WO2017010217A1 - 透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法 - Google Patents

透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法 Download PDF

Info

Publication number
WO2017010217A1
WO2017010217A1 PCT/JP2016/067873 JP2016067873W WO2017010217A1 WO 2017010217 A1 WO2017010217 A1 WO 2017010217A1 JP 2016067873 W JP2016067873 W JP 2016067873W WO 2017010217 A1 WO2017010217 A1 WO 2017010217A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
fine particles
screen
dispersion
scattering layer
Prior art date
Application number
PCT/JP2016/067873
Other languages
English (en)
French (fr)
Inventor
彰 松尾
孝介 八牧
咲耶子 内澤
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to JP2017506938A priority Critical patent/JPWO2017010217A1/ja
Priority to US15/744,347 priority patent/US10488565B2/en
Publication of WO2017010217A1 publication Critical patent/WO2017010217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/608Fluid screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a dispersion liquid for forming a transparent light scattering layer of a transparent screen capable of achieving both the visibility of projection light and the visibility of transmitted light by anisotropically scattering and reflecting projection light emitted from a light source.
  • the transparent screen and a method of manufacturing the transparent screen.
  • the present invention also relates to a video projection system including the transparent screen and a projection device.
  • the reflective screen is a screen for visually recognizing the image projected on the screen from the same side as the projector
  • the transmissive screen is the screen for recognizing the image projected on the screen from the opposite side of the projector across the screen.
  • a light diffusive reflective layer including a binder resin, a light reflective agent, and 50 parts by weight or more of a light diffusing agent with respect to 100 parts by weight of the light reflective agent is provided on a base material.
  • a reflection screen for a projector is proposed (see Patent Document 1).
  • a reflection type projection screen is proposed in which a reflection layer is provided on a base material with a paint containing high-luminance aluminum powder (see Patent Document 2).
  • a transmissive screen for example, a projector transmissive screen comprising a laminate of a light control sheet having a plurality of unit light transmission portions, a light control sheet having a plurality of unit light absorption portions, and a light diffusion layer has been proposed. (See Patent Document 3).
  • Patent Documents 1 to 3 have the following technical problems.
  • the reflective screen for a projector described in Patent Document 1 is inferior in transparency, and it has been difficult to use it for transparent screen applications such as a head-up display and a wearable display.
  • a film in which fine particles of a light reflecting agent or a light diffusing agent are dispersed is formed by melt extrusion, so that the dispersibility of the fine particles is poor and foreign matter may be generated.
  • the melt extrusion method has a problem that it is difficult to mold into a shape other than a flat surface such as a curved surface or unevenness.
  • the reflective projection screen described in Patent Document 2 is inferior in transparency, and is difficult to use for transparent screen applications such as a head-up display and a wearable display.
  • the transmissive projection screen described in Patent Document 3 includes a light control sheet having a plurality of unit light transmission portions and a light control sheet having a plurality of unit light absorption portions, and the manufacturing process of the light control sheet is complicated. Moreover, there existed a problem that the transparency as a screen was impaired by presence of a light absorption part.
  • the present inventors can attach the transparent film to a substrate or support having a shape other than a flat surface such as a curved surface or unevenness.
  • the present invention has been made in view of the above technical problems, and the purpose thereof is to project projected light and transmitted light from a light source by anisotropically scattering and reflecting the projected light emitted from the light source. It is providing the dispersion liquid for forming the transparent light-scattering layer of the transparent screen which can satisfy
  • Another object of the present invention is to provide a video projection system provided with the transparent screen.
  • the present inventors have used a cured film of a dispersion liquid in which at least one of glittering flaky fine particles or substantially spherical fine particles is dispersed in a binder.
  • the inventors have found that the above technical problem can be solved by forming a transparent light scattering layer of a transparent screen.
  • the present invention has been completed based on such findings.
  • a dispersion for forming a transparent light scattering layer of a transparent screen comprising a binder and at least one of glittering flaky fine particles or substantially spherical fine particles.
  • the binder is preferably an inorganic binder or an organic binder.
  • the inorganic binder is preferably water glass, a glass material having a low softening point, or a sol-gel material.
  • the organic binder is preferably a thermoplastic resin, an ionizing radiation curable resin, a thermosetting resin, or an adhesive.
  • the dispersion further contains a solvent.
  • the glittering flaky fine particles preferably have an average primary particle diameter of 0.01 to 100 ⁇ m and an average aspect ratio of 3 to 800.
  • the glittering flaky fine particles are made of aluminum, silver, copper, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium, chromium, titanium oxide, aluminum oxide, and zinc sulfide. It is preferably a metallic particle selected from the group consisting of: a glittering material in which glass is coated with a metal or a metal oxide; or a glittering material in which natural mica or synthetic mica is coated with a metal or metal oxide.
  • the content of the glittering flaky fine particles in the dispersion is preferably 0.0001 to 10.0% by mass with respect to the binder.
  • the substantially spherical fine particles preferably have a median diameter of primary particles of 0.1 to 500 nm.
  • the substantially spherical fine particles are composed of zirconium oxide, zinc oxide, cerium oxide, barium titanate, magnesium oxide, barium sulfate, calcium carbonate, diamond, strontium titanate, crosslinked acrylic resin, crosslinked styrene resin, and silica. It is preferably at least one selected from the group consisting of
  • the content of the substantially spherical fine particles in the dispersion is preferably 0.0001 to 20.0% by mass with respect to the binder.
  • the cured film has a haze value of 30% or less when the dispersion is cured to form a cured film having a thickness of 2 ⁇ m.
  • a cured film of the above dispersion is provided.
  • t And c are the following formula (I): 0.05 ⁇ (t ⁇ c) ⁇ 50 (I) It is preferable to satisfy.
  • the haze value of the cured film is preferably 30% or less.
  • a transparent screen provided with a transparent light scattering layer composed of the above cured film.
  • a method for producing a transparent screen comprising a transparent light scattering layer A manufacturing method is provided, wherein the dispersion is applied onto a substrate and cured to form a transparent light scattering layer made of a cured film.
  • a vehicle member provided with the above-described transparent screen is provided.
  • a building member provided with the above transparent screen.
  • a video projection system including the transparent screen and a projection device.
  • a transparent light scattering layer of a transparent screen capable of achieving both the visibility of the projection light and the visibility of the transmitted light by anisotropically scattering and reflecting the projection light emitted from the light source.
  • a dispersion, the transparent screen, and a method for producing the transparent screen can be provided.
  • a transparent light scattering layer can be formed even if the shape is other than a flat surface such as a curved surface or unevenness, regardless of the surface shape of the substrate or support, or the size of the transparent light scattering layer Can be adjusted.
  • a transparent screen can be used suitably for a glass window, a head-up display, a wearable display, and the like.
  • FIG. 1 is a schematic diagram showing an embodiment of a video projection system according to the present invention.
  • the dispersion according to the present invention is for forming a transparent light scattering layer of a transparent screen, and comprises a binder and at least one of glittering flaky fine particles or substantially spherical fine particles.
  • the dispersion according to the present invention may further contain a solvent.
  • the fine particles the following substantially spherical fine particles or glittering flaky fine particles can be suitably used.
  • Binder any material may be used as long as it is highly transparent when it is used as a cured film and the dispersibility of the glittering flaky fine particles or the substantially spherical fine particles is good, and is preferably transparent. It is preferable to use an inorganic binder or an organic binder.
  • Examples of the highly transparent inorganic binder include water glass, a glass material having a low softening point, and a sol-gel material.
  • Water glass refers to a concentrated aqueous solution of alkali silicate, and sodium is usually included as an alkali metal.
  • a typical water glass can be represented by Na 2 O.nSiO 2 (n: any positive number).
  • Commercially available water glass has n in the range of 2-4.
  • Commercially available water glasses include Nos. 1 to 3 as aqueous sodium silicate solutions, and the ratio of SiO 2 to Na 2 O increases in this order.
  • K 2 O may be partially contained instead of Na 2 O, but even in this case, the molar ratio with SiO 2 is preferably in the above range.
  • the function as a binder tends to form a cured film with higher mechanical strength as the molecular weight of the polysilicate ion contained in the water glass is higher.
  • water glass contained in an optimum molar ratio of SiO 2 to Na 2 O depending on the concentration and pH of the water glass contained in use, the ratio to hydroxyapatite, and the like.
  • sodium silicate manufactured by Fuji Chemical Co., Ltd. can be used.
  • the glass material having a low softening point is a glass having a softening temperature of preferably 150 to 620 ° C., more preferably a softening temperature of 200 to 600 ° C., and most preferably a softening temperature of 250 to 550. It is in the range of ° C.
  • a PbO—B 2 O 3 system, a PbO—B 2 O 3 —SiO 2 system, a PbO—ZnO—B 2 O 3 system a mixture containing an acid component and a metal chloride is heat-treated.
  • the lead-free low softening point glass etc. which are obtained by this can be mentioned.
  • the low softening point glass material is preferably a so-called glass frit that dissolves in a curing step described later. Further, as the low softening point glass material, it is preferable to use a powder having a median diameter in the range of 1 to 50 ⁇ m. In order to improve the dispersibility and moldability of the fine particles, a solvent, a high boiling point organic solvent, and the like can be mixed with the low softening point glass material.
  • the sol-gel material is a group of compounds that are cured by hydrolysis polycondensation by the action of heat, light, catalyst, and the like.
  • metal alkoxide metal alcoholate
  • metal chelate compound metal halide
  • liquid glass spin-on glass
  • reaction product thereof which may contain a catalyst for promoting curing.
  • photoreactive functional group such as an acryl group
  • the cured sol-gel material refers to a state in which the polymerization reaction of the sol-gel material has sufficiently progressed.
  • the sol-gel material is chemically bonded to the surface of the inorganic substrate in the course of the polymerization reaction and strongly adheres. Therefore, a stable cured product layer can be formed by using a cured body of a sol-gel material as the cured product layer.
  • a metal alkoxide is a compound group obtained by reacting an arbitrary metal species with water or an organic solvent using a hydrolysis catalyst, etc., and an arbitrary metal species and a hydroxy group, methoxy group, ethoxy group, propyl group, isopropyl It is a group of compounds in which a functional group such as a group is bonded.
  • the metal species of the metal alkoxide include silicon, titanium, aluminum, germanium, boron, zirconium, tungsten, sodium, potassium, lithium, magnesium, tin and the like.
  • metal alkoxides whose metal species is silicon include dimethyldiethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, methyltriethoxysilane (MTES), vinyltriethoxysilane, p-styryltriethoxysilane, methylphenyldioxysilane.
  • the mixing ratio can be 1: 1, for example, as a molar ratio.
  • This sol solution produces amorphous silica by performing hydrolysis and polycondensation reactions.
  • an acid such as hydrochloric acid or an alkali such as ammonia is added.
  • the pH is preferably 4 or less or 10 or more.
  • the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
  • silsesquioxane compound can also be used as a metal alkoxide.
  • Silsesquioxane is a general term for a group of compounds represented by SiO 1.5 , and is a compound in which one organic group and three oxygen atoms are bonded to one silicon atom.
  • the metal halide is a group of compounds in which the functional group that undergoes hydrolytic polycondensation is replaced with a halogen atom in the metal alkoxide.
  • metal chelate compounds include titanium diisopropoxy bisacetylacetonate, titanium tetrakisacetylacetonate, titanium dibutoxybisoctylene glycolate, zirconium tetrakisacetylacetonate, zirconium dibutoxybisacetylacetonate, aluminum trisacetylacetonate, Examples thereof include aluminum dibutoxy monoacetylacetonate, zinc bisacetylacetonate, indium trisacetylacetonate, and polytitanium acetylacetonate.
  • highly transparent organic binders include resins such as thermoplastic resins, ionizing radiation curable resins, thermosetting resins, and pressure-sensitive adhesives. Any thermoplastic resin may be used as long as it is easily dissolved in a solvent. As such a thermoplastic resin, for example, acrylic resin, polyester resin, polyolefin resin, vinyl resin, polycarbonate resin, and polystyrene resin can be used.
  • Polymethyl methacrylate resin polyethylene terephthalate resin
  • Polyethylene naphthalate resin polypropylene resin, cycloolefin resin, cellulose acetate propionate resin, polyvinyl butyral resin, polycarbonate resin, ethylene / vinyl acetate copolymer resin, nitrocellulose-based resin and polystyrene resin
  • These resins can be used alone or in combination of two or more.
  • the ionizing radiation curable resin include acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • those having an acrylate-based functional group such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone
  • polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Preferred are those containing a
  • the ionizing radiation curable resin may be mixed with a thermoplastic resin and a solvent, or may be used as a hard coat layer for imparting scratch resistance and antiglare properties.
  • ionizing radiation curable resins include silicone resins, epoxy resins, urethane resins, acrylic resins, and the like.
  • thermosetting resins include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, urea resins, and the like. Among these, epoxy resins and silicone resins are preferable.
  • polyvinyl butyral resin and ethylene / vinyl acetate copolymer resin which are thermoplastic resins, have excellent adhesion to substrates such as glass, metal, and ceramics, and can also be used as an adhesive.
  • organic binder commercially available products can be used. For example, acrylic lacquer (Recrack 73 Clear manufactured by Fujikura Kasei Co., Ltd.), urethane acrylate type UV curable resin (Unidic V-4018 manufactured by DIC Corporation), Product name: EA-415 manufactured by San Yulec Co., Ltd.
  • the pressure-sensitive adhesive include natural rubber, synthetic rubber, acrylic resin, polyvinyl ether resin, urethane resin, and silicone resin.
  • synthetic rubbers include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block.
  • a copolymer is mentioned.
  • Specific examples of the silicone resin system include dimethylpolysiloxane.
  • the acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate.
  • the (meth) acrylic acid alkyl ester is usually copolymerized in an acrylic adhesive at a ratio of 30
  • Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and ⁇ -carboxyethyl acrylate. Can be mentioned.
  • the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive.
  • monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having functional groups such as monomers containing amino groups such as meth) acrylate, dimethylaminoethyl (meth) acrylate and vinylpyridine; ⁇ ⁇ ⁇ ⁇ epoxy group-containing monomers such as allyl glycidyl ether and (meth)
  • fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
  • the acrylic resin pressure-sensitive adhesive in addition to the monomer having another functional group as described above, another monomer having an ethylenic double bond can be used.
  • monomers having an ethylenic double bond include diesters of ⁇ , ⁇ -unsaturated dibasic acids such as dibutyl maleate, dioctyl maleate and dibutyl fumarate; vinyl esters such as vinyl oxalate and vinyl propionate; vinyl ether And vinyl aromatic compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; (meth) acrylonitrile and the like.
  • a compound having two or more ethylenic double bonds may be used in combination.
  • examples of such compounds include divinylbenzene, diallyl malate, diallyl phthalate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylenebis (meth) acrylamide, and the like.
  • adhesives such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
  • the regular reflectance of the glittering flaky fine particles is preferably 12.0% or more, more preferably 15.0% or more and 100% or less, and further preferably 20.0% or more and 95% or less.
  • the regular reflectance of the glittering flaky fine particles is a value measured as follows. (Regular reflectance) Measurement was performed using a spectrocolorimeter (manufactured by Konica Minolta Co., Ltd., product number: CM-3500d).
  • Bright flaky fine particles dispersed in an appropriate solvent were formed on a slide glass with a film thickness of 0.00.
  • the coated glass plate was coated and dried so as to have a thickness of 5 mm or more.
  • the glittering flaky fine particles include, for example, metallic fine particles such as aluminum, silver, copper, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium and chromium, Alternatively, metallic fine particles composed of aluminum oxide and zinc sulfide, a glittering material in which glass or metal or metal oxide is coated, or a glittering material in which natural or synthetic mica is coated with metal or metal oxide can be used. .
  • the metal material used for the metal-based fine particles a metal having excellent projection light reflectivity is used.
  • the metal material preferably has a reflectance R at a measurement wavelength of 550 nm of 50% or more, more preferably 55% or more, still more preferably 60% or more, and even more preferably 70% or more. It is.
  • “reflectance R” refers to the reflectance when light is incident on a metal material from the vertical direction.
  • the reflectance R can be calculated by the following formula (1) using the refractive index n and the extinction coefficient k, which are intrinsic values of the metal material.
  • n and k are, for example, in Handbook of Optical Constants of Solids: Volume 1 (by Edward D.
  • the reflectance R (550) at a measurement wavelength of 550 nm can be calculated from n and k measured at a wavelength of 550 nm.
  • the metal material has an absolute value of the difference between the reflectance R (450) at the measurement wavelength 450 nm and the reflectance R (650) at the measurement wavelength 650 nm within 25% of the reflectance R (650) at the measurement wavelength 550 nm. Yes, preferably within 20%, more preferably within 15%, and even more preferably within 10%.
  • the real term ⁇ ′ of the dielectric constant is preferably ⁇ 60 to 0, and more preferably ⁇ 50 to ⁇ 10.
  • the real term ⁇ ′ of the dielectric constant can be calculated by the following formula (2) using the values of the refractive index n and the extinction coefficient k.
  • ⁇ ′ n 2 ⁇ k 2 formula (2)
  • the present invention is not bound by any theory, when the real term ⁇ ′ of the dielectric constant of the metal material satisfies the above numerical range, the following action occurs, and the transparent light scatterer is used as a reflective transparent screen. It is thought that it can be used suitably.
  • any metal material satisfying the above-described reflectance R, preferably further satisfying the dielectric constant is particularly preferable, and a pure metal or an alloy can also be used.
  • the pure metal is preferably selected from the group consisting of aluminum, silver, platinum, titanium, nickel, and chromium.
  • the metal-based fine particles fine particles made of these metal materials, or fine particles obtained by coating these metal materials with resin, glass, natural mica, or synthetic mica can be used.
  • the shape of the metal-based fine particles is not particularly limited, and flaky fine particles, substantially spherical fine particles, and the like can be used.
  • the refractive index n and extinction coefficient k at each measurement wavelength are summarized in Table 1, and the reflectances R and ⁇ ′ calculated using the values are summarized in Table 2.
  • the glittering flaky fine particles preferably have an average primary particle diameter of 0.01 to 100 ⁇ m, more preferably 0.05 to 80 ⁇ m, still more preferably 0.1 to 50 ⁇ m, and still more preferably 0.5 to 30 ⁇ m.
  • the average diameter and average aspect ratio of the glittering flaky fine particles are within the above ranges, a sufficient scattering effect of the projection light can be obtained without impairing transmission visibility, thereby projecting a clear image on a transparent screen. Can do.
  • the average diameter of the glittering flaky fine particles was measured using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number: SALD-2300).
  • the average aspect ratio was calculated from an SEM (trade name: SU-1500, manufactured by Hitachi High-Technologies Corporation) image.
  • glittering flaky fine particles commercially available ones may be used.
  • Daiwa Metal Powder Co., Ltd. aluminum powder, Matsuo Sangyo Co., Ltd. trade name Metashine can be suitably used.
  • the content of the glittering flaky fine particles in the dispersion can be appropriately adjusted according to the regular reflectance of the glittering flaky fine particles.
  • the content of the glittering flaky fine particles in the dispersion is preferably 0.0001 to 10.0% by mass, more preferably 0.0005 to 8.0% by mass, and more preferably based on the binder. 0.001 to 5.0% by mass.
  • Projecting light is produced by anisotropically scattering and reflecting the projection light emitted from the light source by forming the transparent light scattering layer by dispersing the glittering flaky fine particles in the binder at a low concentration as in the above range. And the visibility of transmitted light can be improved.
  • the substantially spherical fine particles may include true spherical particles, or may include spherical particles having irregularities and protrusions.
  • the refractive index is preferably 1.80 to 3.55, more preferably 1.9 to 3.3, still more preferably 2.0 to 3.
  • metal-based particles obtained by atomizing an inorganic substance, a metal oxide, or a metal salt can be used.
  • the refractive index is preferably 1.35 to 1.80, more preferably 1.4 to 1.75, and still more preferably 1.45 to 1.75.
  • examples of the organic substantially spherical fine particles having a low refractive index include a crosslinked acrylic resin and a crosslinked styrene resin. These substantially spherical fine particles can be used singly or in combination of two or more.
  • the median diameter of the primary particles of the substantially spherical fine particles is preferably 0.1 to 500 nm, more preferably 0.2 to 300 nm, and still more preferably 0.5 to 200 nm.
  • the median diameter (D 50 ) of the primary particles of the inorganic fine particles was measured by a dynamic light scattering method using a particle size distribution analyzer (trade name: DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). It can be determined from the particle size distribution.
  • the content of substantially spherical fine particles in the dispersion can be appropriately adjusted according to the thickness of the transparent light scattering layer and the refractive index of the fine particles.
  • the content of substantially spherical fine particles in the dispersion is preferably 0.0001 to 20.0% by mass, more preferably 0.001 to 10.0% by mass, and still more preferably 0% with respect to the binder. 0.005 to 5.0% by mass, and still more preferably 0.01 to 3.0% by mass.
  • the dispersion according to the present invention may further contain a solvent.
  • a solvent When the dispersion contains a solvent, the viscosity of the dispersion can be adjusted as appropriate.
  • the solvent is not limited to an organic solvent, and a solvent used in a general coating composition can be used. For example, hydrophilic solvents such as water can be used.
  • the binder of this invention is a liquid, it does not need to contain a solvent.
  • the solvent according to the present invention include, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), n-propanol, butanol, 2-butanol, ethylene glycol, propylene glycol, hexane, heptane, octane, decane, Aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene and tetramethylbenzene, ethers such as diethyl ether, tetrahydrofuran and dioxane, acetone, methyl ethyl ketone, isophorone, cyclohexanone and cyclopentanone , Ketones such as N-methyl-2-pyrrolidone, ethers such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and
  • additives other than fine particles may be added to the dispersion, depending on the application, within a range that does not impair the transmission visibility and desired optical performance of the transparent light scattering layer.
  • additives include antioxidants, surfactants, thickeners, compatibilizers, nucleating agents, ultraviolet absorbers, light stabilizers, antistatic agents, mold release agents, flame retardants, plasticizers, lubricants, And coloring materials.
  • coloring material pigments or dyes such as carbon black, azo pigments, anthraquinone pigments, and perinone pigments can be used. Further, a liquid crystal compound or the like may be mixed.
  • the cured film in the present invention is a transparent film obtained by curing a dispersion in which at least one of glittering flaky fine particles or substantially spherical fine particles is dispersed in a binder, and when the dispersion contains a solvent, the dispersion It is obtained by removing the solvent from and curing it.
  • the curing in the present invention is not only a polymerization reaction of monomers, a reaction in which hardness is caused by a crosslinking reaction between polymers by a curing agent, heating, electron beam irradiation, or the like, but also a solvent from a dispersion by heating / firing. Also included is a reaction to remove and impart hardness to the binder.
  • the cured film in the present invention may have adhesiveness. Since the cured film has adhesiveness, it can be attached to other layers of the transparent screen such as the base material layer and the support layer without providing a separate adhesive layer.
  • the haze value of the cured film is preferably 30% or less, more preferably 0 to 20%, and further preferably 0 to 10%. is there.
  • a dispersion liquid that can form such a cured film it is possible to form a transparent light scattering layer that can form a clearer image while being transparent.
  • the thickness of the cured film is not particularly limited, but is preferably 0.01 ⁇ m to 1 mm, more preferably 0.1 ⁇ m to 500 ⁇ m, and further preferably 1 ⁇ m to 300 ⁇ m. If the thickness of the cured film is within the above range, the function as the transparent light scattering layer can be sufficiently exhibited.
  • the cured film may have a single layer structure or a multilayer structure in which two or more layers are laminated by coating or the like.
  • the cured film preferably has a scratch hardness measured according to JIS-K5600-5-4 (scratch hardness method) of HB or higher, more preferably H or higher, and scratch resistance of 2H or higher. Is more preferable.
  • the transparent light scattering layer is composed of a cured film of the above dispersion. It consists of a cured film of the above dispersion. In the transparent light scattering layer, light can be scattered and reflected anisotropically to increase the light utilization efficiency.
  • the haze value of the cured film of the above dispersion is preferably 50% or less, more preferably 1% or more and 40% or less, still more preferably 1.3% or more and 30% or less, and even more preferably. It is 1.5% or more and 20% or less. If the haze value of the cured film is within the above range, the transparent light scattering layer made of the cured film can form a clearer image while being transparent.
  • t and c are The following formula (I): 0.05 ⁇ (t ⁇ c) ⁇ 50 (I) Preferably satisfying 0.1 ⁇ (t ⁇ c) ⁇ 40 (I-2) More preferably, 0.15 ⁇ (t ⁇ c) ⁇ 35 (I-3) More preferably, 0.3 ⁇ (t ⁇ c) ⁇ 30 (I-4) Even more preferably.
  • the dispersion state of the fine particles in the binder of the transparent light diffusion layer of the screen is sparse (the concentration of the fine particles in the binder is low).
  • the proportion of light that is transmitted straight is increased (the proportion of light that does not collide with the fine particles is increased), and as a result, a clear image can be displayed on the screen without impairing the visibility of the transmitted light.
  • the concentration c is the total concentration of all fine particles.
  • the transparent light scattering layer can be formed by applying the above dispersion on a substrate and curing it.
  • the dispersibility of the fine particles is improved, and the fine particles are unlikely to form large agglomerates that become foreign matters. As a result, a screen with higher transparency and high quality can be obtained.
  • the number of foreign substances in the transparent light scattering layer is preferably 0 to 20, more preferably 0 to 10, and particularly preferably 0 to 5. Since the foreign matter deteriorates the sharpness of the image, if the number of the foreign matter is within the above numerical range, the projected image can be visually recognized as a clear image having no disturbance or bright spot.
  • the number of foreign matters in the transparent light scattering layer is the number counted by the following measuring method. (Measurement method of foreign matter) The transparent light scattering layer was cut into 20 cm square, and large aggregates (foreign matter) that could be visually confirmed were counted to determine the number of foreign matters.
  • a transparent screen according to the present invention includes a transparent light scattering layer made of a cured film of the above dispersion.
  • the transparent screen may have a single-layer structure composed of only a transparent light scattering layer, or a multilayer structure having further layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer. It may be.
  • the transparent screen may include a support such as glass or a transparent partition.
  • the transparent screen can achieve both the visibility of the projection light and the visibility of the transmitted light by anisotropically reflecting and reflecting the projection light emitted from the light source.
  • the transparent screen can be suitably used for glass windows, head-up displays, wearable displays, and the like.
  • the transparent screen according to the present invention can be suitably used for a vehicle member or a building member.
  • FIG. 1 shows a schematic diagram in the thickness direction of an embodiment of a transparent screen according to the present invention.
  • the transparent screen includes a transparent light scattering layer 13 in which glittering flaky fine particles 11 and substantially spherical fine particles 12 are dispersed in a binder 10.
  • Such a transparent screen scatters the projection light 15 anisotropically, so that the viewer 14 can visually recognize the scattered light 16.
  • the transparent screen may be a rear projection screen (transmission screen) or a front projection screen (reflection screen). That is, in the video display device provided with the transparent screen according to the present invention, the position of the projection device (light source) may be on the viewer side with respect to the screen or on the side opposite to the viewer.
  • the transparent screen may be a flat surface or a curved surface.
  • the transparent screen preferably has a haze value of 50% or less, more preferably 1% or more and 40% or less, still more preferably 1.3% or more and 30% or less, and even more preferably 1.5% or more. 20% or less.
  • the transparent screen preferably has a total light transmittance of 70% or more, more preferably 75% or more, still more preferably 80% or more, and even more preferably 85% or more.
  • the transparent screen preferably has a diffuse transmittance of 1.5% to 60%, more preferably 1.7% to 55%, and more preferably 1.9% to 50%. Yes, even more preferably 2.0% or more and 45% or less. If the haze value and the total light transmittance are within the above ranges, the transparency is high and transmission visibility can be further improved.
  • the diffuse transmittance is within the above ranges, the incident light is efficiently diffused. Since the viewing angle can be further improved, the performance as a screen is excellent.
  • the haze value, total light transmittance, and diffuse transmittance of the transparent screen were measured using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) and JIS-K-7361 and It can be measured according to JIS-K-7136.
  • the image clarity of the transparent screen is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, still more preferably 85% or more, and particularly preferably 90%. That's it. If the image clarity of the transparent screen is within the above range, the image seen through the transparent screen is very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • the substrate is a support for forming the transparent light scattering layer in a cured film shape.
  • the substrate is a substrate made of an inorganic material such as metal, ceramics, soda glass, quartz glass, sapphire substrate, quartz, float plate glass, silicon substrate, polyethylene terephthalate (PET), polyethylene telenaphthalate (PEN), Resin substrates such as polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene (PS), polyimide (PI), and polyarylate can be used.
  • an inorganic material such as metal, ceramics, soda glass, quartz glass, sapphire substrate, quartz, float plate glass, silicon substrate, polyethylene terephthalate (PET), polyethylene telenaphthalate (PEN), Resin substrates such as polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene (PS), polyimide (PI), and polyary
  • a substrate that is optically transparent in the visible light region of 400 nm to 780 nm can be used for various optical applications other than the screen, and thus is particularly preferable.
  • a base material containing quartz glass or sapphire glass having a high ultraviolet transmittance In order to improve adhesion, a surface treatment or an easy-adhesion layer may be provided on the substrate, and a gas barrier layer may be provided for the purpose of preventing intrusion of a gas such as moisture or oxygen.
  • the curing reaction includes a high-temperature process such as sintering, it is preferable to use a material that does not soften or damage at a high temperature.
  • the thickness of the substrate can be appropriately changed according to the application and material so that the strength is appropriate.
  • the thickness of the substrate may be, for example, in the range of 10 ⁇ m to 1 mm (1000 ⁇ m), or a thick plate of 1 mm or more.
  • the protective layer is laminated on the surface side (observer side) of the transparent screen, and is a layer for imparting functions such as light resistance, scratch resistance, and antifouling property.
  • the protective layer is preferably formed using a resin that does not impair the transmission visibility of the transparent screen and the desired optical characteristics.
  • a resin for example, a resin curable by ultraviolet rays or an electron beam, that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used.
  • ionizing radiation curable resins are particularly preferable.
  • the film forming component of the ionizing radiation curable resin composition preferably has an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di (me
  • acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators.
  • a mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • a normal curing method that is, by irradiation with electron beams or ultraviolet rays.
  • electron beam curing 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used.
  • ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
  • the protective layer is a coating liquid of the ionizing radiation (ultraviolet ray) ray-curable resin composition on the transparent light scattering layer, such as spin coat, die coat, dip coat, bar coat, flow coat, roll coat, gravure coat, etc. It can form by apply
  • a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure can be provided on the surface of the protective layer according to the purpose.
  • the antireflection layer is a layer for preventing reflection on the outermost surface of the transparent screen and reflection from outside light.
  • the antireflection layer may be laminated on the surface side (observer side) of the transparent screen, or may be laminated on both surfaces. In particular, when used as a transparent screen, it is preferably laminated on the viewer side.
  • the antireflection layer is preferably formed using a resin that does not impair the transmission visibility and desired optical characteristics of the transparent screen.
  • a resin curable by ultraviolet rays or an electron beam that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used.
  • the surface of the antireflection layer can be provided with a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure depending on the purpose.
  • the method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
  • the method for producing a transparent screen according to the present invention comprises a step of applying the above dispersion onto a substrate and curing it to form a transparent light scattering layer comprising a cured film, preferably a solvent in the dispersion It is preferable to harden by removing.
  • the manufacturing method of the transparent screen by this invention may also include the process of laminating
  • the method of applying the dispersion is not particularly limited, but for example, a coating method such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, air spray device, inkjet device or Examples of the application method include spraying using an ultrasonic spraying device, and printing methods such as gravure printing, screen printing, offset printing, and inkjet printing.
  • a coating method such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, air spray device, inkjet device or Examples of the application method include spraying using an ultrasonic spraying device, and printing methods such as gravure printing, screen printing, offset printing, and inkjet printing.
  • a solvent or the like may be appropriately added to the dispersion to improve the coating property.
  • the solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol and propylene glycol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone and N-methyl-2-pyrrolidone, toluene, Aromatic hydrocarbons such as xylene and tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl mono
  • a vehicle member according to the present invention includes the above-described transparent screen.
  • the vehicle member include a window shield, that is, a front glass, a rear glass, a front bench glass, a front door glass, a rear door glass, a rear quarter glass, a rear bench glass, a sunroof, and the like.
  • the building member according to the present invention comprises the above-described transparent screen.
  • the building member include a window glass of a house, a glass wall of a convenience store, a road surface store, and the like.
  • the building member can display a clear image on the building member without providing a separate screen.
  • a video projection system includes the above-described transparent screen and a projection device.
  • the position of the projection device may be on the viewer side with respect to the screen, or may be on the opposite side of the viewer.
  • the projection device is not particularly limited as long as it can project an image on a screen. For example, a commercially available rear projector or front projector can be used.
  • FIG. 2 shows a schematic diagram of an embodiment of a transparent screen and a video projection system according to the present invention.
  • the transparent screen 23 includes a transparent partition (support) 22 and a transparent light scattering layer 21 on the viewer 24 side on the transparent partition 22.
  • the transparent screen 23 may include an adhesive layer between them.
  • the video projection system includes a transparent screen 23 and a projection device 25 ⁇ / b> A installed on the opposite side (back side) of the viewer 24 with respect to the transparent partition 22.
  • the projection light 26A emitted from the projection device 25A enters from the back side of the transparent screen 23 and is anisotropically scattered by the transparent screen 23, so that the viewer 24 can visually recognize the scattered light 27A.
  • the video projection system includes a transparent screen 23 and a projection device 25B installed on the same side (front side) as the viewer 24 with respect to the transparent partition 22.
  • the projection light 26B emitted from the projection device 25B enters from the front side of the transparent screen 23 and is anisotropically scattered by the transparent screen 23, so that the viewer 24 can visually recognize the scattered light 27B.
  • the haze value of the prepared cured film with a glass plate was measured in the same manner as in the above (1), and was set as the haze value of the cured film with a film thickness of 2 ⁇ m (Note that the haze value of the glass plate is substantially 0, Does not affect the haze value of the cured film).
  • Example 1 Thermoplastic resin (PMMA resin, manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH) as binder and 0.30% by mass of zirconium oxide (ZrO 2 ) powder (primary as spherical particles) with respect to PMMA resin Particle median diameter 11 nm, refractive index 2.40) was added to chloroform and stirred uniformly to obtain a resin composition for transparent light scattering layer (dispersion, solid content concentration 20 mass%).
  • PMMA resin manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH
  • ZrO 2 zirconium oxide
  • the obtained resin composition for a transparent light scattering layer was applied onto a 3 mm thick float plate glass with a bar coater, and dried at room temperature for 24 hours under reduced pressure (Yamato Kagaku Co., Ltd., square vacuum dryer). It was cured by removing chloroform at 70 ° C. and 0.1 kPa for 24 hours) to prepare a transparent light scattering layer comprising a cured film having a thickness of 20 ⁇ m.
  • the haze value was 10%
  • the total light transmittance was 89%
  • the diffuse transmittance was 9%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 90%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • a sol-gel material (530 parts by mass of ethanol, 45 parts by mass of water and 0.2 parts by mass of concentrated hydrochloric acid, 54.3 parts by mass of tetraethoxysilane (TEOS) and 45. 5 parts of methyltriethoxysilane (MTES) as a binder. 7 parts by mass of a mixture obtained by dripping and stirring), instead of ZrO 2 , as flaky flaky fine particles, 0.30% by mass of flaky aluminum fine particles A (primary particles of the sol-gel material) An average diameter of 1 ⁇ m, an aspect ratio of 25, and a regular reflectance of 16.8%) were added to obtain a sol-gel composition (dispersion) for a transparent light scattering layer.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • the sol-gel composition for the transparent light scattering layer was applied onto the float glass plate A for 10 seconds at a rotation speed of 500 rpm using a spin coater, and then further applied at 800 rpm for 45 seconds.
  • the obtained coating film was dried at room temperature, and further heated and dried in a drying furnace at 250 ° C. for 10 minutes to produce a transparent light scattering layer composed of a cured film having a thickness of 2 ⁇ m.
  • the haze value was 7%
  • the total light transmittance was 84%
  • the diffuse transmittance was 6%, which had high transparency.
  • the number of foreign matters measured by the above method was as small as four, and the transparency was excellent.
  • the image clarity was 86%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 3 Water glass (sodium silicate solution, manufactured by Kishida Chemical Co., Ltd., trade name: water glass No. 3) was used as a binder, and the concentration of ZrO 2 was added to 0.75% by mass with respect to the water glass solid content, and further isopropyl Alcohol was added so that solid content concentration might be 20 mass%, and the water glass composition (dispersion liquid) for transparent light scattering layers was prepared.
  • the said water glass composition for transparent light-scattering layers was spray-coated on the float glass plate with the spray apparatus (The Toray Engineering Co., Ltd. make, electrospray coating apparatus). After coating, the coated film is dried by heat treatment at 100 ° C.
  • a transparent light scattering layer comprising a cured film having a thickness of 5 ⁇ m.
  • the haze value was 3%
  • the total light transmittance was 95%
  • the diffuse transmittance was 3%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 90%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 4 Using a commercially available polymer acrylate type UV curable resin (Unidic V-6841 manufactured by DIC Corporation) as a binder, 0.60% by mass of zirconium oxide (ZrO 2 ) with respect to the solid content weight in the UV curable resin Powder (primary particle median diameter 11 nm, refractive index 2.40) was added to prepare dispersion A. Furthermore, 5 parts by weight of a photopolymerization initiator (Irgacure 184, manufactured by BASF Japan Ltd.) was added to 100 parts by weight of this dispersion A to obtain dispersion B having photocurability.
  • a photopolymerization initiator Irgacure 184, manufactured by BASF Japan Ltd.
  • the obtained dispersion B was applied onto a 3 mm thick float glass using a bar coater so that the film thickness after drying was 10 ⁇ m, dried for 5 minutes with a hot air dryer at 70 ° C.
  • the haze value was 8%
  • the total light transmittance was 90%
  • the diffuse transmittance was 7%, which had high transparency.
  • the image clarity was 87%
  • the image seen through the screen was clear.
  • the pencil hardness of the cured film was 2H, which was a sufficient scratch resistance.
  • Example 5 Implementation was carried out except that the addition amount of ZrO 2 was changed to 0.65% by mass as substantially spherical fine particles, and dispersion C in which 0.03% by mass of flaky aluminum fine particles A was added as bright flaky fine particles was used.
  • a transparent light scattering layer made of a cured film having a thickness of 20 ⁇ m was produced.
  • the haze value was 12%
  • the total light transmittance was 78%
  • the diffuse transmittance was 9%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 85%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, images were sufficiently formed on the screen during both the front observation and the rear observation, and a very clear image could be visually recognized during both the front observation and the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 6 Using commercially available acrylic lacquer (Recrack 73 Clear, manufactured by Fujikura Kasei Co., Ltd.) as a binder, 0.02 mass% of flaky aluminum fine particles A as bright flaky fine particles are added to the solid content weight in the lacquer, Dispersion D was prepared. Further, 100 parts by weight of a thinner (Recrack # 5975 thinner manufactured by Fujikura Kasei Co., Ltd.) as a solvent was added to 100 parts by weight of this dispersion D to prepare a viscosity, and the resulting coating film thickness after drying was 20 ⁇ m.
  • a thinner Recrack # 5975 thinner manufactured by Fujikura Kasei Co., Ltd.
  • a polymethylmethacrylate resin base material (PMMA base material, thickness 5 mm) was spray-coated with an air brush, and dried with a hot air dryer at 70 ° C. for 5 minutes to prepare a transparent light scattering layer.
  • PMMA base material thickness 5 mm
  • a hot air dryer at 70 ° C. for 5 minutes.
  • the haze value was 6%
  • the total light transmittance was 87%
  • the diffuse transmittance was 5% and had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 88%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 7 The transparent light scattering layer was the same as in Example 6 except that the dispersion D was spray-coated with an air brush on a PMMA substrate having a thickness of 5 mm so that the coating thickness after drying of the transparent light scattering layer was 40 ⁇ m.
  • the obtained PMMA base material having a transparent light scattering layer was used as a screen as it was, the haze value was 9%, the total light transmittance was 83%, and the diffuse transmittance was 8%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as 4, and the transparency was excellent.
  • the image clarity was 85%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Dispersion E was prepared in the same manner as in Example 6 except that the concentration of the flaky aluminum fine particles A was changed to 0.005% by mass and the thinner amount was changed to 80 parts by weight, and the film thickness after drying was 100 ⁇ m.
  • the dispersion liquid E was spray-coated on a PMMA base material (thickness 5 mm) with an air brush so that a transparent light scattering layer was produced by drying with a hot air dryer at 70 ° C. for 5 minutes.
  • the obtained PMMA base material having a transparent light scattering layer was directly used as a screen, the haze value was 9%, the total light transmittance was 82%, and the diffuse transmittance was 8%.
  • the number of foreign matters measured by the above method was as few as 5, and the transparency was excellent.
  • the image clarity was 82%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 9 A commercially available urethane acrylate type UV curable resin (Unidic V-4018 manufactured by DIC Corporation) was used as a binder, and 0.2% by mass of flaky aluminum fine particles A with respect to the solid content weight in the UV curable resin was obtained.
  • Dispersion F was prepared by addition. Furthermore, 5 parts by weight of a photopolymerization initiator (manufactured by BASF Japan Ltd., Irgacure 184) was added to 100 parts by weight of the dispersion F to obtain a dispersion G having photocurability.
  • a photopolymerization initiator manufactured by BASF Japan Ltd., Irgacure 184
  • the obtained dispersion G was applied to a biaxially stretched polyester film having a thickness of 100 ⁇ m (manufactured by Toyobo Co., Ltd., Cosmo Shine A4100) using a bar coater so that the film thickness after drying was 2 ⁇ m.
  • a transparent light scattering layer was prepared by irradiating with ultraviolet rays.
  • the haze value was 5%
  • the total light transmittance was 86%
  • the diffuse transmittance was 4%.
  • the number of foreign matters measured by the above method was as small as four, and the transparency was excellent.
  • the image clarity was 89%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • the pencil hardness of the cured film was 2H, which was a sufficient scratch resistance.
  • Example 10 Using a commercially available two-component urethane paint (multi-top clear SH manufactured by Rock Paint Co., Ltd.) as a binder, 0.03% by mass of flaky aluminum fine particles A was added as glittering flaky fine particles, and dispersion H was added. Prepared. Furthermore, 50 parts by weight of a curing agent (Multi Top S curing agent manufactured by Rock Paint Co., Ltd.) and 20 parts by weight of thinner (Rock Ace thinner manufactured by Rock Paint Co., Ltd.) are added to 100 parts by weight of this dispersion H. Dispersion I was thus prepared.
  • a curing agent Multi Top S curing agent manufactured by Rock Paint Co., Ltd.
  • thinner Rock Ace thinner manufactured by Rock Paint Co., Ltd.
  • the dispersion I obtained is spray-coated on a float plate glass with an air brush so that the film thickness after drying is 15 ⁇ m, and dried with a hot air dryer at 70 ° C. for 5 minutes to produce a transparent light scattering layer. did.
  • the thickness of the cured film transparent light scattering layer
  • the concentration of the glittering flaky fine particles was c (mass%)
  • t ⁇ c 0.45.
  • the haze value was 5%
  • the total light transmittance was 89%
  • the diffuse transmittance was 5%, which had high transparency.
  • the transparency was excellent.
  • the image clarity was 90%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 11 Using a commercially available urethane acrylate type UV curable resin (Unidic V-4018 manufactured by DIC Corporation) as a binder, 1.2% by mass of nickel fine particles (brilliant flakes) based on the solid content weight in the UV curable resin A dispersion liquid J was prepared by adding fine particles and an average primary particle diameter of 9 ⁇ m, an aspect ratio of 90, and a regular reflectance of 16.8%. Furthermore, 5 parts by weight of a photopolymerization initiator (manufactured by BASF Japan Ltd., Irgacure 184) was added to 100 parts by weight of this dispersion J to obtain a dispersion K having photocurability.
  • a photopolymerization initiator manufactured by BASF Japan Ltd., Irgacure 184
  • the obtained dispersion K was applied to a biaxially stretched polyester film having a thickness of 100 ⁇ m (manufactured by Toyobo Co., Ltd., Cosmo Shine A4100) using a bar coater so that the film thickness after drying was 5 ⁇ m.
  • a transparent light scattering layer was prepared by irradiating with ultraviolet rays.
  • the haze value was 18%
  • the total light transmittance was 83%
  • the diffuse transmittance was 15%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 74%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and a very clear image could be visually recognized during both the front observation and the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • the pencil hardness of the cured film was 2H, which was a sufficient scratch resistance.
  • the number of foreign matters measured by the above method was as few as 4, and the transparency was excellent. Further, the image clarity was 73%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, images were sufficiently formed on the screen during both the front observation and the rear observation, and a very clear image could be visually recognized during both the front observation and the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • the number of foreign matters measured by the above method was as few as two, and the transparency was excellent.
  • the image clarity was 86%, and the image seen through the screen was clear.
  • the image was sufficiently formed on the screen during both the front observation and the rear observation, and a clear image could be seen during both the front observation and the rear observation. A very clear image could be seen. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 14 A dispersion N was prepared in the same manner as in Example 1 except that 2.5% by mass of silver fine particles (average primary particle diameter of 1 ⁇ m, aspect ratio of 200, regular reflectance of 32.8%) was used as the glittering flaky fine particles. did.
  • a transparent light scattering layer was produced on a float plate glass having a thickness of 3 mm in the same manner as in Example 1 so that the film thickness after drying was 5 ⁇ m.
  • the obtained float plate glass having a transparent light scattering layer was used as a screen as it was, the haze value was 15%, the total light transmittance was 74%, and the diffuse transmittance was 11%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as 5, and the transparency was excellent. Further, the image clarity was 70%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, images were sufficiently formed on the screen during both the front observation and the rear observation, and a very clear image could be visually recognized during both the front observation and the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 15 A dispersion O was prepared in the same manner as in Example 1 except that the concentration of the zirconium oxide (ZrO 2 ) powder was changed to 0.01% by mass.
  • a transparent light scattering layer was produced in the same manner as in Example 1 except that the obtained dispersion liquid O was used so that the film thickness after drying was changed to 30 ⁇ m.
  • the thickness of the cured film transparent light scattering layer
  • the concentration of substantially spherical fine particles was c (mass%)
  • t ⁇ c 0.3.
  • the obtained float glass plate having a transparent light scattering layer was used as a screen as it was, the haze value was 0.5%, the total light transmittance was 94%, and the diffuse transmittance was 0.5%, which had high transparency. It was.
  • the number of foreign matters measured by the above method was as few as two, and the transparency was excellent.
  • the image clarity was 91%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 16 A dispersion P was prepared in the same manner as in Example 2 except that 2.0% by mass of zirconium oxide (ZrO 2 ) powder (median diameter of primary particles: 11 nm, refractive index: 2.40) was used as substantially spherical fine particles.
  • ZrO 2 zirconium oxide
  • a transparent light scattering layer was produced on a float plate glass having a thickness of 3 mm in the same manner as in Example 2 so that the film thickness after drying was 1 ⁇ m.
  • the obtained float plate glass having a transparent light scattering layer was used as a screen as it was, the haze value was 2%, the total light transmittance was 92%, and the diffuse transmittance was 2%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as 5, and the transparency was excellent.
  • the image clarity was 92%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 17 A commercially available epoxy acrylate type UV curable resin (Unidic V-5500 manufactured by DIC Corporation) was used as a binder, and the amount of ZrO 2 added was 0.60% by mass with respect to the solid content weight in the UV curable resin.
  • Zirconium oxide (ZrO 2 ) powder (primary particle median diameter 11 nm, refractive index 2.40) was added to prepare dispersion Q.
  • 5 parts by weight of a photopolymerization initiator BASF Japan Co., Ltd., Irgacure 184) was added to 100 parts by weight of this dispersion Q to obtain a dispersion R having photocurability.
  • the obtained dispersion R was applied onto a 3 mm thick float glass using a bar coater so that the film thickness after drying was 10 ⁇ m, dried for 5 minutes with a hot air dryer at 70 ° C.
  • the haze value was 8%
  • the total light transmittance was 87%
  • the diffuse transmittance was 7%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 85%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • the pencil hardness of the cured film was HB and sufficient scratch resistance.
  • Example 18 A commercially available polymer acrylate type UV curable resin (Unidic V-6841 manufactured by DIC Corporation) was used as a binder, and 5.0% by mass of titanium oxide (TiO 2 ) based on the solid content weight in the UV curable resin. Powder (manufactured by Teika Co., Ltd., primary median diameter 13 nm, refractive index 2.72) was added to prepare dispersion S. Further, 5 parts by weight of a photopolymerization initiator (BASF Japan Co., Ltd., Irgacure 184) was added to 100 parts by weight of this dispersion S to obtain a dispersion T having photocurability.
  • a photopolymerization initiator BASF Japan Co., Ltd., Irgacure 184
  • the obtained dispersion T was coated on a 3 mm thick float glass using a bar coater so that the film thickness after drying was 5 ⁇ m, dried for 5 minutes with a hot air dryer at 70 ° C.
  • the haze value was 20%
  • the total light transmittance was 71%
  • the diffuse transmittance was 14%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as 5, and the transparency was excellent.
  • the image clarity was 65%, and the image seen through the screen was clear.
  • images were sufficiently formed on the screen during both the front observation and the rear observation, and an extremely clear image could be visually recognized particularly during the front observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • the pencil hardness of the cured film was 2H, which was a sufficient scratch resistance.
  • Example 19 Using a commercially available acrylic lacquer (Recrack 73 Clear, manufactured by Fujikura Kasei Co., Ltd.) as a binder, 0.1% by mass of flaky aluminum fine particles B (primary particles of primary particles as bright flaky fine particles with respect to the solid content weight in the lacquer. Dispersion U was prepared by adding an average diameter of 10 ⁇ m, an aspect ratio of 300, and a regular reflectance of 62.8%. Further, 100 parts by weight of a thinner (Recrack # 5975 thinner manufactured by Fujikura Kasei Co., Ltd.) as a solvent was added to 100 parts by weight of this dispersion U to adjust the viscosity, and the resulting coating thickness after drying was 3 ⁇ m.
  • a thinner Recrack # 5975 thinner manufactured by Fujikura Kasei Co., Ltd.
  • a polymethylmethacrylate resin base material (PMMA base material, thickness 5 mm) was spray-coated with an air brush, and dried with a hot air dryer at 70 ° C. for 5 minutes to prepare a transparent light scattering layer.
  • PMMA base material thickness 5 mm
  • the haze value was 2%
  • the total light transmittance was 91%
  • the diffuse transmittance was 2%, which had high transparency.
  • the number of foreign matters measured by the above method was as few as three, and the transparency was excellent.
  • the image clarity was 91%, and the image seen through the screen was clear. Furthermore, when the screen performance was evaluated, an image was sufficiently formed on the screen, and an extremely clear image could be visually recognized during both the front observation and the rear observation. Therefore, a clear background image and a clear projected image could be visually recognized simultaneously.
  • Example 1 As in Example 1, 5% by mass of ZrO 2 was added to the thermoplastic resin (PMMA resin) as a binder and approximately spherical fine particles based on the PMMA resin, and charged into a twin-screw kneading extruder KZW-30MG manufactured by Technobel. did. ZrO 2 -containing PMMA pellets were obtained by melt-kneading at 250 ° C. and pelletizing the extruded strands. The ZrO 2 -containing PMMA pellets were put into a uniaxial kneading extruder hopper (manufactured by GM Co., Ltd.) to form a 20 ⁇ m thick transparent light diffusion layer (film).
  • PMMA resin thermoplastic resin
  • KZW-30MG twin-screw kneading extruder KZW-30MG manufactured by Technobel.
  • the screw diameter of the single screw extruder is 50 mm and the effective screw length (L / D) is 30, and a hanger coat type T-die is installed in the extruder through an adapter.
  • t thickness of the film
  • c mass%
  • t ⁇ c 100.
  • the produced light diffusion layer was bonded to a float plate glass via an acrylic adhesive and used as a transparent screen, the haze value was 6%, the total light transmittance was 89%, and the diffuse transmittance was 5%.
  • the number of foreign matters was as large as 71, and the image clarity was 63%, and the image seen through the transparent screen was unclear. Therefore, a clear background image and a clear projected image cannot be viewed at the same time.
  • the number of foreign matters measured by the above method was 6. Further, the image clarity was 58%, and the image seen through the screen was unclear. Further, when the screen performance was evaluated, an image was sufficiently formed on the screen in the observation from the rear, but a clear image could not be visually recognized in the observation from the front.
  • the obtained transparent light scattering layer and fine structure mold A (manufactured by Inox Co., Ltd., part number HT-AR-05C, pitch 250 nm, average height 300 nm, peak-to-peak distance 290 nm) were applied to a nanoimprint apparatus (Sanmei Electronics Co., Ltd.) (Manufactured, model number: ImpFlex I-Essential), a pressure of 1 MPa was applied, and light from an LED 365 nm light source was irradiated for 60 seconds to perform a curing reaction of the UV curable resin.
  • the microstructure mold used was preliminarily subjected to mold release treatment with a fluorine-based surface treatment (manufactured by Daikin Industries, Ltd., product number: OPTOOL HD-1100TH). Thereafter, the mold was peeled off to obtain a transparent light scattering layer having a fine concavo-convex structure.
  • a microscope product name: E-sweep, manufactured by SII Nano Technology Co., Ltd.
  • the average peak-to-peak distance of the obtained fine structure layer was 282 nm.
  • the average peak height was 281 nm, and it was found that a transparent screen having an almost conventional fine concavo-convex structure was obtained.
  • Comparative Example 2 In Comparative Example 1, a ZrO 2 -containing PMMA pellet was put into a single-screw extruder hopper and immediately after being extruded from a T die, a fine uneven structure mold (product number HT-AR-05C, manufactured by Inox Co., Ltd.) was used. , A pitch of 250 nm, an average height of 300 nm, and a peak-to-peak distance of 290 nm) were pressed to perform fine unevenness processing. When the shape of the obtained transparent light diffusion layer (film) was confirmed with a microscope (product name: E-sweep, manufactured by SII Nano Technology Co., Ltd.), the fine concavo-convex structure was only partially transferred. A transparent screen was obtained.
  • a microscope product name: E-sweep, manufactured by SII Nano Technology Co., Ltd.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる透明スクリーンの透明光散乱層を形成するための分散液、当該透明スクリーン、および当該透明スクリーンの製造方法の提供。 【解決手段】本発明による透明スクリーンの透明光散乱層を形成するための分散液は、バインダと、光輝性薄片状微粒子または略球状微粒子の少なくともいずれか一方と、を含んでなる。また、本発明による透明スクリーンは、上記の分散液の硬化膜からなる透明光散乱層を備える。また、本発明による透明スクリーンの製造方法は、透明光散乱層を備える透明スクリーンの製造方法は、上記の分散液を基板上に塗布し、硬化させて、透明光散乱層を形成することを特徴とする。 

Description

透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法
 本発明は、光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる透明スクリーンの透明光散乱層を形成するための分散液、当該透明スクリーン、および当該透明スクリーンの製造方法に関する。また、本発明は、当該透明スクリーンと、投射装置とを備える映像投影システムにも関する。
 従来、プロジェクター用スクリーンとして、フレネルレンズシートとレンチキュラーレンズシートとを組み合わせたものが用いられてきた。近年、デパート等のショウウィンドウやイベントスペースの透明パーティション等にその透明性を維持したまま商品情報や広告等を投射表示する要望が高まってきている。また、将来的には、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる透明性の高い投射型映像表示スクリーンの需要は、ますます高まると言われている。
 投射型映像表示スクリーンには、反射型スクリーンと透過型スクリーンの2種類がある。反射型スクリーンはプロジェクターと同じ側からスクリーンに投影された映像を視認するスクリーンであり、透過型スクリーンはスクリーンを挟んでプロジェクターと反対側から、スクリーンに投影された映像を視認するスクリーンである。反射型スクリーンとしては、例えば、基材上に、バインダ樹脂と、光反射剤と、光反射剤100重量部に対して50重量部以上の光拡散剤とを含む光拡散性反射層を設けてなるプロジェクター用反射型スクリーンが提案されている(特許文献1参照)。また、基材上に、高輝度アルミニウム粉末を含有する塗料で反射層を設けたことを特徴とする反射型映写スクリーンが提案されている(特許文献2参照)。透過型スクリーンとしては、例えば複数の単位光透過部を有する光制御シートと、複数の単位光吸収部を有する光制御シートと、光拡散層の積層体からなるプロジェクター用透過型スクリーンが提案されている(特許文献3参照)。
特開平10-197957号公報 特開平5-119402号公報 特開2013-210505
 しかしながら、本発明者らは、特許文献1~3には、以下の技術的課題が存在することを知見した。特許文献1に記載のプロジェクター用反射型スクリーンは、透明性に劣るものであり、ヘッドアップディスプレイやウェアラブルディスプレイ等の透明スクリーン用途に用いることは困難であった。さらに、特許文献1では、光反射剤や光拡散剤の微粒子を分散させたフィルムを溶融押出により製膜しており、微粒子の分散性が悪く、異物が発生する恐れがあった。また、溶融押出法は曲面や凹凸等の平面以外の形状に成型するのが困難であるという問題点もあった。特許文献2に記載の反射型映写スクリーンは、透明性に劣るものであり、ヘッドアップディスプレイやウェアラブルディスプレイ等の透明スクリーン用途に用いることは困難であった。特許文献3に記載の透過型映写スクリーンは、複数の単位光透過部を有する光制御シートと、複数の単位光吸収部を有する光制御シートからなり、光制御シートの製造工程が煩雑であり、また、光吸収部が存在することでスクリーンとしての透明性を損なうという問題点があった。
 また、本発明者らは、従来の透明光散乱層を備える透明フィルムを用いて透明スクリーンを作製する場合、曲面や凹凸等の平面以外の形状の基材や支持体への透明フィルムの貼付が困難であったり、透明フィルムのサイズの調整が困難であったりするという技術的課題を新たに知見した。本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる透明スクリーンの透明光散乱層を形成するための分散液、当該透明スクリーン、および当該透明スクリーンの製造方法を提供することにある。また、本発明の目的は、該透明スクリーンを備えた映像投影システムを提供することにある。
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、光輝性薄片状微粒子または略球状微粒子の少なくともいずれか一方をバインダ中に分散させた分散液の硬化膜を用いて、透明スクリーンの透明光散乱層を形成することによって、上記の技術的課題を解決できることを知見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の一の態様によれば、
 透明スクリーンの透明光散乱層を形成するための分散液であって、バインダと、光輝性薄片状微粒子または略球状微粒子の少なくともいずれか一方と、を含んでなる、分散液が提供される。
 本発明の態様においては、前記バインダが、無機系バインダまたは有機系バインダであることが好ましい。
 本発明の態様においては、前記無機系バインダが、水ガラス、低軟化点を有するガラス材料、またはゾルゲル材料であることが好ましい。
 本発明の態様においては、前記有機系バインダが、熱可塑性樹脂、電離放射線硬化性樹脂、熱硬化性樹脂、または粘着剤であることが好ましい。
 本発明の態様においては、前記分散液が、さらに溶剤を含むことが好ましい。
 本発明の態様においては、前記光輝性薄片状微粒子は、一次粒子の平均径が0.01~100μmであり、かつ平均アスペクト比が3~800であることが好ましい。
 本発明の態様においては、前記光輝性薄片状微粒子が、アルミニウム、銀、銅、白金、金、チタン、ニッケル、スズ、スズ-コバルト合金、インジウム、クロム、酸化チタン、酸化アルミニウム、および硫化亜鉛からなる群から選択される金属系粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料であることが好ましい。
 本発明の態様においては、前記分散液中の前記光輝性薄片状微粒子の含有量が、前記バインダに対して、0.0001~10.0質量%であることが好ましい。
 本発明の態様においては、前記略球状微粒子は、一次粒子のメジアン径が0.1~500nmであることが好ましい。
 本発明の態様においては、前記略球状微粒子が、酸化ジルコニウム、酸化亜鉛、酸化セリウム、チタン酸バリウム、酸化マグネシウム、硫酸バリウム、炭酸カルシウム、ダイヤモンド、チタン酸ストロンチウム、架橋アクリル樹脂、架橋スチレン樹脂およびシリカからなる群より選択された少なくとも1種であることが好ましい。
 本発明の態様においては、前記分散液中の前記略球状微粒子の含有量が、前記バインダに対して、0.0001~20.0質量%であることが好ましい。
 本発明の態様においては、前記分散液を硬化して膜厚2μmの硬化膜を作成した場合の前記硬化膜のヘイズ値が30%以下であることが好ましい。
 本発明の別の態様によれば、上記の分散液の硬化膜が提供される。
 本発明の別の態様においては、上記の硬化膜の厚さをt(μm)とし、前記バインダに対する前記光輝性薄片状微粒子または前記略球状微粒子の濃度をc(質量%)としたとき、tとcが、下記数式(I):
 0.05≦(t×c)≦50  ・・・(I)
を満たすことが好ましい。
 本発明の別の態様においては、上記の硬化膜のヘイズ値が30%以下であることが好ましい。
 本発明の別の態様によれば、上記の硬化膜からなる透明光散乱層を備えた、透明スクリーンが提供される。
 本発明の別の態様によれば、
 透明光散乱層を備える透明スクリーンの製造方法であって、
 上記の分散液を基板上に塗布し、硬化させて、硬化膜からなる透明光散乱層を形成することを特徴とする、製造方法が提供される。
 本発明の別の態様によれば、上記の透明スクリーンを備えた、車両用部材が提供される。
 本発明の別の態様によれば、上記の透明スクリーンを備えた、建物用部材が提供される。
 本発明の別の態様においては、上記の透明スクリーンと、投射装置とを備えた、映像投影システムが提供される。
 本発明によれば、光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる透明スクリーンの透明光散乱層を形成するための分散液、当該透明スクリーン、および当該透明スクリーンの製造方法を提供することができる。このような分散液を用いることで、基材や支持体の面形状に依らずに曲面や凹凸等の平面以外の形状であっても透明光散乱層を形成できたり、透明光散乱層のサイズを調整できたりする。また、このような透明スクリーンは、ガラスウィンドウ、ヘッドアップディスプレイ、およびウェアラブルディスプレイ等に好適に用いることができる。
本発明による透明スクリーンの一実施形態の厚さ方向の断面図である。 本発明による映像投影システムの一実施形態を示した模式図である。
<分散液>
 本発明による分散液は、透明スクリーンの透明光散乱層を形成するためのものであり、バインダと、光輝性薄片状微粒子または略球状微粒子の少なくともいずれか一方と、を含んでなる。本発明による分散液は、溶剤をさらに含むものであって良い。微粒子としては下記の略球状微粒子または光輝性薄片状微粒子を好適に用いることができる。このような分散液を用いて透明光散乱層を形成することで、透明光散乱層内で光を異方的に散乱反射させて、光の利用効率を高めることができる。また、このような分散液を用いることで、基材や支持体の面形状に依らずに曲面や凹凸等の平面以外の形状であっても透明光散乱層を形成できたり、透明光散乱層のサイズを調整できたりする。
(バインダ)
 バインダとしては、硬化膜としたときの透明性が高く、光輝性薄片状微粒子または略球状微粒子の分散性がよいものであればどのような材料を用いても良く、透明であることが好ましく、無機系バインダまたは有機系バインダを用いることが好ましい。
 透明性の高い無機系バインダとしては、例えば、水ガラス、低軟化点を有するガラス材料、またはゾルゲル材料を挙げることができる。水ガラスとは、アルカリ珪酸塩の濃厚水溶液をいい、アルカリ金属としては通常ナトリウムが含まれている。代表的な水ガラスは、NaO・nSiO(n:正の任意の数)により示すことができる。市販される水ガラスは、nが2から4の範囲にある。市販される水ガラスには珪酸ナトリウム水溶液として1号から3号があり、この順にNaOに対するSiOの比率が高くなる。水ガラスから水分を蒸発させると和水ガラスと称される水分を10~30質量%程度含んだ割れにくく弾性を有する固体が形成され、接着性を有するバインダとしての機能が発現する。また、場合により、NaOに換えて一部KOを含むことがあるが、この場合であってもSiOとのモル比は上記の範囲にあることが好ましい。バインダとしての機能は水ガラスに含まれるポリ珪酸イオンの分子量が高いほど力学的強度の高い硬化膜を形成する傾向があるが、硬化膜にひび割れが生成し易くなる場合があるため、塗布液として使用する際の含まれる水ガラスの濃度やpH、及びヒドロキシアパタイトに対する割合等によってNaOに対するSiOの最適なモル比で含まれる水ガラスを使用することが好ましい。水ガラスとしては、富士化学(株)社製珪酸ソーダを用いることができる。
 低軟化点を有するガラス材料は、軟化温度が好ましくは150~620℃の範囲にあるガラスであり、さらに好ましくは軟化温度が200~600℃の範囲であり、最も好ましくは軟化温度が250~550℃の範囲である。このようなガラス材料としては、PbO-B系、PbO-B-SiO系、PbO-ZnO-B系、酸成分及び金属塩化物を含む混合物を熱処理することにより得られる鉛フリー低軟化点ガラス等を挙げることができる。低軟化点ガラス材料は、後述する硬化工程で溶解する、いわゆるガラスフリットが好ましい。また、低軟化点ガラス材料としては、メジアン径が1~50μmの範囲の粉末を用いるのが好ましい。低軟化点ガラス材料には、微粒子の分散性および成形性向上のために、溶剤および高沸点有機溶剤等を混合することができる。
 ゾルゲル材料は、熱や光、触媒などの作用により、加水分解重縮合が進行し、硬化する化合物群である。例えば、金属アルコキシド(金属アルコラート)、金属キレート化合物、ハロゲン化金属、液状ガラス、スピンオングラス、またはこれらの反応物であり、これらに硬化を促進させる触媒を含ませたものであってもよい。また、金属アルコキシド官能基の一部にアクリル基などの光反応性の官能基を有するものであってもよい。これらは、要求される物性に応じて、単独で用いても良いし、複数種類を組み合わせて用いても良い。ゾルゲル材料の硬化体とは、ゾルゲル材料の重合反応が十分に進行した状態を指す。ゾルゲル材料は、重合反応の過程において無機基板の表面と化学的に結合して、強く接着する。そのため、硬化物層としてゾルゲル材料の硬化体を用いることで、安定した硬化物層を形成することができる。
 金属アルコキシドとは、加水分解触媒などによって任意の金属種を、水や有機溶剤と反応させて得られる化合物群であり、任意の金属種と、ヒドロキシ基、メトキシ基、エトキシ基、プロピル基、イソプロピル基等の官能基とが結合した化合物群である。金属アルコキシドの金属種としては、シリコン、チタン、アルミニウム、ゲルマニウム、ボロン、ジルコニウム、タングステン、ナトリウム、カリウム、リチウム、マグネシウム、スズなどが挙げられる。
 例えば、金属種がシリコンの金属アルコキシドとしては、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン(MTES)、ビニルトリエトキシシラン、p-スチリルトリエトキシシラン、メチルフェニルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-メルカプトプロピルトリエトキシシラン、トリエトキシシラン(TEOS)、ジフェニルシランジオール、ジメチルシランジオールなどや、これら化合物群のエトキシ基が、メトキシ基、プロピル基、イソプロピル基、ヒドロキシ基などに置き換わった化合物群などが挙げられる。これらのなかでも、TEOS、TEOSのエトキシ基をメトキシ基に置き換えたテトラメトキシシラン(TMOS)が特に好ましい。これらは単独で用いても良く、複数種類を組み合わせて用いることもできる。
 TEOS、MTESまたはこれらの混合物を用いる場合には、それらの混合比は、例えばモル比で1:1にすることができる。このゾル溶液は、加水分解及び重縮合反応を行わせることによって非晶質シリカを生成する。合成条件として溶液のpHを調整するために、塩酸等の酸またはアンモニア等のアルカリを添加する。pHは4以下もしくは10以上が好ましい。また、加水分解を行うために水を加えてもよい。加える水の量は、金属アルコキシド種に対してモル比で1.5倍以上にすることができる。
 また、金属アルコキシドとしては、シルセスキオキサン化合物を用いることもできる。シルセスキオキサンとは、SiO1.5で表される化合物群の総称で、ケイ素原子一個に対し、一つの有機基と三つの酸素原子が結合した化合物である。ハロゲン化金属とは、上記金属アルコキシドにおいて、加水分解重縮合する官能基がハロゲン原子に置き換わった化合物群である。
 金属キレート化合物としては、チタンジイソプロポキシビスアセチルアセトネート、チタンテトラキスアセチルアセトネート、チタンジブトキシビスオクチレングリコレート、ジルコニウムテトラキスアセチルアセトネート、ジルコニウムジブトキシビスアセチルアセトネート、アルミニウムトリスアセチルアセトネート、アルミニウムジブトキシモノアセチルアセトネート、亜鉛ビスアセチルアセトネート、インジウムトリスアセチルアセトネート、ポリチタンアセチルアセトネートなどが挙げられる。
 透明性の高い有機系バインダとしては、樹脂、例えば熱可塑性樹脂、電離放射線硬化性樹脂、熱硬化性樹脂、および粘着剤を挙げることができる。熱可塑性樹脂としては、溶媒に溶解しやすいものであればよい。そのような熱可塑性樹脂としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、およびポリスチレン系樹脂を用いることができ、ポリメタクリル酸メチル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂、セルロースアセテートプロピオネート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、エチレン・酢酸ビニル共重合樹脂、ニトロセルロース系樹脂およびポリスチレン樹脂を用いることができる。これらの樹脂は、1種単独または2種以上を組み合わせて用いることができる。電離放射線硬化性樹脂としては、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系樹脂等が挙げられる。これらの中でも、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが好ましい。また、電離放射線硬化性樹脂は熱可塑性樹脂および溶剤と混合されたものであってもよく、耐傷性、防眩性を付与するためのハードコート層として用いられるものであってもよい。電離放射線硬化性樹脂としては、シリコーン系樹脂、エポキシ樹脂、ウレタン樹脂、アクリル樹脂等が挙げられる。熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、メラミン樹脂、ウレタン系樹脂、尿素樹脂等が挙げられる。これらの中でも、エポキシ系樹脂、シリコーン系樹脂が好ましい。また、熱可塑性樹脂であるポリビニルブチラール樹脂やエチレン・酢酸ビニル共重合樹脂は、ガラス、金属、セラミックス等の基材に対し優れた接着性を有しており、接着剤として使用することもできる。有機系バインダとしては、市販品を用いることができ、例えば、アクリルラッカー(藤倉化成(株)製 レクラック73 クリヤー)、ウレタンアクリレート型UV硬化性樹脂(DIC(株)製ユニディックV-4018)、サンユレック(株)社製の商品名:EA―415等が挙げられる。
 有機系バインダとして粘着剤を用いることで、分散液の硬化膜に粘着性を付与することができる。粘着剤としては、例えば、天然ゴム系、合成ゴム系、アクリル樹脂系、ポリビニルエーテル樹脂系、ウレタン樹脂系、シリコーン樹脂系等が挙げられる。合成ゴム系の具体例としては、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴム、イソブチレン-イソプレンゴム、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体が挙げられる。シリコーン樹脂系の具体例としては、ジメチルポリシロキサン等が挙げられる。これらの粘着剤は、1種単独または2種以上を組み合わせて用いることができる。これらの中でも、アクリル系粘着剤が好ましい。
 アクリル系樹脂粘着剤は、少なくとも(メタ)アクリル酸アルキルエステルモノマーを含んで重合させたものである。炭素原子数1~18程度のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとカルボキシル基を有するモノマーとの共重合体であるのが一般的である。なお、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸をいう。(メタ)アクリル酸アルキルエステルモノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸sec-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ウンデシルおよび(メタ)アクリル酸ラウリル等を挙げることができる。 また、上記(メタ)アクリル酸アルキルエステルは、通常は、アクリル系粘着剤中に30~99.5質量部の割合で共重合されている。
 また、アクリル系樹脂粘着剤を形成するカルボキシル基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、マレイン酸モノブチルおよびβ-カルボキシエチルアクリレート等のカルボキシル基を含有するモノマーを挙げることができる。
 アクリル系樹脂粘着剤には、上記の他に、アクリル系樹脂粘着剤の特性を損なわない範囲内で他の官能基を有するモノマーが共重合されていても良い。他の官能基を有するモノマーの例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルおよびアリルアルコール等の水酸基を含有するモノマー;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミドおよびN-エチル(メタ)アクリルアミド等のアミド基を含有するモノマー;N-メチロール(メタ)アクリルアミドおよびジメチロール(メタ)アクリルアミド等のアミド基とメチロール基とを含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートおよびビニルピリジン等のアミノ基を含有するモノマーのような官能基を有するモノマー; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテルなどのエポキシ基含有モノマーなどが挙げられる。この他にもフッ素置換(メタ)アクリル酸アルキルエステル、(メタ)アクリロニトリルなどのほか、スチレンおよびメチルスチレンなどのビニル基含有芳香族化合物、酢酸ビニル、ハロゲン化ビニル化合物などを挙げることができる。
 アクリル系樹脂粘着剤には、上記のような他の官能基を有するモノマーの他に、他のエチレン性二重結合を有するモノマーを使用することができる。エチレン性二重結合を有するモノマーの例としては、マレイン酸ジブチル、マレイン酸ジオクチルおよびフマル酸ジブチル等のα,β-不飽和二塩基酸のジエステル; 酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ビニルエーテル;スチレン、α-メチルスチレンおよびビニルトルエン等のビニル芳香族化合物;(メタ)アクリロニトリル等を挙げることができる。また、上記のようなエチレン性二重結合を有するモノマーの他に、エチレン性二重結合を2個以上有する化合物を併用することもできる。このような化合物の例としては、ジビニルベンゼン、ジアリルマレート、ジアリルフタレート、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等を挙げることができる。
 粘着剤は市販のものを使用してもよく、例えば、SKダイン2094、SKダイン2147、SKダイン1811L、SKダイン1442、SKダイン1435、およびSKダイン1415(以上、綜研化学(株)製)、オリバインEG-655、およびオリバインBPS5896(以上、東洋インキ(株)製)等(以上、商品名)を好適に使用することができる。
(光輝性薄片状微粒子)
 光輝性薄片状微粒子としては、薄片状に加工できる光輝性材料を好適に用いることができる。光輝性薄片状微粒子の正反射率は、好ましくは12.0%以上であり、より好ましくは15.0%以上100%以下であり、さらに好ましくは20.0%以上95%以下である。なお、本発明において、光輝性薄片状微粒子の正反射率は、以下のようにして測定した値である。
(正反射率)
 分光測色計(コニカミノルタ(株)製、品番:CM-3500dを用いて測定した。適切な溶媒(水またはメチルエチルケトン)に分散させた光輝性薄片状微粒子をスライドガラス上に膜厚が0.5mm以上になるように塗布、乾燥させた。得られた塗膜付きガラス板について、ガラス面の法線に対して45度の角度でガラス面から塗膜へ光を入射したときの正反射率を測定した。光輝性薄片状微粒子を塗膜としたときの正反射率を測定することで、微粒子表面の酸化状態等を考慮した光輝性薄片状微粒子の反射性能を把握することができる。
 光輝性薄片状微粒子としては、分散させるバインダの種類にもよるが、例えば、アルミニウム、銀、銅、白金、金、チタン、ニッケル、スズ、スズ-コバルト合金、インジウムおよびクロム等の金属系微粒子、または、酸化アルミニウムおよび硫化亜鉛からなる金属系微粒子、ガラスに金属もしくは金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料を用いることができる。
 金属系微粒子に用いる金属材料は、投影光の反射性に優れる金属が用いられる。具体的には、金属材料は、測定波長550nmにおける反射率Rが好ましくは50%以上であり、より好ましくは55%以上であり、さらに好ましくは60%以上であり、さらにより好ましくは70%以上である。以下、本発明において、「反射率R」とは、金属材料に対して光を垂直方向から入射させたときの反射率を指す。反射率Rは金属材料固有値である屈折率nと消衰係数kの値を用いて下記式(1)により算出することができる。nおよびkは、例えばHandbook of Optical Constants of Solids: Volume 1(Edward D.Palik著)や、P.B. Johnson and R.W Christy, PHYSICAL REVIEW B, Vol.6, No.12, 4370-4379(1972)等に記載されている。
   R={(1-n)+k}/{(1+n)+k}  式(1)
 すなわち、測定波長550nmにおける反射率R(550)は、波長550nmで測定したときのnおよびkより算出できる。金属材料は、測定波長450nmにおける反射率R(450)と、測定波長650nmにおける反射率R(650)の差の絶対値が、測定波長550nmにおける反射率R(650)に対して25%以内であり、好ましくは20%以内であり、より好ましくは15%以内であり、さらに好ましくは10%以内である。このような金属材料を用いることで、反射型透明スクリーンとして用いた場合、投影光の反射性および色再現性に優れ、スクリーンとしての性能に優れる。
 金属系微粒子に用いる金属材料は、誘電率の実数項ε’が、好ましくは-60~0であり、より好ましくは-50~-10である。なお、誘電率の実数項ε’は、屈折率nと消衰係数kの値を用いて下記式(2)により算出することができる。
   ε’=n-k   式(2)
 本発明はいかなる理論にも束縛されるものではないが、金属材料の誘電率の実数項ε’が上記数値範囲を満たすことで、以下の作用が生じ、透明光散乱体が反射型透明スクリーンとして好適に使用できると考えられる。すなわち、光が金属系微粒子の中に入ると、金属系微粒子中には光による振動電界が生じるが、同時に金属系微粒子の自由電子によって逆向きの電気分極が生じ電界を遮蔽してしまう。誘電率の実数光ε’が0以下であるとき、光が完全に遮蔽され金属系微粒子の中に光が入って行けない、すなわち、表面凹凸による拡散や金属系微粒子による光の吸収が無いという理想状態を仮定すると、光は全て金属系微粒子表面で反射されることになるため、光の反射性は強い。ε’が0より大きいとき、金属系微粒子の自由電子の振動は光の振動に追随出来ないため光による振動電界を完全には打ち消すことが出来ず、光は金属系微粒子の中に入ったり、透過したりする。その結果、金属系微粒子表面で反射されるのは一部の光だけになり、光の反射性は低くなる。
 金属材料としては、上記の反射率R、好ましくはさらに誘電率を満たす金属材料を用いたものであれば特に好ましく、純金属や合金も用いることができる。純金属としてはアルミニウム、銀、白金、チタン、ニッケル、およびクロムからなる群から選択されるものが好ましい。金属系微粒子としては、これらの金属材料からなる微粒子や、これらの金属材料を樹脂、ガラス、天然雲母もしくは合成雲母等に被覆した微粒子を用いることができる。また、金属系微粒子の形状は、特に限定されず、薄片状微粒子や略球状微粒子等を用いることができる。各種の金属材料について、各測定波長における屈折率nおよび消衰係数kを表1に、その値を用いて算出した反射率Rおよびε’を表2にまとめる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 光輝性薄片状微粒子は、一次粒子の平均径が好ましくは0.01~100μm、より好ましくは0.05~80μm、さらに好ましくは0.1~50μm、さらにより好ましくは0.5~30μmである。さらに、光輝性薄片状微粒子は、平均アスペクト比(=光輝性薄片状微粒子の平均径/平均厚み)が好ましくは3~800、より好ましくは4~700、さらに好ましくは5~600、さらにより好ましくは10~500である。光輝性薄片状微粒子の平均径および平均アスペクト比が上記範囲内であると、透過視認性を損なわずに投影光の十分な散乱効果が得られることで、透明スクリーンに鮮明な映像を投影することができる。なお、本発明において、光輝性薄片状微粒子の平均径は、レーザー回折式粒子径分布測定装置((株)島津製作所製、品番:SALD-2300)を用いて測定した。平均アスペクト比は、SEM((株)日立ハイテクノロジーズ製、商品名:SU-1500)画像より算出した。
 光輝性薄片状微粒子は、市販のものを使用してもよく、例えば、大和金属粉工業株式会社製アルミニウムパウダー、松尾産業株式会社製の商品名メタシャインを好適に使用することができる。
 分散液中の光輝性薄片状微粒子の含有量は、光輝性薄片状微粒子の正反射率に応じて適宜調節することができる。分散液中の光輝性薄片状微粒子の含有量は、バインダに対して、好ましくは0.0001~10.0質量%であり、好ましくは0.0005~8.0質量%であり、より好ましくは0.001~5.0質量%である。光輝性薄片状微粒子を上記範囲のように低濃度でバインダ中に分散させて透明光散乱層を形成することによって、光源から出射される投影光を異方的に散乱反射することにより、投影光の視認性と透過光の視認性とを向上することができる。
(略球状微粒子)
 略球状微粒子とは、真球状粒子を含んでいてもよく、凹凸や突起のある球状粒子を含んでいてもよい。高屈折率を有する略球状微粒子としては、例えば、屈折率が好ましくは1.80~3.55であり、より好ましくは1.9~3.3であり、さらに好ましくは2.0~3.0である、無機物、金属酸化物または金属塩を微粒化した金属系粒子を用いることができる。無機物としては、例えばダイヤモンド(n=2.42)を挙げることができる。金属酸化物としては、例えば、酸化ジルコニウム(n=2.40)、および酸化セリウム(n=2.20)等を挙げることができる。金属塩としては、例えば、チタン酸バリウム(n=2.40)およびチタン酸ストロンチウム(n=2.37)等を挙げることができる。また、低屈折率を有する略球状微粒子としては、例えば、屈折率が好ましくは1.35~1.80であり、より好ましくは1.4~1.75であり、さらに好ましくは1.45~1.7であり、酸化マグネシウム(n=1.74)、硫酸バリウム(n=1.64)、炭酸カルシウム(n=1.65)、シリカ(酸化ケイ素、n=1.45)等の無機物を微粒化した無機系微粒子が挙げられる。さらに低屈折率を有する有機系略球状微粒子としては、例えば、架橋アクリル系樹脂、架橋スチレン系樹脂が挙げられる。これらの略球状微粒子は、1種単独または2種以上を組み合わせて用いることができる。
 略球状微粒子の一次粒子のメジアン径は好ましくは0.1~500nmであり、より好ましくは0.2~300nmであり、さらに好ましくは0.5~200nmである。略球状微粒子の一次粒子のメジアン径が上記範囲内であると、透明スクリーンとして使用した場合に、透過視認性を損なわずに投影光の十分な拡散効果が得られることで、透明スクリーンに鮮明な映像を投影することができる。なお、本発明において、無機微粒子の一次粒子のメジアン径(D50)は、動的光散乱法により粒度分布測定装置(大塚電子(株)製、商品名:DLS-8000)を用いて測定した粒度分布から求めることができる。
 分散液中の略球状微粒子の含有量は、透明光散乱層の厚さや微粒子の屈折率に応じて適宜調節することができる。分散液中の略球状微粒子の含有量は、バインダに対して、好ましくは0.0001~20.0質量%であり、より好ましくは0.001~10.0質量%であり、さらに好ましくは0.005~5.0質量%であり、さらにより好ましくは0.01~3.0質量%である。略球状微粒子を上記範囲程度でバインダ中に分散させて透明光散乱層を形成することによって、透明光散乱層の透明性を確保しながら、投射装置から出射される投影光を異方的に十分に拡散させることで、拡散光の視認性と透過光の視認性とを両立することができる。
(溶剤)
 本発明による分散液は、さらに溶剤を含んでもよい。分散液が溶剤を含むことで、分散液の粘度を適宜調節することができる。溶剤としては、有機溶剤に限定されず、一般の塗料組成物に用いられる溶剤が使用可能である。例えば、水をはじめとする親水性溶媒も使用可能である。また、本発明のバインダが液体である場合は溶剤を含有しなくてもよい。
 本発明による溶剤の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、n-プロパノール、ブタノール、2-ブタノール、エチレングリコール、プロピレングリコール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、テトラメチルベンゼン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、2硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。溶剤の添加量は、バインダや微粒子の種類や後述する塗布又は噴霧工程に好適な粘度範囲等に応じて、適宜調節することができる。
 分散液には、透明光散乱層の透過視認性や所望の光学性能を損なわない範囲で、用途に応じて、微粒子以外にも従来公知の添加剤を加えてもよい。添加剤としては、例えば、酸化防止剤、界面活性剤、増粘剤、相溶化剤、核剤、紫外線吸収剤、光安定剤、帯電防止剤、離型剤、難燃剤、可塑剤、滑剤、および色材等が挙げられる。色材としては、カーボンブラック、アゾ系色素、アントラキノン系色素、ペリノン系色素等の色素または染料を用いることができる。また、液晶性化合物等を混合してもよい。
<硬化膜>
 本発明における硬化膜とは、光輝性薄片状微粒子または略球状微粒子の少なくとも一方がバインダ中に分散した分散液を硬化させた透明膜であって、分散液が溶媒を含む場合には、分散液から溶媒を除去し、硬化させて得られるものである。ここで、本発明における硬化とは、モノマーの重合反応や、硬化剤や加熱、電子線照射等によるポリマー同士の架橋反応によって硬度が生じる反応だけでなく、加熱・焼成等で分散液から溶剤を除去し、バインダに硬度を与える反応も含む。
 本発明における硬化膜は、粘着性を有していてもよい。硬化膜が粘着性を有することで、別途の接着層等を設けなくても、基材層や支持体層等の透明スクリーンの他の層に貼付することができる。
 分散液を硬化して膜厚2μmの硬化膜を作成した場合の硬化膜のヘイズ値は、好ましくは30%以下であり、より好ましくは0~20%であり、さらに好ましくは0~10%である。このような硬化膜を作成できる分散液を用いることで、透明でありながら、より鮮明な像を結像することができる透明光散乱層を形成することができる。
 硬化膜の厚さは、特に限定されるものではないが、好ましくは0.01μm~1mmであり、より好ましくは0.1μm~500μmであり、さらに好ましくは1μm~300μmである。硬化膜の厚さが上記範囲内であれば、透明光散乱層としての機能を十分に発揮することができる。硬化膜は単層構成であってもよく、塗布等で2種以上の層を積層させた複層構成であってもよい。
 硬化膜は、JIS-K5600-5-4(引っかき硬度法)に準拠して測定した引っかき硬度がHB以上であることが好ましく、H以上であることがより好ましく、2H以上の耐傷性を有することがさらに好ましい。
(透明光散乱層)
 透明光散乱層は、上記の分散液の硬化膜からなる。上記の分散液の硬化膜からなる。透明光散乱層内では、光を異方的に散乱反射させて、光の利用効率を高めることができる。上記の分散液の硬化膜のヘイズ値は、好ましくは50%以下であり、より好ましくは1%以上40%以下であり、さらに好ましくは1.3%以上30%以下であり、さらにより好ましくは1.5%以上20%以下である。硬化膜のヘイズ値が上記範囲内にあれば、硬化膜からなる透明光散乱層は、透明でありながら、より鮮明な像を結像することができる。
 上記の分散液の硬化膜は、厚さをt(μm)とし、前記バインダに対する前記光輝性薄片状微粒子および/または前記略球状微粒子の濃度をc(質量%)としたとき、tとcが、下記数式(I):
 0.05≦(t×c)≦50  ・・・(I)
を満たすことが好ましく、
 0.1≦(t×c)≦40  ・・・(I-2)
を満たすことがより好ましく、
 0.15≦(t×c)≦35  ・・・(I-3)
を満たすことがさらに好ましく、
 0.3≦(t×c)≦30  ・・・(I-4)
を満たすことがさらにより好ましい。硬化膜の厚さtと濃度cが上記の数式(I)を満たす場合、スクリーンの透明光拡散層のバインダ中の微粒子の分散状態が疎である(バインダ中の微粒子の濃度が低い)ため、真直ぐに透過する光の割合を増やし(微粒子に衝突しない光の割合を増やし)、その結果、透過光の視認性を損なわずに、スクリーンに鮮明な映像を表示することができる。なお、光輝性薄片状微粒子および/または略球状微粒子が2種以上含まれる場合、濃度cは全微粒子の合計濃度である。
 透明光散乱層は、上記の分散液を基板上に塗布し、硬化させて形成することができる。このような工程により透明光散乱層を形成することで、微粒子の分散性が向上し、微粒子は異物となる大凝集物を生じにくい。その結果、透明性がより高く、かつ高品質なスクリーンを得ることができる。
 透明光散乱層中の異物の数は、好ましくは0~20個であり、より好ましくは0~10個であり、特に好ましくは0~5個である。異物は画像の鮮明性を悪化させるため、異物の数が上記の数値範囲内であれば、投影された画像は乱れや輝点のない、鮮明な画像として視認できる。なお、本発明において、透明光散乱層中の異物の数は、下記の測定方法にてカウントした数である。
(異物の測定方法)
 透明光散乱層を20cm角に裁断し、目視で確認できる大きな凝集物(異物)をカウントして、異物の数とした。 
<透明スクリーン>
 本発明による透明スクリーンは、上記の分散液の硬化膜からなる透明光散乱層を備えるものである。当該透明スクリーンは、透明光散乱層のみからなる単層構成であってもよいし、保護層、基材層、粘着層、および反射防止層等の他の層をさらに備える複層構成の積層体であってもよい。また、当該透明スクリーンは、ガラスや透明パーティション等の支持体を備えてもよい。当該透明スクリーンは、光源から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる。当該透明スクリーンは、ガラスウィンドウ、ヘッドアップディスプレイ、およびウェアラブルディスプレイ等に好適に用いることができる。さらに、本発明による透明スクリーンは、車両用部材や建物用部材にも好適に用いることができる。
 本発明による透明スクリーンの一実施形態の厚さ方向の模式図を図1に示す。透明スクリーンは、バインダ10中に光輝性薄片状微粒子11と、略球状微粒子12と、が分散されてなる透明光散乱層13を備える。このような透明スクリーンは、投影光15を異方的に散乱することで、視認者14は散乱光16を視認できる。
 当該透明スクリーンは、背面投射型スクリーン(透過型スクリーン)でもよく、前面投射型スクリーン(反射型スクリーン)でもよい。すなわち、本発明による透明スクリーンを備える映像表示装置においては、投射装置(光源)の位置がスクリーンに対して観察者側にあってもよく、観察者と反対側にあってもよい。また、透明スクリーンは、平面であってもよく、曲面であってもよい。
 当該透明スクリーンは、ヘイズ値が、好ましくは50%以下、より好ましくは1%以上40%以下であり、さらに好ましくは1.3%以上30%以下であり、さらにより好ましくは1.5%以上20%以下である。また、当該透明スクリーンは、全光線透過率が好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上である。また、当該透透明スクリーンは、拡散透過率が、好ましくは1.5%以上60%以下、より好ましくは1.7%以上55%以下であり、より好ましくは1.9%以上50%以下であり、さらにより好ましくは2.0%以上45%以下である。ヘイズ値、および全光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができ、拡散透過率が上記範囲内であれば、入射光を効率よく拡散させ、視野角をより向上させることができるため、スクリーンとしての性能に優れる。なお、本発明において、透明スクリーンのヘイズ値、全光線透過率および拡散透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。
 当該透明スクリーンは、写像性が、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上であり、特に好ましくは90%以上である。当該透明スクリーンの写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。
(基材)
 基材は、透明光散乱層を硬化膜状に形成するための支持体である。基材は、具体的には、金属、セラミックス、ソーダガラス、石英ガラス、サファイヤ基板、石英、フロート板ガラス、シリコン基板等の無機材料からなる基板やポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の樹脂基板を用い得る。基板としては、例えば、400nm~780nmの可視光領域で光学的に透明な基材がスクリーン以外のさまざまな光学用途に用いることができるため特に好ましい。紫外光領域において用いる場合には、紫外線の透過率が高い石英ガラスやサファイアガラスを含む基材を用いることが好ましい。基板上には密着性を向上させるために、表面処理や易接着層を設けるなどをしてもよく、水分や酸素等の気体の浸入を防ぐ目的で、ガスバリア層を設けるなどしてもよい。また、硬化反応が焼結等の高温工程を含む場合は、高温で軟化や損傷の起こらない材料を用いるのが好ましい。基材の厚さは、その強度が適切になるように用途・材料に応じて適宜変更することができる。基材の厚さとしては、例えば、10μm~1mm(1000μm)の範囲としてもよく、1mm以上の厚板であってもよい。
(保護層)
 保護層は、透明スクリーンの表面側(観察者側)に積層されるものであり、耐光性、耐傷性、および防汚性等の機能を付与するための層である。保護層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化性樹脂、電離放射線硬化性樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化性樹脂が特に好ましい。
 電離放射線硬化性樹脂組成物の被膜形成成分は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが使用できる。
 上記電離放射線硬化性樹脂組成物を紫外線硬化型樹脂組成物とするには、この中に光重合開始剤としてアセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等を混合して用いることができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。
 電離放射線硬化性樹脂組成物の硬化方法としては、前記電離放射線硬化性樹脂組成物の硬化方法は通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速機から放出される50~1000KeV、好ましくは100~300KeVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
 保護層は、上記の透明光散乱層上に上記電離放射(紫外線)線硬化型樹脂組成物の塗工液をスピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の方法で、透明光散乱層の表面に塗布し、上記のような手段で塗工液を硬化させることにより形成することができる。また、保護層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。
(反射防止層)
 反射防止層は、透明スクリーンの最表面での反射や、外光からの映りこみを防止するための層である。反射防止層は、透明スクリーンの表面側(観察者側)に積層されるものであってもよく、両面に積層されるものであってもよい。特に透明スクリーンとして用いる際には観察者側に積層するのが好ましい。反射防止層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化性樹脂、電離放射線硬化性樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化性樹脂が特に好ましい。また、反射防止層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。
 反射防止層の形成方法としては、特に限定されないが、コーティングフィルムの貼合、フィルム基板に直接蒸着またはスパッタリング等でドライコートする方式、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート等のウェットコート処理などの方式を用いることができる。
<透明スクリーンの製造方法>
 本発明による透明スクリーンの製造方法は、上記の分散液を基板上に塗布し、硬化させて、硬化膜からなる透明光散乱層を形成する工程を含むものであり、好ましくは分散液中の溶媒を除去すること硬化させることが好ましい。また、本発明による透明スクリーンの製造方法は、保護層、基材層、粘着層、および反射防止層等の他の層をさらに積層する工程を含んでもよい。
 分散液の塗布方法は、特に限定されるものではないが、例えば、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコートなどの塗布法や、エアースプレー装置、インクジェット装置あるいは超音波噴霧装置を用いた噴霧による塗布法、または、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法が挙げられる。
 また、分散液には、塗布性を向上させるために、溶剤等を適宜添加してもよい。溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、および3-メトキシブチルアセテート等の酢酸エステル類、その他、塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼンテトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトミド等の有機溶剤が挙げられる。溶剤の添加量は、バインダや微粒子の種類、所望の粘度範囲等に応じて、適宜調節することができる。
<車両用部材>
 本発明による車両用部材は、上記の透明スクリーンを備えてなる。車両用部材としてはウインドウシールド、すなわちフロントガラス、リアガラス、フロントベンチガラス、フロントドアガラス、リアドアガラス、リアクォーターガラス、リアベンチガラスおよびサンルーフ等が挙げられる。車両用部材は上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、車両用部材上に鮮明な画像を表示させることができる。
<建物用部材>
 本発明による建物用部材は、上記の透明スクリーンを備えてなる。建物用部材としては、住宅の窓ガラス、コンビニや路面店のガラス壁等を挙げることができる。建物用部材は上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、建物用部材上に鮮明な画像を表示させることができる。
<映像投影システム>
 本発明による映像投影システムは、上記の透明スクリーンと、投射装置とを備えてなる。当該画像表示装置においては、投射装置(光源)の位置がスクリーンに対して視認者側にあってもよく、視認者の反対側にあってもよい。投射装置とは、スクリーン上に映像を投射できるものであれば特に限定されず、例えば、市販のリアプロジェクタやフロントプロジェクタを用いることができる。
 本発明による透明スクリーンおよび映像投影システムの一実施形態の模式図を図2に示す。透明スクリーン23は、透明パーティション(支持体)22と、透明パーティション22上の視認者24側に透明光散乱層21とを備えてなる。透明スクリーン23は、透明光散乱層21を透明パーティション22に貼付するために、両者の間に粘着層を含んでもよい。透過型スクリーンである場合、映像投影システムは、透明スクリーン23と、透明パーティション22に対して視認者24と反対側(背面側)に設置された投射装置25Aとを備えてなる。投射装置25Aから出射された投影光26Aは、透明スクリーン23の背面側から入射し、透明スクリーン23により異方的に散乱することで、視認者24は散乱光27Aを視認できる。また、反射型スクリーンである場合、映像投影システムは、透明スクリーン23と、透明パーティション22に対して視認者24と同じ側(前面側)に設置された投射装置25Bとを備えてなる。投射装置25Bから出射された投影光26Bは、透明スクリーン23の前面側から入射し、透明スクリーン23により異方的に散乱することで、視認者24は散乱光27Bを視認できる。
 以下、実施例と比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定解釈されるものではない。
 実施例および比較例において、各種物性および性能評価の測定方法は次のとおりである。
(1)ヘイズ
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7136に準拠して測定した。
(2)全光線透過率
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(3)拡散透過率
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(4)写像性
 写像性測定器(スガ試験機(株)製、品番:ICM-1T)を用い、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値を写像性とした。像鮮明度の値が大きい程、透過写像性が高いことを示す。
(5)異物
 下記で作製した透明光散乱層を20cm角に裁断し、目視で確認できる大きな凝集物(異物)をカウントした。透明光散乱層中の異物の少なさを下記の基準に基づいて目視で評価した。
[評価基準]
 ◎:異物が0~5個であった。
 ○:異物が6~20個であった。
 ×:異物が21個以上であった。
(6)スクリーン性能
 透明スクリ-ンの法線方向に対して角度15度で50cm離れた位置から、オンキョーデジタルソリューションズ(株)製のモバイルLEDミニプロジェクターPP-D1Sを用いて画像を投影した。次に、スクリ-ンの面上に焦点が合うようにプロジェクターの焦点つまみを調整した後、スクリ-ンの前方(スクリーンに対してプロジェクターと同じ側、いわゆるフロントプロジェクション)1mおよび後方(スクリーンに対してプロジェクターと反対側、いわゆるリアプロジェクション)1mの2ヶ所からスクリ-ンに映し出された画像を目視で観察し、下記の基準に基づいて目視で評価した。スクリ-ンの前方からの観察は反射型スクリーンとしての性能が評価でき、後方からの観察により透過型スクリーンとしての性能が評価できる。
 [評価基準]
 ◎:極めて鮮明に映像を視認することができた。
 ○:鮮明に映像を視認することができた。
 △:映像の輪郭、色相がややぼやけて視認された。
 ×:映像の輪郭がぼやけ、スクリーンとして使用するには不適であった。
(7)硬化膜
 下記の実施例および比較例で得た分散液を硬化して、ガラス板上に膜厚2μmの硬化膜を作成した。作成したガラス板付き硬化膜のヘイズ値を上記(1)と同様にして測定し、膜厚2μmの硬化膜のヘイズ値とした(なお、ガラス板のヘイズ値はほぼ0であるため、実質的に硬化膜のヘイズ値には影響を与えない)。
<透明スクリーンの作製>
[実施例1]
 バインダとして熱可塑性樹脂(PMMA樹脂、三菱レイヨン(株)製、商品名:アクリペットVH)と、略球状微粒子として、PMMA樹脂に対して0.30質量%の酸化ジルコニウム(ZrO)粉末(一次粒子のメジアン径11nm、屈折率2.40)とを、クロロホルムに添加し、均一に撹拌して透明光散乱層用樹脂組成物(分散液、固形分濃度20質量%)を得た。得られた透明光散乱層用樹脂組成物を、バーコーターにて厚さ3mmのフロート板ガラス上に塗布し、24時間の室温乾燥および減圧条件下(ヤマト科学(株)社製、角形真空乾燥器使用、70℃、0.1kPaで24時間)にてクロロホルムを除去することで硬化させて、膜厚が20μmの硬化膜からなる透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=6であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は10%、全光線透過率は89%、拡散透過率は9%であり、高い透明性を有していた。
 上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は90%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例2]
 バインダとしてゾルゲル材料(エタノール530質量部、水45質量部及び濃塩酸0.2質量部を混合した液に、テトラエトキシシラン(TEOS)54.3質量部と、メチルトリエトキシシラン(MTES)45.7質量部を滴下して撹拌した混合物)を用い、ZrOの代わりに、光輝性薄片状微粒子として、ゾルゲル材料の固形分に対して0.30質量%の薄片状アルミニウム微粒子A(一次粒子の平均径1μm、アスペクト比25、正反射率16.8%)を加え、透明光散乱層用ゾルゲル組成物(分散液)を得た。前記透明光散乱層用ゾルゲル組成物を、スピンコーターを用いて、フロート板ガラス板A上に回転数500rpmで10秒塗布した後、さらに800rpm、45秒で塗布した。得られた塗布膜を室温で乾燥させ、さらに250℃の乾燥炉中で10分間加熱して乾燥させて、膜厚2μmの硬化膜からなる透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.6であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は7%、全光線透過率は84%、拡散透過率は6%であり、高い透明性を有していた。
 上記方法で測定した異物は4個と少なく、透明性に優れていた。また、写像性は86%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例3]
 バインダとして水ガラス(珪酸ナトリウム溶液、キシダ化学(株)製、商品名:水ガラス3号)を用い、ZrOの濃度を、水ガラス固形分に対して0.75質量%添加し、さらにイソプロピルアルコールを固形分濃度が20質量%になるように添加し、透明光散乱層用水ガラス組成物(分散液)を調製した。前記透明光散乱層用水ガラス組成物を、噴霧装置(東レエンジニアリング(株)社製、エレクトロスプレーコーティング装置)にてフロート板ガラス板上に噴霧塗布した。塗布後、ホットプレート上で100℃、10分間熱処理して塗膜を乾燥し、さらに250℃の乾燥炉中で10分間加熱して乾燥させ、膜厚が5μmの硬化膜からなる透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=3.75であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は3%、全光線透過率は95%、拡散透過率は3%であり、高い透明性を有していた。
 上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は90%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例4]
 バインダとして市販のポリマーアクリレート型UV硬化性樹脂(DIC(株)製 ユニディックV-6841)を用い、UV硬化性樹脂中の固形分重量に対して0.60質量%の酸化ジルコニウム(ZrO)粉末(一次粒子のメジアン径11nm、屈折率2.40)を添加し、分散液Aを調製した。さらに、この分散液A100重量部に対して光重合開始剤(BASFジャパン(株)製、イルガキュア184)5重量部を添加し、光硬化性を有する分散液Bを得た。得られた分散液Bを、厚さ3mmのフロート板ガラス上に、乾燥後の膜厚が10μmとなるようにバーコーターを用いて塗布し、70℃の熱風乾燥機で5分間乾燥した後、紫外線を照射することで透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=6であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は8%、全光線透過率は90%、拡散透過率は7%であり、高い透明性を有していた。
 上記方法で測定した異物は2個と少なく、透明性に優れていた。また、写像性は87%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。また、硬化膜の鉛筆硬度は2Hと十分な耐擦傷性を有していた。
[実施例5]
 略球状微粒子としてZrOの添加量を0.65質量%に変更し、さらに光輝性薄片状微粒子として0.03質量%の薄片状アルミニウム微粒子Aを添加した分散液Cを用いた以外は、実施例1と同様にして、膜厚が20μmの硬化膜からなる透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子および光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=13.6であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は12%、全光線透過率は78%、拡散透過率は9%であり、高い透明性を有していた。
 上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は85%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、前方観察時、後方観察時ともに極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例6]
 バインダとして市販のアクリルラッカー(藤倉化成(株)製 レクラック73 クリヤー)を用い、ラッカー中の固形分重量に対して光輝性薄片状微粒子として0.02質量%の薄片状アルミニウム微粒子Aを添加し、分散液Dを調製した。さらにこの分散液D100重量部に対し、溶剤としてシンナー(藤倉化成(株)製 レクラック♯5975シンナー)100重量部を添加して粘度を調製した後、これを、乾燥後の塗膜厚さが20μmになるように、ポリメチルメタクリレート樹脂基材(PMMA基材、厚み5mm)にエアーブラシで噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.4であった。
 得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は6%、全光線透過率87%、拡散透過率5%であり高い透明性を有していた。上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は88%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例7]
 透明光散乱層の乾燥後の塗膜厚さが40μmになるように、厚さ5mmのPMMA基材にエアーブラシで分散液Dを噴霧塗布した以外は実施例6と同様にして透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.8であった。得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は9%、全光線透過率83%、拡散透過率8%であり高い透明性を有していた。
 上記方法で測定した異物は4個と少なく、透明性に優れていた。また、写像性は85%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例8]
 薄片状アルミニウム微粒子Aの濃度を0.005質量%に変更し、さらにシンナー量を80重量部に変更した以外は実施例6と同様にして分散液Eを調製し、乾燥後の膜厚が100μmになるようにPMMA基材(厚さ5mm)にエアーブラシで分散液Eを噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.5であった。
 得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は9%、全光線透過率82%、拡散透過率8%であり高い透明性を有していた。
 上記方法で測定した異物は5個と少なく、透明性に優れていた。また、写像性は82%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例9]
 バインダとして市販のウレタンアクリレート型UV硬化性樹脂(DIC(株)製 ユニディックV-4018)を用い、UV硬化性樹脂中の固形分重量に対して0.2質量%の薄片状アルミニウム微粒子Aを添加し、分散液Fを調製した。さらに、この分散液F100重量部に対して光重合開始剤(BASFジャパン(株)製、イルガキュア184)5重量部を添加し、光硬化性を有する分散液Gを得た。得られた分散液Gを、厚さ100μmの二軸延伸ポリエステルフィルム(東洋紡(株)製、コスモシャインA4100)に、乾燥後の膜厚が2μmとなるようにバーコーターを用いて塗布し、70℃の熱風乾燥機で5分間乾燥した後、紫外線を照射することで透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.4であった。
 得られた透明光散乱層を有するポリエステルフィルムをそのままスクリーンとして用いたところ、ヘイズ値は5%、全光線透過率86%、拡散透過率4%であり高い透明性を有していた。
 上記方法で測定した異物は4個と少なく、透明性に優れていた。また、写像性は89%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。また、硬化膜の鉛筆硬度は2Hと十分な耐擦傷性を有していた。
[実施例10]
 バインダとして市販の2液型ウレタン塗料(ロックペイント(株)社製 マルチトップクリヤーSH)を用い、光輝性薄片状微粒子として0.03質量%の薄片状アルミニウム微粒子Aを添加し、分散液Hを調製した。さらに、この分散液H100重量部に対して硬化剤(ロックペイント(株)社製 マルチトップS硬化剤)50重量部、およびシンナー(ロックペイント(株)社製 ロックエースシンナー)20重量部を添加して分散液Iを調製した。得られた分散液Iを、乾燥後の膜厚が15μmになるように、フロート板ガラスにエアーブラシで噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.45であった。
 得られた透明光散乱層を有するガラス板をそのままスクリーンとして用いたところ、ヘイズ値は5%、全光線透過率89%、拡散透過率5%であり高い透明性を有していた。
 上記方法で測定した異物は2個と少なく、透明性に優れていた。また、写像性は90%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例11]
 バインダとして市販のウレタンアクリレート型UV硬化性樹脂(DIC(株)製 ユニディックV-4018)を用い、UV硬化性樹脂中の固形分重量に対して1.2質量%のニッケル微粒子(光輝性薄片状微粒子、一次粒子の平均径9μm、アスペクト比90、正反射率16.8%)を添加し、分散液Jを調製した。さらに、この分散液J100重量部に対して光重合開始剤(BASFジャパン(株)製、イルガキュア184)5重量部を添加し、光硬化性を有する分散液Kを得た。得られた分散液Kを、厚さ100μmの2軸延伸ポリエステルフィルム(東洋紡(株)製、コスモシャインA4100)に、乾燥後の膜厚が5μmとなるようにバーコーターを用いて塗布し、70℃の熱風乾燥機で5分間乾燥した後、紫外線を照射することで透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=6であった。
 得られた透明光散乱層を有するポリエステルフィルムをそのままスクリーンとして用いたところ、ヘイズ値は18%、全光線透過率83%、拡散透過率15%であり高い透明性を有していた。
 上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は74%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、前方観察時、後方観察時ともに極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。また、硬化膜の鉛筆硬度は2Hと十分な耐擦傷性を有していた。
[実施例12]
 薄片状アルミニウム微粒子Aの濃度を0.80質量%に変更した以外は実施例6と同様にして分散液Lを調製した。得られた分散液Lを用いて、乾燥後の膜厚が10μmになるようにPMMA基材(厚さ5mm)にエアーブラシで分散液Lを噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=8であった。
 得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は20%、全光線透過率75%、拡散透過率15%であり高い透明性を有していた。
 上記方法で測定した異物は4個と少なく、透明性に優れていた。また、写像性は73%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、前方観察時、後方観察時ともに極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例13]
 薄片状アルミニウム微粒子Aの濃度を0.01質量%に変更した以外は実施例6と同様にして分散液Mを調製した。得られた分散液Mを用いて、乾燥後の膜厚が50μmになるようにPMMA基材(厚さ5mm)にエアーブラシで分散液Mを噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.5であった。
 得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は6%、全光線透過率87%、拡散透過率5%であり高い透明性を有していた。
 上記方法で測定した異物は2個と少なく、透明性に優れていた。また、写像性は86%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、前方観察時、後方観察時ともに鮮明な映像を視認することができ、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例14]
 光輝性薄片状微粒子として銀微粒子(一次粒子の平均径1μm、アスペクト比200、正反射率32.8%)を2.5質量%用いた以外は実施例1と同様にして分散液Nを調製した。得られた分散液Nを用いて、乾燥後の膜厚が5μmになるように実施例1と同様にして、厚さ3mmのフロート板ガラス上に透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=12.5であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は15%、全光線透過率74%、拡散透過率11%であり高い透明性を有していた。
 上記方法で測定した異物は5個と少なく、透明性に優れていた。また、写像性は70%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、前方観察時、後方観察時ともに極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例15]
 酸化ジルコニウム(ZrO)粉末の濃度を0.01質量%に変更した以外は実施例1と同様にして分散液Oを調製した。得られた分散液Oを用いて、乾燥後の膜厚が30μmになるように変更した以外は実施例1と同様にして、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=0.3であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は0.5%、全光線透過率94%、拡散透過率0.5%であり高い透明性を有していた。
 上記方法で測定した異物は2個と少なく、透明性に優れていた。また、写像性は91%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例16]
 略球状微粒子として酸化ジルコニウム(ZrO)粉末(一次粒子のメジアン径11nm、屈折率2.40)を2.0質量%用いた以外は実施例2と同様にして分散液Pを調製した。得られた分散液Pを用いて、乾燥後の膜厚が1μmになるように実施例2と同様にして、厚さ3mmのフロート板ガラス上に透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=2であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は2%、全光線透過率92%、拡散透過率2%であり高い透明性を有していた。
 上記方法で測定した異物は5個と少なく、透明性に優れていた。また、写像性は92%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[実施例17]
 バインダとして市販のエポキシアクリレート型UV硬化性樹脂 (DIC(株)製 ユニディックV-5500)を用い、UV硬化性樹脂中の固形分重量に対してZrOの添加量を0.60質量%の酸化ジルコニウム(ZrO)粉末(一次粒子のメジアン径11nm、屈折率2.40)を添加し、分散液Qを調製した。さらに、この分散液Q100重量部に対して光重合開始剤(BASFジャパン(株)製、イルガキュア184)5重量部を添加し、光硬化性を有する分散液Rを得た。得られた分散液Rを、厚さ3mmのフロート板ガラス上に、乾燥後の膜厚が10μmとなるようにバーコーターを用いて塗布し、70℃の熱風乾燥機で5分間乾燥した後、紫外線を照射することで透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=6であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は8%、全光線透過率は87%、拡散透過率は7%であり、高い透明性を有していた。
 上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は85%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に後方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。また、硬化膜の鉛筆硬度はHBと十分な耐擦傷性を有していた。
[実施例18]
 バインダとして市販のポリマーアクリレート型UV硬化性樹脂(DIC(株)製 ユニディックV-6841)を用い、UV硬化性樹脂中の固形分重量に対して5.0質量%の酸化チタン(TiO)粉末(テイカ(株)製、一次メジアン径13nm、屈折率2.72)を添加し、分散液Sを調製した。さらに、この分散液S100重量部に対して光重合開始剤(BASFジャパン(株)製、イルガキュア184)5重量部を添加し、光硬化性を有する分散液Tを得た。得られた分散液Tを、厚さ3mmのフロート板ガラス上に、乾燥後の膜厚が5μmとなるようにバーコーターを用いて塗布し、70℃の熱風乾燥機で5分間乾燥した後、紫外線を照射することで透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=25であった。
 得られた透明光散乱層を有するフロート板ガラスをそのままスクリーンとして用いたところ、ヘイズ値は20%、全光線透過率は71%、拡散透過率は14%であり、高い透明性を有していた。
 上記方法で測定した異物は5個と少なく、透明性に優れていた。また、写像性は65%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、前方観察時、後方観察時ともにスクリーンに画像が十分に結像し、特に前方観察時において極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。また、硬化膜の鉛筆硬度は2Hと十分な耐擦傷性を有していた。
[実施例19]
 バインダとして市販のアクリルラッカー(藤倉化成(株)製 レクラック73 クリヤー)を用い、ラッカー中の固形分重量に対して光輝性薄片状微粒子として0.1質量%の薄片状アルミニウム微粒子B(一次粒子の平均径10μm、アスペクト比300、正反射率62.8%)を添加し、分散液Uを調製した。さらにこの分散液U100重量部に対し、溶剤としてシンナー(藤倉化成(株)製 レクラック♯5975シンナー)100重量部を添加して粘度を調製した後、これを、乾燥後の塗膜厚さが3μmになるように、ポリメチルメタクリレート樹脂基材(PMMA基材、厚み5mm)にエアーブラシで噴霧塗布し、70℃の熱風乾燥機で5分間乾燥することにより、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、光輝性薄片状微粒子の濃度をc(質量%)としたとき、t×c=0.3であった。また、硬化膜の鉛筆硬度はHと十分な耐擦傷性を有していた。
 得られた透明光散乱層を有するPMMA基材をそのままスクリーンとして用いたところ、ヘイズ値は2%、全光線透過率91%、拡散透過率2%であり高い透明性を有していた。上記方法で測定した異物は3個と少なく、透明性に優れていた。また、写像性は91%であり、スクリーンを透過して見える像が鮮明であった。さらに、スクリーン性能を評価したところ、スクリーンに画像が十分に結像し、前方観察時、後方観察時ともに極めて鮮明な映像を視認することができた。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができた。
[比較例1]
 実施例1と同様に、バインダとして熱可塑性樹脂(PMMA樹脂)に、略球状微粒子としてPMMA樹脂に対して5質量%のZrOを加え、テクノベル社製の二軸混練押出機KZW-30MGに投入した。250℃で溶融混練し、押し出したストランドをペレタイズすることで、ZrO含有PMMAペレットを得た。前記ZrO含有PMMAペレットを単軸混練押出機ホッパー(GM(株)製)に投入して、厚さの20μmの透明光拡散層(フィルム)を製膜した。なお、単軸押出機のスクリュー径は50mm、スクリュー有効長(L/D)は30であり、押出機にはアダプタを介し、ハンガーコートタイプのTダイが設置されている。フィルム(透明光散乱層)の厚さをt(μm)とし、略球状微粒子の濃度をc(質量%)としたとき、t×c=100であった。
 作製した光拡散層をフロート板ガラスにアクリル系粘着剤を介して貼り合わせ、透明スクリーンとして用いたところ、ヘイズ値は6%、全光線透過率は89%、拡散透過率は5%であった。さらに異物は71個と多く、さらに写像性は63%であり、透明スクリーンを透過して見える像が不鮮明であった。したがって、鮮明な背景の像と鮮明な投影画像を同時に視認することができなかった。
[比較例2]
 光輝性薄片状微粒子を添加せず、光輝性の無い薄片状微粒子として、雲母粒子((株)ヤマグチマイカ製、商品名:A-21S、一次粒子の平均径23μm、アスペクト比70、正反射率9.8%)をバインダに対して0.65質量%添加した以外は実施例6と同様にして分散液Vを調整した。この分散液Vを用いて、乾燥後の塗膜厚さが50μmになるようにした以外は実施例6と同様にして、透明光散乱層を作製した。硬化膜(透明光散乱層)の厚さをt(μm)とし、雲母粒子の濃度をc(質量%)としたとき、t×c=32.5であった。
 作製した透明光散乱層をそのまま透明スクリーンに用いたところ、ヘイズ値は33%、拡散透過率は21%、全光線透過率は65%であり、不透明であった。
 上記方法で測定した異物は6個であった。また、写像性は58%であり、スクリーンを透過して見える像は不鮮明であった。さらに、スクリーン性能を評価したところ、後方からの観察においてはスクリーンに画像が十分に結像したものの、前方からの観察においては鮮明な映像を視認することができなかった。
<加工適性の評価>
[参考例1]
 実施例4で作成した透明光散乱層用UV硬化性樹脂組成物をフロート板ガラス上に膜厚10μmで塗布し、80℃で1分間乾燥した。得られた透明光散乱層と微細構造モールドA((株)イノックス社製、品番HT-AR-05C、ピッチ250nm、平均高さ300nm、ピーク間距離290nm)をナノインプリント装置(三明電子産業(株)製、型番:ImpFlexI-Essential)にセットし、圧力1MPaをかけ、LED365nm光源の光を60秒間照射して、UV硬化性樹脂の硬化反応を行った。なお、用いた微細構造モールドは、あらかじめフッ素系表面処理(ダイキン工業(株)製、品番:オプツールHD-1100TH)で離型処理を施した。その後、モールドを剥離して、微細凹凸構造を付与した透明光散乱層を得た。得られた透明光散乱層の微細凹凸構造を顕微鏡(エスアイアイ・ナノテクノロジー(株)製、製品名:E-sweep)にて観察したところ、得られた微細構造層の平均ピーク間距離は282nm、平均ピーク高さは281nmであり、ほぼ型通りの微細凹凸構造を有する透明スクリーンが得られたことが分かった。
[参考例2]
 比較例1において、ZrO含有PMMAペレットを単軸押し出し機ホッパーに投入してTダイから押し出された直後の溶融樹脂に、微細凹凸構造モールド((株)イノックス社製、品番HT-AR-05C、ピッチ250nm、平均高さ300nm、ピーク間距離290nm)を押し付け、微細凹凸加工を施した。得られた透明光拡散層(フィルム)の形状を顕微鏡(エスアイアイ・ナノテクノロジー(株)製、製品名:E-sweep)にて確認したところ、微細凹凸構造が部分的にしか転写されていない透明スクリーンが得られた。
[参考例3]
 アクリル樹脂製什器(厚さ2mm、直径150mmの半球形)の内側に実施例6で作製した分散液Dを噴霧塗布し、乾燥させたところ、球面部分に均一な透明スクリーンを形成することが出来た。したがって、本発明の分散液Dは、曲面加工に適するものであった。
[参考例4]
 参考例3と同型のアクリル樹脂製什器に、粘着剤を用いて比較例1で得られた透明スクリーンを貼り合わせたが、湾曲部分にしわなく透明スクリーンを貼ることができなかった。したがって、押出成型で得られた透明フィルムは、曲面加工に適さないものであった。
Figure JPOXMLDOC01-appb-T000003
 10 バインダ
 11 光輝性薄片状微粒子
 12 略球状微粒子
 13 透明光散乱層
 14、24 視認者
 15、26A、26B 投影光
 16、27A、27B 散乱光
 21 透明光散乱層
 22 透明パーティション(支持体)
 23 透明スクリーン
 25A、25B 投射装置

Claims (20)

  1.  透明スクリーンの透明光散乱層を形成するための分散液であって、バインダと、光輝性薄片状微粒子または略球状微粒子の少なくともいずれか一方と、を含んでなる、分散液。
  2.  前記バインダが、無機系バインダまたは有機系バインダである、請求項1に記載の分散液。
  3.  前記無機系バインダが、水ガラス、低軟化点を有するガラス材料、またはゾルゲル材料である、請求項2に記載に分散液。
  4.  前記有機系バインダが、熱可塑性樹脂、電離放射線硬化性樹脂、熱硬化性樹脂、または粘着剤である、請求項2に記載の分散液。
  5.  溶媒をさらに含んでなる、請求項1~4のいずれか一項に記載の分散液。
  6.  前記光輝性薄片状微粒子は、一次粒子の平均径が0.01~100μmであり、かつ平均アスペクト比が3~800である、請求項1~5のいずれか一項に記載の分散液。
  7.  前記光輝性薄片状微粒子が、アルミニウム、銀、銅、白金、金、チタン、ニッケル、スズ、スズ-コバルト合金、インジウム、クロム、酸化チタン、酸化アルミニウム、および硫化亜鉛からなる群から選択される金属系粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母もしくは合成雲母に金属または金属酸化物を被覆した光輝性材料である、請求項1~6のいずれか一項に記載の分散液。
  8.  前記分散液中の前記光輝性薄片状微粒子の含有量が、前記バインダに対して、0.0001~10.0質量%である、請求項1~7のいずれか一項に記載の分散液。
  9.  前記略球状微粒子は、一次粒子のメジアン径が0.1~500nmである、請求項1~8のいずれか一項に記載の分散液。
  10.  前記略球状微粒子が、酸化ジルコニウム、酸化亜鉛、酸化セリウム、チタン酸バリウム、チタン酸ストロンチウム、酸化マグネシウム、硫酸バリウム、炭酸カルシウム、ダイヤモンド、架橋アクリル樹脂、架橋スチレン樹脂およびシリカからなる群より選択された少なくとも1種である、請求項1~9のいずれか一項に記載の分散液。
  11.  前記分散液中の前記略球状微粒子の含有量が、前記バインダに対して、0.0001~20.0質量%である、請求項1~10のいずれか一項に記載の分散液。
  12.  前記分散液を硬化して膜厚2μmの硬化膜を作成した場合の前記硬化膜のヘイズ値が30%以下である、請求項1~11のいずれか一項に記載の分散液。
  13.  請求項1~12のいずれか一項に記載の分散液の硬化膜。
  14.  前記硬化膜の厚さをt(μm)とし、前記バインダに対する前記光輝性薄片状微粒子および/または前記略球状微粒子の濃度をc(質量%)としたときの、tとcが、下記数式(I):
     0.05≦(t×c)≦50  ・・・(I)
    を満たす、請求項13に記載の硬化膜。
  15. ヘイズ値が30%以下である、請求項13または14に記載の硬化膜。
  16.  請求項13~15のいずれか一項に記載の硬化膜からなる透明光散乱層を備えた、透明スクリーン。
  17.  透明光散乱層を備える透明スクリーンの製造方法であって、請求項1~12のいずれか一項に記載の分散液を基板上に塗布し、硬化させて、硬化膜からなる透明光散乱層を形成することを特徴とする、製造方法。
  18.  請求項16に記載の透明スクリーンを備えた、車両用部材。
  19.  請求項16に記載の透明スクリーンを備えた、建物用部材。
  20.  請求項16に記載の透明スクリーンと、投射装置とを備えた、映像投影システム。
PCT/JP2016/067873 2015-07-15 2016-06-16 透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法 WO2017010217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506938A JPWO2017010217A1 (ja) 2015-07-15 2016-06-16 透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法
US15/744,347 US10488565B2 (en) 2015-07-15 2016-06-16 Dispersion liquid for forming transparent light scattering layer of transparent screen, transparent screen, and method for manufacture of transparent screen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-141495 2015-07-15
JP2015141495 2015-07-15
JP2015-211248 2015-10-27
JP2015211248 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017010217A1 true WO2017010217A1 (ja) 2017-01-19

Family

ID=57757214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067873 WO2017010217A1 (ja) 2015-07-15 2016-06-16 透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法

Country Status (3)

Country Link
US (1) US10488565B2 (ja)
JP (2) JPWO2017010217A1 (ja)
WO (1) WO2017010217A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273392B1 (ja) * 2017-04-28 2018-01-31 株式会社アイテック 透明スクリーンを形成するための塗料、塗料、および、透明スクリーン
US20180044222A1 (en) * 2016-08-12 2018-02-15 D. Swarovski Kg Continuous sol-gel process for producing silicate-containing glasses or glass ceramics
WO2019003626A1 (ja) * 2017-06-27 2019-01-03 三菱瓦斯化学株式会社 透明スクリーン用樹脂組成物、透明スクリーン用フィルム、及び透明スクリーン用フィルムの製造方法
JP2020064241A (ja) * 2018-10-19 2020-04-23 大王製紙株式会社 透明スクリーン用シート、透明スクリーン、及び粘着塗料
CN112005134A (zh) * 2018-04-27 2020-11-27 三菱瓦斯化学株式会社 光扩散成型体、透明屏用膜和光扩散成型体的评价方法
JP2021504756A (ja) * 2017-11-28 2021-02-15 エルジー・ケム・リミテッド ディスプレイパネル用視認性改善フィルムおよびそれを含むディスプレイ装置
US11372138B2 (en) 2017-09-08 2022-06-28 Daicel Corporation Anti-reflection film
WO2023085240A1 (ja) * 2021-11-09 2023-05-19 リンテック株式会社 プロジェクションスクリーン用ハードコートフィルムおよびプロジェクションスクリーン
JP7488307B2 (ja) 2022-10-12 2024-05-21 シャープディスプレイテクノロジー株式会社 表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019208771A1 (ja) * 2018-04-27 2021-06-17 三菱瓦斯化学株式会社 光拡散成形体、及び、透明スクリーン用フィルム
JPWO2019208770A1 (ja) * 2018-04-27 2021-05-13 三菱瓦斯化学株式会社 光拡散成形体、透明スクリーン用フィルム、及び、光拡散成形体の評価方法
CN109817119A (zh) * 2019-01-29 2019-05-28 华芯云数字科技(武汉)有限责任公司 一种基于物联网的传媒广告系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242546A (ja) * 1999-12-22 2001-09-07 Kimoto & Co Ltd 透視可能な透過型スクリーン
JP2010072282A (ja) * 2008-09-18 2010-04-02 Sanko Kk 光拡散シートとその製造方法、有機バインダー製造用組成物、有機バインダー製造用塗布液セット及び光拡散シート製造用組成物
JP2010250288A (ja) * 2009-03-27 2010-11-04 Kimoto & Co Ltd 透過型スクリーンおよびこれを用いたリアプロジェクションモニタ
US20140185282A1 (en) * 2013-01-02 2014-07-03 Massachusetts Institute Of Technology Methods and apparatus for transparent display using scattering nanoparticles

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119402A (ja) 1991-10-30 1993-05-18 Dainippon Printing Co Ltd 反射型映写スクリーン
JPH10104747A (ja) 1996-09-30 1998-04-24 Dainippon Printing Co Ltd 反射型映写スクリーン
JP3694570B2 (ja) 1997-01-09 2005-09-14 株式会社きもと プロジェクタ用反射型スクリーン
JP2007057866A (ja) * 2005-08-25 2007-03-08 Fujimori Kogyo Co Ltd 反射型巻取式スクリーン及びその製造方法
JP5138168B2 (ja) 2005-12-21 2013-02-06 藤森工業株式会社 スクリーン
JP2010079197A (ja) 2008-09-29 2010-04-08 Fujifilm Corp 異方性散乱膜、並びにヘッドアップディスプレイ表示用フィルム及びガラス
JP2011013302A (ja) 2009-06-30 2011-01-20 Hiraoka & Co Ltd 背面映写可能な産業資材シート、及びその映写システム
JP5970918B2 (ja) 2012-03-30 2016-08-17 大日本印刷株式会社 透過型スクリーン、これを備えた背面投射型表示装置、および透過型スクリーンの製造方法
JP6061796B2 (ja) 2013-06-20 2017-01-18 三菱製紙株式会社 透視可能な透過型スクリーンに用いる積層体
JP6260044B2 (ja) 2013-07-31 2018-01-17 平岡織染株式会社 背面投映用スクリーン
EP3151062A4 (en) * 2014-06-02 2018-04-18 Asahi Glass Company, Limited Video projection structure, production method for video projection structure, video projection method, and automobile window
CN107077058B (zh) * 2014-10-27 2019-06-14 Agc株式会社 透射型透明屏幕、影像显示系统和影像显示方法
EP3223046A4 (en) * 2014-12-22 2018-11-14 JXTG Nippon Oil & Energy Corporation Sheet-shaped, transparent molding, transparent screen provided with same, and image projection device provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242546A (ja) * 1999-12-22 2001-09-07 Kimoto & Co Ltd 透視可能な透過型スクリーン
JP2010072282A (ja) * 2008-09-18 2010-04-02 Sanko Kk 光拡散シートとその製造方法、有機バインダー製造用組成物、有機バインダー製造用塗布液セット及び光拡散シート製造用組成物
JP2010250288A (ja) * 2009-03-27 2010-11-04 Kimoto & Co Ltd 透過型スクリーンおよびこれを用いたリアプロジェクションモニタ
US20140185282A1 (en) * 2013-01-02 2014-07-03 Massachusetts Institute Of Technology Methods and apparatus for transparent display using scattering nanoparticles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180044222A1 (en) * 2016-08-12 2018-02-15 D. Swarovski Kg Continuous sol-gel process for producing silicate-containing glasses or glass ceramics
US11597673B2 (en) * 2016-08-12 2023-03-07 Dompatent Von Kreisler Continuous sol-gel process for producing silicate-containing glasses or glass ceramics
US11447413B2 (en) 2016-08-12 2022-09-20 D. Swarovski Kg Continuous sol-gel process for producing silicate-containing glasses or glass ceramics
JP2018188526A (ja) * 2017-04-28 2018-11-29 株式会社アイテック 透明スクリーンを形成するための塗料、塗料、および、透明スクリーン
JP6273392B1 (ja) * 2017-04-28 2018-01-31 株式会社アイテック 透明スクリーンを形成するための塗料、塗料、および、透明スクリーン
CN110770651B (zh) * 2017-06-27 2022-03-01 三菱瓦斯化学株式会社 透明屏用树脂组合物、透明屏用膜和透明屏用膜的制造方法
WO2019003626A1 (ja) * 2017-06-27 2019-01-03 三菱瓦斯化学株式会社 透明スクリーン用樹脂組成物、透明スクリーン用フィルム、及び透明スクリーン用フィルムの製造方法
CN110770651A (zh) * 2017-06-27 2020-02-07 三菱瓦斯化学株式会社 透明屏用树脂组合物、透明屏用膜和透明屏用膜的制造方法
JPWO2019003626A1 (ja) * 2017-06-27 2020-04-23 三菱瓦斯化学株式会社 透明スクリーン用樹脂組成物、透明スクリーン用フィルム、及び透明スクリーン用フィルムの製造方法
JP7074135B2 (ja) 2017-06-27 2022-05-24 三菱瓦斯化学株式会社 透明スクリーン用樹脂組成物、透明スクリーン用フィルム、及び透明スクリーン用フィルムの製造方法
US11372138B2 (en) 2017-09-08 2022-06-28 Daicel Corporation Anti-reflection film
JP7015618B2 (ja) 2017-11-28 2022-02-03 エルジー・ケム・リミテッド ディスプレイパネル用視認性改善フィルムおよびそれを含むディスプレイ装置
JP2021504756A (ja) * 2017-11-28 2021-02-15 エルジー・ケム・リミテッド ディスプレイパネル用視認性改善フィルムおよびそれを含むディスプレイ装置
US11639449B2 (en) 2017-11-28 2023-05-02 Lg Chem, Ltd. Visibility improving film for display panel and display device comprising same
CN112005134A (zh) * 2018-04-27 2020-11-27 三菱瓦斯化学株式会社 光扩散成型体、透明屏用膜和光扩散成型体的评价方法
JP7187252B2 (ja) 2018-10-19 2022-12-12 大王製紙株式会社 透明スクリーン用シート、透明スクリーン、及び粘着塗料
JP2020064241A (ja) * 2018-10-19 2020-04-23 大王製紙株式会社 透明スクリーン用シート、透明スクリーン、及び粘着塗料
WO2023085240A1 (ja) * 2021-11-09 2023-05-19 リンテック株式会社 プロジェクションスクリーン用ハードコートフィルムおよびプロジェクションスクリーン
JP7488307B2 (ja) 2022-10-12 2024-05-21 シャープディスプレイテクノロジー株式会社 表示装置

Also Published As

Publication number Publication date
JP2018036662A (ja) 2018-03-08
US20180203167A1 (en) 2018-07-19
US10488565B2 (en) 2019-11-26
JPWO2017010217A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2017010217A1 (ja) 透明スクリーンの透明光散乱層を形成するための分散液、透明スクリーン、および透明スクリーンの製造方法
JP6199530B1 (ja) 反射型透明スクリーンおよびそれを備えた画像投影装置
JP6480081B2 (ja) 視認性向上フィルム、およびそれを備えた積層体、およびそれを備えた画像表示装置
JP6133522B1 (ja) 透明スクリーンおよびそれを備えた映像投影システム
JP6266844B2 (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
WO2016190137A1 (ja) 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
JP2017015824A (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた画像投影装置
WO2017150408A1 (ja) 映像投影システム
JP6313919B2 (ja) 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
JP6691815B2 (ja) 映像投影システム
JP6765912B2 (ja) 映像を投影可能な積層体、およびそれを備えた映像投影システム
WO2019159529A1 (ja) 映像投影システム
JP6736049B2 (ja) ガラス複合体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
JP7134123B2 (ja) 映像投影システム
JP6691809B2 (ja) 映像投影システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017506938

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824197

Country of ref document: EP

Kind code of ref document: A1