WO2020115899A1 - 点火装置 - Google Patents

点火装置 Download PDF

Info

Publication number
WO2020115899A1
WO2020115899A1 PCT/JP2018/045105 JP2018045105W WO2020115899A1 WO 2020115899 A1 WO2020115899 A1 WO 2020115899A1 JP 2018045105 W JP2018045105 W JP 2018045105W WO 2020115899 A1 WO2020115899 A1 WO 2020115899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
coil
mode
main
primary coil
Prior art date
Application number
PCT/JP2018/045105
Other languages
English (en)
French (fr)
Inventor
尚紀 片岡
裕一 村本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880099947.9A priority Critical patent/CN113167205B/zh
Priority to PCT/JP2018/045105 priority patent/WO2020115899A1/ja
Priority to US17/288,126 priority patent/US20210383965A1/en
Priority to JP2020558784A priority patent/JP6976459B2/ja
Priority to DE112018008189.3T priority patent/DE112018008189T5/de
Publication of WO2020115899A1 publication Critical patent/WO2020115899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/053Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the present invention relates to an ignition device.
  • an ignition device for igniting an air-fuel mixture in a combustion chamber of an internal combustion engine an ignition device including an ignition coil composed of a main primary coil, a sub primary coil, and a secondary coil has been proposed (for example, Patent Document 1). 1).
  • the ignition device described in Patent Document 1 generates a current in a secondary coil when power is cut off from a power supply to a main primary coil and a secondary coil is generated when power is supplied from a power supply to a sub-primary coil. It is configured such that a current obtained by additively superposing the current that flows in the secondary coil flows through the secondary coil.
  • the sub primary current flows through the sub primary coil despite the disappearance of the secondary current.
  • the potential difference between the sub primary coils becomes large, and an excessive current may be generated.
  • Such an electric current increases the heat generation of the sub primary coil, and as a result, the ignition coil may be damaged.
  • the present invention has been made in order to solve the above-mentioned problems, and there is a case where the sub-primary current continues to flow in the sub-primary coil despite the disappearance of the secondary current flowing in the secondary coil.
  • An object of the present invention is to obtain an ignition device capable of suppressing the occurrence.
  • the ignition device generates an energization magnetic flux by energization, and a main primary coil that generates an interruption magnetic flux in a direction opposite to the direction of the energization magnetic flux by interruption of energization, and an energization mode that energizes the main primary coil,
  • a main IC that switches the main primary coil mode, which is the mode of the main primary coil, between a cutoff mode that cuts off the power supply to the main primary coil, and a sub primary that generates an additional magnetic flux in the same direction as the direction of the cutoff magnetic flux by energization.
  • a sub IC for switching a sub primary coil mode which is a mode of the sub primary coil, between a coil, an energization mode for energizing the sub primary coil, and a cutoff mode for interrupting energization to the sub primary coil; a main primary coil;
  • the primary coil mode is switched from the energization mode to the cutoff mode, the sub IC is driven to switch the sub primary coil mode from the cutoff mode to the energization mode, and the driving of the sub IC is stopped to cut off the sub primary coil mode from the conduction mode.
  • a control unit for switching to the mode and a detection circuit for detecting the state of the secondary coil are provided, and when the state of the secondary coil detected by the detection circuit is the non-energized state, the driving of the sub IC is stopped. is there.
  • Embodiment 1 of this invention It is a block diagram which shows the ignition device in Embodiment 1 of this invention.
  • 3 is a timing chart showing an operation example of the ignition device in the first embodiment of the present invention.
  • Embodiment 2 of this invention 7 is a timing chart showing an operation example of the ignition device in the second embodiment of the present invention.
  • It is a block diagram which shows the ignition device in Embodiment 3 of this invention.
  • Embodiment 5 of this invention It is a block diagram which shows the ignition device in Embodiment 5 of this invention.
  • 9 is a timing chart showing an operation example of the ignition device in the fifth embodiment of the present invention.
  • 11 is a timing chart showing an operation example of the ignition device in the sixth embodiment of the present invention. It is a block diagram which shows the ignition device in a comparative example. It is a timing chart which shows the operation example of the ignition device in a comparative example.
  • FIG. 11 is a block diagram which shows the ignition device in a comparative example.
  • the ignition device shown in FIG. 11 includes an ignition coil device 1A, a power supply 2, an ECU (Engine Control Unit) 3, and an ignition plug 4.
  • the ignition coil device 1A is attached to an internal combustion engine and supplies energy to the spark plug 4 to generate spark discharge between the gaps of the spark plug 4.
  • the ignition coil device 1A includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC (Integrated Circuit) 14 and a sub IC (Integrated Circuit) 15.
  • the power source 2 is a DC power source such as a battery.
  • Each of the main primary coil 11 and the sub primary coil 12 is wound such that the directions of magnetic flux generated when energized from the power source 2 are opposite to each other. That is, when viewed from the power source 2, the polarities of the main primary coil 11 and the sub primary coil 12 are opposite to each other.
  • the main primary coil 11 and the sub primary coil 12 are magnetically coupled to the secondary coil 13. As a result, mutual induction occurs between the main primary coil 11 and the sub primary coil 12, and the secondary coil 13.
  • the main primary coil 11 generates a magnetic flux when energized by the power supply 2.
  • the magnetic flux generated by the main primary coil 11 by the energization from the power source 2 is referred to as an energizing magnetic flux.
  • the main primary coil 11 generates a magnetic flux in the direction opposite to the direction of the energized magnetic flux when the power supply 2 is cut off.
  • the magnetic flux generated by the main primary coil 11 when the power supply 2 is cut off is referred to as a cut-off magnetic flux.
  • the sub-primary coil 12 generates a magnetic flux in the same direction as the direction of the energized magnetic flux by the energization from the power source 2.
  • the magnetic flux generated by the sub primary coil 12 when the power is supplied from the power source 2 is referred to as an additional magnetic flux.
  • the secondary coil 13 has one end connected to the spark plug 4 and the other end connected to the ground.
  • the secondary coil 13 magnetically couples with the main primary coil 11 and the sub primary coil 12 to generate energy.
  • the energy generated by the secondary coil 13 is supplied to the spark plug 4.
  • spark discharge occurs in the gap of the spark plug 4.
  • the spark plug 4 ignites the combustible mixture in the combustion chamber of the internal combustion engine and burns the combustible mixture.
  • the main IC 14 switches the mode of the main primary coil 11 between an energization mode in which the power is supplied from the power supply 2 to the main primary coil 11 and a cutoff mode in which the power is supplied from the power supply 2 to the main primary coil 11.
  • the mode of the main primary coil 11 will be referred to as the main primary coil mode.
  • the main IC 14 includes a transistor 141 that can be switched between on and off.
  • the collector of the transistor 141 is connected to the main primary coil 11.
  • the emitter of the transistor 141 is connected to the ground.
  • the transistor 141 When the transistor 141 is on, the power supply 2 and the main primary coil 11 are electrically connected. As a result, it becomes possible to energize the main primary coil 11 from the power supply 2. On the other hand, when the transistor 141 is off, it cuts off between the power supply 2 and the main primary coil 11. As a result, it becomes possible to cut off the power supply from the power supply 2 to the main primary coil 11.
  • the sub IC 15 switches the mode of the sub primary coil 12 between an energizing mode in which the power source 2 energizes the sub primary coil 12 and a shutoff mode in which the power source 2 shuts off energization to the sub primary coil 12.
  • the mode of the sub primary coil 12 will be referred to as the sub primary coil mode.
  • the sub IC 15 is configured to include a transistor 151 that can be switched between on and off.
  • the collector of the transistor 151 is connected to the sub primary coil 12.
  • the emitter of the transistor 151 is connected to the ground.
  • the transistor 151 When the transistor 151 is on, the power supply 2 and the sub primary coil 12 are electrically connected. As a result, it becomes possible to energize the sub primary coil 12 from the power supply 2. On the other hand, when the transistor 151 is off, it cuts off between the power supply 2 and the sub primary coil 12. As a result, it is possible to cut off the power supply from the power source 2 to the sub primary coil 12.
  • the ECU 3 is an example of a control unit that controls the ignition coil device 1A.
  • the ECU 3 acquires the detection results of various sensors that detect information related to the operating state of the internal combustion engine, determines the operating state of the internal combustion engine based on the acquired detection results of the various sensors, and controls the ignition coil device 1A. Specifically, the ECU 3 controls driving of each of the main IC 14 and the sub IC 15 of the ignition coil device 1A.
  • a direction in which a current flows from the main primary coil 11 to the main IC 14, that is, a direction indicated by an arrow in FIG. 11 is defined as a positive direction
  • a direction in which a current flows from the main IC 14 to the main primary coil 11 is defined.
  • the negative direction is defined.
  • the direction in which current flows from the sub primary coil 12 to the sub IC 15, that is, the arrow direction shown in FIG. 11 is defined as a positive direction
  • the direction in which current flows from the sub IC 15 toward the sub primary coil 12 is defined as a negative direction.
  • the direction in which current flows from the secondary coil 13 to the spark plug 4 that is, the arrow direction shown in FIG. 11 is the positive direction
  • the direction in which current flows from the spark plug 4 to the secondary coil 13 is the negative direction. It is defined as. Note that these definitions are the same for FIGS. 1, 3, 5, 6, and 7 described later.
  • FIG. 12 is a timing chart showing an operation example of the ignition device in the comparative example.
  • the time variations of the main IC drive signal, the main primary current, the sub IC drive signal, the sub primary current, and the secondary current are illustrated.
  • the main IC drive signal is a signal for driving the main IC 14.
  • the main IC 14 is driven to switch the main primary coil mode from the cutoff mode to the energization mode.
  • the main primary current is a current flowing through the main primary coil 11.
  • the sub IC drive signal is a signal for driving the sub IC 15.
  • the sub IC drive signal is input from the ECU 3 to the sub IC 15, the sub IC 15 is driven to switch the sub primary coil mode from the cutoff mode to the energization mode.
  • the sub primary current is a current flowing through the sub primary coil 12.
  • the secondary current is a current flowing through the secondary coil 13.
  • the main IC 14 starts driving.
  • the main primary coil mode is switched to the energization mode, and the main primary current in the positive direction flows through the main primary coil 11.
  • the sub IC 15 starts driving.
  • the sub primary coil mode is switched to the conduction mode, and the sub primary current flows through the sub primary coil 12.
  • the sub-primary current rises quickly, and after that rises gradually.
  • a superposed current is generated in the secondary coil 13 as the sub primary current flows through the sub primary coil 12.
  • This superimposed current is generated in the secondary coil 13 according to the turn ratio between the sub primary coil 12 and the secondary coil 13. As shown in FIG. 12, the superimposed current by the sub primary coil 12 is superimposed on the secondary current by the main primary coil 11.
  • the sub IC 15 continues to be driven and the sub primary current flows through the sub primary coil 12, but the secondary current flowing through the secondary coil 13 becomes zero. That is, the secondary current flowing through the secondary coil 13 disappears.
  • the drive of the sub IC 15 is stopped. That is, the ECU 3 switches the sub primary coil mode from the energization mode to the cutoff mode by stopping the driving of the sub IC 15. In this case, the sub primary coil mode is switched to the cutoff mode, and the sub primary current becomes zero.
  • the sub-primary current continues to flow in the sub-primary coil 12 despite the disappearance of the secondary current.
  • the potential difference between the sub primary coils 12 becomes large, and an excessive current is generated.
  • the heat generated in the sub primary coil 12 and the sub IC 15 is increased by such a current, and as a result, the ignition coil device 1 may be damaged. Further, when the transistor 151 is switched from on to off in order to stop the driving of the sub IC 15 after the secondary current flowing in the secondary coil 13 disappears, a voltage of reverse polarity is generated in the secondary coil 13. As a result, various elements contained in the ignition coil device 1 may be damaged.
  • the configuration of the ignition device in the comparative example has a configuration in which the sub-primary current continues to flow in the sub-primary coil 12 despite the disappearance of the secondary current. Such problems may occur.
  • the ignition device according to the first embodiment when the secondary current disappears, the sub primary current is prevented from flowing to the sub primary coil 12 regardless of the sub IC drive signal. Is becoming
  • FIG. 1 is a configuration diagram showing an ignition device according to a first embodiment of the present invention.
  • the description of the ignition device according to the first embodiment the description of the same points as those of the ignition device of the comparative example will be omitted, and the differences from the ignition device of the comparative example will be mainly described.
  • the ignition device shown in FIG. 1 includes an ignition coil device 1, a power supply 2, an ECU 3, and an ignition plug 4.
  • the ignition coil device 1 is attached to an internal combustion engine, and supplies energy to the spark plug 4 to generate spark discharge between the gaps of the spark plug 4.
  • the ignition coil device 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, a detection circuit 16 and a sub IC drive determination circuit 17.
  • the detection circuit 16 is connected to the secondary coil 13 and detects the state of the secondary coil 13. Specifically, the detection circuit 16 detects the secondary current flowing in the secondary coil 13 as the state of the secondary coil 13, and outputs the detection result to the sub IC drive determination circuit 17.
  • the sub IC drive determination circuit 17 drives the sub IC 15 when the state of the secondary coil 13 detected by the detection circuit 16 is a state in which no secondary current flows in the secondary coil 13, that is, a non-energized state. Control to stop.
  • the sub IC drive determination circuit 17 performs control to stop the drive of the sub IC 15 based on the secondary current detected by the detection circuit 16 as the state of the secondary coil 13.
  • the sub IC drive determination circuit 17 performs control to stop the drive of the sub IC 15 when the magnitude of the secondary current detected by the detection circuit 16 is less than or equal to a preset current threshold value.
  • this current threshold value is 0, for example.
  • the current threshold value may be a value with an appropriate margin added based on 0. In this way, the sub IC drive determination circuit 17 stops the drive of the sub IC 15 when the magnitude of the secondary current detected by the detection circuit 16 becomes the current threshold value or less. Therefore, the sub IC 15 can be controlled from the sub IC drive determination circuit 17 side only without the control from the ECU 3 side while the secondary current is flowing to the secondary coil 13.
  • FIG. 2 is a timing chart showing an operation example of the ignition device in the first embodiment of the present invention.
  • FIG. 2 the time variations of the main IC drive signal, the main primary current, the sub IC drive signal, the sub primary current, and the secondary current are illustrated.
  • the main IC 14 starts driving.
  • the main primary coil mode is switched to the energization mode, and the main primary current in the positive direction flows through the main primary coil 11.
  • the ECU 3 switches the main primary coil mode from the cutoff mode to the energization mode by driving the main IC 14.
  • the ECU 3 switches the main primary coil mode from the energization mode to the cutoff mode by stopping the driving of the main IC 14.
  • the sub IC 15 starts driving.
  • the sub primary coil mode is switched to the conduction mode, and the sub primary current flows through the sub primary coil 12.
  • the sub-primary current rises quickly, and after that rises gradually.
  • a superposed current is generated in the secondary coil 13 as the sub primary current flows through the sub primary coil 12.
  • This superimposed current is generated in the secondary coil 13 according to the turn ratio between the sub primary coil 12 and the secondary coil 13. As shown in FIG. 2, the superimposed current by the sub primary coil 12 is superimposed on the secondary current by the main primary coil 11.
  • the ECU 3 switches the sub primary coil mode from the cutoff mode to the energization mode by driving the sub IC 15.
  • the sub IC drive determination circuit 17 stops driving the sub IC 15. That is, if the secondary current flowing through the secondary coil 13 disappears, the sub IC drive determination circuit 17 stops driving the sub IC 15 regardless of the sub IC drive signal.
  • the input of the sub IC drive signal from the ECU 3 to the sub IC 15 is stopped.
  • the secondary current flowing in the secondary coil 13 disappears, so that the sub-primary coil 12 receives the sub-current regardless of the sub-IC drive signal. The flow of the primary current is cut off.
  • the ignition device according to the first embodiment prevents the sub primary current from continuing to flow to the sub primary coil 12 despite the disappearance of the secondary current. be able to.
  • the driving of the sub IC 15 is stopped when the state of the secondary coil 13 detected by the detection circuit 16 is the non-energized state.
  • the sub IC drive determination circuit 17 is configured to stop the drive of the sub IC 15 based on the secondary current detected by the detection circuit 16 as the state of the secondary coil 13. Is illustrated.
  • the sub IC 15 can be controlled regardless of the control from the ECU 3 side, and the sub primary current is supplied to the sub primary coil 12 despite the disappearance of the secondary current flowing in the secondary coil 13. It is possible to suppress the occurrence of a case where the flow continues.
  • the ignition coil device 1 is damaged. It can be suppressed. Further, it is possible to suppress the generation of a reverse polarity voltage in the secondary coil 13, and as a result, it is possible to suppress damage to various elements incorporated in the ignition coil device 1.
  • Embodiment 2 an ignition device including an ignition coil device 1 having a configuration different from that of the first embodiment will be described.
  • description of the same points as those in the first embodiment will be omitted, and points different from the first embodiment will be mainly described.
  • FIG. 3 is a configuration diagram showing an ignition device according to the second embodiment of the present invention.
  • the ignition device shown in FIG. 3 includes an ignition coil device 1, a power supply 2, an ECU 3, and an ignition plug 4.
  • the ignition coil device 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, and a detection circuit 16.
  • the detection circuit 16 is connected to the secondary coil 13, and when the main primary coil mode is switched from the energization mode to the cutoff mode, a voltage is generated as a secondary current flows through the secondary coil 13.
  • the detection circuit 16 is configured to supply the generated voltage to the sub IC 15 as a sub IC power supply voltage that is a voltage for driving the sub IC 15. That is, while the secondary current is flowing through the secondary coil 13, the voltage generated by the detection circuit 16 according to the secondary current is used as the sub IC power supply voltage. As a result, if the secondary current flows through the secondary coil 13, the sub IC 15 can be driven, and if the secondary current disappears, the sub IC 15 cannot be driven.
  • the detection circuit 16 generates a voltage as the state of the secondary coil 13 in response to the secondary current flowing through the secondary coil 13, and drives the sub IC 15 with the generated voltage.
  • the sub IC power supply voltage is supplied to the sub IC 15.
  • the sub IC 15 includes a transistor 151 and a capacitor 152.
  • the capacitor 152 plays a role of suppressing a surge voltage that enters the sub IC 15 as a secondary current flows through the secondary coil 13 when the main primary coil mode is switched from the energization mode to the cutoff mode. Thereby, the destruction of the sub IC 15 can be suppressed.
  • the capacity of the capacitor 152 is 0.72 ⁇ F or less, for example.
  • the capacitor 152 in the sub IC 15, it is possible to suppress the surge voltage generated at the timing when the power supply 2 to the main primary coil 11 is cut off, and as a result, the destruction of the sub IC 15 is suppressed. can do. Further, by setting the capacity of the capacitor 152 to 0.72 ⁇ F or less, the capacitor 152 can be used in common with the capacitor normally provided in the ignition coil device 1.
  • FIG. 4 is a timing chart showing an operation example of the ignition device in the second embodiment of the present invention.
  • the main IC drive signal, the main primary current, the sub IC drive signal, the sub primary current, the secondary current, and the sub IC power supply voltage are changed with time.
  • the sub IC power supply voltage is a power supply voltage for driving the sub IC 15.
  • the detection circuit 16 generates a voltage as the secondary current flows through the secondary coil 13, and supplies the generated voltage to the sub IC 15 as the sub IC power supply voltage.
  • the main IC 14 starts driving.
  • the main primary coil mode is switched to the energization mode, and the main primary current in the positive direction flows through the main primary coil 11.
  • the detection circuit 16 At time t2, the detection circuit 16 generates a voltage as a secondary current flows through the secondary coil 13, and supplies the generated voltage to the sub IC 15 as a sub IC power supply voltage. Therefore, as shown in FIG. 4, at time t2, the supply of the sub IC power supply voltage to the sub IC 15 is started, so that the sub IC 15 can be driven.
  • the sub IC 15 in the drivable state starts driving.
  • the sub primary coil mode is switched to the energization mode, and the sub primary current flows through the sub primary coil 12.
  • a superposed current is generated in the secondary coil 13 as the sub primary current flows through the sub primary coil 12.
  • This superimposed current is generated in the secondary coil 13 according to the turn ratio between the sub primary coil 12 and the secondary coil 13.
  • the superimposed current by the sub primary coil 12 is superimposed on the secondary current by the main primary coil 11.
  • the input of the sub IC drive signal from the ECU 3 to the sub IC 15 continues.
  • the secondary current flowing through the secondary coil 13 becomes 0, so the voltage generated by the detection circuit 16 becomes 0. Therefore, as shown in FIG. 4, the sub IC power supply voltage becomes 0, and the supply of the sub IC power supply voltage from the detection circuit 16 to the sub IC 15 is stopped. Therefore, the drive of the sub IC 15 is stopped regardless of the sub IC drive signal input from the ECU 3. That is, when the secondary current flowing through the secondary coil 13 disappears, the supply of the sub IC power supply voltage from the detection circuit 16 to the sub IC 15 is stopped, so that the driving of the sub IC 15 is stopped regardless of the sub IC drive signal. ..
  • the input of the sub IC drive signal from the ECU 3 to the sub IC 15 is stopped.
  • the secondary current flowing in the secondary coil 13 disappears, so that the sub-primary coil 12 receives the sub-current regardless of the sub-IC drive signal. The flow of the primary current is cut off.
  • the ignition device according to the second embodiment prevents the sub primary current from continuing to flow in the sub primary coil 12 despite the disappearance of the secondary current. be able to.
  • the detection circuit 16 determines that the secondary coil 13 is in the state where the secondary current has flowed in the secondary coil 13. A voltage is generated accordingly, and the generated voltage is supplied to the sub IC 15 as a sub IC power supply voltage for driving the sub IC 15.
  • the sub IC 15 can be controlled by the sub IC power supply voltage without depending on the control from the ECU 3 side, and the sub IC 15 flows into the secondary coil 13. It is possible to suppress a case in which the sub primary current continues to flow in the sub primary coil 12 despite the disappearance of the secondary current.
  • Embodiment 3 In the third embodiment of the present invention, a specific configuration example of the detection circuit 16 in the second embodiment will be described. In the third embodiment, description of the same points as in the second embodiment will be omitted, and points different from the second embodiment will be mainly described.
  • FIG. 5 is a configuration diagram showing an ignition device according to the third embodiment of the present invention.
  • the ignition device shown in FIG. 5 includes an ignition coil device 1, a power supply 2, an ECU 3, and an ignition plug 4.
  • the ignition coil device 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, and a detection circuit 16.
  • the detection circuit 16 includes a resistor 161 connected to the secondary coil 13.
  • the resistor 161 generates a voltage as the secondary current flows through the secondary coil 13 when the main primary coil mode is switched from the energization mode to the cutoff mode. That is, the secondary current flows through the resistor 161, so that a voltage is generated in the resistor 161.
  • the resistance value of the resistor 161 may be a fixed value or a variable value that changes according to the value of the secondary current.
  • the voltage generated by the resistor 161 as the secondary current flows through the secondary coil 13, that is, the sub IC power supply voltage supplied to the sub IC 15, will be further described with reference to specific numerical examples.
  • the magnitude of the secondary current flowing through the secondary coil 13 is, for example, 100 mA.
  • the magnitude of the secondary current gradually decreases from 100 mA after time t2, and reaches 0 mA after about 2 ms has elapsed from time t2.
  • the resistance value of the resistor 161 is 100 ⁇ or more and 400 ⁇ or less. By setting the resistance value of the resistor 161 to 100 ⁇ or more and 400 ⁇ or less, it is possible to secure a sufficient voltage that can be used as the sub IC power supply voltage.
  • the voltage generated in the resistor 161 by the above-mentioned secondary current flowing through the resistor 161 at time t2 is 10 V or more and 40 V or less.
  • This voltage is used as the sub IC power supply voltage, as described in the second embodiment. Therefore, the sub IC 15 can be driven only during the period when the secondary current flows in the secondary coil 13. When the secondary current flowing through the secondary coil 13 becomes 0, the supply of the sub IC power supply voltage to the sub IC 15 is stopped, and the driving of the sub IC 15 can be stopped.
  • the detection circuit 16 is configured by the resistor 161 as a specific configuration example of the detection circuit 16 according to the second embodiment. As a result, the same effect as that of the second embodiment can be obtained. Further, since the resistor 161 is used as the configuration for the detection circuit 16 to generate the voltage, the voltage used as the sub IC power supply voltage can be easily generated.
  • FIG. 6 is a configuration diagram showing an ignition device according to a fourth embodiment of the present invention.
  • the ignition device shown in FIG. 6 includes an ignition coil device 1, a power supply 2, an ECU 3, and an ignition plug 4.
  • the ignition coil device 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, and a detection circuit 16.
  • the detection circuit 16 is configured to include a Zener diode 162 connected to the secondary coil 13.
  • the Zener diode 162 generates a voltage as a secondary current flows through the secondary coil 13 when the main primary coil mode is switched from the conduction mode to the cutoff mode. That is, the secondary current flows through the Zener diode 162, so that a voltage is generated in the Zener diode 162.
  • Zener diode 162 generates a stable voltage as compared with resistor 161 in the third embodiment.
  • the voltage generated by the Zener diode 162 when the secondary current flows through the secondary coil 13, that is, the sub IC power supply voltage supplied to the sub IC 15 will be further described with reference to specific numerical examples. ..
  • the magnitude of the secondary current flowing through the secondary coil 13 is, for example, 100 mA.
  • the magnitude of the secondary current gradually decreases from 100 mA after time t2, and reaches 0 mA after about 2 ms has elapsed from time t2.
  • the Zener voltage of the Zener diode 162 is 5V or more and 20V or less.
  • the Zener voltage of the Zener diode 162 is specifically 14V.
  • the voltage generated by the Zener diode 162 when the above-mentioned secondary current flows through the Zener diode 162 at time t2 is 14V.
  • This voltage is used as the sub IC power supply voltage, as described in the second embodiment. Therefore, the sub IC 15 can be driven only during the period when the secondary current flows in the secondary coil 13. When the secondary current flowing through the secondary coil 13 becomes 0, the supply of the sub IC power supply voltage to the sub IC 15 is stopped, and the driving of the sub IC 15 can be stopped.
  • the detection circuit 16 is composed of the Zener diode 162. As a result, the same effect as that of the second embodiment can be obtained. Further, since the Zener diode 162 is used as a configuration for the detection circuit 16 to generate a voltage, a stable constant voltage used as a sub IC power supply voltage can be easily generated.
  • Embodiment 5 an ignition device including an ignition coil device 1 having a configuration different from that of the first embodiment will be described. In the fifth embodiment, description of the same points as those in the first embodiment will be omitted, and points different from the first embodiment will be mainly described.
  • FIG. 7 is a configuration diagram showing an ignition device according to a fifth embodiment of the present invention.
  • the ignition device shown in FIG. 7 includes an ignition coil device 1, a power supply 2, an ECU 3, and an ignition plug 4.
  • the ignition coil device 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, a detection circuit 16 and a sub IC drive determination circuit 17.
  • the detection circuit 16 is connected in parallel with the transistor 141 of the main IC 14 and detects the state of the secondary coil 13. Specifically, the detection circuit 16 is configured to detect, as the state of the secondary coil 13, the main IC collector voltage that changes depending on the secondary current flowing through the secondary coil 13.
  • the main IC collector voltage is a voltage generated between the collector and the emitter of the transistor 141 of the main IC 14.
  • the sub IC drive determination circuit 17 performs control to stop the drive of the sub IC 15 based on the main IC collector voltage detected as the state of the secondary coil 13 by the detection circuit 16. In other words, a voltage corresponding to the secondary current flowing in the secondary coil 13 is generated between the collector and the emitter of the transistor 141, and the sub IC drive determination circuit 17 detects the voltage and thus the secondary coil 13 receives the secondary current.
  • the control for stopping the driving of the sub IC 15 is performed by detecting that the next current is not flowing.
  • FIG. 8 is a timing chart showing an operation example of the ignition device in the fifth embodiment of the present invention.
  • FIG. 8 shows the changes over time of the main IC drive signal, the main primary current, the sub IC drive signal, the sub primary current, the secondary current, and the main IC collector voltage.
  • the main IC collector voltage is a voltage generated between the collector and emitter of the transistor 141 of the main IC 14.
  • the main IC 14 starts driving.
  • the main primary coil mode is switched to the energization mode, and the main primary current in the positive direction flows through the main primary coil 11.
  • the sub IC 15 starts driving.
  • the sub primary coil mode is switched to the energization mode, and the sub primary current flows through the sub primary coil 12.
  • the sub IC drive determination circuit 17 detects that the secondary current does not flow in the secondary coil 13 from the main IC collector voltage detected by the detection circuit 16, and thus stops driving the sub IC 15. That is, if the secondary current flowing through the secondary coil 13 disappears, the sub IC drive determination circuit 17 stops driving the sub IC 15 regardless of the sub IC drive signal input from the ECU 3.
  • the input of the sub IC drive signal from the ECU 3 to the sub IC 15 is stopped.
  • the secondary current flowing in the secondary coil 13 disappears, so that the sub-primary coil 12 receives the sub-current regardless of the sub-IC drive signal. The flow of the primary current is cut off.
  • the ignition device in the fifth embodiment it is possible to prevent the sub primary current from continuing to flow in the sub primary coil 12 despite the disappearance of the secondary current. be able to.
  • the magnitude of the secondary current flowing through the secondary coil 13 is, for example, 100 mA.
  • the magnitude of the secondary current gradually decreases from 100 mA after time t2, and reaches 0 mA after about 2 ms has elapsed from time t2.
  • the voltage generated in the secondary coil 13 is, for example, 100V.
  • the winding resistance of the secondary coil 13 is 5 k ⁇ and the turn ratio between the secondary coil 13 and the main primary coil 11 is 100:1.
  • the voltage generated in the winding resistance of the secondary coil 13 when the above-mentioned secondary current flows in the winding resistance is 500V. Therefore, the total voltage generated in the secondary coil 13 when the main primary coil mode is switched from the energization mode to the cutoff mode is 1500V.
  • a voltage of 15V is generated in the main primary coil 11, and this voltage is also generated between the collector and the emitter of the transistor 141 of the main IC 14.
  • the sub IC drive determination circuit 17 detects the voltage generated between the collector and the emitter of the transistor 141 of the main IC 14, that is, the voltage of 15V, by the detection circuit 16, and the secondary current starts to flow in the secondary coil 13. Is detected. Further, the sub IC drive determination circuit 17 stops detecting the voltage generated between the collector and the emitter of the transistor 141 of the main IC 14, that is, the voltage of 15V, so that the secondary current flows to the secondary coil 13. Detects that the power supply has ended.
  • the sub IC drive determination circuit 17 detects from the detection result of the detection circuit 16 that the secondary current has stopped flowing in the secondary coil 13, the sub IC drive determination circuit 17 stops driving the sub IC 15. That is, if the secondary current flowing through the secondary coil 13 disappears, the sub IC drive determination circuit 17 stops driving the sub IC 15 regardless of the sub IC drive signal input from the ECU 3.
  • the detection circuit 16 is configured to detect the collector voltage of the transistor 141 of the main IC 14, that is, the main IC collector voltage, as the state of the secondary coil 13. There is. Further, the sub IC drive determination circuit 17 stops the drive of the sub IC 15 based on the main IC collector voltage detected as the state of the secondary coil 13 by the detection circuit 16.
  • an ignition device including a plurality of ignition coil devices 1 according to any one of the first to fifth embodiments will be described.
  • description of the same points as those of the first to fifth embodiments will be omitted, and points different from the first to fifth embodiments will be mainly described.
  • FIG. 9 is a configuration diagram showing an ignition device according to a sixth embodiment of the present invention.
  • the ignition device shown in FIG. 9 includes a plurality of ignition coil devices 1, a power supply 2, an ECU 3, and a plurality of spark plugs 4.
  • Each of the plurality of ignition coil devices 1 includes a main primary coil 11, a sub primary coil 12, a secondary coil 13, a main IC 14, a sub IC 15, a detection circuit 16 and a sub IC drive determination circuit 17.
  • a reference numeral 1 of each of the plurality of ignition coil devices is added to the end of (n), (n+1), (n+2), (n). n+3) is attached. Moreover, (n), (n+1), (n+2), and (n+3) are added to the end of the reference numerals of the constituent elements of each ignition coil device 1.
  • FIG. 9 exemplifies a case where the ignition device is configured to include a plurality of ignition coil devices 1 according to the first embodiment.
  • the number of ignition coil devices 1 configured by the main primary coil 11, the sub primary coil 12, the secondary coil 13, the main IC 14, and the sub IC 15 is plural.
  • FIG. 10 is a timing chart showing an operation example of the ignition device in the sixth embodiment of the present invention.
  • a sub IC drive signal a main IC drive signal (n)
  • the sub IC drive signal is a signal in which the sub IC drive signal (n), the sub IC drive signal (n+1), the sub IC drive signal (n+2), and the sub IC drive signal (n+3) are superimposed. ..
  • a superimposed sub IC drive signal such a signal is referred to as a superimposed sub IC drive signal.
  • the sub IC drive signals (n) to (n+3) included in the superposed sub IC drive signal are signals for driving the sub ICs 15(n) to 15(n+3), respectively.
  • the main IC drive signal (n) is a signal for driving the main IC 14(n).
  • the main IC drive signal (n) is input from the ECU 3 to the main IC 14(n)
  • the main IC 14(n) is driven to switch the main primary coil mode from the cutoff mode to the energization mode.
  • the main primary current (n) is the current flowing through the main primary coil 11(n).
  • the sub primary current (n) is a current flowing through the sub primary coil 12(n).
  • the secondary current (n) is a current flowing through the secondary coil 13(n).
  • the main IC 14(n) starts driving.
  • the main primary coil mode is switched to the energization mode, and the main primary current (n) in the positive direction flows through the main primary coil 11(n).
  • the sub IC 15(n) starts driving.
  • the sub primary coil mode is switched to the energization mode, and the sub primary current (n) flows through the sub primary coil 12(n).
  • the operation of the ignition coil device 1(n) after the time t4 is as described in each of the first to fifth embodiments.
  • the ignition coil device 1(n) includes the detection circuit 16(n), so that the secondary current (n) flowing in the secondary coil 13 is It has the function of detecting.
  • the secondary current (n) is applied to the secondary coil 13(n).
  • the sub IC 15(n) is driven in response to only the sub IC drive signal (n) included in the superposed sub IC drive signal input from the ECU 3 during the period.
  • the ignition coil device 1(n) has the remaining signals included in the superimposed sub IC drive signal input from the ECU 3 during the period when the secondary current (n) is not being supplied to the secondary coil 13(n). That is, the sub IC 15(n) is configured not to respond to the sub IC drive signals (n+1), (n+2) and (n+3).
  • the sub ICs 15(n) to 15(n+3) of the plurality of ignition coil devices 1(n) to 1(n+3) are driven by the sub ICs corresponding to the sub ICs 15(n) to 15(n+3).
  • a superimposing sub IC drive signal in which the signals (n) to (n+3) are superposed is input.
  • each of the sub ICs 15(n) to 15(n+3) is configured to drive in response only to the sub IC drive signal corresponding to itself included in the superimposed sub IC drive signal input to itself. ..
  • the ignition device With the configuration of the ignition device according to the sixth embodiment described above, it is possible to realize the commonization of the sub IC drive signals input from the ECU 3 to the respective ignition coil devices 1(n) to 1(n+3). As a result, it is possible to reduce the number of signal lines for outputting signals from the ECU 3 to the ignition coil devices 1(n) to 1(n+3) corresponding to each cylinder of the internal combustion engine, and to reduce the size and cost of the ignition device. Contribute.
  • the sub IC drive signal corresponding to each sub IC 15 is superimposed on each sub IC 15 of the plurality of ignition coil devices 1 according to any one of the first to fifth embodiments.
  • the superimposing sub IC drive signal is input.
  • each sub IC 15 is configured to drive in response only to the sub IC drive signal corresponding to itself included in the superimposed sub IC drive signal input to itself.
  • each ignition coil device 1 can drive the sub IC 15 only while the secondary current is flowing to the secondary coil 13 of itself. Therefore, the number of harnesses and the number of connector pins of the ECU 3 can be reduced. As a result, it contributes to downsizing and weight reduction of the ignition device, and further contributes to cost reduction of the ignition device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

点火装置は、メイン一次コイルと、サブ一次コイルと、二次コイルと、メインICを駆動させることでメイン一次コイルモードを遮断モードから通電モードに切り替え、メインICの駆動を停止させることでメイン一次コイルモードを通電モードから遮断モードに切り替え、サブICを駆動させることでサブ一次コイルモードを遮断モードから通電モードに切り替え、サブICの駆動を停止させることでサブ一次コイルモードを通電モードから遮断モードに切り替える制御部と、二次コイルの状態を検出する検出回路と、を備え、検出回路によって検出された二次コイルの状態が非通電状態である場合、サブICの駆動が停止するように構成されている。

Description

点火装置
 本発明は、点火装置に関する。
 従来において、内燃機関の燃焼室内の混合気に点火する点火装置として、メイン一次コイル、サブ一次コイルおよび二次コイルによって構成される点火コイルを備えた点火装置が提案されている(例えば、特許文献1参照)。
 特許文献1に記載の点火装置は、電源からメイン一次コイルへの通電を遮断することに伴って二次コイルに発生する電流と、電源からサブ一次コイルへの通電に伴って二次コイルに発生する電流とを加算的に重畳した電流が二次コイルに流れるよう構成されている。
米国特許第9399979号
 ここで、特許文献1に記載の点火装置では、二次電流を二次コイルに通電する制御が行われた場合、二次電流が消失しているにも関わらず、サブ一次コイルにサブ一次電流が流れ続けるケースが発生しうる。このようなケースでは、サブ一次コイル間の電位差が大きくなり、過大な電流が発生する可能性がある。このような電流によって、サブ一次コイルの発熱が増加し、その結果、点火コイルが破損してしまう可能性がある。
 本発明は、上記のような課題を解決するためになされたものであり、二次コイルに流れる二次電流が消失しているにも関わらず、サブ一次コイルにサブ一次電流が流れ続けるケースが発生することを抑制することができる点火装置を得ることを目的とする。
 本発明における点火装置は、通電によって通電磁束を発生させ、通電が遮断されることによって通電磁束の向きと逆方向の遮断磁束を発生させるメイン一次コイルと、メイン一次コイルに通電する通電モードと、メイン一次コイルへの通電を遮断する遮断モードとの間で、メイン一次コイルのモードであるメイン一次コイルモードを切り替えるメインICと、通電によって遮断磁束の向きと同方向の追加磁束を発生させるサブ一次コイルと、サブ一次コイルに通電する通電モードと、サブ一次コイルへの通電を遮断する遮断モードとの間で、サブ一次コイルのモードであるサブ一次コイルモードを切り替えるサブICと、メイン一次コイルおよびサブ一次コイルと磁気的に結合することでエネルギを発生させる二次コイルと、メインICを駆動させることでメイン一次コイルモードを遮断モードから通電モードに切り替え、メインICの駆動を停止させることでメイン一次コイルモードを通電モードから遮断モードに切り替え、サブICを駆動させることでサブ一次コイルモードを遮断モードから通電モードに切り替え、サブICの駆動を停止させることでサブ一次コイルモードを通電モードから遮断モードに切り替える制御部と、二次コイルの状態を検出する検出回路と、を備え、検出回路によって検出された二次コイルの状態が非通電状態である場合、サブICの駆動が停止するものである。
 本発明によれば、二次コイルに流れる二次電流が消失しているにも関わらず、サブ一次コイルにサブ一次電流が流れ続けるケースが発生することを抑制することができる点火装置を得ることができる。
本発明の実施の形態1における点火装置を示す構成図である。 本発明の実施の形態1における点火装置の動作例を示すタイミングチャートである。 本発明の実施の形態2における点火装置を示す構成図である。 本発明の実施の形態2における点火装置の動作例を示すタイミングチャートである。 本発明の実施の形態3における点火装置を示す構成図である。 本発明の実施の形態4における点火装置を示す構成図である。 本発明の実施の形態5における点火装置を示す構成図である。 本発明の実施の形態5における点火装置の動作例を示すタイミングチャートである。 本発明の実施の形態6における点火装置を示す構成図である。 本発明の実施の形態6における点火装置の動作例を示すタイミングチャートである。 比較例における点火装置を示す構成図である。 比較例における点火装置の動作例を示すタイミングチャートである。
 以下、本発明による点火装置を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。
 実施の形態1.
 はじめに、本発明の実施の形態1における点火装置との比較例として、比較例における点火装置について説明する。図11は、比較例における点火装置を示す構成図である。図11に示す点火装置は、点火コイル装置1A、電源2、ECU(Engine Control Unit)3および点火プラグ4を備える。
 点火コイル装置1Aは、内燃機関に取り付けられており、点火プラグ4にエネルギを供給することで点火プラグ4のギャップ間で火花放電を発生させる。点火コイル装置1Aは、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC(Integrated Circuit)14およびサブIC(Integrated Circuit)15を備える。
 メイン一次コイル11およびサブ一次コイル12のそれぞれは、同一の電源2と接続されている。電源2は、例えばバッテリなどの直流電源である。
 メイン一次コイル11およびサブ一次コイル12のそれぞれは、電源2から通電された場合に発生させる磁束の向きが互いに逆方向になるように巻かれている。すなわち、電源2から見ると、メイン一次コイル11およびサブ一次コイル12のそれぞれの極性は、互いに逆極性となる。
 メイン一次コイル11は、電源2から通電された場合、その極性が二次コイル13の極性と逆極性となる。サブ一次コイル12は、電源2から通電された場合、その極性が二次コイル13の極性と同極性となる。
 メイン一次コイル11およびサブ一次コイル12は、二次コイル13と磁気的に結合している。これにより、メイン一次コイル11およびサブ一次コイル12と、二次コイル13との間で相互誘導が起こる。
 メイン一次コイル11は、電源2からの通電によって磁束を発生させる。以下、電源2からの通電によってメイン一次コイル11が発生させる磁束を通電磁束と称す。また、メイン一次コイル11は、電源2からの通電が遮断されることによって通電磁束の向きと逆方向の磁束を発生させる。以下、電源2からの通電が遮断されることによってメイン一次コイル11が発生させる磁束を遮断磁束と称す。
 サブ一次コイル12は、電源2からの通電によって通電磁束の向きと同方向の磁束を発生させる。以下、電源2からの通電によってサブ一次コイル12が発生させる磁束を追加磁束と称す。
 二次コイル13は、一端が点火プラグ4と接続されており、他端がグランドと接続されている。二次コイル13は、メイン一次コイル11およびサブ一次コイル12と磁気的に結合することでエネルギを発生させる。二次コイル13によって発生したエネルギは、点火プラグ4に供給される。
 点火プラグ4にエネルギが供給されると、点火プラグ4のギャップ間で火花放電が発生する。これにより、点火プラグ4は、内燃機関の燃焼室内の可燃混合気に点火し、その可燃混合気を燃焼させる。
 メインIC14は、電源2からメイン一次コイル11に通電する通電モードと、電源2からメイン一次コイル11への通電を遮断する遮断モードとの間で、メイン一次コイル11のモードを切り替える。以下、メイン一次コイル11のモードを、メイン一次コイルモードと称す。
 具体的には、メインIC14は、オンとオフとの間で切り替え可能なトランジスタ141を含んで構成されている。トランジスタ141のコレクタは、メイン一次コイル11と接続されている。トランジスタ141のエミッタは、グランドと接続されている。
 トランジスタ141は、オンである場合、電源2とメイン一次コイル11との間を導通させる。これにより、電源2からメイン一次コイル11に通電することが可能となる。一方、トランジスタ141は、オフである場合、電源2とメイン一次コイル11との間を遮断する。これにより、電源2からメイン一次コイル11への通電を遮断することが可能となる。
 サブIC15は、電源2からサブ一次コイル12に通電する通電モードと、電源2からサブ一次コイル12への通電を遮断する遮断モードとの間で、サブ一次コイル12のモードを切り替える。以下、サブ一次コイル12のモードを、サブ一次コイルモードと称す。
 具体的には、サブIC15は、オンとオフとの間で切り替え可能なトランジスタ151を含んで構成されている。トランジスタ151のコレクタは、サブ一次コイル12と接続されている。トランジスタ151のエミッタは、グランドと接続されている。
 トランジスタ151は、オンである場合、電源2とサブ一次コイル12との間を導通させる。これにより、電源2からサブ一次コイル12に通電することが可能となる。一方、トランジスタ151は、オフである場合、電源2とサブ一次コイル12との間を遮断する。これにより、電源2からサブ一次コイル12への通電を遮断することが可能となる。
 ECU3は、点火コイル装置1Aを制御する制御部の一例である。ECU3は、内燃機関の運転状態に関する情報を検出する各種センサの検出結果を取得し、取得した各種センサの検出結果に基づいて内燃機関の運転状態を判断し、点火コイル装置1Aを制御する。具体的には、ECU3は、点火コイル装置1AのメインIC14およびサブIC15のそれぞれの駆動を制御する。
 以下、説明の便宜上、メイン一次コイル11からメインIC14に向かって電流が流れる方向、すなわち、図11に図示する矢印方向を正方向とし、メインIC14からメイン一次コイル11に向かって電流が流れる方向を負方向と定義する。また、サブ一次コイル12からサブIC15に向かって電流が流れる方向、すなわち、図11に図示する矢印方向を正方向とし、サブIC15からサブ一次コイル12に向かって電流が流れる方向を負方向と定義する。
 さらに、二次コイル13から点火プラグ4に向かって電流が流れる方向、すなわち、図11に図示する矢印方向を正方向とし、点火プラグ4から二次コイル13に向かって電流が流れる方向を負方向と定義する。なお、これらの定義は、後述する図1、図3、図5、図6および図7についても同様である。
 次に、比較例における点火装置の動作例について、図12を参照しながら説明する。図12は、比較例における点火装置の動作例を示すタイミングチャートである。図12では、メインIC駆動信号、メイン一次電流、サブIC駆動信号、サブ一次電流および二次電流のそれぞれの時間変化が図示されている。
 ここで、メインIC駆動信号とは、メインIC14を駆動するための信号である。ECU3からメインIC14にメインIC駆動信号が入力されると、メインIC14が駆動することによってメイン一次コイルモードが遮断モードから通電モードに切り替えられる。メイン一次電流とは、メイン一次コイル11に流れる電流である。
 サブIC駆動信号とは、サブIC15を駆動するための信号である。ECU3からサブIC15にサブIC駆動信号が入力されると、サブIC15が駆動することによってサブ一次コイルモードが遮断モードから通電モードに切り替えられる。サブ一次電流とは、サブ一次コイル12に流れる電流である。二次電流とは、二次コイル13に流れる電流である。
 図12に示すように、時刻t1において、ECU3からメインIC14へのメインIC駆動信号の入力が開始されると、メインIC14が駆動を開始する。この場合、メイン一次コイルモードが通電モードに切り替えられ、メイン一次コイル11に正方向のメイン一次電流が流れる。
 時刻t2において、ECU3からメインIC14へのメインIC駆動信号の入力が停止すると、メインIC14の駆動が停止する。この場合、メイン一次コイルモードが遮断モードに切り替えられ、メイン一次電流が0となる。
 メイン一次コイルモードが遮断モードに切り替えられると、相互誘導作用によって、二次コイル13に電圧が発生する。この電圧によって、点火プラグ4のギャップ間で絶縁破壊が起こって放電が発生し、二次コイル13に負方向の二次電流が流れる。
 時刻t3において、ECU3からサブIC15へのサブIC駆動信号の入力が開始されると、サブIC15が駆動を開始する。この場合、サブ一次コイルモードが通電モードに切り替えられ、サブ一次コイル12にサブ一次電流が流れる。サブ一次電流は、図12に示すように、立ち上がりが速く、その立ち上がりの後、緩やかに増加する。
 サブ一次コイル12にサブ一次電流が流れることに伴って二次コイル13に重畳電流が発生する。この重畳電流は、サブ一次コイル12と二次コイル13との巻数比に応じて二次コイル13に発生する。図12に示すように、サブ一次コイル12による重畳電流は、メイン一次コイル11による二次電流に重畳する。
 時刻t4において、サブIC15の駆動が継続しており、サブ一次コイル12にサブ一次電流が流れているものの、二次コイル13に流れる二次電流が0となる。つまり、二次コイル13に流れる二次電流が消失する。
 時刻t5において、ECU3からサブIC15へのサブIC駆動信号の入力が停止すると、サブIC15の駆動が停止する。つまり、ECU3は、サブIC15の駆動を停止させることでサブ一次コイルモードを通電モードから遮断モードに切り替える。この場合、サブ一次コイルモードが遮断モードに切り替えられ、サブ一次電流が0となる。
 ここで、時刻t4と時刻t5との間の期間、すなわち、サブIC過剰駆動期間に着目する。この場合、この期間では、二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けている。この場合、上述したように、サブ一次コイル12間の電位差が大きくなり、過大な電流が発生する。
 このような電流によって、サブ一次コイル12およびサブIC15の発熱が増加し、その結果、点火コイル装置1が破損してしまう可能性がある。また、二次コイル13に流れる二次電流が消失した後、サブIC15の駆動を停止させるためにトランジスタ151をオンからオフに切り替えると、二次コイル13に逆極性の電圧が発生する。その結果、点火コイル装置1に内蔵している各種素子にダメージを与える可能性がある。
 以上から分かるように、比較例における点火装置の構成は、二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けてしまう構成となっているので、上述のような問題が発生する可能性がある。これに対して、実施の形態1における点火装置は、二次電流が消失している場合には、サブIC駆動信号によらず、サブ一次コイル12にサブ一次電流が流れることを遮断する構成となっている。
 次に、本発明の実施の形態1における点火装置について、図1を参照しながら説明する。図1は、本発明の実施の形態1における点火装置を示す構成図である。なお、実施の形態1における点火装置を説明するにあたって、上述した比較例における点火装置と同様である点の説明を省略し、比較例における点火装置と異なる点を中心に説明する。
 図1に示す点火装置は、点火コイル装置1、電源2、ECU3および点火プラグ4を備える。点火コイル装置1は、内燃機関に取り付けられており、点火プラグ4にエネルギを供給することで、点火プラグ4のギャップ間で火花放電を発生させる。点火コイル装置1は、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15、検出回路16およびサブIC駆動判定回路17を備える。
 検出回路16は、二次コイル13に接続されており、二次コイル13の状態を検出する。具体的には、検出回路16は、二次コイル13の状態として、二次コイル13に流れる二次電流を検出し、その検出結果をサブIC駆動判定回路17に出力する。
 サブIC駆動判定回路17は、検出回路16によって検出された二次コイル13の状態が、二次コイル13に二次電流が流れていない状態、すなわち非通電状態である場合、サブIC15の駆動を停止させる制御を行う。
 具体的には、サブIC駆動判定回路17は、検出回路16によって二次コイル13の状態として検出された二次電流に基づいて、サブIC15の駆動を停止させる制御を行う。
 より具体的には、サブIC駆動判定回路17は、検出回路16によって検出された二次電流の大きさが予め設定される電流閾値以下である場合、サブIC15の駆動を停止させる制御を行う。ここで、この電流閾値は、例えば0である。また、電流閾値は、0を基準に適宜マージンを付加した値としてもよい。このように、サブIC駆動判定回路17は、検出回路16によって検出された二次電流の大きさが電流閾値以下となった場合、サブIC15の駆動を停止させる。したがって、二次コイル13に二次電流が通電している期間のみ、ECU3側からの制御によらず、サブIC駆動判定回路17側からサブIC15を制御することが可能となる。
 次に、実施の形態1における点火装置の動作例について、図2を参照しながら説明する。図2は、本発明の実施の形態1における点火装置の動作例を示すタイミングチャートである。図2では、メインIC駆動信号、メイン一次電流、サブIC駆動信号、サブ一次電流および二次電流のそれぞれの時間変化が図示されている。
 図2に示すように、時刻t1において、ECU3からメインIC14へのメインIC駆動信号の入力が開始されると、メインIC14が駆動を開始する。この場合、メイン一次コイルモードが通電モードに切り替えられ、メイン一次コイル11に正方向のメイン一次電流が流れる。
 このように、時刻t1では、ECU3は、メインIC14を駆動させることでメイン一次コイルモードを遮断モードから通電モードに切り替える。
 時刻t2において、ECU3からメインIC14へのメインIC駆動信号の入力が停止すると、メインIC14の駆動が停止する。この場合、メイン一次コイルモードが遮断モードに切り替えられ、メイン一次電流が0となる。
 メイン一次コイルモードが遮断モードに切り替えられると、相互誘導作用によって、二次コイル13に電圧が発生する。この電圧によって、点火プラグ4のギャップ間で絶縁破壊が起こって放電が発生し、二次コイル13に負方向の二次電流が流れる。
 このように、時刻t2では、ECU3は、メインIC14の駆動を停止させることでメイン一次コイルモードを通電モードから遮断モードに切り替える。
 時刻t3において、ECU3からサブIC15へのサブIC駆動信号の入力が開始されると、サブIC15が駆動を開始する。この場合、サブ一次コイルモードが通電モードに切り替えられ、サブ一次コイル12にサブ一次電流が流れる。サブ一次電流は、図2に示すように、立ち上がりが速く、その立ち上がりの後、緩やかに増加する。
 サブ一次コイル12にサブ一次電流が流れることに伴って二次コイル13に重畳電流が発生する。この重畳電流は、サブ一次コイル12と二次コイル13との巻数比に応じて二次コイル13に発生する。図2に示すように、サブ一次コイル12による重畳電流は、メイン一次コイル11による二次電流に重畳する。
 このように、時刻t3では、ECU3は、サブIC15を駆動させることでサブ一次コイルモードを遮断モードから通電モードに切り替える。
 時刻t4において、ECU3からサブIC15へのサブIC駆動信号の入力が継続している。しかしながら、検出回路16によって検出された二次電流が0であるので、サブIC駆動判定回路17は、サブIC15の駆動を停止させる。つまり、二次コイル13に流れる二次電流が消失すれば、サブIC駆動信号によらず、サブIC駆動判定回路17は、サブIC15の駆動を停止させる。
 これにより、二次コイル13に流れる二次電流が消失している場合において、ECU3側からのサブIC15の制御によらず、サブIC駆動判定回路17側からサブIC15の駆動を停止させることが可能となる。
 時刻t5において、ECU3からサブIC15へのサブIC駆動信号の入力が停止する。ここで、時刻t4と時刻t5との間の期間、すなわち、サブIC駆動停止期間に着目する。この期間では、先の図12に示すサブIC過剰駆動期間とは異なり、二次コイル13に流れる二次電流が消失したことに応じて、サブIC駆動信号によらず、サブ一次コイル12にサブ一次電流が流れることが遮断される。
 したがって、比較例における点火装置とは異なり、実施の形態1における点火装置では、二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けてしまうことを抑制することができる。
 以上、本実施の形態1によれば、点火装置において、検出回路16によって検出された二次コイル13の状態が非通電状態である場合、サブIC15の駆動が停止するように構成されている。なお、実施の形態1では、サブIC駆動判定回路17が、検出回路16によって二次コイル13の状態として検出された二次電流に基づいて、サブIC15の駆動を停止させるように構成される場合を例示している。
 これにより、ECU3側からの制御によらず、サブIC15の制御を行うことが可能となり、二次コイル13に流れる二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けるケースが発生することを抑制することができる。
 したがって、サブ一次コイル12間の電位差が大きくなることで過大な電流が発生することによって、サブ一次コイル12およびサブIC15の発熱が増加することを抑制し、結果として、点火コイル装置1が破損してしまうことを抑制することができる。また、二次コイル13に逆極性の電圧が発生することを抑制し、結果として、点火コイル装置1に内蔵している各種素子にダメージを与えることを抑制することができる。
 実施の形態2.
 本発明の実施の形態2では、先の実施の形態1と構成が異なっている点火コイル装置1を備えた点火装置について説明する。なお、実施の形態2では、先の実施の形態1と同様である点の説明を省略し、先の実施の形態1と異なる点を中心に説明する。
 図3は、本発明の実施の形態2における点火装置を示す構成図である。図3に示す点火装置は、点火コイル装置1、電源2、ECU3および点火プラグ4を備える。点火コイル装置1は、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15および検出回路16を備える。
 検出回路16は、二次コイル13に接続されており、メイン一次コイルモードが通電モードから遮断モードに切り替えられた場合に二次コイル13に二次電流が流れることに伴って電圧を発生させる。
 検出回路16は、その発生させた電圧を、サブIC15を駆動させるための電圧であるサブIC電源電圧として、サブIC15に供給するように構成されている。つまり、二次コイル13に二次電流が流れている間、その二次電流に従って検出回路16が発生させる電圧は、サブIC電源電圧として使用される。これにより、二次コイル13に二次電流が流れていれば、サブIC15が駆動可能な状態となり、その二次電流が消失すれば、サブIC15が駆動不可な状態となる。
 このように、検出回路16は、二次コイル13の状態として、二次コイル13に二次電流が流れたことに応じて電圧を発生させ、発生させた電圧を、サブIC15を駆動するためのサブIC電源電圧として、サブIC15に供給するように構成される。
 サブIC15は、トランジスタ151およびコンデンサ152を含んで構成されている。コンデンサ152は、メイン一次コイルモードが通電モードから遮断モードに切り替えられた場合に二次コイル13に二次電流が流れること伴ってサブIC15に侵入するサージ電圧を抑制する役割を果たす。これにより、サブIC15の破壊を抑制することができる。なお、コンデンサ152の容量は、例えば0.72μF以下である。
 このように、サブIC15にコンデンサ152を設けることによって、電源2からメイン一次コイル11への通電が遮断されたタイミングで発生するサージ電圧を抑制することができ、その結果、サブIC15の破壊を抑制することができる。また、コンデンサ152の容量を0.72μF以下にすることによって、点火コイル装置1に通常設けられるコンデンサと共用してコンデンサ152を使用することができる。
 次に、実施の形態2における点火装置の動作例について、図4を参照しながら説明する。図4は、本発明の実施の形態2における点火装置の動作例を示すタイミングチャートである。図4では、メインIC駆動信号、メイン一次電流、サブIC駆動信号、サブ一次電流、二次電流およびサブIC電源電圧のそれぞれの時間変化が図示されている。
 ここで、サブIC電源電圧とは、サブIC15を駆動させるための電源電圧である。検出回路16は、上述したように、二次コイル13に二次電流が流れることに伴って電圧を発生させ、その発生させた電圧を、サブIC電源電圧としてサブIC15に供給する。
 図4に示すように、時刻t1において、ECU3からメインIC14へのメインIC駆動信号の入力が開始されると、メインIC14が駆動を開始する。この場合、メイン一次コイルモードが通電モードに切り替えられ、メイン一次コイル11に正方向のメイン一次電流が流れる。
 時刻t2において、ECU3からメインIC14へのメインIC駆動信号の入力が停止すると、メインIC14の駆動が停止する。この場合、メイン一次コイルモードが遮断モードに切り替えられ、メイン一次電流が0となる。
 メイン一次コイルモードが遮断モードに切り替えられると、相互誘導作用によって、二次コイル13に電圧が発生する。この電圧によって、点火プラグ4のギャップ間で絶縁破壊が起こって放電が発生し、二次コイル13に負方向の二次電流が流れる。
 時刻t2において、検出回路16は、二次コイル13に二次電流が流れることに伴って電圧を発生させ、その発生させた電圧を、サブIC電源電圧としてサブIC15に供給する。したがって、図4に示すように、時刻t2において、サブIC15へのサブIC電源電圧の供給が開始されるので、サブIC15が駆動可能な状態となる。
 時刻t3において、ECU3からサブIC15へのサブIC駆動信号の入力が開始されると、駆動可能な状態となっているサブIC15が駆動を開始する。この場合、先の図2と同様に、サブ一次コイルモードが通電モードに切り替えられ、サブ一次コイル12にサブ一次電流が流れる。
 サブ一次コイル12にサブ一次電流が流れることに伴って二次コイル13に重畳電流が発生する。この重畳電流は、サブ一次コイル12と二次コイル13との巻数比に応じて二次コイル13に発生する。図4に示すように、サブ一次コイル12による重畳電流は、メイン一次コイル11による二次電流に重畳する。
 時刻t4において、ECU3からサブIC15へのサブIC駆動信号の入力が継続している。しかしながら、時刻t4では、二次コイル13に流れる二次電流が0となるので、検出回路16が発生させる電圧が0となる。したがって、図4に示すように、サブIC電源電圧が0となり、検出回路16からサブIC15へのサブIC電源電圧の供給が停止する。そのため、ECU3から入力されるサブIC駆動信号によらず、サブIC15の駆動が停止する。つまり、二次コイル13に流れる二次電流が消失すれば、検出回路16からサブIC15へのサブIC電源電圧の供給が停止するので、サブIC駆動信号によらず、サブIC15の駆動が停止する。
 これにより、ECU3からサブIC15へのサブIC駆動信号の入力が継続している場合であっても、二次電流が消失すれば、サブIC15の駆動を停止させることが可能となる。
 時刻t5において、ECU3からサブIC15へのサブIC駆動信号の入力が停止する。ここで、時刻t4と時刻t5との間の期間、すなわち、サブIC駆動停止期間に着目する。この期間では、先の図12に示すサブIC過剰駆動期間とは異なり、二次コイル13に流れる二次電流が消失したことに応じて、サブIC駆動信号によらず、サブ一次コイル12にサブ一次電流が流れることが遮断される。
 したがって、比較例における点火装置とは異なり、実施の形態2における点火装置では、二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けてしまうことを抑制することができる。
 以上、本実施の形態2によれば、点火装置において、検出回路16は、先の実施の形態1と異なり、二次コイル13の状態として、二次コイル13に二次電流が流れたことに応じて電圧を発生させ、発生させた電圧を、サブIC15を駆動するためのサブIC電源電圧として、サブIC15に供給するように構成される。
 これにより、二次コイル13に二次電流が通電している期間では、ECU3側からの制御によらず、サブIC電源電圧によってサブIC15の制御を行うことが可能となり、二次コイル13に流れる二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けるケースが発生することを抑制することができる。
 実施の形態3.
 本発明の実施の形態3では、先の実施の形態2における検出回路16の具体的な構成例について説明する。なお、実施の形態3では、先の実施の形態2と同様である点の説明を省略し、先の実施の形態2と異なる点を中心に説明する。
 図5は、本発明の実施の形態3における点火装置を示す構成図である。図5に示す点火装置は、点火コイル装置1、電源2、ECU3および点火プラグ4を備える。点火コイル装置1は、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15および検出回路16を備える。
 検出回路16は、二次コイル13に接続された抵抗161を含んで構成されている。抵抗161は、メイン一次コイルモードが通電モードから遮断モードに切り替えられた場合に二次コイル13に二次電流が流れることに伴って電圧を発生させる。つまり、その二次電流が抵抗161に流れることによって、抵抗161に電圧が発生する。なお、抵抗161の抵抗値は、固定値であってもよいし、二次電流の値に応じて変化する可変値であってもよい。
 次に、二次コイル13に二次電流が流れることに伴って抵抗161が発生させる電圧、すなわち、サブIC15に供給されるサブIC電源電圧について、具体的な数値例を示しながらさらに説明する。
 先の図4に示すように、時刻t2においてメイン一次コイルモードが遮断モードに切り替えられた場合、二次コイル13に流れる二次電流の大きさは、例えば、100mAである。二次電流の大きさは、時刻t2以降、100mAから緩やかに減少していき、時刻t2から約2ms経過後に0mAに達する。
 ここで、抵抗161の抵抗値が100Ω以上400Ω以下であるものとする。抵抗161の抵抗値を100Ω以上400Ω以下にすることによって、サブIC電源電圧として使用可能な十分な電圧を確保することができる。
 上述の場合、時刻t2に上述の二次電流が抵抗161に流れることによって抵抗161に発生する電圧は、10V以上40V以下である。この電圧は、先の実施の形態2で説明したように、サブIC電源電圧として使用される。したがって、二次コイル13に二次電流が流れている期間のみ、サブIC15を駆動可能な状態にすることができる。二次コイル13に流れる二次電流が0になれば、サブIC15へのサブIC電源電圧の供給が停止し、サブIC15の駆動を停止させることができる。
 以上、本実施の形態3によれば、先の実施の形態2における検出回路16の具体的な構成例として、検出回路16は、抵抗161によって構成される。これにより、先の実施の形態2と同様の効果が得られる。また、検出回路16が電圧を発生させるための構成として、抵抗161が用いられているので、サブIC電源電圧として使用される電圧を容易に発生させることができる。
 実施の形態4.
 本発明の実施の形態4では、先の実施の形態2における検出回路16の具体的な構成例について説明する。なお、実施の形態4では、先の実施の形態2と同様である点の説明を省略し、先の実施の形態2と異なる点を中心に説明する。
 図6は、本発明の実施の形態4における点火装置を示す構成図である。図6に示す点火装置は、点火コイル装置1、電源2、ECU3および点火プラグ4を備える。点火コイル装置1は、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15および検出回路16を備える。
 検出回路16は、二次コイル13に接続されたツェナーダイオード162を含んで構成されている。ツェナーダイオード162は、メイン一次コイルモードが通電モードから遮断モードに切り替えられた場合に二次コイル13に二次電流が流れることに伴って電圧を発生させる。つまり、その二次電流がツェナーダイオード162に流れることによって、ツェナーダイオード162に電圧が発生する。ツェナーダイオード162は、先の実施の形態3における抵抗161と比べて、安定した電圧を発生させる。
 次に、二次コイル13に二次電流が流れることに伴ってツェナーダイオード162が発生させる電圧、すなわち、サブIC15に供給されるサブIC電源電圧について、具体的な数値例を示しながらさらに説明する。
 先の図4に示すように、時刻t2においてメイン一次コイルモードが遮断モードに切り替えられた場合、二次コイル13に流れる二次電流の大きさは、例えば、100mAである。二次電流の大きさは、時刻t2以降、100mAから緩やかに減少していき、時刻t2から約2ms経過後に0mAに達する。
 ここで、ツェナーダイオード162のツェナー電圧は、5V以上20V以下であるものとする。ツェナーダイオード162のツェナー電圧を5V以上20V以下にすることによって、サブIC電源電圧として使用可能な十分な電圧を確保することができる。以下、ツェナーダイオード162のツェナー電圧は、具体的には14Vであるものとする。
 上述の場合、時刻t2に上述の二次電流がツェナーダイオード162に流れることでツェナーダイオード162が発生させる電圧は、14Vである。この電圧は、先の実施の形態2で説明したように、サブIC電源電圧として使用される。したがって、二次コイル13に二次電流が流れている期間のみ、サブIC15を駆動可能な状態にすることができる。二次コイル13に流れる二次電流が0になれば、サブIC15へのサブIC電源電圧の供給が停止し、サブIC15の駆動を停止させることができる。
 以上、本実施の形態4によれば、先の実施の形態2における検出回路16の具体的な構成例として、検出回路16は、ツェナーダイオード162によって構成される。これにより、先の実施の形態2と同様の効果が得られる。また、検出回路16が電圧を発生させるための構成として、ツェナーダイオード162が用いられているので、サブIC電源電圧として使用される安定した定電圧を容易に発生させることができる。
 実施の形態5.
 本発明の実施の形態5では、先の実施の形態1と構成が異なっている点火コイル装置1を備えた点火装置について説明する。なお、実施の形態5では、先の実施の形態1と同様である点の説明を省略し、先の実施の形態1と異なる点を中心に説明する。
 図7は、本発明の実施の形態5における点火装置を示す構成図である。図7に示す点火装置は、点火コイル装置1、電源2、ECU3および点火プラグ4を備える。点火コイル装置1は、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15、検出回路16およびサブIC駆動判定回路17を備える。
 検出回路16は、メインIC14のトランジスタ141と並列に接続されており、二次コイル13の状態を検出する。具体的には、検出回路16は、二次コイル13の状態として、二次コイル13に流れる二次電流によって変化するメインICコレクタ電圧を検出するように構成されている。メインICコレクタ電圧は、メインIC14のトランジスタ141のコレクタ・エミッタ間に発生する電圧である。
 サブIC駆動判定回路17は、検出回路16によって二次コイル13の状態として検出されたメインICコレクタ電圧に基づいて、サブIC15の駆動を停止させる制御を行う。つまり、二次コイル13に流れる二次電流に応じた電圧がトランジスタ141のコレクタ・エミッタ間に発生するので、サブIC駆動判定回路17は、この電圧を検知することで、二次コイル13に二次電流が流れていないことを検知してサブIC15の駆動を停止させる制御を行う。
 次に、実施の形態5における点火装置の動作例について、図8を参照しながら説明する。図8は、本発明の実施の形態5における点火装置の動作例を示すタイミングチャートである。図8では、メインIC駆動信号、メイン一次電流、サブIC駆動信号、サブ一次電流、二次電流およびメインICコレクタ電圧のそれぞれの時間変化が図示されている。
 ここで、メインICコレクタ電圧とは、メインIC14のトランジスタ141のコレクタ・エミッタ間に発生する電圧である。
 図8に示すように、時刻t1において、ECU3からメインIC14へのメインIC駆動信号の入力が開始されると、メインIC14が駆動を開始する。この場合、メイン一次コイルモードが通電モードに切り替えられ、メイン一次コイル11に正方向のメイン一次電流が流れる。
 時刻t2において、ECU3からメインIC14へのメインIC駆動信号の入力が停止すると、メインIC14の駆動が停止する。この場合、メイン一次コイルモードが遮断モードに切り替えられ、メイン一次電流が0となる。
 メイン一次コイルモードが遮断モードに切り替えられると、相互誘導作用によって、二次コイル13に電圧が発生する。この電圧によって、点火プラグ4のギャップ間で絶縁破壊が起こって放電が発生し、二次コイル13に負方向の二次電流が流れる。
 時刻t3において、ECU3からサブIC15へのサブIC駆動信号の入力が開始されると、サブIC15が駆動を開始する。この場合、先の図2と同様に、サブ一次コイルモードが通電モードに切り替えられ、サブ一次コイル12にサブ一次電流が流れる。
 時刻t4において、ECU3からサブIC15へのサブIC駆動信号の入力が継続している。しかしながら、サブIC駆動判定回路17は、検出回路16によって検出されたメインICコレクタ電圧から、二次コイル13に二次電流が流れていないことを検知したので、サブIC15の駆動を停止させる。つまり、二次コイル13に流れる二次電流が消失すれば、ECU3から入力されるサブIC駆動信号によらず、サブIC駆動判定回路17は、サブIC15の駆動を停止させる。
 これにより、二次コイル13に流れる二次電流が消失している場合において、ECU3側からのサブIC15の制御によらず、サブIC駆動判定回路17側からサブIC15の駆動を停止させることが可能となる。
 時刻t5において、ECU3からサブIC15へのサブIC駆動信号の入力が停止する。ここで、時刻t4と時刻t5との間の期間、すなわち、サブIC駆動停止期間に着目する。この期間では、先の図12に示すサブIC過剰駆動期間とは異なり、二次コイル13に流れる二次電流が消失したことに応じて、サブIC駆動信号によらず、サブ一次コイル12にサブ一次電流が流れることが遮断される。
 したがって、比較例における点火装置とは異なり、実施の形態5における点火装置では、二次電流が消失しているにも関わらず、サブ一次コイル12にサブ一次電流が流れ続けてしまうことを抑制することができる。
 次に、二次コイル13に二次電流が流れることに伴ってメインIC14のトランジスタ141のコレクタ・エミッタ間に発生する電圧について、具体的な数値例を示しながらさらに説明する。
 先の図8に示すように、時刻t2においてメイン一次コイルモードが遮断モードに切り替えられた場合、二次コイル13に流れる二次電流の大きさは、例えば、100mAである。二次電流の大きさは、時刻t2以降、100mAから緩やかに減少していき、時刻t2から約2ms経過後に0mAに達する。また、時刻t2においてメイン一次コイルモードが遮断モードに切り替えられた場合、二次コイル13に発生する電圧は、例えば、100Vである。
 ここで、二次コイル13の巻線抵抗が5kΩであり、二次コイル13とメイン一次コイル11との巻数比が100:1であるものとする。
 上述の場合、二次コイル13の巻線抵抗に上述の二次電流が流れることでその巻線抵抗に発生する電圧は、500Vである。したがって、メイン一次コイルモードが通電モードから遮断モードに切り替えられた場合に二次コイル13に発生するトータルの電圧は、1500Vである。
 上述の場合、メイン一次コイル11に15Vの電圧が発生し、この電圧がメインIC14のトランジスタ141のコレクタ・エミッタ間にも発生する。サブIC駆動判定回路17は、メインIC14のトランジスタ141のコレクタ・エミッタ間に発生するこの電圧、すなわち、15Vの電圧を検出回路16が検出することで、二次コイル13に二次電流が通電開始となったことを検知する。また、サブIC駆動判定回路17は、メインIC14のトランジスタ141のコレクタ・エミッタ間に発生するこの電圧、すなわち、15Vの電圧を検出回路16が検出しなくなることで、二次コイル13に二次電流が通電終了となったことを検知する。
 サブIC駆動判定回路17は、検出回路16の検出結果から、二次コイル13に二次電流が流れなくなったことを検知すれば、サブIC15の駆動を停止させる。つまり、二次コイル13に流れる二次電流が消失すれば、ECU3から入力されるサブIC駆動信号によらず、サブIC駆動判定回路17は、サブIC15の駆動を停止させる。
 以上、本実施の形態5によれば、点火装置において、検出回路16は、二次コイル13の状態として、メインIC14のトランジスタ141のコレクタ電圧、すなわちメインICコレクタ電圧を検出するように構成されている。また、サブIC駆動判定回路17は、検出回路16によって二次コイル13の状態として検出されたメインICコレクタ電圧に基づいて、サブIC15の駆動を停止させる。
 これにより、メインICコレクタ電圧から二次コイル13に二次電流が流れていることを検知することができ、二次コイル13に流れる二次電流が0になれば、ECU3側からの制御によらず、サブIC15の制御を行うことが可能となる。したがって、先の実施の形態1と同様の効果が得られる。
 実施の形態6.
 本発明の実施の形態6では、先の実施の形態1~5のいずれかにおける点火コイル装置1を複数備えて構成される点火装置について説明する。なお、実施の形態6では、先の実施の形態1~5と同様である点の説明を省略し、先の実施の形態1~5と異なる点を中心に説明する。
 図9は、本発明の実施の形態6における点火装置を示す構成図である。図9に示す点火装置は、複数の点火コイル装置1と、電源2と、ECU3と、複数の点火プラグ4とを備える。複数の点火コイル装置1のそれぞれは、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14、サブIC15、検出回路16およびサブIC駆動判定回路17を備える。
 なお、図9では、便宜上、複数の点火コイル装置1のそれぞれを区別するために、複数の点火コイル装置のそれぞれの符号1の末尾にそれぞれ、(n)、(n+1)、(n+2)、(n+3)を付している。また、各点火コイル装置1の構成要素のそれぞれの符号の末尾に(n)、(n+1)、(n+2)、(n+3)を付している。
 なお、図9では、点火装置は、先の実施の形態1における点火コイル装置1を複数備えて構成される場合を例示している。
 このように、メイン一次コイル11、サブ一次コイル12、二次コイル13、メインIC14およびサブIC15によって構成される点火コイル装置1の数が複数である。
 次に、実施の形態6における点火装置の動作例について、図10を参照しながら説明する。図10は、本発明の実施の形態6における点火装置の動作例を示すタイミングチャートである。図10では、点火コイル装置1(n)に対応する各種パラメータとして、サブIC駆動信号、メインIC駆動信号(n)、メイン一次電流(n)、サブ一次電流(n)および二次電流(n)のそれぞれの時間変化が図示されている。
 なお、点火コイル装置1(n)~1(n+3)のそれぞれの動作は同様であるので、ここでは、点火コイル装置1(n)の動作を代表して説明する。
 ここで、サブIC駆動信号は、サブIC駆動信号(n)と、サブIC駆動信号(n+1)と、サブIC駆動信号(n+2)と、サブIC駆動信号(n+3)とが重畳した信号である。以下、このような信号を重畳サブIC駆動信号と称す。重畳サブIC駆動信号に含まれているサブIC駆動信号(n)~(n+3)は、それぞれ、サブIC15(n)~15(n+3)を駆動するための信号である。
 メインIC駆動信号(n)は、メインIC14(n)を駆動するための信号である。ECU3からメインIC14(n)にメインIC駆動信号(n)が入力されると、メインIC14(n)が駆動することによってメイン一次コイルモードが遮断モードから通電モードに切り替えられる。
 メイン一次電流(n)は、メイン一次コイル11(n)に流れる電流である。サブ一次電流(n)は、サブ一次コイル12(n)に流れる電流である。二次電流(n)は、二次コイル13(n)に流れる電流である。
 図10に示すように、時刻t1において、ECU3からメインIC14(n)へのメインIC駆動信号(n)の入力が開始されると、メインIC14(n)が駆動を開始する。この場合、メイン一次コイルモードが通電モードに切り替えられ、メイン一次コイル11(n)に正方向のメイン一次電流(n)が流れる。
 時刻t2において、ECU3からメインIC14(n)へのメインIC駆動信号(n)の入力が停止すると、メインIC14(n)の駆動が停止する。この場合、メイン一次コイルモードが遮断モードに切り替えられ、メイン一次電流(n)が0となる。
 時刻t3において、ECU3からサブIC15(n)へのサブIC駆動信号(n)の入力が開始されると、サブIC15(n)が駆動を開始する。この場合、先の図2と同様に、サブ一次コイルモードが通電モードに切り替えられ、サブ一次コイル12(n)にサブ一次電流(n)が流れる。点火コイル装置1(n)の時刻t4以降の動作については、先の実施の形態1~5のそれぞれで説明したとおりである。
 先の実施の形態1~5で説明したとおり、点火コイル装置1(n)は、検出回路16(n)を備えて構成されているので、二次コイル13に流れる二次電流(n)を検出する機能を有している。
 そこで、実施の形態6では、このような機能を利用し、図10に示すように、点火コイル装置1(n)は、二次コイル13(n)に二次電流(n)が通電されている期間にECU3から入力される重畳サブIC駆動信号に含まれるサブIC駆動信号(n)のみに対してサブIC15(n)が応答して駆動するように構成されている。
 一方、点火コイル装置1(n)は、二次コイル13(n)に二次電流(n)が通電されていない期間にECU3から入力される重畳サブIC駆動信号に含まれている残りの信号、すなわち、サブIC駆動信号(n+1)、(n+2)および(n+3)に対して、サブIC15(n)が応答しないように構成されている。
 このように、複数の点火コイル装置1(n)~1(n+3)の各サブIC15(n)~15(n+3)には、各サブIC15(n)~15(n+3)に対応するサブIC駆動信号(n)~(n+3)が重畳された重畳サブIC駆動信号が入力される。また、各サブIC15(n)~15(n+3)は、自身に入力された重畳サブIC駆動信号に含まれる自身に対応するサブIC駆動信号のみに対して応答して駆動するように構成される。
 上述した実施の形態6における点火装置の構成によって、ECU3からそれぞれの点火コイル装置1(n)~1(n+3)に入力されるサブIC駆動信号の共通化を実現することができる。その結果、内燃機関の各気筒に対応する点火コイル装置1(n)~1(n+3)へECU3から信号出力するための信号線の数を減らすことができ、点火装置の小型化およびコスト低減に寄与する。
 以上、本実施の形態6によれば、先の実施の形態1~5のいずれかにおける複数の点火コイル装置1の各サブIC15には、各サブIC15に対応するサブIC駆動信号が重畳された重畳サブIC駆動信号が入力される。また、各サブIC15は、自身に入力された重畳サブIC駆動信号に含まれる自身に対応するサブIC駆動信号のみに対して応答して駆動するように構成される。
 これにより、二次コイル13に二次電流が通電していることを検知して各サブIC15の制御をすることで、内燃機関の全気筒分のサブIC駆動信号が重畳した信号を各サブIC15へ入力しても、各点火コイル装置1は、自身の二次コイル13に二次電流が通電している期間しかサブIC15を駆動させることができない。したがって、ハーネス本数およびECU3のコネクタピン数を軽減することができる。その結果、点火装置の小型化および軽量化に寄与し、さらに、点火装置のコスト低減にも寄与する。
 1,1A 点火コイル装置、2 電源、3 ECU、4 点火プラグ、11 メイン一次コイル、12 サブ一次コイル、13 二次コイル、14 メインIC、15 サブIC、16 検出回路、17 サブIC駆動判定回路、141 トランジスタ、151 トランジスタ、152 コンデンサ、161 抵抗、162 ツェナーダイオード。

Claims (11)

  1.  通電によって通電磁束を発生させ、前記通電が遮断されることによって前記通電磁束の向きと逆方向の遮断磁束を発生させるメイン一次コイルと、
     前記メイン一次コイルに通電する通電モードと、前記メイン一次コイルへの通電を遮断する遮断モードとの間で、前記メイン一次コイルのモードであるメイン一次コイルモードを切り替えるメインICと、
     通電によって前記遮断磁束の向きと同方向の追加磁束を発生させるサブ一次コイルと、
     前記サブ一次コイルに通電する通電モードと、前記サブ一次コイルへの通電を遮断する遮断モードとの間で、前記サブ一次コイルのモードであるサブ一次コイルモードを切り替えるサブICと、
     前記メイン一次コイルおよび前記サブ一次コイルと磁気的に結合することでエネルギを発生させる二次コイルと、
     前記メインICを駆動させることで前記メイン一次コイルモードを前記遮断モードから前記通電モードに切り替え、前記メインICの駆動を停止させることで前記メイン一次コイルモードを前記通電モードから前記遮断モードに切り替え、前記サブICを駆動させることで前記サブ一次コイルモードを前記遮断モードから前記通電モードに切り替え、前記サブICの駆動を停止させることで前記サブ一次コイルモードを前記通電モードから前記遮断モードに切り替える制御部と、
     前記二次コイルの状態を検出する検出回路と、
     を備え、
     前記検出回路によって検出された前記二次コイルの状態が非通電状態である場合、前記サブICの駆動が停止する
     点火装置。
  2.  サブIC駆動判定回路をさらに備え、
     前記検出回路は、
      前記二次コイルの状態として、前記二次コイルに流れる二次電流を検出するように構成され、
     前記サブIC駆動判定回路は、
      前記検出回路によって前記二次コイルの状態として検出された前記二次電流に基づいて、前記サブICの駆動を停止させる
     請求項1に記載の点火装置。
  3.  前記検出回路は、
      前記二次コイルの状態として、前記二次コイルに二次電流が流れたことに応じて電圧を発生させ、発生させた前記電圧を、前記サブICを駆動するためのサブIC電源電圧として、前記サブICに供給するように構成される
     請求項1に記載の点火装置。
  4.  前記検出回路は、抵抗によって構成される
     請求項3に記載の点火装置。
  5.  前記抵抗の抵抗値は、100Ω以上400Ω以下である
     請求項4に記載の点火装置。
  6.  前記検出回路は、ツェナーダイオードによって構成される
     請求項3に記載の点火装置。
  7.  前記ツェナーダイオードのツェナー電圧は、5V以上20V以下である
     請求項6に記載の点火装置。
  8.  サブIC駆動判定回路をさらに備え、
     前記メインICは、トランジスタを含んで構成され、
     前記検出回路は、
      前記二次コイルの状態として、前記メインICの前記トランジスタのコレクタ電圧であるメインICコレクタ電圧を検出するように構成され、
     前記サブIC駆動判定回路は、
      前記検出回路によって前記二次コイルの状態として検出された前記メインICコレクタ電圧に基づいて、前記サブICの駆動を停止させる
     請求項1に記載の点火装置。
  9.  前記サブICは、前記メイン一次コイルモードが前記通電モードから前記遮断モードに切り替えられた場合に前記二次コイルに前記二次電流が流れること伴って前記サブICに侵入するサージ電圧を抑制するコンデンサを含んで構成される
     請求項1から8のいずれか1項に記載の点火装置。
  10.  前記コンデンサの容量は、0.72μF以下である
     請求項9に記載の点火装置。
  11.  前記メイン一次コイル、前記サブ一次コイル、前記二次コイル、前記メインICおよび前記サブICは、点火コイル装置を構成し、
     前記点火コイル装置の数は、複数であり、
     複数の前記点火コイル装置の各サブICには、各サブICに対応する前記サブIC駆動信号が重畳された重畳サブIC駆動信号が入力され、
     各サブICは、自身に入力された前記重畳サブIC駆動信号に含まれる自身に対応する前記サブIC駆動信号のみに対して応答して駆動するように構成される
     請求項1から10のいずれか1項に記載の点火装置。
PCT/JP2018/045105 2018-12-07 2018-12-07 点火装置 WO2020115899A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880099947.9A CN113167205B (zh) 2018-12-07 2018-12-07 点火装置
PCT/JP2018/045105 WO2020115899A1 (ja) 2018-12-07 2018-12-07 点火装置
US17/288,126 US20210383965A1 (en) 2018-12-07 2018-12-07 Ignition system
JP2020558784A JP6976459B2 (ja) 2018-12-07 2018-12-07 点火装置
DE112018008189.3T DE112018008189T5 (de) 2018-12-07 2018-12-07 Zündsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045105 WO2020115899A1 (ja) 2018-12-07 2018-12-07 点火装置

Publications (1)

Publication Number Publication Date
WO2020115899A1 true WO2020115899A1 (ja) 2020-06-11

Family

ID=70973470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045105 WO2020115899A1 (ja) 2018-12-07 2018-12-07 点火装置

Country Status (5)

Country Link
US (1) US20210383965A1 (ja)
JP (1) JP6976459B2 (ja)
CN (1) CN113167205B (ja)
DE (1) DE112018008189T5 (ja)
WO (1) WO2020115899A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200250A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2017006487A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置の点火コイル
WO2017010310A1 (ja) * 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 エンジン制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184315A (en) * 1939-08-11 1939-12-26 Melville F Peters Ignition system for internal combustion engines
US2943131A (en) * 1958-07-21 1960-06-28 Holley Carburetor Co Transistor ignition system
US3749973A (en) * 1970-12-22 1973-07-31 Texaco Inc Continuous wave high frequency ignition system
JPS56124671A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Igniting apparatus
JPS5823279A (ja) * 1981-08-03 1983-02-10 Nissan Motor Co Ltd 内燃機関の点火装置
US5777867A (en) * 1995-09-14 1998-07-07 Suitomo Electric Industries, Ltd. Electric discharge method and apparatus
JP2001073918A (ja) * 1999-09-02 2001-03-21 Ngk Spark Plug Co Ltd くすぶり検出方法
JP4528469B2 (ja) * 2000-12-21 2010-08-18 日本特殊陶業株式会社 内燃機関用点火装置
JP2007092606A (ja) * 2005-09-28 2007-04-12 Diamond Electric Mfg Co Ltd イオン電流検出回路を有する多重放電型点火装置
JP4803008B2 (ja) * 2006-12-05 2011-10-26 株式会社デンソー 内燃機関の点火制御装置
EP2639446A1 (en) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Ignition system
JP6184833B2 (ja) * 2013-10-22 2017-08-23 マーレエレクトリックドライブズジャパン株式会社 内燃機関用点火装置
US10193313B2 (en) * 2013-12-12 2019-01-29 Federal-Mogul Ignition Llc Flexible control system for corona ignition power supply
WO2016157541A1 (ja) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置
JP6193292B2 (ja) * 2015-04-15 2017-09-06 トヨタ自動車株式会社 内燃機関の点火制御システム
WO2017060935A1 (ja) * 2015-10-06 2017-04-13 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置および内燃機関用点火装置の点火制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200250A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2017006487A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置の点火コイル
WO2017010310A1 (ja) * 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 エンジン制御装置

Also Published As

Publication number Publication date
CN113167205B (zh) 2022-11-18
JPWO2020115899A1 (ja) 2021-05-20
DE112018008189T5 (de) 2021-10-07
US20210383965A1 (en) 2021-12-09
CN113167205A (zh) 2021-07-23
JP6976459B2 (ja) 2021-12-08

Similar Documents

Publication Publication Date Title
JP6000320B2 (ja) 高周波放電点火装置
WO2017026227A1 (ja) 点火装置
US20130111914A1 (en) Aircraft ignition system and method of operating the same
JP6992198B2 (ja) 内燃機関用点火装置
JP7012830B2 (ja) 内燃機関用点火装置
JP6708188B2 (ja) 点火装置
WO2020115899A1 (ja) 点火装置
JP4188290B2 (ja) 内燃機関点火装置
JP6537662B1 (ja) 点火装置
JP6745938B2 (ja) 点火装置
JP7112512B2 (ja) 点火装置
JP2007309098A (ja) 内燃機関用点火コイル
JP7408453B2 (ja) 内燃機関用点火装置
CN113167207B (zh) 内燃机用点火装置
WO2021220844A1 (ja) 点火制御装置
JP4396265B2 (ja) コンデンサ放電式内燃機関用点火装置
JPH0797972A (ja) 内燃機関用点火装置、及び点火装置の故障検出装置
WO2020179016A1 (ja) 内燃機関用点火装置
WO2020065855A1 (ja) 内燃機関用点火装置
JP6375177B2 (ja) 内燃機関用点火コイル
JPS6245973A (ja) 内燃機関用点火装置
JPWO2019211885A1 (ja) 内燃機関用点火装置
JP2020143643A (ja) 半導体集積回路
JP2009293583A (ja) 電子制御ユニット
JPH0550045U (ja) エンジン発電機用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558784

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18942511

Country of ref document: EP

Kind code of ref document: A1