WO2019159529A1 - 映像投影システム - Google Patents

映像投影システム Download PDF

Info

Publication number
WO2019159529A1
WO2019159529A1 PCT/JP2018/046959 JP2018046959W WO2019159529A1 WO 2019159529 A1 WO2019159529 A1 WO 2019159529A1 JP 2018046959 W JP2018046959 W JP 2018046959W WO 2019159529 A1 WO2019159529 A1 WO 2019159529A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
viewing angle
angle control
control film
transparent screen
Prior art date
Application number
PCT/JP2018/046959
Other languages
English (en)
French (fr)
Inventor
涼 西村
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to JP2020500307A priority Critical patent/JPWO2019159529A1/ja
Publication of WO2019159529A1 publication Critical patent/WO2019159529A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a video projection system comprising a transparent screen, a transparent viewing angle control film, and a video projection unit arranged to project an image within the range of the viewing angle control angle of the transparent viewing angle control film.
  • a video projection unit in a video projection system, it is common for a video projection unit to project video light onto a video projection object such as a screen, and an observer observes the video.
  • a video projection object such as a screen
  • an observer observes the video.
  • a show window such as a department store or a transparent partition of an event space using such a video projection system.
  • the viewer can see a good image from either side of the show window or the transparent partition, and the transparency of the show window or the transparent partition is not impaired. Is required.
  • a transparent screen may be attached to a show window or a transparent partition, but the light transmitted from the image projection unit through the transparent screen is transparent.
  • Patent Documents 1 and 2 a reflection type screen having a surface layer having a specific surface shape on the surface on the image projection unit side.
  • the solutions described in Patent Documents 1 and 2 are merely to prevent the image light reflected by the surface of the reflective screen from being reflected on the ceiling, and the image of the transmitted light on an object other than the transparent screen is formed. could not be prevented.
  • Patent Document 3 it has been proposed that the light from the image projection unit be polarized light and the transmitted light be eliminated by combination with a polarizing plate (Patent Document 3).
  • Patent Document 3 when the light from the video projection unit is polarized, 50% of the total light amount is lost and the luminance is reduced.
  • the present invention has been made in view of the above technical problem, and an object of the present invention is to provide video light from a video projection unit in a video projection system including a transparent screen and a video projection unit arranged on the front side of the transparent screen. After the image is formed on the transparent screen, the light transmitted through the transparent screen reaches the rear side object other than the transparent screen to cause unnecessary image formation, disturbing comfortable viewing, pedestrians, passing vehicles, etc.
  • Another object of the present invention is to provide an image projection system capable of preventing the transmitted light from being irradiated and preventing safe traffic.
  • a video projection system includes a transparent screen, a transparent viewing angle control film, and a video projection unit disposed on the front side of the transparent screen.
  • the projection angle of the image light from the image projection unit is set within the range of the viewing angle control angle of the transparent viewing angle control film, so that the transmitted light is scattered by the transparent viewing angle control film. It was found that it was possible to solve a specific problem. The present invention has been completed based on such findings.
  • a video projection system comprising: a transparent screen; a transparent viewing angle control film disposed on one surface side of the transparent screen; and a video projection unit disposed on the transparent screen side,
  • the video projection unit is arranged such that the projection angle of video light from the video projection unit is within the range of the viewing angle control angle of the transparent viewing angle control film,
  • the image light forms an image on the transparent screen,
  • An image projection system is provided in which image light transmitted through the transparent screen is scattered by the transparent viewing angle control film.
  • a video projection system comprising: a transparent screen; a transparent viewing angle control film disposed on one surface side of the transparent screen; and a video projection unit disposed on the transparent viewing angle control film side,
  • the video projection unit is arranged such that the projection angle of video light from the video projection unit is within the range of the viewing angle control angle of the transparent viewing angle control film, The image light is scattered by the transparent viewing angle control film,
  • an image projection system in which image light transmitted through the transparent viewing angle control film forms an image on the transparent screen.
  • the viewing angle control angle of the transparent viewing angle control film is 10 degrees or more and 80 degrees with respect to the orthogonal plane of the transparent viewing angle control film from the front side. It is preferable that:
  • the lower limit value of the range of the observation angle of the observer is the field of view of the transparent viewing angle control film when the image projection unit is located above the observer. It is preferably larger than the upper limit value of the angle control angle.
  • the upper limit value of the range of the observation angle of the observer is the field of view of the transparent viewing angle control film when the image projection unit is located below the observer. It is preferably smaller than the lower limit value of the angle control angle.
  • the transparent viewing angle control film has a parallel light transmittance within the range of the viewing angle control angle of 0% or more and less than 40%, and the viewing angle control.
  • the parallel light transmittance outside the angle range is preferably 60% or more and 92% or less.
  • the transparent screen and the transparent viewing angle control film constitute a laminate.
  • the laminate includes a transparent layer between the transparent screen and the transparent viewing angle control film.
  • the haze value of the transparent screen is preferably 35% or less.
  • the transparent screen includes light-reflecting fine particles.
  • a video projection system comprising a transparent screen, a transparent viewing angle control film disposed on the rear side of the transparent screen, and a video projection unit disposed on the front side of the transparent screen.
  • the image light from the image projection unit forms an image on the transparent screen
  • the light transmitted through the transparent screen reaches an object on the rear side other than the transparent screen to cause unnecessary image formation. It is possible to prevent obstructing or irradiating transmitted light to a pedestrian, a passing vehicle, or the like and hindering safe traffic.
  • a video projection system it is possible to perform good performance and advertisement, and it does not hinder safe traffic.
  • the transparent screen, the transparent viewing angle control film disposed on the front side of the transparent screen, and the image projection unit disposed on the front side of the transparent viewing angle control film Image light from the image projection unit is scattered by the transparent viewing angle control film and loses straightness, and then reaches the transparent screen and forms an image. A corner can be realized.
  • the light transmitted through the transparent screen is scattered, it reaches a rear-side object other than the transparent screen to cause unnecessary image formation, disturbs comfortable visual recognition, or transmits transmitted light to a pedestrian or a passing vehicle. Irradiation can prevent the safe traffic from being obstructed. According to such a video projection system, it is possible to perform good performance and advertisement, and it does not hinder safe traffic.
  • FIG. 1 It is a conceptual diagram which shows the projection video system by the 1st Embodiment of this invention. It is a conceptual diagram which shows the projection video system by the 2nd Embodiment of this invention. It is a conceptual diagram which shows the projection video system by the 2nd Embodiment of this invention. It is a conceptual diagram which shows the projection video system by the 2nd Embodiment of this invention, and an observer's observation angle. It is a conceptual diagram which shows the projection video system by the 2nd Embodiment of this invention, and an observer's observation angle. It is a figure which shows the observation result from the front side (same side as a video projection unit) of a transparent screen in the projection video system of Example 1.
  • FIG. It is a figure which shows the observation result from the rear side (opposite side to a video projection unit) of a transparent screen in the projection video system of Example 1. It is a figure which shows the observation result from the front side (same side as a video projection unit) of a transparent screen in the projection video system of Example 2.
  • FIG. It is a figure which shows the observation result from the rear side (opposite side of a video projection unit) of a transparent screen in the projection video system of Example 2.
  • a video projection system includes a transparent screen, a video projection unit disposed on the front side with respect to the transparent screen, and a transparent viewing angle control film disposed on the rear side with respect to the transparent screen. Is provided.
  • the video light projected from the video projection unit forms an image on the transparent screen
  • the light transmitted through the transparent screen is scattered by the transparent viewing angle control film.
  • the image light transmitted through the transparent screen does not cause unnecessary image formation on the rear side object other than the transparent screen, and from the observer located on the image projection unit side (front side) with respect to the transparent screen. Unnecessary image formation is not visually recognized. According to such a video projection system, it is possible to perform good effects and advertisements.
  • the term “transparent” is sufficient if it is transparent enough to achieve transmission visibility according to the application, and includes that it is translucent.
  • the “viewing angle control angle of the transparent viewing angle control film” can be defined by the angle formed from the base side with respect to the orthogonal plane (perpendicular line) in the thickness direction of the transparent viewing angle control film. Specifically, when the image projection unit is used as a base point, the angle is defined by the angle formed by the end on the image projection unit side with respect to the plane perpendicular to the thickness direction of the transparent viewing angle control film (perpendicular).
  • the “observer angle range” is defined by an angle formed from the observer (viewpoint) side with respect to the orthogonal plane (perpendicular line) of the transparent viewing angle control film with the observer (viewpoint) as a base point.
  • the angle formed from the observer side can be defined by plus notation above the line of sight and minus notation below the line of sight.
  • front side refers to the direction of the viewer-side display surface of the transparent screen
  • “rear side” refers to the direction opposite to the viewer-side display surface of the transparent screen.
  • FIG. 1 shows a conceptual diagram of a video projection system according to the first embodiment of the present invention.
  • the video projection system shown in FIG. 1 includes a transparent screen 11, a transparent viewing angle control film 12 disposed on the rear side of the transparent screen, and a video projection unit 13 disposed on the front side of the transparent screen.
  • the projection angle range 14 of the image light from the image projection unit 13 is within the viewing angle control angle range 15 of the transparent viewing angle control film 12, the transmitted light is transmitted through the transparent viewing angle control film 12. Since it reaches the range (dotted line portion) and is diffusely scattered, unnecessary image formation does not occur on the object disposed on the rear side of the transparent viewing angle control film 12.
  • the parallel light reaches the object on the rear side of the transparent viewing angle control film 12 without being diffusely scattered. This will cause unnecessary image formation.
  • the angle formed by the range farthest from the video projection unit 13 is ⁇ .
  • the transparent screen and the transparent viewing angle control film preferably constitute a laminate.
  • the transparent screen and the transparent viewing angle control film By making the transparent screen and the transparent viewing angle control film a laminate, it is possible to prevent interface reflection and unnecessary irregular reflection of transmitted light at the air interface of the transparent screen and the transparent viewing angle control film, and to further improve the contrast. .
  • the arrangement of the video projection system is facilitated by using a laminated body.
  • FIG. 2 shows a conceptual diagram of a video projection system according to the second embodiment of the present invention.
  • 2 includes a transparent screen 21, a transparent viewing angle control film 22 disposed on the front side of the transparent screen 21, and a video projection unit 23 disposed on the front side of the transparent viewing angle control film 22.
  • a transparent screen 21 a transparent viewing angle control film 22 disposed on the front side of the transparent screen 21, and a video projection unit 23 disposed on the front side of the transparent viewing angle control film 22.
  • the transparent screen and the transparent viewing angle control film preferably constitute a laminate.
  • the transparent screen and the transparent viewing angle control film By making the transparent screen and the transparent viewing angle control film a laminate, it is possible to prevent interface reflection and unnecessary irregular reflection of transmitted light at the air interface of the transparent screen and the transparent viewing angle control film, and to further improve the contrast. .
  • the arrangement of the video projection system is facilitated by using a laminated body.
  • a good image with less blur and resolution deterioration can be obtained by forming an image on the transparent screen before the image light diffused and transmitted through the transparent viewing angle control film is dissipated.
  • FIG. 3 shows a conceptual diagram of a video projection system in which a transparent screen and a viewing angle control film form a laminate in the second embodiment of the present invention.
  • the image projection system shown in FIG. 3 includes a transparent screen 31, a transparent viewing angle control film 32 disposed on the front side of the transparent screen 31, and a transparent layer disposed between the transparent screen 31 and the transparent viewing angle control film 32. And a video projection unit 33 disposed on the front side of the transparent viewing angle control film.
  • the diffused and transmitted light reaches the transparent screen 31 and forms an image, so that light brightness and a wide viewing angle can be realized. Since light other than the imaged image light is scattered, unnecessary image formation does not occur on the rear side object other than the transparent screen 31.
  • FIG. 4 is a conceptual diagram showing the projection video system and the observation angle of the observer according to the second embodiment of the present invention.
  • 4 includes a transparent screen 41, a transparent viewing angle control film 42 disposed on the front side of the transparent screen 41, and a video projection unit 43 disposed on the front side of the transparent viewing angle control film 42.
  • the observer 47 is located on the front side with respect to the transparent screen 41 and the viewing angle control film 42.
  • the video projection unit 43 is arranged above the observer 47, and is arranged so that the projection angle range 44 of the video light from the video projection unit 43 falls within the viewing angle control angle range 45 of the transparent viewing angle control film 42. ing.
  • the lower limit value 49l of the observation angle range 49 of the observer 47 is larger than the upper limit value 45u of the viewing angle control angle range 45 of the transparent viewing angle control film 42. If the viewing angle control angle range 45 of the transparent viewing angle control film 42 overlaps the observation angle range 49 of the observer 47, the field of view of the overlapping portion is obstructed, and the transparent viewing angle control film 42 and the transparent screen The background cannot be observed over 41, and the transparency is impaired. It should be noted that the viewing angle control angle range 45 of the transparent viewing angle control film 42 from the image projecting unit 43 side to the orthogonal plane (perpendicular line) 46 in the thickness direction at the end of the transparent viewing angle control film 42 on the image projecting unit 43 side.
  • the angle formed by the farthest range from the image projection unit 43 is ⁇ , and the angle formed by the observer (viewpoint) 47 side with respect to the orthogonal plane (perpendicular) 48 in the thickness direction of the transparent viewing angle control film 42 is ⁇ (line of sight). And ⁇ (below the line of sight).
  • FIG. 5 is a conceptual diagram showing the projection video system and the observation angle of the observer according to the second embodiment of the present invention.
  • 5 includes a transparent screen 51, a transparent viewing angle control film 52 disposed on the front side of the transparent screen 51, and a video projection unit 53 disposed on the front side of the transparent viewing angle control film 52.
  • the observer 57 is located on the front side with respect to the transparent screen 51 and the viewing angle control film 52.
  • the video projection unit 53 is disposed below the observer 57, and is disposed so that the projection angle range 54 of the video light from the video projection unit 53 falls within the viewing angle control angle range 55 of the transparent viewing angle control film 52. ing.
  • the upper limit value 59u of the observation angle range 59 of the observer 57 is smaller than the lower limit value 55l of the viewing angle control angle range 55 of the transparent viewing angle control film 52. If the viewing angle control angle range 55 of the transparent viewing angle control film 52 overlaps the observation angle range 59 of the observer 57, the field of view of the overlapped portion is obstructed, and the transparent viewing angle control film 52 and the transparent screen The background cannot be observed over 51, and the transparency is impaired.
  • the image is out of the range 55 of the viewing angle control angle of the transparent viewing angle control film 52 from the image projecting unit 53 side to the orthogonal plane (perpendicular) 56 in the thickness direction of the transparent viewing angle control film 52 on the image projecting unit 53 side
  • the angle formed by the range farthest from the projection unit 53 is ⁇
  • the angles formed from the observer (viewpoint) 57 side with respect to the orthogonal plane (perpendicular) 58 of the transparent viewing angle control film 52 are ⁇ (upper side of the line of sight) and ⁇ ( Below the line of sight).
  • the video projection unit, the transparent screen, and the transparent viewing angle control film which are components of the video projection system, will be described in detail.
  • the image projection unit used in the image projection system is not particularly limited as long as it can project an image on the transparent screen described below.
  • a commercially available rear projector or front projector can be used.
  • the projection angle of the image light can be easily adjusted within the range of the viewing angle control angle of the transparent viewing angle control film, and therefore, WX450ST manufactured by Canon Inc. having a lens shift function can be preferably used.
  • the transparent screen used in the video projection system is preferably provided with a light scattering layer including a binder and fine particles.
  • the transparent screen may have a single-layer configuration consisting of only a light scattering layer, or a multilayered structure that further includes other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer. There may be.
  • the transparent screen may include a support such as glass or a transparent partition. The transparent screen can achieve both the visibility of the projection light and the visibility of the transmitted light by anisotropically reflecting and reflecting the projection light emitted from the video projection unit.
  • the transparent screen may be a flat surface or a curved surface.
  • the transparent screen can be suitably used for a glass window, a head-up display, a wearable display, and the like, and can be particularly suitably used as a transparent screen for a short focus projector.
  • the haze value of the transparent screen is preferably 35% or less, more preferably 1% or more and 30% or less, and further preferably 2% or more and 25% or less. Further, the transparent screen preferably has a total light transmittance of 60% or more and 98% or less, more preferably 65% or more and 96% or less, still more preferably 70% or more and 94% or less, and even more. Preferably they are 75% or more and 92% or less. When the haze value and the total light transmittance of the transparent screen are within the above ranges, the transparency is high and the transmission visibility can be further improved.
  • the haze value and the total light transmittance of the transparent screen are measured using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) according to JIS-K-7361 and JIS-K-. It can be measured according to 7136. *
  • the image clarity of the transparent screen is preferably 65% or more, more preferably 70% or more and 98% or less, still more preferably 75% or more and 97% or less, and even more preferably 80% or more and 96%. It is as follows. If the image clarity of the transparent screen is within the above range, the image seen through the transparent screen is very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • the light scattering layer includes a binder and fine particles.
  • the fine particles the following light reflective fine particles can be suitably used. By using such fine particles, light can be diffused and reflected anisotropically in the light scattering layer, and the light utilization efficiency can be enhanced.
  • the thickness of the light scattering layer is not particularly limited, but is preferably 0.1 ⁇ m to 20 mm, more preferably 0.2 ⁇ m to 15 mm, from the viewpoints of use, productivity, handleability, and transportability. More preferably, the thickness is 1 ⁇ m to 10 mm. If the thickness of the light scattering layer is within the above range, the strength as a screen is easily maintained.
  • the light scattering layer may be a molded body obtained using the following organic binder or inorganic binder, or may be a coating film formed on a substrate made of glass, resin, or the like.
  • the light scattering layer may have a single layer structure, or may have a multilayer structure in which two or more layers are laminated by coating or the like, or two or more light scattering layers are bonded together with an adhesive or the like.
  • the light scattering layer preferably uses a highly transparent binder in order to obtain a highly transparent film.
  • a binder there are an organic binder and an inorganic binder.
  • an organic binder a thermoplastic resin, a thermosetting resin, a self-crosslinking resin, an ionizing radiation curable resin, and the like can be used.
  • Resin acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, epoxy acrylate resin, polyester resin, polyolefin resin, urethane resin, epoxy resin, polycarbonate resin, cellulose resin, acetal resin
  • vinyl resins polystyrene resins, polyamide resins, polyimide resins, melamine resins, phenol resins, silicone resins, and fluorine resins.
  • thermoplastic resin examples include acrylic resins, polyester resins, polyolefin resins, vinyl resins, polycarbonate resins, and polystyrene resins.
  • acrylic resins acrylic resins, polyester resins, polyolefin resins, vinyl resins, polycarbonate resins, and polystyrene resins.
  • polymethyl methacrylate resin polyethylene terephthalate resin, polyethylene naphthalate resin, polypropylene resin, cycloolefin resin, cellulose acetate propionate resin, polyvinyl butyral resin, polycarbonate resin, and polystyrene resin.
  • These resins can be used alone or in combination of two or more.
  • ionizing radiation curable resins include acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • those having an acrylate-based functional group such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone And polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropy
  • thermosetting resins include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, urea resins, and the like. Among these, epoxy resins and silicone resins are preferable.
  • self-crosslinking resins include silicone resins, epoxy resins, urethane resins, and acrylic resins.
  • Examples of the highly transparent inorganic binder include water glass, a glass material having a low softening point, and a sol-gel material.
  • Water glass refers to a concentrated aqueous solution of alkali silicate, and sodium is usually included as an alkali metal.
  • a typical water glass can be represented by Na 2 O.nSiO 2 (n: any positive number), and as a commercial product, sodium silicate manufactured by Fuji Chemical Co., Ltd. can be used.
  • the glass material having a low softening point is a glass having a softening temperature of preferably 150 to 620 ° C., more preferably a softening temperature of 200 to 600 ° C., and most preferably a softening temperature of 250 to 550. It is in the range of ° C.
  • a PbO—B 2 O 3 system, a PbO—B 2 O 3 —SiO 2 system, a PbO—ZnO—B 2 O 3 system a mixture containing an acid component and a metal chloride is heat-treated.
  • the lead-free low softening point glass etc. which are obtained by this can be mentioned.
  • a solvent, a high boiling point organic solvent, and the like can be mixed with the low softening point glass material.
  • the sol-gel material is a group of compounds that are cured by hydrolysis polycondensation by the action of heat, light, catalyst, and the like.
  • metal alkoxide metal alcoholate
  • metal chelate compound metal halide
  • liquid glass spin-on glass
  • reaction product thereof which may contain a catalyst for promoting curing.
  • photoreactive functional group such as an acryl group
  • the cured sol-gel material refers to a state in which the polymerization reaction of the sol-gel material has sufficiently progressed.
  • the sol-gel material is chemically bonded to the surface of the inorganic substrate in the course of the polymerization reaction and strongly adheres. Therefore, a stable cured product layer can be formed by using a cured body of a sol-gel material as the cured product layer.
  • a metal alkoxide is a compound group obtained by reacting an arbitrary metal species with water or an organic solvent using a hydrolysis catalyst, etc., and an arbitrary metal species and a hydroxy group, methoxy group, ethoxy group, propyl group, isopropyl It is a group of compounds in which a functional group such as a group is bonded.
  • the metal species of the metal alkoxide include silicon, titanium, aluminum, germanium, boron, zirconium, tungsten, sodium, potassium, lithium, magnesium, tin and the like.
  • metal alkoxides whose metal species is silicon include dimethyldiethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, methyltriethoxysilane (MTES), vinyltriethoxysilane, p-styryltriethoxysilane, methylphenyldioxysilane.
  • a compound group in which the ethoxy group of these compound groups is replaced by a methoxy group, a propyl group, an isopropyl group, a hydroxy group, or the like tetramethoxysilane (TMOS) and TEOS in which the ethoxy group of triethoxysilane (TEOS) is replaced with a methoxy group are particularly preferable. These may be used alone or in combination of a plurality of types.
  • solvent organic binders and inorganic binders may further contain a solvent as required.
  • the solvent is not limited to an organic solvent, and a solvent used in a general coating composition can be used.
  • hydrophilic solvents such as water can be used.
  • the binder of this invention is a liquid, it does not need to contain a solvent.
  • the solvent include alcohols such as methanol, ethanol, isopropyl alcohol (IPA), n-propanol, butanol, 2-butanol, ethylene glycol, propylene glycol, hexane, heptane, octane, decane, cyclohexane and the like.
  • alcohols such as methanol, ethanol, isopropyl alcohol (IPA), n-propanol, butanol, 2-butanol, ethylene glycol, propylene glycol, hexane, heptane, octane, decane, cyclohexane and the like.
  • Aliphatic hydrocarbons aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetramethylbenzene, ethers such as diethyl ether, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, isophorone, cyclohexanone, cyclopentanone, N- Ketones such as methyl-2-pyrrolidone, ether alcohols such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol
  • Glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl car
  • the shape of the light-reflecting fine particles is not particularly limited, and may be substantially spherical, flaky, or acicular.
  • the median diameter of the primary particles is preferably 0.1 to 2500 nm, more preferably 0.2 to 1500 nm, and further preferably 0.5 to 500 nm. .
  • the median diameter of the primary particles of the light-reflecting fine particles is within the above range, a sufficient scattering effect of the projection light can be obtained without impairing transmission visibility, so that a clear image can be projected on the transparent screen. .
  • the median diameter (D 50 ) of the primary particles of the light-reflecting fine particles is determined using a particle size distribution analyzer (trade name: DLS-8000, manufactured by Otsuka Electronics Co., Ltd.) by a dynamic light scattering method. It can be determined from the measured particle size distribution.
  • the average primary particle diameter is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 80 ⁇ m, still more preferably 0.1 to 50 ⁇ m, and even more preferably 0. .5 to 30 ⁇ m.
  • the average diameter and average aspect ratio of the light-reflecting fine particles are within the above ranges, a sufficient scattering effect of the projection light can be obtained without impairing transmission visibility, so that a clear image can be projected on a transparent screen. it can.
  • the average diameter of the light-reflecting fine particles was measured using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number: SALD-2300).
  • the average aspect ratio was calculated from an SEM (trade name: SU-1500, manufactured by Hitachi High-Technologies Corporation) image. *
  • the regular reflectance of the light reflecting fine particles is preferably 12.0% or more, more preferably 15.0% or more, and further preferably 20.0% or more and 80.0% or less.
  • the regular reflectance of the light-reflecting fine particles is a value measured as follows. (Regular reflectance) Measured by using a spectrocolorimeter (manufactured by Konica Minolta Co., Ltd., product number: CM-3500d).
  • a powder material dispersed in an appropriate solvent (water or methyl ethyl ketone) is formed on a slide glass with a film thickness of 0.5 mm or more.
  • the obtained glass plate with a coating film was measured for the regular reflectance of the coating film portion from the glass surface.
  • binder for example, aluminum, silver, copper, platinum, gold, titanium, nickel, tin, tin-cobalt alloy, indium, chromium, titanium oxide, aluminum oxide,
  • metallic particles composed of zinc sulfide, a glittering material obtained by coating a glass with a metal or a metal oxide, or a glittering material obtained by coating a natural mica or synthetic mica with a metal oxide can be used.
  • Commercially available light-reflecting fine particles may be used.
  • aluminum powder manufactured by Daiwa Metal Powder Industry Co., Ltd. can be suitably used.
  • the content of the light reflective fine particles in the light scattering layer can be appropriately adjusted according to the shape of the light reflective fine particles, the regular reflectance, and the like.
  • the content of the light-reflecting fine particles is preferably 0.0001 to 5.0% by mass, preferably 0.0005 to 3.0% by mass, and more preferably 0.001% with respect to the binder. It is -2.0 mass%.
  • additives may be added to the light scattering layer depending on the application.
  • the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a release agent, a flame retardant, a plasticizer, a lubricant, and a coloring material.
  • the coloring material pigments or dyes such as carbon black, azo pigments, anthraquinone pigments, and perinone pigments can be used. Further, a liquid crystal compound or the like may be mixed.
  • a base material layer is a layer for supporting said light-scattering layer, and can improve the intensity
  • the base material layer is preferably formed using a highly transparent material such as glass or resin that does not impair the transmission visibility of the transparent screen and desired optical characteristics.
  • a resin for example, a highly transparent resin similar to the above light scattering layer can be used.
  • the thickness of the base material layer can be appropriately changed according to the material so that the strength is appropriate, and may be in the range of 10 to 1000 ⁇ m, for example.
  • the protective layer is laminated on the front side (observer side) of the transparent screen, and is a layer for imparting functions such as light resistance, scratch resistance, and antifouling property.
  • the protective layer is preferably formed using a resin that does not impair the transmission visibility of the transparent screen and the desired optical characteristics.
  • a protective film may be bonded using an adhesive or the like, and a resin curable by ultraviolet rays or electron beams, that is, an ionizing radiation curable resin, an ionizing radiation curable resin, and a thermoplastic resin and a solvent are mixed.
  • the protective layer may be formed by applying a cured resin and a thermosetting resin to the surface of the reflective transparent screen and curing. Among these, formation of a protective layer using an ionizing radiation curable resin is particularly preferable.
  • the film forming component of the ionizing radiation curable resin composition is preferably one having an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di
  • acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators.
  • a mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • a normal curing method that is, by irradiation with electron beams or ultraviolet rays.
  • electron beam curing 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used.
  • ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
  • the protective layer is a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, etc., on the light scattering layer. Then, it can be formed by applying to the surface of the light scattering layer and curing the coating solution by the means as described above.
  • a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure can be provided on the surface of the protective layer according to the purpose.
  • An adhesive layer is a layer for sticking a transparent viewing angle control film, a protective film, etc. on a transparent screen.
  • the pressure-sensitive adhesive layer is preferably formed using a pressure-sensitive adhesive composition that does not impair the transmission visibility of the transparent screen and desired optical characteristics.
  • the pressure-sensitive adhesive composition include natural rubber, synthetic rubber, acrylic resin, polyvinyl ether resin, urethane resin, and silicone resin.
  • synthetic rubbers include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block.
  • a copolymer is mentioned.
  • Specific examples of the silicone resin system include dimethylpolysiloxane.
  • the acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate.
  • the (meth) acrylic acid alkyl ester is usually copolymerized in an acrylic adhesive at a ratio of 30
  • Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and ⁇ -carboxyethyl acrylate. Can be mentioned.
  • the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive.
  • monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having a functional group such as an amino group-containing monomer such as meth) acrylate, dimethylaminoethyl (meth) acrylate, and vinylpyridine; epoxy group-containing monomers such as allyl glycidyl ether and (meth) acrylic acid
  • fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
  • the acrylic resin pressure-sensitive adhesive in addition to the monomer having another functional group as described above, another monomer having an ethylenic double bond can be used.
  • monomers having an ethylenic double bond include diesters of ⁇ , ⁇ -unsaturated dibasic acids such as dibutyl maleate, dioctyl maleate and dibutyl fumarate; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers And vinyl aromatic compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; (meth) acrylonitrile and the like.
  • a compound having two or more ethylenic double bonds may be used in combination.
  • examples of such compounds include divinylbenzene, diallyl malate, diallyl phthalate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylene bis (meth) acrylamide and the like.
  • monomers having an alkoxyalkyl chain can be used.
  • (meth) acrylic acid alkoxyalkyl esters include 2-methoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, and 3-methoxypropyl (meth) acrylate.
  • the homopolymer of the (meth) acrylic-acid alkylester monomer other than the above-mentioned acrylic resin adhesive may be sufficient.
  • (meth) acrylic acid ester homopolymers include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, poly (meth) Examples include octyl acrylate.
  • Copolymers containing two or more acrylate units include methyl (meth) acrylate- (meth) ethyl acrylate copolymer, methyl (meth) acrylate-butyl (meth) acrylate copolymer, ( Examples thereof include methyl (meth) acrylate- (meth) acrylic acid 2-hydroxyethyl copolymer, methyl (meth) acrylate- (meth) acrylic acid 2-hydroxy3-phenyloxypropyl copolymer, and the like.
  • Copolymers of (meth) acrylic acid esters and other functional monomers include (meth) methyl acrylate-styrene copolymers, (meth) methyl acrylate-ethylene copolymers, (meth) acrylic. Examples include methyl acid- (meth) acrylate 2-hydroxyethyl-styrene copolymer.
  • adhesives such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
  • the antireflection layer is a layer for preventing reflection on the outermost surface of the transparent screen and reflection from outside light.
  • the antireflection layer may be laminated on at least one side of the transparent screen, preferably on the front side (observer side), or may be laminated on both the front side and the rear side. In particular, when used as a transparent screen, it is preferably laminated on the front side.
  • the antireflection layer is preferably formed using a resin that does not impair the transmission visibility and desired optical characteristics of the transparent screen.
  • a resin curable by ultraviolet rays or an electron beam that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used.
  • ionizing radiation curable resins are particularly preferable.
  • the surface of the antireflection layer can be provided with a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure depending on the purpose.
  • the method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
  • the transparent screen may include various conventionally known functional layers in addition to the above layers.
  • the functional layer include a light absorbing layer containing a dye or a colorant, a light scattering layer such as a prism sheet, a microlens sheet, a Fresnel lens sheet, and a lenticular lens sheet, a light cut layer such as an ultraviolet ray and an infrared ray, and the like. It is done.
  • the manufacturing method of a transparent screen includes the process of forming a light-scattering layer.
  • the process of forming the light scattering layer consists of a kneading process and a film forming process, an extrusion method, a cast film forming method, a gravure coating, a micro gravure coating, a bar coating, a slide die coating, and a slot die coating.
  • Coating method including dip coating, spraying method, injection molding method, calendar molding method, blow molding method, compression molding method, cell casting method, etc., can be molded by known methods, extrusion molding method, injection molding method, coating method Can be suitably used.
  • the method for producing a transparent screen may include a step of further laminating a base material layer, a protective layer, an adhesive layer and the like on the resin film (light scattering layer) obtained in the film forming step.
  • the lamination method of each layer is not specifically limited, It can carry out by a conventionally well-known method. In the case of laminating each layer by dry lamination, an adhesive or the like may be used as long as the transparent visibility of the transparent screen and desired optical characteristics are not impaired.
  • Transparent viewing angle control film As the transparent viewing angle control film used in the video projection system, a conventionally known transparent viewing angle control film can be used, which scatters incident light within the range of the viewing angle control angle and out of the range of the viewing angle control angle. Any material can be used.
  • the viewing angle control angle can be defined by the angle formed from the base point (video projection unit or observer) side with respect to the orthogonal plane (perpendicular) of the transparent viewing angle control film, preferably 10 degrees or more and 80 degrees or less, more preferably Is from 15 degrees to 70 degrees, and more preferably from 20 degrees to 60 degrees.
  • the transparent viewing angle control film preferably has a parallel light transmittance within the range of the viewing angle control angle of 0% or more and less than 40%, more preferably 0% or more and less than 30%.
  • the parallel light transmittance outside the range is preferably 60% to 92%, more preferably 70% to 92%.
  • a louver structure as in Patent Document 4 and Patent Document 5 obtained by alternately laminating a single-layer colored or opaque film and a transparent film and cutting in the laminating direction is used. It may be a film.
  • Patent Document 6 may be a light control film as described in Patent Document 6, which is composed of a transparent film having a large number of grooves on the film surface and filled with light-absorbing material.
  • the viewing angle control range can be adjusted by the interval between the light shielding portions and the length of the light shielding portions in the film thickness direction.
  • the front transmittance is determined by the area ratio occupied by the transmissive portion, but if sufficient light shielding performance is obtained in the light shielding portion, it is necessary to increase the area ratio of the light shielding portion. It has the characteristic that the front transmittance is contradictory.
  • the transparent viewing angle control film is a light control plate as in Patent Document 7 having a function of scattering incident light in a predetermined angle range by using two or more kinds of photopolymerizable resins having different refractive indexes. May be.
  • a resin composition composed of a photopolymerizable oligomer or monomer having a difference in refractive index or a mixture thereof is maintained in a film shape, and then cured by irradiating with ultraviolet rays from a specific direction.
  • a light control film having a function of scattering only a predetermined range of light is obtained.
  • the obtained film shows anisotropy with respect to the major axis and minor axis direction of the ultraviolet light source, and only when the cured film is rotated about the major axis direction of the light source, light in a predetermined angle range is emitted. Scattered. That is, the obtained film exists in a state where regions having different refractive indexes are oriented in a certain direction, and light incident from a predetermined angle range is repeatedly scattered at the boundary of regions having different refractive indexes, thereby controlling the viewing angle. It is considered that an effect can be obtained.
  • two or more kinds of photopolymerizable resins used are different in refractive index, are not absorbed and are transparent, and thus have a very high front transmittance, and UV light is incident upon curing. Since the film is almost completely transparent in the direction, it is particularly suitable as a transparent viewing angle control film in the present invention.
  • the transparent viewing angle control film a commercially available transparent viewing angle control film can be used.
  • Wincos Vision Control Film Y-2555
  • Lintec Corporation viewing angle control angle: 25 ° to 55 °
  • a laminate used in a video projection system includes a transparent screen and a transparent viewing angle control film.
  • the laminate may have a form in which a transparent screen is directly formed on a viewing angle control film, or may have a form in which a viewing angle control film is directly formed on a transparent screen.
  • the laminate may include a transparent layer preferably containing a transparent resin between the transparent screen and the viewing angle control film as long as the performance of the video projection system is not impaired.
  • the laminated body may have a form in which a transparent screen and a viewing angle control film are bonded together with an adhesive, an adhesive, an adhesive resin, or the like.
  • the laminate has a parallel light transmittance outside the range of the viewing angle control angle, preferably 60% or more and 98% or less, more preferably 65% or more and 96% or less, and further preferably 70% or more and 94% or less. It is still more preferably 75% or more and 92% or less.
  • the parallel light transmittance of the transparent screen conforms to JIS-K-7361 and JIS-K-7136 using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000). Can be measured. *
  • the laminate has an image clarity of preferably 65% or more, more preferably 70% or more and 98% or less, still more preferably 75% or more and 97% or less, and even more preferably 80% or more and 96% or less. It is. If the image clarity of the transparent screen is within the above range, the image seen through the transparent screen is very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • a vehicle member provided with the above-described transparent screen may be used.
  • the vehicle member may further include the transparent viewing angle control film.
  • Examples of the vehicle member include a windshield and a side glass.
  • the building member may further include the transparent viewing angle control film.
  • Examples of the building member include a window glass of a house, a glass wall of a convenience store, a road surface store, and the like.
  • ⁇ Deferred setting> Canon's WX450ST was used as the video projection unit, and the lens center was placed at a height of 10 cm from the placement table surface.
  • the transparent screen, transparent viewing angle control film, or laminate specimen described in Examples and Comparative Examples was bonded to an acrylic plate having a thickness of 2 mm with an adhesive, and the distance of 13.5 cm from the lens tip of the image projection unit. It was placed on a table so as to be vertical. At this time, the image light from the projection image unit was imaged on the test body in a size of about 14 cm in length and 22 cm in width. The height of the test body was adjusted so that the lower end of the image shown on the test body was 20 cm from the placement table surface.
  • test specimen was observed from the horizontal positions on the front side and the rear side, and the image appearance and background were visually observed. At the same time, we took photos. Further, the specimen and the wall behind about 150 cm were visually observed from the front side, and a photograph was taken of the state of light leakage from the specimen.
  • PET polyethylene terephthalate
  • flaky aluminum fine particles A light-reflective fine particles, average diameter of primary particles 1 ⁇ m, An aspect ratio of 300 and a regular reflectance of 62.8% were mixed with a tumbler mixer for 30 minutes to obtain PET pellets having flaky aluminum uniformly adhered to the surface.
  • the obtained pellets were supplied to a hopper of a twin-screw kneading extruder equipped with a strand die to obtain a master batch in which flaky aluminum was kneaded at an extrusion temperature of 250 ° C.
  • the obtained master batch and PET pellets (brand IFG8L) were uniformly mixed at a ratio of 1: 2, then charged into a hopper of a twin-screw extruder equipped with a T die and extruded at an extrusion temperature of 250 ° C. to obtain a thickness.
  • a 75 ⁇ m film was formed to obtain a transparent screen.
  • the haze value of the transparent screen was 3.9%
  • the total light transmittance was 86%
  • the image clarity was 88%.
  • a wincos vision control film (Y-2555) (viewing angle control angle: 25 degrees or more and 55 degrees or less) manufactured by Lintec Corporation was prepared as a transparent viewing angle control film.
  • the transparent screen and the transparent viewing angle control film were bonded, and the laminated body A was obtained.
  • the parallel light transmittance outside the range of the viewing angle control angle was 80%, and the image clarity was 85%.
  • the transparent screen side of the laminate A is set as the observer side, and a video projection unit (WX450ST, manufactured by Canon Inc.) is arranged on the front side to Produced (first embodiment).
  • a video projection unit WX450ST, manufactured by Canon Inc.
  • the image light is projected from the image projection unit toward the transparent screen so as to be within the range of the viewing angle control angle (25 degrees or more and 55 degrees or less) of the transparent viewing angle control film.
  • the image was not reflected on the wall scattered about 150 cm away from the laminate A on the rear side by the control film. Therefore, it was confirmed that the light transmitted through the transparent screen does not form an image by reaching an object other than the transparent screen, and does not interfere with comfortable viewing.
  • Example 2 After placing the laminate A obtained in Example 1, the first transparent viewing angle control film side of the laminate A is set as the observer side, and a video projection unit (WX450ST, manufactured by Canon Inc.) is provided on the front side.
  • the video projection system was produced by arranging the images (second embodiment). Subsequently, when the image light is projected from the image projection unit toward the transparent viewing angle control film so as to be within the range of the viewing angle control angle (from 25 degrees to 55 degrees) of the transparent viewing angle control film, the transparent viewing angle is obtained.
  • the image light diffused and scattered by the control film reached the transparent screen, the light transmitted through the transparent screen was scattered, and no image was projected on the wall about 150 cm away from the laminate A on the rear side.
  • the light transmitted through the transparent screen does not form an image by reaching an object other than the transparent screen, and does not interfere with comfortable viewing.
  • the laminate A was observed horizontally, a clear image was formed on the laminate A, and the background wall could be clearly confirmed because the laminate A had high transmission visibility.
  • the result of photography is shown in FIG. Next, when the video projection unit was arranged on the rear side and the laminate A was observed horizontally, a clear image was formed on the laminate A, and the transparency of the laminate A was high. Was clearly confirmed.
  • the results of photography are shown in FIG. Further, the luminance when the image formed on the laminate A of Example 2 is observed horizontally may be higher on the rear side and the front side than the luminance of the image formed on the laminate A of Example 1. I understood.
  • Example 1 A video projection system was produced in the same manner as in Example 1 except that the transparent screen alone was used as it was instead of the laminate A. Subsequently, when image light is projected onto the image projection unit from the front side toward the transparent screen, the transmitted light forms an image on a wall about 150 cm away from the rear side and passes through the transparent screen. However, it was confirmed that it reached an object other than the transparent screen and formed an image, which hindered comfortable viewing. Further, when the transparent screen was observed horizontally, a clear image was formed on the transparent screen, and the transparency of the transparent screen was high, so that the background wall could be clearly observed. Next, a video projection unit was placed on the rear side and the transparent screen was observed horizontally.
  • Example 2 A video projection system was produced in the same manner as in Example 2 except that the transparent viewing angle control film alone was used as it was instead of the laminate A. Subsequently, when the image light is projected from the image projection unit toward the transparent viewing angle control film so as to fall within the range of the viewing angle control angle (25 degrees or more and 55 degrees or less) of the transparent viewing angle control film, the transmitted light is No image is formed on the wall about 150 cm away on the rear side, and the light transmitted through the transparent viewing angle control film reaches an object other than the transparent viewing angle control film and does not form an image. It was confirmed that it would not interfere.
  • the background wall was clearly confirmed, but the image light from the image projection unit was not clearly imaged on the transparent viewing angle control film.
  • the video projection unit was placed on the rear side, and when the transparent viewing angle control film was observed horizontally, the background wall was clearly confirmed, but the video light from the video projection unit was transparent viewing angle control film There was no clear image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

[課題]透明スクリーンと透明スクリーンの一方の面側に配置した映像投射ユニットとを備える映像投影システムにおいて、映像投射ユニットからの映像光が透明スクリーン上で結像した後に、透明スクリーンを透過した光が透明スクリーン以外のリア側の物体に到達して不要な結像を起こすこと等を防止できる映像投射システムの提供。 [解決手段]本発明によれば、透明スクリーンと、透明視野角制御フィルムと、透明スクリーンの一方の面側に配置された映像投影ユニットとを備える映像投影システムにおいて、映像投影ユニットからの映像光の投影角度の範囲を、透明視野角制御フィルムの視野角制御角度の範囲内とすることで、透過光が透明視野角制御フィルムによって散乱されて、透過光が透明スクリーン以外のリア側の物体に到達して不要な結像を起こしたり、快適な視認を妨げたり、歩行者や通行車両等に透過光が照射され、安全な交通を妨げたりすることを防止することができる。

Description

映像投影システム
 本発明は、透明スクリーンと、透明視野角制御フィルムと、透明視野角制御フィルムの視野角制御角度の範囲内に映像を投射するように配置された映像投影ユニットと、を備える映像投影システムに関する。
 従来、映像投影システムにおいては、映像投影ユニットにより映像光をスクリーン等の映像被投影体に投影し、観察者がその映像を観察することが一般的である。近年、このような映像投影システムを用いて、デパート等のショウウィンドウやイベントスペースの透明パーティション等に商品情報や広告等を投影表示する要望が高まってきている。このような要望を実現するための映像投影システムにおいては、観察者がショウウィンドウや透明パーティションのどちらの側から見ても良好な映像が視認でき、かつショウウィンドウや透明パーティションの透明性を損なわないことが求められる。このような要求に応えるために、ショウウィンドウや透明パーティションに透明スクリーンを貼付して使用されることがあるが、映像投影ユニットから投影された映像光のうちの透明スクリーンを透過した光が、透明スクリーン以外の物体に到達して不要な結像を起こしたり、快適な視認の妨げとなったり、演出の邪魔になったりするという問題がある。また、コンビニエンスストア等の店舗のガラス面に透明スクリーンを配置して映像を投影する際、歩行者や通行車両等に透過光が照射され、安全な交通の妨げになる可能性が想定される。
 上記のような問題に対して、映像投影ユニット側の面に特定の表面形状を有する表面層を備えた反射型スクリーンを用いることが提案されている(特許文献1および2)。しかしながら、特許文献1および2に記載の解決手段は、あくまで反射型スクリーンの表面で反射した映像光の天井への映り込み防止に留まるものであり、透過光の透明スクリーン以外の物体での結像を防止することはできていなかった。
 また、映像投影ユニットからの光を偏光とし、偏光板との組み合わせにより透過光をなくすことが提案されている(特許文献3)。しかしながら、特許文献3に記載の解決手段では、映像投影ユニットからの光を偏光にする際に、全光量のうち50%が失われ輝度が低下してしまうという問題が発生してしまう。
特開2013-130837号公報 特開2014-71278号公報 WO2017/150408 特開昭51-44186号公報 特開昭50-26885号公報 特開平2-97904号公報 特許第2547417号公報
 本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、透明スクリーンと透明スクリーンのフロント側に配置した映像投射ユニットとを備える映像投影システムにおいて、映像投射ユニットからの映像光が透明スクリーン上で結像した後に、透明スクリーンを透過した光が透明スクリーン以外のリア側の物体に到達して不要な結像を起こしたり、快適な視認を妨げたり、歩行者や通行車両等に透過光が照射され、安全な交通を妨げたりすることを防止できる映像投射システムを提供することにある。
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、透明スクリーンと、透明視野角制御フィルムと、透明スクリーンのフロント側に配置された映像投影ユニットとを備える映像投影システムにおいて、映像投影ユニットからの映像光の投影角度の範囲を、透明視野角制御フィルムの視野角制御角度の範囲内とすることで、透過光が透明視野角制御フィルムによって散乱されて、上記の技術的課題を解決できることを知見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の第1の実施形態によれば、
 透明スクリーンと、前記透明スクリーンの一方の面側に配置された透明視野角制御フィルムと、前記透明スクリーン側に配置された映像投影ユニットと、を備える映像投影システムであって、
 前記映像投影ユニットからの映像光の投影角度が前記透明視野角制御フィルムの視野角制御角度の範囲内となるように、前記映像投影ユニットが配置されており、
 前記映像光が、前記透明スクリーン上に結像し、
 前記透明スクリーンを透過した映像光が、前記透明視野角制御フィルムによって散乱される、映像投影システムが提供される。
 また、本発明の第2の様態によれば、
 透明スクリーンと、前記透明スクリーンの一方の面側に配置された透明視野角制御フィルムと、前記透明視野角制御フィルム側に配置された映像投影ユニットと、を備える映像投影システムであって、
 前記映像投影ユニットからの映像光の投影角度が前記透明視野角制御フィルムの視野角制御角度の範囲内となるように、前記映像投影ユニットが配置されており、
 前記映像光が、前記透明視野角制御フィルムによって散乱され、
 前記透明視野角制御フィルムを透過した映像光が、前記透明スクリーン上に結像する、映像投影システムが提供される。
 本発明の上記第1および第2の実施形態においては、前記透明視野角制御フィルムの視野角制御角度が、フロント側からの前記透明視野角制御フィルムの直交面に対して、10度以上80度以下であるであることが好ましい。
 本発明の上記第1および第2の実施形態においては、観察者の観察角度の範囲の下限値は、前記映像投影ユニットが前記観察者の上方に位置する場合、前記透明視野角制御フィルムの視野角制御角度の上限値よりも大きいことが好ましい。
 本発明の上記第1および第2の実施形態においては、観察者の観察角度の範囲の上限値は、前記映像投影ユニットが前記観察者の下方に位置する場合、前記透明視野角制御フィルムの視野角制御角度の下限値よりも小さいことが好ましい。
 本発明の上記第1および第2の実施形態においては、前記透明視野角制御フィルムは、視野角制御角度の範囲内の平行光線透過率が0%以上40%未満であり、かつ、視野角制御角度の範囲外の平行光線透過率が60%以上92%以下であることが好ましい。
 本発明の上記第1および第2の実施形態においては、前記透明スクリーンと前記透明視野角制御フィルムとが積層体を構成していることが好ましい。
 本発明の上記第1および第2の実施形態においては、前記積層体が、前記透明スクリーンと前記透明視野角制御フィルムとの間に透明層を含むことが好ましい。
 本発明の上記第1および第2の実施形態においては、前記透明スクリーンのヘイズ値が35%以下であることが好ましい。
 本発明の上記第1および第2の実施形態においては、前記透明スクリーンが、光反射性微粒子を含むことが好ましい。
 本発明の第1の実施形態によれば、透明スクリーンと、透明スクリーンのリア側に配置された透明視野角制御フィルムと、透明スクリーンのフロント側に配置された映像投影ユニットとを備える映像投影システムにおいて、映像投影ユニットからの映像光が透明スクリーン上で結像した後に、透明スクリーンを透過した光が透明スクリーン以外のリア側の物体に到達して不要な結像を起こしたり、快適な視認を妨げたり、歩行者や通行車両等に透過光が照射され、安全な交通を妨げたりすることを防止することができる。このような映像投影システムによれば、良好な演出、広告が可能となり、安全な交通の妨げになることもない。
 また、本発明の第2の実施形態によれば、透明スクリーンと、透明スクリーンのフロント側に配置された透明視野角制御フィルムと、透明視野角制御フィルムのフロント側に配置された映像投影ユニットとを備える映像投影システムにおいて、映像投影ユニットからの映像光が透明視野角制御フィルムによって散乱されることにより直進性を失った後に透明スクリーンに到達して結像することになり、光輝度および広視野角を実現することができる。また、透明スクリーンを透過した光は散乱するため、透明スクリーン以外のリア側の物体に到達して不要な結像を起こしたり、快適な視認を妨げたり、歩行者や通行車両等に透過光が照射され、安全な交通を妨げたりすることを防止することができる。このような映像投影システムによれば、良好な演出、広告が可能となり、安全な交通の妨げになることもない。
本発明の第1の実施形態による投影映像システムを示す概念図である。 本発明の第2の実施形態による投影映像システムを示す概念図である。 本発明の第2の実施形態による投影映像システムを示す概念図である。 本発明の第2の実施形態による投影映像システムと観察者の観察角度を示す概念図である。 本発明の第2の実施形態による投影映像システムと観察者の観察角度を示す概念図である。 実施例1の投影映像システムにおいて透明スクリーンのフロント側(映像投影ユニットと同じ側)からの観察結果を示す図である。 実施例1の投影映像システムにおいて透明スクリーンのリア側(映像投影ユニットと反対側)からの観察結果を示す図である。 実施例2の投影映像システムにおいて透明スクリーンのフロント側(映像投影ユニットと同じ側)からの観察結果を示す図である。 実施例2の投影映像システムにおいて透明スクリーンのリア側(映像投影ユニットと反対側)からの観察結果を示す図である 比較例1の投影映像システムにおいて透明スクリーンのフロント側(映像投影ユニットと同じ側)からの観察結果を示す図である。 比較例2の投影映像システムにおいて視野角制御フィルムのフロント側(映像投影ユニットと同じ側)からの観察結果を示す図である。
<映像投影システム>
 本発明の第1の実施形態の映像投影システムは、透明スクリーンと、透明スクリーンに対してフロント側に配置された映像投影ユニットと、透明スクリーン対してリア側に配置された透明視野角制御フィルムとを備える。このような映像投影システムにおいては、映像投影ユニットから投影された映像光が透明スクリーンで結像した後に、透明スクリーンを透過した光が、が透明視野角制御フィルムで散乱される。その結果、透明スクリーンを透過した映像光は、透明スクリーンの以外のリア側の物体で不要な結像を起こさず、透明スクリーンに対して映像投影ユニット側(フロント側)に位置する観察者からは不要な結像が視認されない。このような映像投影システムによれば、良好な演出、広告が可能となる。
 本発明において、「透明」とは、用途に応じた透過視認性を実現できる程度の透明性があれば良く、半透明であることも含まれる。
 本発明において、「透明視野角制御フィルムの視野角制御角度」とは、透明視野角制御フィルムの厚み方向の直交面(垂線)に対して基点側より成す角度により規定できる。具体的には、映像投影ユニットを基点とした場合、透明視野角制御フィルムの厚み方向の直交面(垂線)に対して映像投影ユニット側の端部から成す角度により規定し、観察者(視点)を基点とした場合、透明視野角制御フィルムの厚み方向の直交面(垂線)に対して観察者(視点)側から成す角度により規定する。
 本発明において、「観察者の角度範囲」とは、観察者(視点)を基点として、透明視野角制御フィルムの直交面(垂線)に対して観察者(視点)側から成す角度により規定する。
 なお、観察者側から成す角度は、目線の上側をプラス表記で、目線の下側をマイナス表記で規定することができる。
 本発明において、「フロント側」とは、透明スクリーンの観察者側表示面の方向を指し、「リア側」とは、透明スクリーンの観察者側表示面と反対側の方向を指す。
 本発明の第1の実施形態の映像投影システムの概念図を図1に示す。図1に示す映像投影システムは、透明スクリーン11と、透明スクリーンのリア側に配置された透明視野角制御フィルム12と、透明スクリーンのフロント側に配置された映像投影ユニット13とを備える。映像投影ユニット13からの映像光の投影角度の範囲14を、透明視野角制御フィルム12の視野角制御角度の範囲15に収まるようにすることで、透過光が透明視野角制御フィルム12の18の範囲(点線部分)に到達して拡散散乱されるため、透明視野角制御フィルム12のリア側に配置された物体で不要な結像を起こさない。一方、映像光が透明視野角制御フィルム12の19の範囲(実線部分)に到達した場合には、平行光が拡散散乱されずに、そのまま透明視野角制御フィルム12のリア側の物体に到達して、不要な結像を起こすことになる。なお、映像投影ユニット13側の透明視野角制御フィルム12の端部における厚み方向の直交面(垂線)16に対して映像投影ユニット13側から透明視野角制御フィルム12の視野角制御角度の範囲15のうち映像投影ユニット13からもっとも遠い範囲が成す角度をαとしている。
 本発明の第1の実施形態の映像投影システムにおいて、透明スクリーンと透明視野角制御フィルムとは積層体を構成することが好ましい。透明スクリーンと透明視野角制御フィルムとを積層体とすることで、透明スクリーンや透明視野角制御フィルムの空気界面における透過光の界面反射や不要な乱反射を防止し、コントラストをより向上させることができる。また、積層体とすることで映像投影システムの配置が容易となる。
 本発明の第2の実施形態の映像投影システムの概念図を図2に示す。図2に示す映像投影システムは、透明スクリーン21と、透明スクリーン21のフロント側に配置された透明視野角制御フィルム22と、透明視野角制御フィルム22のフロント側に配置された映像投影ユニット23とを備える。映像投影ユニット23からの映像光の投影角度の範囲24を、透明視野角制御フィルム22の視野角制御角度の範囲25に収まるようにすることで、映像光が透明視野角制御フィルム22によって散乱されることにより直進性を失った後に、拡散透過した光が透明スクリーン21に到達して結像することになり、光輝度および広視野角を実現することができる。結像した映像光以外の光は散乱するので透明スクリーン21以外のリア側に配置された物体で不要な結像を起こさない。なお、映像投影ユニット23側の透明視野角制御フィルム22の端部における厚み方向の直交面(垂線)26に対して映像投影ユニット23側から透明視野角制御フィルム22の視野角制御角度の範囲25のうち映像投影ユニット23からもっとも遠い範囲が成す角度をαとしている。
 本発明の第2の実施形態の映像投影システムにおいて、透明スクリーンと透明視野角制御フィルムとは積層体を構成することが好ましい。透明スクリーンと透明視野角制御フィルムとを積層体とすることで、透明スクリーンや透明視野角制御フィルムの空気界面における透過光の界面反射や不要な乱反射を防止し、コントラストをより向上させることができる。また、積層体とすることで映像投影システムの配置が容易となる。さらに、積層体とすることで、透明視野角制御フィルムを拡散透過した映像光が散逸する前に透明スクリーンで結像されることにより、ピンボケや解像度の劣化の少ない良好な映像が得られる。
 本発明の第2の実施形態において、透明スクリーンと視野角制御フィルムとが積層体を構成している映像投影システムの概念図を図3に示す。図3に示す映像投影システムは、透明スクリーン31と、透明スクリーン31のフロント側に配置された透明視野角制御フィルム32と、透明スクリーン31と透明視野角制御フィルム32の間に配置された透明層38とを含む積層体と、透明視野角制御フィルムのフロント側に配置された映像投影ユニット33とを備える。映像投影ユニット33からの映像光の投影角度の範囲34を、透明視野角制御フィルム32の視野角制御角度の範囲35に収まるようにすることで、映像光が透明視野角制御フィルム32によって散乱されることにより直進性を失った後に、拡散透過した光が透明スクリーン31に到達して結像することになり、光輝度および広視野角を実現することができる。結像した映像光以外の光は散乱するので透明スクリーン31以外のリア側の物体で不要な結像を起こさない。なお、映像投影ユニット33側の透明視野角制御フィルム32の端部における厚み方向の直交面(垂線)36に対して映像投影ユニット33側から透明視野角制御フィルム32の視野角制御角度の範囲35のうち映像投影ユニット33からもっとも遠い範囲が成す角度をαとしている。
 本発明の第2の実施形態の投影映像システムと観察者の観察角度を示す概念図を図4に示す。図4に示す映像投影システムは、透明スクリーン41と、透明スクリーン41のフロント側に配置された透明視野角制御フィルム42と、透明視野角制御フィルム42のフロント側に配置された映像投影ユニット43とを備える。観察者47は、透明スクリーン41および視野角制御フィルム42に対してフロント側に位置している。映像投影ユニット43は観察者47の頭上に配置され、映像投影ユニット43からの映像光の投影角度の範囲44を、透明視野角制御フィルム42の視野角制御角度の範囲45に収まるように配置されている。観察者47の観察角度の範囲49の下限値49lは、透明視野角制御フィルム42の視野角制御角度の範囲45の上限値45uよりも大きくなる。仮に、透明視野角制御フィルム42の視野角制御角度の範囲45が、観察者47の観察角度の範囲49と重なる場合には重なった部分の視界が妨げられ、透明視野角制御フィルム42および透明スクリーン41越しに背景を観察することができず、透明感が損なわれる。なお、映像投影ユニット43側の透明視野角制御フィルム42の端部における厚み方向の直交面(垂線)46に対して映像投影ユニット43側から透明視野角制御フィルム42の視野角制御角度の範囲45のうち映像投影ユニット43からもっとも遠い範囲が成す角度をαとし、透明視野角制御フィルム42の厚み方向の直交面(垂線)48に対して観察者(視点)47側から成す角度をβ(目線の上側)およびγ(目線の下側)としている。
 本発明の第2の実施形態の投影映像システムと観察者の観察角度を示す概念図を図5に示す。図5に示す映像投影システムは、透明スクリーン51と、透明スクリーン51のフロント側に配置された透明視野角制御フィルム52と、透明視野角制御フィルム52のフロント側に配置された映像投影ユニット53とを備える。観察者57は、透明スクリーン51および視野角制御フィルム52に対してフロント側に位置している。映像投影ユニット53は観察者57の下方に配置され、映像投影ユニット53からの映像光の投影角度の範囲54を、透明視野角制御フィルム52の視野角制御角度の範囲55に収まるように配置されている。観察者57の観察角度の範囲59の上限値59uは、透明視野角制御フィルム52の視野角制御角度の範囲55の下限値55lよりも小さくなる。仮に、透明視野角制御フィルム52の視野角制御角度の範囲55が、観察者57の観察角度の範囲59と重なる場合には重なった部分の視界が妨げられ、透明視野角制御フィルム52および透明スクリーン51越しに背景を観察することができず、透明感が損なわれる。なお、映像投影ユニット53側の透明視野角制御フィルム52の厚み方向の直交面(垂線)56に対して映像投影ユニット53側から透明視野角制御フィルム52の視野角制御角度の範囲55のうち映像投影ユニット53からもっとも遠い範囲が成す角度をαとし、透明視野角制御フィルム52の直交面(垂線)58に対して観察者(視点)57側から成す角度をβ(目線の上側)およびγ(目線の下側)としている。
 以下、映像投影システムの構成要素である映像投影ユニット、透明スクリーン、透明視野角制御フィルムについて、詳述する。
<映像投影ユニット>
 映像投影システムで用いられる映像投影ユニットは、下記の透明スクリーンに映像を投影できるものであれば特に限定されず、例えば、市販のリアプロジェクタやフロントプロジェクタを用いることができる。特に、映像光の投影角度を透明視野角制御フィルムの視野角制御角度の範囲内に調節し易いため、レンズシフト機能を有するキャノン(株)社製WX450STを好適に用いることができる。
<透明スクリーン>
 映像投影システムで用いられる透明スクリーンは、バインダと、微粒子とを含む光散乱層を備えるものであることが好ましい。当該透明スクリーンは、光散乱層のみからなる単層構成であってもよいし、保護層、基材層、粘着層、および反射防止層等の他の層をさらに備える複層構成の積層体であってもよい。また、当該透明スクリーンは、ガラスや透明パーティション等の支持体を備えてもよい。当該透明スクリーンは、映像投影ユニットから出射される投影光を異方的に拡散反射することにより投影光の視認性と透過光の視認性とを両立できる。
 当該透明スクリーンは、平面であってもよく、曲面であってもよい。例えば、当該透明スクリーンは、ガラスウィンドウ、ヘッドアップディスプレイ、およびウェアラブルディスプレイ等に好適に用いることができ、特に短焦点型プロジェクタ用透明スクリーンとして好適に用いることができる。
 当該透明スクリーンは、ヘイズ値が、好ましくは35%以下、より好ましくは1%以上30%以下であり、さらに好ましくは2%以上25%以下である。また、当該透明スクリーンは、全光線透過率が、好ましくは60%以上98%以下であり、より好ましくは65%以上96%以下であり、さらに好ましくは70%以上94%以下であり、さらにより好ましくは75%以上92%以下である。当該透明スクリーンのヘイズ値および全光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができる。なお、本発明において、透明スクリーンのヘイズ値および全光線透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。 
 当該透明スクリーンは、写像性が、好ましくは65%以上であり、より好ましくは70%以上98%以下であり、さらに好ましくは75%以上97%以下であり、さらにより好ましくは80%以上96%以下である。当該透明スクリーンの写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。
(光散乱層)
 光散乱層は、バインダと、微粒子とを含んでなる。微粒子としては下記の光反射性微粒子を好適に用いることができる。このような微粒子を用いることで、光散乱層内で光を異方的に拡散反射させて、光の利用効率を高めることができる。
 光散乱層の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは0.1μm~20mmであり、より好ましくは0.2μm~15mmであり、さらに好ましくは1μm~10mmである。光散乱層の厚さが上記範囲内であれば、スクリーンとしての強度を保ち易い。光散乱層は、下記の有機系バインダや無機系バインダを用いて得られた成型体であってもよく、ガラスや樹脂等からなる基板に形成した塗膜であってもよい。光散乱層は単層構成であってもよく、塗布等で2種以上の層を積層させる、または2種以上の光散乱層を粘着剤等で貼り合わせた複層構成であってもよい。
 光散乱層は、透明性の高いフィルムを得るために、透明性の高いバインダを用いることが好ましい。バインダとしては、有機系バインダ、無機系バインダがあり、有機系バインダとしては熱可塑性樹脂、熱硬化性樹脂、自己架橋性樹脂、ならびに電離放射線硬化性樹脂等を用いることができ、例えば、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、およびフッ素系樹脂等が挙げられる。
 熱可塑性樹脂としては、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、およびポリスチレン系樹脂が挙げられる。これらの中でも、ポリメタクリル酸メチル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂、セルロースアセテートプロピオネート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、およびポリスチレン樹脂を用いることがより好ましい。これらの樹脂は、1種単独または2種以上を組み合わせて用いることができる。
 電離放射線硬化型樹脂としては、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系樹脂等が挙げられる。これらの中でも、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが好ましい。また、電離放射線硬化型樹脂は熱可塑性樹脂および溶剤と混合されたものであってもよい。
 熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、メラミン樹脂、ウレタン系樹脂、尿素樹脂等が挙げられる。これらの中でも、エポキシ系樹脂、シリコーン系樹脂が好ましい。自己架橋性樹脂としては、シリコーン系樹脂、エポキシ樹脂、ウレタン樹脂、アクリル樹脂等が挙げられる。
 透明性の高い無機系バインダとしては、例えば、水ガラス、低軟化点を有するガラス材料、またはゾルゲル材料を挙げることができる。水ガラスとは、アルカリ珪酸塩の濃厚水溶液をいい、アルカリ金属としては通常ナトリウムが含まれている。代表的な水ガラスは、NaO・nSiO(n:正の任意の数)により示すことができ、市販品としては富士化学(株)社製珪酸ソーダを用いることができる。
 低軟化点を有するガラス材料は、軟化温度が好ましくは150~620℃の範囲にあるガラスであり、さらに好ましくは軟化温度が200~600℃の範囲であり、最も好ましくは軟化温度が250~550℃の範囲である。このようなガラス材料としては、PbO-B系、PbO-B-SiO系、PbO-ZnO-B系、酸成分及び金属塩化物を含む混合物を熱処理することにより得られる鉛フリー低軟化点ガラス等を挙げることができる。低軟化点ガラス材料には、微粒子の分散性および成形性向上のために、溶剤および高沸点有機溶剤等を混合することができる。
 ゾルゲル材料は、熱や光、触媒などの作用により、加水分解重縮合が進行し、硬化する化合物群である。例えば、金属アルコキシド(金属アルコラート)、金属キレート化合物、ハロゲン化金属、液状ガラス、スピンオングラス、またはこれらの反応物であり、これらに硬化を促進させる触媒を含ませたものであってもよい。また、金属アルコキシド官能基の一部にアクリル基などの光反応性の官能基を有するものであってもよい。これらは、要求される物性に応じて、単独で用いても良いし、複数種類を組み合わせて用いても良い。ゾルゲル材料の硬化体とは、ゾルゲル材料の重合反応が十分に進行した状態を指す。ゾルゲル材料は、重合反応の過程において無機基板の表面と化学的に結合して、強く接着する。そのため、硬化物層としてゾルゲル材料の硬化体を用いることで、安定した硬化物層を形成することができる。
 金属アルコキシドとは、加水分解触媒などによって任意の金属種を、水や有機溶剤と反応させて得られる化合物群であり、任意の金属種と、ヒドロキシ基、メトキシ基、エトキシ基、プロピル基、イソプロピル基等の官能基とが結合した化合物群である。金属アルコキシドの金属種としては、シリコン、チタン、アルミニウム、ゲルマニウム、ボロン、ジルコニウム、タングステン、ナトリウム、カリウム、リチウム、マグネシウム、スズなどが挙げられる。
 例えば、金属種がシリコンの金属アルコキシドとしては、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン(MTES)、ビニルトリエトキシシラン、p-スチリルトリエトキシシラン、メチルフェニルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-メルカプトプロピルトリエトキシシラン、トリエトキシシラン、ジフェニルシランジオール、ジメチルシランジオールなどや、これら化合物群のエトキシ基が、メトキシ基、プロピル基、イソプロピル基、ヒドロキシ基などに置き換わった化合物群などが挙げられる。これらのなかでも、トリエトキシシラン(TEOS)のエトキシ基をメトキシ基に置き換えたテトラメトキシシラン(TMOS)、TEOSが特に好ましい。これらは単独で用いても良く、複数種類を組み合わせて用いることもできる。
(溶剤)
 これらの有機系バインダ、無機系バインダは必要に応じて溶剤をさらに含むものであって良い。溶剤としては、有機溶剤に限定されず、一般の塗料組成物に用いられる溶剤が使用可能である。例えば、水をはじめとする親水性溶媒も使用可能である。また、本発明のバインダが液体である場合は溶剤を含有しなくてもよい。
 溶剤の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、n-プロパノール、ブタノール、2-ブタノール、エチレングリコール、プロピレングリコール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、テトラメチルベンゼン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、2硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。溶剤の添加量は、バインダや微粒子の種類や後述する製造工程に好適な粘度範囲等に応じて、適宜調節することができる。
(光反射性微粒子)
 光反射性微粒子は、形状は特に問わず、略球状であっても、薄片状であっても、針状であってもよい。光反射性微粒子の形状が略球状である場合、一次粒子のメジアン径は好ましくは0.1~2500nmであり、より好ましくは0.2~1500nmであり、さらに好ましくは0.5~500nmである。光反射性微粒子の一次粒子のメジアン径が上記範囲内であると、透過視認性を損なわずに投影光の十分な散乱効果が得られることで、透明スクリーンに鮮明な映像を投影することができる。なお、本発明において、光反射性微粒子の一次粒子のメジアン径(D50)は、動的光散乱法により粒度分布測定装置(大塚電子(株)製、商品名:DLS-8000)を用いて測定した粒度分布から求めることができる。
 光反射性微粒子の形状が薄片状である場合、一次粒子の平均径が好ましくは0.01~100μm、より好ましくは0.05~80μm、さらに好ましくは0.1~50μm、さらにより好ましくは0.5~30μmである。さらに、光反射性微粒子は、平均アスペクト比(=光反射性微粒子の平均径/平均厚さ)が好ましくは3~800、より好ましくは4~700、さらに好ましくは5~600、さらにより好ましくは10~500である。光反射性微粒子の平均径および平均アスペクト比が上記範囲内であると、透過視認性を損なわずに投影光の十分な散乱効果が得られることで、透明スクリーンに鮮明な映像を投影することができる。なお、本発明において、光反射性微粒子の平均径は、レーザー回折式粒子径分布測定装置((株)島津製作所製、品番:SALD-2300)を用いて測定した。平均アスペクト比は、SEM((株)日立ハイテクノロジーズ製、商品名:SU-1500)画像より算出した。 
 薄片状の光反射性微粒子としては、薄片状に加工できる光輝性材料を好適に用いることができる。光反射性微粒子の正反射率は、好ましくは12.0%以上であり、より好ましくは15.0%以上であり、さらに好ましくは20.0%以上80.0%以下である。なお、本発明において、光反射性微粒子の正反射率は、以下のようにして測定した値である。
(正反射率)
 分光測色計(コニカミノルタ(株)製、品番:CM-3500dを用いて測定した。適切な溶媒(水またはメチルエチルケトン)に分散させた粉体材料をスライドガラス上に膜厚が0.5mm以上になるように塗布、乾燥させた。得られた塗膜付きガラス板について、ガラス面からの塗膜部の正反射率を測定した。
 光反射性微粒子としては、分散させるバインダの種類にもよるが、例えば、アルミニウム、銀、銅、白金、金、チタン、ニッケル、スズ、スズ-コバルト合金、インジウム、クロム、酸化チタン、酸化アルミニウム、および硫化亜鉛からなる金属系粒子、ガラスに金属または金属酸化物を被覆した光輝性材料、または天然雲母や合成雲母に金属酸化物を被覆した光輝性材料を用いることができる。光反射性微粒子は、市販のものを使用してもよく、例えば、大和金属粉工業(株)製アルミニウムパウダーを好適に使用することができる。
 光散乱層中の光反射性微粒子の含有量は、光反射性微粒子の形状や正反射率等に応じて適宜調節することができる。例えば、光反射性微粒子の含有量は、バインダに対して、好ましくは0.0001~5.0質量%であり、好ましくは0.0005~3.0質量%であり、より好ましくは0.001~2.0質量%である。光反射性微粒子を上記範囲のように低濃度でバインダ中に分散させて光散乱層を形成することによって、光源から出射される投影光を異方的に散乱反射することにより、投影光の視認性と透過光の視認性とを向上することができる。
 光散乱層には、用途に応じて、微粒子以外にも従来公知の添加剤を加えてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、離型剤、難燃剤、可塑剤、滑剤、および色材等が挙げられる。色材としては、カーボンブラック、アゾ系色素、アントラキノン系色素、ペリノン系色素等の色素または染料を用いることができる。また、液晶性化合物等を混合してもよい
(基材層)
 基材層は、上記の光散乱層を支持するための層であり、透明スクリーンの強度を向上させることができる。基材層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような透明性の高い材料、例えばガラスまたは樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、上記の光散乱層と同様の透明性の高い樹脂を用いることができる。また、上記した樹脂を2種以上積層した複合フィルムまたはシートを使用してもよい。なお、基材層の厚さは、その強度が適切になるように材料に応じて適宜変更することができ、例えば、10~1000μmの範囲としてもよい。
(保護層)
 保護層は、透明スクリーンのフロント側(観察者側)に積層されるものであり、耐光性、耐傷性、および防汚性等の機能を付与するための層である。保護層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。保護層としては、粘着剤等を用いて保護フィルムを貼り合わせてもよく、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を反射型透明スクリーン表面に塗布し、硬化して保護層を形成してもよい。これらの中でも電離放射線硬化型樹脂を用いた保護層形成が特に好ましい。
 電離放射線硬化型樹脂組成物の被膜形成成分は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが使用できる。
 上記電離放射線硬化型樹脂組成物を紫外線硬化型樹脂組成物とするには、この中に光重合開始剤としてアセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等を混合して用いることができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。
 電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の硬化方法は通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速機から放出される50~1000KeV、好ましくは100~300KeVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
 保護層は、上記の光散乱層上に上記電離放射(紫外線)線硬化型樹脂組成物の塗工液をスピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の方法で、光散乱層の表面に塗布し、上記のような手段で塗工液を硬化させることにより形成することができる。また、保護層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。
(粘着層)
 粘着層は、透明スクリーンに透明視野角制御フィルムや保護フィルム等を貼付するための層である。粘着層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような粘着剤組成物を用いて形成することが好ましい。粘着剤組成物としては、例えば、天然ゴム系、合成ゴム系、アクリル樹脂系、ポリビニルエーテル樹脂系、ウレタン樹脂系、シリコーン樹脂系等が挙げられる。合成ゴム系の具体例としては、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴム、イソブチレン-イソプレンゴム、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体が挙げられる。シリコーン樹脂系の具体例としては、ジメチルポリシロキサン等が挙げられる。これらの粘着剤は、1種単独または2種以上を組み合わせて用いることができる。これらの中でも、アクリル系粘着剤が好ましい。
 アクリル系樹脂粘着剤は、少なくとも(メタ)アクリル酸アルキルエステルモノマーを含んで重合させたものである。炭素原子数1~18程度のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとカルボキシル基を有するモノマーとの共重合体であるのが一般的である。なお、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸をいう。(メタ)アクリル酸アルキルエステルモノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸sec-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ウンデシルおよび(メタ)アクリル酸ラウリル等を挙げることができる。 また、上記(メタ)アクリル酸アルキルエステルは、通常は、アクリル系粘着剤中に30~99.5質量部の割合で共重合されている。
 また、アクリル系樹脂粘着剤を形成するカルボキシル基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、マレイン酸モノブチルおよびβ-カルボキシエチルアクリレート等のカルボキシル基を含有するモノマーを挙げることができる。
 アクリル系樹脂粘着剤には、上記の他に、アクリル系樹脂粘着剤の特性を損なわない範囲内で他の官能基を有するモノマーが共重合されていても良い。他の官能基を有するモノマーの例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルおよびアリルアルコール等の水酸基を含有するモノマー;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミドおよびN-エチル(メタ)アクリルアミド等のアミド基を含有するモノマー;N-メチロール(メタ)アクリルアミドおよびジメチロール(メタ)アクリルアミド等のアミド基とメチロール基とを含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートおよびビニルピリジン等のアミノ基を含有するモノマーのような官能基を有するモノマー; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテルなどのエポキシ基含有モノマーなどが挙げられる。この他にもフッ素置換(メタ)アクリル酸アルキルエステル、(メタ)アクリロニトリルなどのほか、スチレンおよびメチルスチレンなどのビニル基含有芳香族化合物、酢酸ビニル、ハロゲン化ビニル化合物などを挙げることができる。
 アクリル系樹脂粘着剤には、上記のような他の官能基を有するモノマーの他に、他のエチレン性二重結合を有するモノマーを使用することができる。エチレン性二重結合を有するモノマーの例としては、マレイン酸ジブチル、マレイン酸ジオクチルおよびフマル酸ジブチル等のα,β-不飽和二塩基酸のジエステル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ビニルエーテル;スチレン、α-メチルスチレンおよびビニルトルエン等のビニル芳香族化合物;(メタ)アクリロニトリル等を挙げることができる。また、上記のようなエチレン性二重結合を有するモノマーの他に、エチレン性二重結合を2個以上有する化合物を併用することもできる。このような化合物の例としては、ジビニルベンゼン、ジアリルマレート、ジアリルフタレート、エチレングリコールジ(メタ)アクリレ-ト、トリメチロールプロパントリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等を挙げることができる。
 さらに、上記のようなモノマーの他に、アルコキシアルキル鎖を有するモノマー等を使用することができる。(メタ)アクリル酸アルコキシアルキルエステルの例としては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸2-メトキシプロピル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸2-メトキシブチル、(メタ)アクリル酸4-メトキシブチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸4-エトキシブチルなどを挙げることができる。
 粘着剤組成物としては、上記したアクリル系樹脂粘着剤の他、(メタ)アクリル酸アルキルエステルモノマーの単独重合体であっても良い。例えば、(メタ)アクリル酸エステル単独重合体としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸オクチル等が挙げられる。
 アクリル酸エステル単位2種以上を含む共重合体としては、(メタ)アクリル酸メチル-(メタ)アクリル酸エチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシ3-フェニルオキシプロピル共重合体等が挙げられる。(メタ)アクリル酸エステルと他の官能性単量体との共重合体としては、(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-エチレン共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル-スチレン共重合体が挙げられる。
 粘着剤は市販のものを使用してもよく、例えば、SKダイン2094、SKダイン2147、SKダイン1811L、SKダイン1442、SKダイン1435、およびSKダイン1415(以上、綜研化学(株)製)、オリバインEG-655、およびオリバインBPS5896(以上、東洋インキ(株)製)等(以上、商品名)を好適に使用することができる。
(反射防止層)
 反射防止層は、透明スクリーンの最表面での反射や、外光からの映りこみを防止するための層である。反射防止層は、透明スクリーンの少なくとも片面側、好ましくはフロント側(観察者側)に積層されるものであってもよく、フロント側およびリア側の両面に積層されるものであってもよい。特に透明スクリーンとして用いる際にはフロント側に積層するのが好ましい。反射防止層は、透明スクリーンの透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化型樹脂が特に好ましい。また、反射防止層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。
 反射防止層の形成方法としては、特に限定されないが、コーティングフィルムの貼合、フィルム基板に直接蒸着またはスパッタリング等でドライコートする方式、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート等のウェットコート処理などの方式を用いることができる。
(機能性層)
 透明スクリーンは、上記の各層以外にも、従来公知の様々な機能性層を備えてもよい。機能性層としては、染料や着色剤等を含んだ光吸収層、プリズムシート、マイクロレンズシート、フレネルレンズシート、およびレンチキュラーレンズシート等の光散乱層、紫外線および赤外線等の光線カット層等が挙げられる。
(透明スクリーンの製造方法)
 透明スクリーンの製造方法は、光散乱層を形成する工程を含むものである。光散乱層を形成する工程は、混練工程と製膜工程からなるからなる押出成形法、キャスト成膜法、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート、スプレー法等を含む塗布法、射出成形法、カレンダー成形法、ブロー成形法、圧縮成形法、セルキャスト法など公知の方法により成型加工でき、押出成形法、射出成形法、塗布法を好適に用いることができる。
 透明スクリーンの製造方法は、製膜工程で得られた樹脂フィルム(光散乱層)に、基材層、保護層、および粘着層等をさらに積層する工程を含んでもよい。各層の積層方法は、特に限定されず、従来公知の方法により行うことができる。各層をドライラミネートにより積層する場合には、透明スクリーンの透過視認性や所望の光学特性を損なわない範囲で接着剤等を使用してもよい。
<透明視野角制御フィルム>
 映像投影システムで用いられる透明視野角制御フィルムとしては、従来公知の透明視野角制御フィルムを用いることができ、視野角制御角度の範囲内において入射光を散乱し、視野角制御角度の範囲外において透過するものであれば良い。視野角制御角度は、透明視野角制御フィルムの直交面(垂線)に対して基点(映像投影ユニットまたは観察者)側より成す角度により規定でき、好ましくは10度以上80度以下であり、より好ましくは15度以上70度以下であり、さらに好ましくは20度以上60度以下である。また、透明視野角制御フィルムは、視野角制御角度の範囲内の平行光線透過率が好ましくは0%以上40%未満、より好ましくは0%以上30%未満であり、かつ、視野角制御角度の範囲外の平行光線透過率が好ましくは60%以上92%以下、より好ましくは70%以上92%以下である。
 このような視野角制御フィルムとして、単層の着色もしくは不透明なフィルムと透明なフィルムを交互に積層し、積層方向に切断して得られる特許文献4および特許文献5にあるようなルーバー構造を利用したフィルムであっても良い。
 また、フィルム表面に多数の溝を有し、溝の内部を吸光性材料で満たした透明なフィルムで構成される特許文献6にあるような光線コントロールフィルムであっても良い。
 上記のルーバー構造を利用したフィルムや光線コントロールフィルムにおいては、視野角制御範囲は、遮光部の間隔および遮光部の膜厚方向の長さによって調整することが可能である。また、透過部が占有する面積比率によって正面透過率が決まるが、遮光部において十分な遮光性能を得ようとすると遮光部の面積比率を増やす必要があるため正面透過率が低下し、遮光性能と正面透過率が相反するという特性を有している。
 さらに、透明視野角制御フィルムとしては、屈折率の異なる2種類以上の光重合性樹脂を用いて、所定角度範囲の入射光を散乱する機能を有する特許文献7にあるような光制御板であっても良い。特許文献7によれば、屈折率に差がある光重合性のオリゴマーやモノマーまたはそれらの混合物からなる樹脂組成物を膜状に維持し、それに特定の方向から紫外線を照射して硬化させることによって、所定範囲の光のみ散乱する機能を有する光制御フィルムが得られる。得られたフィルムは紫外線光源の長軸と短軸方向に対して異方性を示し、光源の長軸方向を軸としてフィルム状の硬化物を回転させた場合にのみ所定の角度範囲の光を散乱する。すなわち、得られたフィルムは屈折率の異なる領域がある方向に配向した状態で存在しており所定の角度範囲から入射した光は屈折率の異なる領域の境界で散乱を繰り返すことで、視野角制御効果が得られるものと考えられる。この方式では、使用する2種類以上の光重合性樹脂は屈折率が異なるだけで吸収はなく透明であるので非常に高い正面透過率が得られることが特長であり、硬化時に紫外線光が入射した方向ではほぼ完全な透明体となることから、本発明における透明視野角制御フィルムとして特に好適である。
 透明視野角制御フィルムとしては、市販の透明視野角制御フィルムを用いることができ、例えば、リンテック株式会社製ウインコスビジョンコントロールフィルム(Y-2555)(視野角制御角度:25度以上55度以下)を用いることができる。
<積層体>
 映像投影システムで用いられる積層体は、透明スクリーンと透明視野角制御フィルムとを備えるものである。積層体は、視野角制御フィルム上に透明スクリーンが直接形成された形態でも良いし、もしくは、透明スクリーン上に視野角制御フィルムが直接形成された形態でも良い。
 積層体は、映像投影システムの性能を損なわない範囲で、透明スクリーンと視野角制御フィルムとの間に、好ましくは透明樹脂を含む透明層を含んでもよい。例えば、積層体は、透明スクリーンと視野角制御フィルムとを、粘着剤、接着剤、または接着性樹脂等によって貼合された形態でも良い。
 積層体は、視野角制御角の範囲外の平行光線透過率が、好ましくは60%以上98%以下であり、より好ましくは65%以上96%以下であり、さらに好ましくは70%以上94%以下であり、さらにより好ましくは75%以上92%以下である。当該透明スクリーンの平行光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができる。なお、本発明において、透明スクリーンの平行光線透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。 
 積層体は、写像性が、好ましくは65%以上であり、より好ましくは70%以上98%以下であり、さらに好ましくは75%以上97%以下であり、さらにより好ましくは80%以上96%以下である。当該透明スクリーンの写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。
<車両用部材>
 本発明の映像投影システムには、上記の透明スクリーンを備える車両用部材を用いてもよい。車両用部材は、上記の透明視野角制御フィルムをさらに備えてもよい。車両用部材としては、フロントガラスやサイドガラス等が挙げられる。車両用部材は上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、車両用部材上に鮮明な画像を表示させることができる。
<建物用部材>
 本発明の映像投影システムには、上記の透明スクリーンを備える建物用部材を用いてもよい。建物用部材は、上記の透明視野角制御フィルムをさらに備えてもよい。建物用部材としては、住宅の窓ガラス、コンビニや路面店のガラス壁等を挙げることができる。建物用部材は上記の透明スクリーンを備えることで、別途のスクリーンを設けなくても、建物用部材上に鮮明な画像を表示させることができる。
<観察方法>
 実施例および比較例における機器配置および投影映像の観察条件は次のとおりである。
<据え置き設定の場合>
 映像投影ユニットとしてキャノン(株)製WX450STを使用し、レンズ中心が配置台面から10cmの高さになるよう配置した。
 実施例および比較例に記載の透明スクリーン、透明視野角制御フィルム、または積層体の試験体を厚み2mmのアクリル板に粘着材で貼合し、映像投影ユニットのレンズ先端から13.5cmの距離に垂直になるように台上に配置した。この時、試験体には投影映像ユニットからの映像光がおよそ縦14cmcm、横22cmの大きさで結像した。試験体に映った映像の下端が、配置台面から20cmとなるように試験体の高さを調整した。この状態で、フロント側およびリア側の水平位置から試験体を観察し、映像の映り具合および背景を目視で観察した。また、同時に写真撮影を行った。さらに、フロント側から試験体およびおよそ150cm背後にある壁を目視で観察し、試験体からの光漏れの状態を写真撮影した。
<映像投影システムの作製>
[実施例1]
 まず、ポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステル製、銘柄IFG8L)と、PETペレットに対して0.012質量%の薄片状アルミニウム微粒子A(光反射性微粒子、一次粒子の平均径1μm、アスペクト比300、正反射率62.8%)とを、タンブラー混合器にて30分間混合して、表面に均一に薄片状アルミニウムが付着したPETペレットを得た。得られたペレットを、ストランドダイスを備えた二軸混練押出機のホッパーへ供給し、押出温度250℃で薄片状アルミニウムが練り込まれたマスターバッチを得た。得られたマスターバッチとPETペレット(銘柄IFG8L)とを1:2の割合で均一に混合した後、Tダイを備えた二軸押出機のホッパーに投入し、押出温度250℃で押し出して、厚み75μmのフィルムを製膜し透明スクリーンを得た。透明スクリーンの光学特性を測定したところ、透明スクリーンのヘイズ値は3.9%であり、全光線透過率は86%であり、写像性は88%であった。次に、透明視野角制御フィルムとして、リンテック株式会社製ウインコスビジョンコントロールフィルム(Y-2555)(視野角制御角度:25度以上55度以下)を用意した。続いて、透明スクリーンと透明視野角制御フィルムとを貼合して、積層体Aを得た。積層体Aの光学特性を測定したところ、視野角制御角の範囲外の平行光線透過率は80%であり、写像性は85%であった。
 上記で得た積層体Aを配置した後、当該積層体Aの透明スクリーン側を観察者側とし、フロント側に映像投影ユニット(キャノン(株)製、WX450ST)を配置して、映像投影システムを作製した(第1の実施形態)。続いて、映像投影ユニットから映像光を透明スクリーンに向けて、透明視野角制御フィルムの視野角制御角度(25度以上55度以下)の範囲に収まるように投影したところ、透過光は透明視野角制御フィルムによって散乱され、積層体Aからリア側に約150cm離れた壁には映像は映らなかった。したがって、透明スクリーンを透過した光が、透明スクリーン以外の物体に到達して結像せず、快適な視認の妨げとならないことが確認された。また、水平に積層体Aを観察したところ、積層体Aには明瞭な映像が結像し、かつ、積層体Aの透過視認性が高かったため背景の壁は明瞭に確認できた。写真撮影の結果を図6に示した。
 次に、リア側に映像投影ユニットを配置して、水平に積層体Aを観察したところ、積層体Aには明瞭な映像が結像し、かつ、積層体Aの透過視認性が高かったため背景の壁は明瞭に確認できた。写真撮影の結果を図7に示した。
[実施例2]
 実施例1で得た積層体Aを配置した後、当該積層体Aの第1の透明視野角制御フィルム側を観察者側とし、フロント側に映像投影ユニット(キャノン(株)製、WX450ST)を配置して、映像投影システムを作製した(第2の実施形態)。続いて、映像投影ユニットから映像光を透明視野角制御フィルムに向けて、透明視野角制御フィルムの視野角制御角度(25度以上55度以下)の範囲に収まるように投影したところ、透明視野角制御フィルムによって拡散散乱した映像光が透明スクリーンに到達し、透明スクリーンを透過した光は散乱され、積層体Aからリア側に約150cm離れた壁には映像は映らなかった。したがって、透明スクリーンを透過した光が、透明スクリーン以外の物体に到達して結像せず、快適な視認の妨げとならないことが確認された。また、水平に積層体Aを観察したところ、積層体Aには明瞭な映像が結像し、積層体Aの透過視認性が高かったため背景の壁は明瞭に確認できた。写真撮影の結果を図8に示した。
 次に、リア側に映像投影ユニットを配置して、水平に積層体Aを観察したところ、積層体Aには明瞭な映像が結像し、積層体Aの透過視認性が高かったため背景の壁は明瞭に確認できた。写真撮影の結果を図9に示した。
 さらに、実施例2の積層体Aに結像した映像を水平に観察した時の輝度は、実施例1の積層体Aに結像した映像の輝度に比べてリア側もフロント側も高いことが分かった。
[比較例1]
 積層体Aの代わりに、上記の透明スクリーン単体をそのまま用いた以外は、実施例1と同様にして、映像投影システムを作製した。続いて、映像投影ユニットに対してフロント側から映像光を透明スクリーンに向けて投影したところ、透過光はリア側に配置された約150cm離れた壁にも結像し、透明スクリーンを透過した光が、透明スクリーン以外の物体に到達して結像し、快適な視認の妨げとなることが確認された。また、水平に透明スクリーンを観察したところ、透明スクリーンには明瞭な映像が結像し、透明スクリーンの透過視認性が高かったため背景の壁は明瞭に観察できた。
 次に、リア側に映像投影ユニットを配置して、水平に透明スクリーンを観察したところ、透明スクリーンには明瞭な映像が結像し、透明スクリーンの透過視認性が高かったため背景の壁は明瞭に観察できた。
 さらに、透明スクリーン越しに映像投影ユニットを観察したところ、ホットスポットと言われる映像投影ユニットの光源が非常に眩しく観察され、映像鑑賞の妨げとなることがわかった。
[比較例2]
 積層体Aの代わりに、上記の透明視野角制御フィルム単体をそのまま用いた以外は、実施例2と同様にして、映像投影システムを作製した。続いて、映像投影ユニットから映像光を透明視野角制御フィルムに向けて、透明視野角制御フィルムの視野角制御角度(25度以上55度以下)の範囲に収まるように投影したところ、透過光はリア側に配置された約150cm離れた壁には結像せず、透明視野角制御フィルムを透過した光が、透明視野角制御フィルム以外の物体に到達して結像せず、快適な視認の妨げとならないことが確認された。また、水平に透明視野角制御フィルムを観察したところ、背景の壁は明瞭に確認できたものの、映像投影ユニットからの映像光は透明視野角制御フィルムには鮮明に結像していなかった。
 次に、リア側に映像投影ユニットを配置して、水平に透明視野角制御フィルムを観察したところ、背景の壁は明瞭に確認できたものの、映像投影ユニットからの映像光は透明視野角制御フィルムには鮮明に結像していなかった。
 11、21、31、41、51:透明スクリーン
 12、22、32、42、52:透明視野角制御フィルム
 13、23、33、43、53:映像投影ユニット
 14、24、34 44、54:映像光の投影角度の範囲
 15、25、35、45、55:視野角制御角度の範囲
 16、26、36、46、48、56、58:透明視野角制御フィルムの直交面(垂線)
 18:視野角制御角度の範囲内の部分
 19:視野角制御角度の範囲外の部分
 38:透明層
 47、57:観察者
 49、59:観察角度範囲
 45u:視野角制御角度の範囲の上限値
 49l:観察角度範囲の下限値
 55l:視野角制御角度の範囲の下限値
 59u:観察角度範囲の上限値
 α:透明視野角制御フィルムの直交面(垂線)に対して成す角度
 β:透明視野角制御フィルムの直交面(垂線)に対して成す角度(上方側)
 γ:透明視野角制御フィルムの直交面(垂線)に対して成す角度(下方側)

Claims (10)

  1.  透明スクリーンと、前記透明スクリーンの一方の面側に配置された透明視野角制御フィルムと、前記透明スクリーン側に配置された映像投影ユニットと、を備える映像投影システムであって、
     前記映像投影ユニットからの映像光の投影角度が前記透明視野角制御フィルムの視野角制御角度の範囲内となるように、前記映像投影ユニットが配置されており、
     前記映像光が、前記透明スクリーン上に結像し、
     前記透明スクリーンを透過した映像光が、前記透明視野角制御フィルムによって散乱される、映像投影システム。
  2.  透明スクリーンと、前記透明スクリーンの一方の面側に配置された透明視野角制御フィルムと、前記透明視野角制御フィルム側に配置された映像投影ユニットと、を備える映像投影システムであって、
     前記映像投影ユニットからの映像光の投影角度が前記透明視野角制御フィルムの視野角制御角度の範囲内となるように、前記映像投影ユニットが配置されており、
     前記映像光が、前記透明視野角制御フィルムによって散乱され、
     前記透明視野角制御フィルムを透過した映像光が、前記透明スクリーン上に結像する、映像投影システム。
  3.  前記透明視野角制御フィルムの視野角制御角度が、10度以上80度以下である、請求項1または2に記載の映像投影システム。
  4.  観察者の観察角度の範囲の下限値は、前記映像投影ユニットが前記観察者の上方に位置する場合、前記透明視野角制御フィルムの視野角制御角度の範囲の上限値よりも大きい、請求項1~3のいずれか一項に記載の映像投影システム。
  5.  観察者の観察角度の範囲の上限値は、前記映像投影ユニットが前記観察者の下方に位置する場合、前記透明視野角制御フィルムの視野角制御角度の範囲の下限値よりも小さい、請求項1~3のいずれか一項に記載の映像投影システム。
  6.  前記透明視野角制御フィルムは、視野角制御角度の範囲内の平行光線透過率が0%以上40%未満であり、かつ、視野角制御角度の範囲外の平行光線透過率が60%以上92%以下である、請求項1~5のいずれか一項に記載の映像投影システム。
  7.  前記透明スクリーンと前記透明視野角制御フィルムとが積層体を構成している、請求項1~6のいずれか一項に記載の映像投影システム。
  8.  前記積層体が、前記透明スクリーンと前記透明視野角制御フィルムとの間に透明層を含む、請求項7に記載の映像投影システム。
  9.  前記透明スクリーンのヘイズ値が35%以下である、請求項1~8のいずれか一項に記載の映像投影システム。
  10.  前記透明スクリーンが、光反射性微粒子を含む、請求項1~9のいずれか一項に記載の映像投影システム。
PCT/JP2018/046959 2018-02-16 2018-12-20 映像投影システム WO2019159529A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500307A JPWO2019159529A1 (ja) 2018-02-16 2018-12-20 映像投影システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026322 2018-02-16
JP2018-026322 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159529A1 true WO2019159529A1 (ja) 2019-08-22

Family

ID=67619237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046959 WO2019159529A1 (ja) 2018-02-16 2018-12-20 映像投影システム

Country Status (3)

Country Link
JP (1) JPWO2019159529A1 (ja)
TW (1) TW201935126A (ja)
WO (1) WO2019159529A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171167A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 映像投影システム
WO2022247429A1 (zh) * 2021-05-24 2022-12-01 青岛海信激光显示股份有限公司 一种消散斑投影屏幕及投影系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277962A (ja) * 2001-01-09 2002-09-25 Denso Corp ホログラムスクリーン
JP2003116080A (ja) * 2001-10-05 2003-04-18 Nissan Motor Co Ltd 表示装置
JP2003294952A (ja) * 2002-03-29 2003-10-15 Denso Corp ホログラムスクリーン
JP2006084586A (ja) * 2004-09-14 2006-03-30 Seiko Instruments Inc スクリーン及び画像投影システム
JP2007034324A (ja) * 1999-12-22 2007-02-08 Kimoto & Co Ltd 透視可能な透過型スクリーン
JP2017181772A (ja) * 2016-03-30 2017-10-05 リンテック株式会社 貼付型プロジェクションスクリーン
JP2017198807A (ja) * 2016-04-26 2017-11-02 旭硝子株式会社 透過型透明スクリーン、映像表示システムおよび映像表示方法
JP2017207586A (ja) * 2016-05-17 2017-11-24 Jxtgエネルギー株式会社 光学素子およびそれを備える映像投影システム
JP2018106138A (ja) * 2016-12-14 2018-07-05 セントラル硝子株式会社 透明スクリーン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520678A (ja) * 1998-07-15 2002-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フロント投写スクリーン
WO2014188978A1 (ja) * 2013-05-20 2014-11-27 シャープ株式会社 表示装置
WO2017221528A1 (ja) * 2016-06-20 2017-12-28 パナソニックIpマネジメント株式会社 透明スクリーン、及び、映像表示システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034324A (ja) * 1999-12-22 2007-02-08 Kimoto & Co Ltd 透視可能な透過型スクリーン
JP2002277962A (ja) * 2001-01-09 2002-09-25 Denso Corp ホログラムスクリーン
JP2003116080A (ja) * 2001-10-05 2003-04-18 Nissan Motor Co Ltd 表示装置
JP2003294952A (ja) * 2002-03-29 2003-10-15 Denso Corp ホログラムスクリーン
JP2006084586A (ja) * 2004-09-14 2006-03-30 Seiko Instruments Inc スクリーン及び画像投影システム
JP2017181772A (ja) * 2016-03-30 2017-10-05 リンテック株式会社 貼付型プロジェクションスクリーン
JP2017198807A (ja) * 2016-04-26 2017-11-02 旭硝子株式会社 透過型透明スクリーン、映像表示システムおよび映像表示方法
JP2017207586A (ja) * 2016-05-17 2017-11-24 Jxtgエネルギー株式会社 光学素子およびそれを備える映像投影システム
JP2018106138A (ja) * 2016-12-14 2018-07-05 セントラル硝子株式会社 透明スクリーン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171167A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 映像投影システム
WO2022247429A1 (zh) * 2021-05-24 2022-12-01 青岛海信激光显示股份有限公司 一种消散斑投影屏幕及投影系统

Also Published As

Publication number Publication date
TW201935126A (zh) 2019-09-01
JPWO2019159529A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6815952B2 (ja) 反射型透明スクリーンの製造方法
JP6133522B1 (ja) 透明スクリーンおよびそれを備えた映像投影システム
JP6480081B2 (ja) 視認性向上フィルム、およびそれを備えた積層体、およびそれを備えた画像表示装置
US10488565B2 (en) Dispersion liquid for forming transparent light scattering layer of transparent screen, transparent screen, and method for manufacture of transparent screen
JP6266844B2 (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
WO2016190137A1 (ja) 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
WO2017150408A1 (ja) 映像投影システム
WO2020171167A1 (ja) 映像投影システム
WO2019159529A1 (ja) 映像投影システム
JP6691815B2 (ja) 映像投影システム
JP6313919B2 (ja) 透明光散乱体、それを備えた反射型透明スクリーン、およびそれを備えた映像投影システム
JP7134123B2 (ja) 映像投影システム
JP6765912B2 (ja) 映像を投影可能な積層体、およびそれを備えた映像投影システム
JP6691809B2 (ja) 映像投影システム
WO2020116431A1 (ja) 微粒子配向光反射制御フィルム
JP2020091367A (ja) 微粒子配向透明フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906405

Country of ref document: EP

Kind code of ref document: A1