WO2022247429A1 - 一种消散斑投影屏幕及投影系统 - Google Patents

一种消散斑投影屏幕及投影系统 Download PDF

Info

Publication number
WO2022247429A1
WO2022247429A1 PCT/CN2022/082848 CN2022082848W WO2022247429A1 WO 2022247429 A1 WO2022247429 A1 WO 2022247429A1 CN 2022082848 W CN2022082848 W CN 2022082848W WO 2022247429 A1 WO2022247429 A1 WO 2022247429A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
speckle
projection screen
fresnel lens
light
Prior art date
Application number
PCT/CN2022/082848
Other languages
English (en)
French (fr)
Inventor
冯宇
王超
肖伟
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2022247429A1 publication Critical patent/WO2022247429A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/58Projection screens collapsible, e.g. foldable; of variable area

Definitions

  • the present application relates to the technical field of projection screens, in particular to a speckle-dissipating projection screen and a projection system.
  • the projector In the field of projection display, especially the field of ultra-short-throw laser projection display, in order to achieve better brightness and display effect, the projector is generally used with a projection screen with Fresnel microstructure.
  • the projection picture presented on the projection screen has the problem of speckle.
  • some embodiments of the present application provide a speckle-dispelling projection screen, which includes a functional layer, a substrate layer, a Fresnel lens layer, and a reflective layer sequentially arranged along a first direction;
  • the layer is one of support layer, colored layer or surface layer; at least part of the functional layer is provided with diffusion particles.
  • some embodiments of the present application provide a projection system, which includes a projector and a speckle-dissipating projection screen according to any one of the above technical solutions.
  • FIG. 1 is a structural schematic diagram of a projection screen with a Fresnel microstructure in the related art
  • FIG. 2 is a schematic diagram of the use state of the projection system provided by some embodiments of the present application.
  • Fig. 3 is a schematic diagram of the use state of the speckle-dissipating projection screen provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a speckle-dissipating projection screen provided by another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a speckle-dissipating projection screen provided in Embodiment 1 of the present application;
  • FIG. 6 is a schematic structural diagram of another speckle-dissipating projection screen provided in Embodiment 1 of the present application.
  • FIG. 7 is a schematic structural diagram of another speckle-dissipating projection screen provided in Embodiment 1 of the present application.
  • FIG. 8 is a schematic structural diagram of another speckle-dissipating projection screen provided in Embodiment 1 of the present application.
  • FIG. 9 is a schematic structural diagram of another speckle-dissipating projection screen provided in Embodiment 1 of the present application.
  • Fig. 10 is a schematic diagram of the three-dimensional structure of the surface layer in Fig. 9;
  • Fig. 11 is a schematic diagram of the path of light passing through the surface layer in Fig. 9;
  • FIG. 12 is a schematic structural diagram of another surface layer in a speckle-dissipating projection screen provided in Embodiment 1 of the present application;
  • FIG. 13 is a schematic structural diagram of another surface layer in a speckle-dissipating projection screen provided in Embodiment 1 of the present application;
  • FIG. 14 is a schematic structural diagram of another surface layer in a speckle-dissipating projection screen provided in Embodiment 1 of the present application;
  • FIG. 15 is a schematic structural diagram of a speckle-dissipating projection screen provided in Embodiment 2 of the present application.
  • FIG. 16 is a schematic structural diagram of a speckle-dissipating projection screen provided in Embodiment 3 of the present application.
  • FIG. 17 is a schematic structural diagram of another speckle-eliminating projection screen provided in Embodiment 3 of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. connected, or integrally connected. It can be directly connected, or indirectly connected through an intermediary, and can be internally connected between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the term “comprising”, “comprising” or any other variant thereof is intended to cover a non-exclusive inclusion, such that a process, method, article or device comprising a series of elements not only includes those elements, but also includes Including other elements not expressly listed, or also including elements inherent in such process, method, article or apparatus.
  • an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • FIG. 1 is a schematic structural diagram of a projection screen with a Fresnel microstructure in the related art.
  • the projection screen generally includes a surface layer 101 , a colored layer 102 , a diffusion layer 103 , a Fresnel lens layer 104 and a reflective layer 105 which are sequentially stacked.
  • the surface layer 101 is used to protect the projection screen; the colored layer 102 is used to improve the contrast of the projection screen; the diffusion layer 103 includes a diffusion base layer and diffusion particles 106 distributed in the diffusion base layer, and the light emitted by the projector passes through the diffusion layer 103 Will be diffused by the diffusion particles 106, therefore, the diffusion layer 103 can improve the viewing angle of the projection screen; the Fresnel lens layer 104 and the reflective layer 105 are used together to change the reflection direction of the light emitted by the projector; wherein, the diffusion base layer also At the same time, it is used as a base for the production of the Fresnel lens layer 104 .
  • the diffusion layer 103 and the Fresnel lens layer 104 are next to each other, the propagation path of the light diffused by the diffusion layer 103 to the Fresnel lens layer 104 is relatively short, the coherence of the light is relatively large, and the speckle is serious .
  • the present application provides a projection system, which is used for projecting and playing pictures, videos, etc. for audiences.
  • FIG. 2 is a schematic view of the use state of the projection system 100 provided by some embodiments of the present application.
  • the projection system 100 includes a speckle-dissipating projection screen 1 and a projector 2 .
  • this application takes the state of the speckle-dissipating projection screen 1 unfolded in a certain vertical plane as an example, and defines the direction in which the audience 3 looks at the speckle-dissipating projection screen 1 as the frontal viewing direction.
  • the projector 2 When in use, the projector 2 can be placed at the front and bottom of the speckle-dissipating projection screen 1 , and the audience 3 is located in front of the speckle-dissipating projection screen 1 and looks at the speckle-dissipating projection screen 1 .
  • the incident light 21 emitted by the projector 2 illuminates the speckle-dissipating projection screen 1 , and the incident light 21 is reflected by the speckle-dissipating projection screen 1 and finally forms an outgoing light 22 that illuminates the audience 3 and forms an image on the speckle-dissipating projection screen 1 at the same time.
  • the projection screen generally sets a diffusion layer on the side of the Fresnel lens layer far away from the reflective layer. Diffusion particles are set in the diffusion layer.
  • the light enters the projection screen it will be diffused by the diffusion particles, and then directly Into the Fresnel lens layer, which makes the propagation path of the diffused light before entering the Fresnel lens layer shorter, and the coherence of the light at the Fresnel lens layer is greater, thereby making the projection screen Speckle is more serious. Therefore, it is necessary to design a new projection screen to eliminate the speckles of the projection screen to a certain extent.
  • FIG. 3 is a schematic diagram of a use state of the speckle-eliminating projection screen 1 provided by some embodiments of the present application.
  • the speckle-dispelling projection screen 1 includes a functional layer 11, a substrate layer 12, a Fresnel lens layer 13, and a reflective layer 14 that are sequentially stacked along the first direction; the functional layer 11 is a supporting layer, a colored layer, or a surface layer. A kind of; at least part of the functional layer 11 is provided with diffusion particles 15 .
  • the above-mentioned first direction is the front view direction, and is also the direction indicated by the solid arrow in FIG. 3 .
  • the material of the diffusion particles 15 can be PMMA (Polymethyl Methacrylate, polymethyl methacrylate).
  • the incident light 21 emitted by the projector 2 illuminates the speckle-dissipating projection screen 1, and the incident light 21 enters the speckle-dissipating projection screen 1 and is reflected by the reflective surface 131 of the Fresnel lens layer 13.
  • the reflective layer 14 reflects, and finally exits the speckle-dissipating projection screen 1 to form outgoing light 22 and illuminates the audience 3 .
  • the path of the light in Fig. 3 is only for illustration, and the refraction of the light is ignored.
  • the diffusing particles 15 are arranged in the functional layer 11, and the base material layer 12 is also arranged between the functional layer 11 and the Fresnel lens layer 13, so the light is diffused in the functional layer 11 and is still Just can reach Fresnel lens layer 13 after going through substrate layer 12, therefore, the propagation path of the light after being diffused is longer before reaching Fresnel lens layer 13, the coherence of light at Fresnel lens layer 13 places It is greatly reduced, which can eliminate speckle to a certain extent.
  • the functional layer 11 in the speckle-dissipating projection screen 1 in the embodiment of the present application can reduce the number of layers and thickness of the speckle-dissipating projection screen 1 .
  • the support layer can provide a support base for the entire speckle-dissipating projection screen 1 and can be used as a production base for other film layers.
  • the colored layer is used to increase the contrast of the speckle-eliminating projection screen 1 .
  • the surface layer is used to prevent the speckle projection screen 1 from being scratched.
  • diffusion particles 15 are evenly distributed in the entire functional layer 11.
  • FIG. 4 FIG. Prolong the propagation path of the light diffused by the diffusing particles 15 before reaching the Fresnel lens layer 13.
  • the functional layer 11 includes rows along the first direction (the direction indicated by the solid arrow in FIG. 4 ).
  • the diffusion part 111 and the non-diffusion part 112 of the cloth, the diffusion part 111 is located on the side of the non-diffusion part 112 away from the Fresnel lens layer 13 .
  • the diffusion particles 15 are provided in the diffusion part 111 , and the diffusion particles 15 are not provided in the non-diffusion part 112 .
  • the light is diffused in the diffusion part 111 in the functional layer 11, then passes through the non-diffusion part 112 and then enters the substrate layer 12, and then enters the Fresnel lens layer 13, so that the diffused light If the propagation path is extended again, the coherence of the light at the Fresnel lens layer 13 is further reduced, so that speckle can be further eliminated.
  • the base material layer 12 is used as a support base in the entire speckle-eliminating projection screen 1 , and also serves as a base for the Fresnel lens layer 13 to be manufactured.
  • the Fresnel lens layer 13 can be made by curing UV glue, because the UV glue has elasticity, so the Fresnel lens layer 13 can be curled.
  • the side of the Fresnel lens layer 13 far away from the substrate layer 12 has a plurality of reflective surfaces 131 arranged in the vertical direction, each reflective surface 131 is a plane inclined from top to bottom along the front view direction, and each reflective surface 131 and The included angle ⁇ of the horizontal plane gradually increases from top to bottom, and the included angle ⁇ takes values in the range of 5°-85°.
  • the Fresnel lens layer 13 When making the Fresnel lens layer 13, UV glue is coated on the substrate layer 12, and then the Fresnel lens layer 13 is embossed with a special mold, so that the Fresnel lens layer 13 is formed, and then the UV light source is used The lamp cures the UV glue, and then demolds to complete the production of the Fresnel lens layer 13 .
  • the Fresnel lens layer 13 can also be made of thermosetting glue, which can also be used.
  • the reflective layer 14 is coated on each reflective surface 131, and the reflective material in the reflective layer 14 can be aluminum; certainly in some other embodiments, the reflective material in the reflective layer 14 can also be Silver, or a combination of silver and aluminum, can be used.
  • aluminum particles are dissolved in a silane coupling agent (that is, a solvent for the aluminum powder solution) to form an aluminum powder solution, and then the aluminum powder solution is sprayed on the reflection surface of the Fresnel lens layer 13.
  • a silane coupling agent that is, a solvent for the aluminum powder solution
  • the diameter of the aluminum particles ranges from 5 ⁇ m to 20 ⁇ m. It should be noted that when selecting the aluminum particles, it is not necessary to limit the size of the aluminum particles to a certain diameter, but the overall diameter of the aluminum particles should be in the range of 5 ⁇ m-20 ⁇ m. In this way, because the diameter of the aluminum particles in the reflective layer 14 ranges from 5 ⁇ m to 20 ⁇ m, the diameter of the aluminum particles in this range is small, the particles are uniform, and the directionality is not obvious. After the reflective layer 14 is formed, a dense reflective plane.
  • the incident light 21 when the incident light 21 is irradiated on the reflective layer 14, its reflection path mainly depends on the inclination angle of the reflective surface 131 of the Fresnel lens layer 13, and there will be no chaotic reflection by the aluminum particles because the aluminum particles are relatively large. Phenomenon. Therefore, the light can be irradiated to the audience 3 according to the set direction, which reduces the waste of light energy, so that the gain of the speckle-dissipating projection screen 1 is relatively high.
  • the reflective layer 14 needs to fully cover the reflective surface 131 of the Fresnel lens layer 13. The smaller the diameter of the aluminum particles is, the thickness of the reflective layer 14 can be It is made very thin; and the thinner the thickness of the reflective layer 14 is, the less the quantity of aluminum particles is needed, so that the manufacturing cost of the reflective layer 14 can be saved.
  • flaky aluminum powder when selecting aluminum, you can also choose flaky aluminum powder.
  • the range of the aspect ratio of the flaky aluminum powder is (40:1)-(100:1), because the flaky aluminum powder
  • the diameter and thickness of aluminum are relatively large, so when sprayed on the reflective surface 131, the bonding ability of aluminum is relatively strong, and it is not easy to fall off.
  • the reflective layer 14 is molded, it is generally a layer of metal layer coated on the Fresnel lens layer 13, the thickness is very thin, so the entire reflective layer 14 can be curved, and the Fresnel lens layer 13 can also be curled, so in After the reflective layer 14 is coated on the Fresnel lens layer 13, the Fresnel lens layer 13 and the reflective layer 14 still have flexibility as a whole, and can realize curling.
  • the speckle-eliminating projection screen 1 further includes a protective layer 16 disposed on the side of the reflective layer 14 away from the Fresnel lens layer 13 .
  • the material of the protective layer 16 can be UV glue or paint. After the reflective layer 14 is made, the UV glue or paint can be coated on the side of the reflective layer 14 away from the Fresnel lens layer 13 .
  • the protective layer 16 can well protect the reflective layer 14 and prevent the reflective material in the reflective layer 14 from falling off.
  • one of the reflective layer 14 , the Fresnel lens layer 13 and the substrate layer 12 is provided with a dark dye distributed therein. It should be noted that, in order to prevent the speckle-dissipating projection screen 1 from having low brightness when in use, it is better to only set dark dyes in one film layer.
  • the dark dye when the dark dye is arranged in the reflective layer 14, on the basis of improving the contrast of the speckle-dissipating projection screen 1, the light is only absorbed by the dark dye when reflected at the reflective layer 14, so the energy loss is small ( If a separate coloring layer is provided, the light will be absorbed twice by the dark dye in the coloring layer before being reflected by the reflective layer 14 and after being reflected, and the energy loss is relatively large), thus making the speckle-dissipating projection screen 1 The brightness is higher.
  • the reflective layer 14 when the reflective layer 14 is produced, aluminum particles will aggregate when dissolved in a solvent.
  • a polymerization inhibitor/dispersant will be added to the solvent, and dark dyes are generally organic dyes, which can slightly weaken the aluminum particles.
  • the effect of the polymerization inhibitor/dispersant makes the aluminum particles agglomerate slightly, so that the flatness of the reflective layer 14 is slightly reduced, and the light can be scattered to a greater extent when it is irradiated on the reflective layer 14, so that the degree of light diffusion is greater , thereby improving the viewing angle of the speckle-eliminating projection screen 1 .
  • the dark color dye is an organic dye, and the organic dye can be dissolved in high molecular polymers and organic solvents, and the Fresnel lens layer 13 is made of UV glue, and the UV glue is a kind of high molecular polymer, which makes the dark color dye and phenanthrene
  • the bonding force of the Fresnel lens layer 13 is relatively strong, so that the adhesion of the reflective layer 14 as a whole to the Fresnel lens layer 13 is relatively high.
  • FIG. 5 is a schematic structural diagram of a speckle-eliminating projection screen 1 provided in Embodiment 1 of the present application.
  • the functional layer 11 is a support layer 17 , that is, the speckle-dissipating projection screen 1 includes a support layer 17 , a substrate layer 12 , a Fresnel lens layer 13 and a reflective layer 14 arranged in sequence. Both the supporting layer 17 and the substrate layer 12 serve as the supporting base of the entire speckle-dissipating projection screen 1 .
  • the diffusion particles 15 may be provided only in the diffusion portion 111 as shown in FIG. 5 , or may be distributed throughout the entire support layer 17 , either of which may be used.
  • the Fresnel lens layer 13 and the reflective layer 14 are flexible as a whole and can be curled.
  • the supporting layer 17 and the substrate layer 12 in the speckle dissipation projection screen 1 are made of flexible materials, so that the speckle dissipation projection screen 1 can curly.
  • the support layer 17 mentioned in this application is made of flexible material only means that the base material of the support layer 17 is a flexible material, not the diffusion particles 15 disposed in the support layer 17 .
  • the material of support layer 17 and substrate layer 12 can be PU (Polyurethane, polyurethane), and PU has flexibility, can be arbitrarily curled without deformation, and has wear resistance, high temperature resistance, high toughness, oil resistance, mechanical Strong performance and other advantages, use PU to make the support layer 17 and the base material layer 12, so that the support layer 17 and the base material layer 12 have flexibility and can realize curling.
  • PU Polyurethane, polyurethane
  • PU has flexibility, can be arbitrarily curled without deformation, and has wear resistance, high temperature resistance, high toughness, oil resistance, mechanical Strong performance and other advantages, use PU to make the support layer 17 and the base material layer 12, so that the support layer 17 and the base material layer 12 have flexibility and can realize curling.
  • the material of support layer 17 and base material layer 12 also can be TPU (Thermoplastic polyurethanes, thermoplastic polyurethane elastomer rubber), TPU has elasticity, can realize curling, use TPU to make support layer 17 and The substrate layer 12 can also make the supporting layer 17 and the substrate layer 12 flexible so as to realize curling.
  • TPU thermoplastic polyurethanes, thermoplastic polyurethane elastomer rubber
  • the support layer 17 and the substrate layer 12 can also be made of PET (Polyethylene terephthalate, polyterephthalate plastics), SBC (Styrenic Block Copolymers, styrene-based thermoplastic elastomers, also known as styrene-based block copolymers) and other flexible materials can make the supporting layer 17 and the substrate layer 12 flexible and rollable.
  • PET Polyethylene terephthalate, polyterephthalate plastics
  • SBC Styrenic Block Copolymers, styrene-based thermoplastic elastomers, also known as styrene-based block copolymers
  • other flexible materials can make the supporting layer 17 and the substrate layer 12 flexible and rollable.
  • the speckle-dissipating projection screen 1 can be curled, so that the speckle-dissipating projection screen 1 can be curled during transportation. , It is very convenient to install and use.
  • the speckle-dissipating projection screen 1 On the basis that the speckle-dissipating projection screen 1 can be rolled, in order to prevent the supporting layer 17 or the substrate layer 12 from being damaged during the rolling process of the speckle-dissipating projection screen 1, it is arranged in the rolling direction of the speckle-dissipating projection screen 1, if supported Layer 17 is positioned at the front side of base material layer 12, and then the thickness of support layer 17 is less than the thickness of base material layer 12, if support layer 17 is positioned at the rear side of base material layer 12, then the thickness of support layer 17 is greater than the thickness of base material layer 12. thickness.
  • the curling direction of the above-mentioned speckle-dispelling projection screen 1 can be the counterclockwise direction shown by the solid line arrow in Figure 5, or it can be clockwise opposite to the counterclockwise direction shown by the solid line arrow in Figure 5 direction.
  • Both the supporting layer 17 and the substrate layer 12 can be defined as the supporting base layer of the speckle-dissipating projection screen 1, and in the curling direction of the speckle-dissipating projection screen 1, the curling degree of the supporting base layer at the front is greater than that of the supporting base layer at the rear
  • the degree of curling of the base layer, so the front support base layer is more likely to be damaged, and the thickness of the front support base layer is set in this application is smaller than the thickness of the back support base layer, so that the front support base layer
  • the degree of curl is large, due to the thinner thickness, the degree of extrusion deformation at the curled position will be eased, thereby avoiding damage to the front supporting base layer.
  • it also makes it easier to roll up the entire speckle-dissipating projection screen 1 , and the rebound is weaker after being rolled up.
  • the thickness difference between the supporting layer 17 and the substrate layer 12 is set to range from 30 ⁇ m to 50 ⁇ m, for example, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m can be selected. Setting the thickness difference between the supporting layer 17 and the base layer 12 in the range of 30 ⁇ m-50 ⁇ m makes it easier to roll the speckle-dissipating projection screen 1 and less likely to damage the supporting base layer in front of the rolling direction.
  • the thickness difference between the support layer 17 and the base material layer 12 is outside the value range of 30 ⁇ m-50 ⁇ m, it can also be used, for example, 25 ⁇ m, 55 ⁇ m, etc. can be selected.
  • the thickness range of the support layer 17 and the substrate layer 12 is set to 75 ⁇ m-300 ⁇ m, for example, 75 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m or 300 ⁇ m can be selected, which can be used according to the actual situation during design Just select.
  • the thicknesses of the supporting layer 17 and the substrate layer 12 are set outside the above range of 75 ⁇ m-300 ⁇ m, they can also be used, for example, 50 ⁇ m, 350 ⁇ m, etc. can be selected.
  • the supporting layer 17 and the base material layer 12 are made of flexible materials.
  • the support layer 17 and the substrate layer 12 can also be made of MS (methyl methacrylate-styrene copolymer, Methyl methacrylate-styrene copolymer), PVC (polyvinyl chloride, Polyvinyl chloride), PE (Polyethylene, Polyethylene), PP (polypropylene, Polypropylene) and other hard materials can also be used.
  • FIG. 6 is a schematic structural diagram of another speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application.
  • the speckle-dispelling projection screen 1 also includes a colored layer 18, and the colored layer 18 is arranged between the support layer 17 and the substrate layer 12; the colored layer 18 includes a colored base layer and is arranged on the colored Dark dye in the basal layer.
  • the above-mentioned dark dyes are generally organic dyes, and azo dyes, phthalocyanine dyes, etc. can be used.
  • the colored base layer is made of a flexible material, so that the colored layer 18 as a whole is flexible and can be rolled up, without affecting the entire speckle-dissipating projection screen. 1 curl performance.
  • the material of the colored base layer may be PET, PU, TPU, SBC and the like.
  • OCA glue the material of the colored base layer can also be UV glue, OCA glue or heat-curable glue.
  • the colored layer 18 can be directly formed on the support layer 17, and then it can be formed through its own adhesion properties during curing. Bonding with the base material layer 12 does not need to be bonded and fixed with the support layer 17 and the base material layer 12 by special OCA glue.
  • the colored base layer can also be made of rigid materials, such as MS, PVC, PP or PE, without considering whether the speckle-dispelling projection screen 1 can be rolled.
  • diffusing particles are arranged in the colored layer 18, so that the light also diffuses when passing through the colored layer 18, thereby improving the speckle-dissipating effect.
  • the viewing angle of projection screen 1 is improved by diffusing particles (not shown) in the colored layer 18, so that the light also diffuses when passing through the colored layer 18, thereby improving the speckle-dissipating effect.
  • FIG. 7 is a schematic structural diagram of another speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application.
  • the speckle-eliminating projection screen 1 further includes a surface layer 19 disposed on a side of the supporting layer 17 away from the Fresnel lens layer 13 .
  • the provision of the surface layer 19 can prevent the surface of the speckle-dissipating projection screen 1 from being scratched, thereby affecting the display effect of the speckle-dissipating projection screen 1 .
  • This surface layer 19 is made of a flexible material.
  • the surface layer 19 can be made by curing UV glue, because the UV glue has elasticity, so the surface layer 19 can be curled.
  • the rollability of the surface layer 19 avoids affecting the curling performance of the entire speckle-eliminating projection screen 1 .
  • the surface layer 19 When making the surface layer 19 , apply UV glue on the side of the support layer 17 away from the Fresnel lens layer 13 , and then use a UV light source lamp to cure the UV glue to complete the making of the surface layer 19 .
  • the surface layer 19 can also be heat-cured on the support layer 17 by heat-curable glue, which can also be used.
  • FIG. 8 is a schematic structural diagram of another speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application.
  • the surface of the surface layer 19 away from the Fresnel lens layer 13 is coated with diffusion particles 15 . Coating the diffusion particles 15 makes the haze value of the surface layer 19 far away from the Fresnel lens layer 13 larger, avoiding specular reflection of light when it is irradiated on the surface of the surface layer 19 away from the Fresnel lens layer 13, This in turn prevents a sharp image from forming on the ceiling.
  • the diffusing particles 15 when the light is irradiated on the surface of the surface layer 19 away from the Fresnel lens layer 13 , it is diffused by the diffusing particles 15 , so that the light is more scattered, thereby improving the viewing angle of the speckle-eliminating projection screen 1 .
  • the material of the diffusion particles 15 can be PMMA.
  • the haze value of the surface of the surface layer 19 away from the Fresnel lens layer 13 can range from 12% to 20%.
  • the haze value can be set to 12%, 15%, 18% or 20%, etc., can be used.
  • the haze value of the surface of the surface layer 19 far away from the Fresnel lens layer 13 is within this range, no specular reflection will occur when the light irradiates on the surface of the surface layer 19 far away from the Fresnel lens layer 13, and then anti-ceiling reflection can be realized. .
  • the haze value of the surface of the surface layer 19 away from the Fresnel lens layer 13 is set to a value in the range of 12%-20%, which can be realized in at least the following two ways: 1) the surface layer 19 is away from the Fresnel lens The surface of layer 13 is subjected to AG treatment (ie, anti-glare treatment); 2) embossing texture patterns on the surface of surface layer 19 away from Fresnel lens layer 13 through a mold.
  • AG treatment ie, anti-glare treatment
  • UV glue is coated on the side of the support layer 17 away from the Fresnel lens layer 13, then the surface layer 19 is embossed with a special mold, so that the surface layer 19 is formed, and then Use the UV light source lamp to cure the UV glue, and then release the mold to complete the production of the surface layer 19 .
  • setting the haze value of the surface of the surface layer 19 away from the Fresnel lens layer 13 to be greater than 20% can also achieve anti-reflective ceiling, but the haze value is in the range of 12%-20%. , the anti-reflective effect of the ceiling is better, and the definition of the speckle-dissipating projection screen 1 is better.
  • the surface of the surface layer 19 away from the Fresnel lens layer 13 can also be set as a smooth surface, so that the light can be reduced from the surface layer 19 away from the Fresnel lens layer.
  • the diffusion at the surface of the Neel lens layer 13 further improves the sharpness of the speckle-eliminating projection screen 1 .
  • FIG. 9 is a schematic structural view of another speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application
  • FIG. 10 is a schematic three-dimensional structural view of the surface layer 19 in FIG. 9
  • the surface of the surface layer 19 away from the Fresnel lens layer 13 is provided with a plurality of light-transmitting protrusions 191, and the surface of the light-transmitting protrusions 191 has a tapered portion and/or a gradual expansion portion along the direction away from the Fresnel lens layer 13 .
  • the light-transmitting protrusion 191 disposed on the surface layer 19 is a linear semi-cylindrical structure, that is, the cross-section of the light-transmitting protrusion 191 taken by a plane perpendicular to the direction of its length extension is semicircular.
  • the light-transmitting protrusions 191 on the surface layer 19 are pressed and formed by a mold when the surface layer 19 is produced.
  • the semicircular cross-sections of the light-transmitting protrusions 191 are set to have the same size in the longitudinal direction, and the shapes and sizes of the light-transmitting protrusions 191 on the surface layer 19 are the same.
  • the light-transmitting protrusions 191 shown in FIG. 9 extend along the vertical direction and are arranged in parallel along the horizontal direction.
  • the horizontal direction described in this application is both perpendicular to the front view direction and perpendicular to the vertical direction.
  • the direction in which each light-transmitting protrusion 191 extends is parallel to the supporting layer 17 .
  • the light-transmitting protrusions 191 on the surface layer 19 are arranged continuously along the horizontal direction, that is, the adjacent light-transmitting protrusions 191 are connected in sequence.
  • the surface of the light-transmitting protrusions 191 that is perpendicular to the direction of its length extension is set.
  • the range of the diameter of the intercepted semicircular section is 20 ⁇ m-300 ⁇ m.
  • each light-transmitting protrusion 191 faces away from the Fresnel lens layer 13, and the plane opposite to the arc surface of each light-transmitting protrusion 191 faces the Fresnel lens layer 13, which is equivalent to that each light-transmitting protrusion 191 is
  • the straight line of the semicircular cross-section intercepted by the face perpendicular to its length extension direction is located on the side of the arc near the Fresnel lens layer 13, then the profile of the semicircular cross-section gradually moves away from the Fresnel lens layer 13.
  • the curved surface of each light-transmitting protrusion 191 is tapered in the direction away from the Fresnel lens layer 13 .
  • FIG. 11 is a schematic diagram of the path of light passing through the surface layer 19 in FIG. During the light emitting process, it will pass through the light-transmitting protrusions 191 and then enter the air, thereby refracting. Because the refractive index of the UV glue (that is, the material for making the surface layer 19) must be greater than that of the air, the light will diffuse.
  • the refractive index of the UV glue that is, the material for making the surface layer 19
  • each light-transmitting protrusion 191 has an arc surface, which is tapered in the direction away from the Fresnel lens layer 13, and extends in the vertical direction, so the light tends to diffuse in the horizontal direction, and then passes through the The light-transmitting protrusions 191 can improve the viewing angle of the speckle-eliminating projection screen 1 in the horizontal direction.
  • the length of the light-transmitting protrusions 191 can also extend along other directions.
  • the light can diffuse along another set direction after passing through each light-transmitting protrusion 191 during the outgoing process.
  • the direction is perpendicular to the front viewing direction and the length extension direction of each light-transmitting protrusion 191 , thereby improving the viewing angle of the speckle-dispelling projection screen 1 in the set direction.
  • the above-mentioned light-transmitting protrusion 191 is a semi-cylindrical structure, and it is not intended to limit the shape of the light-transmitting protrusion 191 to be half of a certain cylindrical structure. In some cases, the light-transmitting protrusion 191 is perpendicular to the The area of the section taken by the surface in the direction of its length extension can also be larger or smaller than the area of the corresponding semicircle.
  • the corresponding semicircle here refers to the semicircle corresponding to the circle with the same curvature as the light-transmitting protrusion 191 .
  • each light-transmitting protrusion 191 as an elongated protrusion whose length extending direction is parallel to the supporting layer 17 .
  • the light-transmitting protrusion 191 can also be a protrusion of other shapes, such as a columnar structure, the axis of the columnar structure is perpendicular to the Fresnel lens layer 13, and the columnar structure is far away from the Fresnel lens layer.
  • One end of 13 has an arc surface, the arc surface tapers or expands in the direction of the front view, and the arc surface is a long strip arc surface, and the length of the strip arc surface extends in a direction parallel to the support layer 17, then Diffusion of light can also be achieved.
  • each light-transmitting protrusion 191 is a semi-cylindrical structure, and the cross-section of each light-transmitting protrusion 191 taken by a plane perpendicular to its length extending direction is semicircular. In some other embodiments, each light-transmitting protrusion 191 can also be a structure of other shapes.
  • FIG. 12 is a schematic structural diagram of another surface layer 19 in a speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application.
  • each light-transmitting protrusion 191 taken by a plane perpendicular to its length extension direction can also be triangular, and the corresponding light-transmitting protrusion 191 is a triangular prism structure, and one side of the light-transmitting protrusion 191 faces the Fresnel lens layer 13 (not shown in the figure), the edge opposite to the side is far away from the Fresnel lens layer 13 , and the light-transmitting protrusions 191 are tapered in the direction away from the Fresnel lens layer 13 as a whole.
  • FIG. 13 is a schematic structural view of the surface layer 19 in another speckle-dissipating projection screen 1 provided in Embodiment 1 of the present application.
  • Each light-transmitting protrusion 191 is a cross-section taken by a plane perpendicular to its length extension It is trapezoidal, and the planes where the two parallel straight lines are defined in the trapezoidal section are respectively the first side and the second side, and the area of the first side is greater than the area of the second side, and the first side faces the Fresnel lens layer 13 ( not shown in the figure), the second side is away from the Fresnel lens layer 13 , and the light-transmitting protrusion 191 is tapered in a direction away from the Fresnel lens layer 13 as a whole.
  • each light-transmitting protrusion 191 taken by a plane perpendicular to its length extension direction is not limited to the above three types, and can also be other shapes, as long as the above-mentioned cross-section is satisfied.
  • the direction of the Fresnel lens layer 13 only needs to have a tapered contour section and/or a tapered contour section. Referring to FIG. 14, FIG.
  • the light-transmitting protrusions 191 as semi-cylindrical structures parallel to each other and the semi-cylindrical structures are linear.
  • the light-transmitting protrusions 191 may not be linear structures, for example, the light-transmitting protrusions 191 may be bent structures or curved structures, which may also be used; each light-transmitting protrusions 191 may not be mutually Parallel can also be used.
  • the above description is made by taking the continuous arrangement of the light-transmitting protrusions 191 along their arrangement direction as an example.
  • the light-transmitting protrusions 191 can also be arranged at intervals along their arrangement direction, and the same can be used.
  • each light-transmitting protrusion 191 is a semi-cylindrical structure, and the cross-sections of the light-transmitting protrusions 191 taken by the plane perpendicular to the length extending direction are the same everywhere in the length extending direction.
  • each light-transmitting protrusion 191 may not be a regular structure, and the cross-sections of the light-transmitting protrusions 191 everywhere along its length extending direction, taken by a plane perpendicular to its length extending direction, may not Same, same can be used.
  • the haze value of the surface on which the light-transmitting protrusions 191 are disposed is in the range of 12%-20%.
  • the haze value can be set to 12%, 15%, 18% or 20%, etc., can be used.
  • the haze value of the surface of the light-transmitting protrusion 191 is within this range, no specular reflection will occur when the light is irradiated on the surface of the light-transmitting protrusion 191 , thereby realizing anti-reflection on the ceiling.
  • Setting the haze value of the surface of the light-transmitting protrusion 191 to a value within the range of 12%-20% can be achieved in at least the following two ways: 1) AG treatment is performed on the surface of the light-transmitting protrusion 191 (ie anti- glare treatment); 2) embossing texture patterns on the surface of the light-transmitting protrusion 191 through a mold.
  • FIG. 15 is a schematic structural diagram of a speckle-eliminating projection screen 1 provided in Embodiment 2 of the present application.
  • the functional layer 11 is the surface layer 01 , that is, the speckle-dissipating projection screen 1 includes the surface layer 01 , the substrate layer 12 , the Fresnel lens layer 13 and the reflective layer 14 arranged sequentially.
  • the diffusion particles 15 may be provided only in the diffusion part 111 as shown in FIG. 15 , or may be spread over the entire surface layer 01 , either of which may be used.
  • the Fresnel lens layer 13 and the reflective layer 14 are flexible as a whole and can be curled.
  • the surface layer 01 and the substrate layer 12 in the speckle dissipation projection screen 1 are made of flexible materials, so that the speckle dissipation projection screen 1 can curly.
  • the term that the surface layer 01 is made of flexible materials in this application only means that the base material of the surface layer 01 is a flexible material, not the diffusion particles 15 disposed in the surface layer 01 .
  • the surface layer 01 can be made of UV glue so that it can be flexible.
  • the surface layer 01 in the speckle-dispelling projection screen 1 can be modified with reference to Embodiment 1, such as setting the haze value of the surface layer 01 away from the Fresnel lens layer 13 to a range of 12%-20%. .
  • the surface of the surface layer 01 away from the Fresnel lens layer 13 is coated with diffusion particles.
  • light-transmitting protrusions are provided on the surface of the surface layer 01 far away from the Fresnel lens layer 13 , and the haze value of the surface where the light-transmitting protrusions are disposed ranges from 12% to 20%.
  • Various modifications can be made with reference to Embodiment 1, which will not be repeated here.
  • FIG. 16 is a schematic structural diagram of a speckle-eliminating projection screen 1 provided in Embodiment 3 of the present application.
  • the functional layer 11 is the colored layer 02 , that is, the speckle-eliminating projection screen 1 includes the colored layer 02 , the substrate layer 12 , the Fresnel lens layer 13 and the reflective layer 14 arranged sequentially.
  • the diffusion particles 15 may be provided only in the diffusion portion 111 as shown in FIG. 16 , or may be provided throughout the entire colored layer 02 , either of which may be used.
  • the Fresnel lens layer 13 and the reflective layer 14 are flexible as a whole and can be curled.
  • the colored layer 02 and the substrate layer 12 in the speckle-dissipating projection screen 1 are made of flexible materials, so that the speckle-dissipating projection screen 1 can curly.
  • the coloring layer 02 generally includes a coloring base layer and a dark dye disposed in the coloring base layer, therefore, it is only necessary to set the coloring base layer as a flexible material. There is no need to limit the material of the diffusion particles 15 disposed in the colored layer 02 .
  • the coloring layer 02 can be made of UV glue so that it can be flexible.
  • FIG. 17 is a schematic structural diagram of another speckle-dissipating projection screen 1 provided in Embodiment 3 of the present application.
  • the speckle-eliminating projection screen 1 further includes a surface layer 03 , and the surface layer 03 is disposed on a side of the colored layer 02 away from the Fresnel lens layer 13 .
  • the surface layer 03 in the speckle-dispelling projection screen 1 can be modified with reference to Embodiment 1, such as setting the value range of the haze value of the surface layer 03 away from the Fresnel lens layer 13 to be 12%-20%. .
  • the surface of the surface layer 03 away from the Fresnel lens layer 13 is coated with diffusion particles.
  • light-transmitting protrusions are provided on the surface of the surface layer 03 away from the Fresnel lens layer 13 , and the haze value of the surface of the light-transmitting protrusions is set to range from 12% to 20%.
  • the present application also provides a speckle-eliminating projection screen, the structure of which is the same as that of the speckle-eliminating projection screen 1 in the above-mentioned projection system 100 , which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种消散斑投影屏幕(1)及投影系统(100),投影屏幕(1)包括沿第一方向顺次层叠排布的功能层(11)、基材层(12)、菲涅尔透镜层(13)和反射层(14);功能层(11)为支撑层(17)、着色层(18)或表面层(19)中的一种;功能层(11)的至少部分设有扩散粒子(15)。解决了投影屏幕散斑较为严重的问题。

Description

一种消散斑投影屏幕及投影系统
相关申请的交叉引用
本申请要求在2021年5月24日提交中国专利局、申请号为202110567973.3,发明名称为一种消散斑投影屏幕及投影系统的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及放映屏幕技术领域,尤其涉及一种消散斑投影屏幕及投影系统。
背景技术
在投影显示领域,尤其是超短焦激光投影显示领域,为达到较好的亮度及显示效果,投影机一般会搭配具有菲涅尔微结构的投影屏幕使用。但是随着激光光源的应用,由于激光光束的相干性,导致在投影屏幕上呈现的投影画面具有散斑问题。
发明内容
第一方面,本申请一些实施例提供一种消散斑投影屏幕,该消散斑投影屏幕包括沿第一方向顺次层叠排布的功能层、基材层、菲涅尔透镜层和反射层;功能层为支撑层、着色层或表面层中的一种;功能层的至少部分设有扩散粒子。
第二方面,本申请一些实施例提供一种投影系统,该投影系统包括投影机和如上述任一技术方案的消散斑投影屏幕。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中具有菲涅尔微结构的投影屏幕的结构示意图;
图2为本申请一些实施例提供的投影系统的使用状态示意图;
图3为本申请一些实施例提供的消散斑投影屏幕的使用状态示意图;
图4为本申请另一些实施例提供的消散斑投影屏幕的结构示意图;
图5为本申请实施例一提供的一种消散斑投影屏幕的结构示意图;
图6为本申请实施例一提供的另一种消散斑投影屏幕的结构示意图;
图7为本申请实施例一提供的又一种消散斑投影屏幕的结构示意图;
图8为本申请实施例一提供的又一种消散斑投影屏幕的结构示意图;
图9为本申请实施例一提供的又一种消散斑投影屏幕的结构示意图;
图10为图9中表面层的立体结构示意图;
图11为光线经过图9中表面层时的路径示意图;
图12为本申请实施例一提供的又一种消散斑投影屏幕中表面层的结构示意图;
图13为本申请实施例一提供的又一种消散斑投影屏幕中表面层的结构示意图;
图14为本申请实施例一提供的又一种消散斑投影屏幕中表面层的结构示意图;
图15为本申请实施例二提供的一种消散斑投影屏幕的结构示意图;
图16为本申请实施例三提供的一种消散斑投影屏幕的结构示意图;
图17为本申请实施例三提供的另一种消散斑投影屏幕的结构示意图。
附图标记:
101-表面层;102-着色层;103-扩散层;104-菲涅尔透镜层;105-反射层;106-扩散粒子;100-投影系统;1-消散斑投影屏幕;11-功能层;111-扩散部;112-非扩散部;12-基材层;13-菲涅尔透镜层;131-反射面;14-反射层;15-扩散粒子;16-保护层;17-支撑层;18-着色层;19-表面层;191-透光凸起;1911-轮廓渐扩段;1912-轮廓渐缩段;01-表面层;02-着色层;03-表面层;2-投影机;21-入射光线;22-出射光线;3-观众。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,在实际应用中,由于设备精度或者安装误差的限制,绝对的平行或者垂直效果是难以达到的。在本申请中有关垂直、平行或者同向描述并不是一个绝对的限定条件,而是表示可以在预设误差范围内实现垂直或者平行的结构设置,并达到相应的预设效果,如此,可以最大化的实现限定特征的技术效果,并使得对应技术方案便于实施,具有很高的可行性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
图1为相关技术中具有菲涅尔微结构的投影屏幕的结构示意图。该投影屏幕一般包括顺次层叠排布的表面层101、着色层102、扩散层103、菲涅尔透镜层104和反射层105。表面层101用于保护投影屏幕;着色层102用于提高投影屏幕的对比度;扩散层103包括扩散基底层和分布于扩散基底层中的扩散粒子106,投影机发出的光线在经过扩散层103时会被扩散粒子106扩散开,因此,扩散层103能够提高投影屏幕的观看视角;菲涅尔透镜层104和反射层105一起用于改变投影机发出的光线的反射方向;其中,扩散基底层还同时作为菲涅尔透镜层104制作时的基底。
上述投影屏幕中,扩散层103与菲涅尔透镜层104紧挨着,被扩散层103扩散的光线到达菲涅尔透镜层104的传播路径较短,光线的相干性较大,散斑较为严重。
本申请提供一种投影系统,该投影系统用于供观众投影播放图片、影像等。
参照图2,图2为本申请一些实施例提供的投影系统100的使用状态示意图。该投影系统100包括消散斑投影屏幕1和投影机2。为便于描述该投影系统100,本申请以消散斑投影屏幕1在某一竖直面内展开时的状态为例进行描述,定义观众3看向该消散斑投影屏幕1的方向为正视方向。
使用时,投影机2可以放置在消散斑投影屏幕1的前下方,观众3位于消散斑投影屏幕1的前方并看向消散斑投影屏幕1。投影机2发出的入射光线21照向消散斑投影屏幕1,入射光线21经过消散斑投影屏幕1的反射最终形成出射光线22照向观众3,同时在消散斑投影屏幕1中成像。
在相关技术中,投影屏幕一般会在菲涅尔透镜层远离反射层的一侧设置扩散层,扩散层中设置扩散粒子,光线在进入投影屏幕的过程中,会被扩散粒子扩散开,然后直接进入菲涅尔透镜层中,这就使得被扩散开的光线在进入菲涅尔透镜层之前的传播路径较短,则光线在菲涅尔透镜层处的相干性较大,进而使得投影屏幕的散斑较为严重。因此,需要设计一种新的投影屏幕,以在一定程度上消除投影屏幕的散斑。
基于此,本申请提供一种消散斑投影屏幕1,参照图3,图3为本申请一些实施例提供的消散斑投影屏幕1的使用状态示意图。该消散斑投影屏幕1包括沿第一方向顺次层叠排布的功能层11、基材层12、菲涅尔透镜层13和反射层14;功能层11为支撑层、着色层或表面层中的一种;功能层11的至少部分设有扩散粒子15。需要说明的是,上述第一方向即为正视方向,也为图3中实线箭头所指方向。
其中,扩散粒子15的材质可以为PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)。
该消散斑投影屏幕1在使用时,投影机2发出的入射光线21照向消散斑投影屏幕1,入射光线21进入消散斑投影屏幕1内后在菲涅尔透镜层13的反射面131处被反射层14反射,最终射出消散斑投影屏幕1而形成出射光线22并照向观众3。图3中光线的路径仅作示意,忽略光线的折射。
该消散斑投影屏幕1中,扩散粒子15设于功能层11中,而功能层11与菲涅尔透镜层13之间还设有基材层12,所以光线在功能层11中被扩散后还要经过基材层12后才能到达菲涅尔透镜层13,因此,被扩散后的光线在到达菲涅尔透镜层13之前的传播路径较长,光线在菲涅尔透镜层13处的相干性大大降低,从而可以在一定程度上消除散斑。
设置本申请实施例中的消散斑投影屏幕1中的功能层11为支撑层、着色层或表面层中的一种,可以减少该消散斑投影屏幕1的层数和厚度。其中,支撑层可以为整个消散斑投影屏幕1提供支撑基础,且可以作为其他膜层的制作基底。着色层用于提高消散斑投影屏幕1的对比度。表面层用于防止消散斑投影屏幕1被划伤。
如此一来,相当于将扩散粒子15设置于支撑层、着色层或表面层中,而不需要再设置专门的扩散层(用于扩散光线的膜层),而支撑层、着色层和表面层在很多消散斑投影屏幕1中都是设置有的,所以相当于减少了消散斑投影屏幕1的层数和厚度。
上述图3示意的消散斑投影屏幕1中,整个功能层11中均分布有扩散粒子15,参照图4,图4为本申请另一些实施例提供的消散斑投影屏幕1的结构示意图,为了进一步地延长被扩散粒子15扩散后的光线到达菲涅尔透镜层13之前的 传播路径,在另一些实施例中,功能层11包括沿第一方向(图4中实线箭头所指的方向)排布的扩散部111和非扩散部112,扩散部111位于非扩散部112远离菲涅尔透镜层13的一侧。扩散粒子15设于扩散部111中,非扩散部112中未设置扩散粒子15。
如此一来,光线在功能层11中的扩散部111中被扩散,然后会经过非扩散部112后再进入基材层12,进而再进入菲涅尔透镜层13,使得被扩散后的光线的传播路径再次延长,则光线在菲涅尔透镜层13处的相干性进一步地降低,从而可以进一步地消除散斑。
基材层12在整个消散斑投影屏幕1中作为支撑基础,同时也作为菲涅尔透镜层13制作时的基底。
菲涅尔透镜层13可以由UV胶固化制成,因为UV胶具有弹性,所以菲涅尔透镜层13可卷曲。菲涅尔透镜层13远离基材层12的一侧具有多个沿上下方向排布的反射面131,各反射面131为沿着正视方向、自上而下倾斜的平面,各反射面131与水平面的夹角θ自上而下逐渐变大,且夹角θ在5°-85°范围内取值。
制作菲涅尔透镜层13时,将UV胶涂布在基材层12上,然后用专门的模具对菲涅尔透镜层13进行压印,使得菲涅尔透镜层13成型,再使用UV光源灯对UV胶进行固化,然后脱模即可完成菲涅尔透镜层13的制作。当然,在其他一些实施例中,菲涅尔透镜层13也可以由热固化胶水制成,同样可以使用。
菲涅尔透镜层13制成后,在各反射面131上涂覆反射层14,反射层14中的反射材料可以为铝;当然在其他一些实施例中,反射层14中的反射材料也可以为银,或者,为银和铝的组合物,均可以使用。
以反射材料选择铝为例,具体的,将铝颗粒溶于硅烷偶联剂(即为铝粉溶液的溶剂)中形成铝粉溶液,然后将铝粉溶液喷涂于菲涅尔透镜层13的反射面131上即可。
为了提高该消散斑投影屏幕1的增益,铝颗粒的直径取值范围为5μm-20μm。需要说明的是,在选择铝颗粒时,并非要限制铝颗粒的大小为某一特定直径,而是整体上铝颗粒的直径在5μm-20μm范围内即可。如此一来,因为反射层14中的铝颗粒的直径范围为5μm-20μm,这个范围内的铝颗粒的直径较小,颗粒均匀,方向性不明显,在形成反射层14后,会形成致密的反射平面。基于此,入射光线21照射在反射层14上时,其反射路径主要取决于菲涅尔透镜层13的反射面131的倾斜角度,而不会出现因为铝颗粒较大而被铝颗粒四处乱反射的现象。因此光线能够根据设定的方向照向观众3,减少了光线能量的浪费,从而使得该消散斑投影屏幕1的增益较高。另外,反射层14需要全面覆盖菲涅尔透镜层13的反射面131,铝颗粒的直径越小,在满足全面覆盖菲涅尔透镜层13的反射面131的要求下,反射层14的厚度可以做的很薄;而反射层14的厚度越薄,需要的铝颗粒 的数量越少,从而可以节省反射层14的制作成本。
当然,在其他一些实施例中,在选择铝时,也可以选择鳞片状铝粉,鳞片状铝粉的径厚比的范围为(40:1)-(100:1),因为鳞片状铝粉的径厚比较大,所以在喷涂于反射面131上时,铝的结合能力较强,不易脱落。
反射层14成型后,一般为涂覆在菲涅尔透镜层13上的一层金属层,厚度很薄,所以整个反射层14可以实现弯曲,而菲涅尔透镜层13也可以卷曲,所以在反射层14涂覆在菲涅尔透镜层13上后,菲涅尔透镜层13和反射层14整体仍具有柔性,可以实现卷曲。
为了防止反射层14中的反射材料脱落。参照图4,在一些实施例中,消散斑投影屏幕1还包括保护层16,保护层16设于反射层14远离菲涅尔透镜层13的一侧。
保护层16的材料可以为UV胶或者油漆,在反射层14制作完成后,将UV胶或油漆涂覆在反射层14远离菲涅尔透镜层13的一侧即可。保护层16可以很好的将反射层14保护起来,防止反射层14中的反射材料脱落。
在一些实施例中,为了提高该消散斑投影屏幕1的对比度,设置反射层14、菲涅尔透镜层13和基材层12中的一个中分布有暗色染料。需要注意的是,为了防止该消散斑投影屏幕1在使用时亮度较低,最好仅在一个膜层中设置暗色染料。
示例的,将暗色染料设置在反射层14中时,在提高该消散斑投影屏幕1的对比度的基础上,光线仅在反射层14处反射时被暗色染料吸收一部分能量,所以能量损失较小(若设置单独的着色层,则光线在被反射层14反射前和反射后会被着色层中的暗色染料共吸收两次能量,能量损失较大),进而使得该消散斑投影屏幕1在使用时的亮度较高。
而且,消散斑投影屏幕1中不设置专门的着色层,使得消散斑投影屏幕1的层数较少,且整体的厚度较小。
另外,反射层14在制作时,铝颗粒在溶于溶剂中时会出现团聚现象,为了防止铝颗粒团聚,溶剂中会添加阻聚剂/分散剂,而暗色染料一般为有机染料,能够轻微减弱阻聚剂/分散剂的作用,使得铝颗粒轻微团聚,从而使得反射层14的平整度轻微下降,光线在照射在反射层14上时能够发生更大程度的散射,使得光线的扩散程度更大,进而能够提高该消散斑投影屏幕1的观看视角。
暗色染料为有机染料,有机染料能够溶于高分子聚合物和有机溶剂中,而菲涅尔透镜层13由UV胶制成,UV胶为一种高分子聚合物,这就使得暗色染料与菲涅尔透镜层13的结合力较强,进而使得反射层14整体附着在菲涅尔透镜层13上的附着牢度较高。
实施例一
参照图5,图5为本申请实施例一提供的一种消散斑投影屏幕1的结构示意 图。在本实施例一中,功能层11为支撑层17,即该消散斑投影屏幕1包括顺次层叠排布的支撑层17、基材层12、菲涅尔透镜层13和反射层14。支撑层17和基材层12均作为整个消散斑投影屏幕1的支撑基础。扩散粒子15可以如图5中所示的仅设置于扩散部111中,还可以遍布整个支撑层17,均可以使用。
由上述可知,菲涅尔透镜层13和反射层14整体具有柔性,可以实现卷曲。基于此,为了方便该消散斑投影屏幕1的运输、安装和使用,设置该消散斑投影屏幕1中的支撑层17和基材层12由柔性材料制成,以使该消散斑投影屏幕1可卷曲。本申请所说的支撑层17由柔性材料制成,仅仅是指支撑层17的基础材料为柔性材料,并非指设于支撑层17中的扩散粒子15。
示例的,支撑层17和基材层12的材料可以为PU(Polyurethane,聚氨基甲酸酯),PU具有柔性,可以任意卷曲不变形,同时具有耐磨、耐高温、韧性高、耐油、机械性能强等优点,使用PU制成支撑层17和基材层12,使得支撑层17和基材层12具有柔性而可以实现卷曲。
当然,在其他一些实施例中,支撑层17和基材层12的材料也可以为TPU(Thermoplastic polyurethanes,热塑性聚氨酯弹性体橡胶),TPU具有弹性,可实现卷曲,使用TPU制成支撑层17和基材层12,同样可以使得支撑层17和基材层12具有柔性而可以实现卷曲。或者,支撑层17和基材层12还可以由PET(Polyethylene terephthalate,聚对苯二甲酸类塑料)、SBC(Styrenic Block Copolymers,苯乙烯系热塑性弹性体,又称苯乙烯系嵌段共聚物)等柔性材料制成,均可以使支撑层17和基材层12具有柔性且可卷曲。
如此一来,因为支撑层17、基材层12、菲涅尔透镜层13和反射层14均可以实现卷曲,所以该消散斑投影屏幕1可以实现卷曲,进而使得该消散斑投影屏幕1在运输、安装和使用过程中非常方便。
在该消散斑投影屏幕1可卷曲的基础上,为了防止支撑层17或基材层12在该消散斑投影屏幕1卷曲过程中损坏,设置在该消散斑投影屏幕1的卷曲方向上,若支撑层17位于基材层12的前侧,则支撑层17的厚度小于基材层12的厚度,若支撑层17位于基材层12的后侧,则支撑层17的厚度大于基材层12的厚度。
需要说明的是,上述消散斑投影屏幕1的卷曲方向可以为如图5中实线箭头所示的逆时针方向,也可以为与图5中实线箭头所示的逆时针方向相反的顺时针方向。
在消散斑投影屏幕1的卷曲方向为图5中实线箭头所示的逆时针方向时,支撑层17位于基材层12的前侧,则支撑层17的厚度小于基材层12的厚度。
在消散斑投影屏幕1的卷曲方向为与图5中实线箭头所示的逆时针方向相反的顺时针方向时,支撑层17位于基材层12的后侧,则支撑层17的厚度大于基材层12的厚度。
支撑层17和基材层12都可以定义为该消散斑投影屏幕1的支撑基础层,在该消散斑投影屏幕1的卷曲方向上,靠前的支撑基础层的卷曲程度要大于靠后的支撑基础层的卷曲程度,所以靠前的支撑基础层更容易损坏,而本申请中设置靠前的支撑基础层的厚度小于靠后的支撑基础层的厚度,这样一来,靠前的支撑基础层虽然卷曲程度较大,但是,由于厚度较薄,所以在卷曲位置发生挤压变形的程度会有所缓和,进而避免靠前的支撑基础层受到损坏。同时,还使得整个消散斑投影屏幕1卷曲起来更加容易,卷起来后反弹更弱。
在上述基础上,设置支撑层17和基材层12的厚度差的取值范围为30μm-50μm,例如,可以选择30μm、40μm或50μm等。设置支撑层17和基材层12的厚度差的取值范围在30μm-50μm,使得该消散斑投影屏幕1卷曲起来更加容易,也更加不容易损坏在卷曲方向上靠前的支撑基础层。
当然,在其他一些实施例中,即使设置支撑层17和基材层12的厚度差在上述30μm-50μm的取值范围之外,也可以使用,例如,可以选择25μm、55μm等。
为使得可卷曲的消散斑投影屏幕1在展开时的平整度较高,且不影响消散斑投影屏幕1的正常卷曲。在一些实施例中,支撑层17和基材层12的厚度取值范围设置为75μm-300μm,例如,可以选择75μm、100μm、150μm、200μm、250μm或300μm,均可以使用,设计时根据实际情况选择即可。
当然,在其他一些实施例中,支撑层17和基材层12的厚度即使设置成在上述75μm-300μm的取值范围之外,也可以使用,例如,可以选择50μm、350μm等。
需要说明的是,上述为了使得该消散斑投影屏幕1可实现卷曲,从而设置支撑层17和基材层12由柔性材料制成。在其他的一些实施例中,支撑层17和基材层12也可以由MS(甲基丙烯酸甲酯-苯乙烯共聚物,Methyl methacrylate-styrene copolymer)、PVC(聚氯乙烯,Polyvinyl chloride)、PE(聚乙烯,Polyethylene)、PP(聚丙烯,Polypropylene)等硬性材料制成,同样可以使用。
参照图6,图6为本申请实施例一提供的另一种消散斑投影屏幕1的结构示意图。为了提高该消散斑投影屏幕1的对比度,该消散斑投影屏幕1还包括着色层18,着色层18设于支撑层17和基材层12之间;着色层18包括着色基底层和设于着色基底层中的暗色染料。
上述暗色染料一般为有机染料,可选用偶氮类染料、酞菁类染料等。
在消散斑投影屏幕1可卷曲的方案的基础上,在一些实施例中,着色基底层由柔性材料制成,以使着色层18整体具有柔性而可以实现卷曲,进而不影响整个消散斑投影屏幕1的卷曲性能。示例的,着色基底层的材料可以为PET、PU、TPU、SBC等。这种情况下,着色层18制作完成后与支撑层17和基材层12可以通过OCA胶粘接固定。当然,着色基底层的材料也可以为UV胶、OCA胶或者热固化胶水,这种情况下,着色层18可以直接形成于支撑层17上,然后在固化的过程 中通过其自身的黏连性质与基材层12粘接,不需要通过专门的OCA胶与支撑层17及基材层12粘接固定。
当然,在不考虑消散斑投影屏幕1是否可卷曲的情况下,着色基底层也可以由硬性材料制成,如可以由MS、PVC、PP或PE制成,同样可以使用。
为了提高该消散斑投影屏幕1的观看视角,在着色层18中设置扩散粒子(图中未示出),如此一来,光线在经过着色层18时也会实现扩散,进而能够提高该消散斑投影屏幕1的观看视角。
参照图7,图7为本申请实施例一提供的又一种消散斑投影屏幕1的结构示意图。为了防止该消散斑投影屏幕1被划伤,该消散斑投影屏幕1还包括表面层19,表面层19设于支撑层17远离菲涅尔透镜层13的一侧。设置表面层19,可以防止该消散斑投影屏幕1的表面被划伤,进而影响该消散斑投影屏幕1的显示效果。
该表面层19由柔性材料制成。示例的,表面层19可以由UV胶固化制成,因为UV胶具有弹性,所以使得该表面层19能够卷曲。在整个消散斑投影屏幕1可卷曲的方案中,表面层19的可卷曲避免了影响整个消散斑投影屏幕1的卷曲性能。
在制作表面层19时,将UV胶涂布在支撑层17远离菲涅尔透镜层13的侧面上,然后使用UV光源灯对UV胶进行固化,即可完成表面层19的制作。当然,在其他一些实施例中,表面层19也可以由热固化胶水加热固化在支撑层17上,同样可以使用。
参照图8,图8为本申请实施例一提供的又一种消散斑投影屏幕1的结构示意图。为了实现抗天花板反光,在表面层19远离菲涅尔透镜层13的表面涂布有扩散粒子15。涂布扩散粒子15,使得表面层19远离菲涅尔透镜层13的表面的雾度值较大,避免了光线在照射在表面层19远离菲涅尔透镜层13的表面上时发生镜面反射,进而防止在天花板上形成清晰的影像。另外,光线在照射在表面层19远离菲涅尔透镜层13的表面上时,被扩散粒子15扩散开,使得光线更加分散,进而能够提高该消散斑投影屏幕1的观看视角。扩散粒子15的材质可以为PMMA。
为了实现抗天花板反光,还可以直接设置表面层19远离菲涅尔透镜层13的表面的雾度值的取值范围为12%-20%。例如,雾度值可以设置为12%、15%、18%或20%等,均可以使用。表面层19远离菲涅尔透镜层13的表面的雾度值在该范围内时,光线照射在表面层19远离菲涅尔透镜层13的表面上不会发生镜面反射,进而可以实现抗天花板反光。
将表面层19远离菲涅尔透镜层13的表面的雾度值设置为在12%-20%范围内取值,可以通过至少以下两种方式实现:1)对表面层19远离菲涅尔透镜层13的表面进行AG处理(即防眩光处理);2)在表面层19远离菲涅尔透镜层13的表面通过模具压印出咬花纹路。
基于此,在制作表面层19时,将UV胶涂布在支撑层17远离菲涅尔透镜层 13的侧面上,然后用专门的模具对表面层19进行压印,使得表面层19成型,再使用UV光源灯对UV胶进行固化,然后脱模即可完成表面层19的制作。
当然,在一些实施例中,设置表面层19远离菲涅尔透镜层13的表面的雾度值大于20%也能够实现抗天花板反光,只不过雾度值在12%-20%范围内取值时,抗天花板反光效果较好,且该消散斑投影屏幕1的清晰度较好。
另外,若不考虑抗天花板反光,而为了获得较高的清晰度,也可以设置表面层19远离菲涅尔透镜层13的表面为平滑表面,如此一来,可以减少光线在表面层19远离菲涅尔透镜层13的表面处的扩散,进而提高该消散斑投影屏幕1的清晰度。
参照图9和图10,图9为本申请实施例一提供的又一种消散斑投影屏幕1的结构示意图,图10为图9中表面层19的立体结构示意图。表面层19远离菲涅尔透镜层13的表面上设有多个透光凸起191,透光凸起191的表面沿远离菲涅尔透镜层13的方向具有渐缩部和/或渐扩部。
示例的,设置于表面层19上的透光凸起191为呈直线状的半圆柱状结构,即透光凸起191被垂直于其长度延伸方向的面截取的截面呈半圆形。表面层19上的透光凸起191在制作表面层19时由模具压制成型。
为了简化模具的形状,从而方便模具的制作和降低模具的制作成本。设置透光凸起191在其长度延伸方向上各处的半圆形截面的大小尺寸均相同,且表面层19上的各透光凸起191的形状和大小均相同。
示例的,图9中所示的各透光凸起191沿竖直方向延伸,且沿水平方向平行排布,本申请所述的水平方向是既垂直于正视方向,又垂直于竖直方向的方向,各透光凸起191的长度延伸方向平行于支撑层17。设置表面层19上的各透光凸起191沿水平方向连续布置,即相邻的各透光凸起191依次相连。
在消散斑投影屏幕1可卷曲的方案中,为了防止因为透光凸起191的截面尺寸过大而降低表面层19的可卷曲性能,设置透光凸起191被垂直于其长度延伸方向的面截取的半圆形截面的直径的取值范围为20μm-300μm。
各透光凸起191的弧面背向菲涅尔透镜层13,各透光凸起191的与弧面相对的平面朝向菲涅尔透镜层13,这就相当于各透光凸起191被垂直于其长度延伸方向的面截取的半圆形截面的直线位于弧线靠近菲涅尔透镜层13的一侧,则该半圆形截面的轮廓在远离菲涅尔透镜层13的方向上渐缩,对应的,各透光凸起191的弧面在远离菲涅尔透镜层13的方向上呈渐缩状。
参照图11,图11为光线经过图9中表面层19时的路径示意图,图11中的虚线及箭头为光线在经过表面层19后射入空气中的路径示意。光线出射过程中,会经过各透光凸起191后进入空气中,从而发生折射,因为UV胶(即制作表面层19的材料)的折射率必然大于空气的折射率,所以光线会产生扩散。而且各透光凸起191具有一个弧面,该弧面在远离菲涅尔透镜层13的方向上呈渐缩状,且 沿竖直方向延伸,所以光线会趋向于水平方向扩散,则通过该透光凸起191能够提高该消散斑投影屏幕1在水平方向上的观看视角。
在其他一些实施例中,透光凸起191的长度也可以沿其他方向延伸,对应的,光线在出射过程中经过各透光凸起191后可以沿另外某一设定方向扩散,该设定方向同时垂直于正视方向和各透光凸起191的长度延伸方向,进而可以提高该消散斑投影屏幕1在该设定方向上的观看视角。
需要说明的是,上面所说透光凸起191为半圆柱状结构,并非要限定透光凸起191的形状为某一圆柱状结构的一半,在一些情况下,透光凸起191被垂直于其长度延伸方向的面截取的截面的面积也可以大于对应半圆的面积或小于对应半圆的面积,这里所说的对应半圆是指与透光凸起191的曲率相同的圆对应的半圆。
上述是以各透光凸起191为长度延伸方向平行于支撑层17的长条状凸起为例进行的说明。在其他一些实施例中,透光凸起191也可以为其他形状的凸起,如可以为一个柱状结构,柱状结构的轴线垂直于菲涅尔透镜层13,在柱状结构远离菲涅尔透镜层13的一端具有一个弧面,该弧面在正视方向上渐缩或渐扩,且弧面为长条形弧面,长条形弧面的长度在平行于支撑层17的方向上延伸,则同样可以实现光线的扩散。
上述是以各透光凸起191为半圆柱状结构为例进行的说明,各透光凸起191被垂直于其长度延伸方向的面截取的截面呈半圆形。在其他一些实施例中,各透光凸起191还可以为其他形状的结构,参照图12,图12为本申请实施例一提供的又一种消散斑投影屏幕1中表面层19的结构示意图,各透光凸起191被垂直于其长度延伸方向的面截取的截面也可以呈三角形,对应的透光凸起191为三棱柱状结构,透光凸起191的一个侧面朝向菲涅尔透镜层13(图中未示出),与该侧面相对的棱远离菲涅尔透镜层13,则透光凸起191整体在远离菲涅尔透镜层13的方向上渐缩。
或者,参照图13,图13为本申请实施例一提供的又一种消散斑投影屏幕1中表面层19的结构示意图,各透光凸起191被垂直于其长度延伸方向的面截取的截面呈梯形,定义梯形截面中相互平行的两条直线所在的面分别为第一侧面和第二侧面,且第一侧面的面积大于第二侧面的面积,第一侧面朝向菲涅尔透镜层13(图中未示出),第二侧面远离菲涅尔透镜层13,则透光凸起191整体在远离菲涅尔透镜层13的方向上渐缩。
当然,在其他的一些实施例中,各透光凸起191被垂直于其长度延伸方向的面截取的截面的形状并不限于上述三种,还可以为其他的形状,只要满足上述截面沿远离菲涅尔透镜层13的方向具有轮廓渐缩段和/或轮廓渐扩段即可,参照图14,图14为本申请实施例一提供的又一种消散斑投影屏幕1中表面层19的结构示意图,该表面层19上的透光凸起191被垂直于其长度延伸方向的面截取的截面 在远离菲涅尔透镜层13(图中未示出)的方向上就同时具有轮廓渐扩段1911和轮廓渐缩段1912。
上述是以各透光凸起191为相互平行的半圆柱状结构且半圆柱状结构呈直线状为例进行的说明。在其他一些实施例中,透光凸起191也可以不是直线状的结构,例如,透光凸起191可以为弯折结构或弯曲结构,同样可以使用;各透光凸起191也可以不相互平行,同样可以使用。
上述是以各透光凸起191沿其排布方向连续布置为例进行的说明。在其他一些实施例中,各透光凸起191也可以沿着其排布方向间隔布置,同样可以使用。
上述是以各透光凸起191为半圆柱状结构为例进行的说明,则透光凸起191在其长度延伸方向各处的、被垂直于其长度延伸方向的面截取的截面均相同。在其他一些实施例中,各透光凸起191也可以不是一种规则的结构,透光凸起191在其长度延伸方向各处的、被垂直于其长度延伸方向的面截取的截面可以不相同,同样可以使用。
为了抗天花板反光,在表面层19上设置透光凸起191的基础上,设置透光凸起191的表面的雾度值的取值范围为12%-20%。例如,雾度值可以设置为12%、15%、18%或20%等,均可以使用。透光凸起191的表面的雾度值在该范围内时,光线照射在透光凸起191的表面上不会发生镜面反射,进而可以实现抗天花板反光。
将透光凸起191的表面的雾度值设置为在12%-20%范围内取值,可以通过至少以下两种方式实现:1)对透光凸起191的表面进行AG处理(即防眩光处理);2)在透光凸起191的表面通过模具压印出咬花纹路。
实施例二
参照图15,图15为本申请实施例二提供的一种消散斑投影屏幕1的结构示意图。在本实施例二中,功能层11为表面层01,即该消散斑投影屏幕1包括顺次层叠排布的表面层01、基材层12、菲涅尔透镜层13和反射层14。扩散粒子15可以如图15中所示的仅设置于扩散部111中,还可以遍布整个表面层01,均可以使用。
由上述可知,菲涅尔透镜层13和反射层14整体具有柔性,可以实现卷曲。基于此,为了方便该消散斑投影屏幕1的运输、安装和使用,设置该消散斑投影屏幕1中的表面层01和基材层12由柔性材料制成,以使该消散斑投影屏幕1可卷曲。本申请所说的表面层01由柔性材料制成,仅仅是指表面层01的基础材料为柔性材料,并非指设于表面层01中的扩散粒子15。
基材层12的选材可以参考上述实施例一中基材层12的选材,此处不再赘述。表面层01可以由UV胶制成,从而可以具有柔性。
该消散斑投影屏幕1中的表面层01,可以参考实施例一进行一些变形设置, 如设置表面层01远离菲涅尔透镜层13的表面的雾度值的取值范围为12%-20%。或者,在表面层01远离菲涅尔透镜层13的表面涂覆扩散粒子。或者,在表面层01远离菲涅尔透镜层13的表面设置透光凸起,进而设置透光凸起的表面的雾度值的取值范围为12%-20%。各种变形均可参考实施例一进行,此处不再赘述。
实施例三
参照图16,图16为本申请实施例三提供的一种消散斑投影屏幕1的结构示意图。在本实施例三中,功能层11为着色层02,即该消散斑投影屏幕1包括顺次层叠排布的着色层02、基材层12、菲涅尔透镜层13和反射层14。扩散粒子15可以如图16中所示的仅设置于扩散部111中,还可以遍布整个着色层02,均可以使用。
由上述可知,菲涅尔透镜层13和反射层14整体具有柔性,可以实现卷曲。基于此,为了方便该消散斑投影屏幕1的运输、安装和使用,设置该消散斑投影屏幕1中的着色层02和基材层12由柔性材料制成,以使该消散斑投影屏幕1可卷曲。着色层02一般包括着色基底层和设于着色基底层中的暗色染料,因此,只需设置着色基底层为柔性材料即可。对于设置在着色层02内的扩散粒子15的材质,并不需要作限定。
基材层12的选材可以参考上述实施例一中基材层12的选材,此处不再赘述。着色层02可以由UV胶制成,从而可以具有柔性。
参照图17,图17为本申请实施例三提供的另一种消散斑投影屏幕1的结构示意图。为了防止该消散斑投影屏幕1被划伤,该消散斑投影屏幕1还包括表面层03,表面层03设置于着色层02远离菲涅尔透镜层13的一侧。
该消散斑投影屏幕1中的表面层03,可以参考实施例一进行一些变形设置,如设置表面层03远离菲涅尔透镜层13的表面的雾度值的取值范围为12%-20%。或者,在表面层03远离菲涅尔透镜层13的表面涂覆扩散粒子。或者,在表面层03远离菲涅尔透镜层13的表面设置透光凸起,进而设置透光凸起的表面的雾度值的取值范围为12%-20%。各种变形均可参考实施例一进行,此处不再赘述。
本申请还提供一种消散斑投影屏幕,该消散斑投影屏幕的结构与上述投影系统100中的消散斑投影屏幕1的结构相同,此处不再赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (12)

  1. 一种消散斑投影屏幕,其特征在于,包括沿第一方向顺次层叠排布的功能层、基材层、菲涅尔透镜层和反射层;所述功能层为支撑层、着色层或表面层中的一种;所述功能层的至少部分设有扩散粒子。
  2. 根据权利要求1所述的消散斑投影屏幕,其特征在于,所述功能层包括沿所述第一方向排布的扩散部和非扩散部,所述扩散部位于所述非扩散部远离所述菲涅尔透镜层的一侧;所述扩散粒子设于所述扩散部中。
  3. 根据权利要求1或2所述的消散斑投影屏幕,其特征在于,在所述功能层为所述支撑层的情况下,所述消散斑投影屏幕还包括着色层,所述着色层设于所述支撑层和所述基材层之间;所述着色层包括着色基底层和设于所述着色基底层中的暗色染料。
  4. 根据权利要求3所述的消散斑投影屏幕,其特征在于,所述着色层中设有扩散粒子。
  5. 根据权利要求3所述的消散斑投影屏幕,其特征在于,所述消散斑投影屏幕还包括表面层,所述表面层设于所述支撑层远离所述菲涅尔透镜层的一侧。
  6. 根据权利要求5所述的消散斑投影屏幕,其特征在于,所述表面层远离所述菲涅尔透镜层的表面涂布有扩散粒子。
  7. 根据权利要求5所述的消散斑投影屏幕,其特征在于,所述表面层远离所述菲涅尔透镜层的表面的雾度值的取值范围为12%-20%。
  8. 根据权利要求5所述的消散斑投影屏幕,其特征在于,所述表面层远离所述菲涅尔透镜层的表面上设有多个透光凸起,所述透光凸起的表面沿远离所述菲涅尔透镜层的方向具有渐缩部和/或渐扩部。
  9. 根据权利要求8所述的消散斑投影屏幕,其特征在于,所述透光凸起的表面的雾度值的取值范围为12%-20%。
  10. 根据权利要求1或2所述的消散斑投影屏幕,其特征在于,所述反射层、所述菲涅尔透镜层和所述基材层中的一个中分布有暗色染料。
  11. 根据权利要求1或2所述的消散斑投影屏幕,其特征在于,所述功能层、所述基材层和所述菲涅尔透镜层均由柔性材料制成,以使所述消散斑投影屏幕可卷曲。
  12. 一种投影系统,其特征在于,包括投影机和如权利要求1-11中任一项所述的消散斑投影屏幕。
PCT/CN2022/082848 2021-05-24 2022-03-24 一种消散斑投影屏幕及投影系统 WO2022247429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110567973.3A CN113238452A (zh) 2021-05-24 2021-05-24 一种消散斑投影屏幕及投影系统
CN202110567973.3 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247429A1 true WO2022247429A1 (zh) 2022-12-01

Family

ID=77138430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082848 WO2022247429A1 (zh) 2021-05-24 2022-03-24 一种消散斑投影屏幕及投影系统

Country Status (2)

Country Link
CN (1) CN113238452A (zh)
WO (1) WO2022247429A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238452A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种消散斑投影屏幕及投影系统
CN113741134A (zh) * 2021-09-27 2021-12-03 青岛海信激光显示股份有限公司 一种投影屏幕及投影装置
CN113641076A (zh) * 2021-10-18 2021-11-12 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN114075793A (zh) * 2021-11-24 2022-02-22 凯鑫森(上海)功能性薄膜产业股份有限公司 一种抗激光散斑的投影幕布表面结构及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158170A (zh) * 1995-07-21 1997-08-27 菲利浦电子有限公司 具有凸的前表面的前投射屏幕
CN101887210A (zh) * 2009-05-12 2010-11-17 日立民用电子株式会社 投影板装置、和其所使用的透过型屏幕
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
WO2019159529A1 (ja) * 2018-02-16 2019-08-22 Jxtgエネルギー株式会社 映像投影システム
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法
CN112513685A (zh) * 2019-04-10 2021-03-16 大日本印刷株式会社 反射屏、影像显示系统
CN113238452A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种消散斑投影屏幕及投影系统
CN113238453A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种投影屏幕及投影系统
CN113238449A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种抗天花板反光投影屏幕及投影系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655972B2 (ja) * 1996-08-16 2005-06-02 大日本印刷株式会社 反射型スクリーン及び前方投影システム
JP2000275741A (ja) * 1999-03-24 2000-10-06 Mitsubishi Rayon Co Ltd 透過型スクリーン
JP2005055887A (ja) * 2003-07-22 2005-03-03 Dainippon Printing Co Ltd 投影スクリーン及びそれを備えた投影システム
JP4170369B2 (ja) * 2007-07-27 2008-10-22 三菱電機株式会社 透過型スクリーンおよび投写型表示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158170A (zh) * 1995-07-21 1997-08-27 菲利浦电子有限公司 具有凸的前表面的前投射屏幕
CN101887210A (zh) * 2009-05-12 2010-11-17 日立民用电子株式会社 投影板装置、和其所使用的透过型屏幕
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
WO2019159529A1 (ja) * 2018-02-16 2019-08-22 Jxtgエネルギー株式会社 映像投影システム
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
CN112513685A (zh) * 2019-04-10 2021-03-16 大日本印刷株式会社 反射屏、影像显示系统
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法
CN113238452A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种消散斑投影屏幕及投影系统
CN113238453A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种投影屏幕及投影系统
CN113238449A (zh) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 一种抗天花板反光投影屏幕及投影系统

Also Published As

Publication number Publication date
CN113238452A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022247429A1 (zh) 一种消散斑投影屏幕及投影系统
WO2022247417A1 (zh) 一种抗天花板反光投影屏幕及投影系统
WO2022247430A1 (zh) 一种投影屏幕及投影系统
TW200537922A (en) Light diffusing screen
TWI684049B (zh) 液晶顯示裝置用光擴散片及液晶顯示裝置用背光單元
CN113238451B (zh) 一种可卷曲投影屏幕及投影系统
TWI639871B (zh) 液晶顯示裝置用光學片、液晶顯示裝置用背光單元及液晶顯示裝置用光學片的製造方法
CN113238450A (zh) 一种高增益投影屏幕及投影系统
CN213934531U (zh) 一种可卷曲投影屏幕及投影系统
CN214670066U (zh) 一种抗天花板反光投影屏幕及投影系统
WO2006002002A1 (en) Thermoplastic optical feature with high apex sharpness
JP6974004B2 (ja) バックライトユニット用光学シート及びバックライトユニット
CN113741133B (zh) 一种可卷曲投影屏幕及投影装置
US6369944B1 (en) Diffuser-coated projection screen element and method of manufacture
CN214670068U (zh) 一种消散斑投影屏幕及投影系统
CN113671786A (zh) 一种广视角投影屏幕及投影系统
CN113805421B (zh) 一种可卷曲投影屏幕及投影装置
CN213399186U (zh) 一种可卷曲投影屏幕及投影系统
CN114545720A (zh) 一种高清晰度投影屏幕及投影系统
CN214670070U (zh) 一种可卷曲投影屏幕及投影系统
CN214670069U (zh) 一种高增益投影屏幕及投影系统
CN214670067U (zh) 一种投影屏幕及投影系统
JP4997143B2 (ja) 照明装置及び光制御板
WO2022166411A1 (zh) 一种投影屏幕及投影系统
WO2023020543A1 (zh) 投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810163

Country of ref document: EP

Kind code of ref document: A1