WO2017010310A1 - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
WO2017010310A1
WO2017010310A1 PCT/JP2016/069582 JP2016069582W WO2017010310A1 WO 2017010310 A1 WO2017010310 A1 WO 2017010310A1 JP 2016069582 W JP2016069582 W JP 2016069582W WO 2017010310 A1 WO2017010310 A1 WO 2017010310A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
supply means
energy supply
engine control
ignition energy
Prior art date
Application number
PCT/JP2016/069582
Other languages
English (en)
French (fr)
Inventor
大司 清宮
赤城 好彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP16824290.7A priority Critical patent/EP3324036A4/en
Priority to CN201680038452.6A priority patent/CN107709756B/zh
Priority to US15/741,526 priority patent/US10309366B2/en
Priority to JP2017528382A priority patent/JP6476295B2/ja
Publication of WO2017010310A1 publication Critical patent/WO2017010310A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • F02P3/0442Opening or closing the primary coil circuit with electronic switching means with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device that performs ignition control in which spark discharge from an ignition plug of an internal combustion engine is superimposed.
  • a predetermined voltage For example, a multi-cylinder internal combustion engine requires a booster circuit that can cover the number of cylinders by applying a voltage of 500 V or more to the discharge current of the ignition coil.
  • a predetermined voltage For example, a multi-cylinder internal combustion engine requires a booster circuit that can cover the number of cylinders by applying a voltage of 500 V or more to the discharge current of the ignition coil.
  • the number of wires increases, resulting in a shortage of control unit output terminals, an increase in the output circuit of the control unit, and an increase in signal lines. There is a problem that leads to a cost increase of that.
  • Patent Document 1 the ignition energy is supplied to the ignition plug by two systems of a booster circuit provided separately from the ignition coil.
  • an ignition system having two systems of ignition energy supply means regardless of the ignition coil or the booster circuit.
  • similar problems may be caused.
  • the present invention has been made to solve such problems, and its technical problem is that even in a multi-cylinder internal combustion engine having two systems of ignition energy supply means, the output terminal of the control unit is insufficient and the cost is increased. It is in providing the engine control apparatus which can suppress this.
  • an engine control apparatus of the present invention is an engine control apparatus that controls a multi-cylinder engine provided with two systems of ignition energy supply means for each cylinder. By transmitting a signal via a common signal line to a plurality of ignition energy supply means of one of the two systems of ignition energy supply means, a plurality of ignition energy supply means of the one system is It is characterized by controlling.
  • the ignition device for an internal combustion engine of the present invention in an ignition system having two systems of ignition energy supply means for each cylinder, one signal is provided for the ignition system having only one system of ignition energy supply means. It is possible to provide an engine control apparatus that can control two systems of ignition energy supply means simply by adding a line, and that can suppress a shortage of output terminals and an increase in cost even in a multi-cylinder internal combustion engine.
  • FIG. 1 is a system configuration diagram of engine control according to an embodiment of the present invention.
  • FIG. It is a block diagram of the control unit by one Embodiment of this invention. It is a system configuration figure of engine control by a first embodiment of the present invention. It is explanatory drawing of the ignition control apparatus by 1st embodiment. It is a time chart of the ignition control apparatus by 1st embodiment. It is a flowchart of the timing signal setting by 1st embodiment.
  • FIG. It is a figure which shows the setting of electricity supply time. It is a figure which shows the setting of phase difference time. It is a flowchart of abnormality detection by a first embodiment. It is a time chart at the time of normal of the ignition control device by a first embodiment.
  • FIG. 1 shows a so-called port injection type four-cylinder internal combustion engine
  • an in-cylinder direct injection type engine may be used and can be applied regardless of the number of cylinders.
  • FIG. 1 is a configuration diagram of an internal combustion engine control system according to a first configuration.
  • the air sucked into the internal combustion engine 65 passes through the air cleaner 60 and is guided to the hot wire type air flow sensor 2.
  • a hot wire air flow sensor is used as the hot wire air flow sensor 2.
  • a signal corresponding to the intake air amount is output from the hot wire type air flow sensor 2 and an intake air temperature signal measured by the intake air temperature sensor 2 using a thermistor is output.
  • the intake air enters the collector 62 through the connected duct 61 and the throttle valve 40 for controlling the air flow rate.
  • the throttle valve is moved by a throttle drive motor 42 driven by a control unit 71.
  • the air that has entered the collector 62 is distributed to each intake pipe directly connected to the engine, and is taken into the cylinder.
  • the valve drive system has a variable valve timing mechanism that performs feedback control toward the target angle. Further, a pulse is output from the crank angle sensor 7 attached to the cylinder block at every predetermined crank angle, and these outputs
  • Fuel is sucked and pressurized from the fuel tank 21 by the fuel pump 20, adjusted to a constant pressure by the pressure regulator 22, and injected into the intake pipe from an injector 23 provided in the intake pipe.
  • a throttle sensor 1 for detecting the opening of the throttle valve is attached to the throttle valve 40. This sensor signal is input to the control unit 71, and feedback control of the opening of the throttle valve 40, detection of the fully closed position, Detect acceleration etc.
  • the target opening for feedback is obtained from the accelerator depression amount of the driver obtained by the accelerator opening sensor 14 and the idle speed control, that is, the ISC control.
  • a water temperature sensor 3 for detecting the cooling water temperature is attached to the internal combustion engine 65, and this sensor signal is input to the control unit 71 to detect the warm-up state of the internal combustion engine 65 and increase the fuel injection amount. Further, the ignition timing is corrected, the radiator fan 75 is turned on / off, and the target rotational speed at idling is set.
  • an air conditioner switch 18 for monitoring the condition of the air conditioner clutch and a neutral switch 17 built in the transmission for monitoring the condition of the drive system are attached in order to calculate the target rotational speed at idle and the load correction amount. Yes.
  • the air-fuel ratio sensor 8 is mounted on the exhaust pipe of the engine and outputs a signal corresponding to the oxygen concentration of the exhaust gas. This signal is input to the control unit 71, and the fuel injection pulse width is adjusted so that the target air-fuel ratio obtained in accordance with the driving situation is obtained.
  • the ignition coil 30 is provided with two coils, a main coil and a sub-coil, and each is connected to the control unit 71. An ignition signal and a timing signal are input in accordance with the energization time and ignition timing of each coil calculated by the control unit 71, and the discharge by the main coil and the discharge by the subcoil are superimposed and output. Is implemented.
  • the control unit 71 includes a CPU 78 and a power supply IC 79.
  • the air flow sensor and the built-in intake air temperature sensor 2, the crank angle sensor 7, the throttle sensor 1, the water temperature sensor 3, the oil temperature sensor 25, the accelerator A signal from the opening sensor 14 is input.
  • An output signal from the control unit 71 is output to the injector 23, the fuel pump 20, the ignition coil (main) 30, the timing signal 110, and the throttle drive motor 42. Note that the output of the timing signal 110 can be monitored by inputting the output signal.
  • FIG. 3 shows the configuration of the engine control apparatus according to this embodiment, taking a four-cylinder internal combustion engine as an example.
  • main ignition signals 101a to 101d for the cylinders are output from the main ignition signal generator 1000 mounted on the control unit 71, and coils 30a to 30a are provided with signal lines for transmitting the respective signals.
  • the coil 30a includes two coils, an ignition coil (main) 30a-1 and an ignition coil (sub) 30a-2.
  • the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2 are Are connected in series by the overlap discharge line 203a.
  • a signal line for transmitting the ignition signal 101a output from the control unit 71 is connected to the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2.
  • the timing signal 110 is output from the timing signal generation unit 1100 mounted on the control unit 71 via one common signal line.
  • One common signal line for transmitting the timing signal 110 is connected to the control unit 71, and the other is branched in the middle.
  • Each of the branched signal lines is on the control unit side with respect to the ignition coil (main).
  • Each of the ignition coils (sub) 30a-2 to 30d-2 to be arranged is connected.
  • the timing signal transmitted from the control unit 71 is input to the ignition coils (sub) 30a-2 to 30d-2, and the outputs of the ignition coils (sub) 30a-2 to 30d-2 are respectively ignited.
  • the arrangement is such that the coils (main) 30a-1 to 30d-1 are input.
  • the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2 are described as being integrated with the coil 30a, but the ignition coil (main) 30a is used without using the coil 30a.
  • -1 and the ignition coil (sub) 30a-2 may be configured separately and independently.
  • the control unit includes a plurality of ignition energy supply means of one system among the two systems of ignition energy supply means indicated by the ignition coil (main) and the ignition coil (sub), that is, a plurality of ignition coils ( A timing signal is transmitted to the sub) by a common signal line (single signal line), thereby controlling a plurality of ignition energy supply means (a plurality of ignition coils (sub)) of the one system.
  • control unit 71 is provided with a timing signal monitoring unit 1200 that monitors the operation of the timing signal 110, and detects the abnormality of the ignition coil (sub) by monitoring the operation of the timing signal. Specifically, when an abnormality occurs in the ignition coil (sub), the timing signal 110 is pulled up or pulled down inside the ignition coil (sub) to fix the potential, so that the control unit 71 detects the timing signal. Even if 110 is instructed, the timing signal monitor value detected by the timing signal monitoring unit 1200 is fixed. Therefore, the control unit 71 can determine control / abnormality from the difference between the instruction of the timing signal 110 and the monitor value.
  • the control unit includes a plurality of ignition energy supply means of one system among the two systems of ignition energy supply means indicated by the ignition coil (main) and the ignition coil (sub), that is, a plurality of ignition coils ( By receiving the timing signal from the sub) via the common signal line (single signal line), the abnormality of the plurality of ignition energy supply means (the plurality of ignition coils (sub)) of the one system is detected.
  • FIG. 4 is a detailed connection diagram of the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2.
  • the ignition coil (main) 30a-1 includes an igniter, a primary coil, and a secondary coil.
  • the main ignition signal 101a output from the control unit 71 is input to the igniter, and ignition by the ignition plug 33 is performed by controlling the current of the primary coil by the main ignition signal 101a.
  • the ignition coil (sub) 30a-2 includes an igniter, a primary coil, a secondary coil, and a control circuit.
  • a main ignition signal 101a and a timing signal 110 which are ignition signals of the other ignition energy supply means belonging to the same cylinder as the ignition coil (sub) 30a-2, are input to the control circuit.
  • the control circuit uses the ignition signal of the other ignition energy supply means to determine that the cylinder is an ignition cylinder, and performs sub ignition for the ignition coil (sub) 30a-2 according to the energization time indicated by the timing signal. Generate a signal.
  • the current generated in the secondary coil is controlled by controlling the current in the primary coil by the sub ignition signal output from the control circuit.
  • the upstream side of the secondary coil of the ignition coil (sub) 30a-2 is connected to the downstream side of the secondary coil of the ignition coil (main) 30a-1, and the secondary coil and the ignition coil ( The secondary coil of (sub) 30a-2 is connected to the spark plug 33 in series.
  • FIG. 5 is a timing chart showing waveforms relating to input / output of the coil 30 configured in FIG.
  • the switching operation of the transistor in the igniter 301a-1 is performed at the timing when the rising of the rectangular wave of the main ignition signal 101a is turned ON, and the primary side of the ignition coil (main) 30a-1 has a range of 5 to 10A.
  • the primary current flows, magnetic energy is stored in the ignition coil (main) 30a-1, and the switching of the transistors in the igniter 301a-1 at the timing when the falling of the rectangular wave of the main ignition signal 101 turns off (so-called ignition timing)
  • ignition timing a high secondary voltage is generated on the secondary side of the ignition coil (main) 30 a-1, whereby the spark plug 33 starts discharging.
  • the secondary voltage for generating the discharge is normally a voltage of about 10 kV to 15 kV.
  • the secondary current due to the discharge is, for example, within a range of 0.1 A, and then the discharge due to the energy discharge lasts for several ms.
  • the sub ignition signal is turned on in the control circuit and the sub ignition signal is turned on.
  • the transistor switching operation in the igniter 301a-2 is performed, and a primary current in the range of 5 to 10 A is supplied to the primary side of the ignition coil (sub) 30a-2.
  • the sub ignition signal is turned off at the timing when the timing signal 110 is turned off, the transistor is switched in the igniter 301a-2, and the ignition is performed when the primary current is cut off.
  • a high secondary voltage (not shown) is generated on the secondary side of the coil (sub) 30 a-2, and thereby a discharge is superimposed on the spark plug 33.
  • the timing at which the falling edge of the timing signal 110 is turned OFF is the same as when the main ignition signal 101a is turned OFF or delayed by the phase difference ⁇ IGN [ms], compared with the case where ignition is performed only by the ignition coil (main) 30a-1.
  • the discharge time can be extended.
  • the timing at which the ignition control signal 101a and the timing signal 110 described above shift from ON to OFF is controlled at an appropriate timing in consideration of the state of the air-fuel mixture in the cylinder and the load state of the internal combustion engine. Otherwise, it affects ignitability and combustion speed, and may be accompanied by fluctuations in engine speed and vibration due to deterioration of combustion (deterioration of ignitability), which is an important matter to greatly affect engine performance. ing.
  • control circuit is provided with a monitoring function for the ignition coil (sub) 30a-2, so that an abnormality of the ignition coil (sub) 30a-2 can be detected.
  • control unit 71 detects the abnormality by electrically fixing the timing signal 110 to either LOW (0 V) or HIGH (5 V) in the control circuit and monitoring it with the control unit 71. can do.
  • control circuit for outputting the sub ignition signal is provided in the ignition coil (sub) 30a-2.
  • control circuit may be provided outside the ignition coil (sub) 30a-2. May be provided.
  • FIG. 6 is a flowchart showing an operation process of timing signal output by the calculation function (timing signal generation unit 1100, overlap operation region determination unit 112) of the control unit 71.
  • This timing signal output operation process is executed as an interrupt process by a predetermined time synchronized with a crank angle or a time timer converted to an angle, for example.
  • Step 1110 is a process for determining whether or not the ignition coil (sub) is abnormal. If an abnormality is detected, the process proceeds to step 1170, the timing signal is fixed to OFF, and the process ends. If no abnormality is detected, the process proceeds to step 1120.
  • Step 1120 is a process of searching for overlapping operation areas. It is searched from the current operation region whether it is within the preset overlap operation region, and in step 1130, a determination is made of overlap discharge and normal discharge (that is, ignition by the ignition coil (sub) is performed). If it is not an area, the process proceeds to step 1170, the timing signal is fixed to OFF, and the process ends. If it is an overlapping area, the process proceeds to step 1140.
  • FIG. 7 shows the EGR rate when setting the EGR rate (100% ⁇ EGR gas flow rate / fresh air flow rate) according to the engine speed and engine load, particularly when introducing EGR gas for the purpose of improving fuel efficiency. This shows the relationship with the overlapped discharge region.
  • the overlap discharge execution region may be the same as the “EGR large region”, but a region expanded in the rotation speed and load direction is set in advance from the “EGR large region”. This is because when the operating state shifts from “EGR small area” to “EGR large area” in a short time, the EGR rate set in “EGR large area” is introduced into the cylinder prior to the execution of overlap discharge. It is intended to avoid the deterioration of combustion and the deterioration of performance.
  • the execution region of the overlap discharge is set in advance in the microcomputer in the control unit 71, and it is determined from the current operation state whether or not it is the overlap discharge operation region.
  • Step 1140 in FIG. 6 is an energization time setting process for the ignition coil (sub).
  • the energizing time of the ignition coil (sub) may be set in advance in the microcomputer in the control unit 71, and for example, as shown in FIG. 8, the energizing time may be set longer as the EGR rate increases.
  • Step 1150 in FIG. 6 is an ignition coil (sub) phase difference setting process.
  • the phase difference [ms] from the ignition timing of the ignition coil (main) is set.
  • the phase difference of the ignition coil (sub) may be set in advance in the microcomputer in the control unit 71, and may be set to increase the phase difference as the EGR rate increases, for example, as shown in FIG.
  • a timing signal is output in step 1160.
  • FIG. 10 is a flowchart of abnormality detection in step 1110 of FIG. 6 and is periodically executed by the control unit 71.
  • Step 1210 in FIG. 10 is a process for determining whether or not the timing signal output is ON. If the timing signal output is an ON instruction according to FIG. 6, the process proceeds to step 1220. If the timing signal is OFF, the process is terminated.
  • Step 1220 is a process for acquiring the monitor value of the timing signal. As shown in FIG. 2, the timing signal 110 is simultaneously input to the CPU 78 and acquired as a timing signal monitor value.
  • Step 1230 is a process of determining whether or not the timing signal monitor value acquired in Step 1220 is ON.
  • the timing signal monitor value is ON, that is, when the timing signal output is an ON instruction, and the monitor value at that time is also ON, it is determined that it is normal, and the process ends.
  • the timing signal monitor value is OFF, that is, when the timing signal output is OFF even though the timing signal output is an ON instruction, the process proceeds to step 1240 to determine that the subcoil is abnormal.
  • the main ignition signal 1 is turned ON and energization of the ignition coil (main) is started.
  • the timing signal is turned on between time t1 and time t2
  • the sub ignition signal 1 is turned on, and energization of the ignition coil (main) is started.
  • the timing signal continues to be turned on until the energization time preset in 1140 of FIG. 6 elapses.
  • the main ignition signal 1 is turned off in accordance with the ignition timing set in advance at time t2, discharge of the ignition coil (main) starts and the secondary current rises.
  • step 1150 of FIG. 6 When the phase difference time set in step 1150 of FIG. 6 elapses from time t2, the timing signal is turned off at time t3, and discharge of the ignition coil (sub) starts at the timing when sub ignition signal 1 is turned off. Since the discharge of the ignition coil (main) is superimposed on the discharge of the ignition coil (main), the secondary current rises again.
  • Ignition in each cylinder is repeatedly executed until time t5. If it is determined at time t5 that the region is outside the overlap region, the timing signal is fixed to OFF and the sub-ignition signals for all cylinders are turned OFF, so the secondary current is only the secondary current from the ignition coil (main). In FIG. 11, since the ignition coil (sub) is normal, the timing signal and the timing signal monitor operate in the same manner.
  • the main ignition signal 1 is turned ON and energization of the ignition coil (main) is started. Since the time t1 is an overlapping region, when the timing signal is turned ON between the time t1 and the time t2, the sub ignition signal 1 is turned ON and energization of the ignition coil (main) is started.
  • the main ignition signal 1 is turned off in accordance with the ignition timing set in advance at time t2, discharge of the ignition coil (main) starts and the secondary current rises.
  • the timing signal is turned off at time t3, and discharge of the ignition coil (sub) starts at the timing when sub ignition signal 1 is turned off.
  • the abnormality is detected by the control circuit provided in the ignition coil (sub) in FIG.
  • the timing signal is fixed to OFF.
  • the main ignition signal 2 is turned on, and the same operation as at times t1, t2, and t3 is executed.
  • the timing signal is fixed to OFF in the control circuit, the sub ignition signal 2 is turned on.
  • the timing signal monitor value is not turned ON.
  • one signal line is added to the ignition system having only one ignition energy supply means in the ignition system having two ignition energy supply means per cylinder.
  • the second embodiment differs from the first embodiment in that the main ignition signal input to the ignition coil (sub) 30a-2 is not the main ignition signal 101a belonging to the same cylinder, but the ignition coil.
  • the main ignition signal 101d belongs to a cylinder different from (sub) 30a-2.
  • FIG. 14 is a detailed connection diagram of the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2.
  • the ignition coil (main) 30a-1 includes an igniter, a primary coil, and a secondary coil.
  • the main ignition signal 101a output from the control unit 71 is input to the igniter, and ignition by the ignition plug 33 is performed by controlling the current of the primary coil by the main ignition signal 101a.
  • the ignition coil (sub) 30a-2 includes an igniter, a primary coil, a secondary coil, and a control circuit.
  • the control circuit is supplied with a main ignition signal 101d and a timing signal 110, which are ignition signals from the other ignition energy supply means belonging to a different cylinder from the ignition coil (sub) 30a-2.
  • the control circuit uses the ignition signal of the other ignition energy supply means to determine that the cylinder is an ignition cylinder, and performs sub ignition for the ignition coil (sub) 30a-2 according to the energization time indicated by the timing signal. Generate a signal.
  • the current generated in the secondary coil is controlled by controlling the current in the primary coil by the sub ignition signal output from the control circuit.
  • the upstream side of the secondary coil of the ignition coil (sub) 30a-2 is connected to the downstream side of the secondary coil of the ignition coil (main) 30a-1, and the secondary coil and the ignition coil ( The secondary coil of (sub) 30a-2 is connected to the spark plug 33 in series.
  • the main ignition signal 101d which is the ignition signal of the other ignition energy supply means belonging to a different cylinder from the ignition coil (sub) 30a-2 is the main ignition signal belonging to the cylinder ignited immediately before the main ignition signal 101a. It is desirable to use For example, in the case of a four-cylinder engine in which the ignition order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder, the ignition coil that belongs to the first cylinder is the second cylinder before the first cylinder.
  • the main ignition signal input to the (sub) control circuit is preferably the main ignition signal of the second cylinder.
  • FIG. 15 is a timing chart showing waveforms relating to input / output of the coil 30 configured in FIG.
  • This embodiment is different from the timing chart of FIG. 5 in that the timing at which the timing signal 110 is turned on is before the main ignition signal 101a. More specifically, the ignition cylinder is determined before the main ignition signal 101a by determining the ignition cylinder by the control circuit shown in FIG. 14 based on the main ignition signal 101d belonging to the cylinder previously ignited. Therefore, the timing signal 101 is turned on before the main ignition signal 101a. With such a configuration, the ON time of the timing signal, that is, the energization time of the ignition coil (sub) can be made longer than the method described in FIGS.
  • the third embodiment differs from the first embodiment in that an ignition coil (main) 30a-1 and an ignition coil (sub) 30a-2 are connected in parallel as shown in FIG.
  • FIG. 17 is a detailed connection diagram of the ignition coil (main) 30a-1 and the ignition coil (sub) 30a-2.
  • the ignition coil (main) 30a-1 includes an igniter, a primary coil, and a secondary coil.
  • the main ignition signal 101a output from the control unit 71 is input to the igniter, and ignition by the ignition plug 33 is performed by controlling the current of the primary coil by the main ignition signal 101a.
  • the ignition coil (sub) 30a-2 includes an igniter, a primary coil, a secondary coil, and a control circuit.
  • a main ignition signal 101a and a timing signal 110 which are ignition signals of the other ignition energy supply means belonging to the same cylinder as the ignition coil (sub) 30a-2, are input to the control circuit.
  • the control circuit uses the ignition signal of the other ignition energy supply means to determine that the cylinder is an ignition cylinder, and performs sub ignition for the ignition coil (sub) 30a-2 according to the energization time indicated by the timing signal. Generate a signal.
  • the current generated in the secondary coil is controlled by controlling the current in the primary coil by the sub ignition signal output from the control circuit.
  • the upstream side of the secondary coil of the ignition coil (sub) 30a-2 is connected to the upstream side of the secondary coil of the ignition coil (main) 30a-1, and the secondary coil and the ignition coil ( The secondary coil of (sub) 30a-2 is connected in parallel to the spark plug 33.
  • the main ignition signal input to determine the ignition cylinder by the control circuit is the main ignition signal 101d which is the ignition signal of the other ignition energy supply means belonging to a different cylinder as shown in FIG. It is desirable to use the main ignition signal belonging to the cylinder ignited immediately before the main ignition signal 101a.
  • FIG. 18 is a timing chart showing waveforms related to input / output of the coil 30 configured in FIG.
  • the operation of the timing signal 110 and the operation of the primary current with respect to the timing signal 110 are the same as those in FIG. 5, but the discharge time of the secondary current is compared with the discharge time of FIG. 5. It will be short. This is because by connecting the ignition coil (main) and the ignition coil (sub) in parallel, the inductance of the discharge path is reduced compared to the series connection.
  • the fourth embodiment differs from the first embodiment in that there is a discharge unit 72 between the control unit 71 and the ignition coil 30, as shown in FIG.
  • the discharge unit 72 detects the timing signal output from the control unit 71 and detects the ignition timing from the ignition signal, the discharge unit 72 adds a predetermined voltage (for example, 500 V) or more to the discharge current of the ignition coil 30 from the booster circuit.
  • a predetermined voltage for example, 500 V
  • FIG. 20 shows the configuration of the engine control apparatus according to this embodiment as an example of a four-cylinder engine (internal combustion engine).
  • ignition signals 101a to 101d for the cylinders are output as the ignition signal 101.
  • the timing signal 110 is output from the timing signal generation unit 1100.
  • the discharge unit 72 is provided separately from the control unit 71, and the booster circuit 203 and the ignition coils 30a to 30d for the cylinders are connected to each other at a high voltage of about 500V 203a to 203d.
  • the high voltage connections (203a to 203d) are in a discharged state.
  • the current value necessary to maintain the current is supplied to the secondary coil side.
  • the air-fuel mixture is discharged by a spark plug (33a to 33d) and ignited, and so-called overlap discharge following normal discharge is performed.
  • Each part is connected by a wire harness.
  • the discharge unit 72 includes a control circuit 202 that controls the discharge time based on information from the timing signal 110, a cylinder determination circuit 201 that determines the ignition timing of each cylinder, and a booster circuit 203.
  • the ignition signals 101a to 101d and the high voltage lines 203a to 203d necessary for the overlap discharge in accordance with the timing of the timing signal 110 are supplied to the secondary coil side of the ignition coil corresponding to each cylinder, thereby generating the overlap discharge. Can be made.
  • FIG. 21 shows a case where the ignition signal control 101a for each cylinder, the overlap request signal 110, the discharge unit 72, and the ignition coil 30a are representatively described for one cylinder when the overlap discharge is executed in the present embodiment.
  • FIG. 22 shows the configuration of the primary current, secondary current, and voltage of the ignition coil when the air-fuel mixture compressed in the cylinder of the internal combustion engine is ignited.
  • the discharge time control circuit 202 determines the time for executing the overlap discharge, and the cylinder determination circuit 201 for determining the ignition timing of the target cylinder uses the ignition signal 101a to switch the booster circuit 203.
  • the target cylinder to be executed is determined, and the high voltage line 203a necessary for the overlap discharge is communicated with the secondary coil side of the ignition coil 30a corresponding to the target cylinder in accordance with the timing at which the primary current is cut off.
  • the secondary current and the secondary voltage shown in FIG. 22 are extended during the discharge time (tw), thereby improving the ignition performance of the air-fuel mixture in the cylinder by continuing to supply the discharge voltage during this time. Can do.
  • the overlap request signal 110 shown in FIG. 22 is controlled so as to output an ON signal at a timing earlier by (td) time than the fall of each ignition signal as indicated by a solid line.
  • the discharge time (tw) information is output ON / OFF in synchronization with the timing signal at each ignition timing.
  • the timing signal 110 is simply an ON signal as shown by a broken line, that is, the overlap discharge is executed.
  • the fifth embodiment is an embodiment when applied to a 6-cylinder internal combustion engine.
  • the difference from the first embodiment to the fourth embodiment is that there are two timing signal generation units, that is, a timing signal generation unit 1 and a timing signal generation unit 2, and there are two timing signals.
  • One of the timing signals is connected to the control unit, the other is branched in the middle, and each of the branched timing signals is connected to a plurality of ignition coils.
  • the present description can be applied to an ignition system having two systems of ignition energy supply means for each cylinder regardless of the present embodiment.
  • the present invention can also be applied to an ignition system having two ignition coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

2系統の点火エネルギ供給手段を有する多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供する。1気筒毎に2系統の点火エネルギ供給手段が設けられた多気筒エンジンを制御するエンジン制御装置において、前記2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段に対して共通の信号線を介して信号を送信することで、該一方の系統の複数の点火エネルギ供給手段を制御する。

Description

エンジン制御装置
 本発明は、内燃機関の点火プラグからの火花放電を重畳させる点火制御を行うエンジン制御装置に関する。
 近年、内燃機関の燃費を低減させることが重要な課題となっており、EGR(Exhaust Gas Recirculation)ガスの導入よってポンピングロスが低減されることを利用して、低燃費を目的として軽負荷の運転領域では大量のEGRガスを導入して燃費を向上させる手法を採用する場合が増えている。ところが、こうした場合には、不活性ガスが増大して内燃機関の気筒(シリンダ)内に導入される新しい空気の割合が減少することに伴い、点火プラグ周りに適正な混合気が存在する割合が減ることになるため、単時間の放電では確実に着火させ、安定した燃焼を得られることが難しくなり、不正燃焼によって内燃機関が安定性を欠くことになってしまう。
 そこで、内燃機関用点火装置において、点火プラグ近傍の混合気の状態にばらつきが存在することにより、希薄な空燃比となる状態や、EGRガス等の不活性ガスが混合される状態において、単時間の放電では混合気の着火性が安定しない問題を改善し、着火性の向上と安定した燃焼とを行わせることで内燃機関の燃費を向上させるための技術が重要視されている。係る周知技術として、例えば「内燃機関用の重ね放電式点火装置」(特許文献1)が挙げられる。
特開2000-240542号
 上述した特許文献1に係る重ね放電式の点火システムの点火制御によれば、重ね放電時間の制御について全領域を重ね放電とすると、消費電流が過大となって車両等の搭載先のバッテリの劣化や上がり等の不具合を招く恐れがあるため、重ね放電の実行領域を限定して使用する必要があるが、重ね放電する領域を限定するためには昇圧回路に対して制限する重ね要求信号の情報をコントロールユニット側から与える必要がある。
 また、特許文献1に係る重ね放電式の点火システムの点火制御によれば、点火プラグに長い時間に渡って大きな放電エネルギーを供給する必要があるため、別途に設けた昇圧回路から所定の電圧(例えば500V)以上を点火コイルの放電電流に印加しなければならないことにより、多気筒の内燃機関では気筒数分を賄う昇圧回路が必要となるため、重ね放電の実行領域を限定して使用する場合や、重ね放電による点火エネルギーを調整して使用する場合に、コントロールユニットから気筒数分の重ね要求信号を送信する必要があり、コントロールユニットの出力数の増加や、コントロールユニットと昇圧回路を繋ぐ信号線が増加し、コントロールユニットの出力端子の不足やコントロールユニットの出力回路の増加および信号線の増加によるコストの増加を招くという問題がある。
 特許文献1では、点火プラグに点火コイルと別途に設けた昇圧回路の2系統で点火エネルギーを供給する構成としているが、点火コイルや昇圧回路に関わらず2系統の点火エネルギー供給手段を有する点火システムおいて、同様の問題を招く可能性がある。
 本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、2系統の点火エネルギ供給手段を有する多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することにある。
 上記技術的課題を解決するため、本発明のエンジン制御装置は、1気筒毎に2系統の点火エネルギ供給手段が設けられた多気筒エンジンを制御するエンジン制御装置において、
 前記2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段に対して共通の信号線を介して信号を送信することで、該一方の系統の複数の点火エネルギ供給手段を制御することを特徴とする。
 本発明の内燃機関用点火装置によれば、1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムおいて、1系統の点火エネルギ供給手段のみを有する点火システムに対して、1本の信号線を追加するのみで2系統の点火エネルギ供給手段を制御でき、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
本発明の一実施形態によるエンジン制御のシステム構成図である。 本発明の一実施形態によるコントロールユニットの構成図である。 本発明の第一の実施形態によるエンジン制御のシステム構成図である。 第一の実施形態による点火制御装置の説明図である。 第一の実施形態による点火制御装置のタイムチャートである。 第一の実施形態によるタイミング信号設定のフローチャートである。 重ね放電領域を示す図である。 通電時間の設定を示す図である。 位相差時間の設定を示す図である。 第一の実施形態による異常検知のフローチャートである。 第一の実施形態による点火制御装置の正常時のタイムチャートである。 第一の実施形態による点火制御装置の異常検知時のタイムチャートである。 第二の実施形態によるエンジン制御のシステム構成図である。 第二の実施形態による点火制御装置の説明図である。 第二の実施形態による点火制御装置のタイムチャートである。 第三の実施形態によるエンジン制御のシステム構成図である。 第三の実施形態による点火制御装置の説明図である。 第三の実施形態による点火制御装置のタイムチャートである。 本発明の第四の実施形態によるエンジン制御のシステム構成図である。 本発明の第四の実施形態によるエンジン制御のシステム構成図である。 第四の実施形態による点火制御装置の説明図である。 第四の実施形態による点火制御装置のタイムチャートである。 本発明の第四の実施形態によるエンジン制御のシステム構成図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 最初に、図1から図11を用いて本発明が適用される内燃機関の制御システムの第1の構成について説明する。ここで、図1に示す実施例は所謂ポート噴射方式の4気筒内燃機関を示しているが、筒内直接噴射方式のエンジンでも良く、気筒数に関わらず適用可能である。
 図1は、第1の構成による内燃機関制御システムの構成図である。 
 内燃機関65に吸入される空気は、エアクリーナ60を通過し、ホットワイヤ式エアフローセンサ2に導かれる。このホットワイヤ式エアフローセンサ2には熱線式空気流量センサが使用される。このホットワイヤ式エアフローセンサ2から吸入空気量に相当する信号が出力されるとともに、サーミスターを用いた吸気温度センサ2で計測される吸気温度信号が出力される。次に、吸入空気は接続されたダクト61、空気流量を制御する絞り弁40を通り、コレクタ62に入る。また、前記絞り弁はコントロールユニット71で駆動されるスロットル駆動モータ42により動かされる。前記コレクタ62に入った空気はエンジンと直結する各吸気管に分配され、シリンダ内に吸入される。バルブ駆動系にはバルブタイミング可変機構を持ち、目標角度に向けフィードバック制御する。また、シリンダブロックに取り付けられたクランク角センサ7からは、所定のクランク角毎にパルスが出力されこれらの出力は、コントロールユニット71に入力される。
 燃料は燃料タンク21から燃料ポンプ20で吸引、加圧され、プレッシャレギュレータ22により一定圧力に調圧され、吸気管に設けられたインジェクタ23から前記吸気管内に噴射される。
 絞り弁40には絞り弁の開度を検出するスロットルセンサ1がとりつけられており、このセンサ信号はコントロールユニット71に入力され、絞り弁40の開度のフィードバック制御や、全閉位置の検出及び加速の検出等を行う。尚、フィードバックの目標開度は、アクセル開度センサ14で求まるドライバーのアクセル踏み込み量とアイドル回転数制御すなわちISC制御分とから求まるものである。
 内燃機関65には、冷却水温を検出するための水温センサ3が取り付けられており、このセンサ信号は、コントロールユニット71に入力され、内燃機関65の暖機状態を検出し、燃料噴射量の増量や点火時期の補正及びラジエータファン75のON/OFFやアイドル時の目標回転数の設定を行う。また、アイドル時の目標回転数や、負荷補正量の算出するために、エアコンクラッチの状態をモニターするエアコンスイッチ18、駆動系の状態をモニターするトランスミッションに内蔵されたニュートラルスイッチ17、が取り付けられている。
 空燃比センサ8は、エンジンの排気管に装着されており排気ガスの酸素濃度に応じた信号を出力するものである。この信号はコントロールユニット71に入力され、運転状況に応じて求められる目標空燃比になるように、燃料噴射パルス幅を調整する。
 点火コイル30には、メインコイルとサブコイルの2つのコイルが配設され、それぞれがコントロールユニット71と接続される。コントロールユニット71にて演算されるそれぞれのコイルの通電時間と点火時期にしたがい点火信号とタイミング信号が入力され、メインコイルによる放電とサブコイルによる放電とが重畳して出力され、点火プラグ33の火花放電が実施される。
 次に、図2を用いて本実施形態による自動車のコントロールユニット71の入出力信号について説明する。 
 コントロールユニット71は、図2に示すように、CPU78と、電源IC79とから構成されている。ここで、このコントロールユニット71に入力する信号等について、同図を用いて整理すると、エアフローセンサと内蔵吸気温度センサ2、クランク角センサ7、スロットルセンサ1、水温センサ3、油温センサ25、アクセル開度センサ14からの信号などを入力する。また、コントロールユニット71からの出力信号は、インジェクタ23、フューエルポンプ20、点火コイル(メイン)30、タイミング信号110、スロットル駆動モータ42に出力される。なお、タイミング信号110は、出力信号を入力する構成とすることで、出力結果をモニタ可能な構成としている。
 次に図3は、本実施例によるエンジン制御装置の構成を、4気筒内燃機関を例に示したものである。 
 まず、コントロールユニット71に搭載されているメイン点火信号生成部1000からは、気筒分のメイン点火信号101a~101dが出力され、それぞれの信号を送信する信号線が気筒ごとに設けられたコイル30a~30dに接続される。コイル30aは、内部に点火コイル(メイン)30a-1と点火コイル(サブ)30a-2の2つのコイルを設けており、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2は、重ね放電線203aで直列に接続される。コントロールユニット71から出力される点火信号101aを送信する信号線は、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2に接続される。
 次に、コントロールユニット71に搭載されているタイミング信号生成部1100からは、1本の共通の信号線を介してタイミング信号110が出力される。タイミング信号110を送信する1本の共通の信号線は、一方がコントロールユニット71に接続され、他方が途中で分岐し、分岐した信号線のそれぞれは点火コイル(メイン)に対してコントロールユニット側に配置される点火コイル(サブ)30a-2から30d-2それぞれに接続される。このように配置することで、コントロールユニット71から送信するタイミング信号が点火コイル(サブ)30a-2から30d-2に入力され、点火コイル(サブ)30a-2から30d-2の出力がそれぞれ点火コイル(メイン)30a-1から30d-1に入力される配置となる。
 なお、図3では点火コイル(メイン)30a-1と点火コイル(サブ)30a-2をコイル30aで一体とする構成で記載しているが、コイル30aを用いずに、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2が別体で独立に構成しても良い。
 すなわち本実施例のコントロールユニットは、点火コイル(メイン)と点火コイル(サブ)で示される2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段、すなわち複数の点火コイル(サブ)に対して共通の信号線(一本の信号線)によりタイミング信号を送信することで、該一方の系統の複数の点火エネルギ供給手段(複数の点火コイル(サブ))を制御する。
 また、コントロールユニット71にはタイミング信号110の動作を監視するタイミング信号監視部1200を設け、タイミング信号の動作を監視(モニタ)することで点火コイル(サブ)の異常を検知する。具体的に点火コイル(サブ)の異常が発生した場合には、点火コイル(サブ)内部でタイミング信号110をプルアップまたはプルダウンすることで,電位を固定することで、コントロールユニット71にてタイミング信号110を指示してもタイミング信号監視部1200で検知するタイミング信号モニタ値は固定となるため、タイミング信号110の指示とモニタ値の差からコントロールユニット71にて制御・異常を判定できる。
 すなわち本実施例のコントロールユニットは、点火コイル(メイン)と点火コイル(サブ)で示される2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段、すなわち複数の点火コイル(サブ)から共通の信号線(一本の信号線)によりタイミング信号を受信することで、該一方の系統の複数の点火エネルギ供給手段(複数の点火コイル(サブ))の異常を検知する。
 図4は、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2の詳細な接続図である。点火コイル(メイン)30a-1は、イグナイタと一次コイルと二次コイルで構成される。イグナイタには、コントロールユニット71から出力されるメイン点火信号101aが入力され、メイン点火信号101aによって一次コイルの電流を制御することで、点火プラグ33による点火を実施する。
 点火コイル(サブ)30a-2は、イグナイタと一次コイルと二次コイルと制御回路で構成される。制御回路には、点火コイル(サブ)30a-2と同一の気筒に属する他方の点火エネルギ供給手段の点火信号であるメイン点火信号101aとタイミング信号110が入力される。このとき制御回路は、他方の点火エネルギ供給手段の点火信号を用いて、点火気筒であることを判定し、タイミング信号で指示される通電時間にしたがった点火コイル(サブ)30a-2に対するサブ点火信号を生成する。
 制御回路から出力されるサブ点火信号によって一次コイルの電流を制御することで、二次コイルに生じる電流を制御する。点火コイル(サブ)30a-2の二次コイルの上流は、点火コイル(メイン)30a-1の二次コイルの下流に接続され、点火コイル(メイン)30a-1の二次コイルと点火コイル(サブ)30a-2の二次コイルが点火プラグ33に対して直列に接続される。
 図5は、図4で構成されるコイル30の入出力に係る波形を示したタイミングチャートである。ここでは、内燃機関の1気筒(シリンダ)内で圧縮された混合気に着火する場合のコイル30におけるメイン点火制御信号101とタイミング信号110に対する一次電流、並びに放電出力(二次電圧、二次電流)401の関係を示している。
 具体的に云えば、メイン点火信号101aの矩形波についての立ち上がりのONするタイミングでイグナイタ301a-1におけるトランジスタのスイッチング動作を行い、点火コイル(メイン)30a-1の一次側に5~10Aの範囲の一次電流を流すことで点火コイル(メイン)30a-1に磁気エネルギが蓄えられ、メイン点火信号101の矩形波の立ち下がりのOFFするタイミング(所謂点火時期)でイグナイタ301a-1におけるトランジスタのスイッチング動作を行い、一次電流を遮断すると点火コイル(メイン)30a-1の二次側に高電圧な二次電圧が発生し、これによって点火プラグ33で放電が開始する。放電を生じさせるための二次電圧は通常10kV~15kV程度の電圧発生であり、放電による二次電流は例えば0.1Aの範囲内でその後にエネルギ放出による放電が数ms持続する。
 また、メイン点火信号101aのONとなると同時または後に共通の信号線を介して送信されるタイミング信号110をONすると、制御回路にてサブ点火信号がONとなり、サブ点火信号がONになるタイミングでイグナイタ301a-2におけるトランジスタのスイッチング動作を行い、点火コイル(サブ)30a-2の一次側に5~10Aの範囲の一次電流を流す。
 これにより点火コイル(サブ)30a-2に磁気エネルギが蓄えられ、タイミング信号110がOFFするタイミングでサブ点火信号がOFFとなり、イグナイタ301a-2におけるトランジスタのスイッチング動作を行い、一次電流を遮断すると点火コイル(サブ)30a-2の二次側に高電圧な二次電圧(図示しない)が発生し、これによって点火プラグ33に放電が重畳される。ここで、タイミング信号110の立ち下がりのOFFするタイミングは、メイン点火信号101aがOFFすると同時または位相差ΔIGN[ms]遅らせることで、点火コイル(メイン)30a-1のみで点火する場合に比べて放電時間を延ばすことができる。
 因みに、上述した点火制御信号101aやタイミング信号110がONからOFFに移行するタイミングは、気筒(シリンダ)内の混合気の状態と内燃機関の負荷状態等とを考慮して適切なタイミングで制御しなければ、着火性や燃焼速度に影響し、燃焼の悪化(着火性の悪化)による内燃機関の回転数変動や振動を伴うこともあり、エンジン性能に大きく影響を与えるために重要な事項となっている。
 また、制御回路には、点火コイル(サブ)30a-2の監視機能を設け、点火コイル(サブ)30a-2の異常を検知することができる。異常を検知した場合は、制御回路内で電気的にタイミング信号110をLOW(0V)またはHIGH(5V)のいずれかに固着させ、コントロールユニット71でモニタすることで、コントロールユニット71で異常を検知することができる。
 なお、本実施例では、サブ点火信号を出力する制御回路を点火コイル(サブ)30a-2内に設けているが、点火コイル(サブ)30a-2の外部に設けても良く、コントロールユニット71に設けても良い。
 図6は、コントロールユニット71の演算機能(タイミング信号生成部1100、重ね運転領域判定部112)によるタイミング信号出力の動作処理を示したフローチャートである。このタイミング信号出力の動作処理は、例えばクランク角度に同期した所定角度又は角度に換算した時間タイマによる割込み処理として実行される。
 ステップ1110は、点火コイル(サブ)の異常有無の判定行程である。異常を検知している場合は、ステップ1170へ進み、タイミング信号をOFF固定とし、処理を終了する。異常検知が無い場合はステップ1120へ進む。
 ステップ1120は、重ね運転領域検索の行程である。現在の運転領域から予め設定されている重ね運転領域にあるかが検索され、ステップ1130で、重ね放電と通常放電(すなわち点火コイル(サブ)による点火をする/しない)の判定が行なわれ、重ね領域で無い場合は、ステップ1170へ進み、タイミング信号をOFF固定とし、処理を終了する。重ね領域の場合は、ステップ1140へ進む。
 ここでステップ1120の重ね運転領域検索について図7で詳細を説明する。 
 図7は特に燃費向上を目的にEGRガスを導入する場合に、エンジン回転数と機関負荷に応じたEGR率(100%×EGRガス流量/新気空気流量)を設定するに当り、EGR率と重ね放電領域との関係を示したものである。
 ここで、燃焼の安定性から判断して、重ね放電を必要とする(例えばEGR率が20%を超える)“EGR大領域”と、重ね放電を必要としない“EGR少領域”とに大別する。さらに重ね放電の実行領域は、“EGR大領域”と同じとしても良いのであるが、あえて“EGR大領域”より、回転数および負荷方向に拡大した領域を設定しておく。これは運転状態が“EGR少領域”から“EGR大領域”へ短時間に移行する場合に、“EGR大領域”で設定されるEGR率が重ね放電の実行より先にシリンダ内に導入されて燃焼が悪化して性能の低下を招くことを避けるものである。上述により予め重ね放電の実行領域が予めコントロールユニット71内のマイコンに設定しておき、現在の運転状態から、重ね放電の運転領域か否かが判定される。
 図6のステップ1140は、点火コイル(サブ)の通電時間設定行程である。点火コイル(サブ)の通電時間はコントロールユニット71内のマイコン予め設定しておき、例えば図8に示すようにEGR率が大きくなるにつれて通電時間を長くするように設定しても良い。
 図6のステップ1150は、点火コイル(サブ)の位相差設定行程である。ステップ1150では、点火コイル(メイン)の点火時期からの位相差[ms]を設定する。点火コイル(サブ)の位相差はコントロールユニット71内のマイコン予め設定しておき、例えば図9に示すようにEGR率が大きくなるにつれて位相差を大きくするように設定しても良い。 
 ステップ1140とステップ1150で設定した通電時間と位相差にしたがい、ステップ1160でタイミング信号を出力する。
 次に図10を用いて、図6ステップ1110の異常検知の詳細を説明する。図10は、図6ステップ1110の異常検知のフローチャートであり、コントロールユニット71で周期的に実行される。
 図10のステップ1210はタイミング信号出力ON指示か否かの判断行程である。図6によりタイミング信号出力がON指示となった場合は、ステップ1220へ進み、タイミング信号がOFFの場合は本処理を終了する。
 ステップ1220はタイミング信号のモニタ値取得行程である。図2に示すように、タイミング信号110は出力すると同時にCPU78に入力され、タイミング信号モニタ値として取得する。
 ステップ1230は、ステップ1220で取得したタイミング信号モニタ値がONか否かの判断行程である。タイミング信号モニタ値がONの場合、すなわち、タイミング信号出力がON指示であり、その時のモニタ値もONの場合は、正常と判断し、処理を終了する。タイミング信号モニタ値がOFFの場合、すなわち、タイミング信号出力がON指示であるにも関わらず、タイミング信号モニタ値がOFFとなっている場合は、ステップ1240へ進みサブコイル異常と判断する。
 次に図11のタイムチャートを用いて、点火コイル(サブ)が正常の場合の動作を説明する。 
 時刻t1~t5までは重ね領域での動作を示している。時刻t1では、メイン点火信号1をONとし、点火コイル(メイン)の通電を開始する。時刻t1からt2の間でタイミング信号をONとするとサブ点火信号1がONとなり、点火コイル(メイン)の通電を開始する。タイミング信号は図6の1140で予め設定した通電時間が経過するまでONを継続する。時刻t2にて予め設定した点火時期に応じてメイン点火信号1がOFFとなると、点火コイル(メイン)の放電が開始し、2次電流が立ち上がる。時刻t2からの時間が図6のステップ1150で設定した位相差時間経過すると時刻t3にて、タイミング信号がOFFとなり、サブ点火信号1がOFFとなるタイミングで、点火コイル(サブ)の放電が開始され、点火コイル(メイン)の放電に点火コイル(サブ)の放電が重畳されるため、再び2次電流が立ち上がる。
 時刻t5まで各気筒での点火が繰り返し実行される。時刻t5で重ね領域外が判定されると、タイミング信号はOFFに固定され、全気筒のサブ点火信号はOFFとなるため、2次電流は、点火コイル(メイン)による2次電流のみとなる。なお、図11は点火コイル(サブ)が正常のため、タイミング信号とタイミング信号モニタは同じ動作となる。
 次に図12のタイムチャートを用いて、点火コイル(サブ)が異常の場合の動作を説明する。 
 時刻t1では、メイン点火信号1をONとし、点火コイル(メイン)の通電を開始する。時刻t1は重ね領域であるため、時刻t1からt2の間でタイミング信号をONとするとサブ点火信号1がONとなり、点火コイル(メイン)の通電を開始する。時刻t2にて予め設定した点火時期に応じてメイン点火信号1がOFFとなると、点火コイル(メイン)の放電が開始し、2次電流が立ち上がる。時刻t2からの時間が図6のステップ1150で設定した位相差時間経過すると時刻t3にて、タイミング信号がOFFとなり、サブ点火信号1がOFFとなるタイミングで、点火コイル(サブ)の放電が開始されるが、点火コイル(サブ)に異常があることで2次電流が立ち上がらず、2次電流の立ち上がりが検知できないため、図4の点火コイル(サブ)に設けた制御回路にて異常を検知し、タイミング信号がOFFに固定される。時刻t4にてメイン点火信号2をONとし、時刻t1、t2、t3と同様の動作が実行されるが、制御回路にてタイミング信号がOFFに固定されているため、サブ点火信号2はONとならず、タイミング信号モニタ値もONとならない。時刻t6にて図10ステップ1240のサブコイルの異常を検知すると、重ね領域外となり、以降タイミング信号がOFFに固定される。
 以上に示す構成とすることで、1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムおいて、1系統の点火エネルギ供給手段のみを有する点火システムに対して、1本の信号線を追加するのみで2系統の点火エネルギ供給手段を制御でき、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
 次に本発明の第2の実施例について図13から図15を用いて説明する。
 第2の実施例が第1の実施例と異なるのは図13に示すように、点火コイル(サブ)30a-2に入力するメイン点火信号が同一気筒に属するメイン点火信号101aではなく、点火コイル(サブ)30a-2と異なる気筒に属するメイン点火信号101dという点である。
 次に図14、図15を用いて詳細を説明する。 
 図14は、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2の詳細な接続図である。点火コイル(メイン)30a-1は、イグナイタと一次コイルと二次コイルで構成される。イグナイタには、コントロールユニット71から出力されるメイン点火信号101aが入力され、メイン点火信号101aによって一次コイルの電流を制御することで、点火プラグ33による点火を実施する。
 点火コイル(サブ)30a-2は、イグナイタと一次コイルと二次コイルと制御回路で構成される。制御回路には、点火コイル(サブ)30a-2と異なる気筒に属する他方の点火エネルギ供給手段の点火信号であるメイン点火信号101dとタイミング信号110が入力される。このとき制御回路は、他方の点火エネルギ供給手段の点火信号を用いて、点火気筒であることを判定し、タイミング信号で指示される通電時間にしたがった点火コイル(サブ)30a-2に対するサブ点火信号を生成する。
 制御回路から出力されるサブ点火信号によって一次コイルの電流を制御することで、二次コイルに生じる電流を制御する。点火コイル(サブ)30a-2の二次コイルの上流は、点火コイル(メイン)30a-1の二次コイルの下流に接続され、点火コイル(メイン)30a-1の二次コイルと点火コイル(サブ)30a-2の二次コイルが点火プラグ33に対して直列に接続される。
 ここで、点火コイル(サブ)30a-2と異なる気筒に属する他方の点火エネルギ供給手段の点火信号であるメイン点火信号101dは、メイン点火信号101aの一つ前に点火した気筒に属するメイン点火信号を用いることが望ましい。例えば、4気筒エンジンで点火の順序が1番気筒、3番気筒、4番気筒、2番気筒の場合、1番気筒の一つ前は2番気筒であるため、1番気筒に属する点火コイル(サブ)の制御回路に入力するメイン点火信号は2番気筒のメイン点火信号を入力することが望ましい。
 図15は、図14で構成されるコイル30の入出力に係る波形を示したタイミングチャートである。ここでは、内燃機関の1気筒(シリンダ)内で圧縮された混合気に着火する場合のコイル30におけるメイン点火制御信号101とタイミング信号110に対する一次電流、並びに放電出力(二次電圧、二次電流)401の関係を示している。
 本実施例が図5のタイミングチャートと異なる点は、タイミング信号110がONになるタイミングが、メイン点火信号101aの前にある点である。 
 具体的に云えば、図14に記載の制御回路による点火気筒の判定を一つ前に点火した気筒に属するメイン点火信号101dで行なうことで、点火気筒の判定をメイン点火信号101aの前に行なうことができるため、タイミング信号101のONするタイミングをメイン点火信号101aの前にする。 
 このような構成とすることで、図4、図5に記載の方法よりタイミング信号のON時間、すなわち点火コイル(サブ)の通電時間を長くすることができる。
 以上に示す構成とすることで、1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムおいて、1系統の点火エネルギ供給手段のみを有する点火システムに対して、1本の共通の信号線を追加するのみで2系統の点火エネルギ供給手段を制御でき、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
 次に本発明の第3の実施例について図16から図18を用いて説明する。
 第3の実施例が第1の実施例と異なるのは図16に示すように、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2を並列に接続する点である。
 次に図17、図18を用いて詳細を説明する。 
 図17は、点火コイル(メイン)30a-1と点火コイル(サブ)30a-2の詳細な接続図である。点火コイル(メイン)30a-1は、イグナイタと一次コイルと二次コイルで構成される。イグナイタには、コントロールユニット71から出力されるメイン点火信号101aが入力され、メイン点火信号101aによって一次コイルの電流を制御することで、点火プラグ33による点火を実施する。
 点火コイル(サブ)30a-2は、イグナイタと一次コイルと二次コイルと制御回路で構成される。制御回路には、点火コイル(サブ)30a-2と同じ気筒に属する他方の点火エネルギ供給手段の点火信号であるメイン点火信号101aとタイミング信号110が入力される。このとき制御回路は、他方の点火エネルギ供給手段の点火信号を用いて、点火気筒であることを判定し、タイミング信号で指示される通電時間にしたがった点火コイル(サブ)30a-2に対するサブ点火信号を生成する。制御回路から出力されるサブ点火信号によって一次コイルの電流を制御することで、二次コイルに生じる電流を制御する。
 点火コイル(サブ)30a-2の二次コイルの上流は、点火コイル(メイン)30a-1の二次コイルの上流に接続され、点火コイル(メイン)30a-1の二次コイルと点火コイル(サブ)30a-2の二次コイルが点火プラグ33に対して並列に接続される。
 なお、制御回路にて点火気筒であることを判定するために入力するメイン点火信号は、図14に記載するように異なる気筒に属する他方の点火エネルギ供給手段の点火信号であるメイン点火信号101dでも良く、メイン点火信号101aの一つ前に点火した気筒に属するメイン点火信号を用いることが望ましい。
 図18は、図17で構成されるコイル30の入出力に係る波形を示したタイミングチャートである。ここでは、内燃機関の1気筒(シリンダ)内で圧縮された混合気に着火する場合のコイル30におけるメイン点火制御信号101とタイミング信号110に対する一次電流、並びに放電出力(二次電圧、二次電流)401の関係を示しているが、タイミング信号110の動作およびタイミング信号110に対する一次電流の動作は、図5と同様の動作となるが、2次電流の放電時間は図5の放電時間に比べ短いものとなる。これは、点火コイル(メイン)と点火コイル(サブ)を並列に接続することで、直列接続に比べて放電経路のインダクタンスが減少するためである。
 以上に示す構成とすることで、1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムおいて、1系統の点火エネルギ供給手段のみを有する点火システムに対して、1本の共通の信号線を追加するのみで2系統の点火エネルギ供給手段を制御でき、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
 なお、大量のEGRガスを導入して燃費を向上させる手法を採用する場合、点火プラグ周りに適正な混合気が存在する割合が減ることになるため、コイル直列接続により放電時間を延ばす方式採用し、点火プラグ周りの流動が速く、短時間に点火エネルギを供給する必要がある場合は、コイル並列接続方式を採用しても良い。また、エンジン状態に応じて直列と並列を切替える方式を採用しても良い。
 次に本発明の第4の実施例について図19から図22を用いて説明する。
 第4の実施例が第1の実施例と異なるのは図19に示すように、コントロールユニット71と点火コイル30の間に放電ユニット72がある点である。放電ユニット72は、コントロールユニット71から出力されるタイミング信号を検出し、点火信号から点火時期を検出すると、昇圧回路から所定(例えば500V)以上の電圧を点火コイル30の放電電流に付加する。
 次に図20を用いて詳細を説明する。 
 図20は、本実施例によるエンジン制御装置の構成を4気筒のエンジン(内燃機関)を例に示したものである。まず、コントロールユニット71に搭載されているメイン点火信号生成部1000からは、点火信号101に、気筒分の点火信号101a~101dが出力される。また、タイミング信号生成部1100からはタイミング信号110が出力される。
 放電ユニット72はコントロールユニット71とは別に設けられており、昇圧回路203と気筒分の点火コイル30a~30dとが約500Vの高電圧で結線203a~203dされる。各点火コイル(30a~30d)に内蔵されているイグナイタ(301a~301d)のスイッチングで対象気筒に対して通常の点火タイミングで放電が開始されると、高電圧結線(203a~203d)が放電状態を維持するのに必要な電流値を二次コイル側に供給する。エンジンシリンダ内では、点火プラグ(33a~33d)によって混合気に放電させて着火させるとともに、通常の放電に続く、いわゆる重ね放電が実行されるよう構成されている。また、それぞれの部位はワイヤハーネスによって結線される。
 ここで、放電ユニット72は、タイミング信号110からの情報により、放電時間を制御する制御回路202と、各気筒の点火タイミングを判断する気筒判定回路201と、昇圧回路203によって構成され、気筒毎の点火信号101a~101dと、タイミング信号110のタイミングに合わせて重ね放電に必要な高電圧ライン203a~203dが気筒毎に対応する点火コイルの二次コイル側に供給されることで、重ね放電を発生させることができる。
 図21は本実施例における、重ね放電を実行する場合に、一つの気筒を代表的に上述した気筒毎の点火信号制御101aと、重ね要求信号110と、放電ユニット72と、点火コイル30aとの構成を示したもので、図22は、これにより内燃機関のシリンダ内で圧縮された混合気に着火する場合の点火コイルの一次電流、二次電流と電圧の状況をそれぞれ示したものある。
 点火信号101aからの出力がONするタイミングで、イグナイタ301のスイッチングにより、一次電流を遮断すると二次コイル側に高電圧(二次電圧)が発生することで、点火プラグで放電が開始される。タイミング信号110の入力信号の情報を受けて、放電時間制御回路202が重ね放電を実行する時間を判断し、対象気筒の点火タイミングを判断する気筒判定回路201が、点火信号101aによって昇圧回路203を実行する対象気筒を判断し、一次電流の遮断するタイミングに合わせて重ね放電に必要な高電圧ライン203aを対象気筒に対応する点火コイル30aの二次コイル側と連通することで、点火コイル内の制御回路302と連動して高電圧が供給されることで、重ね放電を発生させることができる。放電時間制御回路202が重ね放電を終了する時間のタイミングで、昇圧回路を遮断して重ね放電を終了する。
 図22で示す二次電流、および二次電圧は、放電時間(tw)の間延長されることで、放電電圧がこの間供給され続けることにより、シリンダ内の混合気への着火性能を向上することができる。
 また図22に示す重ね要求信号110は、実線で示すように各点火信号の立下りに対して、(td)時間早いタイミングでON信号を出力するように制御される。これは重ね要
求信号の演算タイミングが必ずしも点火タイミングで演算されている訳ではなく、例えば10ms毎といった所定のマイコン演算タイミングで演算されるケースがある事と、放電時間制御回路202の判断タイミングにも依存するが、確実に重ね要求有りの情報を出力した時に、最も早いタイミングで放電時間制御回路が重ね要求有りの情報と、重ね時間の情報を判断できるようにするためである。少なくとも(td)は点火信号制御がOFFするタイミングと同時(td=0)あるいはそれより前のタイミングであることが望ましい。
 実施例では、点火タイミング毎に放電時間(tw)の情報をタイミング信号に同期させてON/OFF出力するようにしている。別の方法としては、放電時間の制御を、重ね制御回路202側で独自に(例えば固定時間)制御するような場合では、タイミング信号110は破線で示すような単純にON信号、すなわち重ね放電実行/非実行の情報のみで出力することもできる。尚、重ね放電非実行の場合は点線で示す常時OFFを表す情報を出力する。
 以上に示す構成とすることで、1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムおいて、1系統の点火エネルギ供給手段のみを有する点火システムに対して、1本の共通の信号線を追加するのみで2系統の点火エネルギ供給手段を制御でき、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
 次に本発明の第5の実施例について図23を用いて説明する。
 第5の実施例は、6気筒の内燃機関に適用した際の実施例である。実施例1から実施例4と異なる点は、タイミング信号生成部が、タイミング信号生成部1とタイミング信号生成部2の2箇所あり、タイミング信号が2つとなっている点である。それぞれのタイミング信号は一方がコントロールユニットに接続され、他方は途中で分岐し、分岐したタイミング信号それぞれが複数の点火コイルとそれぞれが接続される構成となる。
 以上に示す構成とすることで、多気筒の内燃機関でもコントロールユニットの出力端子の不足やコストの増加を抑制できるエンジン制御装置を提供することができる。
 以上、5つの実施例について説明したが、本内容は、本実施例に依らず1気筒ごとに2系統の点火エネルギ供給手段を有する点火システムに適用可能であり、例えば1気筒ごとに点火プラグと点火コイルをそれぞれ2つ有する点火システムにも適用可能である。
1・・・スロットルセンサ、2・・・エアフローセンサ、3・・・水温センサ、7・・・クランク角センサ、14・・・アクセルセンサ、17・・・ニュートラルスイッチ、18・・・エアコンスイッチ、19・・・補機負荷スイッチ、23・・・インジェクタ、30・・・点火コイル、42・・・スロットル駆動モータ

Claims (19)

  1.  1気筒毎に2系統の点火エネルギ供給手段が設けられた多気筒エンジンを制御するエンジン制御装置において、 
     前記2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段に対して共通の信号線を介して信号を送信することで、該一方の系統の複数の点火エネルギ供給手段を制御することを特徴とするエンジン制御装置。
  2.  請求項1に記載のエンジン制御装置において、 
     前記2系統の点火エネルギ供給手段は、一方の系統の点火エネルギ供給手段による放電と他方の系統の点火エネルギ供給手段による放電とが重畳して出力されるように構成されることを特徴とするエンジン制御装置。 
  3.  請求項1に記載のエンジン制御装置において、 
     前記共通の信号線による信号を受信した複数の点火エネルギ供給手段は、他方の点火エネルギ供給手段の点火信号を用いて点火気筒を判定することを特徴とするエンジン制御装置。
  4.  請求項3に記載のエンジン制御装置において、 
     前記点火気筒を判定するために用いる他方の点火エネルギ供給手段の点火信号は、一方の点火エネルギ供給手段と同じ気筒に属する他方の点火エネルギ供給手段の点火信号とすることを特徴とするエンジン制御装置。
  5.  請求項3に記載のエンジン制御装置において、 
     前記点火気筒を判定するために用いる他方の点火エネルギ供給手段の点火信号は、点火気筒の1つ前に点火した気筒に属する他方の点火エネルギ供給手段の点火信号とすることを特徴とするエンジン制御装置。
  6.  請求項4または請求項5に記載のエンジン制御装置において、 
     前記他方の点火エネルギ供給手段の点火信号がONになると同時または後に、前記共通の信号線により送信される信号をONすることを特徴とするエンジン制御装置。
  7.  請求項1に記載のエンジン制御装置において、 
     前記共通の信号線は、一方が前記エンジン制御装置に接続され、他方は途中で分岐し、分岐した信号線のそれぞれが前記一方の系統の複数の点火エネルギ供給手段とそれぞれ接続されることを特徴とするエンジン制御装置。 
  8.  請求項1に記載のエンジン制御装置において、 
     前記2系統の点火エネルギ供給手段は、それぞれコイルにより構成され、一方の系統のコイルと他方の系統のコイルとがそれぞれ直列に配置され、 
     前記共通の信号線は、前記2系統の点火エネルギ供給手段のうち、前記エンジン制御装置の側に配置される系統のコイルに接続されることを特徴とするエンジン制御装置。
  9.  請求項1に記載のエンジン制御装置において、
     前記2系統の点火エネルギ供給手段は、それぞれコイルにより構成され、一方の系統のコイルと他方の系統のコイルとがそれぞれ直列に配置され、
     前記共通の信号線は、一方が前記エンジン制御装置に接続され、他方は途中で分岐し、分岐した信号線のそれぞれが、前記2系統の点火エネルギ供給手段のうち、一方の系統のそれぞれのコイルに対応して設けられる制御回路に接続されることを特徴とするエンジン制御装置。
  10.  請求項1に記載のエンジン制御装置において、 
     前記2系統の点火エネルギ供給手段は、それぞれコイルにより構成され、一方の系統のコイルと他方の系統のコイルとがそれぞれ並列に配置され、 
     前記共通の信号線は、前記2系統の点火エネルギ供給手段のうち、一方の系統のそれぞれのコイルに対応して設けられる制御回路に接続されることを特徴とするエンジン制御装置。
  11.  請求項1に記載のエンジン制御装置において、 
     前記共通の信号線で、点火エネルギ供給手段の通電時間を制御することを特徴とするエンジン制御装置。
  12.  請求項1に記載のエンジン制御装置において、 
     前記2系統の点火エネルギ供給手段は、コイルと火花放電の時間を延長させるための昇圧回路を設けた重ね放電式の放電ユニットにより構成され、
    前記共通の信号線は、前記2系統の点火エネルギ供給手段のうち、前記放電ユニットに接続されることを特徴とするエンジン制御装置。
  13.  請求項1に記載のエンジン制御装置において、 
     前記共通の信号線で、点火エネルギ供給手段の放電時間を制御することを特徴とするエンジン制御装置。
  14.  請求項1に記載のエンジン制御装置において、 
     前記共通の信号線で、点火エネルギ供給手段の放電許可を制御することを特徴とするエンジン制御装置。
  15.  1気筒毎に2系統の点火エネルギ供給手段が設けられた多気筒エンジンを制御するエンジン制御装置において、
     前記2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段から共通の信号線を介して信号を受信することで、該一方の系統の複数の点火エネルギ供給手段の異常を検知することを特徴とするエンジン制御装置。
  16.  請求項15に記載のエンジン制御装置において、 
     異常検知を検知した場合は,前記共通の信号線が接続された点火エネルギ供給手段を停止することを特徴とするエンジン制御装置。
  17.  多気筒エンジンの1気筒毎に設けられる2系統の点火エネルギ供給手段と、
     前記2系統の点火エネルギ供給手段を制御するエンジン制御装置と、を備えたエンジン制御システムにおいて、 
     前記エンジン制御装置は、前記2系統の点火エネルギ供給手段のうち、一方の系統の複数の点火エネルギ供給手段に対して共通の信号線を介して信号を送信することで、該一方の系統の複数の点火エネルギ供給手段を制御することを特徴とするエンジン制御システム。
  18.  請求項17に記載のエンジン制御システムにおいて、
     前記2系統の点火エネルギ供給手段は、一方の系統の点火エネルギ供給手段による放電と他方の系統の点火エネルギ供給手段による放電とが重畳して出力されるように構成されることを特徴とするエンジン制御システム。
  19.  請求項17に記載のエンジン制御システムにおいて、 
     前記共通の信号線は、一方が前記エンジン制御装置に接続され、他方は途中で分岐し、分岐した信号線のそれぞれが前記一方の系統の複数の点火エネルギ供給手段とそれぞれ接続されることを特徴とするエンジン制御システム。
PCT/JP2016/069582 2015-07-15 2016-07-01 エンジン制御装置 WO2017010310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16824290.7A EP3324036A4 (en) 2015-07-15 2016-07-01 ENGINE CONTROL DEVICE
CN201680038452.6A CN107709756B (zh) 2015-07-15 2016-07-01 发动机控制装置
US15/741,526 US10309366B2 (en) 2015-07-15 2016-07-01 Engine control device
JP2017528382A JP6476295B2 (ja) 2015-07-15 2016-07-01 エンジン制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015140951 2015-07-15
JP2015-140951 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010310A1 true WO2017010310A1 (ja) 2017-01-19

Family

ID=57757842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069582 WO2017010310A1 (ja) 2015-07-15 2016-07-01 エンジン制御装置

Country Status (5)

Country Link
US (1) US10309366B2 (ja)
EP (1) EP3324036A4 (ja)
JP (1) JP6476295B2 (ja)
CN (1) CN107709756B (ja)
WO (1) WO2017010310A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193909A1 (ja) * 2017-04-20 2018-10-25 株式会社デンソー 内燃機関用点火システム
JP2019124223A (ja) * 2017-04-20 2019-07-25 株式会社デンソー 内燃機関用点火システム
JP2019218888A (ja) * 2018-06-19 2019-12-26 株式会社デンソー 内燃機関の点火制御システム
WO2020115899A1 (ja) * 2018-12-07 2020-06-11 三菱電機株式会社 点火装置
JP2021175880A (ja) * 2020-05-01 2021-11-04 株式会社デンソー 点火制御装置
WO2022123861A1 (ja) * 2020-12-07 2022-06-16 日立Astemo株式会社 内燃機関制御装置
US11802534B2 (en) 2019-05-23 2023-10-31 Hitachi Astemo, Ltd. Control device for internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087676B2 (ja) * 2018-05-25 2022-06-21 株式会社デンソー 内燃機関の点火制御装置
JP7040289B2 (ja) * 2018-05-25 2022-03-23 株式会社デンソー 内燃機関の点火装置
WO2020121515A1 (ja) * 2018-12-14 2020-06-18 三菱電機株式会社 点火装置
JP7196741B2 (ja) * 2019-04-09 2022-12-27 株式会社デンソー 点火制御装置
KR20220112982A (ko) * 2021-02-05 2022-08-12 현대자동차주식회사 점화 코일 제어 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483863A (en) * 1987-09-28 1989-03-29 Hanshin Electrics Igniting method for internal combustion engine
JPH08128381A (ja) * 1994-09-09 1996-05-21 Nippondenso Co Ltd 内燃機関用点火装置
US20140360476A1 (en) * 2013-06-06 2014-12-11 Ford Global Technologies, Llc Dual coil ignition system
JP2015025403A (ja) * 2013-07-25 2015-02-05 日立オートモティブシステムズ株式会社 内燃機関用点火装置、及びそれに用いられる点火制御装置、並びに放電ユニット

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240542A (ja) 1999-02-18 2000-09-05 Hanshin Electric Co Ltd 内燃機関用の重ね放電式点火装置
JP2002295354A (ja) * 2001-03-30 2002-10-09 Diamond Electric Mfg Co Ltd 内燃機関用点火装置
US6761156B2 (en) * 2002-02-20 2004-07-13 Daimlerchrysler Corporation Multiplexed single wire control and diagnosis of an electrical object
JP2007120374A (ja) 2005-10-27 2007-05-17 Kokusan Denki Co Ltd コンデンサ放電式内燃機関用点火装置
JP4736942B2 (ja) 2006-05-17 2011-07-27 株式会社デンソー 多重放電点火装置
JP4477607B2 (ja) * 2006-07-25 2010-06-09 日立オートモティブシステムズ株式会社 内燃機関用点火装置
JP4803008B2 (ja) 2006-12-05 2011-10-26 株式会社デンソー 内燃機関の点火制御装置
JP4431168B2 (ja) 2007-10-30 2010-03-10 三菱電機株式会社 内燃機関の燃焼状態検出装置及び燃焼状態検出方法
US8490598B2 (en) * 2009-08-20 2013-07-23 Ford Global Technologies, Llc Ignition coil with ionization and digital feedback for an internal combustion engine
DE102013111299A1 (de) * 2012-10-15 2014-04-17 Ford Global Technologies, Llc System und Verfahren zum Liefern eines Funkens zu einer Maschine
US10502176B2 (en) * 2012-10-15 2019-12-10 Ford Global Technologies, Llc System and method for delivering spark to an engine
US9617965B2 (en) * 2013-12-16 2017-04-11 Transient Plasma Systems, Inc. Repetitive ignition system for enhanced combustion
KR20150072265A (ko) * 2013-12-19 2015-06-29 현대오트론 주식회사 점화 시스템의 고장 진단 장치
US9458773B2 (en) * 2014-05-15 2016-10-04 Ford Global Technologies, Llc Method and system for ignition energy control
US9695792B2 (en) * 2015-07-24 2017-07-04 Ford Global Technologies, Llc System and method for operating an ignition system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483863A (en) * 1987-09-28 1989-03-29 Hanshin Electrics Igniting method for internal combustion engine
JPH08128381A (ja) * 1994-09-09 1996-05-21 Nippondenso Co Ltd 内燃機関用点火装置
US20140360476A1 (en) * 2013-06-06 2014-12-11 Ford Global Technologies, Llc Dual coil ignition system
JP2015025403A (ja) * 2013-07-25 2015-02-05 日立オートモティブシステムズ株式会社 内燃機関用点火装置、及びそれに用いられる点火制御装置、並びに放電ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324036A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537016B (zh) * 2017-04-20 2021-10-08 株式会社电装 内燃机用点火系统
JP2019124223A (ja) * 2017-04-20 2019-07-25 株式会社デンソー 内燃機関用点火システム
KR20190120362A (ko) * 2017-04-20 2019-10-23 가부시키가이샤 덴소 내연 기관용 점화 시스템
CN110537016A (zh) * 2017-04-20 2019-12-03 株式会社电装 内燃机用点火系统
KR102412744B1 (ko) 2017-04-20 2022-06-24 가부시키가이샤 덴소 내연 기관용 점화 시스템
WO2018193909A1 (ja) * 2017-04-20 2018-10-25 株式会社デンソー 内燃機関用点火システム
JP7070491B2 (ja) 2017-04-20 2022-05-18 株式会社デンソー 内燃機関用点火システム
WO2019244727A1 (ja) * 2018-06-19 2019-12-26 株式会社デンソー 内燃機関の点火制御システム
JP2019218888A (ja) * 2018-06-19 2019-12-26 株式会社デンソー 内燃機関の点火制御システム
CN112368476B (zh) * 2018-06-19 2022-06-24 株式会社电装 内燃机的点火控制系统
KR20210002726A (ko) 2018-06-19 2021-01-08 가부시키가이샤 덴소 내연 기관의 점화 제어 시스템
CN112368476A (zh) * 2018-06-19 2021-02-12 株式会社电装 内燃机的点火控制系统
JP7077811B2 (ja) 2018-06-19 2022-05-31 株式会社デンソー 内燃機関の点火制御システム
WO2020115899A1 (ja) * 2018-12-07 2020-06-11 三菱電機株式会社 点火装置
JPWO2020115899A1 (ja) * 2018-12-07 2021-05-20 三菱電機株式会社 点火装置
US11802534B2 (en) 2019-05-23 2023-10-31 Hitachi Astemo, Ltd. Control device for internal combustion engine
WO2021220844A1 (ja) * 2020-05-01 2021-11-04 株式会社デンソー 点火制御装置
JP2021175880A (ja) * 2020-05-01 2021-11-04 株式会社デンソー 点火制御装置
JP7331772B2 (ja) 2020-05-01 2023-08-23 株式会社デンソー 点火制御装置
WO2022123861A1 (ja) * 2020-12-07 2022-06-16 日立Astemo株式会社 内燃機関制御装置
JPWO2022123861A1 (ja) * 2020-12-07 2022-06-16
JP7412599B2 (ja) 2020-12-07 2024-01-12 日立Astemo株式会社 内燃機関制御装置

Also Published As

Publication number Publication date
JPWO2017010310A1 (ja) 2018-04-19
JP6476295B2 (ja) 2019-02-27
US20180195485A1 (en) 2018-07-12
US10309366B2 (en) 2019-06-04
CN107709756B (zh) 2019-05-10
EP3324036A4 (en) 2019-02-20
EP3324036A1 (en) 2018-05-23
CN107709756A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6476295B2 (ja) エンジン制御装置
JP4926032B2 (ja) 内燃機関の制御装置
US9822753B2 (en) Ignition control device
JP2013060892A (ja) 内燃機関の制御装置
JP6239463B2 (ja) 内燃機関の点火制御装置
JP2018003635A (ja) 内燃機関の制御装置
CN105164391A (zh) 内燃机的点火控制装置以及点火控制方法
JP5974906B2 (ja) エンジンの自動停止制御装置
JP2017066903A (ja) 内燃機関の制御装置
JP2009183064A (ja) オルタネータ制御診断装置
KR101171905B1 (ko) 엔진의 점화 시스템 및 이의 제어방법
JP2008280865A (ja) 内燃機関の始動制御装置
JP7555677B2 (ja) 内燃機関の制御装置
JP2014020334A (ja) 代替燃料エンジンの点火制御方法
JP2009203946A (ja) 内燃機関の燃料噴射制御装置
JP6095428B2 (ja) 制御装置
JP5868075B2 (ja) 発電機の制御装置
KR101748043B1 (ko) 점화코일 열화감지장치 및 감지방법
JP2021131075A (ja) 火花点火式内燃機関
JP2012082697A (ja) エンジン回転停止制御装置
JP6252324B2 (ja) 内燃機関の制御装置
JP2013164047A (ja) エンジン制御装置
JP6304937B2 (ja) 内燃機関の制御装置
JP2015017540A (ja) 内燃機関用点火装置、及びそれに用いられる点火制御装置、並びに放電ユニット
JP2021134694A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824290

Country of ref document: EP