WO2022230146A1 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
WO2022230146A1
WO2022230146A1 PCT/JP2021/017084 JP2021017084W WO2022230146A1 WO 2022230146 A1 WO2022230146 A1 WO 2022230146A1 JP 2021017084 W JP2021017084 W JP 2021017084W WO 2022230146 A1 WO2022230146 A1 WO 2022230146A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
internal combustion
combustion engine
discharging
charging
Prior art date
Application number
PCT/JP2021/017084
Other languages
English (en)
French (fr)
Inventor
英一郎 大畠
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180096924.4A priority Critical patent/CN117222802A/zh
Priority to JP2023516980A priority patent/JPWO2022230146A1/ja
Priority to PCT/JP2021/017084 priority patent/WO2022230146A1/ja
Publication of WO2022230146A1 publication Critical patent/WO2022230146A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Definitions

  • the present invention relates to an internal combustion engine control device.
  • control is performed to increase the fuel injection amount at cold start in order to prevent ignition failure (extinguishing) of the ignition device (spark plug) at cold start.
  • ignition failure extentinguishing
  • the amount of hydrocarbons generated during a cold start increases, making it difficult to reduce the cost of the exhaust catalyst.
  • Patent Document 1 discloses an ignition device for an internal combustion engine that prevents a drop in the temperature of a spark plug electrode by performing ignition at a timing (before the start of fuel injection) different from the normal ignition timing in one combustion cycle of the internal combustion engine. disclosed.
  • Patent Document 1 does not specify a specific ignition signal specification.
  • FIGS. 5 and 7 of Patent Document 1 show ignition signals with a constant ignition cycle and the same charge time and discharge time (DUTY ratio is 50%).
  • DUTY ratio is 50%.
  • the time during which discharging is performed is shorter than the time during which charging is performed. Therefore, if the charging time and the discharging time are the same, the ignition coil is in a non-operating state from the completion of discharging to the start of charging.
  • the present invention aims at suppressing the generation of hydrocarbons during cold start of an internal combustion engine.
  • the internal combustion engine control system of the present invention includes an injector for injecting fuel into a cylinder, a spark plug having an ignition electrode arranged in the cylinder, and a spark plug connected to the spark plug. to control an internal combustion engine with a controlled ignition coil.
  • the internal combustion engine control device has an ignition control unit that executes preheating control for discharging an ignition electrode while fuel is not injected from an injector into a cylinder. In preheating control, the ignition control section starts discharging after the ignition coil is fully charged, and restarts charging before discharging is completed.
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to an embodiment; FIG. It is a partially enlarged view for explaining a spark plug according to one embodiment.
  • 1 is a functional block diagram illustrating the functional configuration of a control device for an internal combustion engine according to one embodiment; FIG. It is a figure explaining the relationship between the temperature of an electrode, a dielectric breakdown voltage, and an air-fuel ratio. It is a circuit diagram explaining an example of an electric circuit containing an ignition coil concerning one embodiment. It is a figure explaining the heat transfer mechanism in a spark plug electrode part.
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to an embodiment; FIG. It is a partially enlarged view for explaining a spark plug according to one embodiment.
  • 1 is a functional block diagram illustrating the functional configuration of a control device for an internal combustion engine according to one embodiment; FIG. It is a figure explaining the relationship between the temperature of an electrode, a dielectric breakdown voltage, and an air-fuel ratio. It is
  • 4 is a diagram showing an example of changes over time in charging/discharging energy and electric power when an ignition signal is output to an ignition coil; It is an example of the input-output timing chart in the conventional ignition coil. It is an example of an input-output timing chart in an ignition coil concerning one embodiment. 4 is a flowchart showing an example of ignition signal conversion processing according to one embodiment;
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to an embodiment of the present invention.
  • the internal combustion engine 100 shown in FIG. 1 may have a single cylinder or multiple cylinders, but in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example.
  • the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle.
  • the opening degree information of the throttle valve 113 detected by the throttle opening degree sensor 113 a is output to a control device (Electronic Control Unit: ECU) 1 .
  • ECU Electronic Control Unit
  • an electronic throttle valve driven by an electric motor is applied as the throttle valve 113 .
  • any other method may be applied as long as it can appropriately adjust the air flow rate.
  • the temperature of the gas that has flowed into each cylinder 150 is detected by the intake air temperature sensor 115 .
  • crank angle sensor 121 is provided radially outside the ring gear 120 attached to the crankshaft 123 .
  • Crank angle sensor 121 detects the rotation angle of crankshaft 123 .
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 degrees and every combustion cycle.
  • a water temperature sensor 122 is provided in the water jacket (not shown) of the cylinder head.
  • a water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100 .
  • the vehicle is also provided with an accelerator position sensor (APS) 126 that detects the amount of displacement (depression amount) of the accelerator pedal 125 .
  • An accelerator position sensor 126 detects the torque requested by the driver.
  • the driver's requested torque detected by the accelerator position sensor 126 is output to the control device 1, which will be described later.
  • the control device 1 controls the throttle valve 113 based on this required torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131 .
  • Fuel sucked and pressurized by the fuel pump 131 is adjusted to a predetermined pressure by a pressure regulator 132 provided in the fuel pipe 133 .
  • Fuel adjusted to a predetermined pressure is injected into each cylinder 150 from a fuel injection device (injector) 134 . Excess fuel after pressure regulation by the pressure regulator 132 is returned to the fuel tank 130 via a return pipe (not shown).
  • the control of the fuel injection device 134 is performed based on a fuel injection pulse (control signal) of a fuel injection control section 82 (see FIG. 3) of the control device 1, which will be described later.
  • a cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (Cylinder Pressure Sensor: CPS, also called an in-cylinder pressure sensor) 140 .
  • CPS Cylinder Pressure Sensor
  • Combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure in cylinder 150 (combustion pressure).
  • a piezoelectric or gauge pressure sensor, for example, is applied to the combustion pressure sensor 140 . As a result, the combustion pressure (in-cylinder pressure) in cylinder 150 can be detected over a wide temperature range.
  • An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150 .
  • exhaust valve 152 When exhaust valve 152 is opened, exhaust gas is discharged from cylinder 150 to exhaust manifold 160 .
  • the exhaust manifold 160 discharges gas (exhaust gas) after combustion to the outside of the cylinder 150 .
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160 .
  • the three-way catalyst 161 purifies exhaust gas.
  • the exhaust gas purified by the three-way catalyst 161 is discharged into the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161 .
  • the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of exhaust gas discharged from each cylinder 150 .
  • a downstream side air-fuel ratio sensor 163 is provided downstream of the three-way catalyst 161 .
  • the downstream air-fuel ratio sensor 163 outputs a switch-like detection signal near the stoichiometric air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 of this embodiment is an O2 sensor.
  • a spark plug 200 is provided at the top of each cylinder 150 .
  • the spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150 . This causes an explosion in cylinder 150 and pushes down piston 170 . As the piston 170 is pushed down, the crankshaft 123 rotates.
  • An ignition coil 300 that generates electrical energy (voltage) to be supplied to the ignition plug 200 is connected to the ignition plug 200 .
  • Output signals from various sensors such as the throttle opening sensor 113a, flow sensor 114, crank angle sensor 121, accelerator position sensor 126, water temperature sensor 122, combustion pressure sensor 140, etc. device 1”).
  • the control device 1 detects the operating state of the internal combustion engine 100 based on output signals from these various sensors.
  • the control device 1 controls the amount of air sent into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
  • spark plug 200 will be described with reference to FIG.
  • FIG. 2 is a partially enlarged view for explaining spark plug 200. As shown in FIG.
  • the spark plug 200 has a center electrode 210 and an outer electrode 220. As shown in FIG. Center electrode 210 is supported by a plug base (not shown) via insulator 230 . Thereby, the center electrode 210 is insulated. Outer electrode 220 is grounded.
  • a predetermined voltage for example, 20,000V to 40,000V
  • a predetermined voltage for example, 20,000V to 40,000V
  • discharge occurs between center electrode 210 and outer electrode 220 .
  • a spark generated by the discharge ignites the air-fuel mixture in the cylinder 150 .
  • the voltage at which electrical discharge (ignition) occurs due to dielectric breakdown of the gas components in the cylinder 150 depends on the state of the gas existing between the center electrode 210 and the outer electrode 220 and the internal pressure of the cylinder 150. Varies accordingly. The voltage at which this discharge occurs is called dielectric breakdown voltage.
  • the discharge control (ignition control) of the spark plug 200 is performed by an ignition control section 83 (see FIG. 3) of the control device 1, which will be described later.
  • control device 1 includes an analog input section 10, a digital input section 20, an A/D (Analog/Digital) conversion section 30, a RAM (Random Access Memory) 40, and an MPU (Micro- Processing Unit) 50 , ROM (Read Only Memory) 60 , I/O (Input/Output) port 70 , and output circuit 80 .
  • analog input section 10 a digital input section 20
  • A/D (Analog/Digital) conversion section 30 a RAM (Random Access Memory) 40
  • MPU Micro- Processing Unit
  • ROM Read Only Memory
  • I/O Input/Output
  • the analog input unit 10 receives signals from various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream side air-fuel ratio sensor 162, a downstream side air-fuel ratio sensor 163, an in-cylinder pressure sensor 140, a water temperature sensor 122, and the like. An analog output signal is input.
  • sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream side air-fuel ratio sensor 162, a downstream side air-fuel ratio sensor 163, an in-cylinder pressure sensor 140, a water temperature sensor 122, and the like.
  • An analog output signal is input.
  • An A/D conversion section 30 is connected to the analog input section 10 .
  • Analog output signals from various sensors input to the analog input unit 10 are subjected to signal processing such as noise removal, and then converted to digital signals by the A/D conversion unit 30 .
  • the digital signal converted by the A/D converter 30 is stored in the RAM 40 .
  • a digital output signal from the crank angle sensor 121 is input to the digital input unit 20 .
  • An I/O port 70 is connected to the digital input section 20 .
  • a digital output signal input to the digital input section 20 is stored in the RAM 40 via the I/O port 70 .
  • Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
  • the MPU 50 By executing a control program (not shown) stored in the ROM 60, the MPU 50 arithmetically processes the output signals stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the actuation amount of each actuator (for example, the throttle valve 113, the pressure regulator 132, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores the control value in the RAM 40. memorize.
  • a control value that defines the actuation amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I/O port 70 .
  • the output circuit 80 is provided with functions such as a general control section 81, a fuel injection control section 82, and an ignition control section 83 (see FIG. 3).
  • the overall control unit 81 performs overall control of the internal combustion engine based on output signals from various sensors (for example, the in-cylinder pressure sensor 140).
  • the fuel injection control unit 82 controls driving of a plunger rod (not shown) of the fuel injection device 134 .
  • the ignition control section 83 controls the voltage applied to the ignition plug 200 .
  • FIG. 3 is a functional block diagram for explaining the functional configuration of the control device 1. As shown in FIG.
  • Each function of the control device 1 is realized as various functions in the output circuit 80 by the MPU 50 executing the control program stored in the ROM 60.
  • Various functions of the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control section 82 and discharge control of the spark plug 200 by the ignition control section 83 .
  • the output circuit 80 of the control device 1 has a general control section 81, a fuel injection control section 82, and an ignition control section 83.
  • the overall control unit 81 is connected to the accelerator position sensor 126 and the in-cylinder pressure sensor 140 (CPS).
  • General control unit 81 receives the requested torque (acceleration signal S1) from accelerator position sensor 126 and the output signal S2 from in-cylinder pressure sensor 140 .
  • the overall control unit 81 controls the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140. control.
  • the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine speed. 86 and .
  • Fuel injection control unit 82 receives cylinder identification information S3 from cylinder identification unit 84, crank angle information S4 from angle information generation unit 85, and engine speed information S5 from rotation speed information generation unit 86.
  • the fuel injection control unit 82 also includes an intake air amount measurement unit 87 that measures the amount of air taken into the cylinder 150, a load information generation unit 88 that measures the engine load, and a temperature of the engine cooling water. It is connected to the water temperature measurement part 89 and.
  • the fuel injection control unit 82 receives intake air amount information S6 from the intake air amount measuring unit 87, engine load information S7 from the load information generating unit 88, and cooling water temperature information S8 from the water temperature measuring unit 89.
  • the fuel injection control unit 82 calculates the injection amount and the injection time of the fuel injected from the fuel injection device 134 based on the received information. Then, the fuel injection control unit 82 transmits a fuel injection pulse (INJ signal) S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134 .
  • a fuel injection pulse IJ signal
  • the ignition control unit 83 is connected not only to the overall control unit 81 but also to a cylinder discrimination unit 84, an angle information generation unit 85, a rotation speed information generation unit 86, a load information generation unit 88, and a water temperature measurement unit 89. and accept each information from them.
  • the ignition control unit 83 controls the amount of current (energization angle) to be energized to the primary coil 310 (see FIG. 8) of the ignition coil 300, the energization start time, and the current to the primary coil 310. Calculate the time (ignition time) to cut off the applied current.
  • the ignition control unit 83 outputs an ignition signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, energization start time, and ignition time, thereby controlling discharge by the spark plug 200 ( ignition control).
  • FIG. 4 is a diagram for explaining the relationship between electrode temperature, dielectric breakdown voltage, and air-fuel ratio.
  • the breakdown voltage is constant (the output current of the ignition coil 300 is constant)
  • the lower the temperature of the electrode of the spark plug 200 the lower the air-fuel ratio (the fuel becomes richer), the more the breakdown voltage cannot be exceeded.
  • the amount of hydrocarbons (HC) generated during combustion increases due to the increased proportion of fuel in the air-fuel mixture.
  • the higher the temperature of the electrode of the spark plug 200 at cold start (see the thick arrow in FIG. 4), the higher the air-fuel ratio (thinner fuel), the more the dielectric breakdown voltage can be exceeded. As a result, it is possible to reduce the generation of hydrocarbons when combusted. Therefore, in the internal combustion engine 100, the temperature of the electrode of the spark plug 200 is increased before discharge (ignition) at cold start. As a result, the air-fuel ratio at cold start can be increased to suppress the generation of hydrocarbons (HC).
  • HC hydrocarbons
  • the air-fuel ratio for ignition at a predetermined dielectric breakdown voltage is P1.
  • the electrode temperature of the spark plug 200 is high, the air-fuel ratio for ignition at a predetermined dielectric breakdown voltage is P2, which is larger than P1 (P2>P1). Therefore, the higher the electrode temperature of the spark plug 200, the leaner the fuel required for ignition and the less hydrocarbons (HC) generated by combustion.
  • FIG. 5 is a diagram illustrating an electric circuit including an ignition coil.
  • An electric circuit 500 shown in FIG. 5 has an ignition coil 300 .
  • Ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than primary coil 310 .
  • One end of the primary coil 310 is connected to the DC power supply 330 . Thereby, a predetermined voltage (for example, 12 V) is applied to the primary coil 310 .
  • the other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340 .
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340 .
  • a gate (G) terminal of the igniter 340 is connected to the ignition control section 83 .
  • the ignition signal SA output from the ignition control section 83 is input to the gate (G) terminal of the igniter 340 .
  • the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 are energized, and the voltage between the drain (D) terminal and the source (S) terminal is turned on. current flows through
  • the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340 .
  • a current flows through the primary coil 310 and electric power (electrical energy) is accumulated.
  • the high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 5) of the spark plug 200. Thereby, a potential difference is generated between the center electrode 210 and the outer electrode 220 of the spark plug 200 .
  • the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air mixture in the cylinder 150)
  • the gas component breaks down and the center electrode 210 and the outer electrode 220 are separated. Discharge occurs during As a result, the fuel (air-fuel mixture) is ignited.
  • FIG. 6 is a diagram for explaining the heat transfer mechanism in electrodes 210 and 220 of spark plug 200. As shown in FIG.
  • the ignition coil 300 is connected to the ignition plug 200 .
  • Ignition coil 300 generates electrical energy (voltage) that is supplied to spark plug 200 .
  • a voltage is generated in ignition coil 300, a discharge occurs between center electrode 210 and outer electrode 220 (see FIG. 2) of spark plug 200. As shown in FIG.
  • the discharge path generated between the center electrode 210 and the outer electrode 220 reaches a high temperature of several thousand degrees Celsius. Since the discharge path is in contact with the ambient gas and the electrodes, the exothermic energy of the discharge is distributed to the ambient gas and the electrodes 210,220. The exothermic energy distributed to the ambient gas heats the ambient gas to facilitate ignition. Therefore, if the heat energy is increased, the ignitability is improved. However, there is a problem that increasing the heat generation energy entails increasing the size of the ignition coil 300 .
  • the electrodes 210 and 220 are heated by repeating the ignition for electrode heating before normal ignition.
  • the temperature of the electrodes 210 and 220 becomes higher than that of the ambient gas, and the heat energy distribution rate changes, increasing the distribution rate to the ambient gas on the low temperature side.
  • more heat is transferred to the ambient gas than to the electrodes 210,220. Therefore, if normal ignition is performed while the electrodes 210 and 220 are heated, heat transfer to the ambient gas can be increased without increasing the size of the ignition coil 300 .
  • FIG. 7 is a diagram showing an example of changes over time in charge/discharge energy and electric power when the ignition signal SA is output to the ignition coil 300. As shown in FIG.
  • FIG. 7 An example of the ignition signal is shown at the top of FIG.
  • the middle part of FIG. 7 shows the time transition of the energy in the ignition coil 300 with the ignition signal.
  • the lower part of FIG. 7 shows the result of converting the energy in the ignition coil 300 shown in the middle part into electric power by differentiating it with respect to time.
  • An electric circuit 500 (see FIG. 5) including the ignition coil 300 includes components such as the igniter 340 in addition to the coils 310 and 320 .
  • the electric circuit 500 includes a resistance component and a capacitance component in addition to the coil component.
  • all components of the LCR Inductor (“L” in the circuit diagram)
  • Capacitor Capacitor
  • Resistor interact with each other, resulting in the charging/discharging time and charging time.
  • the relationship to discharge power is not linear.
  • charging and discharging are performed in the order of low speed charging, high speed charging, high speed discharging, and low speed discharging.
  • High-speed charging and high-speed discharging are effective in improving conversion efficiency and outputting more energy.
  • In order to perform high-speed charging and high-speed discharging it is necessary to repeat charging and discharging near full charge.
  • a charging/discharging path A shown in FIG. 7 is a charging/discharging path of an ignition device for an internal combustion engine described in Patent Document 1 (International Publication No. 2019/087748).
  • a charging/discharging path B shown in FIG. 7 is a charging/discharging path according to the present embodiment. In the charging/discharging path B, discharging is performed after full charging, and charging is performed again before the end of discharging.
  • the charging and discharging path B for high-speed charging and high-speed discharging achieves higher conversion efficiency than the charging and discharging path A for low-speed charging and low-speed discharging. be done.
  • FIG. 8 is an example of an input/output timing chart for a conventional ignition coil.
  • FIG. 9 is an example of an input/output timing chart for the ignition coil 300 according to this embodiment.
  • the input/output timing chart shown in FIG. 8 simulates the charge/discharge path A in FIG. In the charging/discharging path A, discharging is performed before full charging, and charging is performed again after discharging is completed. Therefore, as shown in FIG. 8, the energy in the ignition coil remains low. As a result, the charge/discharge efficiency (the energy conversion efficiency of the ignition coil 300) decreases.
  • the ignition signal repeats ON (charging) and OFF (discharging) at regular intervals. Due to the conversion characteristics of the ignition coil, the time during which discharging is being performed is shorter than the time during which charging is being performed. Therefore, in the conventional ignition coil, there is a period of non-energization and non-operating state from the completion of discharging to the start of charging. As a result, the hourly operating rate is lowered, and sufficient heat energy cannot be obtained.
  • the input/output timing chart shown in FIG. 9 simulates the charge/discharge path B in FIG.
  • discharging is performed after full charging, and charging is restarted before the end of discharging. Therefore, as shown in FIG. 9, the energy in the ignition coil remains high.
  • the charging speed and the discharging speed can be increased, and the charging/discharging efficiency (the energy conversion efficiency of the ignition coil 300) can be improved.
  • the electrodes 210 and 220 can be efficiently heated. Therefore, heat transfer to the ambient gas can be increased without increasing the size of the ignition coil 300 .
  • the charge time is the time the ignition signal is ON, and the discharge time is the time the ignition signal is OFF.
  • the charging rate is charging power per unit time, and the discharging rate is discharging power per unit time.
  • the waiting time from the completion of discharge to the start of power reception can be reduced, and the time availability of the ignition coil 300 can be improved. Therefore, sufficient heat energy can be obtained, and the electrodes 210 and 220 can be efficiently heated.
  • FIG. 10 is a flowchart showing an example of ignition signal conversion processing.
  • the ignition control unit 83 recognizes that the ignition switch has been turned ON (S110). The ignition switch is turned on when the ignition key is operated to start the engine. After the process of S110, the ignition control unit 83 receives the cooling water temperature information S8 from the water temperature measurement unit 89 (S111).
  • the ignition control unit 83 determines whether or not the temperature of the cooling water is below a predetermined temperature (S120). When the ignition control unit 83 determines in S120 that the temperature of the cooling water is higher than the predetermined temperature (when the determination in S120 is NO), the ignition control unit 83 terminates the ignition signal conversion process.
  • the ignition control unit 83 determines in S120 that the temperature of the cooling water is equal to or lower than the predetermined temperature (if YES in S120), the ignition control unit 83 recognizes cold start. Then, the ignition control unit 83 sets the ignition signal pattern to the multiple ignition pattern (S130). Ignition control of spark plug 200 by multiple ignition patterns corresponds to preheat control according to the present invention.
  • the ignition signal pattern has a normal ignition pattern and a multiple ignition pattern.
  • the normal ignition pattern is set so that the spark plug 200 discharges once.
  • the multiple ignition pattern is set so that the spark plug 200 discharges multiple times for electrode heating (see FIG. 9).
  • the ignition signal pattern is basically set to the normal ignition pattern. Then, when the determination in S120 is NO (in the case of cold start), the multiple ignition pattern is set (rewritten).
  • the control device 1 starts the engine (internal combustion engine) (S140).
  • the ignition control unit 83 corrects the discharge time based on the pressure as necessary (S141).
  • the gas pressure between electrodes 210 and 220 of spark plug 200 affects the resistance value between electrodes 210 and 220 . Therefore, the discharge speed fluctuates according to the gas pressure. Therefore, the ignition control unit 83 adjusts the discharge time based on the pressure in the cylinder so that the energy in the coil after discharge reaches the target value. As a result, it is possible to suppress a decrease in the hourly operating rate of the ignition coil 300 . If it is difficult to directly measure the pressure in the cylinder, the pressure in the cylinder may be estimated using a correction MAP prepared in advance.
  • the ignition control unit 83 corrects the discharge time based on power feedback as necessary (S142). Depending on the environmental temperature, the gas concentration in the cylinder may change, or residual burnt gas may occur. Therefore, it is assumed that the discharge time cannot be adjusted only by the pressure correction described above. Therefore, the ignition control unit 83 adjusts the discharge time based on the actual power consumption obtained from the secondary current and the secondary voltage so that the energy in the coil after discharge reaches the target value. As a result, it is possible to suppress a decrease in the hourly operating rate of the ignition coil 300 . If it is difficult to directly measure the actual power consumption, the power consumption may be estimated using a correction MAP prepared in advance.
  • the ignition control unit 83 determines whether or not a predetermined time has passed (S150). When it is determined in S150 that the predetermined time has not passed (when S150 determines NO), the ignition control unit 83 repeats the processing of S150 until the predetermined time has passed. Even if the determination in S150 is NO, the presence or absence of misfire in the engine may be determined, and if it is confirmed that there is no misfire, the process may proceed to S160. As a result, power consumption and heat generation of the electric circuit including the ignition coil 300 can be suppressed.
  • the ignition control unit 83 measures the temperature of the ignition coil 300 as necessary (S151).
  • the continuous ignition of the spark plug 200 according to the multiple ignition pattern has a larger energy conversion amount per unit time than the ignition of the spark plug 200 according to the normal ignition pattern. As a result, excessive heating of the ignition coil 300 is a concern. Therefore, even if the predetermined time has not elapsed, the ignition control unit 83 proceeds to the process of S160 when it determines that the temperature of the ignition coil 300 is equal to or higher than the predetermined specific temperature. As a result, failure of ignition coil 300 can be prevented.
  • the ignition control unit 83 determines in S150 that the predetermined time has elapsed (if YES in S150), the ignition control unit 83 returns the ignition signal pattern from the multiple ignition pattern to the normal ignition pattern (S160). After the process of S160, the control device 1 ends the ignition signal conversion process.
  • the internal combustion engine control device 1 executes preheating control for discharging the electrodes (ignition electrodes) 210 and 220 while fuel is not injected into the cylinder from the fuel injection device 134 (injector). It has an ignition control unit 83 .
  • the ignition control unit 83 starts discharging after the ignition coil 300 is fully charged, and restarts charging before the discharge ends.
  • the charging speed and the discharging speed can be increased, and the charging/discharging efficiency can be improved.
  • sufficient heat energy can be obtained, and the electrodes 210 and 220 can be efficiently heated. Therefore, heat transfer to the ambient gas can be increased without increasing the size of the ignition coil 300 .
  • the preheating control satisfies the following relational expression. (Charging time/Discharging time) ⁇ (Charging speed/Discharging speed)
  • the waiting time from the completion of discharge to the start of power reception can be reduced, and the hourly operating rate of the ignition coil 300 can be improved.
  • sufficient heat energy can be obtained, and the electrodes 210 and 220 can be efficiently heated.
  • the ignition control unit 83 adjusts the discharge time during which the ignition signal sent to the ignition coil 300 is OFF, based on the pressure in the cylinder. As a result, it is possible to suppress a decrease in the hourly operating rate of the ignition coil 300 .
  • the ignition control unit 83 Based on the power consumption of the ignition coil 300, the ignition control unit 83 also adjusts the discharge time during which the ignition signal sent to the ignition coil 300 is OFF. As a result, it is possible to suppress a decrease in the hourly operating rate of the ignition coil 300 .
  • the ignition control unit 83 ends the preheating control when the ignition coil 300 is at or above a predetermined specific temperature. Thereby, excessive heating of the ignition coil 300 can be prevented. As a result, failure of ignition coil 300 can be prevented.
  • Load information generation unit 89 Water temperature measurement unit 100 Internal combustion engine 110 Air cleaner 111 Intake pipe 112 Intake manifold 113 Throttle valve 113a Throttle opening sensor 114 Flow rate sensor 115 Intake Air temperature sensor 120 Ring gear 121 Crank angle sensor 122 Water temperature sensor 123 Crankshaft 125 Accelerator pedal 126 Accelerator position sensor 130 Fuel tank 131 Fuel pump 132 Pressure regulator 133... fuel pipe, 134... fuel injection device, 140... in-cylinder pressure sensor, 150... cylinder, 151... intake valve, 152... exhaust valve, 160... exhaust manifold, 161... three-way catalyst, 162...
  • upstream air-fuel ratio sensor 163...Downstream air-fuel ratio sensor 170...Piston 200...Ignition plug 210...Center electrode 220...Outer electrode 230...Insulator 300...Ignition coil 310...Primary coil 320...Secondary coil , 330... DC power supply, 340... igniter, 500... electric circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

内燃機関制御装置は、気筒内に燃料を噴射するインジェクタと、気筒内に配置された点火電極を有する点火プラグと、点火プラグに接続された点火コイルとを備えた内燃機関を制御する。内燃機関制御装置は、インジェクタから気筒内に燃料が噴射されない状態で点火電極の放電を行う予熱制御を実行させる点火制御部を有する。予熱制御において、点火制御部は、点火コイルの満充電後に放電を開始させ、放電が終了する前に充電を再開させる。

Description

内燃機関制御装置
 本発明は、内燃機関制御装置に関する。
 近年、排気ガス規制の強化に伴って、内燃機関における排気触媒(三元触媒)の性能向上が求められている。内燃機関の排気触媒では、プラチナなどの高価な貴金属が使用されている。そのため、排気ガス規制が強化されるに従って、排気性能向上のため多くの貴金属を使用する必要があり、排気触媒の製造コストが増加してしまう。
 この種の内燃機関では、温度が外気温よりも低い冷機始動時に多量の炭化水素(Hydrocarbon:HC)が発生する。そのため、冷機始動時の炭化水素の発生を抑えることにより、排気触媒で用いられる貴金属の量を減らし、排気触媒の製造コストを削減することができる。
 しかしながら、内燃機関では、冷機始動時の点火装置(点火プラグ)の点火不良(消炎)を防止するため、冷機始動時の燃料の噴射量を多くする制御が行われる。この結果、冷機始動時の炭化水素の発生量が増加し、排気触媒のコスト削減が困難になる。
 特許文献1には、内燃機関の1燃焼サイクルにおいて、通常の点火タイミングとは異なるタイミング(燃料噴射開始前)で点火を行うことで、点火プラグ電極の温度低下を防止する内燃機関用点火装置が開示されている。
国際特開第2019/087748号
 ところで、特許文献1には、具体的な点火信号の仕様が明記されていない。しかし、特許文献1の図5及び図7等には、点火周期が一定、且つ、充電時間と放電時間が同一(DUTY比が50%)の点火信号が示されている。一般的な受動式点火コイルでは、低電圧(14V)から高電圧(数kV)へ電圧変換するため、充電が実施されている時間よりも放電が実施されている時間の方が短くなる。そのため、充電時間と放電時間を同一にすると、放電完了後から充電開始まで、点火コイルが無稼働状態になる。
 点火コイルが無稼働状態の時間が生じると、電圧変換の時間効率が低下して、出力エネルギー(2次エネルギー)が十分に出力されない。その結果、点火プラグ電極を通過するエネルギーが不十分となり、点火プラグ電極を十分に加熱できない。したがって、内燃機関の冷機始動時における炭化水素の発生を抑えることが難しかった。
 本発明は、上記の問題点を考慮し、内燃機関の冷機始動時における炭化水素の発生を抑えることを目的とする。
 上記課題を解決し、本目的を達成するため、本発明の内燃機関制御装置は、気筒内に燃料を噴射するインジェクタと、気筒内に配置された点火電極を有する点火プラグと、点火プラグに接続された点火コイルとを備えた内燃機関を制御する。内燃機関制御装置は、インジェクタから気筒内に燃料が噴射されない状態で点火電極の放電を行う予熱制御を実行させる点火制御部を有する。予熱制御において、点火制御部は、点火コイルの満充電後に放電を開始させ、放電が終了する前に充電を再開させる。
 本発明によれば、内燃機関の冷機始動時における炭化水素の発生を抑えることができる。
一実施形態に係る内燃機関の基本構成例を示す全体構成図である。 一実施形態に係る点火プラグを説明する部分拡大図である。 一実施形態に係る内燃機関の制御装置の機能構成を説明する機能ブロック図である。 電極の温度と絶縁破壊電圧と空燃比との関係を説明する図である。 一実施形態に係る点火コイルを含む電気回路の一例を説明する回路図である。 点火プラグ電極部における伝熱メカニズムを説明する図である。 点火コイルへ点火信号を出力した場合における、充放電のエネルギーと電力の時間変化の例を示す図である。 従来の点火コイルにおける入出力タイミングチャートの例である。 一実施形態に係る点火コイルにおける入出力タイミングチャートの例である。 一実施形態に係る点火信号変換処理の例を示すフローチャートである。
<実施形態>
 以下、実施の形態例にかかる内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
[内燃機関システム]
 まず、一実施形態に係る内燃機関システムの構成について説明する。図1は、本発明の一実施形態に係る内燃機関の基本構成例を示す全体構成図である。
 図1に示す内燃機関100は、単気筒でも複数気筒を有するものでもよいが、実施形態では、4気筒を有する内燃機関100を例示して説明する。
 図1に示すように、内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流する。吸気マニホールド112を通った空気は、吸気弁151が開いたときに各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整される。スロットル弁113で調整された空気量は、流量センサ114により測定される。
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。スロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。
 本実施形態では、スロットル弁113として、電動機で駆動される電子スロットル弁を適用する。しかし、本発明に係るスロットル弁としては、空気の流量を適切に調整できるものであれば、その他の方式によるものを適用してもよい。
 各気筒150に流入したガスの温度は、吸気温センサ115で検出される。
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。クランク角センサ121は、クランクシャフト123の回転角度を検出する。本実施形態では、クランク角センサ121は、10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。水温センサ122は、内燃機関100の冷却水の温度を検出する。
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。アクセルポジションセンサ126は、運転者の要求トルクを検出する。アクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧される。燃料ポンプ131によって吸引及び加圧された燃料は、燃料配管133に設けられたプレッシャレギュレータ132で所定の圧力に調整される。そして、所定の圧力に調整された燃料は、燃料噴射装置(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された後の余分な燃料は、戻り配管(図示せず)を介して燃料タンク130に戻される。
 燃料噴射装置134の制御は、後述する制御装置1の燃料噴射制御部82(図3参照)の燃料噴射パルス(制御信号)に基づいて行われる。
 内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(Cylinder Pressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。燃焼圧センサ140は、例えば、圧電式又はゲージ式の圧力センサが適用されている。これにより、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができる。
 各気筒150には、排気弁152と、排気マニホールド160が取り付けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。排気マニホールド160は、燃焼後のガス(排気ガス)を、気筒150の外側に排出する。排気マニホールド160の排気側には、三元触媒161が設けられている。三元触媒161は、排気ガスを浄化する。三元触媒161により浄化された排気ガスは、大気に排出される。
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。本実施形態の下流側空燃比センサ163は、O2センサである。
 各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200は、放電(点火)により火花を発生させ、その火花が、気筒150内の空気と燃料との混合気に着火する。これにより、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。
 前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、内燃機関制御装置1(以下、「制御装置1」とする)に出力される。制御装置1は、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出する。そして、制御装置1は、気筒150内に送出する空気量、燃料噴射装置134からの燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。
[点火プラグ]
 次に、点火プラグ200について、図2を参照して説明する。
 図2は、点火プラグ200を説明する部分拡大図である。
 図2に示すように、点火プラグ200は、中心電極210と、外側電極220とを有している。中心電極210は、絶縁体230を介してプラグベース(不図示)に支持されている。これにより、中心電極210は、絶縁されている。外側電極220は接地されている。
 点火コイル300(図1参照)において電圧が発生すると、中心電極210に所定の電圧(例えば20,000V~40,000V)が印加される。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。そして、放電により発生した火花が、気筒150内の空気と燃料との混合気に着火する。
 なお、気筒150内におけるガス成分の絶縁破壊を起こして放電(点火)が発生する電圧は、中心電極210と外側電極220との間に存在する気体(ガス)の状態や気筒150の筒内圧に応じて変動する。この放電が発生する電圧を絶縁破壊電圧と言う。
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83(図3参照)により行われる。
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digita)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、筒内圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換される。そして、A/D変換部30により変換されたデジタル信号は、RAM40に記憶される。
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。
 デジタル入力部20には、I/Oポート70が接続されている。デジタル入力部20に入力されたデジタル出力信号は、I/Oポート70を介してRAM40に記憶される。
 RAM40に記憶された各出力信号は、MPU50で演算処理される。
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、その制御値をRAM40に一時的に記憶する。
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。
 出力回路80には、全体制御部81、燃料噴射制御部82、点火制御部83などの機能が設けられている(図3参照)。全体制御部81は、各種センサ(例えば、筒内圧センサ140)からの出力信号に基づいて内燃機関の全体制御を行う。燃料噴射制御部82は、燃料噴射装置134のプランジャロッド(不図示)の駆動を制御する。点火制御部83は、点火プラグ200に印加する電圧を制御する。
[制御装置の機能ブロック]
 次に、制御装置1の機能構成を、図3を参照して説明する。
 図3は、制御装置1の機能構成を説明する機能ブロック図である。
 制御装置1の各機能は、MPU50がROM60記憶された制御プログラムを実行することにより、出力回路80における各種機能として実現される。出力回路80における各種機能は、例えば、燃料噴射制御部82による燃料噴射装置134の制御や、点火制御部83による点火プラグ200の放電制御がある。
 図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。
[全体制御部]
 全体制御部81は、アクセルポジションセンサ126と、筒内圧センサ140(CPS)に接続されている。全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とを受け付ける。
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と、点火制御部83の全体的な制御を行う。
[燃料噴射制御部]
 燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されている。燃料噴射制御部82は、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射装置134から噴射される燃料の噴射量と噴射時間を算出する。そして、燃料噴射制御部82は、算出した燃料の噴射量と噴射時間とに基づいて生成した燃料噴射パルス(INJ信号)S9を燃料噴射装置134に送信する。
[点火制御部]
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル310(図8参照)に通電する電流量(通電角)と、通電開始時間と、1次側コイル310に通電した電流を遮断する時間(点火時間)を算出する。
 点火制御部83は、算出した通電量と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に点火信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。
[電極の温度と絶縁破壊電圧と空燃比]
 次に、点火プラグの電極の温度と絶縁破壊電圧と空燃比との関係について、図4を参照して説明する。
 図4は、電極の温度と絶縁破壊電圧と空燃比との関係を説明する図である。
 内燃機関100の冷機始動時において、点火プラグ200の電極の温度が低くなるほど、着火に必要な空燃比を小さく(燃料を濃く)する必要がある。
 図4に示すように、内燃機関100では、空燃比が大きく(燃料が薄く)なるほど、放電(点火)による混合気への着火がされ難くなる。したがって、空燃比が大きく(燃料が薄く)なるほど、混合気に着火させるための絶縁破壊電圧を高くする必要がある。
 絶縁破壊電圧を一定(点火コイル300の出力電流を一定)にした場合は、点火プラグ200の電極の温度が低くなるほど、空燃比を小さく(燃料を濃く)しないと絶縁破壊電圧を越えることができない。その結果、内燃機関100では、混合気における燃料の割合が多くなった分、燃焼した際の炭化水素(HC)の発生が多くなる。
 つまり、冷機始動時における点火プラグ200の電極の温度を高くするほど(図4の太線矢印参照)、空燃比を大きく(燃料を薄く)しても絶縁破壊電圧を越えることができる。その結果、燃焼した際の炭化水素の発生を少なくすることができる。そこで、内燃機関100では、冷機始動時における点火プラグ200の電極の温度を、放電(点火)前に高くする。これにより、冷機始動時の空燃比を大きくして、炭化水素(HC)の発生を抑えることができる。
 図4に示すように、点火プラグ200の電極温度が低い場合において、所定の絶縁破壊電圧で着火させるための空燃比はP1である。一方、点火プラグ200の電極温度が高い場合いおいて、所定の絶縁破壊電圧で着火させるための空燃比はP1よりも大きいP2となる(P2>P1)。よって、点火プラグ200の電極温度が高くなるほど、着火に必要な燃料を薄くすることができ、燃焼により発生する炭化水素(HC)が少なくなる。
[点火コイルを含む電気回路]
 次に、点火コイルを含む電気回路について、図5を参照して説明する。
 図5は、点火コイルを含む電気回路を説明する図である。
 図5に示す電気回路500は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のドレイン(D)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
 イグナイタ340のゲート(G)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のゲート(G)端子に入力される。イグナイタ340のゲート(G)端子に点火信号SAが入力されると、イグナイタ340のドレイン(D)端子とソース(S)端子間が通電状態となり、ドレイン(D)端子とソース(S)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
 点火制御部83からの点火信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
 2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図5参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。
[点火プラグ電極部における伝熱メカニズム]
 次に、点火プラグ200の電極部(中心電極210及び外側電極220)における伝熱メカニズムについて、図2、図6を参照して説明する。
 図6は、点火プラグ200の電極210,220における伝熱メカニズムを説明する図である。
 上述したように、点火プラグ200には、点火コイル300が接続されている。点火コイル300は、点火プラグ200に供給する電気エネルギー(電圧)を生成する。点火コイル300に電圧が発生すると、点火プラグ200の中心電極210と外側電極220(図2参照)との間に放電が生じる。
 中心電極210と外側電極220との間に発生する放電経路は、数千℃の高温となる。放電経路は、周囲ガスと電極に接しているため、放電の発熱エネルギーは、周囲ガスと電極210,220へ分配される。周囲ガスへ分配された分の発熱エネルギーは、周囲ガスを加熱して着火を促進する。このため、発熱エネルギーを増加すれば着火性が向上する。しかし、発熱エネルギーの高エネルギー化には、点火コイル300の大型化を伴うという問題がある。
 そこで、図6に示すように、通常点火を行う前に、電極加熱用の点火を繰り返すことで、電極210,220を加熱する。電極210,220を加熱すると、周囲ガスより電極210,220の方が高温になり、発熱エネルギーの分配率が変化して、低温側の周囲ガスへの分配率が上がる。その結果、電極210,220よりも周囲ガスへより多くの伝熱が行われる。したがって、電極210,220を加熱した状態で通常点火を行うと、点火コイル300を大型化しなくても、周囲ガスへの伝熱を増大させることができる。
[充放電のエネルギーと電力の時間変化]
 次に、充放電による点火コイル300内のエネルギーと充放電の電力の時間変化について、図7を参照して説明する。
 図7は、点火コイル300へ点火信号SAを出力した場合における、充放電のエネルギーと電力の時間変化の例を示す図である。
 図7の最上部には、点火信号の一例を示す。図7の中間部には、点火信号に伴う、点火コイル300内のエネルギーの時間遷移を示している。図7の下部には、中間部に示す点火コイル300内のエネルギーを時間微分することで、電力へ換算した結果を示す。
 点火コイル300を含む電気回路500(図5参照)には、コイル310,320の他、イグナイタ340などの部品が含まれている。すなわち、電気回路500には、コイル成分のほかに抵抗成分や容量成分も含まれている。その結果、LCR(インダクタ・コイル(Inductor(回路図では「L」))、コンデンサ(Capacitor)、抵抗器(Resistor))全ての成分が相互に作用しあうことになり、充放電の時間と充放電の電力との関係は、線形ではない。
 図7に示す例では、低速充電、高速充電、高速放電、低速放電の順で充放電が行われる。変換効率を向上させて、より多くのエネルギーを出力させるには、高速充電と高速放電を行うことが有効である。そして、高速充電と高速放電を行うには、満充電付近での充放電を繰り返す必要がある。
 図7に示す充放電経路Aは、特許文献1(国際特開第2019/087748号)に記載された内燃機関用点火装置の充放電経路である。充放電経路Aでは、満充電前に放電を行い、放電完了後に再度充電を行う。図7に示す充放電経路Bは、本実施形態に係る充放電経路である。充放電経路Bでは、満充電後に放電を行い、放電終了前に再度充電を行う。
 図7に示すように、充放電を繰り返し行う場合は、低速充電及び低速放電を行う充放電経路Aよりも、高速充電及び高速放電を行う充放電経路Bの方が、より高い変換効率を得られる。
[点火コイルの入出力タイミングチャート]
 次に、点火コイルの入出力タイミングチャートについて、図8及び図9を参照して説明する。
 図8は、従来の点火コイルにおける入出力タイミングチャートの例である。図9は、本実施形態に係る点火コイル300における入出力タイミングチャートの例である。
 図8に示す入出力タイミングチャートは、図7における充放電経路Aを模擬している。充放電経路Aでは、満充電満充電前に放電を行い、放電完了後に再度充電を行う。したがって、図8に示すように、点火コイル内のエネルギーは、低い状態が続く。その結果、充放電効率(点火コイル300のエネルギー変換効率)は低下する。
 さらに、点火信号は、定間隔でON(充電)とOFF(放電)を繰り返している。点火コイルの変換特性上、充電が実施されている時間よりも放電が実施されている時間の方が短い。そのため、従来の点火コイルでは、放電完了後から充電開始までの間、無通電、無稼働状態の時間が生じている。その結果、時間稼働率が低下して、発熱エネルギーが十分に得られない。
 図9に示す入出力タイミングチャートは、図7における充放電経路Bを模擬している。充放電経路Bでは、満充電後に放電を行い、放電終了前に充電が再開される。したがって、図9に示すように、点火コイル内のエネルギーは、高い状態が続く。これにより、充電速度と放電速度の高速化を実現でき、充放電効率(点火コイル300のエネルギー変換効率)を向上させることができる。その結果、発熱エネルギーを十分に得ることができ、電極210,220を効率よく加熱することができる。したがって、点火コイル300を大型化しなくても、周囲ガスへの伝熱を増大させることができる。その結果、内燃機関の冷機始動時における炭化水素の発生を抑えることができ、排気触媒の製造コストを削減することができる。
 また、充放電経路Bでは、次の関係式が成り立つ。充電時間は点火信号がONである時間であり、放電時間は点火信号がOFFである時間である。また、充電速度は単位時間当たりの充電電力であり、放電速度は単位時間当たりの放電電力である。
 (充電時間/放電時間)≧(充電速度/放電速度)
 これにより、放電完了後から受電開始までの待ち時間を削減することができ、点火コイル300の時間稼働率を向上させることができる。したがって、発熱エネルギーを十分に得ることができ、電極210,220を効率よく加熱することができる。
[内燃機関の制御処理]
 次に、本実施形態に係る点火信号変換処理について、図10を参照して説明する。
 図10は、点火信号変換処理の例を示すフローチャートである。
 まず、点火制御部83(図3参照)は、イグニッションスイッチがONになったことを認識する(S110)。イグニッションスイッチは、イグニッションキーによるエンジン始動の操作に応じてONされる。S110の処理後、点火制御部83は、水温計測部89から冷却水温度情報S8を受け取る(S111)。
 次に、点火制御部83は、冷却水の温度は所定温度以下であるか否かを判別する(S120)。S120において、点火制御部83が冷却水の温度は所定温度より高いと判別したとき(S120がNO判定の場合)、点火制御部83は、点火信号変換処理を終了する。
 一方、S120において、点火制御部83が冷却水の温度は所定温度以下であると判別したとき(S120がYES判定の場合)、点火制御部83は、冷機始動であると認識する。そして、点火制御部83は、点火信号パターンを多重点火パターンに設定する(S130)。多重点火パターンによる点火プラグ200の点火制御は、本発明に係る予熱制御に対応する。
 点火信号パターンは、通常点火パターンと多重点火パターンがある。通常点火パターンは、点火プラグ200による1回の放電が行われるように設定されている。多重点火パターンは、電極加熱用に点火プラグ200による複数回の放電が行われるように設定されている(図9参照)。点火信号パターンは、基本的に、通常点火パターンに設定されている。そして、S120がNO判定の場合(冷機始動である場合)に、多重点火パターンに設定される(書き換えられる)。
 次に、制御装置1は、エンジン(内燃機関)を始動させる(S140)。このとき、点火制御部83は、必要に応じて、圧力に基づく放電時間の補正を行う(S141)。点火プラグ200の電極210,220間におけるガスの圧力は、電極210,220間の抵抗値に影響する。したがって、ガスの圧力に応じて放電速度が変動する。そのため、点火制御部83は、気筒内の圧力に基づいて、放電後のコイル内エネルギーが目標値となるように放電時間を調節する。これにより、点火コイル300の時間稼働率の低下を抑制することができる。なお、気筒内の圧力を直接測定することが難しい場合は、予め用意した補正MAPを用いて気筒内の圧力を推定してもよい。
 また、点火制御部83は、必要に応じて、電力フィードバックに基づく放電時間の補正を行う(S142)。環境温度に応じて、気筒内のガス濃度が変化したり、既燃ガスの残留などが生じたりすることがある。したがって、上述した圧力補正だけでは、放電時間を調節しきれない場合が想定される。そこで、点火制御部83は、2次電流と2次電圧より得られる実消費電力に基づいて、放電後のコイル内エネルギーが目標値となるように放電時間を調節する。これにより、点火コイル300の時間稼働率の低下を抑制することができる。なお、実消費電力を直接測定することが難しい場合は、予め用意した補正MAPを用いて消費電力を推定してもよい。
 次に、点火制御部83は、所定時間を経過したか否かを判別する(S150)。S150において、所定時間を経過していないと判別したとき(S150がNO判定の場合)、点火制御部83は、所定時間を経過するまでS150の処理を繰り返す。なお、S150がNO判定の場合であっても、エンジンの失火の有無を判定し、失火無いことが確認できた場合にS160の処理に移行してもよい。これにより、電力量消費や点火コイル300を含む電気回路の発熱を抑制できる。
 また、S150がNO判定の場合に、点火制御部83は、必要に応じて、点火コイル300を測温する(S151)。多重点火パターンに応じた点火プラグ200の連続点火は、通常点火パターンに応じた点火プラグ200の点火よりも、単位時間当たりのエネルギー変換量が大きくなる。その結果、点火コイル300の過剰な加熱が懸念される。そこで、点火制御部83は、所定時間を経過していない場合であっても、点火コイル300が予め定めた特定温度以上であると判別した場合に、S160の処理に移行する。これにより、点火コイル300の故障を防止することができる。
 S150において、点火制御部83が所定時間を経過したと判別したとき(S150がYES判定の場合)、点火制御部83は、点火信号パターンを多重点火パターンから通常点火パターンに戻す(S160)。S160の処理後、制御装置1は、点火信号変換処理を終了する。
 このように、本実施形態に係る内燃機関制御装置1は、燃料噴射装置134(インジェクタ)から気筒内に燃料が噴射されない状態で電極(点火電極)210,220の放電を行う予熱制御を実行させる点火制御部83を有する。予熱制御において、点火制御部83は、点火コイル300の満充電後に放電を開始させ、放電が終了する前に充電を再開させる。これにより、充電速度と放電速度の高速化を実現でき、充放電効率を向上させることができる。その結果、発熱エネルギーを十分に得ることができ、電極210,220を効率よく加熱することができる。したがって、点火コイル300を大型化しなくても、周囲ガスへの伝熱を増大させることができる。その結果、内燃機関の冷機始動時における炭化水素の発生を抑えることができ、排気触媒の製造コストを削減することができる。
 また、予熱制御では、次の関係式を満たす。
 (充電時間/放電時間)≧(充電速度/放電速度)
 これにより、放電完了後から受電開始までの待ち時間を削減することができ、点火コイル300の時間稼働率を向上させることができる。その結果、発熱エネルギーを十分に得ることができ、電極210,220を効率よく加熱することができる。
 また、点火制御部83は、気筒内の圧力に基づいて、点火コイル300に送信する点火信号がOFFである放電時間を調節する。これにより、点火コイル300の時間稼働率の低下を抑制することができる。
 また、点火制御部83は、点火コイル300の消費電力に基づいて、点火コイル300に送信する点火信号がOFFである放電時間を調節する。これにより、点火コイル300の時間稼働率の低下を抑制することができる。
 また、点火制御部83は、点火コイル300が予め定めた特定温度以上である場合に、予熱制御を終了する。これにより、点火コイル300の過剰な加熱を防ぐことができる。その結果、点火コイル300の故障を防止することができる。
 本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…内燃機関制御装置、 10…アナログ入力部、 20…デジタル入力部、 30…A/D変換部、 40…RAM、 50…MPU、 60…ROM、 70…I/Oポート、 80…出力回路、 81…全体制御部、 82…燃料噴射制御部、 83…点火制御部、 84…気筒判別部、 85…角度情報生成部、 86…回転数情報生成部、 87…吸気量計測部、 88…負荷情報生成部、 89…水温計測部、 100…内燃機関、 110…エアクリーナ、 111…吸気管、 112…吸気マニホールド、 113…スロットル弁、 113a…スロットル開度センサ、 114…流量センサ、 115…吸気温センサ、 120…リングギア、 121…クランク角センサ、 122…水温センサ、 123…クランクシャフト、 125…アクセルペダル、 126…アクセルポジションセンサ、 130…燃料タンク、 131…燃料ポンプ、 132…プレッシャレギュレータ、 133…燃料配管、 134…燃料噴射装置、 140…筒内圧センサ、 150…気筒、 151…吸気弁、 152…排気弁、 160…排気マニホールド、 161…三元触媒、 162…上流側空燃比センサ、 163…下流側空燃比センサ、 170…ピストン、 200…点火プラグ、 210…中心電極、 220…外側電極、 230…絶縁体、 300…点火コイル、 310…1次側コイル、 320…2次側コイル、 330…直流電源、 340…イグナイタ、 500…電気回路

Claims (5)

  1.  気筒内に燃料を噴射するインジェクタと、前記気筒内に配置された点火電極を有する点火プラグと、前記点火プラグに接続された点火コイルと、を備えた内燃機関を制御する内燃機関制御装置において、
     前記インジェクタから前記気筒内に燃料が噴射されない状態で前記点火電極の放電を行う予熱制御を実行させる点火制御部を有し、
     前記予熱制御において、前記点火制御部は、前記点火コイルの満充電後に放電を開始させ、放電が終了する前に充電を再開させる
     内燃機関制御装置。
  2.  前記予熱制御では、次の関係式を満たす
     (充電時間/放電時間)≧(充電速度/放電速度)
     ただし、充電時間は前記点火コイルに送信する点火信号がONである時間、放電時間は前記点火信号がOFFである時間、充電速度は単位時間当たりの充電電力であり、放電速度は単位時間当たりの放電電力である
     請求項1に記載の内燃機関制御装置。
  3.  前記点火制御部は、前記気筒内の圧力に基づいて、前記点火コイルに送信する点火信号がOFFである放電時間を調節する
     請求項1に記載の内燃機関制御装置。
  4.  前記点火制御部は、前記点火コイルの消費電力に基づいて、前記点火コイルに送信する点火信号がOFFである放電時間を調節する
     請求項1に記載の内燃機関制御装置。
  5.  前記点火制御部は、前記点火コイルが予め定めた特定温度以上である場合に、前記予熱制御を終了する
     請求項1に記載の内燃機関制御装置。
PCT/JP2021/017084 2021-04-28 2021-04-28 内燃機関制御装置 WO2022230146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180096924.4A CN117222802A (zh) 2021-04-28 2021-04-28 内燃机控制装置
JP2023516980A JPWO2022230146A1 (ja) 2021-04-28 2021-04-28
PCT/JP2021/017084 WO2022230146A1 (ja) 2021-04-28 2021-04-28 内燃機関制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017084 WO2022230146A1 (ja) 2021-04-28 2021-04-28 内燃機関制御装置

Publications (1)

Publication Number Publication Date
WO2022230146A1 true WO2022230146A1 (ja) 2022-11-03

Family

ID=83848117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017084 WO2022230146A1 (ja) 2021-04-28 2021-04-28 内燃機関制御装置

Country Status (3)

Country Link
JP (1) JPWO2022230146A1 (ja)
CN (1) CN117222802A (ja)
WO (1) WO2022230146A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200249A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2019087748A1 (ja) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 内燃機関用点火装置および車両用制御装置
WO2019235057A1 (ja) * 2018-06-08 2019-12-12 日立オートモティブシステムズ株式会社 内燃機関用制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200249A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2019087748A1 (ja) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 内燃機関用点火装置および車両用制御装置
WO2019235057A1 (ja) * 2018-06-08 2019-12-12 日立オートモティブシステムズ株式会社 内燃機関用制御装置

Also Published As

Publication number Publication date
CN117222802A (zh) 2023-12-12
JPWO2022230146A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
US11198425B2 (en) Ignition device for internal combustion engines, and control device for vehicles
CN101438040B (zh) 用于操作内燃机的控制系统
US8006663B2 (en) Post-start controller for diesel engine
US11802534B2 (en) Control device for internal combustion engine
US11359594B2 (en) Internal combustion engine control device
WO2022230146A1 (ja) 内燃機関制御装置
CN111120049B (zh) 内燃机的排气净化系统
WO2023084573A1 (ja) 内燃機関の点火装置、電子制御装置、及び内燃機関の制御方法
US11466657B2 (en) Control device for internal combustion engine
WO2022249381A1 (ja) 内燃機関制御装置及び点火機関の制御方法
JP7412599B2 (ja) 内燃機関制御装置
WO2019235057A1 (ja) 内燃機関用制御装置
WO2023223488A1 (ja) 内燃機関制御装置及び内燃機関制御方法
CN111120134A (zh) 内燃机的控制系统
JP7247364B2 (ja) 内燃機関用制御装置
JP7324384B2 (ja) 筒内圧力検出方法、筒内圧センサ診断方法及び内燃機関制御装置
CN113950578B (zh) 内燃机用控制装置
JP6245940B2 (ja) 内燃機関の制御装置
JP2011247102A (ja) 内燃機関の排気ガス再循環制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516980

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180096924.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939305

Country of ref document: EP

Kind code of ref document: A1