provided and supplied from there into the twin-screw kneading extruder.
  • the first transport zone is located between the most upstream supply port and the first kneading zone
  • the second transport zone is located between the first kneading zone and the second kneading zone
  • the third transport zone Is located between the second kneading zone and the third kneading zone.
  • a fourth transport zone may be further provided downstream of the third kneading zone.
  • the raw materials are not smoothly fed into the biaxial kneading extruder.
  • Dispersion state of inorganic filler The dispersion state of the inorganic filler in the resin composition is evaluated by the number of aggregates found in a film formed by a T-die film molding machine using the obtained resin composition pellets. did. The smaller the number of aggregates, the better the dispersion state of the inorganic filler.
  • Example 1 As the biaxial kneading extruder, a twin-screw kneading extruder of the same direction meshing type with a cylinder diameter of 47 mm was used.
  • the biaxial kneading and extruding machine has a cylinder and two screw shafts accommodated in the cylinder. From the upstream, the cylinder has a first conveyance zone, a first kneading zone, a second conveyance zone, a second It is divided into a kneading zone, a third transport zone, a third kneading zone, and a fourth transport zone.
  • the cylinder was provided with a supply port at the uppermost stream in the first transfer zone, an open vent at the uppermost stream in the third transfer zone, and a vacuum vent at the uppermost stream in the fourth transfer zone.
  • a biaxial screw-type side feeder was connected to the second transport zone of the cylinder, and a weight-type feeder was connected to the screw-type side feeder. From the upstream side, forward (forward feed direction) disk, orthogonal (neutral) disk, reverse (reverse feed), so that the resin pressure in the first kneading zone is 2 MPa to 8 MPa, the screw corresponding to the first kneading zone Direction) Disc was placed.
  • the forward disk and the orthogonal disk each had a thickness of 0.2D (D is the screw diameter), and the reverse disk had a thickness of 0.1D.
  • D is the screw diameter
  • the reverse disk had a thickness of 0.1D.
  • a forward disk was placed long from the upstream so that the resin pressure in the second kneading zone was 0.2 to 3 MPa, and finally a reverse disk was placed.
  • the forward disk and the reverse disk each had a thickness of 0.5D.
  • the air gap distance of these disks was twice that of the flight air gap distance.
  • An open vent was provided downstream of the reverse disk in the second kneading zone.
  • a forward disk, an orthogonal disk, and a reverse disk are used so that the resin pressure in the third kneading zone is 1 to 4 MPa.
  • talc 20 parts by weight of talc was supplied to the weight type feeder, supplied from the weight type feeder to the biaxial screw type side feeder, and supplied from the biaxial screw type side feeder into the biaxial kneading extruder.
  • the total feed amount of polypropylene pellets, rubber pellets and talc fed into the twin-screw kneading extruder was 600 kg / hour.
  • the effective volume of talc supplied from the weight-type feeder to the biaxial screw-type side feeder was 247 L / hour, and the conveying capacity of the screw-type side feeder was 601 L / hour.
  • the conveying capacity of the screw-type side feeder was about 2.4 times the volume per unit time of talc supplied from the weight-type feeder to the screw-type side feeder.
  • the raw material is melt-kneaded at a screw rotation speed of 1050 rpm of a twin-screw kneading extruder and suctioned under reduced pressure from the vacuum vent, so that the raw material is smoothly fed into the twin-screw kneading extruder and stably polypropylene, rubber, and additives.
  • production of resin composition pellets containing talc was possible.
  • the resin pressure in each kneading zone during production was 6.4 MPa in the first kneading zone, 0.4 MPa in the second kneading zone, and 2.0 MPa in the third kneading zone.
  • the dispersion state of talc in the film formed by the T-die film forming machine using the obtained resin composition pellets was good.
  • Example 2 40 parts by weight of polypropylene pellets, 20 parts by weight of rubber pellets, and additives are fed into the twin-screw kneading extruder from the most upstream supply port in the first transport zone of the twin-screw kneading extruder, and 20 parts by weight of talc and polypropylene are fed.
  • the resin pressure in each kneading zone during production was 5.8 MPa in the first kneading zone, 0.5 MPa in the second kneading zone, and 2.4 MPa in the third kneading zone.
  • the dispersed state of talc in the film formed using the obtained resin composition pellets was good.
  • Example 3 The same procedure as in Example 2 was performed except that the total feed amount of polypropylene pellets, rubber pellets and talc fed into the twin-screw kneading extruder was 900 kg / hour, and the screw speed of the twin-screw kneading extruder was 1350 rpm. It was. The raw material was smoothly fed into the twin-screw kneading extruder, and the resin composition pellets could be produced stably.
  • the resin pressure in each kneading zone during production was 5.5 MPa in the first kneading zone, 0.4 MPa in the second kneading zone, and 2.4 MPa in the third kneading zone.
  • the dispersed state of talc in the film formed using the obtained resin composition pellets was good.
  • Example 1 It carried out similarly to Example 1 except the conveyance capability of a screw-type side feeder having been 400 L / hour.
  • the conveying capacity of the screw-type side feeder was about 1.6 times the volume per unit time of talc supplied from the weight-type feeder to the screw-type side feeder.
  • Talc accumulated between the weight-type feeder and the screw-type side feeder and was not smoothly fed into the twin-screw kneading extruder, and production could not be continued.
  • Comparative Example 3 Using the same biaxial kneading extruder as in Example 1, the cylinder of the biaxial kneading extruder was provided with the first kneading zone of Comparative Example 1 slightly downstream from the second kneading zone of Example 1.
  • the second kneading zone of Comparative Example 1 is provided at the same position as the third kneading zone of Example 1, an open vent is provided between the first kneading zone and the second kneading zone of Comparative Example 1, and A vacuum vent was provided downstream of the two kneading zones.
  • the zone upstream of the first kneading zone of Comparative Example 1 was the first transport zone of Comparative Example 1.
  • a forward disk is arranged long from the upstream so that the resin pressure in the first kneading zone is 0.2 to 3 MPa, and finally a reverse disk is arranged. did.
  • the part of the screw corresponding to the second kneading zone of Comparative Example 1 was arranged using a forward disk, an orthogonal disk, and a reverse disk so that the resin pressure in the second kneading zone was 1 to 4 MPa.
  • 60 parts by weight of polypropylene pellets, 20 parts by weight of rubber pellets, 20 parts by weight of additives and 20 parts by weight of talc are collectively fed into the twin-screw kneading extruder from the supply port at the most upstream part in the first conveying zone of the twin-screw kneading extruder.
  • the total of polypropylene pellets, rubber pellets and talc The feed rate was 450 kg / hour, and the screw rotation speed of the twin-screw kneading extruder was 1320 rpm.
  • the resin pressure in each kneading zone during production was 0.9 MPa in the first kneading zone and 1.8 MPa in the second kneading zone.
  • the dispersed state of talc in the film formed using the obtained resin composition pellets was good.
  • the screw rotation speed of the twin-screw kneading extruder was lowered to 1000 rpm, the raw materials were not smoothly fed into the twin-screw kneading extruder and production could not be continued.
  • Comparative Example 4 The screw configuration and cylinder configuration are the same as those in Comparative Example 1, and a biaxial screw side feeder is connected to the first transport zone of the cylinder of the biaxial kneading extruder of Comparative Example 1, and a weight type feeder is connected to the screw side feeder. Connected. 60 parts by weight of polypropylene pellets, 20 parts by weight of rubber pellets, and additives were supplied from the supply port at the most upstream part of the twin-screw kneading extruder. 20 parts by weight of talc was supplied to a weight type feeder, and supplied from a twin screw side feeder into a twin screw kneading extruder.
  • the transport capacity of the screw-type side feeder was 801 L / hour. Feeding the total amount of polypropylene pellets, rubber pellets and talc by adjusting the conditions so that the raw material is smoothly fed into the twin-screw kneading extruder and the resin composition pellets containing polypropylene, rubber, additives and talc can be produced stably
  • the amount was 500 kg / hour, and the screw rotation speed of the twin-screw kneading extruder was 1320 rpm.
  • the resin pressure in each kneading zone during production was 0.8 MPa in the first kneading zone and 1.7 MPa in the second kneading zone.
  • the dispersed state of talc in the film formed using the obtained resin composition pellets was good.
  • the screw rotation speed of the twin-screw kneading extruder was lowered to 1000 rpm, the raw materials were not smoothly fed into the twin-screw kneading extruder and production could not be continued.
  • the total feed rate of polypropylene pellets, rubber pellets and talc is increased to 550 kg / hour with the screw rotation speed kept at 1320 rpm, the raw materials are not smoothly fed into the twin-screw kneading extruder and production cannot be continued. It was.
  • the resin composition can be stably melt-kneaded with an appropriate screw rotation speed without applying excessive energy to the resin composition. It can be said that productivity is higher when the raw material can be stably melt-kneaded at a lower rotational speed.
  • Comparative Example 3 and Comparative Example 4 if the total feed amount of the raw materials is less than that in Example 1 and the screw rotation number is larger than that in Example 1, the resin composition cannot be produced, so the productivity is low, Production stability is also poor.
  • the screw rotation speed of the twin-screw kneading extruder is approximately the same as the screw rotation speed of Example 1, a resin composition cannot be produced.

Abstract

安定的に高い生産性で樹脂組成物を製造する方法を提供する。特に、転移温度200℃未満の熱可塑性樹脂と粉体とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造方法であって、前記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる一種以上の粉体であり、前記転移温度200℃未満の熱可塑性樹脂は供給口から二軸混練押出機に供給され、前記粉体は重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機に供給され、前記スクリュー式サイドフィーダーの搬送能力は、前記粉体の単位時間あたりの実効体積の2倍以上であり、前記二軸混練押出機において、第一混練ゾーンの樹脂圧力が1MPa以上であり第二混練ゾーンの樹脂圧力が3MPa未満である条件で溶融混練し気体をベント口から除去する樹脂組成物の製造方法が提供される。

Description

樹脂組成物の製造方法
 本発明は、熱可塑性樹脂と粉体とを二軸混練機を用いて溶融混練する樹脂組成物の製造方法に関するものである。
 無機フィラー等の粉体強化材が充填された樹脂組成物は、近年の技術開発の進歩に伴い、剛性や耐熱性、寸法安定性など多くの熱可塑性樹脂の課題を克服して、着実に性能向上が図られ、自動車部品に代表される工業部材として幅広く使用されている。また、ポリフェニレンエーテルやポリフェニレンスルフィドのように、重合後の樹脂がパウダー状で嵩高いものも、その優れた特性から、混練機でコンパウンドされて、種々の用途で利用されている。
 粉体熱可塑性樹脂や、多量の粉体強化材を含む粉体原料を、押出機を用いて溶融混練して樹脂組成物を製造する際には、かかる粉体原料は、ペレット状原料に比べて見掛け密度が低い為、押出機への噛み込み性が劣る。そのため、達成される押出量が少なく、生産性が低い場合が多い。
 粉体原料を溶融混練する方法の生産性改良技術については、次のようなものが知られている。
 例えば、特許文献1には、高濃度にフィラー成分を含有する樹脂組成物の生産性向上を目的として、フライト幅の広い一条スクリューと特定のひねり角を有するニーディングディスクを組み合わせた構成のスクリューがバレル内に収容された二軸押出機を用いる樹脂組成物の製造方法が記載されている。
 また、特許文献2には、粉体原料を用いる樹脂組成物の製造における生産性向上を目的として、一条スクリューと特定のニーディングディスクを組み合わせた構成のスクリューを備えた二軸押出機を用いる樹脂組成物の製造方法が記載されている。
 特許文献3には、微粉体原料、或いは微粉体を多量に含む合成樹脂材料の押出成形時の押出量の増大を目的として、バレルの材料供給口より下流に前記材料に包含される空気を排出する開口部を設けた二軸押出機を用い、材料供給口と開口部との間で強い圧縮を与えるような昇圧域を設けずに合成樹脂を溶融混練する押出成形方法が記載されている。
 特許文献4には、ポリプロピレン系樹脂と無機フィラーを含有する樹脂組成物の生産性向上を目的として、可塑化領域の樹脂圧力が1MPa以下の条件で二軸混練押出機を用いて原料を溶融混練する樹脂組成物の製造方法が記載されている。
 特許文献5には、パウダー状ポリフェニレンエーテルとそれ以外の熱可塑性樹脂を含む樹脂組成物の製造方法において、パウダー状ポリフェニレンエーテルの搬送能力の向上を目的として、溶融した熱可塑性樹脂の搬送領域に、パウダー状ポリフェニレンエーテルを、二軸押出機のサイドから強制サイドフィーダーを用いて供給する方法が記載されている。また、パウダー状ポリフェニレンエーテルの搬送能力の低下を防止するために、強制サイドフィーダーを接続した部位の押出機バレルの上蓋の上流側にガス抜き用の開口孔を設け、当該開口孔から、ガス抜きを行うことが好ましいと記載されている。
 しかしながら、上記のいずれの製造方法も、生産性の改善効果は十分ではなかった。
特開平9-29814号公報 特開平10-24483号公報 特開昭58-29644号公報 特開2002-187125号公報 特開2011-255652号公報
 かかる状況のもと、本発明の目的は、熱可塑性樹脂と粉体とを溶融混練する樹脂組成物の製造方法において、安定的に高い生産性で樹脂組成物を製造する方法を提供することにある。
 本発明者等は、鋭意検討して、本発明を完成するに至った。
 すなわち本発明は、転移温度200℃未満の熱可塑性樹脂と粉体とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造方法であって、
前記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる一種以上の粉体であり、
二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備え、
前記転移温度200℃未満の熱可塑性樹脂は前記供給口から前記二軸混練押出機へ供給され、
前記粉体は前記重量式フィーダーから前記スクリュー式サイドフィーダーを経て前記二軸混練押出機へ供給され、
前記スクリュー式サイドフィーダーの搬送能力は、前記重量式フィーダーから前記スクリュー式サイドフィーダーへ供給される前記粉体の単位時間あたりの実効体積の2倍以上であり、
前記第一混練ゾーンの樹脂圧力が1MPa以上であり、前記第二混練ゾーンの樹脂圧力が3MPa未満である条件で溶融混練し、
気体を前記ベント口から除去する樹脂組成物の製造方法に関するものである。
 本発明によれば、安定的に高い生産性で、熱可塑性樹脂と粉体とを溶融混練して樹脂組成物を製造することができる。
 本発明において、熱可塑性樹脂の転移温度とは、結晶性熱可塑性樹脂の場合は該樹脂の融解ピーク温度であり、非晶性熱可塑性樹脂の場合は該樹脂のガラス転移温度であり、いずれも示差走査熱量測定により求められる。より具体的には、前記融解ピーク温度とは、JIS  K7122に従って示差走査熱量測定によって測定され、-50℃以上200℃以下の範囲に観測される結晶の融解ピークに対応する温度を意味する。前記ガラス転移温度とは、JIS  K7121に従って示差走査熱量測定により測定されるガラス転移温度を意味する。
 転移温度200℃未満の熱可塑性樹脂としては、具体的には、ポリオレフィン系樹脂(高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン等)、環状オレフィン系樹脂、脂肪族ポリエステル系樹脂(ポリ乳酸等)、脂肪族ポリカーボネート、ポリオキシメチレン(ポリアセタール等)、スチレン系樹脂(ポリスチレン、SEBS、アクリロニトリル・ブタジエン・スチレン共重合体)等が挙げられ、これらはそれぞれ単独で用いても複数の樹脂を組み合わせてもよい。さらに、衝撃強度の改良や、柔軟性を付与するために、オレフィン系やスチレン系、アクリル系、ウレタン系、エンプラ系のエラストマーを加えてもよい。該熱可塑性樹脂の転移温度は、好ましくは190℃以下であり、また、好ましくは0℃以上であり、好ましくは30℃以上である。二軸混練押出機に供給する際の該熱可塑性樹脂の状態は特に限定されず、例えば、ペレット状、顆粒状、パウダー(粉末)状などを採用することができる。
 本発明において、前記転移温度200℃未満の熱可塑性樹脂と共に溶融混練される粉体は、見掛け密度0.1~1.5g/mlの無機フィラーであり得、かかる無機フィラーとしては具体的には、タルク、カオリナイト、クレー、パイロフィライト、セリサイト、ベントナイト、シリカ、などの天然珪酸または天然珪酸塩、炭酸カルウシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物、亜鉛華、酸化鉄、酸化マグネシウム、酸化アルミニウム、酸化チタン、ムライトなどの酸化物、含水珪酸、無水珪酸などの合成珪酸または合成珪酸塩などの粒子状充填材、マイカなどのフレーク状充填材、塩基性硫酸マグネシウムウイスカー、チタン酸カルシウムウイスカー、チタン酸カリウムウィスカー、ホウ酸アルミニウムウイスカー、ウォラストナイト、セピオライト、ゼオライト、アタパルジャイト、ゾノトライト、ロックウール、グラスウールなどの繊維状充填材、カーボンブラック、メソポーラスカーボン、活性炭などの無定形カーボン充填剤等が挙げられる。無機フィラーの見掛け密度は、0.1~1.0g/mlが好ましく、0.1~0.8g/mlがより好ましい。見掛け密度0.1~1.5g/mlの無機フィラーのうち、(見掛け密度)/(真密度)が0.3以下の無機フィラーは、本発明の製造方法による生産性の改善効果がより顕著に見られるという点で好ましい。本願において粉体の見掛け密度とは、JIS K7365:1999の方法により測定される見掛け密度のことである。また、真密度とは、一定容積の容器に粉体を充填したときの、容器の体積から隙間部分を除いた体積から算出した密度であり、本願において粉体の真密度は、JIS Z8807:2012の方法により測定される密度を指す。
 本発明において、前記転移温度200℃未満の熱可塑性樹脂と共に溶融混練される粉体は、見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体であり得る。かかる熱可塑性樹脂粉体としては、具体的には、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアミド系樹脂(ナイロン6、ナイロン66等)、芳香族ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等)、芳香族ポリカーボネート、液晶性ポリマー等が挙げられる。この中で本発明の効果が高いのは、融点やガラス転移温度が高く、比較的高温まで溶融流動状態にならず、粉体流動性を保持するポリフェニレンエーテル、ポリフェニレンスルフィド、液晶性ポリマー等が挙げられる。該熱可塑性樹脂粉体を構成する熱可塑性樹脂の転移温度は、200℃以上であり、好ましくは210℃以上であり、また、好ましくは450℃以下であり、より好ましくは400℃以下である。
 前記転移温度200℃未満の熱可塑性樹脂と前記粉体の合計の重量を100重量%としたとき、該粉体の量の好ましい範囲は5~80重量%であり、より好ましくは10~70重量%であり、更に好ましくは15~60重量%である。
 本発明の二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備えるものである。上記供給口は、二軸混練押出機の最上流部に位置する。上記供給口には重量式フィーダーが接続されていることが好ましい。
 転移温度200℃未満の熱可塑性樹脂は、上記供給口から二軸混練押出機へ供給され、第一混練ゾーンにおいて、樹脂圧力が1MPa以上となる条件で混練して十分に溶融させる。上記供給口に重量式フィーダーが接続されている場合は、転移温度200℃未満の熱可塑性樹脂は重量式フィーダーから上記供給口を経て二軸混練押出機へ供給される。第一混練ゾーンの樹脂圧力は好ましくは2MPa以上である。また、第一混練ゾーンの樹脂圧力は、通常は10MPa以下であり、好ましくは8MPa以下である。
 本発明に係る二軸混練押出機のスクリューは、生産性を高くするという観点から、2条の混練セグメントを有するスクリューが好ましい。第一混練ゾーンの樹脂圧力を1MPa以上にする方法としては、二軸混練押出機のスクリューの第一混練ゾーン内の下流側に、スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントや樹脂を堰き止める効果のあるセグメントを適切に配置する方法が挙げられる。スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントとしては、逆フライト、ねじれ角が送り方向に対して90°を超える一般的に逆ニーディングディスクと称されるディスク(以下、「逆ディスク」と称する)が挙げられる。樹脂を堰き止める効果のあるセグメントとしては、シールリングが挙げられる。スクリューの第一混練ゾーン内の上流側に、ねじれ角が送り方向に対して90°未満であるいわゆる順ニーディングディスク(以下、「順ディスク」と称する)を配置することで効率的に樹脂圧力を昇圧しながら、溶融することができる。スクリューの第一混練ゾーン内には、さらに必要に応じてねじれ角が90°のいわゆる直交ディスクを配置することができる。直交ディスクを配置する位置は、前述の逆ディスクと順ディスクの間、または、順ディスクと順ディスクの間が好ましい。二軸混練押出機の混練ゾーンの圧力は、シリンダの混練ゾーンに圧力センサーを設置して、このセンサーによって測定することができる。
 粉体は、重量式フィーダーからスクリュー式サイドフィーダーへ所定量供給され、更にスクリュー式サイドフィーダーから二軸混練押出機へ供給される。この時のスクリュー式サイドフィーダーの搬送能力は、重量式フィーダーからスクリュー式サイドフィーダーへ供給される粉体の単位時間あたりの実効体積の2倍以上である。スクリュー式サイドフィーダーの搬送能力とは、スクリュー式サイドフィーダーから二軸混練押出機へ供給する粉体の単位時間あたりの体積であり、これは、スクリュー式サイドフィーダーのスクリューが1回転する間に前方に送る空間体積とスクリュー回転数との積、またはスクリュー式サイドフィーダーのスクリューの1リード長あたりのシリンダーバレルの体積とスクリュー式サイドフィーダーの1リード長あたりのスクリューの体積の差と、スクリュー式サイドフィーダーのスクリュー回転数との積として求めることができる。粉体の実効体積は、実際に当該サイドフィーダーに供給されるところの体積で評価しなければならない。粉体はスクリュー式サイドフィーダーの上部に接続された重量式フィーダーで計量されて自然落下によってスクリュー式サイドフィーダーへ供給される。重量式フィーダーからスクリュー式サイドフィーダーへ供給される粉体の単位時間あたりの実効体積は、重量式フィーダーからスクリュー式サイドフィーダーへ供給される粉体の単位時間あたりの重量を粉体の見掛け密度で除して得られた値として求められる。本願において実効体積の算出に用いる粉体の見掛け密度とは、実際に重量式フィーダーからスクリュー式サイドフィーダーへ粉体が供給される時と同じ高さから、粉体をメスシリンダー等の計量容器へ落下させて、計量容器内の粉体の重量を、計量容器で測定した粉体の体積で除することにより、求められる値である。スクリュー式サイドフィーダーの搬送能力は、装置の仕様によるが、好ましくは重量式フィーダーからスクリュー式サイドフィーダーへ供給される粉体の単位時間あたりの実効体積の2倍以上であり、好ましくは4倍以上であり、また、好ましくは10倍未満であり、より好ましくは8倍未満である。
 また、粉体をスクリュー式サイドフィーダーで二軸混練押出機へ供給する際に、該粉体とは異なる樹脂ペレット等を粉体と一緒に供給してもよい。この場合に、スクリュー式サイドフィーダーの搬送能力が、重量式フィーダーからスクリュー式サイドフィーダーへ供給される粉体の実効体積と樹脂ペレットの体積の合計量を十分上回っている限り、スクリュー式サイドフィーダーの搬送能力を設定する際に樹脂ペレットの体積を考慮する必要がない。粉体をより安定的に二軸混練押出機へ供給するという観点から、粉体と、粉体100重量部に対し25重量部以上の樹脂ペレットとが重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機へ供給されることが好ましい。重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機へ供給される樹脂ペレットは、粉体100重量部に対し200重量部以下であることが好ましい。重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機へ供給される樹脂ペレットとしては、(見掛け密度)/(真密度)が0.9以上である熱可塑性樹脂ペレットが挙げられ、転移温度に制限はない。
 本発明に適用される二軸混練押出機において、粉体をサイドフィーダーで供給した位置の下流側に第二混練ゾーンが設けられているが、前記粉体が前記二軸混練押出機に供給された位置と前記第二混練ゾーンとの間に搬送ゾーンが設けられることがある。第二混練ゾーンの樹脂圧力は3MPa未満に設定し、粉体供給に伴い二軸混練押出機へ混入する気体や原料に含まれる揮発成分が二軸混練押出機の下流側に抜ける割合を増やして、該気体や揮発成分が上流側に逆流する量を減らす。第二混練ゾーン内の下流側に、スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントや、樹脂を堰き止める効果のあるセグメントを適切に配置することによって3MPa未満の樹脂圧力を設定することができる。スクリュー式サイドフィーダーから供給された粉体を十分に分散させる観点からは、第二混練ゾーンの樹脂圧力は0.02MPa以上が好ましく、より好ましくは0.1MPa以上である。第二混練ゾーンの樹脂圧力は好ましくは32MPa以下である。第二混練ゾーンの下流側に設置された逆ディスク等のセグメント最外周端面である撹拌縁からシリンダー内壁までの空隙距離(チップクリアランス)は、通常フライトトップとシリンダー内壁までの空隙距離と同等であるのが一般的だが、本願発明においては、第二混練ゾーンの樹脂圧力を上記のように制御するために第二混練ゾーンに用いられるニーディングディスクの空隙距離は通常の2倍から3倍のものを用いることが好ましい。通常の空隙距離は二軸混練押出機のメーカーおよびシリンダー径や生産される製品の特性等で変化するが、一般的に0.2~1.5mm程度である。ニーディングディスク1枚1枚の軸方向の厚さ(ディスク幅)は、通常1/5D(Dはスクリュー直径とする)程度である場合が多いが、本発明に係る第二混練ゾーンでは2/5D以上とすることが好ましい。
 本発明に適用される二軸混練押出機には、第二混練ゾーンより下流に、ベント口が設けられており、上記気体や揮発成分を系外に除去する。このベント(すなわち、系外への除去)は通常の大気解放であっても、減圧吸引したベントであってもよい。二軸混練押出機には、前記ベント口の下流に、さらに第三混練ゾーンが設けられていてもよい。第三混練ゾーンにおける樹脂圧力は1~6MPa程度が好ましい。
 二軸混練押出機には、第三混練ゾーンより下流にさらに減圧ベント口が設けられていてもよい。このような構成の二軸混練押出機を用いて溶融混練をすることにより、従来よりも高い生産性で混練をすることができ、各成分の分散性も良好な樹脂組成物が得られる。
 次に、本発明に係る二軸混練押出機のスクリュー構成について説明する。第一混練ゾーンのスクリュー構成は、短い区間で迅速かつ確実に樹脂を可塑化できるように、順ディスク、直交ディスク、逆ディスクを含み、すみやかに樹脂圧を1MPa以上に昇圧する構成が好ましい。このため、第一混練ゾーンでは、ディスクの厚みは薄いほうが、短い区間で目的を達成できるので好ましい。また空隙距離(チップクリアランス)も通常と同じように狭いものが好ましい。第二混練ゾーンは、一部の揮発分については第二混練ゾーンより下流のベント口の方に逃がしながら、粉体を前述の溶融した樹脂の中に、徐々に練り込んでいくことを目的としており、順ディスクを主体とし、幅の広いディスクが好ましい。また、空隙距離(チップクリアランス)が通常よりも広いものが好ましい。第三混練ゾーンについては、既に第二混練ゾーンまでに樹脂の溶融や粉体の溶融樹脂への取り込みがある程度は達成されているので、通常の分散混合に必要なスクリュー構成をとることができる。ここで述べた混練ゾーン以外の部分のスクリュー、すなわち、フィードゾーンや混練部と混練部との間の搬送ゾーン、先端の昇圧ゾーン等においてはフルフライトスクリューを用いることが好ましい。通常は2条のフルフライトスクリューが用いられるが、搬送体積を増やしたいときには、1条のフルフライトスクリューを用いる場合もある。
 このようにして樹脂組成物を製造する際に、目的に応じて他の任意成分が配合されてもかまわない。このような任意成分としては、例えば、酸化防止剤、紫外線吸収剤、光安定化剤、熱安定化剤、滑剤、帯電防止剤、着色剤、導電剤、分散剤、印刷性付与剤、有機充填剤、難燃剤、難燃助剤、発泡剤、加工助剤、中和剤、重金属不活性化剤、造核剤、防曇剤、抗菌剤、防かび剤等を挙げることができる。
 これらの添加剤は、熱可塑性樹脂と一緒に二軸混練押出機の第一搬送ゾーン内の供給口から二軸混練押出機内へ供給してもよいし、第二搬送ゾーンや第三搬送ゾーンに供給口を設け、そこから二軸混練押出機内へ供給しても良い。前記第一搬送ゾーンは最上流の供給口と第一混練ゾーンとの間に位置し、前記第二搬送ゾーンは第一混練ゾーンと第二混練ゾーンとの間に位置し、前記第三搬送ゾーンは第二混練ゾーンと第三混練ゾーンとの間に位置する。第三混練ゾーンの下流に更に第四搬送ゾーンが設けられていてもよい。
 本発明により、見掛け密度が小さい粉体と熱可塑性樹脂とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造において、原料が順調に二軸混練押出機内へ供給されない等の製造上のトラブルなく、高効率で生産を可能とするだけでなく、粉体の分散や樹脂組成物の物性においても、従来必要とされるレベルを満足できる方法が提供でき、その工業的価値は大きい。
 以下に実施例を用いて、本発明を更に詳細に説明するが、本発明はこれによって限定されるものではない。
 実施例中の各項目の測定値は、下記の方法で測定した。
(1)無機フィラーの分散状態
 樹脂組成物中の無機フィラーの分散状態は、得られた樹脂組成物ペレットを用いてTダイフィルム成形機により成形されたフィルム中に見られる凝集物の個数により評価した。
凝集物の個数が少ない方が無機フィラーの分散状態はよい。
 原料として、ポリプロピレン(転移温度160℃)のペレット、ゴムペレットであるエチレン-ブテン共重合体(転移温度38℃)のペレットやエチレン-オクテン共重合体(転移温度35℃)のペレット、粉体としてタルク(見掛け密度0.6g/ml)を用いた。また、実効体積の算出に用いるタルクの見掛け密度は、重量式フィーダーからスクリュー式サイドフィーダーに投入される状態を模擬的に再現すべく、2.3mの高さから落下させて、メスシリンダーに受けて単位体積当たりの重量を測定することで求められ、0.51g/mlであった。
 (実施例1)
 二軸混練押出機として、シリンダー径47mmの同方向かみ合いタイプの二軸混練押出機を用いた。該二軸混練押出機は、シリンダーと、上記シリンダー内に収容される二本のスクリュー軸を有し、シリンダーは、上流から、第一搬送ゾーン、第一混練ゾーン、第二搬送ゾーン、第二混練ゾーン、第三搬送ゾーン、第三混練ゾーン、及び第四搬送ゾーンに分けられる。シリンダーには、第一搬送ゾーン内の最上流部に供給口を設け、第三搬送ゾーン内の最上流部にオープンベントを設け、第四搬送ゾーン内の最上流部に真空ベントを設けた。シリンダーの第二搬送ゾーンには二軸のスクリュー式サイドフィーダーを接続し、スクリュー式サイドフィーダーには重量式フィーダーを接続した。
 第一混練ゾーンに対応する部分のスクリューには、第一混練ゾーンの樹脂圧力が2MPaから8MPaになるように、上流側から、順(順送り方向)ディスク、直交(ニュートラル)ディスク、逆(逆送り方向)ディスクを配置した。上記順ディスクと直交ディスクの厚みはそれぞれ0.2D(Dはスクリュー径)のものを、逆ディスクの厚みは0.1Dのものを用いた。
 第二混練ゾーンに対応する部分のスクリューには、第二混練ゾーンの樹脂圧力が0.2~3MPaになるように、上流から順ディスクを長く配置し、最後に逆ディスクを配置した。上記順ディスクおよび逆ディスクの厚みはそれぞれ0.5Dのものを用いた。これらのディスクの空隙距離は、フライトの空隙距離の2倍のものを用いた。第二混練ゾーンの逆ディスクの下流に、オープンベントを設けた。第三混練ゾーンに対応する部分のスクリューには、第三混練ゾーンの樹脂圧力が1~4MPaになるように、順ディスク、直交ディスク、逆ディスクを用い配置し、いずれのディスクの厚みも0.1Dのものを用いた。
 ポリプロピレンペレット60重量部とゴムペレット20重量部と添加剤とを二軸混練押出機の第一搬送ゾーン内の最上流部の供給口から二軸混練押出機内へ供給した。タルク20重量部は重量式フィーダーへ供給し、重量式フィーダーから二軸のスクリュー式サイドフィーダーへ供給し、二軸のスクリュー式サイドフィーダーから二軸混練押出機内へ供給した。二軸混練押出機内へ供給されるポリプロピレンペレットとゴムペレットとタルクの合計のフィード量は600kg/時間であった。重量式フィーダーから二軸のスクリュー式サイドフィーダーへ供給されるタルクの実効体積は247L/時間であり、スクリュー式サイドフィーダーの搬送能力は601L/時間であった。スクリュー式サイドフィーダーの搬送能力は、重量式フィーダーからスクリュー式サイドフィーダーへ供給されるタルクの単位時間あたりの体積の約2.4倍であった。上記原料を二軸混練押出機のスクリュー回転数1050rpmで溶融混練し、上記真空ベントから減圧吸引を行うことにより、原料が順調に二軸混練押出機内へ供給され安定的にポリプロピレン、ゴム、添加剤およびタルクを含有する樹脂組成物ペレットの生産が可能であった。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで6.4MPa、第二混練ゾーンで0.4MPa、第三混練ゾーンで2.0MPaであった。得られた樹脂組成物ペレットを用いてTダイフィルム成形機により成形されたフィルム中のタルクの分散状態は良好であった。
 (実施例2)
 ポリプロピレンペレット40重量部とゴムペレット20重量部と添加剤とを二軸混練押出機の第一搬送ゾーン内の最上流部の供給口から二軸混練押出機内へ供給し、タルク20重量部とポリプロピレンペレット20重量部とが重量式フィーダーへ供給され、二軸混練押出機内へ供給されるポリプロピレンペレットとゴムペレットとタルクの合計のフィード量を800kg/時間とし、スクリュー式サイドフィーダーの搬送能力を801L/時間とし、二軸混練押出機のスクリュー回転数を1200rpmとする以外は、実施例1と同様に行った。原料が順調に二軸混練押出機内へ供給され安定的に樹脂組成物ペレットを生産することができた。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで5.8MPa、第二混練ゾーンで0.5MPa、第三混練ゾーンで2.4MPaであった。得られた樹脂組成物ペレットを用いて成形されたフィルム中のタルクの分散状態は良好であった。
 (実施例3)
 二軸混練押出機内へ供給されるポリプロピレンペレットとゴムペレットとタルクの合計のフィード量を900kg/時間とし、二軸混練押出機のスクリュー回転数を1350rpmとする以外は、実施例2と同様に行った。原料が順調に二軸混練押出機内へ供給され安定的に樹脂組成物ペレットを生産することができた。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで5.5MPa、第二混練ゾーンで0.4MPa、第三混練ゾーンで2.4MPaであった。得られた樹脂組成物ペレットを用いて成形されたフィルム中のタルクの分散状態は良好であった。
 (比較例1)
 スクリュー式サイドフィーダーの搬送能力を400L/時間とする以外は、実施例1と同様に行った。スクリュー式サイドフィーダーの搬送能力は、重量式フィーダーからスクリュー式サイドフィーダーへ供給されるタルクの単位時間あたりの体積の約1.6倍であった。タルクが重量式フィーダーとスクリュー式サイドフィーダーの間に堆積し、順調に二軸混練押出機内へ供給されず、生産が継続できなかった。
 (比較例2)
 第二混練ゾーンに対応する部分のスクリューには、第二混練ゾーンの樹脂圧力が3MPa以上になるように、上流から順ディスクを長く配置し、最後に逆ディスクを長く配置する以外は、実施例と同様に行った。上記順ディスクは0.5Dのものを、上記逆ディスクの厚みは0.5Dのものと0.1Dのものを組み合わせて用いた。上記順ディスクの空隙距離はフライトの空隙距離の2倍のものを用い、また上記逆ディスクの空隙距離はフライトの空隙距離と同等のものを用いた。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで5.7MPa、第二混練ゾーンで3.5MPa、第三混練ゾーンで5.7MPaであった。生産開始から10分後には、原料が順調に二軸混練押出機内へ供給されず、生産が継続できなかった。
(比較例3)
 実施例1と同じ二軸混練押出機を用い、二軸混練押出機のシリンダーには、実施例1の第二混練ゾーンよりも少し下流側に、比較例1の第一混練ゾーンを設け、実施例1の第三混練ゾーンと同じ位置に、比較例1の第二混練ゾーンを設け、比較例1の第一混練ゾーンと第二混練ゾーンの間にはオープンベントを設け、比較例1の第二混練ゾーンより下流に真空ベントを設けた。比較例1の第一混練ゾーンより上流のゾーンは、比較例1の第一搬送ゾーンとした。
 比較例1の第一混練ゾーンに対応する部分のスクリューには、第一混練ゾーンの樹脂圧力が0.2~3MPaになるように、上流から順ディスクを長く配置し、最後に逆ディスクを配置した。比較例1の第二混練ゾーンに対応する部分のスクリューには、第二混練ゾーンの樹脂圧力が1~4MPaになるように、順ディスク、直交ディスク、逆ディスクを用い配置した。
 ポリプロピレンペレット60重量部とゴムペレット20重量部と添加剤とタルク20重量部とを一括して二軸混練押出機の第一搬送ゾーン内の最上流部の供給口から二軸混練押出機内へ供給し、原料が順調に二軸混練押出機内へ供給され安定的にポリプロピレン、ゴム、添加剤およびタルクを含有する樹脂組成物ペレットを生産可能な条件を調整すると、ポリプロピレンペレットとゴムペレットとタルクの合計のフィード量450kg/時間、二軸混練押出機のスクリュー回転数1320rpmの条件となった。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで0.9MPa、第二混練ゾーンで1.8MPaであった。得られた樹脂組成物ペレットを用いて成形されたフィルム中のタルクの分散状態は良好であった。 二軸混練押出機のスクリュー回転数を1000rpmまで下げると、原料が順調に二軸混練押出機内へ供給されず、生産が継続できなかった。
 (比較例4)
 比較例1と同様のスクリュー構成、シリンダー構成とし、比較例1の二軸混練押出機のシリンダーの第一搬送ゾーンに二軸のスクリュー式サイドフィーダーを接続し、スクリュー式サイドフィーダーに重量式フィーダーを接続した。二軸混練押出機の最上流部の供給口からポリプロピレンペレット60重量部とゴムペレット20重量部と添加剤とを供給した。タルク20重量部は重量式フィーダーへ供給し、二軸のスクリュー式サイドフィーダーから二軸混練押出機内へ供給した。スクリュー式サイドフィーダーの輸送能力は801L/時間であった。原料が順調に二軸混練押出機内へ供給され安定的にポリプロピレン、ゴム、添加剤およびタルクを含有する樹脂組成物ペレットを生産可能な条件を調整すると、ポリプロピレンペレットとゴムペレットとタルクの合計のフィード量500kg/時間、二軸混練押出機のスクリュー回転数1320rpmの条件となった。生産時における各混練ゾーンの樹脂圧力は、第一混練ゾーンで0.8MPa、第二混練ゾーンで1.7MPaであった。得られた樹脂組成物ペレットを用いて成形されたフィルム中のタルクの分散状態は良好であった。二軸混練押出機のスクリュー回転数を1000rpmまで下げると、原料が順調に二軸混練押出機内へ供給されず、生産が継続できなかった。また、スクリュー回転数を1320rpmのまま、ポリプロピレンペレットとゴムペレットとタルクの合計のフィード量を550kg/時間に上げても、原料が順調に二軸混練押出機内へ供給されず、生産が継続できなかった。
 二軸混練押出機を用いて溶融混練して樹脂組成物を製造する場合に、樹脂組成物に過度のエネルギーを負荷しない適当なスクリュー回転数で安定的に溶融混練できる方が好ましく、より多くの原料をより小さい回転数で安定的に溶融混練できる方が生産性が高いといえる。
 比較例3および比較例4では、実施例1よりも原料の合計のフィード量を少なくし、実施例1よりも大きいスクリュー回転数としないと、樹脂組成物を製造できないため、生産性が低く、生産安定性も悪い。また、比較例3および比較例4では、二軸混練押出機のスクリュー回転数を実施例1のスクリュー回転数と同程度とすると、樹脂組成物が製造できない。

Claims (5)

  1.  転移温度200℃未満の熱可塑性樹脂と粉体とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造方法であって、
    前記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる一種以上の粉体であり、
    二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備え、
    前記転移温度200℃未満の熱可塑性樹脂は前記供給口から前記二軸混練押出機へ供給され、
    前記粉体は前記重量式フィーダーから前記スクリュー式サイドフィーダーを経て前記二軸混練押出機へ供給され、
    前記スクリュー式サイドフィーダーの搬送能力は、前記重量式フィーダーから前記スクリュー式サイドフィーダーへ供給される前記粉体の単位時間あたりの実効体積の2倍以上であり、
    前記第一混練ゾーンの樹脂圧力が1MPa以上であり、前記第二混練ゾーンの樹脂圧力が3MPa未満である条件で溶融混練し、
    気体を前記ベント口から除去する樹脂組成物の製造方法。
  2.  第一混練ゾーンの樹脂圧力が2MPa以上である請求項1に記載の樹脂組成物の製造方法。
  3.  二軸混練押出機が、上記ベント口のさらに下流に、第三混練ゾーンと第三混練ゾーンより下流の減圧ベント口とを有する請求項1又は2のいずれか一項に記載の樹脂組成物の製造方法。
  4.  前記粉体と、前記粉体100重量部に対し25重量部以上の樹脂ペレットとが重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機へ供給される請求項1~3のいずれか一項に記載の樹脂組成物の製造方法。
  5.  前記粉体が、タルク、カオリナイト、およびクレーからなる群より選ばれる一種以上の粉体であり、前記転移温度200℃未満の熱可塑性樹脂が、ポリオレフィン系樹脂である請求項1~4のいずれか一項に記載の樹脂組成物の製造方法。
PCT/JP2016/070680 2015-07-16 2016-07-13 樹脂組成物の製造方法 WO2017010511A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/743,846 US10676603B2 (en) 2015-07-16 2016-07-13 Method for producing resin composition
CN201680041006.0A CN107835732B (zh) 2015-07-16 2016-07-13 树脂组合物的制造方法
EP16824491.1A EP3323579B1 (en) 2015-07-16 2016-07-13 Method for producing resin composition
ES16824491T ES2895035T3 (es) 2015-07-16 2016-07-13 Método para producir una composición de resina
JP2017528705A JP6506396B2 (ja) 2015-07-16 2016-07-13 樹脂組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141894 2015-07-16
JP2015-141894 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010511A1 true WO2017010511A1 (ja) 2017-01-19

Family

ID=57757172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070680 WO2017010511A1 (ja) 2015-07-16 2016-07-13 樹脂組成物の製造方法

Country Status (6)

Country Link
US (1) US10676603B2 (ja)
EP (1) EP3323579B1 (ja)
JP (1) JP6506396B2 (ja)
CN (1) CN107835732B (ja)
ES (1) ES2895035T3 (ja)
WO (1) WO2017010511A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170675A1 (ja) * 2016-03-31 2017-10-05 住友化学株式会社 樹脂組成物の製造方法
JP2020147007A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 樹脂組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303809A (zh) * 2023-10-10 2023-12-29 北京榆构有限公司 一种抗裂抗渗混凝土及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185647A (ja) * 1990-11-21 1992-07-02 Daikin Ind Ltd フィラー入りポリテトラフルオロエチレン造粒粉末の製造方法
JPH05237914A (ja) * 1992-02-28 1993-09-17 Mitsubishi Heavy Ind Ltd 同方向回転二軸押出機
JPH10193343A (ja) * 1997-01-08 1998-07-28 Asahi Chem Ind Co Ltd 高反応・高押出量の押出機及びそれを用いた押出方法
JP2000246732A (ja) * 1999-02-26 2000-09-12 Nitto Denko Corp ポリオレフィン溶融混練物の製造方法及びポリオレフィンシート
JP2002220476A (ja) * 2001-01-25 2002-08-09 Mitsubishi Chemicals Corp ポリプロピレン系樹脂組成物の製造方法
JP2004027125A (ja) * 2002-06-27 2004-01-29 Sharp Corp 成形材料および成形体並びにその製造方法、および廃トナーの再利用方法
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
JP2009045804A (ja) * 2007-08-20 2009-03-05 Japan Steel Works Ltd:The ポリマーとナノフィラーの混練方法
JP2009280710A (ja) * 2008-05-22 2009-12-03 Daiwa Can Co Ltd 帯電防止性樹脂組成物およびそれからなるフィルム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829644A (ja) 1981-08-13 1983-02-21 Toshiba Mach Co Ltd 二軸押出機による空気抜き押出方法
JPH021650A (ja) 1988-03-31 1990-01-05 Toshiba Corp データ伝送方式
JP3472391B2 (ja) 1995-07-19 2003-12-02 東芝機械株式会社 2軸押出機及びその2軸押出機を利用した押出方法
JP3701391B2 (ja) 1996-07-12 2005-09-28 旭化成ケミカルズ株式会社 粉体用押出機及びそれを用いた押出方法
JPH10180841A (ja) 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd 粉体のサイドフィード用押出機及びそれを用いた押出方法
JP3154953B2 (ja) * 1997-03-05 2001-04-09 株式会社日本製鋼所 木粉入りコンパウンドペレットの製造方法
JP2002187125A (ja) 2000-12-19 2002-07-02 Japan Polychem Corp ポリプロピレン系樹脂組成物の製造方法、ポリプロピレン系樹脂組成物及び成形体
JP3712185B2 (ja) 2001-01-17 2005-11-02 株式会社日本製鋼所 微粉原料供給装置
EP1854842B1 (en) 2005-02-28 2012-01-11 Toray Industries, Inc. Styrene resin composition and process for producing the same
KR101256694B1 (ko) 2005-05-18 2013-04-19 폴리플라스틱스 가부시키가이샤 섬유상 충전제 고농도 배합 수지 조성물의 제조방법 및수지 조성물 펠렛
JP5168812B2 (ja) * 2006-04-13 2013-03-27 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および樹脂成形品
JP5393411B2 (ja) * 2009-11-13 2014-01-22 三菱エンジニアリングプラスチックス株式会社 ポリフェニレンエーテル系樹脂組成物成形体の製造方法
JP5534964B2 (ja) 2010-06-11 2014-07-02 旭化成ケミカルズ株式会社 ポリフェニレンエーテル樹脂組成物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185647A (ja) * 1990-11-21 1992-07-02 Daikin Ind Ltd フィラー入りポリテトラフルオロエチレン造粒粉末の製造方法
JPH05237914A (ja) * 1992-02-28 1993-09-17 Mitsubishi Heavy Ind Ltd 同方向回転二軸押出機
JPH10193343A (ja) * 1997-01-08 1998-07-28 Asahi Chem Ind Co Ltd 高反応・高押出量の押出機及びそれを用いた押出方法
JP2000246732A (ja) * 1999-02-26 2000-09-12 Nitto Denko Corp ポリオレフィン溶融混練物の製造方法及びポリオレフィンシート
JP2002220476A (ja) * 2001-01-25 2002-08-09 Mitsubishi Chemicals Corp ポリプロピレン系樹脂組成物の製造方法
JP2004027125A (ja) * 2002-06-27 2004-01-29 Sharp Corp 成形材料および成形体並びにその製造方法、および廃トナーの再利用方法
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
JP2009045804A (ja) * 2007-08-20 2009-03-05 Japan Steel Works Ltd:The ポリマーとナノフィラーの混練方法
JP2009280710A (ja) * 2008-05-22 2009-12-03 Daiwa Can Co Ltd 帯電防止性樹脂組成物およびそれからなるフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323579A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170675A1 (ja) * 2016-03-31 2017-10-05 住友化学株式会社 樹脂組成物の製造方法
JP2020147007A (ja) * 2019-03-15 2020-09-17 旭化成株式会社 樹脂組成物の製造方法
JP7170566B2 (ja) 2019-03-15 2022-11-14 旭化成株式会社 樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP3323579A1 (en) 2018-05-23
JP6506396B2 (ja) 2019-04-24
US10676603B2 (en) 2020-06-09
EP3323579B1 (en) 2021-10-06
CN107835732A (zh) 2018-03-23
CN107835732B (zh) 2019-10-18
JPWO2017010511A1 (ja) 2018-03-15
US20180201769A1 (en) 2018-07-19
EP3323579A4 (en) 2019-03-27
ES2895035T3 (es) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2017179584A1 (ja) 樹脂組成物の製造方法および二軸混練押出機
JP4768018B2 (ja) 逆回転2軸押出機
JP4190941B2 (ja) 製造方法及びその樹脂組成物
JP5369614B2 (ja) 粉体原料用押出機および熱可塑性樹脂組成物の製造方法
WO2017010511A1 (ja) 樹脂組成物の製造方法
JP3701391B2 (ja) 粉体用押出機及びそれを用いた押出方法
JP6126351B2 (ja) 原料供給装置及びそれを用いた樹脂組成物の製造装置、並びに樹脂組成物の製造方法
JP2008238626A (ja) 熱可塑性樹脂組成物の製造方法
JP2015030132A (ja) サイドフィーダー、それを有する押出機、および押出機を用いた押出方法
JP2010089500A5 (ja)
JPH10180840A (ja) 高生産押出機及びそれを用いた押出方法
JPH09239726A (ja) タンデム型混練装置及びそれを用いた熱可塑性樹脂及び/又はゴムの混練方法
CN104105580A (zh) 树脂混炼物的制造方法
KR101456203B1 (ko) 미세 지분 함유 수지조성물의 제조방법
JP7215942B2 (ja) サイドフィーダー、押出機、および熱可塑性樹脂組成物の製造方法
JP2004136641A (ja) 新規な樹脂組成物の製造方法及びその樹脂組成物
JP2018183933A (ja) ポリカーボネート樹脂組成物の製造方法
JP5591868B2 (ja) 微細紙粉含有樹脂組成物の製造方法
JP6871914B2 (ja) 樹脂組成物の製造方法
JP4219211B2 (ja) 製造方法及びその難燃樹脂組成物
WO1996027631A1 (en) Process for producing polyolefin solution
JP4330490B2 (ja) 二軸連続式混練装置を用いた圧縮タルクを含む熱可塑性樹脂組成物の製造方法
JP2004136643A5 (ja)
JP2018114618A (ja) 押出機への液状添加剤の供給方法
TW201249627A (en) Method for manufacturing polysulfone pellets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528705

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743846

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824491

Country of ref document: EP