WO2020065855A1 - 内燃機関用点火装置 - Google Patents

内燃機関用点火装置 Download PDF

Info

Publication number
WO2020065855A1
WO2020065855A1 PCT/JP2018/036053 JP2018036053W WO2020065855A1 WO 2020065855 A1 WO2020065855 A1 WO 2020065855A1 JP 2018036053 W JP2018036053 W JP 2018036053W WO 2020065855 A1 WO2020065855 A1 WO 2020065855A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
primary coil
current
superimposition
coil
Prior art date
Application number
PCT/JP2018/036053
Other languages
English (en)
French (fr)
Inventor
義文 内勢
Original Assignee
日立オートモティブシステムズ阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ阪神株式会社 filed Critical 日立オートモティブシステムズ阪神株式会社
Priority to JP2020547744A priority Critical patent/JP7150039B2/ja
Priority to PCT/JP2018/036053 priority patent/WO2020065855A1/ja
Publication of WO2020065855A1 publication Critical patent/WO2020065855A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and more particularly to an improvement in an ignition device for an internal combustion engine that causes a spark plug to discharge using a plurality of primary coils.
  • Direct-injection engines and high-EGR engines are used as internal combustion engines mounted on vehicles to improve fuel efficiency.
  • these engines do not have good ignitability, so a high-energy type ignition device is required.
  • a high-energy type ignition device is required.
  • lap discharge which energizes another primary coil and superimposes the energy applied to the secondary side
  • the present inventor has proposed a type ignition device. (See, for example, Patent Document 1).
  • the ignition device described in Patent Literature 1 causes a dielectric breakdown in a discharge gap of an ignition plug due to a high voltage of several Kv generated on a secondary side by interrupting a primary current of the ignition coil, thereby causing a secondary side of the ignition coil to be disconnected.
  • the primary current After the discharge current starts flowing through the first primary coil, the primary current is passed through another primary coil.
  • the direction of the magnetic flux generated by energizing the other primary coil is the same as the direction in which the magnetic flux decreases when the energization of the primary coil is cut off. For this reason, a change in the magnetic flux of the primary coil due to the interruption of energization and a magnetic flux generated by energizing the other primary coil act on the secondary coil.
  • the overlap discharge type ignition device described in Patent Document 1 can adjust the superimposed energy applied to the secondary side by changing the amount of current and the time of energization to another primary coil. It does not have the function to perform. For example, if the current flowing in another primary coil is adjusted by feedback control so that a desired current flows, the control of energizing the other primary coil can be automatically optimized. Also, depending on the state of the secondary current, the current flowing through the other primary coil may be increased or decreased, and the feedback control may be performed to maintain the secondary current appropriately. The control of energizing the coil can be automatically optimized.
  • an object of the present invention is to provide an ignition device for an internal combustion engine which can be equipped with an automatic control function for sufficiently and sufficiently improving ignitability due to spark discharge generated in a spark plug without increasing the size and cost.
  • an ignition device for an internal combustion engine performs discharge control on the secondary side of an ignition coil by controlling energization of the ignition coil by turning on / off an ignition signal from an ignition control unit.
  • the ignition coil increases a forward magnetic flux amount due to energization of a main primary current that is performed when an ignition signal is turned on, and the ignition signal is turned off so that the ignition signal is turned off.
  • a main primary coil in which the amount of magnetic flux in the forward direction is reduced by interrupting the primary current, and a superimposed current is supplied during a discharge period after energization cutoff to the main primary coil, so that a magnetic flux is generated in a direction opposite to the forward direction.
  • the sub-primary coil energizing switch is operated to start supplying the superimposed current to the sub-primary coil, and to operate the sub-primary coil energizing switch so as to increase the superimposed current with time. Control means.
  • the superimposition control means includes a capacitor that short-circuits the charge when the ignition signal is turned on, and starts charging when the ignition signal is turned off and the capacitor starts charging.
  • the control of increasing the superimposed current with the passage of time may be performed using the charge accumulation state as an index.
  • a secondary current detecting means for detecting a secondary current flowing to a secondary side of the ignition coil, and a detection value of the secondary current detecting means satisfies a predetermined superimposition promoting condition.
  • a configuration may be provided that includes a superimposition promoting unit that promotes an increase in the superimposition current by the superimposition control unit.
  • the superimposition accelerating means includes a secondary current detection value detected by the secondary current detection means and an index for accelerating the increase of the superimposed current in order to maintain the secondary current.
  • a comparison may be made with a predetermined increase promotion reference value, and the fact that the detected secondary current value does not exceed the increase promotion reference value may be used as the superimposition promotion condition.
  • the superimposed current to the sub-primary coil can be appropriately controlled by the sub-primary coil energizing switch means and the superimposition control means, so that the ignitability due to the spark discharge generated in the spark plug can be reduced. It can be improved as needed.
  • the sub-primary coil energizing switch means and the superimposition control means can be realized with a relatively simple structure using discrete parts having good heat resistance and noise resistance, the ignition device for the internal combustion engine itself can be reduced in size and cost. it can.
  • FIG. 1 is a schematic configuration diagram of an ignition device for an internal combustion engine according to a first embodiment.
  • FIG. 2 is a waveform chart showing waveforms at main parts of the ignition device for an internal combustion engine according to the first embodiment. It is a schematic structure figure of the ignition device for internal-combustion engines concerning a 2nd embodiment.
  • FIG. 6 is a waveform diagram showing waveforms at main parts of an ignition device for an internal combustion engine according to a second embodiment.
  • the ignition device 1 for an internal combustion engine shown in FIG. 1 includes an ignition coil unit 10 for generating a discharge spark in one ignition plug 2 provided for each cylinder of the internal combustion engine, and an ignition signal Si for instructing the operation timing of the ignition coil unit 10. And the like, and an internal combustion engine drive control device 3 as an ignition control means for outputting the same at an appropriate timing, a DC power supply 4 such as a vehicle battery, a boosting means 5 for boosting a supply voltage VB + of the DC power supply 4 to VBoost +, and the like.
  • the VBoost + supplied to the ignition coil unit 10 is not limited to the case where the VBoost + is generated from the DC power supply 4. A DC power supply of a required voltage is separately provided, and VBoost + is supplied to the ignition coil unit 10. good.
  • the function as the ignition control means is included in the internal combustion engine drive control device 3 that comprehensively controls the internal combustion engine of the automobile. It is not limited.
  • an ignition that receives an ignition signal generated by an ignition signal generation function of a normal internal combustion engine drive control device 3 such as an ECU, generates an appropriate control signal, and outputs the control signal to the ignition coil unit 10 A control device may be separately provided.
  • the ignition coil unit 10 is a unit in which the ignition coil 11, the control board, and the like are housed in a case 12 having a required shape and have an integrated structure.
  • a high-voltage terminal 121 and a connector 122 are provided at an appropriate position of the case 12.
  • the ignition plug 2 is connected through the high-voltage terminal 121, and a connector 122 having first to fifth connection terminals 122 a to 122 e is provided.
  • the ignition coil 11 is for causing magnetic fluxes generated in the main primary coil 111a (for example, 114 turns) and the sub primary coil 111b (for example, 20 turns) to efficiently act on the secondary coil 112 (for example, 9348 turns).
  • the main coil 111a and the sub-primary coil 111b are arranged so as to surround the center core 113 formed of a highly magnetically permeable material, and the secondary coil 112 is arranged outside thereof.
  • One end of the main primary coil 111a is connected to the DC power supply 4 via the first connection terminal 122a of the connector 122, and the power supply voltage VB + (for example, 12 V) is applied.
  • the other end of the main primary coil 111a is connected to a collector of an ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor: insulated gate bipolar transistor).
  • the emitter of the ignition switch 13 is connected to the ground GND via the fifth connection terminal 122e of the connector 122.
  • One end of the secondary coil 112 is connected to the ignition plug 2 via the high voltage terminal 121, and the other end is connected to the ground GND via the fifth connection terminal 122e of the connector 122.
  • a rectifying element D1 (for example, a cathode on the ground side and an anode on the secondary coil 112 side) which is in a forward direction from the secondary coil 112 to the ground point GND is provided on a line from the secondary coil 112 to the ground. Are connected to each other to regulate the flow direction of the secondary current I2.
  • the ignition signal Si output from the internal combustion engine drive control device 3 at an appropriate timing of the discharge cycle is input to the gate of the ignition switch 13 in the ignition coil unit 10 via the fourth connection terminal 122d of the connector 122. Then, when the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on, and the non-power supply side of the main primary coil 111a. The end is connected to the ground point GND.
  • the main primary current I1 from the power supply side to the ground side starts to flow through the main primary coil 111a, the flow rate of the main primary current I1 increases, and the energizing magnetic flux generated according to the flow rate of the main primary current I1a Is accumulated as magnetic field energy.
  • electric energy is accumulated on the secondary side of the ignition coil 11 by minute capacitor components such as the secondary coil 112 and connection wiring.
  • a bypass line 14 is provided in parallel with the ignition switch 13, and a rectifying element D2 (for example, a cathode is provided on the collector side of the ignition switch 13) in a forward direction from the ground point side of the bypass line 14 toward the ignition coil 11 side. And a diode whose anode is connected to the emitter side of the ignition switch 13.
  • a rectifying element D2 for example, a cathode is provided on the collector side of the ignition switch 13
  • the sub-primary coil 111b capable of applying a magnetic field to the secondary coil 112 via the iron core 113 has one end boosted through the second connection terminal 122b of the connector 122.
  • the boosted power supply VBoost + is supplied to the control unit 5.
  • the VBoost + power supply line is provided with a sub-primary coil energizing switch means 15 and a rectifying element D3.
  • the rectifier element D3 is directed forward from the sub-primary coil energizing switch means 15 toward the sub-primary coil 111b (for example, the cathode of the diode is on the sub-primary coil 111b side, and the anode is on the sub-primary coil energizing switch means 15 side, respectively). Connection). This restricts the flow direction of the sub-primary current I1b (hereinafter, referred to as a superimposed current), and prevents the reverse current from flowing to the sub-primary coil energizing switch means 15 side.
  • the other end of the sub primary coil 111b is connected to the ground GND via the fifth connection terminal 122e of the connector 122.
  • the sub-primary coil energizing switch unit 16 energizes and shuts off the sub-primary coil 111b, and changes the energizing amount to the sub-primary coil 111b in the shut-off direction (direction in which the energizing magnetic flux of the main primary coil 111a is reduced). The amount of generated superimposed magnetic flux can be changed.
  • Such switching and flow control functions can be realized by various circuit structures.
  • the first switch element 151 using a power MOS-FET and the second switch element 152 using an npn-type bipolar transistor are used. The following is an example of the configuration.
  • the winding directions of the main primary coil 111a and the sub-primary coil 111b may be reversed, or the power supply direction to the main primary coil 111a and the sub-primary coil 111b may be reversed.
  • the direction of power supply to the power supply may be reversed.
  • the operation of the sub-primary coil energizing switch means 15 is performed under the control of the superposition control means 16.
  • the superimposition control means 16 activates the sub-primary coil energization switch means 15 at the same time as the energization of the main primary coil 111a is cut off, and starts the supply of superimposed current to the sub-primary coil 111b. With the passage of time thereafter, the superimposition control means 16 controls the operation of the sub-primary coil energizing switch means 15 so as to increase the superimposed current I1b flowing through the sub-primary coil 111b.
  • the control of the sub-primary coil energization switch means 15 by the superposition control means 16 is performed by the sub-primary coil energization control signal Sc.
  • Such a function of generating the sub-primary coil energization control signal Sc can be realized by various circuit structures.
  • an example is shown in which the first comparator 161, the capacitor C, and the third switch element 162 are used.
  • the superimposition control means 15 in order to use the flow rate of the superimposition current I1b, a resistor R1 is interposed in the flow path from the sub-primary coil 111b to the connector 122, and this voltage change is obtained by the superposition current detection signal line 17.
  • the source of the first switch element 151 is connected to the power supply side of VBoost +, and the drain of the first switch element 151 is connected to the sub-primary coil 111b side (more precisely, the anode side of the rectifier element D3). Therefore, when a voltage equal to or higher than the gate threshold voltage is applied to the gate of the first switch element 151, the first switch element 151 is turned on, and VBoost + is supplied to the sub primary coil 111b. In addition, the first switch element 151 can flow a large drain current by increasing the gate-source voltage. Therefore, by increasing the voltage applied to the gate, the superimposed current I1b can be increased.
  • a line connecting the power supply line and the ground line is formed on the power supply side of the first switch element 151, and a resistor R2 and a second switch element 152 are provided in the line. Then, the potential between the resistor R2 and the second switch element 152 becomes the gate input of the first switch element 151. Since the collector of the second switch element 152 using the npn-type bipolar transistor is connected to the resistor R2 and the emitter is connected to the ground, the current between the emitter and the collector can be controlled according to the input current to the base. That is, when the second switch element 152 is off, the base of the first switch element 151 is at the same potential as the power supply line, so that the first switch element 151 is off and the superimposed current I1b does not flow.
  • the second switching element 152 When the second switching element 152 is turned on and reaches a potential equal to or higher than the base threshold voltage at the base of the first switching element 151, the first switching element 151 is turned on and the superimposed current I1b starts flowing. Further, when the emitter-collector current of the second switch element 152 is increased, the voltage drop due to the resistor R2 is reduced, the voltage applied to the base of the first switch element 151 is increased, and the drain of the first switch element 151 is increased. The current can be increased. That is, the superimposed current I1b can be increased.
  • the sub-primary coil energizing switch means 15 of the present embodiment by inputting the sub-primary coil energizing control signal Sc to the base of the second switch element 152, the on / off and the flow of the superimposed current I1b are performed. Control becomes possible.
  • the first comparator 161 uses an open collector type comparator. Since the open-collector comparator can arbitrarily set the H level voltage of the output Vout, the comparator sets the pull-up voltage with the superimposed signal Sp input via the resistor R3.
  • the superimposition signal Sp is supplied from the internal combustion engine drive control device 3 and is input to the point coil unit 10 via the third connection terminal 122c of the connector 122.
  • the output Vout of the first comparator 161 becomes the base input of the second switch element 152 in the sub-primary coil energizing switch means 15. That is, the supply current to the second switch element 152 can be changed according to the output voltage of the first comparator 161, so that the sub-primary coil energization control signal Sc corresponding to the output of the first comparator 161 is generated. .
  • the superimposition signal Sp from the internal combustion engine drive control device 3 indicates the start and the end of the superimposition control by ON / OFF thereof. Therefore, when the superimposition signal Sp is off, the sub-primary coil energization control signal Sc Therefore, the sub-primary coil energizing switch means 15 must not be operated. That is, the sub-primary coil energization control signal Sc is output after the timing at which the superimposition signal Sp is input (for example, the signal level changes from L to H), and the superimposition signal Sp stops (for example, the signal level changes from H to L). ), The sub-primary coil energization control signal Sc must be reliably stopped.
  • the first comparator 161 uses an open collector type comparator and uses the superimposed signal Sp as a pull-up voltage.
  • the output Vout becomes L even when the logic of the first comparator 161 is H, so that the sub-primary coil energization control signal Sc for operating the sub-primary coil energization switch means 15 is generated. It will not be done.
  • a voltage signal corresponding to the superimposed current is input to the inverted input Vin ( ⁇ ) of the first comparator 161 via the superimposed current detection signal line 17.
  • a signal serving as an index for increasing the superimposed current I1b is input from the increase index signal line 163.
  • a voltage obtained by dividing the power supply voltage VB + by the resistors R4a and R4b is applied to the increase index signal line 163, and the capacitor C is charged with this voltage. That is, if the accumulated charge of the capacitor C is zero, the potential of the increase index signal line 163 becomes zero, and the potential of the increase index signal line 163 increases as the electric charge is accumulated in the capacitor C with the passage of time.
  • the output voltage of the first comparator 161 can be changed using the charge accumulation characteristic line corresponding to the charge characteristic of the capacitor C as an index, the superimposed current I1b is gradually increased after the superimposed current supply to the sub-primary coil 111b is started. You can increase it.
  • the function of discharging the capacitor C (short-circuiting the electric charge) at a required timing and charging the capacitor C at the timing of starting the superposition control, and the state of accumulating the electric charge of the capacitor after the start of the charging are indicated by a sub-primary coil. It is necessary to have a function to reflect the current on the energization control signal Sc.
  • the ignition signal Si and the third switch element 162 are used to control the charge / discharge timing of the capacitor C.
  • the third switch element 162 an npn-type bipolar transistor is used.
  • the emitter is connected to the increase index signal line 163, and the collector is connected to the ground point GND.
  • the third switch element 162 is turned on, so that the increase index signal line 163 is connected to the ground potential. And the capacitor C is discharged.
  • the third switch element 162 is turned off, so that the capacitor C is charged with a voltage corresponding to the voltage division ratio between the resistors R4a and R4b. Is started.
  • the function of reflecting the charge accumulation state of the capacitor C after the start of charging to the sub-primary coil energization control signal Sc is realized by using an open collector type comparator for the first comparator 161.
  • the increase index signal (a voltage signal reflecting the accumulation state of the capacitor C) which is the non-inverting input of the first comparator 161 and the superimposed current detection signal which is the inverting input are almost the same value (however, the increase index signal ⁇ superimposed current) (Detection signal), the potential difference between the two signals is small. If the potential difference between the non-inverting input and the inverting input is small, the rise time until the logical level of the comparator output changes from L to H becomes longer.
  • the on-time width of the superimposed signal Sp is set to the first comparator 161.
  • Rise time can be matched.
  • the sub-primary coil energization control signal Sc base current of the second switch element 152 also gradually increases. Increase control can be realized.
  • FIG. 2 showing waveforms of main parts in the ignition device 1 for an internal combustion engine.
  • the third switch element 162 is also turned off, so that charging of the capacitor C is started.
  • the superimposition signal Sp remains off, and the output Vout of the first comparator 161 becomes L. Remains. That is, if the superimposition signal Sp remains off, the superposition control is not performed, so that no energy is superimposed on the secondary side of the ignition coil after the discharge of the ignition plug 2 is started, and the main primary coil 111a As the magnetic flux in the forward direction decreases, the secondary current I2 also decreases.
  • the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off.
  • the superimposition signal Sp is turned on, a pull-up voltage is applied to the output of the first comparator 161, and the sub-primary coil energization control signal Sc rises.
  • the capacitor C is in a discharged state, and the superimposed current I1b does not flow through the sub-primary coil 111b. Therefore, the output Vout of the first comparator 161 is L,
  • the value of the resistor R3 is set to the base of the switch element 152 so that a base current exceeding the base threshold voltage is supplied. Therefore, immediately after the superimposition signal Sp is turned on, the first switch element 151 is also turned on, power is supplied to the sub primary coil 111b, and the superimposed current I1b starts flowing.
  • the control to gradually increase the superimposed current I1b can be realized by using the sub-primary coil energizing switch means 15 and the superimposition control means 16 which can be configured relatively inexpensively and compactly with discrete components. Also, as the superimposed current I1b gradually increases, the superimposed current detection signal which is the inverting input of the first comparator 161 also gradually increases recursively, and the characteristic line that follows the charge accumulation characteristic line of the capacitor C is changed. And the delay of the rise time can be maintained.
  • the control to gradually increase the superimposed current I1b is performed by using the sub-primary coil energizing switch means 15 and the superimposition control means 16 as described above, the amount of change in the magnetic flux acting on the secondary coil 112 is suitably maintained.
  • the electromotive voltage generated on the secondary side can be kept high. That is, the change in magnetic flux in which the forward magnetic flux is reduced in the interrupting direction after the current is interrupted to the main primary coil 111a decreases with time, but the superimposed current I1b is changed so as to gradually increase the superimposed magnetic flux in the interrupting direction. By flowing to 111b, the decrease in magnetic flux change is complemented.
  • the ignition device 1 'for an internal combustion engine according to the second embodiment is provided with a configuration for automatically performing control for keeping the secondary current I2 high in order to sufficiently and sufficiently improve the ignitability due to the spark discharge generated in the ignition plug 2. It is. In order to achieve this, it is necessary to have a function of detecting the secondary current I2 as an index and a function of acting on the sub-primary coil energizing switch means 15 to promote an increase in the flow rate of the superimposed current I1b.
  • the function of detecting the secondary current I2 flowing on the secondary side of the ignition coil 11 is provided at an appropriate position in the flow path of the secondary current I2 (for example, the cathode side of the rectifying element D1 and the fifth connection terminal 122e). 2) and a secondary current detection signal line 18 for acquiring this voltage change.
  • the superimposition promoting means 19 is provided as a function of acting on the sub-primary coil energizing switch means 15 to promote the flow rate of the superimposed current I1b.
  • the superimposition promoting means 19 can be realized by various circuit structures. In the present embodiment, an example is shown in which the second comparator 191 and the fourth switch element 192 are used.
  • the superimposition promoting means 19 promotes the increase of the superimposed current by the superimposition control means 16 based on the fact that the detection value of the secondary current detecting means satisfies a predetermined superimposition promoting condition.
  • a superimposition promotion condition is used as a condition for judging whether or not to promote the increase of the superimposed current I1b in order to avoid a state in which the secondary current I2 decreases and a good ignitability cannot be maintained.
  • a superimposition promotion condition is used as a condition for judging whether or not to promote the increase of the superimposed current I1b in order to avoid a state in which the secondary current I2 decreases and a good ignitability cannot be maintained.
  • the rate of increase of the sub-primary coil energization control signal Sc output from the superimposition control means 16 is increased, The increase rate of the superimposed current I1b is also increased by the sub-primary coil energizing switch means 15.
  • the secondary current detection value (the signal voltage of the secondary current detection signal line 18) detected by the secondary current detection means is input to the non-inverting input Vin (+) of the second comparator 191 and the inverting input Vin ( ⁇ Enter the increase promotion reference value in).
  • the increase promotion reference value a voltage value corresponding to the secondary current detection value, which is a predetermined value as an index for promoting the increase of the superimposed current to maintain the secondary current I2 at or above the reference value, is used.
  • a voltage obtained by dividing the power supply voltage VB + by the resistors R5a and R5b is used as an increase promotion reference value, and the second voltage is supplied via the increase promotion reference signal line 193 connected between the resistors R5a and R5b.
  • the signal is input to the inverted input Vin ( ⁇ ) of the comparator 191.
  • a comparison result between the secondary current detection value and the increase promotion reference value can be obtained as the output Vout of the second comparator 191.
  • the second comparator 191 uses an open collector type comparator, and sets the pull-up voltage to which the power supply voltage VB + is input via the resistor R8 to the H level voltage of the output Vout.
  • the fourth switch element 192 uses, for example, a pnp bipolar transistor.
  • the emitter of the fourth switch element 192 is connected to the DC power supply 4 via the first connection terminal 122a of the connector 122, and the power supply voltage VB + is applied.
  • the collector of the fourth switch element 192 is connected to the increase index signal line 163 of the superimposition control means 16 via the resistor R6, and a voltage signal (increase promotion signal Su) corresponding to the voltage division ratio between the resistor R6 and the resistor R4b is supplied to the capacitor C.
  • the resistance value of the resistor R6 is set lower than the resistance value of the resistor R4a, the voltage applied to the increase index signal line 163 via the resistor R6 becomes higher than the voltage applied to the increase index signal line 163 via the resistor R4a. It is higher than the voltage applied to line 163. That is, if “resistance R4a> resistance R6” is set, when the fourth switch element 192 is turned on, a high voltage is applied to the increase index signal line 163, and the charging speed of the capacitor C is increased. be able to.
  • the output Vout of the second comparator 191 is input to the base of the fourth switch element 192 via the resistor R8.
  • the output Vout of the second comparator 191 is H
  • the base current of the fourth switch element 192 does not flow, so that the fourth switch element 192 is turned off, and the increase promotion signal Su is not supplied to the superimposition control unit 16.
  • the output Vout of the second comparator 191 becomes L
  • the base current of the fourth switch element 192 flows, the fourth switch element 192 turns off, and the increase promotion signal Su is supplied to the superimposition control means 16.
  • the increase promotion signal Su is supplied to the overlap control means 16.
  • the speed is increased, and the increase of the superimposed current I1b is promoted.
  • the superposed magnetic flux generated in the sub-primary coil 111b increases, and the change in magnetic flux acting on the secondary coil 112 increases, so that the electromotive force on the secondary side of the ignition coil increases, and the secondary current I2 is maintained at a high value. It becomes possible.
  • the superimposition promotion means 19 when the secondary current detection value is less than the increase promotion reference value (or at the following time), the superimposition promotion means 19 does not supply the increase promotion signal Su to the superimposition control means 16, so that the charge accumulation speed of the capacitor C is reduced It will not be expedited. That is, the superimposition promoting means 19 of the present embodiment uses the fact that the secondary current detection value is equal to or less than the increase promotion reference value (or does not satisfy) as the superimposition promotion condition, and The control is performed so as to promote the increase of the superimposed current by the superimposition control means 16.
  • FIG. 4 showing waveforms of main parts in the ignition device 1 ′ for an internal combustion engine.
  • the superimposition signal Sp remains off, the sub-primary coil energization control signal Sc is not output, so that the superposition control is not performed. Therefore, no energy is superimposed on the secondary side of the ignition coil after the ignition plug 2 starts to discharge, and the secondary current I2 also decreases with a decrease in the forward magnetic flux in the main primary coil 111a.
  • the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off.
  • the superimposition signal Sp is turned on, a pull-up voltage is applied to the output of the first comparator 161, and the sub-primary coil energization control signal Sc rises.
  • the superimposition promotion signal Su is turned off immediately after the start of discharge, the capacitor C in the discharged state is charged by the voltage applied via the resistor R4, and the sub-primary coil energization control signal using the accumulated charge state as an index. Sc is output. Therefore, immediately after the superimposition signal Sp is turned on, power is supplied to the sub-primary coil 111b by the sub-primary coil energizing switch means 15, and the superposition current I1b starts flowing.
  • the rate of increase of the sub-primary coil energization control signal Sc using the state of the accumulated charge of the capacitor C as an index increases, and the rate of increase of the superimposed current I1b by the sub-primary coil energization switch means 15 also increases.
  • the discharge energy also increases, and the reduction of the secondary current I2 is suppressed.
  • the superimposition promotion means 19 turns off the superimposition promotion signal Su and returns the charge accumulation speed of the capacitor C to the normal state. As a result, the discharge energy applied to the secondary side of the ignition coil decreases, and the increase in the secondary current I2 is suppressed. Thereafter, when the secondary current I2 decreases and the superimposition promotion condition is satisfied again, the superimposition promotion means 19 turns on the superimposition promotion signal Su and increases the charge accumulation speed of the capacitor C. Thereby, the discharge energy given to the secondary side of the ignition coil increases, and the reduction of the secondary current I2 is suppressed.
  • the superimposition promoting means 19 functions to automatically control whether the secondary current I2 becomes too high or too low.
  • the accumulated charge of the capacitor C increases and approaches the voltage of the superimposition accelerating signal Su, the linearity of the accumulated charge amount over time deteriorates. For this reason, the time lapse since the superimposition signal Sp is turned on becomes long, and when the charging voltage of the capacitor C approaches the applied voltage of the superimposition promotion signal Su, it becomes difficult to increase the charge accumulation speed of the capacitor C, and the superimposition promotion function is provided. May not be able to be exhibited. In consideration of this point, it is desirable to set the capacitor C, the superimposition promotion signal, and the like so as to be suitable for the superimposition time by the superimposition signal Sp.
  • the superimposition promoting means 19 as described above is used to perform control for accelerating the increase of the superimposition current I1b or returning to the normal increase state, the amount of change in the magnetic flux acting on the secondary coil 112 can be suitably held. Therefore, the electromotive voltage generated on the secondary side can be maintained at a high level. That is, according to the ignition device 1 ′ for the internal combustion engine of the present embodiment, in order to sufficiently and sufficiently improve the ignitability due to the spark discharge generated in the ignition plug 2, while maintaining the secondary current I 2 at a high value, Therefore, it is possible to suppress the increase of the secondary current I2 to increase the power consumption.
  • the superimposition promoting means 19 can be made relatively inexpensive and compact with discrete components such as the second comparator 191 and the fourth switch element 192.
  • the embodiments of the ignition device for an internal combustion engine according to the present invention have been described based on the accompanying drawings.
  • the present invention is not limited to only these embodiments, and the structure described in the claims is not limited. As long as it is not changed, it may be implemented by diverting a known existing equivalent technical means.
  • Ignition device for internal combustion engine DESCRIPTION OF SYMBOLS 11 Ignition coil 111a Main primary coil 111b Secondary primary coil 112 Secondary coil 15 Secondary primary coil energization switch means 16 Superposition control means 2 Spark plug 3 Internal combustion engine drive control device 4 DC power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

点火プラグの着火性を向上させる自動制御機能を、大型化・高コスト化させずに搭載できる内燃機関用点火装置を提供する。 主点火コイル111aの通電遮断後の磁束変化を、副一次コイル111bへの通電により発生させる重畳磁束で増加させ、二次コイル112に与える放電エネルギーを高める内燃機関用点火装置1に、重畳電流I1bの流量を制御できる副一次コイル通電スイッチ手段15と、着火性向上に好適な重畳電流I1bの増加を副一次コイル通電スイッチ手段15へ指示する重畳制御手段16を設ける。

Description

内燃機関用点火装置
 本発明は、自動車両に搭載される内燃機関用の点火装置に関し、特に、複数の一次コイルを使用して点火プラグに放電を起こす内燃機関用点火装置の改良に関する。
 車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギー型のものが必要になる。そこで、古典的な電流遮断原理により点火コイル一次側から点火コイル二次側に放電エネルギーを与えることに加え、もう一つの一次コイルに通電して二次側へ与えるエネルギーを重畳的に高める重ね放電型点火装置を、本件発明者は提案している。(例えば、特許文献1を参照)。
 特許文献1に記載の点火装置は、点火コイルの一次電流を遮断することで二次側に発生する数Kvの高圧電圧により、点火プラグの放電間隙に絶縁破壊を起こし、点火コイルの二次側に放電電流を流し始めた後に、もう一つの一次コイルに一次電流を流す。もう一つの一次コイルへの通電で生じる磁束の向きは、一次コイルの通電遮断で磁束が減少する向きと同じである。このため、通電遮断による一次コイルの磁束変化と、もう一つの一次コイルへの通電による発生磁束が、二次コイルに作用することとなる。すなわち、二次コイルには、通常の一次電流遮断による磁束変化よりも大きな磁束変化が作用するので、二次側に発生する磁束を加速させ、二次電流を重畳できる。事実、重ね放電型の点火装置によると、点火プラグに比較的大きな放電エネルギーを得ることができるため、燃料への着火性が向上し、ひいては燃費も向上する。
国際公開第2016/157541号
 しかし、特許文献1に記載された重ね放電型点火装置は、もう一つの一次コイルへの通電量や通電時間を変えることで、二次側へ与える重畳エネルギーを調整できるものの、その調整を自動的に行う機能を備えていない。例えば、もう一つの一次コイルに流れる電流をフィードバック制御により希望の電流が流れるように調整すれば、もう一つの一次コイルへの通電制御を自動的に最適化できる。また、二次電流の状態によって、もう一つの一次コイルに流れる電流を増加させたり、逆に減少させたりして、二次電流を好適に保つ様にフィードバック制御を行うことでも、もう一つの一次コイルへの通電制御を自動的に最適化できる。
 しかしながら、このような自動制御の機能を内燃機関用点火装置へ実装する場合、制御ユニットが大型化したり、装置自体が高コスト化したりという問題が生じる。制御ユニットが大型化してしまうと、狭小な車両内での搭載場所を別途確保する必要が生じてしまうので、車体の設計から見直さなければならない場合もある。また、制御ユニットが高コストになってしまうと、それだけ車両価格を上げなければならず、市場競争力を担保できない可能性もある。そのため、もう一つのコイルへの通電制御を自動的に最適化する機能を、複雑な回路で構成したり、複雑なアルゴリズムに基づくコンピュータ制御で実現したりしても、市場へ提供し難くなるという問題があった。
 そこで、本発明は、点火プラグに発生した火花放電による着火性を必要十分に向上させる自動制御機能を、大型化・高コスト化させずに搭載できる内燃機関用点火装置の提供を目的とする。
 上記課題を解決するために、内燃機関用点火装置は、点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルは、点火信号がオンで行われる主一次電流の通電により順方向の磁束量が増加し、点火信号がオフになって主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、前記副一次コイルへの通電・遮断を行うと共に、副一次コイルへの通電量を変えることで、遮断方向の磁束量を変化させる副一次コイル通電スイッチ手段と、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電スイッチ手段を動作させて、副一次コイルへの重畳電流供給を開始すると共に、時間経過に伴って重畳電流を増加させるように前記副一次コイル通電スイッチ手段を動作させる重畳制御手段と、を備える。
 また、上記の内燃機関用点火装置において、前記重畳制御手段は、点火信号のオンで電荷をショートし、点火信号がオフとなった放電開始と共に充電を開始するコンデンサを備え、充電開始後におけるコンデンサの電荷蓄積状態を指標として、時間経過に伴う重畳電流の増加制御を行う構成でも良い。
 また、上記の内燃機関用点火装置において、前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段と、前記二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、前記重畳制御手段による重畳電流の増加を促進させる重畳促進手段と、を備える構成でも良い。
 また、上記の内燃機関用点火装置において、前記重畳促進手段は、前記二次電流検出手段により検出された二次電流検出値と、二次電流を維持するために重畳電流の増加を促進する指標として予め定めた増加促進基準値とを対比し、検出された二次電流値が増加促進基準値を越えないことを重畳促進条件として用いる構成でも良い。
 上記構成の内燃機関用点火装置によれば、副一次コイル通電スイッチ手段と重畳制御手段とによって、副一次コイルへの重畳電流を適切に制御できるので、点火プラグに発生した火花放電による着火性を必要十分に向上させられる。また、副一次コイル通電スイッチ手段と重畳制御手段は、耐熱性および耐ノイズ性の良いディスクリート部品を用いた比較的単純な構造で実現できるので、内燃機関用点火装置自体を小型化・低コスト化できる。
第1実施形態に係る内燃機関用点火装置の概略構成図である。 第1実施形態に係る内燃機関用点火装置の要部における波形を示した波形図である。 第2実施形態に係る内燃機関用点火装置の概略構成図である。 第2実施形態に係る内燃機関用点火装置の要部における波形を示した波形図である。
 次に、第1実施形態に係る内燃機関用点火装置1を、添付図面に基づいて詳細に説明する。
 図1に示す内燃機関用点火装置1は、内燃機関の気筒毎に設けられる1つの点火プラグ2に放電火花を発生させる点火コイルユニット10、この点火コイルユニット10の動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段としての内燃機関駆動制御装置3、車両バッテリ等の直流電源4、直流電源4の供給電圧VB+をVBoost+に昇圧する昇圧手段5等で構成される。なお、点火コイルユニット10に供給するVBoost+は、直流電源4から生成する場合に限定されるものではなく、別途、所要電圧の直流電源を設けておき、VBoost+を点火コイルユニット10へ供給しても良い。
 また、本実施形態に示す内燃機関用点火装置1においては、点火制御手段としての機能が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置3に含まれるものとしたが、これに限定されるものではない。例えば、ECUといった通常の内燃機関駆動制御装置3が有している点火信号生成機能によって生成された点火信号を受けて、適宜な制御信号を生成し、点火コイルユニット10へ制御信号を出力する点火制御装置を別途設けるようにしても構わない。
 点火コイルユニット10は、点火コイル11や制御基板等を所要形状のケース12に収納して一体構造としたユニットである。このケース12の適所には、高圧端子121とコネクタ122を設けてあり、高圧端子121を介して点火プラグ2を接続すると共に、第1~第5接続端子122a~122eを備えるコネクタ122を介して、内燃機関駆動制御装置3や直流電源4等と接続する。
 点火コイル11は、主一次コイル111a(例えば、114ターン)と副一次コイル111b(例えば、20ターン)に生ずる磁束を二次コイル112(例えば、9348ターン)に効率良く作用させるものである。例えば、高透磁性材料で形成したセンターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。
 主一次コイル111aの一方端は、コネクタ122の第1接続端子122aを介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。主一次コイル111aの他方端は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いた点火スイッチ13のコレクタに接続される。点火スイッチ13のエミッタはコネクタ122の第5接続端子122eを介して接地点GNDに接続される。二次コイル112の一方端は高圧端子121を介して点火プラグ2と接続され、他方端はコネクタ122の第5接続端子122eを介して接地点GNDに接続される。なお、二次コイル112から接地へ至る間の線路には、二次コイル112から接地点GNDに向かって順方向となる整流素子D1(例えば、接地側にカソードを、二次コイル112側にアノードをそれぞれ接続したダイオード)を設け、二次電流I2の流路方向を規制する。
 放電サイクルの適宜なタイミングで内燃機関駆動制御装置3より出力される点火信号Siは、コネクタ122の第4接続端子122dを介して、点火コイルユニット10内の点火スイッチ13のゲートに入力される。そして、点火信号Siが点火スイッチ13のゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ13がオンになり、主一次コイル111aの非給電側端部が接地点GNDに接続される。これにより、主一次コイル111aには、給電側から接地側に向かう主一次電流I1が流れ始め、主一次電流I1の流量は増加してゆき、主一次電流I1aの流量に応じて発生する通電磁束の磁束量が磁界のエネルギーとして蓄積される。なお、点火コイル11の二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギーが蓄積される。
 上記のようにエネルギーが蓄積された後、主一次コイル111aへの通電が所定の点火タイミングで遮断されると、高圧の起電力が二次コイル112に生じて点火プラグ2の放電ギャップ間に火花放電が発生し、気筒燃焼室内の混合気に着火する。このとき、主一次コイル111aには、通常の主一次電流I1aとは逆向きの電流を流そうとする逆起電力が生ずる。この逆起電力が点火スイッチ13のコレクタ-エミッタ間に印加されると、点火スイッチ13が故障したり、点火スイッチ13の劣化を早めたりする危険性がある。そこで、点火スイッチ13と並列にバイパス線路14を設けると共に、このバイパス線路14の接地点側から点火コイル11側に向かって順方向となる整流素子D2(例えば、点火スイッチ13のコレクタ側にカソードを、点火スイッチ13のエミッタ側にアノードをそれぞれ接続したダイオード)を設けた。
 一方、主一次コイル111aと同様に、鉄心113を介して二次コイル112に磁界を作用させることが可能な副一次コイル111bは、その一方端がコネクタ122の第2接続端子122bを介して昇圧手段5と接続され、昇圧電源VBoost+が供給される。VBoost+の給電線路には、副一次コイル通電スイッチ手段15と整流素子D3を設ける。整流素子D3は、副一次コイル通電スイッチ手段15から副一次コイル111bに向かって順方向となる(例えば、ダイオードのカソードを副一次コイル111b側に、アノードを副一次コイル通電スイッチ手段15側にそれぞれ接続する)ように設ける。これにより、副一次電流I1b(以下、重畳電流という)の流路方向が規制され、副一次コイル通電スイッチ手段15側へ逆向きの電流が流れることを阻止できる。副一次コイル111bの他方端は、コネクタ122の第5接続端子122eを介して接地点GNDに接続される。
 副一次コイル通電スイッチ手段16は、副一次コイル111bへの通電・遮断を行うと共に、副一次コイル111bへの通電量を変えることで、遮断方向(主一次コイル111aの通電磁束を減じる方向)に生じる重畳磁束の磁束量を変化させることができる。このようなスイッチングと流量制御の機能は、種々の回路構造で実現できるが、本実施形態では、パワーMOS-FETを用いた第1スイッチ素子151とnpn型バイポーラトランジスタを用いた第2スイッチ素子152で構成した例を示す。なお、通電磁束と重畳磁束の向きを逆にするためには、主一次コイル111aと副一次コイル111bの巻回方向を逆向きにするか、主一次コイル111aへの給電方向と副一次コイル111bへの給電方向を逆向きにしておけば良い。
 上述した副一次コイル通電スイッチ手段15の動作は、重畳制御手段16の制御によって行う。重畳制御手段16は、主一次コイル111aへの通電遮断と同時に副一次コイル通電スイッチ手段15を動作させて、副一次コイル111bへの重畳電流供給を開始させる。その後の時間経過に伴って、重畳制御手段16は、副一次コイル111bに流れる重畳電流I1bを増加させるように、副一次コイル通電スイッチ手段15の動作を制御する。重畳制御手段16による副一次コイル通電スイッチ手段15の制御は、副一次コイル通電制御信号Scによって行う。このような副一次コイル通電制御信号Scの生成機能は、種々の回路構造で実現できるが、本実施形態では、第1コンパレータ161とコンデンサCと第3スイッチ素子162を用いて構成した例を示す。なお、重畳制御手段15では、重畳電流I1bの流量を利用するため、副一次コイル111bからコネクタ122へ至る間の流路に抵抗R1を介挿し、この電圧変化を重畳電流検出信号線17によって取得できる構造とした。
 次に、副一次コイル通電手段15の回路について説明する。第1スイッチ素子151のソースはVBoost+の給電側に、第1スイッチ素子151のドレインは副一次コイル111b側(正確には、整流素子D3のアノード側)にそれぞれ接続してある。よって、第1スイッチ素子151のゲートに、ゲートしきい値電圧以上の電圧が印加されると、第1スイッチ素子151がオンとなって、副一次コイル111bへVBoost+が供給される。また、第1スイッチ素子151は、ゲート-ソース間電圧を上げることによって、大きなドレイン電流を流すことができるので、ゲートへの印加電圧を上げることにより、重畳電流I1bを増加させることができる。
 第1スイッチ素子151の給電側には、給電線と接地線を繋ぐ線路を形成し、該線路中に抵抗R2と第2スイッチ素子152を設けてある。そして、抵抗R2と第2スイッチ素子152との間の電位が第1スイッチ素子151のゲート入力となる。npn型バイポーラトランジスタを用いた第2スイッチ素子152のコレクタは抵抗R2側に、エミッタは接地側に接続してあるので、ベースへの入力電流に応じてエミッタ-コレクタ間電流を制御できる。すなわち、第2スイッチ素子152がオフの時には、第1スイッチ素子151のベースは、電源ラインと同電位であるため、第1スイッチ素子151はオフとなり、重畳電流I1bは流れない。第2スイッチ素子152がオンになって、第1スイッチ素子151のベースにベースしきい値電圧以上の電位になると、第1スイッチ素子151はオンとなり、重畳電流I1bが流れ始める。更に、第2スイッチ素子152のエミッタ-コレクタ間電流を大きくすると、抵抗R2による電圧降下分が減少し、第1スイッチ素子151のベースに印加される電圧が高くなり、第1スイッチ素子151のドレイン電流を大きくできる。すなわち、重畳電流I1bを増加させることができる。
 以上のように、本実施形態の副一次コイル通電スイッチ手段15によれば、第2スイッチ素子152のベースに副一次コイル通電制御信号Scを入力することで、重畳電流I1bのオン・オフおよび流量制御が可能となる。
 次に、重畳制御手段16の回路について説明する。第1コンパレータ161は、オープンコレクタ方式のコンパレータを用いる。オープンコレクタ方式のコンパレータは、出力VoutのHレベル電圧を任意に設定できるので、抵抗R3を介して入力される重畳信号Spでプルアップ電圧を設定する。重畳信号Spは、内燃機関駆動制御装置3から供給され、コネクタ122の第3接続端子122cを介して点コイルユニット10へ入力されるものである。第1コンパレータ161の出力Voutは、副一次コイル通電スイッチ手段15における第2スイッチ素子152のベース入力となる。すなわち、第1コンパレータ161の出力電圧に応じて、第2スイッチ素子152への供給電流を変化させることができるので、第1コンパレータ161の出力に応じた副一次コイル通電制御信号Scが生成される。
 また、内燃機関駆動制御装置3からの重畳信号Spは、そのオン・オフによって重畳制御の開始と終了を指示するものであるから、重畳信号Spがオフのときに、副一次コイル通電制御信号Scにより副一次コイル通電スイッチ手段15が動作させてはいけない。すなわち、重畳信号Spが入力される(例えば、信号レベルがLからHに変わる)タイミング以降に副一次コイル通電制御信号Scを出力し、重畳信号Spが停止する(例えば、信号レベルがHからLに変わる)タイミングで副一次コイル通電制御信号Scを確実に停止させなければならない。この点についても、オープンコレクタ方式のコンパレータを用い、重畳信号Spをプルアップ電圧としている第1コンパレータ161であれば、問題ない。重畳信号Spがオフのときは、第1コンパレータ161の論理がHであっても出力VoutはLになるから、副一次コイル通電スイッチ手段15を動作させるような副一次コイル通電制御信号Scが生成されることはない。
 第1コンパレータ161の反転入力Vin(-)には、重畳電流検出信号線17を介して、重畳電流に応じた電圧信号が入力される。一方、第1コンパレータ161の非反転入力Vin(+)には、増加指標信号線163から重畳電流I1bを増加させる指標となる信号が入力される。この増加指標信号線163には、電源電圧VB+を抵抗R4aと抵抗R4bで分圧した電圧が印加され、この電圧でコンデンサCが充電される。すなわち、コンデンサCの蓄積電荷がゼロであれば、増加指標信号線163の電位はゼロになり、時間経過に伴ってコンデンサCに電荷が蓄積されて行くと増加指標信号線163の電位は上がる。なお、コンデンサCの充放電特性により、必ずしも点火信号Siがオンの間に全電荷を放出してゼロ電位になるわけではないし、コンデンサCが充電電圧(抵抗R4aと抵抗R4bの分圧比に応じた電圧)に達する定常状態まで充電する必要はなく、時間経過に対する電荷蓄積の直線性が良い範囲で使うことが望ましい。
 コンデンサCの充電特性に応じた電荷蓄積特性線を指標として、第1コンパレータ161の出力電圧を変化させることができれば、副一次コイル111bへの重畳電流供給を開始した後、徐々に重畳電流I1bを増加させて行くことができる。かくするためには、所要のタイミングでコンデンサCを放電(電荷をショート)させ、重畳制御開始のタイミングでコンデンサCを充電可能にする機能と、充電開始後におけるコンデンサの電荷蓄積状態を副一次コイル通電制御信号Scに反映させる機能が必要である。
 本実施形態では、コンデンサCの充放電タイミングを制御するために、点火信号Siと第3スイッチ素子162を用いる。第3スイッチ素子162としては、npn型バイポーラトランジスタを用い、エミッタを増加指標信号線163に、コレクタを接地点GNDに接続する。そして、点火信号Siが第3スイッチ素子162のゲートに入力される(例えば、信号レベルがLからHになる)と、第3スイッチ素子162がオンになるので、増加指標信号線163が接地電位に落ち、コンデンサCの放電が行われる。その後、点火信号Siが停止する(例えば、信号レベルがHからLになる)と、第3スイッチ素子162がオフになるので、抵抗R4aと抵抗R4bの分圧比に応じた電圧でコンデンサCの充電が開始される。
 また、本実施形態では、オープンコレクタ方式のコンパレータを第1コンパレータ161に用いることで、充電開始後におけるコンデンサCの電荷蓄積状態を副一次コイル通電制御信号Scに反映させる機能を実現した。第1コンパレータ161の非反転入力である増加指標信号(コンデンサCの蓄積状態を反映した電圧信号)と反転入力である重畳電流検出信号とが共に同程度の値(但し、増加指標信号≧重畳電流検出信号)であれば、両信号の電位差が小さくなる。非反転入力と反転入力の電位差が小さいと、コンパレータ出力の論理レベルがLからHに変わるまでの立ち上がり時間が長くなる。すなわち、コンデンサCの充放電特性、増加指標信号線163への印加電圧、重畳電流検出信号線17の信号検出レベル等を適宜に設定することで、重畳信号Spのオン時間幅に第1コンパレータ161の立ち上がり時間を対させることができる。そして、第1コンパレータ161の出力Voutが徐々に高くなると、副一次コイル通電制御信号Sc(第2スイッチ素子152のベース電流)も徐々に高くなるので、副一次コイル通電スイッチ手段15による重畳電流の増加制御を実現できる。
 次に、内燃機関用点火装置1における要部の波形を示した図2に基づき、重畳制御を行わない場合の回路動作と、重畳制御を行う場合の回路動作を説明する。
 まず、重畳制御を行わない点火サイクルについて説明する。点火信号Siがオンになって主一次コイル111aへの通電が開始されると、主一次電流I1aが流れ始める。このとき、点火信号Siがオンになることで、第3スイッチ素子162がオンになるので、コンデンサCの電荷がショートされ、第1コンパレータ161の非反転入力Vin(+)の入力電位はLに落ちる。その後、点火信号Siがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギーが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。点火信号Siがオフになったとき、第3スイッチ素子162もオフになるので、コンデンサCの充電が開始されるが、重畳信号Spはオフのままであり、第1コンパレータ161の出力VoutはLのままである。すなわち、重畳信号Spがオフのままであれば、重畳制御は行われないので、点火プラグ2の放電開始後に点火コイル二次側へ重畳的にエネルギーが与えられることは無く、主一次コイル111aにおける順方向の磁束減少に伴って二次電流I2も減少して行く。
 一方、重畳制御を行う点火サイクルでは、点火信号Siのオフと同時に重畳信号Spをオンにする。重畳信号Spがオンになると、第1コンパレータ161の出力にプルアップ電圧が与えられるので、副一次コイル通電制御信号Scが立ち上がる。なお、重畳信号Spがオンになった直後、コンデンサCは放電状態であり、副一次コイル111bには重畳電流I1bが流れていないので、第1コンパレータ161の出力VoutはLであるが、第2スイッチ素子152のベースには、ベースしきい値電圧を超えるベース電流が供給されるように、抵抗R3の値を設定しておく。したがって、重畳信号Spがオンになった直後から第1スイッチ素子151もオンとなり、副一次コイル111bへの電源供給が実行され、重畳電流I1bが流れ始める。
 重畳信号Spがオンになって重畳電流I1bが流れ始めると、時間経過に伴ってコンデンサCの充電量は徐々に増加し、重畳電流検出信号線17より検出される重畳信号も徐々に増加する。第1コンパレータ161の非反転入力と反転入力の両信号は共に徐々に増加して行くので、電位差が一気に開くことは無いため、第1コンパレータ161の出力がLからHにかわるまでの立ち上がり時間が長くなる。このため、副一次コイル通電制御信号Scは一気にマックスまで上昇せず、徐々に上昇して行くこととなる。その結果、第2スイッチ素子152のベース電流が徐々に上昇し、第2スイッチ素子152のコレクタ-エミッタ間電流も徐々に増加するので、第1スイッチ素子151のドレイン電流も徐々に増加する。すなわち、本実施形態では、ディスクリート部品で比較的安価かつ小型に構成できる副一次コイル通電スイッチ手段15および重畳制御手段16を用いることで、重畳電流I1bを徐々に増加させる制御を実現できる。また、重畳電流I1bが徐々に上昇することで、回帰的に第1コンパレータ161の反転入力となる重畳電流検出信号も徐々に上昇することとなり、コンデンサCの電荷蓄積特性線に追随する特性線を得ることができ、立ち上がり時間の遅延化を維持できる。
 上記のような副一次コイル通電スイッチ手段15と重畳制御手段16を用い、重畳電流I1bを徐々に増加させる制御を行うと、二次コイル112に作用する磁束の変化量が好適に保持されるので、二次側に発生する起電圧を高いまま維持することができる。すなわち、主一次コイル111aへの電流遮断後に順方向磁束が遮断方向に減ぜられる磁束変化は、時間経過と共に減少するが、遮断方向の重畳磁束を徐々に増やすように重畳電流I1bを副一次コイル111bに流すことで、磁束変化の減少を補完するのである。このような重畳制御を行えば、重畳信号Spで指示された期間は、二次コイル112に対して同程度の磁束変化が作用する状態を維持できるので、二次電流I2を高い値に保つことができ、点火プラグ2に発生した火花放電による着火性を必要十分に向上させられる。
 次に、第2実施形態に係る内燃機関用点火装置1′を、添付図面に基づいて詳細に説明する。上述した第1実施形態の内燃機関用点火装置1と同一の構成には、同一符号を付して、説明を省略する。
 第2実施形態の内燃機関用点火装置1′では、点火プラグ2に発生した火花放電による着火性を必要十分に向上させるため、二次電流I2を高く保つ制御を自動で行う構成を設けたものである。かくするためには、指標となる二次電流I2を検出する機能と、副一次コイル通電スイッチ手段15に働きかけて重畳電流I1bの流量増加を促進させる機能が必要である。
 点火コイル11の二次側に流れる二次電流I2を検出する機能(二次電流検出手段)は、二次電流I2の流路適所(例えば、整流素子D1のカソード側と第5接続端子122eとの間)に介挿した抵抗R5と、この電圧変化を取得する二次電流検出信号線18から成る。一方、副一次コイル通電スイッチ手段15に働きかけて重畳電流I1bの流量を促進させる機能として、重畳促進手段19を設けた。重畳促進手段19は、種々の回路構造で実現できるが、本実施形態では、第2コンパレータ191と第4スイッチ素子192を用いて構成した例を示す。
 重畳促進手段19は、二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、重畳制御手段16による重畳電流の増加を促進させるものである。かかる制御を行う場合、二次電流I2が低下して良好な着火性を維持できなくなる状態を回避するために重畳電流I1bの増加を促進させるか否かを判断するための条件として、重畳促進条件の設定が必要である。例えば、重畳制御を行っている期間中、二次電流I2が所定の基準値よりも低い場合に、重畳制御手段16から出力される副一次コイル通電制御信号Scの増加率を上げてやれば、副一次コイル通電スイッチ手段15により重畳電流I1bの増加率も高められる。
 そこで、第2コンパレータ191の非反転入力Vin(+)に二次電流検出手段により検出された二次電流検出値(二次電流検出信号線18の信号電圧)を入力し、反転入力Vin(-)に増加促進基準値を入力する。増加促進基準値は、二次電流I2を基準値以上に維持するために重畳電流の増加を促進する指標として予め定めた値である、二次電流検出値に対応した電圧値を用いる。本実施形態では、電源電圧VB+を抵抗R5aと抵抗R5bで分圧した電圧を増加促進基準値として用い、抵抗R5aと抵抗R5bの間に接続された増加促進基準信号線193を介して、第2コンパレータ191の反転入力Vin(-)に入力する。かくすれば、二次電流検出値をと増加促進基準値との比較結果が、第2コンパレータ191の出力Voutとして得ることができる。なお、第2コンパレータ191は、オープンコレクタ方式のコンパレータを用いるものとし、電源電圧VB+が抵抗R8を介して入力されるプルアップ電圧を、出力VoutのHレベル電圧に設定する。
 第4スイッチ素子192は、例えば、pnp型のバイポーラトランジスタを用いる。第4スイッチ素子192のエミッタは、コネクタ122の第1接続端子122aを介して直流電源4と接続し、電源電圧VB+が印加される。第4スイッチ素子192のコレクタは、抵抗R6を介して重畳制御手段16の増加指標信号線163に接続され、抵抗R6と抵抗R4bの分圧比に応じた電圧信号(増加促進信号Su)がコンデンサCに印加される。このとき、抵抗R6の抵抗値を抵抗R4aの抵抗値よりも低く設定しておけば、抵抗R6を介して増加指標信号線163に印加される電圧の方が、抵抗R4aを介して増加指標信号線163に印加される電圧よりも高くなる。すなわち、「抵抗R4a>抵抗R6」に設定しておけば、第4スイッチ素子192がオンになったとき、増加指標信号線163に高い電圧が印加されることとなり、コンデンサCの充電速度を上げることができる。
 第4スイッチ素子192のベースには、抵抗R8を介して第2コンパレータ191の出力Voutが入力される。第2コンパレータ191の出力VoutがHのとき、第4スイッチ素子192のベース電流が流れないため、第4スイッチ素子192はオフとなり、増加促進信号Suが重畳制御手段16に供給されることは無い。一方、第2コンパレータ191の出力VoutがLになると第4スイッチ素子192のベース電流が流れ、第4スイッチ素子192がオフとなり、増加促進信号Suが重畳制御手段16に供給される。
 かく構成した重畳促進手段19においては、二次電流検出値が増加促進基準値以下のとき(もしくは、満たないとき)、増加促進信号Suを重畳制御手段16に供給するので、コンデンサCの電荷蓄積速度が速められ、重畳電流I1bの増加が促進される。これにより、副一次コイル111bに生ずる重畳磁束が増加して、二次コイル112に作用する磁束変化が大きくなるので、点火コイル二次側の起電力が高まり、二次電流I2を高い値に保つことが可能となる。一方、二次電流検出値が増加促進基準値に満たないとき(もしくは、以下のとき)、重畳促進手段19は増加促進信号Suを重畳制御手段16へ供給しないので、コンデンサCの電荷蓄積速度が速められることはない。すなわち、本実施形態の重畳促進手段19では、二次電流検出値が増加促進基準値以下であること(もしくは、満たないこと)を重畳促進条件として用い、重畳促進条件を満たすことに基づいて、重畳制御手段16による重畳電流の増加を促進させるように制御するのである。
 次に、内燃機関用点火装置1′における要部の波形を示した図4に基づき、重畳制御を行わない場合の回路動作と、重畳制御を行う場合の回路動作を説明する。
 まず、重畳制御を行わない点火サイクルについて説明する。点火信号Siがオンになって主一次コイル111aへの通電が開始されると、主一次電流I1aが流れ始める。このとき、点火信号Siがオンになることで、第3スイッチ素子162がオンになるので、コンデンサCの電荷がショートされ、第1コンパレータ161の非反転入力Vin(+)の入力電位はLに落ちる。このとき、二次電流I2は流れていないので、重畳促進手段19における第2コンパレータ191の出力VoutはLとなるため、第4スイッチ手段192がオンとなり、重畳促進信号Suが出力されている。しかしながら、第3スイッチ素子162がオンになっているため、増加指標信号線163は接地電位となり、コンデンサCが重畳促進信号Suによって充電されることは無い。
 その後、点火信号Siがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギーが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。点火信号Siがオフになったとき、第3スイッチ素子162もオフになるので、コンデンサCの充電が開始される。このとき、非常に大きな二次電流I2が流れ、重畳促進手段19における第2コンパレータ191の出力VoutはHとなるため、第4スイッチ手段192がオフとなり、重畳促進信号Suがオフとなる。したがって、コンデンサCは、高圧の重畳促進信号Suによって充電されず、抵抗R4aを介して印加される電圧によって充電されることとなる。しかしながら、重畳信号Spがオフのままであるから、副一次コイル通電制御信号Scは出力されないので、重畳制御が行われることはない。よって、点火プラグ2の放電開始後に点火コイル二次側へ重畳的にエネルギーが与えられることは無く、主一次コイル111aにおける順方向の磁束減少に伴って二次電流I2も減少して行く。
 一方、重畳制御を行う点火サイクルでは、点火信号Siのオフと同時に重畳信号Spをオンにする。重畳信号Spがオンになると、第1コンパレータ161の出力にプルアップ電圧が与えられるので、副一次コイル通電制御信号Scが立ち上がる。なお、放電開始直後は重畳促進信号Suがオフとなるため、放電状態のコンデンサCは、抵抗R4を介して印加される電圧によって充電され、その蓄積電荷状態を指標とする副一次コイル通電制御信号Scが出力される。したがって、重畳信号Spがオンになった直後から、副一次コイル通電スイッチ手段15による副一次コイル111bへの電源供給が実行され、重畳電流I1bが流れ始める。
 重畳信号Spがオンになって重畳電流I1bが流れ始めると、時間経過に伴ってコンデンサCの充電量は徐々に増加し、重畳電流検出信号線17より検出される重畳信号も徐々に増加する。しかしながら、二次電流I2が次第に低下して、二次電流検出値が増加促進基準値に達する(あるいは、未満になる)と、重畳促進条件が成立するので、重畳促進手段19は重畳促進信号Suがオンにする。これにより、コンデンサCは重畳促進信号Suの電圧で充電されるようになるので、抵抗R4を介して印加される電圧によって充電されていたときよりも電荷蓄積速度が上がる。そして、コンデンサCの蓄積電荷状態を指標とする副一次コイル通電制御信号Scの上昇率が上がり、副一次コイル通電スイッチ手段15による重畳電流I1bの増加率も上がるので、点火コイル二次側へ与える放電エネルギーも増大し、二次電流I2の低減が抑制される。
 その後、二次電流I2が上昇して、再び重畳促進条件が成立しなくなると、重畳促進手段19は重畳促進信号Suがオフにし、コンデンサCの電荷蓄積速度を通常時に戻す。これにより、点火コイル二次側へ与える放電エネルギーは低下し、二次電流I2の上昇が抑制される。その後、二次電流I2が低下して、再び重畳促進条件が成立すると、重畳促進手段19は重畳促進信号Suをオンにし、コンデンサCの電荷蓄積速度を高める。これにより、点火コイル二次側へ与える放電エネルギーは増大し、二次電流I2の低減が抑制される。すなわち、重畳信号Spがオンの間には、重畳促進手段19が機能することで、二次電流I2が高くなりすぎたり低くなり過ぎたりすることを自動で制御できる。なお、コンデンサCの蓄積電荷が増えて、重畳促進信号Suの電圧に近づくと、時間経過に対する蓄積電荷量の直線性が悪くなる。このため、重畳信号Spがオンになってからの時間経過が長くなり、コンデンサCの充電電圧が重畳促進信号Suの印加電圧に近づくと、コンデンサCの電荷蓄積速度を高め難くなり、重畳促進機能を発揮できなくなる可能性がある。この点を考慮して、重畳信号Spによる重畳時間に適するように、コンデンサCや重畳促進信号等を設定しておくことが望ましい。
 上記のような重畳促進手段19を用い、重畳電流I1bの増加を促進させたり、通常の増加状態へ戻したりする制御を行うと、二次コイル112に作用する磁束の変化量を好適に保持できるので、二次側に発生する起電圧を高いまま維持することができる。すなわち、本実施形態の内燃機関用点火装置1′によれば、点火プラグ2に発生した火花放電による着火性を必要十分に向上させるために、二次電流I2を高い値に保ちつつも、過度に二次電流I2を上昇させて、電力消費を高めてしまうことを抑制できる。しかも、重畳促進手段19は、第2コンパレータ191や第4スイッチ素子192といったディスクリート部品で比較的安価かつ小型に構成できる
 以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態のみに限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。
 1   内燃機関用点火装置(第1実施形態)
 11   点火コイル
 111a 主一次コイル
 111b 副一次コイル
 112  二次コイル
 15   副一次コイル通電スイッチ手段
 16   重畳制御手段
 2    点火プラグ
 3    内燃機関駆動制御装置
 4    直流電源

Claims (4)

  1.  点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
     前記点火コイルは、点火信号がオンで行われる主一次電流の通電により順方向の磁束量が増加し、点火信号がオフになって主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、
     前記副一次コイルへの通電・遮断を行うと共に、副一次コイルへの通電量を変えることで、遮断方向の磁束量を変化させる副一次コイル通電スイッチ手段と、
     前記主一次コイルへの通電遮断と同時に前記副一次コイル通電スイッチ手段を動作させて、副一次コイルへの重畳電流供給を開始すると共に、時間経過に伴って重畳電流を増加させるように前記副一次コイル通電スイッチ手段を動作させる重畳制御手段と、
     を備えることを特徴とする内燃機関用点火装置。
  2.  前記重畳制御手段は、点火信号のオンで電荷をショートし、点火信号がオフとなった放電開始と共に充電を開始するコンデンサを備え、充電開始後におけるコンデンサの電荷蓄積状態を指標として、時間経過に伴う重畳電流の増加制御を行うことを特徴とする請求項1に記載の内燃機関用点火装置。
  3.  前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段と、
     前記二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、前記重畳制御手段による重畳電流の増加を促進させる重畳促進手段と、
     を備えることを特徴とする請求項1又は請求項2に記載の内燃機関用点火装置。
  4.  前記重畳促進手段は、前記二次電流検出手段により検出された二次電流検出値と、二次電流を維持するために重畳電流の増加を促進する指標として予め定めた増加促進基準値とを対比し、検出された二次電流値が増加促進基準値を越えないことを重畳促進条件として用いることを特徴とする請求項3に記載の内燃機関用点火装置。
PCT/JP2018/036053 2018-09-27 2018-09-27 内燃機関用点火装置 WO2020065855A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020547744A JP7150039B2 (ja) 2018-09-27 2018-09-27 内燃機関用点火装置
PCT/JP2018/036053 WO2020065855A1 (ja) 2018-09-27 2018-09-27 内燃機関用点火装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036053 WO2020065855A1 (ja) 2018-09-27 2018-09-27 内燃機関用点火装置

Publications (1)

Publication Number Publication Date
WO2020065855A1 true WO2020065855A1 (ja) 2020-04-02

Family

ID=69951238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036053 WO2020065855A1 (ja) 2018-09-27 2018-09-27 内燃機関用点火装置

Country Status (2)

Country Link
JP (1) JP7150039B2 (ja)
WO (1) WO2020065855A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157541A1 (ja) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置
WO2017006487A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置の点火コイル
WO2017060935A1 (ja) * 2015-10-06 2017-04-13 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置および内燃機関用点火装置の点火制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157541A1 (ja) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置
WO2017006487A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置の点火コイル
WO2017060935A1 (ja) * 2015-10-06 2017-04-13 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置および内燃機関用点火装置の点火制御方法

Also Published As

Publication number Publication date
JPWO2020065855A1 (ja) 2021-08-30
JP7150039B2 (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2016157541A1 (ja) 内燃機関用点火装置
JP6375452B2 (ja) 内燃機関用点火装置および内燃機関用点火装置の点火制御方法
US9371814B2 (en) Ignition device for an internal combustion engine and method for operating an ignition device for an internal combustion engine
JP5124031B2 (ja) 内燃機関の点火装置
KR102323181B1 (ko) 점화 시스템을 제어하기 위한 방법 및 장치
JP6570737B2 (ja) 内燃機関用点火装置
CN108350849B (zh) 多充电点火系统及其控制方法
JP2018084209A (ja) 内燃機関用点火装置
US9410526B2 (en) Ignition device
WO2020121375A1 (ja) 内燃機関用点火装置
JP4785910B2 (ja) 内燃機関の点火装置
CN108350851B (zh) 用于控制点火系统的方法和装置
WO2018083719A1 (ja) 内燃機関用点火装置
JP2019044663A (ja) 点火装置
JP2020143642A (ja) 半導体集積回路
JP6642049B2 (ja) 点火装置
JP6803278B2 (ja) 点火装置
JP2554569B2 (ja) 内燃機関用の重ね放電式点火装置
WO2020065855A1 (ja) 内燃機関用点火装置
JP6537662B1 (ja) 点火装置
JP6708187B2 (ja) 点火装置
WO2018229883A1 (ja) 内燃機関用点火装置
JP2003314419A (ja) 内燃機関用点火装置
JP2019143507A (ja) 内燃機関用点火装置
JP2021050673A (ja) 内燃機関用点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935260

Country of ref document: EP

Kind code of ref document: A1