JP7412599B2 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
JP7412599B2
JP7412599B2 JP2022568058A JP2022568058A JP7412599B2 JP 7412599 B2 JP7412599 B2 JP 7412599B2 JP 2022568058 A JP2022568058 A JP 2022568058A JP 2022568058 A JP2022568058 A JP 2022568058A JP 7412599 B2 JP7412599 B2 JP 7412599B2
Authority
JP
Japan
Prior art keywords
energization
ignition
control circuit
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022568058A
Other languages
English (en)
Other versions
JPWO2022123861A1 (ja
Inventor
英一郎 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2022123861A1 publication Critical patent/JPWO2022123861A1/ja
Application granted granted Critical
Publication of JP7412599B2 publication Critical patent/JP7412599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、内燃機関制御装置に関する。
近年、車両の燃費向上のため、理論空燃比よりも薄い混合気を燃焼して内燃機関を運転する技術や、燃焼後の排気ガスの一部を取り入れて再度吸気させる技術などを導入した内燃機関の制御装置が開発されている。
この種の内燃機関の制御装置では、燃焼室における燃料や空気の量が理論値から乖離するため、点火プラグによる燃料への着火不良が生じやすくなる。そこで、燃焼室内のガス流速を高くすることで、点火プラグの電極間の流速を高くして放電路を長く形成する方法がある。これにより、放電路とガスとの接触部分の長さが延長され、着火不良を抑制することができる。しかし、点火プラグの電極間の流速を高くした場合は、放電路の吹き消えと、これに伴う再放電の発生頻度が高くなり、放電路を長く形成することが難しくなる。
放電路を長く形成するためには、放電路が形成された後に十分な電流量で電流供給を続けて、放電路をできるだけ長時間維持する必要がある。しかしながら、一般的に点火コイルは、放電開始から時間経過と共に内部エネルギーが低下し続けるため、次第に電流が低下する。一方、放電路は、時間経過と共に伸長するため、次第に要求電流が増加する。このため、放電路を長く形成するために初期電流を増加すると、電流需給差が大きくなり、無駄電力が増大する。無駄電力は、発熱やコストを増大させるため、放電初期の電流を抑制する必要がある。
特許文献1には、イグナイタスイッチ2個と、コンデンサと、ダイオードを用いて、余剰電流を回収、消費するようにした内燃機関用点火装置が開示されている。
特開2001-193622号公報
しかし、特許文献1に開示されている技術では、消費回路による電流抑制が可能であるが、消費回路の動作開始後の任意時期に消費回路を停止できない。そのため、本来必要な電流を供給できなくなる。さらに、発生させた電流を消費回路で消費しているため、発熱量が増大する。その結果、冷却対策部品が必要となり、点火コイルの容積やコストが増大する、という問題がある。
本発明の目的は、上記の問題点を考慮し、点火コイルの容積増大を抑えつつ、内燃機関の着火不良を抑制することを目的とする。
上記課題を解決し、本発明の目的を達成するため、本発明の内燃機関制御装置は、1次側コイルと、1次側コイルの通電が遮断されると、起電力が生じる2次側コイルと、2次側コイルに接続された点火プラグとを有する内燃機関を制御する。この内燃機関制御装置は、1次側コイルの通電を制御する第1の通電制御回路と、第1の通電制御回路と並列に接続され、1次側コイルの通電を制御する第2の通電制御回路とを備える。さらに、内燃機関制御装置は、第1の通電制御回路及び第2の通電制御回路をONにした後、第1の通電制御回路の通電OFF時期と、第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する点火制御部を備える。そして、点火制御部は、第1の通電制御回路と第2の通電制御回路の通電OFF時期を、点火プラグによる放電の終了前に行う。また、点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電させる順番を変える。
上記構成の内燃機関制御装置によれば、点火コイルの容積増大を抑えつつ、内燃機関の着火不良を抑制することができる。
なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の第1実施形態に係る内燃機関の基本構成例を示す全体構成図である。 本発明の第1実施形態に係る点火プラグを説明する部分拡大図である。 本発明の第1実施形態に係る内燃機関の制御装置の機能構成を説明する機能ブロック図である。 本発明の第1実施形態に係る内燃機関の運転状態と点火プラグ周囲のガス流速との関係を説明する図である。 A,B 本発明の第1実施形態に係る点火プラグの電極間における放電路と流速の関係を説明する図である。 従来の点火コイルを含む電気回路を説明する図である。 従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。 本発明の第1実施形態に係る点火コイルを含む電気回路を説明する図である。 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第1の例を示す図である。 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第2の例を示す図である。 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第3の例を示す図である。 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第4の例を示す図である。 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第5の例を示す図である。 本発明の第2実施形態に係る点火コイルを含む電気回路を説明する図である。
1.第1実施形態
以下、本発明の第1実施形態に係る内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
[内燃機関システム]
まず、本実施形態による内燃機関システムの構成について説明する。図1は、本発明の第1実施形態に係る内燃機関の基本構成例を示す全体構成図である。
図1に示す内燃機関100は、単気筒でも複数気筒を有するものでもよいが、実施形態では、4気筒を有する内燃機関100を例示して説明する。図1に示すように、内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流する。吸気マニホールド112を通った空気は、吸気弁151が開いたときに各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整される。スロットル弁113で調整された空気量は、流量センサ114により測定される。
スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。スロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。
本実施形態では、スロットル弁113として、電動機で駆動される電子スロットル弁を適用する。しかし、本発明に係るスロットル弁としては、空気の流量を適切に調整できるものであれば、その他の方式によるものを適用してもよい。
各気筒150に流入したガスの温度は、吸気温センサ115で検出される。
クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。クランク角センサ121は、クランクシャフト123の回転角度を検出する。本実施形態では、クランク角センサ121は、10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。
シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。水温センサ122は、内燃機関100の冷却水の温度を検出する。
また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。アクセルポジションセンサ126は、運転者の要求トルクを検出する。アクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。
燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧される。燃料ポンプ131によって吸引及び加圧された燃料は、燃料配管133に設けられたプレッシャレギュレータ132で所定の圧力に調整される。そして、所定の圧力に調整された燃料は、燃料噴射装置(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された後の余分な燃料は、戻り配管(図示せず)を介して燃料タンク130に戻される。
燃料噴射装置134の制御は、後述する制御装置1の燃料噴射制御部82の燃料噴射パルス(制御信号)に基づいて行われる。
内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(Cylinder Pressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。燃焼圧センサ140は、例えば、圧電式又はゲージ式の圧力センサが適用されている。これにより、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができる。
各気筒150には、排気弁152と、排気マニホールド160が取り付けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。排気マニホールド160は、燃焼後のガス(排気ガス)を、気筒150の外側に排出する。排気マニホールド160の排気側には、三元触媒161が設けられている。三元触媒161は、排気ガスを浄化する。三元触媒161により浄化された排気ガスは、大気に排出される。
三元触媒161の上流側には、上流側空燃比センサ162が設けられている。上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。
また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。本実施形態の下流側空燃比センサ163は、O2センサである。
各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200は、放電(点火)により火花を発生させ、その火花が、気筒150内の空気と燃料との混合気に着火する。これにより、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。
前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、制御装置1に出力される。制御装置1は、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出する。そして、制御装置1は、気筒150内に送出する空気量、燃料噴射装置134からの燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。
[点火プラグ]
次に、点火プラグ200について、図2を参照して説明する。
図2は、点火プラグ200を説明する部分拡大図である。
図2に示すように、点火プラグ200は、中心電極210と、外側電極220とを有している。中心電極210は、絶縁体230を介してプラグベース(不図示)に支持されている。これにより、中心電極210は、絶縁されている。外側電極220は接地されている。
点火コイル300(図1参照)において電圧が発生すると、中心電極210に所定の電圧(本実施形態では、例えば20,000V~40,000V)が印加される。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。そして、放電により発生した火花が、気筒150内の空気と燃料との混合気に着火する。
なお、気筒150内におけるガス成分の絶縁破壊を起こして放電(点火)が発生する電圧は、中心電極210と外側電極220との間に存在する気体(ガス)の状態や気筒150の筒内圧に応じて変動する。の放電が発生する電圧を絶縁破壊電圧と言う。
点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83により行われる。
[制御装置のハードウェア構成]
次に、制御装置1のハードウェアの全体構成を説明する。
図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digita)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。
アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、筒内圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。
アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換される。そして、A/D変換部30により変換されたデジタル信号は、RAM40に記憶される。
デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。
デジタル入力部20には、I/Oポート70が接続されている。デジタル入力部20に入力されたデジタル出力信号は、I/Oポート70を介してRAM40に記憶される。
RAM40に記憶された各出力信号は、MPU50で演算処理される。
MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、その制御値をRAM40に一時的に記憶する。
RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。
出力回路80には、各種センサ(例えば、筒内圧センサ140)からの出力信号に基づいて内燃機関の全体制御を行う全体制御部81(図3参照)と、燃料噴射装置134のプランジャロッド(不図示)の駆動を制御する燃料噴射制御部82(図3参照)と、点火プラグ200に印加する電圧を制御する点火制御部83(図3参照)の機能などが設けられている。
[制御装置の機能ブロック]
次に、制御装置1の機能構成を、図3を参照して説明する。
図3は、制御装置1の機能構成を説明する機能ブロック図である。
制御装置1の各機能は、MPU50がROM60記憶された制御プログラムを実行することにより、出力回路80における各種機能として実現される。出力回路80における各種機能は、例えば、燃料噴射制御部82による燃料噴射装置134の制御や、点火制御部83による点火プラグ200の放電制御がある。
図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。
[全体制御部]
全体制御部81は、アクセルポジションセンサ126と、筒内圧センサ140(CPS)に接続されており、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とを受け付ける。全体制御部81は、筒内圧センサ140からの出力信号S2の所定の補正期間に応じて補正を行う。
全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と、点火制御部83の全体的な制御を行う。
[燃料噴射制御部]
燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されている。燃料噴射制御部82は、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。
燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射装置134から噴射される燃料の噴射量と噴射時間を算出する。そして、燃料噴射制御部82は、算出した燃料の噴射量と噴射時間とに基づいて生成した燃料噴射パルスS9を燃料噴射装置134に送信する。
[点火制御部]
点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル310(図8参照)に通電する電流量(通電角)と、通電開始時間と、1次側コイル310に通電した電流を遮断する時間(点火時間)を算出する。
点火制御部83は、算出した通電量と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に通電信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。
[内燃機関の運転状態と点火プラグ周囲のガス流速との関係]
次に、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を、図4を参照して説明する。
図4は、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を説明する図である。
図4に示すように、一般的に、エンジン回転数や負荷が高いほど、気筒150内のガス流速が高くなり、点火プラグ200周囲のガスが高流速になる。したがって、エンジン回転数や負荷が高い場合は、点火プラグ200の中心電極210と外側電極220との間において、ガスが高速に流れることとなる。
また、排気再循環(EGR:Exhaust Gas Recirculation)が行われる内燃機関100では、エンジン回転数と負荷の関係に応じて、例えば図4に示すようにEGR率が設定される。なお、EGR率をより高く設定する高EGR領域を拡大するほど、低燃費化や低排気化を実現できる。しかし、高EGR領域では、火炎核が成長する確率が下がるため、点火プラグ200において着火不良が生じやすくなる。
[点火プラグの電極間における放電路と流速の関係]
次に、点火プラグの電極間における放電路と流速の関係を、図5A,Bを参照して説明する。
図5A,Bは、点火プラグの電極間における放電路と流速の関係を説明する図である。
図5A,Bに示すように、点火プラグ200の中心電極210と外側電極220の間に絶縁破壊が生じると、電極210,220間に流れる電流が一定値以下になるまでの間、電極210,220間に放電路211が形成される。この放電路211に可燃ガスが接触すると、火炎核が成長して燃焼に至る。放電路211は、電極210,220間のガス流れの影響を受けて移動するため、図5Aに示すように、ガス流速が高いほど短時間で長い放電路211を形成する。一方、図5Bに示すように、ガス流速が低いほど放電路211が短くなる。
内燃機関100が高EGR率で運転される場合は、可燃ガスが放電路211と接触しても火炎核が成長する確率が下がる。そのため、可燃ガスが放電路211と接触する機会を増やす必要がある。前述したように、放電路211は、ガスの絶縁を破壊して生成される。したがって、放電路211の維持に必要な電流を一定とすれば、放電路211の維持には、放電路211の長さに応じた電力の供給が必要となる。
ガス流速が高い場合は、短時間で大きな電力を点火コイル300から点火プラグ200へ出力するように点火コイル300の通電制御を行う。これにより、図5Aに示すような長い放電路211を形成することができる。その結果、放電路211は、広範な空間のガスとの接触機会を得ることが可能となる。
一方、ガス流速が低い場合は、点火コイル300から点火プラグ200へ小さな電力を長時間出力し続けるように点火コイル300の通電制御を行う。これにより、図5Bに示すような短い放電路211の形成を維持することができる。その結果、放電路211は、点火プラグ200の電極付近を通過するガスとの接触機会をより長時間にわたって得ることができる。
[従来の点火コイルの電気回路]
次に、従来の点火コイルについて、図6を参照して説明する。
図6は、従来の点火コイルを含む電気回路を説明する図である。
図6に示す電気回路400は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。
1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のコレクタ(C)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された通電信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に通電信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に通電信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
点火制御部83からの通電信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図5A,B参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。従来は、以上説明したような電気回路400の動作により、通電信号SAを用いて点火コイル300の通電を制御する。
[従来の点火プラグの放電制御]
次に、従来の点火プラグの放電制御について、図7を参照して説明する。
図7は、従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。
図7に示すタイミングチャートは、ガスが高流速の場合に、点火コイル300を用いて点火プラグ200を放電させたときの一例である。図7では、点火制御部83から出力される通電信号SAと、この通電信号SAに応じて1次側コイル310に流れる1次電流I1と、点火コイル300に蓄積される電気エネルギーEと、2次側コイル320に流れる2次電流I2と、2次側コイル320に発生する2次電圧V2との関係を示している。なお、2次電流I2と2次電圧V2の測定ポイントは、図6に示す点火プラグ200と点火コイル300の間としている。また、1次電流I1の測定ポイントは、直流電源330と点火コイル300の間としている。
図7に示すように、通電信号SAがHIGHになると、イグナイタ340が1次側コイル310を通電し、1次電流I1が上昇する。1次側コイル310の通電中は、点火コイル300内の電気エネルギーEが時間と共に上昇する。また、1次側コイル310の通電中は、2次側コイル320に2次電流I2が流れず、点火プラグ200における放電は行われていない。そのため、1次側コイル310の通電中は、点火プラグ200が無放電状態aである。
その後、通電信号SAがLOWになると、イグナイタ340は、1次側コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300から点火プラグ200への電気エネルギーEの供給が開始される。そして、点火プラグ200の電極210,220間の絶縁が破壊されると、点火プラグ200の放電が開始される(初放電)。このような絶縁破壊を伴う点火プラグ200の放電は、容量放電と呼ばれる。すなわち、点火プラグ200の電極210,220間の絶縁が破壊されると、容量放電bが開始される。
点火プラグ200の放電開始後は、点火コイル300内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電が維持される。このような絶縁破壊を伴わない点火プラグ200の放電は、誘導放電と呼ばれる。
2次電流I2は、容量放電時に大きく上昇する。この容量放電による2次電流I2は、短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2は急激に低下し、その後の誘導放電時には時間と共に減少する。すなわち、誘導放電初期cから誘導放電後期dに至るにつれて、2次電流I2は徐々に減少する。
放電路211は、ガスの流れと共に伸長するため、電極210,220間の抵抗が上昇する。その結果、2次電圧V2は、時間経過と共に上昇する。このとき、点火プラグ200の電極210,220間に存在するガスの流速に応じて、放電路211の維持に必要な2次電流I2の大きさが変化する。
2次電流I2が、放電路211の維持に必要な最低値から、点火プラグ200において放電できなくなる最大値(最大値は含まず)までの範囲に入ると、点火プラグ200は、放電路211の吹き消えと再放電(容量放電b)を繰り返す。なお、放電路211の吹き消えは、点火プラグ200が無放電状態aのことである。図7に示す例では、初放電が1回と、再放電が3回行われており、容量放電回数は、合計4回になる。
点火コイル300内の電気エネルギーEが減少すると、それに伴って2次電流I2が低下する。そして、2次電流I2が放電できなくなる最大値以下になる。
[第1実施形態に係る点火コイルの電気回路]
次に、第1実施形態に係る点火コイル300を含む電気回路401について、図8を参照して説明する。
図8は、第1実施形態に係る点火コイル300を含む電気回路401を説明する図である。
図8に示すように、電気回路401は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。
1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、第1イグナイタ(第1の通電制御回路)340と、第2イグナイタ(第2の通電制御回路)341のコレクタ(C)端子に接続されている。
第1イグナイタ340のエミッタ(E)端子は、内部抵抗Raを介して接地されている。第2イグナイタ341のエミッタ(E)端子は、内部抵抗Rbと付加抵抗Rcを介して接地されている。第1イグナイタ340と第2イグナイタ341のベース(B)端子は、それぞれ点火制御部83に接続されている。点火制御部83から出力された通電信号SAとSBは、第1イグナイタ340と第2イグナイタ341のベース(B)端子に入力される。
第1イグナイタ340のベース(B)端子に通電信号SAが入力されると、第1イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となる。その結果、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火コイル300の1次側コイル310に通電信号SAが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
また、第2イグナイタ341のベース(B)端子に通電信号SBが入力されると、第2イグナイタ341のコレクタ(C)端子とエミッタ(E)端子間が通電状態となる。その結果、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火コイル300の1次側コイル310に通電信号SBが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
点火制御部83からの通電信号SAまたは通電信号SBの出力が停止して、1次側コイル310に流れる電流が遮断されると、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
2次側コイル320に発生する高電圧が、点火プラグ200の中心電極210(図5A,B参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。ここで、1次側コイル310の他端と接地との間の抵抗を1次抵抗とする。1次抵抗の抵抗値R1は、第1イグナイタ340と第2イグナイタ341の通電状態によって変化する。
[点火コイルへ入力される制御信号と出力]
次に、第1の実施形態に係る点火コイルへ入力される制御信号と出力の関係について説明する
図9は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第1の例を示す図である。
図9に示すタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが式(1)の関係を満たす。
Ra=Rb=Rc=1 …式(1)
この場合に、通電信号SAがOFF、且つ、通電信号SBがONである場合は、1次抵抗の抵抗値R1は、「2」である(R1=2)。一方、通電信号SAがON、且つ、通電信号SBがOFFである場合は、1次抵抗の抵抗値R1は、「1」である(R1=1)。
1次抵抗の抵抗値R1は、通電信号SA又は通電信号SBがONからOFFになると、無限大になる。そして、抵抗値R1の変化が1次電流の変化となり、1次側コイル310に対するコイルの巻き数比に応じた電圧と電流が2次側コイル320に発生する。
1次側コイル310へ蓄えられる1次エネルギーは、1次電流I1によって決まる。1次電圧が一定である場合、1次電流I1と1次抵抗は反比例する。このため、1次抵抗の抵抗値R1が小さいと、1次エネルギーが増大し、1次抵抗の抵抗値R1が大きいと、1次エネルギーが低減する。1次エネルギーは、電圧変換して2次側へ伝達される。そのため、1次エネルギーが大きいと、2次エネルギーが増大し、1次エネルギーが小さいと、2次エネルギーが低減する。
点火プラグ200の電極210,220間の距離が一定であり、且つ、放電路211の長さが一定であると仮定すると、2次電圧(V2)と2次抵抗の抵抗値は一定である。この場合の2次エネルギーは、2次電流I2の積分となる。よって、1次抵抗の抵抗値R1は、2次エネルギーと比例関係にある。
図10は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第2の例を示す図である。
図10における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。図10における左側のタイミングチャートに示すように、1次抵抗の抵抗値R1の低減により、2次電流I2と2次エネルギーが増大する。
図10における右側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが式(2)及び式(3)の関係を満たす。
Ra=Rb=1 …式(2)
Rc=0 …式(3)
この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.5」である(R1=0.5)。図10における右側のタイミングチャートに示すように、1次抵抗の抵抗値R1の低減により、2次電流I2と2次エネルギーが増大する。
図11は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第3の例を示す図である。
図11における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(2)及び式(3)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.5」である(R1=0.5)。また、通電信号SAがOFF、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「1」である(R1=1)。
図11に示す点火プラグ200の放電制御では、通電信号SAをOFFしてから適当な時間が経過した後に通電信号SBをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図11の左側のタイミング
チャートと右側のタイミングチャートは、通電信号SBをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なる。また、通電信号SBをOFFするタイミングは、いずれも再放電開始前である。
図11に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。
図12は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第4の例を示す図である。
図12における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。また、通電信号SAがOFF、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「2」である(R1=2)。
図12に示す点火プラグ200の放電制御では、通電信号SAをOFFしてから適当な時間が経過した後に通電信号SBをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図12の左側のタイミングチャートと右側のタイミングチャートは、通電信号SBをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なっている。また、通電信号SBをOFFするタイミングは、いずれも再放電開始前である。
図12に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。
図13は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第5の例を示す図である。
図13における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。また、通電信号SAがON、且つ、通電信号SBがOFFであると、1次抵抗の抵抗値R1は、「1」である(R1=1)。
図13に示す点火プラグ200の放電制御では、通電信号SBをOFFしてから適当な時間が経過した後に通電信号SAをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図13の左側のタイミングチャートと右側のタイミングチャートは、通電信号SAをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なっている。また、通電信号SAをOFFするタイミングは、いずれも再放電開始前である。
図13に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。
図4を参照して説明したように、内燃機関100の運転状態(エンジンの運転条件)によって、点火プラグ200における電極210,220間の燃料ガスの状態が異なる。これに伴い、要求エネルギーや、エネルギーの時間配分が変化する。燃料ガスの状態の主な影響因子としては、例えば、流速とEGR率を挙げることができる。
EGR率が高くなると、燃料ガス中の不活性ガスが増加する。そのため、要求点火エネルギーが増大する。例えば、低EGR率の場合は、イグナイタ340,341の通電個数を1個に設定し、高EGR率の場合は、イグナイタ340,341の通電個数を2個に設定する。これにより、点火エネルギーの需給過不足を低減することができる。また、点火エネルギーをエンジンの運転条件に応じて2段階で調節することができる。その結果、消費電力の低減と着火性の改善を両立することができる。
さらなる点火エネルギーの需給過不足を低減するには、より細かな点火エネルギー供給量の調節が必要である。図7に示す無放電状態aに示すように、通電信号SAをHIGHにしている時間に応じて、充電エネルギーEを調節することができる。このため、通電信号SAの立ち上がり時期(充電開始時期)を調節することで、充電エネルギーEを無段階で調節することができる。その結果、より細かな点火エネルギー供給量の調節を行うことができる。
図7の誘導放電後期dに示すとおり、要求電圧または電力の変化は、流速によって異なる。そのため、図4に示す流速に合わせて、イグナイタ340,341の通電する順番や通電する時期を変えるとよい。これにより、点火エネルギーの時間配分を調節し、点火エネルギーの需給過不足を時間単位で調節することができる。
2.第2実施形態
以下、本発明の第2実施形態に係る内燃機関制御装置について、図14を参照して説明する。
図14は、第2実施形態に係る点火コイルを含む電気回路を説明する図である。
第2実施形態に係る内燃機関制御装置は、第1実施形態に係る内燃機関制御装置(制御装置1)と同様の構成を有しており、異なる点は、点火コイルを含む電気回路である。そのため、ここでは、第2実施形態に係る電気回路402について説明し、第1実施形態と重複する構成についての説明を省略する。なお、図14において第1実施形態と共通の構成には、同一の符号を付している。
図14に示すように、第2実施形態に係る電気回路402は、タイマー回路342を有している。タイマー回路342は、点火制御部83に接続されている。また、第1イグナイタ340と第2イグナイタ341のベース(B)端子は、それぞれタイマー回路342に接続されている。
タイマー回路342は、点火制御部83から通電信号SCを受ける。タイマー回路342は、点火制御部83から通電信号SCを受けて予め定めた第1の時間が経過後に、通電信号SAを第1イグナイタ340に出力する。また、タイマー回路342は、点火制御部83から通電信号SCを受けて予め定めた第2の時間が経過後に、通電信号SBを第2イグナイタ341に出力する。第1の時間は、第2の時間と異なる。
第2実施形態では、タイマー回路342を備えるため、点火制御部83に接続される信号線を1本にすることができる。また、第1実施形態と同様に、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防ぐことができる。また、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。さらに、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。
3.まとめ
以上説明したように、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)は、1次側コイル(1次側コイル310)と、1次側コイルの通電が遮断されると、起電力が生じる2次側コイル(2次側コイル320)と、2次側コイルに接続された点火プラグ(点火プラグ200)とを有する内燃機関を制御する。この内燃機関制御装置は、1次側コイルの通電を制御する第1の通電制御回路(第1イグナイタ340)と、第1の通電制御回路と並列に接続され、1次側コイルの通電を制御する第2の通電制御回路(第2イグナイタ341)と、点火制御部(点火制御部83)とを備える。点火制御部は、第1の通電制御回路及び第2の通電制御回路をONにした後、第1の通電制御回路の通電OFF時期と、第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する。そして、点火制御部は、第1の通電制御回路と第2の通電制御回路の通電OFF時期を、点火プラグによる放電の終了前に行う。
これにより、1次側コイルを流れる1次電流I1が0になる時点までの、2次側コイルを流れる2次電流I2を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、1次側コイル及び2次側コイル(点火コイル)の容積増大やコスト増大を抑制することができる。また、点火プラグの放電路を維持可能な電流量を確保することができるため、着火不良を抑制することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、第1の通電制御回路(第1イグナイタ340)を通電OFFした後、2次側コイル(2次側コイル320)に流れる2次電流I2が0になる前に、第2の通電制御回路(第2イグナイタ341)の通電をOFFする。これにより、需要に見合った2次電流I2を供給することができ、点火プラグの放電路を伸長させることができる。その結果、着火性を向上させることができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、点火プラグ(点火プラグ200)による再放電開始前に、第2の通電制御回路の通電OFFを実施する。これにより、需要に見合った2次電流I2を供給することができ、点火プラグの放電路を伸長させることができる。その結果、着火性を向上させることができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、第1の通電制御回路(第1イグナイタ340)と第2の通電制御回路(第2イグナイタ341)は、通電抵抗が異なる。これにより、需要に応じた2次電流I2の可変を容易に行うことができ、電流需給差の縮小を図ることができる。その結果、無駄な電力が増大することを防いで発熱を抑制することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて通電させる通電制御回路の個数を変える。これにより、要求点火エネルギーに応じた放電を実行することができ、点火エネルギーの需給過不足を低減することができる。また、点火エネルギーをエンジンの運転条件に応じて2段階で調節することができるため、消費電力の低減と着火性の改善を両立することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電している時間を変える。これにより、充電エネルギーを無段階で調節することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電させる順番を変える。これにより、点火プラグ(点火プラグ200)の電極間における流速によって異なる要求電圧に応じて点火エネルギーの時間配分を調節することができる。その結果、点火エネルギーの需給過不足を時間単位で調節することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電する時期を変える。これにより、点火プラグ(点火プラグ200)の電極間における流速によって異なる要求電圧に応じて点火エネルギーの時間配分を調節することができる。その結果、点火エネルギーの需給過不足を時間単位で調節することができる。
また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、第1の通電制御回路(第1イグナイタ340)と第2の通電制御回路(第2イグナイタ341)の位相差制御を実施するタイマー回路を備える。これにより、点火制御部(点火制御部83)に接続される信号線を1本にすることができる。
以上、本発明の内燃機関制御装置の実施形態について、その作用効果も含めて説明した。しかしながら、本発明の内燃機関制御装置は、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、上述した実施形態では、第1イグナイタ340と第2イグナイタ341の2つのイグナイタ(通電制御回路)を用いた。しかし、本発明に係る内燃機関制御装置としては、並列に接続された3つ以上のイグナイタ(通電制御回路)を用いてもよい。これにより、需要に応じた2次電流I2の可変をより細かく制御することができ、電流需給差の縮小を図ることができる。
1…制御装置、 10…アナログ入力部、 20…デジタル入力部、 30…A/D変換部、 40…RAM、 50…MPU、 60…ROM、 70…I/Oポート、 80…出力回路、 81…全体制御部、 82…燃料噴射制御部、 83…点火制御部、 84…気筒判別部、 85…角度情報生成部、 86…回転数情報生成部、 87…吸気量計測部、 88…負荷情報生成部、 89…水温計測部、 100…内燃機関、 110…エアクリーナ、 111…吸気管、 112…吸気マニホールド、 113…スロットル弁、 115…吸気温センサ、 120…リングギア、 123…クランクシャフト、 125…アクセルペダル、 130…燃料タンク、 131…燃料ポンプ、 132…プレッシャレギュレータ、 133…燃料配管、 134…燃料噴射装置、 150…気筒、 151…吸気弁、 152…排気弁、 160…排気マニホールド、 161…三元触媒、 170…ピストン、 200…点火プラグ、 210…中心電極、 211…放電路、 220…外側電極、 230…絶縁体、 300…点火コイル、 310…1次側コイル、 320…2次側コイル、 330…直流電源、 340…第1イグナイタ(第1の通電制御回路)、 341…第2イグナイタ(第2の通電制御回路)、 342…タイマー回路、 400,401…電気回路

Claims (8)

  1. 1次側コイルと、前記1次側コイルの通電が遮断されると、起電力が生じる2次側コイルと、前記2次側コイルに接続された点火プラグとを有する内燃機関を制御する内燃機関制御装置において、
    前記1次側コイルの通電を制御する第1の通電制御回路と、
    前記第1の通電制御回路と並列に接続され、前記1次側コイルの通電を制御する第2の通電制御回路と、
    前記第1の通電制御回路及び前記第2の通電制御回路をONにした後、前記第1の通電制御回路の通電OFF時期と、前記第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する点火制御部と、を備え、
    前記点火制御部は、前記第1の通電制御回路と前記第2の通電制御回路の通電OFF時期を、前記点火プラグによる放電の終了前に行い、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電させる順番を変える
    内燃機関制御装置。
  2. 前記点火制御部は、前記第1の通電制御回路を通電OFFした後、前記2次側コイルに流れる2次電流が0になる前に、前記第2の通電制御回路の通電をOFFする
    請求項1に記載の内燃機関制御装置。
  3. 前記点火制御部は、前記点火プラグによる再放電開始前に、前記第2の通電制御回路の通電OFFを実施する
    請求項1又は2に記載の内燃機関制御装置。
  4. 前記第1の通電制御回路と前記第2の通電制御回路は、通電抵抗が異なる
    請求項1に記載の内燃機関制御装置。
  5. 前記点火制御部は、運転条件に応じて通電させる通電制御回路の個数を変える
    請求項1に記載の内燃機関制御装置。
  6. 前記点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電している時間を変える
    請求項1に記載の内燃機関制御装置。
  7. 前記点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電する時期を変える
    請求項1に記載の内燃機関制御装置。
  8. 前記第1の通電制御回路と前記第2の通電制御回路の位相差制御を実施するタイマー回路を備える
    請求項1に記載の内燃機関制御装置。
JP2022568058A 2020-12-07 2021-09-24 内燃機関制御装置 Active JP7412599B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020202989 2020-12-07
JP2020202989 2020-12-07
PCT/JP2021/034945 WO2022123861A1 (ja) 2020-12-07 2021-09-24 内燃機関制御装置

Publications (2)

Publication Number Publication Date
JPWO2022123861A1 JPWO2022123861A1 (ja) 2022-06-16
JP7412599B2 true JP7412599B2 (ja) 2024-01-12

Family

ID=81973571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022568058A Active JP7412599B2 (ja) 2020-12-07 2021-09-24 内燃機関制御装置

Country Status (3)

Country Link
JP (1) JP7412599B2 (ja)
CN (1) CN116529477A (ja)
WO (1) WO2022123861A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221139A (ja) 2001-01-25 2002-08-09 Ngk Spark Plug Co Ltd 内燃機関用点火装置
JP2015200284A (ja) 2014-04-10 2015-11-12 株式会社デンソー 内燃機関用点火装置
WO2017010310A1 (ja) 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 エンジン制御装置
JP2019044662A (ja) 2017-08-31 2019-03-22 株式会社デンソー 点火装置
JP2019065734A (ja) 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312094A (ja) * 1992-05-12 1993-11-22 Ngk Spark Plug Co Ltd ガソリン機関の燃焼状態検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221139A (ja) 2001-01-25 2002-08-09 Ngk Spark Plug Co Ltd 内燃機関用点火装置
JP2015200284A (ja) 2014-04-10 2015-11-12 株式会社デンソー 内燃機関用点火装置
WO2017010310A1 (ja) 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 エンジン制御装置
JP2019044662A (ja) 2017-08-31 2019-03-22 株式会社デンソー 点火装置
JP2019065734A (ja) 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
CN116529477A (zh) 2023-08-01
WO2022123861A1 (ja) 2022-06-16
JPWO2022123861A1 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
CN113825900B (zh) 内燃机用控制装置
WO2019087748A1 (ja) 内燃機関用点火装置および車両用制御装置
JP2019210827A (ja) 内燃機関用制御装置
JP7260664B2 (ja) 内燃機関用制御装置
JP6942885B2 (ja) 内燃機関用制御装置
JP7412599B2 (ja) 内燃機関制御装置
JP6906106B2 (ja) 内燃機関用制御装置
JP6931127B2 (ja) 内燃機関用制御装置
JP7077420B2 (ja) 内燃機関用制御装置
JP7247364B2 (ja) 内燃機関用制御装置
WO2022230146A1 (ja) 内燃機関制御装置
JP7454109B2 (ja) 内燃機関制御装置及び点火機関の制御方法
JP7270040B2 (ja) 内燃機関用制御装置
JP7330383B2 (ja) 電子制御装置
WO2022180906A1 (ja) 筒内圧力検出方法、筒内圧センサ診断方法及び内燃機関制御装置
JP7497489B2 (ja) 内燃機関用制御装置
WO2023084573A1 (ja) 内燃機関の点火装置、電子制御装置、及び内燃機関の制御方法
WO2023223488A1 (ja) 内燃機関制御装置及び内燃機関制御方法
SE449125B (sv) Forfarande for styrning av gnisttendning av brensleluftblandning innesluten i en ottomotors forbrenningsrum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150