WO2022249381A1 - 内燃機関制御装置及び点火機関の制御方法 - Google Patents
内燃機関制御装置及び点火機関の制御方法 Download PDFInfo
- Publication number
- WO2022249381A1 WO2022249381A1 PCT/JP2021/020148 JP2021020148W WO2022249381A1 WO 2022249381 A1 WO2022249381 A1 WO 2022249381A1 JP 2021020148 W JP2021020148 W JP 2021020148W WO 2022249381 A1 WO2022249381 A1 WO 2022249381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ignition
- cylinder
- internal combustion
- combustion engine
- discharge
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims description 19
- 239000000446 fuel Substances 0.000 claims abstract description 118
- 238000002347 injection Methods 0.000 claims abstract description 54
- 239000007924 injection Substances 0.000 claims abstract description 54
- 238000004880 explosion Methods 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 abstract description 43
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 43
- 239000004215 Carbon black (E152) Substances 0.000 description 30
- 239000003054 catalyst Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000002265 prevention Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000007599 discharging Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 6
- 230000008016 vaporization Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000002620 method output Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/12—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having means for strengthening spark during starting
Definitions
- the present invention relates to an internal combustion engine control device and an ignition engine control method.
- HC hydrocarbon
- the first is that the vaporization of the fuel is delayed due to the low in-cylinder temperature, and a part of the fuel vaporizes after the completion of combustion. The vaporized fuel after combustion is exhausted as hydrocarbons without being oxidized.
- the second is that the amount of fuel vaporized by the ignition timing decreases, and the air-fuel ratio in the cylinder increases (the fuel becomes leaner). In this case, the amount of hydrocarbons increases due to increased misfires due to increased required ignition energy. Therefore, by suppressing the generation of hydrocarbons during cold start, the amount of precious metal used in the exhaust catalyst can be reduced, and the manufacturing cost of the exhaust catalyst can be reduced.
- control is performed to increase the fuel injection amount at cold start in order to prevent ignition failure (extinguishing) of the ignition device (spark plug) at cold start.
- ignition failure extentinguishing
- the amount of hydrocarbons generated during a cold start increases, making it difficult to reduce the cost of the exhaust catalyst.
- Patent Document 1 discloses a technology for an internal combustion engine that prevents a drop in the temperature of a spark plug electrode by performing multiple ignitions at timings (before the start of fuel injection) that are different from normal ignition timings in one combustion cycle of an internal combustion engine.
- An ignition device is disclosed.
- Patent Document 1 cannot heat the cylinder interior gas. Therefore, the delay in vaporization of the fuel cannot be improved, and misfires and hydrocarbons generated cannot be reduced. Therefore, it is not possible to suppress the generation of hydrocarbons when the internal combustion engine is cold-started, and it becomes difficult to reduce the manufacturing cost of the exhaust catalyst.
- the present invention aims at suppressing the generation of hydrocarbons during cold start of an internal combustion engine.
- the internal combustion engine control system of the present invention includes an injector for injecting fuel into a cylinder, a spark plug having an ignition electrode arranged in the cylinder, and a spark plug connected to the spark plug. and a control unit that outputs an energization signal to the ignition coil.
- the control unit outputs an energization signal of a first period to the ignition coil at least after fuel injection for initial explosion, and outputs an energization signal of a second period shorter than the first period to the ignition coil after successful ignition. Output.
- FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to an embodiment; FIG. It is a partially enlarged view for explaining a spark plug according to one embodiment.
- 1 is a functional block diagram illustrating the functional configuration of a control device for an internal combustion engine according to one embodiment;
- FIG. 3 is a diagram for explaining the relationship between exhaust gas concentration and air-fuel ratio; It is a circuit diagram explaining an example of an electric circuit containing an ignition coil concerning one embodiment. It is an example of a discharge waveform of multiple ignition. It is a figure explaining the relationship between an air-fuel ratio and required ignition energy. It is an example of a timing chart of ignition signal control for the purpose of misfire prevention.
- FIG. 4 is a diagram for explaining the relationship between the number of times of discharge and the amount of HC discharged;
- FIG. 11 is an example of a timing chart of discharge cycle switching control for the purpose of eliminating the trade-off between misfire prevention and HC reduction.
- 5 is a flowchart showing an example of discharge cycle switching processing according to the present invention. It is a figure explaining time distribution of charging/discharging of a general passive ignition coil.
- FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to an embodiment of the present invention.
- the internal combustion engine 100 shown in FIG. 1 may have a single cylinder or multiple cylinders, but in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example.
- the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle.
- the opening degree information of the throttle valve 113 detected by the throttle opening degree sensor 113 a is output to a control device (Electronic Control Unit: ECU) 1 .
- ECU Electronic Control Unit
- an electronic throttle valve driven by an electric motor is applied as the throttle valve 113 .
- any other method may be applied as long as it can appropriately adjust the air flow rate.
- the temperature of the gas that has flowed into each cylinder 150 is detected by the intake air temperature sensor 115 .
- crank angle sensor 121 is provided radially outside the ring gear 120 attached to the crankshaft 123 .
- Crank angle sensor 121 detects the rotation angle of crankshaft 123 .
- the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 degrees and every combustion cycle.
- a water temperature sensor 122 is provided in the water jacket (not shown) of the cylinder head.
- a water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100 .
- the vehicle is also provided with an accelerator position sensor (APS) 126 that detects the amount of displacement (depression amount) of the accelerator pedal 125 .
- An accelerator position sensor 126 detects the torque requested by the driver.
- the driver's requested torque detected by the accelerator position sensor 126 is output to the internal combustion engine control device 1, which will be described later.
- the internal combustion engine control device 1 controls the throttle valve 113 based on this required torque.
- the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131 .
- Fuel sucked and pressurized by the fuel pump 131 is adjusted to a predetermined pressure by a pressure regulator 132 provided in the fuel pipe 133 .
- Fuel adjusted to a predetermined pressure is injected into each cylinder 150 from a fuel injection device (injector) 134 . Excess fuel after pressure regulation by the pressure regulator 132 is returned to the fuel tank 130 via a return pipe (not shown).
- the control of the fuel injection device 134 is performed based on a fuel injection pulse (control signal) of a fuel injection control section 82 (see FIG. 3) of the internal combustion engine control device 1, which will be described later.
- a cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (Cylinder Pressure Sensor: CPS, also called an in-cylinder pressure sensor) 140 .
- CPS Cylinder Pressure Sensor
- Combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure in cylinder 150 (combustion pressure).
- a piezoelectric or gauge pressure sensor, for example, is applied to the combustion pressure sensor 140 . As a result, the combustion pressure (in-cylinder pressure) in cylinder 150 can be detected over a wide temperature range.
- An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150 .
- exhaust valve 152 When exhaust valve 152 is opened, exhaust gas is discharged from cylinder 150 to exhaust manifold 160 .
- the exhaust manifold 160 discharges gas (exhaust gas) after combustion to the outside of the cylinder 150 .
- a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160 .
- the three-way catalyst 161 purifies exhaust gas.
- the exhaust gas purified by the three-way catalyst 161 is discharged into the atmosphere.
- An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161 .
- the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of exhaust gas discharged from each cylinder 150 .
- a downstream side air-fuel ratio sensor 163 is provided downstream of the three-way catalyst 161 .
- the downstream air-fuel ratio sensor 163 outputs a switch-like detection signal near the stoichiometric air-fuel ratio.
- the downstream air-fuel ratio sensor 163 of this embodiment is an O2 sensor.
- a spark plug 200 is provided at the top of each cylinder 150 .
- the spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150 . This causes an explosion in cylinder 150 and pushes down piston 170 . As the piston 170 is pushed down, the crankshaft 123 rotates.
- An ignition coil 300 that generates electrical energy (voltage) to be supplied to the ignition plug 200 is connected to the ignition plug 200 .
- Output signals from various sensors such as the throttle opening sensor 113a, flow sensor 114, crank angle sensor 121, accelerator position sensor 126, water temperature sensor 122, combustion pressure sensor 140, etc. device 1”).
- the control device 1 detects the operating state of the internal combustion engine 100 based on output signals from these various sensors.
- the control device 1 controls the amount of air sent into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
- spark plug 200 will be described with reference to FIG.
- FIG. 2 is a partially enlarged view for explaining spark plug 200. As shown in FIG.
- the spark plug 200 has a center electrode 210 and an outer electrode 220. As shown in FIG. Center electrode 210 is supported by a plug base (not shown) via insulator 230 . Thereby, the center electrode 210 is insulated. Outer electrode 220 is grounded.
- a predetermined voltage for example, 20,000V to 40,000V
- a predetermined voltage for example, 20,000V to 40,000V
- discharge occurs between center electrode 210 and outer electrode 220 .
- a spark generated by the discharge ignites the air-fuel mixture in the cylinder 150 .
- the voltage at which electrical discharge (ignition) occurs due to dielectric breakdown of the gas components in the cylinder 150 depends on the state of the gas existing between the center electrode 210 and the outer electrode 220 and the internal pressure of the cylinder 150. Varies accordingly. The voltage at which this discharge occurs is called dielectric breakdown voltage.
- the discharge control (ignition control) of the spark plug 200 is performed by an ignition control section 83 (see FIG. 3) of the control device 1, which will be described later.
- control device 1 includes an analog input section 10, a digital input section 20, an A/D (Analog/Digital) conversion section 30, a RAM (Random Access Memory) 40, and an MPU (Micro- Processing Unit) 50 , ROM (Read Only Memory) 60 , I/O (Input/Output) port 70 , and output circuit 80 .
- analog input section 10 a digital input section 20
- A/D (Analog/Digital) conversion section 30 a RAM (Random Access Memory) 40
- MPU Micro- Processing Unit
- ROM Read Only Memory
- I/O Input/Output
- the analog input unit 10 receives signals from various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream side air-fuel ratio sensor 162, a downstream side air-fuel ratio sensor 163, an in-cylinder pressure sensor 140, a water temperature sensor 122, and the like. An analog output signal is input.
- sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream side air-fuel ratio sensor 162, a downstream side air-fuel ratio sensor 163, an in-cylinder pressure sensor 140, a water temperature sensor 122, and the like.
- An analog output signal is input.
- An A/D conversion section 30 is connected to the analog input section 10 .
- Analog output signals from various sensors input to the analog input unit 10 are subjected to signal processing such as noise removal, and then converted to digital signals by the A/D conversion unit 30 .
- the digital signal converted by the A/D converter 30 is stored in the RAM 40 .
- a digital output signal from the crank angle sensor 121 is input to the digital input unit 20 .
- An I/O port 70 is connected to the digital input section 20 .
- a digital output signal input to the digital input section 20 is stored in the RAM 40 via the I/O port 70 .
- Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
- the MPU 50 By executing a control program (not shown) stored in the ROM 60, the MPU 50 arithmetically processes the output signals stored in the RAM 40 according to the control program.
- the MPU 50 calculates a control value that defines the actuation amount of each actuator (for example, the throttle valve 113, the pressure regulator 132, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores the control value in the RAM 40. memorize.
- a control value that defines the actuation amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I/O port 70 .
- the output circuit 80 is provided with functions such as a general control section 81, a fuel injection control section 82, and an ignition control section 83 (see FIG. 3).
- the overall control unit 81 performs overall control of the internal combustion engine based on output signals from various sensors (for example, the in-cylinder pressure sensor 140).
- the fuel injection control unit 82 controls driving of a plunger rod (not shown) of the fuel injection device 134 .
- the ignition control section 83 controls the voltage applied to the ignition plug 200 .
- FIG. 3 is a functional block diagram for explaining the functional configuration of the control device 1. As shown in FIG.
- Each function of the control device 1 is realized as various functions in the output circuit 80 by the MPU 50 executing the control program stored in the ROM 60.
- Various functions of the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control section 82 and discharge control of the spark plug 200 by the ignition control section 83 .
- the output circuit 80 of the control device 1 has a general control section 81, a fuel injection control section 82, and an ignition control section 83.
- the overall control unit 81 is connected to the accelerator position sensor 126 and the in-cylinder pressure sensor 140 (CPS).
- General control unit 81 receives the requested torque (acceleration signal S1) from accelerator position sensor 126 and the output signal S2 from in-cylinder pressure sensor 140 .
- the overall control unit 81 controls the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140. control.
- the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine speed. 86 and .
- Fuel injection control unit 82 receives cylinder identification information S3 from cylinder identification unit 84, crank angle information S4 from angle information generation unit 85, and engine speed information S5 from rotation speed information generation unit 86.
- the fuel injection control unit 82 also includes an intake air amount measurement unit 87 that measures the amount of air taken into the cylinder 150, a load information generation unit 88 that measures the engine load, and a temperature of the engine cooling water. It is connected to the water temperature measurement part 89 and.
- the fuel injection control unit 82 receives intake air amount information S6 from the intake air amount measuring unit 87, engine load information S7 from the load information generating unit 88, and cooling water temperature information S8 from the water temperature measuring unit 89.
- the fuel injection control unit 82 calculates the injection amount and the injection time of the fuel injected from the fuel injection device 134 based on the received information. Then, the fuel injection control unit 82 transmits a fuel injection pulse (INJ signal) S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134 .
- a fuel injection pulse IJ signal
- the ignition control unit 83 is connected not only to the overall control unit 81 but also to a cylinder discrimination unit 84, an angle information generation unit 85, a rotation speed information generation unit 86, a load information generation unit 88, and a water temperature measurement unit 89. and accept each information from them.
- the ignition control unit 83 controls the amount of current (energization angle) to be energized to the primary coil 310 (see FIG. 8) of the ignition coil 300, the energization start time, and the current to the primary coil 310. Calculate the time (ignition time) to cut off the applied current.
- the ignition control unit 83 outputs an ignition signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, energization start time, and ignition time, thereby controlling discharge by the spark plug 200 ( ignition control).
- FIG. 4 is a diagram for explaining the relationship between exhaust concentration and air-fuel ratio.
- the combustion temperature is high, so the NOx concentration is high.
- the HC concentration becomes low near the stoichiometric air-fuel ratio where the fuel is completely combusted.
- the air-fuel ratio increases (the fuel becomes leaner), the combustion temperature decreases, so the NOx concentration decreases.
- HC concentration increases with decreasing combustion temperature.
- FIG. 5 is a diagram illustrating an electric circuit including an ignition coil.
- An electric circuit 500 shown in FIG. 5 has an ignition coil 300 .
- Ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than primary coil 310 .
- One end of the primary coil 310 is connected to the DC power supply 330 . Thereby, a predetermined voltage (for example, 12 V) is applied to the primary coil 310 .
- the other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340 .
- a transistor, a field effect transistor (FET), or the like is used for the igniter 340 .
- a gate (G) terminal of the igniter 340 is connected to the ignition control section 83 .
- the ignition signal SA output from the ignition control section 83 is input to the gate (G) terminal of the igniter 340 .
- the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 are energized, and the voltage between the drain (D) terminal and the source (S) terminal is turned on. current flows through
- the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340 .
- a current flows through the primary coil 310 and electric power (electrical energy) is accumulated.
- the high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 5) of the spark plug 200. Thereby, a potential difference is generated between the center electrode 210 and the outer electrode 220 of the spark plug 200 .
- the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air mixture in the cylinder 150)
- the gas component breaks down and the center electrode 210 and the outer electrode 220 are separated. Discharge occurs during As a result, the fuel (air-fuel mixture) is ignited.
- the spark plug 200 and the electric circuit 500 with the ignition coil 300 correspond to the ignition engine according to the invention.
- the discharge path generated between the center electrode 210 and the outer electrode 220 reaches a high temperature of several thousand degrees Celsius. Since the discharge path is in contact with the ambient gas and the electrodes 210,220, the exothermic energy of the discharge is distributed to the ambient gas and the electrodes 210,220. The exothermic energy distributed to the ambient gas heats the ambient gas and promotes ignition.
- FIG. 6 is an example of discharge waveforms of multiple ignition.
- multiple ignitions can be performed by adding a plurality of discharges by repeating ON and OFF of the ignition signal after the normal ignition timing discharge (discharge start). Multiple ignition by this additional discharge can be continued until the start of fuel injection.
- FIG. 7 is a diagram explaining the relationship between the air-fuel ratio and the required ignition energy.
- the required ignition energy which is the minimum ignition energy required for ignition, becomes small near the stoichiometric air-fuel ratio.
- the air-fuel ratio becomes larger than the stoichiometric air-fuel ratio (fuel becomes lean)
- the required ignition energy increases.
- the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio (the fuel becomes richer)
- the required ignition energy increases.
- FIG. 8 is an example of a timing chart of ignition signal control for the purpose of misfire prevention.
- the required ignition energy increases, the ignition energy will be insufficient and the engine will misfire and unburned gas will be emitted.
- discharge is performed when the air-fuel ratio of the gas between the electrodes is small (fuel is rich). As a result, the required ignition energy can be reduced, so that the ignition energy will not run short and misfiring can be prevented.
- the additional discharge is a plurality of discharges additionally performed after the first discharge (initial ignition) performed after fuel injection.
- the timing at which additional discharge is required is around the top dead center of the piston 170, and the combustion chamber volume is reduced, so the pressure in the cylinder is high.
- the discharge cycle of the ignition signal is set to a predetermined discharge cycle. That is, in order to prevent misfiring, as shown in FIG. 8, the discharge cycle of the ignition signal is set to a predetermined cycle (hereinafter referred to as "first cycle"), and the additional discharge per discharge is Ignition energy must be greater than or equal to a predetermined value.
- FIG. 9 is an example of a timing chart of ignition signal control for the purpose of reducing HC generated in the cylinder.
- the unburned gas is a part of the total fuel put into the cylinder, so the gas concentration is low. Therefore, the heat generation due to the ignition of the pre-existing gas is reduced, and the oxidation chain reaction due to the additional discharge does not occur. In order to promote the oxidation of the unburned gas, it is preferable to increase the chances of contact between the unburned gas scattered in the cylinder and the discharge path generated between the electrodes 210 and 220 .
- the environment inside the cylinder after the expansion stroke has a low flow velocity. That is, the in-cylinder tumble flow generated during the intake stroke decreases with the lapse of time and with the reduction of the combustion chamber volume. In an environment where the flow velocity is low in the cylinder, even if the discharge path is extended, it is difficult to increase the chances of contact between the discharge path and the pre-generated gas.
- the discharge period of the ignition signal is set to a second period shorter than the first period (predetermined period for misfire relief shown in FIG. 8). to increase the number of discharges.
- the first period and the second period are appropriately determined according to the required ignition energy, the responsiveness of the ignition coil 300, the performance of the noise filter, and the like. As the pulse width becomes smaller, it becomes difficult to distinguish between noise and control signals. Therefore, the minimum pulse width is determined according to the performance of the noise filter. Then, when the minimum pulse width is determined, the minimum discharge period is determined.
- FIG. 10 is a diagram for explaining the relationship between the number of times of discharge and the amount of HC discharged.
- FIG. 10 shows the measurement results of the number of times of discharge and the amount of HC discharged when the discharge cycle is changed.
- a single-cylinder gasoline engine was used for the measurement.
- the operating conditions were an engine speed of 1500 [rpm] and an average effective pressure of 6.4 [bar].
- FIG. 10 by shortening the discharge cycle and increasing the number of discharges, the amount of HC emissions can be reduced.
- FIG. 11 is an example of a timing chart of discharge cycle switching control for the purpose of eliminating the trade-off between misfire prevention and HC reduction.
- discharge cycle switching control is performed to switch the discharge cycle of the ignition signal before and after successful ignition.
- the switching of the discharge period according to the present invention is performed in either the expansion process or the exhaust process in the initial explosion process.
- the in-cylinder pressure is detected in real time, and the successful ignition timing is detected from the absolute value of the in-cylinder pressure or the amount of change (pressure change) from the pressure at the initial ignition timing. As a result, the successful ignition timing can be detected with high accuracy.
- the above-described combustion pressure sensor 140 (see FIG. 1) may be used. Further, the cylinder pressure is detected based on the current flowing through the spark plug 200 and the voltage between the electrodes 210 and 220 of the spark plug 200, as described in Japanese Patent Application Laid-Open No. 2019-210827. A calculation method may be adopted.
- Vs is the inter-electrode voltage during discharge
- p is the in-cylinder pressure
- d is the inter-electrode distance
- A, B, and C are constants.
- Vs Bpd/ ⁇ ln(Apd)+C ⁇ (1)
- FIG. 12 is a flow chart showing an example of the discharge cycle switching process.
- the discharge cycle switching process shown in FIG. 12 starts at the same time as the ignition signal for the initial ignition after fuel injection changes from ON to OFF and the discharge for the initial ignition starts.
- the discharge period switching process is repeatedly performed from the start of discharge in the initial ignition to the start of the next fuel injection.
- the ignition control unit 83 sets the first discharge pattern for the purpose of preventing misfires (S101).
- the discharge period of the first discharge pattern is the above-described first period. That is, the ignition control unit 83 sets the discharge cycle and charging time required for successful ignition in an environment of high pressure and high flow velocity inside the cylinder.
- the ignition control unit 83 determines whether fuel injection has been performed (S102). That is, the ignition control unit 83 determines that fuel injection has been performed if the fuel injection signal is ON, and determines that fuel injection has not been performed if the fuel injection signal is OFF. The ignition control unit 83 obtains ON/OFF information of the fuel injection signal from the overall control unit 81 . When it is determined in S102 that fuel injection has been performed (when S102 determines YES), the ignition control unit 83 stops the additional discharge and ends the discharge cycle switching process.
- the ignition control unit 83 When it is determined in S102 that fuel injection has not been performed (when S102 determines NO), the ignition control unit 83 outputs an ignition signal according to the set discharge pattern to perform additional discharge (charging/discharging). ) is repeated (S103).
- the ignition control unit 83 detects the in-cylinder pressure (S104).
- the secondary voltage and secondary current during discharge are detected, and the peak values of the secondary voltage and secondary current are substituted into the pressure conversion formula (formula (1) above) to calculate the cylinder pressure. calculate.
- the ignition control unit 83 determines whether or not ignition (successful ignition) has occurred (S105). In this process, the ignition control unit 83 compares the absolute value of the pressure detected in S104 or the amount of change from the pressure at the initial ignition timing with a predetermined threshold value, and determines that ignition has occurred if the value is greater than or equal to the threshold value. do. On the other hand, the ignition control unit 83 determines that ignition has not occurred when the absolute value of the pressure detected in S104 or the amount of change from the pressure at the initial ignition timing is less than a predetermined threshold value.
- the ignition control unit 83 shifts the process to S103.
- the ignition control unit 83 sets a second discharge pattern for the purpose of reducing HC generated in the cylinder (S106).
- the discharge period of the second discharge pattern is the second period described above.
- the discharge cycle and charge time are set to the values necessary to promote the oxidation of unburned gas in an environment of low cylinder pressure and low flow velocity.
- FIG. 13 is a diagram for explaining the time distribution of charging and discharging of a general passive ignition coil.
- the time during which discharging is performed is shorter than the time during which charging is performed. Therefore, if the DUTY ratio of the ignition signal is set to 50%, the hourly operating rate of the ignition coil 300 is lowered, and heat energy cannot be obtained efficiently.
- the DUTY ratio in the additional discharge is the charging/discharging time ratio of the ignition coil 300 .
- the operating rate of the ignition coil 300 can be maximized, and the heat energy generated by the discharge can be maximized.
- the DUTY ratio in the discharge of the initial ignition may also be the charging/discharging time ratio of the ignition coil 300 .
- the DUTY ratio may be changed according to the temperature of the ignition coil 300 obtained by actual measurement or estimation. For example, when the temperature of ignition coil 300 is equal to or higher than a predetermined temperature, the duty ratio is changed so that the hourly operating rate of ignition coil 300 decreases. Thereby, overheating of the ignition coil 300 can be prevented.
- the temperature of ignition coil 300 may be estimated from the temperature of igniter 340, for example.
- the internal combustion engine control device 1 has the fuel injection device 134 (injector) that injects fuel into the cylinder 150 and the electrodes 210 and 220 (ignition electrodes) that are arranged inside the cylinder 150.
- An internal combustion engine 100 having a spark plug 200 and an ignition coil 300 connected to the spark plug 200 is controlled.
- the internal combustion engine control device 1 has an ignition control section 83 (control section) that outputs an energization signal (ignition signal) to the ignition coil 300 .
- the ignition control unit 83 outputs an energization signal of a first period to the ignition coil 300 at least after fuel injection for the initial explosion, and outputs an energization signal of a second period shorter than the first period to the ignition coil 300 after successful ignition. output to As a result, the trade-off between misfire prevention and HC reduction can be resolved. That is, it is possible to suppress the generation of hydrocarbons (HC) at the time of cold start of the internal combustion engine 100 and prevent misfiring.
- HC hydrocarbons
- the ignition control unit 83 detects successful ignition when the pressure in the cylinder 150 (in-cylinder pressure) exceeds a predetermined threshold. As a result, the successful ignition timing can be detected with high accuracy.
- the ignition control unit 83 calculates the pressure in the cylinder 150 (in-cylinder pressure) from the values of the secondary voltage and secondary current of the ignition coil 300 for each discharge by the spark plug 200 .
- the pressure inside each cylinder 150 can be detected without providing the combustion pressure sensor 140 inside each cylinder 150 .
- the cost of the internal combustion engine 100 can be reduced.
- the ignition control unit 83 (control unit) changes the cycle of the energization signal from the first cycle to the second cycle in either the expansion stroke or the exhaust stroke in the initial explosion process.
- the ignition control section 83 (control section) changes the duty ratio of the energization signal according to the temperature of the ignition coil 300 . Thereby, overheating of the ignition coil 300 can be prevented. As a result, failure of ignition coil 300 can be prevented.
- the ignition engine has a spark plug 200 having electrodes 210 and 220 (ignition electrodes) arranged inside the cylinder 150 and an ignition coil 300 connected to the spark plug 200 .
- This ignition engine control method outputs an energization signal of a first period to the ignition coil 300 at least after fuel injection for the first explosion, and after successful ignition, ignites an energization signal of a second period shorter than the first period. Output to coil 300 .
- misfire prevention and HC reduction can be resolved. That is, it is possible to suppress the generation of hydrocarbons (HC) at the time of cold start of the internal combustion engine 100 and prevent misfiring.
- discharge cycle switching control is performed after fuel injection for initial explosion.
- the discharge cycle switching control according to the present invention may be performed at least after the fuel injection for the initial explosion, and may be performed after other fuel injections.
- Load information generation unit 89 Water temperature measurement unit 100 Internal combustion engine 110 Air cleaner 111 Intake pipe 112 Intake manifold 113 Throttle valve 113a Throttle opening sensor 114 Flow rate sensor 115 Intake Air temperature sensor 120 Ring gear 121 Crank angle sensor 122 Water temperature sensor 123 Crankshaft 125 Accelerator pedal 126 Accelerator position sensor 130 Fuel tank 131 Fuel pump 132 Pressure regulator 133... fuel pipe, 134... fuel injection device, 140... in-cylinder pressure sensor, 150... cylinder, 151... intake valve, 152... exhaust valve, 160... exhaust manifold, 161... three-way catalyst, 162...
- upstream air-fuel ratio sensor 163...Downstream air-fuel ratio sensor 170...Piston 200...Ignition plug 210...Center electrode 220...Outer electrode 230...Insulator 300...Ignition coil 310...Primary coil 320...Secondary coil , 330... DC power supply, 340... igniter, 500... electric circuit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
内燃機関の冷機始動時における炭化水素の発生を抑えることを目的とする。内燃機関制御装置は、点火コイルに通電信号(点火信号)を出力する制御部を有する。制御部は、少なくとも初爆のための燃料噴射後に、第1周期の通電信号(失火救済)を点火コイルに出力し、点火成功(初爆)後に、第1周期よりも短い第2周期の通電信号(HC筒内後処理)を点火コイルに出力する。
Description
本発明は、内燃機関制御装置及び点火機関の制御方法に関する。
近年、排気ガス規制の強化に伴って、内燃機関における排気触媒(三元触媒)の性能向上が求められている。内燃機関の排気触媒では、プラチナなどの高価な貴金属が使用されている。そのため、排気ガス規制が強化されるに従って、排気性能向上のため多くの貴金属を使用する必要があり、排気触媒の製造コストが増加してしまう。
この種の内燃機関では、温度が外気温よりも低い冷機始動時に多量の炭化水素(Hydrocarbon:HC)が発生する。冷機始動時に炭化水素が発生する要因は、主に2つある。1つ目は、筒内温度が低いことにより、燃料の気化が遅れて、一部の燃料が燃焼完了後に気化することである。燃焼完了後に気化した燃料は、酸化されないまま炭化水素として排出される。2つ目は、点火時期までに気化される燃料が減り、筒内の空燃比が大きくなる(燃料が希薄化する)ことである。この場合は、要求点火エネルギーが増大して、失火が増えることにより、炭化水素が増える。そのため、冷機始動時の炭化水素の発生を抑えることにより、排気触媒で用いられる貴金属の量を減らし、排気触媒の製造コストを削減することができる。
しかしながら、内燃機関では、冷機始動時の点火装置(点火プラグ)の点火不良(消炎)を防止するため、冷機始動時の燃料の噴射量を多くする制御が行われる。この結果、冷機始動時の炭化水素の発生量が増加し、排気触媒のコスト削減が困難になる。
特許文献1には、内燃機関の1燃焼サイクルにおいて、通常の点火タイミングとは異なるタイミング(燃料噴射開始前)で複数回の点火を行うことで、点火プラグ電極の温度低下を防止する内燃機関用点火装置が開示されている。
しかしながら、特許文献1に開示された内燃機関点火装置は、筒内ガスの加熱はできない。そのため、燃料の気化遅延を改善できず、失火や発生した炭化水素を低減することはできない。したがって、内燃機関の冷機始動時の炭化水素の発生を抑えることはできず、排気触媒の製造コストの削減が困難となる。
本発明は、上記の問題点を考慮し、内燃機関の冷機始動時における炭化水素の発生を抑えることを目的とする。
上記課題を解決し、本目的を達成するため、本発明の内燃機関制御装置は、気筒内に燃料を噴射するインジェクタと、気筒内に配置された点火電極を有する点火プラグと、点火プラグに接続された点火コイルと、点火コイルに通電信号を出力する制御部と、を備えた内燃機関を制御する。制御部は、少なくとも初爆のための燃料噴射後に、第1周期の通電信号を前記点火コイルに出力し、点火成功後に、前記第1周期よりも短い第2周期の通電信号を前記点火コイルに出力する。
本発明によれば、内燃機関の冷機始動時における炭化水素の発生を抑えることができる。
<実施形態>
以下、実施の形態例にかかる内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
以下、実施の形態例にかかる内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
[内燃機関システム]
まず、一実施形態に係る内燃機関システムの構成について説明する。図1は、本発明の一実施形態に係る内燃機関の基本構成例を示す全体構成図である。
まず、一実施形態に係る内燃機関システムの構成について説明する。図1は、本発明の一実施形態に係る内燃機関の基本構成例を示す全体構成図である。
図1に示す内燃機関100は、単気筒でも複数気筒を有するものでもよいが、実施形態では、4気筒を有する内燃機関100を例示して説明する。
図1に示すように、内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流する。吸気マニホールド112を通った空気は、吸気弁151が開いたときに各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整される。スロットル弁113で調整された空気量は、流量センサ114により測定される。
スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。スロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。
本実施形態では、スロットル弁113として、電動機で駆動される電子スロットル弁を適用する。しかし、本発明に係るスロットル弁としては、空気の流量を適切に調整できるものであれば、その他の方式によるものを適用してもよい。
各気筒150に流入したガスの温度は、吸気温センサ115で検出される。
クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。クランク角センサ121は、クランクシャフト123の回転角度を検出する。本実施形態では、クランク角センサ121は、10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。
シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。水温センサ122は、内燃機関100の冷却水の温度を検出する。
また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。アクセルポジションセンサ126は、運転者の要求トルクを検出する。アクセルポジションセンサ126で検出された運転者の要求トルクは、後述する内燃機関制御装置1に出力される。内燃機関制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。
燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧される。燃料ポンプ131によって吸引及び加圧された燃料は、燃料配管133に設けられたプレッシャレギュレータ132で所定の圧力に調整される。そして、所定の圧力に調整された燃料は、燃料噴射装置(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された後の余分な燃料は、戻り配管(図示せず)を介して燃料タンク130に戻される。
燃料噴射装置134の制御は、後述する内燃機関制御装置1の燃料噴射制御部82(図3参照)の燃料噴射パルス(制御信号)に基づいて行われる。
内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(Cylinder Pressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。燃焼圧センサ140は、例えば、圧電式又はゲージ式の圧力センサが適用されている。これにより、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができる。
各気筒150には、排気弁152と、排気マニホールド160が取り付けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。排気マニホールド160は、燃焼後のガス(排気ガス)を、気筒150の外側に排出する。排気マニホールド160の排気側には、三元触媒161が設けられている。三元触媒161は、排気ガスを浄化する。三元触媒161により浄化された排気ガスは、大気に排出される。
三元触媒161の上流側には、上流側空燃比センサ162が設けられている。上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。
また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。本実施形態の下流側空燃比センサ163は、O2センサである。
各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200は、放電(点火)により火花を発生させ、その火花が、気筒150内の空気と燃料との混合気に着火する。これにより、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。
前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、内燃機関制御装置1(以下、「制御装置1」とする)に出力される。制御装置1は、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出する。そして、制御装置1は、気筒150内に送出する空気量、燃料噴射装置134からの燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。
[点火プラグ]
次に、点火プラグ200について、図2を参照して説明する。
図2は、点火プラグ200を説明する部分拡大図である。
次に、点火プラグ200について、図2を参照して説明する。
図2は、点火プラグ200を説明する部分拡大図である。
図2に示すように、点火プラグ200は、中心電極210と、外側電極220とを有している。中心電極210は、絶縁体230を介してプラグベース(不図示)に支持されている。これにより、中心電極210は、絶縁されている。外側電極220は接地されている。
点火コイル300(図1参照)において電圧が発生すると、中心電極210に所定の電圧(例えば20,000V~40,000V)が印加される。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。そして、放電により発生した火花が、気筒150内の空気と燃料との混合気に着火する。
なお、気筒150内におけるガス成分の絶縁破壊を起こして放電(点火)が発生する電圧は、中心電極210と外側電極220との間に存在する気体(ガス)の状態や気筒150の筒内圧に応じて変動する。この放電が発生する電圧を絶縁破壊電圧と言う。
点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83(図3参照)により行われる。
[制御装置のハードウェア構成]
次に、制御装置1のハードウェアの全体構成を説明する。
次に、制御装置1のハードウェアの全体構成を説明する。
図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digita)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。
アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、筒内圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。
アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換される。そして、A/D変換部30により変換されたデジタル信号は、RAM40に記憶される。
デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。
デジタル入力部20には、I/Oポート70が接続されている。デジタル入力部20に入力されたデジタル出力信号は、I/Oポート70を介してRAM40に記憶される。
RAM40に記憶された各出力信号は、MPU50で演算処理される。
MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、その制御値をRAM40に一時的に記憶する。
RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。
出力回路80には、全体制御部81、燃料噴射制御部82、点火制御部83などの機能が設けられている(図3参照)。全体制御部81は、各種センサ(例えば、筒内圧センサ140)からの出力信号に基づいて内燃機関の全体制御を行う。燃料噴射制御部82は、燃料噴射装置134のプランジャロッド(不図示)の駆動を制御する。点火制御部83は、点火プラグ200に印加する電圧を制御する。
[制御装置の機能ブロック]
次に、制御装置1の機能構成を、図3を参照して説明する。
図3は、制御装置1の機能構成を説明する機能ブロック図である。
次に、制御装置1の機能構成を、図3を参照して説明する。
図3は、制御装置1の機能構成を説明する機能ブロック図である。
制御装置1の各機能は、MPU50がROM60記憶された制御プログラムを実行することにより、出力回路80における各種機能として実現される。出力回路80における各種機能は、例えば、燃料噴射制御部82による燃料噴射装置134の制御や、点火制御部83による点火プラグ200の放電制御がある。
図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。
[全体制御部]
全体制御部81は、アクセルポジションセンサ126と、筒内圧センサ140(CPS)に接続されている。全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とを受け付ける。
全体制御部81は、アクセルポジションセンサ126と、筒内圧センサ140(CPS)に接続されている。全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とを受け付ける。
全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と、点火制御部83の全体的な制御を行う。
[燃料噴射制御部]
燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されている。燃料噴射制御部82は、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。
燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射装置134から噴射される燃料の噴射量と噴射時間を算出する。そして、燃料噴射制御部82は、算出した燃料の噴射量と噴射時間とに基づいて生成した燃料噴射パルス(INJ信号)S9を燃料噴射装置134に送信する。
[点火制御部]
点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル310(図8参照)に通電する電流量(通電角)と、通電開始時間と、1次側コイル310に通電した電流を遮断する時間(点火時間)を算出する。
点火制御部83は、算出した通電量と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に点火信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。
[排気濃度と空燃比]
次に、排気濃度と空燃比との関係について、図4を参照して説明する。
図4は、排気濃度と空燃比との関係を説明する図である。
次に、排気濃度と空燃比との関係について、図4を参照して説明する。
図4は、排気濃度と空燃比との関係を説明する図である。
図4に示すように、理論空燃比近傍では、燃焼温度が高いため、NOx濃度が高くなる。一方、HC濃度は、燃料が完全燃焼する理論空燃比近傍で低くなる。空燃比が大きくなる(燃料が薄くなる)と、燃焼温度が低下するため、NOx濃度は低減する。しかし、HC濃度は、燃焼温度の低下に伴って増大する。
[点火コイルを含む電気回路]
次に、点火コイルを含む電気回路について、図5を参照して説明する。
図5は、点火コイルを含む電気回路を説明する図である。
次に、点火コイルを含む電気回路について、図5を参照して説明する。
図5は、点火コイルを含む電気回路を説明する図である。
図5に示す電気回路500は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。
1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のドレイン(D)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
イグナイタ340のゲート(G)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のゲート(G)端子に入力される。イグナイタ340のゲート(G)端子に点火信号SAが入力されると、イグナイタ340のドレイン(D)端子とソース(S)端子間が通電状態となり、ドレイン(D)端子とソース(S)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
点火制御部83からの点火信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図5参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。点火プラグ200と、点火コイル300を有する電気回路500は、本発明に係る点火機関に対応する。
中心電極210と外側電極220の間に発生する放電経路は、数千℃の高温となる。放電経路は、周囲ガスと電極210,220に接しているため、放電の発熱エネルギーは、周囲ガスと電極210,220へ分配される。そして、周囲ガスへ分配された分の発熱エネルギーは、周囲ガスを加熱して着火を促進する。
[多重点火の放電波形]
次に、多重点火の放電波形について、図6を参照して説明する。
図6は、多重点火の放電波形例である。
次に、多重点火の放電波形について、図6を参照して説明する。
図6は、多重点火の放電波形例である。
図6に示すように、通常の点火時期の放電(放電開始)後に、点火信号のONとOFFを繰り返すことで、複数回の放電を追加して多重点火を行うことができる。この追加放電による多重点火は、燃料噴射開始まで継続できる。
[空燃比と要求点火エネルギー]
次に、空燃比と要求点火エネルギーについて、図7を参照して説明する。
図7は、空燃比と要求点火エネルギーの関係を説明する図である。
次に、空燃比と要求点火エネルギーについて、図7を参照して説明する。
図7は、空燃比と要求点火エネルギーの関係を説明する図である。
図7に示すように、理論空燃比近傍では、点火に必要な最小点火エネルギーである要求点火エネルギーが小さくなる。一方、理論空燃比よりも空燃比が大きくなる(燃料が希薄化する)と、要求点火エネルギーが増大する。また、理論空燃比よりも空燃比が小さくなる(燃料が濃くなる)と、要求点火エネルギーが増大する。
[失火防止の点火信号制御]
次に、失火防止をする場合の点火信号制御について、図8を参照して説明する。
図8は、失火防止を目的とした、点火信号制御のタイミングチャートの例である。
次に、失火防止をする場合の点火信号制御について、図8を参照して説明する。
図8は、失火防止を目的とした、点火信号制御のタイミングチャートの例である。
冷機始動では、筒内(気筒内)温度が低いことにより、燃料の気化が遅れる。その結果、一部の燃料は、燃焼完了後に気化する。点火時期までに気化される燃料が減ることで、点火時期における筒内の空燃比が大きくなる。上述したように、空燃比が大きくなると、点火に必要な要求点火エネルギーが増大する(図7参照)。
要求点火エネルギーが増大した場合は、点火エネルギー不足により失火して、未燃ガスが排出される。失火を防止するには、電極間ガスの空燃比が小さい(燃料が濃い)時期に放電する。これにより、要求点火エネルギーを低減することができるため、点火エネルギー不足にならず、失火を防ぐことが可能である。
しかし、筒内ガスの空燃比分布を予測することは困難である。そのため、点火エネルギーを低下させずに追加放電(失火救済)を繰り返すことで、点火する確率を向上させることが有効である。なお、追加放電とは、燃料噴射後に最初に行う放電(初回点火)後に追加して行われる複数の放電である。追加放電が必要な時期は、ピストン170の上死点前後であり、燃焼室容積が縮小するため、筒内圧力が高い。
このような高圧と希薄ガスの環境で点火するためには、所定値以上の点火エネルギーを確保する必要がある。そして、点火エネルギーの低下を防ぐためには、充電時間を確保する必要がある。そして、充電時間を確保するためには、点火信号の放電周期を所定の放電周期に設定する必要がある。すなわち、失火を防止するには、図8に示すように、点火信号の放電周期を所定の周期(以下、「第1周期」とする)に設定して、追加放電における1回の放電あたりの点火エネルギーを所定値以上にする必要がある。
[HC低減の点火信号制御]
次に、HC低減をする場合の点火信号制御について、図9を参照して説明する。
図9は、筒内で発生したHCを低減することを目的とした、点火信号制御のタイミングチャートの例である。
次に、HC低減をする場合の点火信号制御について、図9を参照して説明する。
図9は、筒内で発生したHCを低減することを目的とした、点火信号制御のタイミングチャートの例である。
上述したように、冷機始動では、筒内(気筒内)温度が低いことにより、燃料の気化が遅れる。その結果、一部の燃料は、燃焼完了後に気化する。気化遅延による筒内の未燃ガスは、燃焼に伴う発熱によって気化が促進される。その結果、未燃ガスは、膨張行程以降で増大する。そして、膨張行程以降は、燃焼室容積が増大するため、筒内圧力が低くなる。
未燃ガスは、筒内に投入された燃料全体のうちの一部であるため、ガス濃度は低い。そのため、未然ガスの点火による発熱が小さくなり、追加放電による酸化の連鎖反応は生じない。未燃ガスの酸化を促進させるには、筒内に散在する未燃ガスと電極210,220の間に発生する放電経路との接触機会を増やすとよい。
しかし、膨張行程以降の筒内環境は、低流速である。すなわち、吸入行程で生じた筒内のタンブル流動は、時間経過や燃焼室容積の縮小により低下する。そして、筒内が低流速の環境では、放電経路を伸長しても、放電経路と未然ガスの接触機会を増やすことが難しい。
また、未燃ガスの酸化を促進するための追加放電(HC筒内後処理)が必要な時期は、燃焼終了後であるため、筒内圧力が低い。そして、低圧環境の筒内で放電するために必要な要求点火エネルギーは、高圧環境に比べて低くなる。そのため、発生したHCを参加させて低減するには、図9に示すように、点火信号の放電周期を第1周期(図8に示す失火救済のための所定の周期)よりも短い第2周期にして、放電回数を増加するとよい。
第1周期及び第2周期は、それぞれの要求点火エネルギー、点火コイル300の応答性、ノイズフィルタの性能等に応じて適宜決定する。パルス幅が小さくなると、ノイズと制御信号の区別がつかなくなる。そのため、ノイズフィルタの性能に応じて最小のパルス幅が決まる。そして、最小のパルス幅が決まると、最小の放電周期が決まる。
[放電回数とHC排出量]
次に、放電回数とHC排出量の関係について、図10を参照して説明する。
図10は、放電回数とHC排出量の関係を説明する図である。
次に、放電回数とHC排出量の関係について、図10を参照して説明する。
図10は、放電回数とHC排出量の関係を説明する図である。
図10は、放電周期を変化させた際の、放電回数とHC排出量の計測結果を示している。計測には、単気筒ガソリンエンジンを用いた。運転条件としては、エンジン回転速度を1500[rpm]、平均有効圧力を6.4[bar]とした。図10に示すように、放電周期を短くして放電回数を増やすと、HC排出量を低減することができる。
[放電周期切替制御]
次に、失火防止とHC低減を実現する放電周期切替制御について、図11を参照して説明する。
図11は、失火防止とHC低減のトレードオフ解消を目的とした、放電周期切替制御のタイミングチャートの例である。
次に、失火防止とHC低減を実現する放電周期切替制御について、図11を参照して説明する。
図11は、失火防止とHC低減のトレードオフ解消を目的とした、放電周期切替制御のタイミングチャートの例である。
失火防止のためには、比較的長周期である第1周期の放電が必要である(図8参照)。一方、HC低減のためには、比較的短周期である第2周期の放電が必要である(図9参照)。つまり、失火防止とHC低減には、トレードオフが生じる。
トレードオフを解消するには、図11に示すように、燃料噴射が行われた後、点火成功(初爆)前後で点火信号の放電周期を切り替える必要がある。そこで、本実施形態では、点火成功前後で点火信号の放電周期を切り替える放電周期切替制御を行う。本発明に係る放電周期を切り替えは、初爆工程における膨張行程もしくは排気工程のいずれかで行う。
放電周期切替制御を行うことにより、失火防止とHC低減のトレードオフを解消することができる。すなわち、内燃機関100の冷機始動時における炭化水素(HC)の発生を抑えると共に、失火を防止することができる。
ところで、ガスの筒内流動にはサイクル変動がある。そのため、電極210,220付近へ着火性が高いガスが到達する時期の再現性が低い。したがって、点火成功(初爆)時期を予め予測することは困難である。そのため、本実施形態では、リアルタイムで筒内圧力を検知して、筒内圧力の絶対値、或いは初回点火時期の圧力からの変化量(圧力変化)から点火成功時期を検出する。これにより、点火成功時期を高精度に検出することができる。
筒内圧力の検知は、例えば、上述した燃焼圧センサ140(図1参照)を用いてもよい。また、筒内圧力の検知は、特開2019-210827号公報に記載されているように、点火プラグ200流れる電流、及び点火プラグ200の電極210,220間の電圧に基づいて、筒内圧力を算出する方法を採用してもよい。
具体的には、放電毎の点火コイル300の2次電圧と2次電流のピーク値を検出し、以下の式(1)により算出する。なお、式(1)において、Vsは放電時の電極間電圧、pは筒内圧、dは電極間距離をそれぞれ表し、A、B、Cはそれぞれ定数を表す。
Vs=Bpd/{ln(Apd)+C} ・・・(1)
Vs=Bpd/{ln(Apd)+C} ・・・(1)
このように、2次電圧と2次電流のピーク値から筒内圧力を算出する場合は、各気筒150内に燃焼圧センサ140を設ける必要が無く、内燃機関100のコスト削減を図ることができる。
[放電周期切替処理]
次に、本実施形態に係る放電周期切替処理について、図12を参照して説明する。
図12は、放電周期切替処理の例を示すフローチャートである。
次に、本実施形態に係る放電周期切替処理について、図12を参照して説明する。
図12は、放電周期切替処理の例を示すフローチャートである。
図12に示す放電周期切替処理は、燃料噴射後の初回点火の点火信号がONからOFFへ変わり、初回点火の放電開始と同時に開始する。そして、放電周期切替処理は、初回点火の放電開始から次の燃料噴射開始までの間、繰り返し実施される。
まず、点火制御部83(図3参照)は、失火防止を目的とした第1放電パターンを設定する(S101)。第1放電パターンの放電周期は、前述の第1周期である。すなわち、点火制御部83は、筒内が高圧、且つ高流速の環境で点火が成功するために必要な、放電周期と充電時間を設定する。
次に、点火制御部83は、燃料噴射が行われたか否かを判定する(S102)。すなわち、点火制御部83は、燃料噴射信号がONであれば、燃料噴射が行われたと判定し、燃料噴射信号がOFFであれば、燃料噴射が行われていないと判定する。なお、点火制御部83は、燃料噴射信号のON・OFF情報を全体制御部81から得る。S102において、燃料噴射が行われたと判定したとき(S102がYES判定の場合)、点火制御部83は、追加放電を停止して放電周期切替処理を終了する。
S102において、燃料噴射が行われていないと判定したとき(S102がNO判定の場合)、点火制御部83は、設定されている放電パターンに従った点火信号を出力して、追加放電(充放電)を繰り返す(S103)。
次に、点火制御部83は、筒内圧力を検知する(S104)。本実施形態では、放電時の2次電圧と2次電流を検出して、2次電圧と2次電流のピーク値を圧力換算式(上述の式(1))へ代入して筒内圧力を算出する。
次に、点火制御部83は、着火(点火成功)したか否かを判定する(S105)。この処理において、点火制御部83は、S104で検知した圧力の絶対値、或いは初回点火時期の圧力からの変化量と、予め定めた閾値を比較し、閾値以上である場合に、着火したと判定する。一方、点火制御部83は、S104で検知した圧力の絶対値、或いは初回点火時期の圧力からの変化量が、予め定めた閾値未満である場合に、着火していないと判定する。
S105において、着火していないと判定したとき(S105がNO判定の場合)、点火制御部83は、処理をS103に移す。一方、S105において、着火したと判定したとき(S105がYES判定の場合)、点火制御部83は、筒内で発生するHCの低減を目的とした第2放電パターンを設定する(S106)。
第2放電パターンの放電周期は、前述の第2周期である。すなわち、筒内が低圧、且つ低流速の環境で未燃ガスの酸化を促進するために必要な、放電周期と充電時間に設定する。S106の処理後、点火制御部83は、燃料噴射が開始されるまで、第2放電パターンに従った点火信号を出力する。例えば、第1放電パターンに従った点火信号による充放電が1回行われた後に、着火したと判定した場合は、1回の失火防止を目的とした追加放電後に、HCの低減を目的とした追加放電が繰り替えされる。
[点火信号のDUTY比]
次に、点火信号のDUTY比について、図13を参照して説明する。
図13は、一般的な受動式点火コイルの充放電の時間配分を説明する図である。
次に、点火信号のDUTY比について、図13を参照して説明する。
図13は、一般的な受動式点火コイルの充放電の時間配分を説明する図である。
点火コイル300の変換特性上、充電が実施されている時間よりも放電が実施されている時間の方が短い。そのため、点火信号のDUTY比を50%にすると、点火コイル300の時間稼働率が低下して、発熱エネルギーを効率よく得られない。
図13に示すように、本実施形態では、追加放電(第1放電パターン及び第2放電パターン)におけるDUTY比を、点火コイル300の充放電時間比とする。これにより、点火コイル300の稼働率を最大化することができ、放電の発熱エネルギーを最大化することができる。なお、初回点火の放電におけるDUTY比も、点火コイル300の充放電時間比としてもよい。
また、追加放電におけるDUTY比を、点火コイル300の充放電時間比とすることで、点火コイル300の発熱が増大する。そこで、実測や推定による点火コイル300の温度に応じて、DUTY比を変化させてもよい。例えば、点火コイル300の温度が予め定めた所定温度以上である場合は、点火コイル300の時間稼働率が低下すようにDUTY比を変化させる。これにより、点火コイル300の過熱を防止することができる。点火コイル300の温度は、例えば、イグナイタ340の温度から推定してもよい。
このように、本実施形態に係る内燃機関制御装置1は、気筒150内に燃料を噴射する燃料噴射装置134(インジェクタ)と、気筒150内に配置された電極210,220(点火電極)を有する点火プラグ200と、点火プラグ200に接続された点火コイル300とを備えた内燃機関100を制御する。内燃機関制御装置1は、点火コイル300に通電信号(点火信号)を出力する点火制御部83(制御部)を有する。点火制御部83は、少なくとも初爆のための燃料噴射後に、第1周期の通電信号を点火コイル300に出力し、点火成功後に、第1周期よりも短い第2周期の通電信号を点火コイル300に出力する。これにより、失火防止とHC低減のトレードオフを解消することができる。すなわち、内燃機関100の冷機始動時における炭化水素(HC)の発生を抑えると共に、失火を防止することができる。
また、点火制御部83(制御部)は、気筒150内の圧力(筒内圧力)が予め定めた閾値を越えた場合に、点火成功を検知する。これにより、点火成功時期を高精度に検出することができる。
また、点火制御部83(制御部)は、点火プラグ200による放電毎の点火コイル300の2次電圧と2次電流の値から気筒150内の圧力(筒内圧力)を算出する。これにより、各気筒150内に燃焼圧センサ140を設けなくても、気筒150内の圧力を検出することできる。その結果、内燃機関100のコスト削減を図ることができる。
また、点火制御部83(制御部)は、初爆工程における膨張行程もしくは排気工程のいずれかで通電信号の周期を第1周期から第2周期に変更する。これにより、失火防止を目的とした追加放電と、筒内で発生したHCを低減することを目的とした追加放電を、適切な時期に行うことができる。
また、点火制御部83(制御部)は、点火コイル300の温度に応じて、通電信号のDUTY比を変更する。これにより、点火コイル300の過熱を防止することができる。その結果、点火コイル300の故障を防止することができる。
また、本実施形態に係る点火機関は、気筒150内に配置された電極210,220(点火電極)を有する点火プラグ200と、点火プラグ200に接続された点火コイル300を有する。この点火機関の制御方法は、少なくとも初爆のための燃料噴射後に、第1周期の通電信号を点火コイル300に出力し、点火成功後に、第1周期よりも短い第2周期の通電信号を点火コイル300に出力する。これにより、失火防止とHC低減のトレードオフを解消することができる。すなわち、内燃機関100の冷機始動時における炭化水素(HC)の発生を抑えると共に、失火を防止することができる。
本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、上述した実施形態では、初爆のための燃料噴射後に、放電周期切替制御を行う例を説明した。しかし、本発明に係る放電周期切替制御は、少なくとも初爆のための燃料噴射後に実施すればよく、それ以外の燃料噴射後においてで実施することもできる。
1…内燃機関制御装置、 10…アナログ入力部、 20…デジタル入力部、 30…A/D変換部、 40…RAM、 50…MPU、 60…ROM、 70…I/Oポート、 80…出力回路、 81…全体制御部、 82…燃料噴射制御部、 83…点火制御部、 84…気筒判別部、 85…角度情報生成部、 86…回転数情報生成部、 87…吸気量計測部、 88…負荷情報生成部、 89…水温計測部、 100…内燃機関、 110…エアクリーナ、 111…吸気管、 112…吸気マニホールド、 113…スロットル弁、 113a…スロットル開度センサ、 114…流量センサ、 115…吸気温センサ、 120…リングギア、 121…クランク角センサ、 122…水温センサ、 123…クランクシャフト、 125…アクセルペダル、 126…アクセルポジションセンサ、 130…燃料タンク、 131…燃料ポンプ、 132…プレッシャレギュレータ、 133…燃料配管、 134…燃料噴射装置、 140…筒内圧センサ、 150…気筒、 151…吸気弁、 152…排気弁、 160…排気マニホールド、 161…三元触媒、 162…上流側空燃比センサ、 163…下流側空燃比センサ、 170…ピストン、 200…点火プラグ、 210…中心電極、 220…外側電極、 230…絶縁体、 300…点火コイル、 310…1次側コイル、 320…2次側コイル、 330…直流電源、 340…イグナイタ、 500…電気回路
Claims (6)
- 気筒内に燃料を噴射するインジェクタと、前記気筒内に配置された点火電極を有する点火プラグと、前記点火プラグに接続された点火コイルと、を備えた内燃機関を制御する内燃機関制御装置において、
前記点火コイルに通電信号を出力する制御部を有し、
前記制御部は、少なくとも初爆のための燃料噴射後に、第1周期の通電信号を前記点火コイルに出力し、点火成功後に、前記第1周期よりも短い第2周期の通電信号を前記点火コイルに出力する
内燃機関制御装置。 - 前記制御部は、前記気筒内の圧力が予め定めた閾値を越えた場合に、前記点火成功を検知する
請求項1に記載の内燃機関制御装置。 - 前記制御部は、前記点火プラグによる放電毎の前記点火コイルの2次電圧と2次電流の値から前記気筒内の圧力を算出する
請求項2に記載の内燃機関制御装置。 - 前記制御部は、初爆工程における膨張行程もしくは排気工程のいずれかで前記通電信号の周期を前記第1周期から前記第2周期に変更する
請求項1に記載の内燃機関制御装置。 - 前記制御部は、前記点火コイルの温度に応じて、前記通電信号のDUTY比を変更する
請求項1に記載の内燃機関制御装置。 - 気筒内に配置された点火電極を有する点火プラグと、前記点火プラグに接続された点火コイルを有する点火機関の制御方法において、
少なくとも初爆のための燃料噴射後に、第1周期の通電信号を前記点火コイルに出力し、点火成功後に、前記第1周期よりも短い第2周期の通電信号を前記点火コイルに出力する
点火機関の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/020148 WO2022249381A1 (ja) | 2021-05-27 | 2021-05-27 | 内燃機関制御装置及び点火機関の制御方法 |
CN202180096823.7A CN117120716A (zh) | 2021-05-27 | 2021-05-27 | 内燃机控制装置以及点火机构的控制方法 |
JP2023523850A JP7454109B2 (ja) | 2021-05-27 | 2021-05-27 | 内燃機関制御装置及び点火機関の制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/020148 WO2022249381A1 (ja) | 2021-05-27 | 2021-05-27 | 内燃機関制御装置及び点火機関の制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022249381A1 true WO2022249381A1 (ja) | 2022-12-01 |
Family
ID=84229572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020148 WO2022249381A1 (ja) | 2021-05-27 | 2021-05-27 | 内燃機関制御装置及び点火機関の制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7454109B2 (ja) |
CN (1) | CN117120716A (ja) |
WO (1) | WO2022249381A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153016A (ja) * | 1999-11-29 | 2001-06-05 | Denso Corp | 内燃機関の点火制御装置 |
WO2014189064A1 (ja) * | 2013-05-24 | 2014-11-27 | 株式会社デンソー | 内燃機関の点火制御装置 |
WO2019225070A1 (ja) * | 2018-05-23 | 2019-11-28 | 日立オートモティブシステムズ株式会社 | 内燃機関用制御装置 |
JP2019210827A (ja) * | 2018-05-31 | 2019-12-12 | 日立オートモティブシステムズ株式会社 | 内燃機関用制御装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231292A (ja) * | 1991-03-12 | 1993-09-07 | Aisin Seiki Co Ltd | 内燃機関の多重点火制御装置 |
JP2007330086A (ja) | 2006-06-09 | 2007-12-20 | Oki Power Tech Co Ltd | 磁気デバイス、並びに、それを用いたスイッチング電源回路及びその制御方法 |
JP2014202087A (ja) | 2013-04-02 | 2014-10-27 | トヨタ自動車株式会社 | エンジンの着火始動制御装置 |
JP6893997B2 (ja) | 2017-09-29 | 2021-06-23 | 日立Astemo株式会社 | 内燃機関の制御装置および内燃機関の制御方法 |
JP7056160B2 (ja) | 2018-01-16 | 2022-04-19 | 株式会社デンソー | 内燃機関の点火装置 |
-
2021
- 2021-05-27 JP JP2023523850A patent/JP7454109B2/ja active Active
- 2021-05-27 WO PCT/JP2021/020148 patent/WO2022249381A1/ja active Application Filing
- 2021-05-27 CN CN202180096823.7A patent/CN117120716A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153016A (ja) * | 1999-11-29 | 2001-06-05 | Denso Corp | 内燃機関の点火制御装置 |
WO2014189064A1 (ja) * | 2013-05-24 | 2014-11-27 | 株式会社デンソー | 内燃機関の点火制御装置 |
WO2019225070A1 (ja) * | 2018-05-23 | 2019-11-28 | 日立オートモティブシステムズ株式会社 | 内燃機関用制御装置 |
JP2019210827A (ja) * | 2018-05-31 | 2019-12-12 | 日立オートモティブシステムズ株式会社 | 内燃機関用制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7454109B2 (ja) | 2024-03-21 |
CN117120716A (zh) | 2023-11-24 |
JPWO2022249381A1 (ja) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11198425B2 (en) | Ignition device for internal combustion engines, and control device for vehicles | |
US20090271098A1 (en) | Post-start controller for diesel engine | |
CN113825900B (zh) | 内燃机用控制装置 | |
JPH04231645A (ja) | 筒内直接噴射式内燃機関の燃料噴射制御装置 | |
US11359594B2 (en) | Internal combustion engine control device | |
JP2019210827A (ja) | 内燃機関用制御装置 | |
WO2022249381A1 (ja) | 内燃機関制御装置及び点火機関の制御方法 | |
US11067052B2 (en) | Device for controlling internal combustion engine and method for controlling internal combustion engine | |
US10519879B2 (en) | Determining in-cylinder pressure by analyzing current of a spark plug | |
JP6931127B2 (ja) | 内燃機関用制御装置 | |
US11466657B2 (en) | Control device for internal combustion engine | |
WO2023084573A1 (ja) | 内燃機関の点火装置、電子制御装置、及び内燃機関の制御方法 | |
JP2000345950A (ja) | 筒内噴射式火花点火機関の点火制御装置 | |
WO2022230146A1 (ja) | 内燃機関制御装置 | |
WO2023223488A1 (ja) | 内燃機関制御装置及び内燃機関制御方法 | |
CN113950578B (zh) | 内燃机用控制装置 | |
JP7412599B2 (ja) | 内燃機関制御装置 | |
JP7247364B2 (ja) | 内燃機関用制御装置 | |
JP2001207888A (ja) | 自己着火内燃機関 | |
JP2023147398A (ja) | 内燃機関の制御装置 | |
CN116507801A (zh) | 缸内压力检测方法、缸内压力传感器诊断方法和内燃机控制装置 | |
KR19980048700A (ko) | 가솔린 직접분사 엔진의 냉간시동시 탄화수소 배출 저감 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21943031 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023523850 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21943031 Country of ref document: EP Kind code of ref document: A1 |