WO2022166411A1 - 一种投影屏幕及投影系统 - Google Patents

一种投影屏幕及投影系统 Download PDF

Info

Publication number
WO2022166411A1
WO2022166411A1 PCT/CN2021/137843 CN2021137843W WO2022166411A1 WO 2022166411 A1 WO2022166411 A1 WO 2022166411A1 CN 2021137843 W CN2021137843 W CN 2021137843W WO 2022166411 A1 WO2022166411 A1 WO 2022166411A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
projection screen
light
diffusion
screen according
Prior art date
Application number
PCT/CN2021/137843
Other languages
English (en)
French (fr)
Inventor
冯宇
侯蕊
钟强
王超
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180092951.4A priority Critical patent/CN116830033A/zh
Publication of WO2022166411A1 publication Critical patent/WO2022166411A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/58Projection screens collapsible, e.g. foldable; of variable area
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present application relates to the technical field of projection screens, and in particular, to a projection screen and a projection system.
  • the ultra-short-focus projection screen is a Fresnel front projection screen, usually along the direction of the light beam incident on the screen, the light beam enters the surface layer of the screen and other structures and then enters the Fresnel microstructure, and is arranged in the Fresnel microstructure after transmission.
  • the reflective layer on one side is reflected and folded back, and finally emerges from the screen to the observer to display the projected picture.
  • the present application provides a projection screen, comprising a surface layer, a diffusion layer, a Fresnel lens layer and a reflection layer arranged in layers; the diffusion layer includes a first support layer and a plurality of astigmatism structures disposed on the first support layer; Dark dyes and reflective materials are distributed in the reflective layer.
  • the present application also provides a projection screen, comprising a layered diffusion structure layer, a first support, an adhesive layer, a second support layer, a Fresnel lens layer and a reflection layer; wherein, in the reflection layer Dark dyes and reflective materials are distributed.
  • the present application also provides a projection system, including a projector and a projection screen applying the above technical solution.
  • FIG. 1 is a schematic cross-sectional structure diagram of a projection screen in the related art
  • FIG. 2 is a schematic cross-sectional structure diagram of an embodiment of a projection screen provided by the present application.
  • FIG 3 is a schematic structural diagram of a first support layer and a light-scattering layer in an embodiment of a projection screen provided by the present application (the cross section of the elongated protrusion is a semicircle);
  • FIG. 4 is a schematic diagram of the path of light passing through the first support layer and the elongated protrusion in the embodiment of the projection screen provided by the present application;
  • FIG. 5 is a schematic structural diagram of a first support layer and a light-scattering layer in an embodiment of the projection screen provided by the present application (the simulated cross-section of the long groove is a semicircle);
  • FIG. 6 is a schematic cross-sectional structure diagram of an embodiment of a projection screen provided by the present application.
  • FIG. 7 is a perspective view of an embodiment of a projection screen provided by the present application.
  • FIG. 8 is a schematic structural diagram of the first support layer and the light-scattering layer in some other embodiments of the projection screen provided by the present application (the cross-section of the elongated protrusion is triangular);
  • FIG. 9 is a schematic structural diagram of the first support layer and the light-scattering layer in some other embodiments of the projection screen provided by the present application (the cross-section of the elongated protrusion is trapezoidal);
  • FIG. 10 is a schematic structural diagram of the first support layer and the elongated protrusions in some other embodiments of the projection screen provided by the present application (the cross section of the elongated protrusions has a contour expanding section and a contour tapering section along the front view direction );
  • FIG. 11 is a schematic structural diagram of the first support layer and the light-scattering layer in some other embodiments of the projection screen provided by the present application (the simulated cross-section of the long groove has a contour tapering section and a contour tapering section along the front view direction);
  • FIG. 12 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, "plurality" means two or more.
  • the projection screen in the related art includes a surface layer 101 , a coloring layer 102 , a diffusion layer 103 , a Fresnel lens layer 104 and a reflective layer 105 which are stacked in sequence.
  • the surface layer 101 is located at the outermost side of the screen and can be used to protect the projection screen.
  • Dark dyes are distributed in the coloring layer 102, which is disposed near the outside of the screen, and can absorb part of the transmitted ambient light, so as to improve the contrast ratio of the projection screen.
  • the diffusion layer 103 is used for diffusing the light entering the projection screen, and the diffusion effect of the light is usually improved by controlling the concentration of the diffusing particles.
  • the Fresnel lens layer 104 is an imaging layer, and its side away from the diffusion layer 103 is provided with a reflective surface 106. From the cross-sectional view, the reflective surface 106 is a surface of a plurality of sawtooth structures, and the reflective layer 105 is coated on the Fresnel surface.
  • the reflective surface 106 of the lens layer is used to reflect the light, so that the light is folded back and passes through the above-mentioned multiple structural layers again, and finally exits the screen and enters the observer's eyes, so that the observer can perceive the projected image.
  • the light emitted by the projector 107 passes through the surface layer 101 , the coloring layer 102 , the diffusion layer 103 and the Fresnel lens layer 104 in sequence, then is reflected at the reflective layer 105 , and then passes through the Fresnel lens layer in sequence 104.
  • the diffusing layer 103, the coloring layer 102 and the surface layer 101 are irradiated to the outside of the projection screen, the light emitted by the projector 107 has a running route: a1-a2-a3.
  • each layer structure of the above-mentioned projection screen is mostly a hardened plate layer structure with a certain thickness, so that the flexibility of the whole screen is poor.
  • the speckle phenomenon on the projection screen is relatively obvious, and the speckle dissipation effect of the diffusing particles in the diffusion layer is not as expected.
  • a projection screen including a Fresnel lens layer is generally selected and used with a projector.
  • This projection screen is characterized by high gain and small viewing angle. And has a certain anti-environmental light effect.
  • the projection screen in the related art generally includes a surface layer, a coloring layer, a diffusion layer, a Fresnel lens layer and a reflective layer that are sequentially stacked.
  • the light emitted by the projector is colored twice in the process of entering and exiting the projection screen. layer, the dark dye in the coloring layer will absorb a certain amount of light, which will cause the loss of light energy, and finally make the brightness of the projection screen lower.
  • the present application provides a projection screen with high brightness.
  • the projection screen provided by the present application can be applied to projectors that emit single-color laser, two-color laser and three-color laser.
  • the present embodiment 1 describes the state of the projection screen when it is unfolded and used. It is defined that the projection screen unfolds along the vertical plane when it is unfolded and used, and the direction in which the viewer looks at the projection screen is the frontal direction.
  • the astigmatism structures are strip-shaped; a plurality of astigmatism structures are arranged in parallel. This arrangement can improve the clarity of the projection screen. Specifically, it is assumed that the direction of the astigmatism structure away from the first support layer is the A direction, and the length extension direction of the astigmatism structure is the B direction. Then the light passes through the astigmatism structure and enters the cavity. It tends to diffuse in the C direction, and the C direction is perpendicular to both the A direction and the B direction. Therefore, if the extension direction of the astigmatism structure is reasonably set, the diffusion direction of the light can be controlled, and then the viewing angle of the projection screen can be directionally controlled. According to According to the actual demand, the light is only diffused in the direction where the viewing angle needs to be enlarged, the overall diffusion of the light is low, and the diffusion of the light is low, and the definition of the corresponding projection screen is high.
  • the cross-sectional shape and size of the astigmatic structure along its length extending direction are the same.
  • the light passing through the astigmatism structure can be diffused more evenly, thereby improving the viewing effect of the projection screen;
  • the surface of the first support layer is usually coated with a corresponding material and then stamped by a mold.
  • the shape and size of the cross-sectional shape and size of the astigmatism structure are the same everywhere along its length extension direction, which can also reduce the shape complexity of the mold for making the astigmatism structure, thereby reducing the processing difficulty of the mold.
  • the protrusions are arranged continuously. In this way, all the light entering the diffusing layer is diffused through the diffusing structure, which can expand the diffusing range of the diffusing structure, thereby improving the diffusing effect of the diffusing layer.
  • the cross-section of the astigmatic structure is a semicircle, a trapezoid or a triangle.
  • the astigmatism structure of this structural form is relatively simple and easy to manufacture.
  • the diameter of the semicircle ranges from 20 ⁇ m to 300 ⁇ m.
  • the first support layer is made of a flexible material.
  • the first support layer can be made of flexible materials such as PET (Polyethylene terephthalate, polyethylene terephthalate plastic) and has flexibility. glue, UV curing glue, shadowless glue, UV light curing glue, etc.) and other flexible materials to be flexible, the Fresnel lens layer can be made of flexible materials such as UV glue and so on, and the reflective layer is coated on the Philippine A very thin layer on the Neil lens layer, so it can be bent. After the flexible reflective layer is coated on the Fresnel lens layer, the Fresnel lens layer and the reflective layer are still flexible as a whole, so the entire projection screen is flexible. Flexible and capable of rolling, the rollable projection screen is convenient for transportation, installation and use.
  • the projection screen includes a surface layer 1, a first support layer 2, a light scattering layer 3, a second support layer 4, a Fresnel lens layer 5 and a reflective layer 6 that are sequentially stacked along the front view direction.
  • the first supporting layer 2, the light diffusing layer 3 and the second supporting layer 4 together constitute a diffusion layer in the projection screen.
  • Both sides of the first support layer 2 and the second support layer 4 in the frontal direction are planes, so that the first support layer 2 and the second support layer 4 are used as the assembly basis of the entire projection screen, and the first support layer 2 and The material of the second support layer 4 is all PET, and PET is more flexible, so that both the first support layer 2 and the second support layer 4 can be curled.
  • the material of the first support layer 2 and the second support layer 4 can also be SBC (Styrenic Block Copolymers, styrene-based thermoplastic elastomer, also known as styrene-based block copolymer), SBC is the same With flexibility, the rollability of the first support layer 2 and the second support layer 4 can be achieved.
  • the light-scattering layer 3 is composed of a plurality of elongated protrusions 7, and the elongated protrusions 7 are linear semi-cylindrical structures, that is, the surfaces of the elongated protrusions 7 are perpendicular to the extending direction thereof.
  • the cross-section taken is semicircular, the size and size of the semicircular cross-sections of the elongated protrusions 7 are the same everywhere in its extending direction, and the shapes and sizes of the elongated protrusions 7 in the astigmatism layer 3 are the same; As shown in FIG. 2 and FIG.
  • the elongated protrusions 7 extend in the vertical direction and are arranged in parallel in the horizontal direction. In the vertical direction, the extending direction of each elongated protrusion 7 is parallel to the first support layer 2, and each elongated protrusion 7 is continuously arranged along the horizontal direction, that is, adjacent elongated protrusions 7 are connected in sequence .
  • the elongated protrusions 7 constitute the astigmatism structure.
  • the light-scattering layer 3 is made of UV glue. Because the UV glue has elasticity, the light-scattering layer 3 can be curled.
  • the diameter of the semicircular section of the elongated protrusion 7 taken by the plane perpendicular to its extending direction ranges from 20 ⁇ m to 300 ⁇ m.
  • each elongated protrusion 7 faces the second support layer 4
  • the plane opposite to the arc surface of each elongated protrusion 7 faces the first support layer 2 , which is equivalent to
  • the straight line of the semicircular section of the elongated protrusion 7 taken by the plane perpendicular to its extending direction is located on the side of the arc close to the first support layer 2, then the contour of the semicircular section tapers in the frontal direction,
  • the arc surface of the entire elongated protrusion 7 is tapered in the front view direction.
  • OCA glue is a kind of optical glue, colorless and transparent, light transmittance above 90%, good bonding strength, can be cured at room temperature, and also has high weather resistance, water resistance, high temperature resistance, UV resistance , easy to control thickness, uniform spacing, no yellowing after long-term use; after the astigmatism layer 3 and the second support layer 4 are bonded and fixed, the arc surface of each elongated protrusion 7 is connected to the second support layer.
  • the cavity 4 may be used to accommodate other gases, such as nitrogen, argon, methane, and the like.
  • the Fresnel lens layer 5 is made by curing UV glue, and because the UV glue has elasticity, the Fresnel lens layer 5 can be curled.
  • the side of the Fresnel lens layer 5 away from the second support layer 4 has a plurality of reflective surfaces 9 arranged in the up-down direction, and each reflective surface 9 is inclined from top to bottom along the frontal direction. Plane, the included angle ⁇ between each reflection surface 9 and the horizontal plane gradually increases from top to bottom, and the included angle ⁇ takes a value in the range of 5°-85°.
  • the UV glue is applied on the side of the second support layer 4 away from the first support layer 2, and then the Fresnel lens layer 5 is imprinted with a special mold, so that the Fresnel lens layer 5 is pressed.
  • the lens layer 5 is formed, and then the UV glue is cured by using a UV light source lamp, and then the Fresnel lens layer 5 is completed by demolding.
  • an aluminum powder solution is sprayed on each reflective surface 9 to form a reflective layer 6.
  • the aluminum powder solution is dissolved in a silane coupling agent (ie, a solvent of the aluminum powder solution) from aluminum powder.
  • a silane coupling agent ie, a solvent of the aluminum powder solution
  • the aluminum powder constitutes the reflective material in the reflective layer 6; of course, in some other embodiments, the reflective material can also be silver, or a combination of silver and aluminum, both of which can be used.
  • a dark dye is added to the aluminum powder solution.
  • the dark dye is distributed in the reflective layer 6;
  • the dark dye is generally an organic dye, and azo dyes, phthalocyanines can be selected Dyes, etc., it should be noted that when selecting organic dyes, the selected organic dyes cannot react with additives in the aluminum powder solution (such as dispersants, leveling agents, defoaming agents, polymerization inhibitors, etc.), and the selection of dark dyes It is a mature related technology in the field of projection display and will not be repeated here.
  • the projection screen further includes a surface layer, and the surface layer is disposed on a side of the diffusion layer away from the Fresnel lens layer. The provision of the surface layer can prevent the projection screen from being scratched.
  • the haze value of the surface of the surface layer away from the Fresnel lens layer is greater than or equal to 20%. This arrangement can prevent the light from generating specular reflection on the surface of the surface layer away from the Fresnel lens layer, thereby imaging on the ceiling.
  • the surface layer is made of a flexible material.
  • the surface layer can be made of flexible materials such as UV glue or heat-curing glue to be flexible, which in turn can achieve curling.
  • the surface layer 1 is used to protect the projection screen, preventing the projection screen from being scratched and reducing the use effect; the surface layer 1 is made of UV glue curing, because the UV glue has elasticity, so the surface layer 1 can be curled.
  • the surface layer 1 is kept away from the Fresnel lens layer 5 .
  • the haze value of the surface is set to be greater than or equal to 20%, which can be achieved in at least the following three ways: 1) AG treatment (ie anti-glare treatment) is performed on the surface of the surface layer 1 away from the Fresnel lens layer 5; 2) On the surface The surface of the layer 1 away from the Fresnel lens layer 5 is embossed with an embossing pattern by a mold; 3) Coating diffusion particles on the surface of the surface layer 1 away from the Fresnel lens layer 5, the diffusion particles can be PMMA (Polymethyl Methacrylate, Polymethyl Methacrylate, Polymethyl Methacrylate, Polymethyl Methacrylate). methyl methacrylate).
  • the UV glue is applied on the side of the first support layer 2 away from the second support layer 4, and then the surface layer 1 is imprinted with a special mold, so that the surface layer 1 is formed, and then the UV light source is used.
  • the UV glue is cured by the lamp, and then the surface layer 1 is finished by demolding.
  • the surface layer 1 can also be formed on the first support layer 2 by heat curing or UV glue curing of hard coating, which can also be used.
  • the surface layer 1, the first support layer 2, the astigmatism layer 3, the second support layer 4, and the Fresnel lens layer 5 are all flexible and can be curled, and in general, the reflective layer 6 is only sprayed on the Fresnel lens. A very thin coating on the reflective surface 9 of the layer 5, so bending can be achieved, and the flexible reflective layer 6 is formed on the Fresnel lens layer 5, the Fresnel lens layer 5 and the reflective layer 6 It can still be curled together, so the entire projection screen can be curled.
  • the arrows and dotted lines in the figure indicate the route of the light emitted by the projector 8 to the viewer after passing through the projection screen.
  • the light emitted by the projector 8 sequentially passes through the surface layer 1, the first support layer 2, the astigmatism After layer 3, the second support layer 4 and the Fresnel lens layer 5, reflection occurs at the reflective layer 6, and then passes through the Fresnel lens layer 5, the second support layer 4, the astigmatism layer 3, the first support layer 2 and surface layer 1 back to the viewer.
  • the elongated protrusion 7 has an arc surface, which is tapered in the frontal direction and extends in the vertical direction, so the light tends to diffuse in the horizontal direction.
  • the arc surfaces of the elongated protrusions 7 constitute the astigmatism surface of the astigmatism structure, and each part of the astigmatism surface in Embodiment 1 is tapered in the front view direction.
  • the light-scattering layer 3 can also be formed by coating UV glue on the side of the second support layer 4 close to the first support layer 2.
  • the arc surface of the elongated protrusion 7 Facing the first support layer 2 the arc surface of the elongated protrusion 7 and the first support layer 2 enclose a cavity for accommodating air, and the light can enter the scattering layer 3 again after being reflected by the reflective layer 6, and the light exits
  • the light will also enter the cavity at the corresponding position from each elongated protrusion 7, thereby refraction occurs, thereby realizing the diffusion of the light, and the elongated protrusion 7 has an arc surface.
  • the arc surface is gradually expanding in the frontal direction and extends in the vertical direction, so the light will tend to spread in the horizontal direction.
  • the arc surface of each elongated protrusion 7 constitutes the astigmatism surface of the astigmatism structure, and each part of the astigmatism surface gradually expands in the front view direction.
  • the elongated protrusions 7 in the astigmatic layer 3 extend in the vertical direction, so the light tends to diffuse in the horizontal direction when passing through the astigmatic layer 3, which can improve the projection.
  • the elongated protrusions 7 may extend in any other direction.
  • the light may tend to spread in another set direction, and the set direction is also perpendicular to the front view direction. and the extension direction of the elongated protrusions 7, the viewing angle of the projection screen in the set direction can be improved.
  • the light is diffused along the set direction, instead of being diffused in all directions indiscriminately, which can reduce the degree of diffusion of the light, thereby improving the definition of the projection screen.
  • dark dyes are distributed in the reflective layer 6, and on the basis of improving the contrast of the projection screen, the light is only partially absorbed by the dark dyes when reflected at the reflective layer 6, so the energy loss is small, and the The projection screen is brighter when in use.
  • the projection screen is not provided with a special coloring layer, so that the overall thickness of the projection screen is smaller, which is more conducive to the curling of the projection screen; in addition, the dark dye enables the aluminum powder to be slightly agglomerated in the solvent, thereby making the reflection layer 6 flat.
  • the degree of light is slightly decreased, and the light can be scattered to a greater extent when it is irradiated on the reflective layer 6, which can improve the degree of light diffusion; dark dyes are organic dyes, which can be dissolved in high molecular polymers and organic solvents, while
  • the Fresnel lens layer 5 is made of UV glue, which is a kind of macromolecular polymer, which makes the bonding force between the dark dye and the Fresnel lens layer 5 stronger, and thus makes the reflective layer 6 adhere to the Fresnel as a whole.
  • the adhesion fastness on the lens layer 5 is high.
  • the astigmatic layer 3 is the base layer 12
  • the base layer 12 is made of UV glue. Because the UV glue is elastic, the base layer 12 can be curled, thereby making the astigmatic layer 3 curlable.
  • the side of the base layer 12 away from the first support layer 2 is provided with a plurality of long grooves 13, the long grooves 13 are linear grooves, and the long grooves 13 are semicircular grooves, that is, the long grooves 13 are intercepted by a plane perpendicular to its extending direction.
  • the shape of the simulated cross-section is a semicircle, and in the longitudinal extension direction of the long groove 13, the size of the simulated cross-section is the same everywhere, and the long groove 13 is cut by a plane perpendicular to its extension direction.
  • the contour of the semicircular simulated cross-section gradually expands in the front view direction.
  • the groove wall surface of the long groove 13 is gradually expanded in the front view direction;
  • the long grooves 13 extend in the vertical direction and are arranged in parallel in the horizontal direction, and the lengthwise extending direction of the long grooves 13 is parallel to the first support layer 2 ; the long grooves 13 provided on the base layer 12 have the same structure.
  • the long grooves 13 constitute grooves on the base layer 12 .
  • UV glue is applied on the side of the first support layer 2 facing the second support layer 4 , and then the base layer 12 is imprinted with a mold whose shape is adapted to the long grooves 13 on the light-scattering layer 3 , and then used The UV glue is cured by the UV light source lamp, and then the base layer 12 can be finished by demolding.
  • the base layer 12 is bonded and fixed with the second support layer 4 using OCA glue, and the groove wall surface of each long groove 13 and the second support layer 4 enclose a cavity for accommodating air.
  • OCA The glue is only used for bonding the base layer 12 and the second support layer 4 , and should not enter the long groove 13 too much.
  • the projection screen in the second embodiment can be curled as a whole.
  • each long groove 13 constitutes a groove arranged on the base layer 12, and at the same time forms an astigmatism structure, the groove wall surface of each long groove 13 constitutes the astigmatism surface of the astigmatism structure, and each part of the astigmatism surface in this embodiment 2 is in the front view direction. gradually expand.
  • each long groove 13 in the base layer 12 extends in the vertical direction, so the light tends to diffuse in the horizontal direction when passing through the light-scattering layer 3, which can improve the viewing angle of the projection screen in the horizontal direction.
  • the long groove 13 may extend in any other direction.
  • the light when the light passes through the astigmatism layer 3, the light may tend to spread in a certain set direction, and the set direction is perpendicular to the front view direction and the length of the light.
  • the extension direction of the groove 13 can improve the viewing angle of the projection screen in the set direction.
  • At least one diffusion layer includes a first diffusion layer and a second diffusion layer; the diffusion structure of the first diffusion layer is in contact with the diffusion structure of the second diffusion layer, and the diffusion structure of the first diffusion layer is in contact with the diffusion structure of the second diffusion layer.
  • the astigmatism structure of the two diffusion layers forms a cavity. Providing two diffusion layers can improve the diffusion effect of the projection screen.
  • the diffusion layer is provided with two layers, namely the first diffusion layer and the second diffusion layer, and the first diffusion layer includes the first support layer 2 and the first diffusion layer.
  • a layer of light scattering layer 3 on the support layer 2 the second diffusion layer includes a second support layer 4 and a layer of light scattering layer 3 arranged on the second support layer 4, and the two light scattering layers 3 are located in the first support layer 2 and the second light scattering layer 3.
  • OCA glue Between the two supporting layers 4 and the two light diffusing layers 3 are bonded and fixed by OCA glue. After the two light-scattering layers 3 are bonded and fixed, a plurality of cavities for accommodating air are formed between the elongated protrusions of the two light-scattering layers 3 together.
  • each elongated protrusion in the light-scattering layer 3 disposed on the second supporting layer 4 extends in the horizontal direction.
  • the elongated protrusion has an arc surface, and the arc surface is tapered in the front view direction and extends in the vertical direction, so the light tends to spread in the horizontal direction.
  • the elongated protrusion has an arc surface, and the arc surface is gradually expanded in the front view direction and extends in the horizontal direction, so the light tends to spread in the vertical direction.
  • the OCA glue between the two light-scattering layers 3 is only used for bonding between the two, and the OCA glue should not fill the cavity between the elongated protrusions too much.
  • the first support layer and the second support layer are made of flexible materials.
  • the first support layer and the second support layer can also be made of hard materials, such as MS, which can also be used.
  • the light-transmitting protrusions are elongated protrusions whose length extending direction is parallel to the first support layer.
  • the light-transmitting protrusions can also be protrusions of other shapes, such as a columnar structure, the axis of the columnar structure is perpendicular to the first support layer, and the length direction extends in a direction perpendicular to the first support layer , there is an arc surface at the end of the columnar structure away from the first support layer, the arc surface is tapered or expanded in the front view direction, and the arc surface is a long arc surface, and its length is parallel to the first support layer.
  • the adjacent light-transmitting protrusions and the second support layer can also be surrounded by a cavity for accommodating air, and the diffusion of light can also be realized. Astigmatism.
  • each elongated protrusion has a semi-cylindrical structure, and the cross section of each elongated protrusion taken by a plane perpendicular to its extending direction is a semicircle.
  • the elongated protrusions may also be structures of other shapes. As shown in FIG.
  • each elongated protrusion 7 taken by a plane perpendicular to its extending direction may also be triangular, corresponding to
  • the elongated protrusion 7 is a triangular prism-like structure, one side of the elongated protrusion 7 faces the first support layer 2, and the edge opposite to the side faces the second support layer, then the elongated protrusion 7 is integrally
  • the front view is tapered, and the adjacent elongated protrusions 7 can also form a cavity for accommodating air together with the second support layer; or, as shown in FIG.
  • each elongated protrusion 7 is vertically
  • the cross-section taken from the plane in its extension direction is a trapezoid, and the planes where the two lines parallel to each other in the trapezoidal cross-section are defined are the first side and the second side respectively, and the area of the first side is larger than the area of the second side.
  • the side faces the first support layer 2 and the second side faces the second support layer, then the elongated protrusions 7 as a whole taper along the front view direction, and the adjacent elongated protrusions 7 can also be enclosed together with the second support layer. into a cavity for holding air.
  • the shapes of the cross-sections of the elongated protrusions taken by the planes perpendicular to the extending directions are not limited to the above three types, and may also be other shapes, as long as the above-mentioned cross-sections are along the frontal direction. It has a profile tapered section and/or profile tapered section (the above-mentioned cross-sections are semicircle, triangle and trapezoid, all of which have corresponding cross-sections with only profile tapered sections along the front view direction), and the elongated protrusions and the support layer can surround It can be formed into a cavity, as shown in FIG.
  • the cross-section taken has both a contour expanding section 10 and a contour tapering section 11 along the front view direction, and the adjacent elongated protrusions 7 can also be enclosed together with the first support layer 2 and the second support layer for accommodating Air cavities can also be used.
  • each elongated protrusion is a semi-cylindrical structure parallel to each other, and the semi-cylindrical structure is linear.
  • the elongated protrusions may not be linear structures.
  • the elongated protrusions may be bent structures or curved structures in a plane parallel to the first support layer, which can also be used.
  • the elongated protrusions are arranged continuously along the arrangement direction thereof.
  • the elongated protrusions can also be arranged at intervals along their arrangement direction, which can also be used.
  • each elongated protrusion has a semi-cylindrical structure, and the cross-sections of the elongated protrusions taken by planes perpendicular to the extension direction of the elongated protrusions are the same everywhere in the extending direction.
  • the elongated protrusions may not have a regular structure, and the cross-sections of the elongated protrusions taken by planes perpendicular to the extension direction of the elongated protrusions may be different. can use.
  • each elongated protrusion in the astigmatism layer has a semi-cylindrical structure, that is, the structure of each elongated protrusion in the astigmatism layer is the same.
  • the elongated protrusions in the astigmatism layer may not be exactly the same.
  • they may include semi-cylindrical structures, triangular prismatic structures, and quadrangular prismatic structures at the same time, and may also have the same shape but different sizes. structure, the same can be used.
  • the grooves are long grooves whose length direction is parallel to the first support layer.
  • the long groove can also be a groove of other shapes, such as a cylindrical groove as a whole, the axis of the cylindrical groove is perpendicular to the first support layer, and one end of the cylindrical groove close to the first support layer has a Special-shaped section, the groove wall surface of the special-shaped section is an arc surface, the arc surface gradually expands in the front view direction, and the arc surface is a long arc surface, and its length extends in the direction parallel to the first support layer, so the light can also be realized.
  • the part corresponding to the special-shaped section constitutes the astigmatism structure, and the arc surface constitutes the astigmatism surface.
  • the long grooves are semicircular grooves, and the simulated cross-section of each long groove taken by a plane perpendicular to the extending direction thereof is semicircular.
  • the long grooves can also be long grooves of other shapes.
  • the simulated cross-section of each long groove taken by a plane perpendicular to its extending direction can also be a triangle, or each long groove is extended perpendicular to the long groove.
  • the simulated cross-section of the directional plane can also be trapezoidal, and both can be used.
  • the shapes of the simulated cross-sections of the long grooves taken by the planes perpendicular to the extending direction thereof are not limited to the above three types, and can also be other shapes, as long as the simulated cross-sections have The contour tapering section and/or the contour gradually expanding section suffice (the above simulated sections are semicircle, triangle and trapezoid, all simulated sections only have contour expanding sections along the frontal view), as shown in Figure 11, the figure The shown simulated cross-section of the long groove 13 provided on the base layer 12 taken by a plane perpendicular to its extending direction has both a contour expanding section 14 and a contour tapering section 15 in the front view direction, which can also be used.
  • each long groove is a linear groove parallel to each other.
  • the long groove may not be a straight groove, for example, the long groove may be a bent groove or a curved groove, which can also be used.
  • each long groove is a semicircular groove, and the cross-sectional shapes of the long grooves taken by the planes perpendicular to the extending direction are the same everywhere in the extending direction.
  • the long grooves may not be a regular groove, and the cross-sectional shapes of the long grooves taken by the planes perpendicular to the extending direction of the long grooves in the extending direction may be different, and the same can be used.
  • the structures of the long grooves provided on the base layer are the same. In other embodiments, the structures of the long grooves provided on the base layer may not be exactly the same. For example, long grooves with cross-sectional shapes of various shapes such as semicircle, trapezoid, and triangle may be included, and the long grooves on the base layer may also be Slots with the same structure but different dimensions can be used as well.
  • the extending directions of the elongated protrusions of the two light-scattering layers are perpendicular to each other.
  • the extending directions of the elongated protrusions of the two light-scattering layers may not be perpendicular, for example, defining the axis of one elongated protrusion in one astigmatic layer from the first support layer to the second support layer
  • the projection on the side of the first line is a first straight line
  • the projection of the axis of a long strip-shaped protrusion defining another astigmatism layer on the side of the first supporting layer facing the second supporting layer is a second straight line
  • the projection of the first straight line is
  • the extension direction and the extension direction of the second straight line include an acute angle, and the value of the acute angle can be selected in the range of greater than or equal to 30° and less than 90°, which can also be used.
  • the structure of the two-layer light-scattering layer is the same as that of the light-scattering layer in the above-mentioned embodiment 1.
  • the structure of the two-layer light-scattering layer can also be the same as the structure of the light-scattering layer in the above-mentioned embodiment 2, and can also be used.
  • Example 4 is also provided in this application:
  • a projection screen which includes a diffusion structure layer, a first support, an adhesive layer, a second support layer, a Fresnel lens layer and a reflection layer arranged in layers; wherein, the reflection layer distributes There are dark dyes and reflective materials.
  • the embodiment of the present application also has the effect of improving the brightness of the projection image mentioned in the above-mentioned embodiment.
  • the difference from the previous embodiment is that the diffusion structure layer 1a is located at the outermost side of the projection screen, wherein the diffusion structure layer contains diffusion particles, such as by coating particles PMMA particles (particle size between 2- 15um diameter value, which is a polydisperse mixing method) to form a diffusion structure.
  • the haze value of the diffusion structure layer is between 90% and 92%.
  • the thickness of the diffusion structure layer is 10-30um.
  • the diffusion structure layer 1a is located on the outermost side of the projection screen and has a haze surface, which can simultaneously diffuse the image beam and reduce the reflection of ambient light (the part that enters the screen together with the image beam and can enter the human eye) ), with certain light resistance.
  • the adhesive layer may be formed by curing a UV adhesive layer.
  • the adhesive layer can also be doped with diffusion particles, which can further improve the diffusion effect.
  • the diffusion structure layer 1a in Embodiment 4 may also adopt the diffusion layer structure described in Embodiments 1 to 3, and may also have the effect of improving the dissipation speckle of the screen.
  • the above embodiments of the present application can not only improve the brightness of the projection image, but also have a better effect of dissipating the speckle, and are especially suitable for the application of three-color laser projection.
  • the astigmatism structure can also be replaced by a layered UV adhesive layer, thereby forming fog in order.
  • the present application also provides a projection system, which includes a projection screen and a projector, and the structure of the projection screen is the same as that of the projection screens in the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种投影屏幕及投影系统,涉及放映屏幕技术领域。投影系统包括投影机和投影屏幕,包括层叠排布的表面层(101,1)、扩散层(103)、菲涅尔透镜层(104,5)和反射层(105,6);扩散层(103)包括第一支撑层(2)和设于第一支撑层(2)上的多个散光结构;反射层(105,6)中分布有暗色染料和反射材料。

Description

一种投影屏幕及投影系统
本申请要求在2021年2月4日提交中国专利局、申请号为202110153856.2,发明名称为一种投影屏幕及投影系统的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及放映屏幕技术领域,尤其涉及一种投影屏幕及投影系统。
背景技术
在投影显示领域,尤其是超短焦激光投影显示领域,为达到较好的亮度及显示效果,投影机一般会搭配具有菲涅尔微结构的投影屏幕使用。目前超短焦投影屏幕为菲涅尔正投屏幕,通常沿着光束入射屏幕的方向,光束入射屏幕的表面层等结构后入射至菲涅尔微结构,透射后经设置于菲涅尔微结构一侧的反射层反射后折返,最终从屏幕出射到达观察者,以显示投影画面。
发明内容
本申请提供了一种投影屏幕,包括层叠排布的表面层、扩散层、菲涅尔透镜层和反射层;扩散层包括第一支撑层和设于第一支撑层上的多个散光结构;所述反射层中分布有暗色染料和反射材料。
以及,本申请还提供了一种投影屏幕,包括层叠排布的扩散结构层、第一支撑、粘结层、第二支撑层、菲涅尔透镜层和反射层;其中,所述反射层中分布有暗色染料和反射材料。
以及,本申请还提供了一种投影系统,包括投影机和应用上述技术方案的投影屏幕。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中的一种投影屏幕的截面结构示意图;
图2是本申请所提供的投影屏幕的实施例的截面结构示意图;
图3是本申请所提供的投影屏幕的实施例中第一支撑层和散光层的结构示意图(长条状凸起的截面呈半圆形);
图4是本申请所提供的投影屏幕的实施例中光线经过第一支撑层和长条状凸起时的路径示意图;
图5是本申请所提供的投影屏幕的实施例中第一支撑层和散光层的结构示意图(长槽的模拟截面呈半圆形);
图6是本申请所提供的投影屏幕的实施例的截面结构示意图;
图7是本申请所提供的投影屏幕的实施例的立体图;
图8是本申请所提供的投影屏幕的其他一些实施例中第一支撑层和散光层的结构示意图(长条状凸起的截面呈三角形);
图9是本申请所提供的投影屏幕的其他一些实施例中第一支撑层和散光层的结构示意图(长条状凸起的截面呈梯形);
图10是本申请所提供的投影屏幕的其他一些实施例中第一支撑层和长条状凸起的结构示意图(长条状凸起的截面沿正视方向具有轮廓渐扩段和轮廓渐缩段);
图11是本申请所提供的投影屏幕的其他一些实施例中第一支撑层和散光层的结构示意图(长槽的模拟截面沿正视方向具有轮廓渐扩段和轮廓渐缩段);
图12为本申请所提供的投影屏幕的实施例的结构示意图。
附图中:101-表面层,102-着色层,103-扩散层,104-菲涅尔透镜层,105-反射层,106-反射面,107-投影机;1-表面层,2-第一支撑层,3-散光层,4-第二支撑层,5-菲涅尔透镜层,6-反射层,7-长条状凸起,8-投影机,9-反射面,10-轮廓渐扩段,11-轮廓渐缩段,12-基层,13-长槽,14-轮廓渐扩段,15-轮廓渐缩段,3a-粘结层,1a-扩散结构层。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中 的具体含义。
如图1所示,相关技术中投影屏幕包括顺次层叠排布的表面层101、着色层102、扩散层103、菲涅尔透镜层104和反射层105。其中,表面层101位于屏幕的最外侧,可用于保护投影屏幕。着色层102内分布有暗色染料,靠近屏幕外侧设置,可以吸收部分透射过的环境光,以用于提高该投影屏幕的对比度。扩散层103用于扩散进入投影屏幕内的光线,通常通过控制扩散粒子浓度来改善光的扩散作用。菲涅尔透镜层104为成像层,其远离扩散层103的一侧设置有反射面106,从截面图观察,反射面106为多个锯齿结构的表面,以及,反射层105涂覆在菲涅尔透镜层的反射面106上以用于反射光线,并使得光线折返后再次透过上述多个结构层,最终从屏幕射出进入观察者眼中,使观察者察觉到投影图像。
如图1所示,投影机107发出的光线依次穿过表面层101、着色层102、扩散层103和菲涅尔透镜层104后,在反射层105处反射,然后依次经过菲涅尔透镜层104、扩散层103、着色层102和表面层101后,照射向投影屏幕外,投影机107发出的光线的运行路线为:a1-a2-a3。
上述投影屏幕结构中,光线两次经过着色层,而着色层中的暗色染料会吸收一定的光线,进而造成光线能量的损失,并最终使得投影屏幕的亮度较低。并且,上述投影屏幕的各层结构多为具有一定厚度且硬化的板层结构,,使得整体幕片的柔性差。以及,在使用过程中,也发现,尤其当使用三色激光光源进行投射时,投影屏幕上画面的斑点现象比较明显,扩散层中扩散粒子的消散斑作用效果并不如预期。
本申请所提供的投影屏幕的实施例1:
在超短焦激光投影显示领域,为了达到较好的亮度及显示效果,一般会选择包括菲涅尔透镜层的投影屏幕并和投影机搭配使用,这种投影屏幕的特点是增益高、视角小且具有一定的抗环境光作用。相关技术中的投影屏幕一般包括顺次层叠排布的表面层、着色层、扩散层、菲涅尔透镜层和反射层,投影机发射的光线在投影屏幕中入射和出射过程中共两次经过着色层,着色层中的暗色染料会吸收一定的光线,进而造成光线能量的损失,并最终使得投影屏幕的亮度较低。
鉴于上述原因,本申请提供一种投影屏幕,该投影屏幕的亮度较高。本申请所提供的投影屏幕能够适用于发射单色激光、双色激光和三色激光的投影机。为了便于说明该投影屏幕的结构,本实施例1以投影屏幕展开使用时的状态进行描述,定义该投影屏幕展开使用时其沿竖直面展开,观看者看向投影屏幕的方向为正视方向。
本申请的一些实施例中,散光结构为条状;多个散光结构平行设置。这样设置,能够提高该投影屏幕的清晰度,具体的,假定散光结构远离第一支撑层的方向为A方向,散光结构的长度延伸方向为B方向,则光线在经过散光结构并进入空腔内时会趋向于C方向扩散,C方向既垂直于A方向又垂直于B方向,因此合理设置散光结构的延伸方向,便可以控制光线的扩散方向,进而可以定向控制该投影屏幕的观看视角,根据实际需求,使光 线仅向需要扩大观看视角的方向扩散,光线整体的扩散程度较低,而光线的扩散程度低,对应的投影屏幕的清晰度较高。
本申请的一些实施例中,在散光结构为凸起或凹槽的情况下,散光结构沿其长度延伸方向各处的截面形状和大小均相同。这样设置,可以使得经过散光结构的光线扩散的较为均匀,进而提高该投影屏幕的观看效果;另外,散光结构在制作时,通常为在第一支撑层的表面涂布对应材料后通过模具压印成型,设置散光结构沿其长度延伸方向各处的截面形状和大小均相同,还可以降低用于制作散光结构的模具的形状复杂性,进而降低模具的加工难度。
本申请的一些实施例中,在散光结构为凸起的情况下,各凸起连续排布。这样设置,使得所有进入扩散层的光线都要经过散光结构进行扩散,可以扩大散光结构的扩散幅度,从而提高该扩散层的扩散效果。
本申请的一些实施例中,在散光结构为凸起或凹槽的情况下,散光结构的截面呈半圆形、梯形或三角形。这种结构形式的散光结构较为简单,易制作。
本申请的一些实施例中,半圆形的直径范围为20μm-300μm。
以及,本申请的一些实施例中,第一支撑层由柔性材料制成。第一支撑层可以选用PET(Polyethylene terephthalate,聚对苯二甲酸类塑料)等柔性材料而具有柔性,散光结构可以由UV胶(UV是Ultra-Violet ray的简写,即紫外线,UV胶又称光敏胶、紫外固化胶、无影胶、UV光固化胶等)等柔性材料制成而具有柔性,菲涅尔透镜层可以由UV胶等柔性材料制成而具有柔性,反射层为涂覆在菲涅尔透镜层上很薄的一层,所以可弯曲,可弯曲的反射层涂覆在菲涅尔透镜层上后,菲涅尔透镜层和反射层整体仍具有柔性,所以使得整个投影屏幕都具有柔性,能够实现卷曲,可卷曲的投影屏幕在运输、安装和使用过程中都很方便。
如图2所示,该投影屏幕包括沿正视方向顺次层叠排布的表面层1、第一支撑层2、散光层3、第二支撑层4、菲涅尔透镜层5和反射层6,第一支撑层2、散光层3和第二支撑层4一起构成该投影屏幕中的扩散层。
第一支撑层2和第二支撑层4在正视方向上的两个侧面均为平面,以使第一支撑层2和第二支撑层4作为整个投影屏幕的组装基础,第一支撑层2和第二支撑层4的材质均为PET,PET柔性较好,使得第一支撑层2和第二支撑层4均可卷曲。当然,在其他实施例中,第一支撑层2和第二支撑层4的材质也可以为SBC(Styrenic Block Copolymers,苯乙烯系热塑性弹性体,又称苯乙烯系嵌段共聚物),SBC同样具有柔性,可以实现第一支撑层2和第二支撑层4的可卷曲。
如图3所示,散光层3由多个长条状凸起7构成,长条状凸起7为呈直线状的半圆柱状结构,即长条状凸起7被垂直于其延伸方向的面截取的截面呈半圆形,长条状凸起7在其延伸方向上各处的半圆形截面的大小尺寸均相同,散光层3中的各 长条状凸起7的形状和大小相同;如图2和图3所示,各长条状凸起7沿竖直方向延伸且沿水平方向平行排布,本实施例1中所述的水平方向是指既垂直于正视方向、又垂直于竖直方向的方向,各长条状凸起7的延伸方向均平行于第一支撑层2,各长条状凸起7沿水平方向连续布置,即相邻的长条状凸起7依次相连。长条状凸起7构成散光结构。
散光层3由UV胶加工制成,因为UV胶具有弹性,所以散光层3可卷曲;为了防止因为长条状凸起7的截面尺寸过大而降低散光层3的柔性,本实施例1中的长条状凸起7被垂直于其延伸方向的面截取的半圆形截面的直径取值范围为20μm-300μm。
如图2和图3所示,各长条状凸起7的弧面朝向第二支撑层4,各长条状凸起7与弧面相对的平面朝向第一支撑层2,这就相当于长条状凸起7被垂直于其延伸方向的面截取的半圆形截面的直线位于弧线靠近第一支撑层2的一侧,则该半圆形截面的轮廓在正视方向上渐缩,对应的,整个长条状凸起7的弧面在正视方向上呈渐缩状。
制作散光层3时,直接在第一支撑层2朝向第二支撑层4的侧面上涂布UV胶,然后使用形状与散光层3上各长条状凸起7适配的模具对散光层3进行压印,再使用UV光源灯对UV胶进行固化,然后脱模即可完成散光层3的制作;在散光层3脱模后,将散光层3与第二支撑层4通过OCA胶粘接在一起即可,OCA胶是一种光学胶,无色透明,光透过率在90%以上,胶结强度良好,室温下即可固化,同时还具有高耐候、耐水性、耐高温、抗紫外线、易控制厚度、间距均匀、长时间使用不会产生黄化等优点;在将散光层3与第二支撑层4粘接固定后,各长条状凸起7的弧面与第二支撑层4一起围成多个用于容纳空气的空腔,长条凸起7的弧面构成空腔的侧壁的一部分,需要注意的是,在将散光层3和第二支撑层4粘接固定时,OCA胶不能充满上述空腔。需要说明的是,在其他的一些实施例中,空腔可以用于容纳其他气体,如氮气、氩气、甲烷等。
菲涅尔透镜层5由UV胶固化制成,因为UV胶具有弹性,所以菲涅尔透镜层5可卷曲。如图2所示,菲涅尔透镜层5远离第二支撑层4的一侧具有多个沿上下方向排布的反射面9,各反射面9为沿着正视方向、自上而下倾斜的平面,各反射面9与水平面的夹角θ自上而下逐渐变大,且夹角θ在5°-85°范围内取值。
制作菲涅尔透镜层5时,将UV胶涂布在第二支撑层4远离第一支撑层2的侧面上,然后用专门的模具对菲涅尔透镜层5进行压印,使得菲涅尔透镜层5成型,再使用UV光源灯对UV胶进行固化,然后脱模即可完成菲涅尔透镜层5的制作。
在菲涅尔透镜层5制成后,在各反射面9上喷涂铝粉溶液,从而形成反射层6,铝粉溶液由铝粉溶于硅烷偶联剂(即为铝粉溶液的溶剂)中形成,铝粉构成反射层6中的反射材料;当然在其他的一些实施例中,反射材料也可以为银,或者,为银和 铝的组合物,均可以使用。
为了提高投影屏幕的对比度,在铝粉溶液中添加暗色染料,则在反射层6形成后,暗色染料分布在反射层6中;暗色染料一般为有机染料,可以选用偶氮类染料、酞菁类染料等,需要注意的是,选用有机染料时,选取的有机染料不能与铝粉溶液中的添加剂(如分散剂、流平剂、消泡剂、阻聚剂等)发生反应,暗色染料的选取为投影显示领域中成熟的相关技术,此处不再赘述。
本申请的一些实施例中,投影屏幕还包括表面层,表面层设于扩散层远离菲涅尔透镜层的一侧。设置表面层可以防止该投影屏幕被划伤。
本申请的一些实施例中,表面层远离菲涅尔透镜层的表面的雾度值大于等于20%。这样设置,可以防止光线在表面层远离菲涅尔透镜层的表面上产生镜面反射,进而在天花板上成像。
本申请的一些实施例中,表面层由柔性材料制成。表面层可以由UV胶或热固化胶水等柔性材料制成而具有柔性,进而可以实现卷曲。
在本申请的实施例图中,表面层1用于保护该投影屏幕,防止该投影屏幕被划伤而降低使用效果;表面层1由UV胶固化制成,因为UV胶具有弹性,所以表面层1可卷曲。
如图2所示,为了避免投影机8发出的光线在表面层1远离菲涅尔透镜层5的表面处产生镜面反射,进而在天花板上成像,将表面层1远离菲涅尔透镜层5的表面的雾度值设置为大于等于20%,可以通过至少以下三种方式实现:1)对表面层1远离菲涅尔透镜层5的表面进行AG处理(即防眩光处理);2)在表面层1远离菲涅尔透镜层5的表面通过模具压印出咬花纹路;3)在表面层1远离菲涅尔透镜层5的表面涂布扩散粒子,扩散粒子可以为PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)。
制作表面层1时,将UV胶涂布在第一支撑层2远离第二支撑层4的侧面上,然后用专门的模具对表面层1进行压印,使得表面层1成型,再使用UV光源灯对UV胶进行固化,然后脱模即可完成表面层1的制作。当然,在其他的一些实施例中,表面层1也可以由硬化涂料经热固化或UV胶固化后形成于第一支撑层2上,同样可以使用。
因为表面层1、第一支撑层2、散光层3、第二支撑层4、菲涅尔透镜层5均为柔性且可卷曲,而一般情况下,反射层6仅为喷涂在菲涅尔透镜层5的反射面9上的一层很薄的涂层,所以可以实现弯曲,而可弯曲的反射层6形成于在菲涅尔透镜层5上后,菲涅尔透镜层5和反射层6一起仍可卷曲,所以整个投影屏幕可以实现卷曲。
如图2所示,图中箭头和虚线为投影机8发出的光线经过该投影屏幕后照向观 看者的路线示意,投影机8发出的光线依次经过表面层1、第一支撑层2、散光层3、第二支撑层4和菲涅尔透镜层5后,在反射层6处发生反射,然后再经过菲涅尔透镜层5、第二支撑层4、散光层3、第一支撑层2和表面层1后照向观看者。
如图4所示,光线在入射过程中经过散光层3时,光线会从各长条状凸起7进入对应位置处的空腔中,从而发生折射,因为UV胶的折射率必然大于空气的折射率,所以光线会产生扩散,而且,长条状凸起7具有一个弧面,该弧面在正视方向上呈渐缩状,且沿竖直方向延伸,所以光线会趋向于水平方向扩散。各长条状凸起7的弧面构成散光结构的散光面,且本实施例1中的散光面的各部分在正视方向上均渐缩。
当然,在其他实施例中,也可以使散光层3通过在第二支撑层4靠近第一支撑层2的侧面上涂布UV胶形成,这种情况下,长条状凸起7的弧面朝向第一支撑层2,长条状凸起7的弧面与第一支撑层2围成容纳空气的空腔,光线在经过反射层6的反射后能够再次进入散光层3,则光线在出射过程中经过散光层3时,光线同样会从各长条状凸起7进入对应位置处的空腔中,从而发生折射,进而实现光线的扩散,而且,长条状凸起7具有一个弧面,该弧面在正视方向上呈渐扩状,且沿竖直方向延伸,所以光线会趋向于水平方向扩散。这种情况下,各长条状凸起7的弧面构成散光结构的散光面,且散光面的各部分在正视方向上均渐扩。
如图2所示,本实施例1中,散光层3中的各长条状凸起7沿竖直方向延伸,所以光线在经过散光层3时趋向于水平方向进行扩散,则可以提高该投影屏幕在水平方向上的观看视角。在其他的一些实施例中,长条状凸起7可以沿其他任意方向延伸,对应的,光线在经过散光层3时可以趋向于另一设定方向扩散,该设定方向同时垂直于正视方向和长条状凸起7的延伸方向,则可以提高该投影屏幕在该设定方向上的观看视角。
本实施例中,光线沿设定方向进行扩散,而不会无差别的沿各个方向扩散,可以降低光线的扩散程度,进而可以提高该投影屏幕的清晰度。
本实施例中,将暗色染料分布在反射层6中,在提高投影屏幕的对比度的基础上,光线仅在反射层6处反射时被暗色染料吸收一部分能量,所以能量损失较小,进而使得该投影屏幕在使用时亮度较高。而且,该投影屏幕中未设置专门的着色层,使得投影屏幕整体的厚度较小,更加利于投影屏幕的卷曲;另外,暗色染料使得铝粉在溶剂中能够轻微团聚,进而使得反射层6的平整度轻微下降,光线在照射在反射层6上时能够发生更大程度的散射,则可以提高光线的扩散程度;暗色染料为有机染料,有机染料能够溶于高分子聚合物和有机溶剂中,而菲涅尔透镜层5由UV胶制成,UV胶为一种高分子聚合物,这就使得暗色染料与菲涅尔透镜层5的结合力较强,进而使得反射层6整体附着在菲涅尔透镜层5上的附着牢度较高。
本申请所提供的投影屏幕的实施例2:
与实施例1的区别在于:如图5所示,散光层3为基层12,基层12由UV胶加工制成,因为UV胶具有弹性,所以基层12可卷曲,进而使得散光层3可卷曲。基层12远离第一支撑层2的一侧设置有多个长槽13,长槽13为直线形槽,长槽13为半圆形槽,即长槽13被垂直于其延伸方向的面截取的模拟截面形状呈半圆形,且在长槽13的长度延伸方向上,其各处的模拟截面的大小均相同,长槽13被垂直于其延伸方向的面截取的半圆形模拟截面的直线位于弧线远离第一支撑层2的一侧,则该半圆形模拟截面的轮廓在正视方向上渐扩,对应的,长槽13的槽壁面在正视方向上呈渐扩状;各长槽13沿竖直方向延伸且沿水平方向平行排布,长槽13的长度延伸方向平行于第一支撑层2;基层12上设置的各长槽13结构相同。长槽13构成基层12上的凹槽。
制作基层12时,在第一支撑层2朝向第二支撑层4的侧面上涂布UV胶,然后使用形状与散光层3上各长槽13适配的模具对基层12进行压印,再使用UV光源灯对UV胶进行固化,然后脱模即可完成基层12的制作。
本实施例2中,基层12使用OCA胶与第二支撑层4粘接固定,各长槽13的槽壁面与第二支撑层4围成用于容纳空气的空腔,需要注意的是,OCA胶仅用于基层12与第二支撑层4的粘接即可,不应过多进入长槽13内。
因为散光层3同样可卷曲,所以本实施例2中的投影屏幕整体可以实现卷曲。
光线在入射过程中经过基层12时,会从各长槽13的槽壁面处进入对应的空腔中,从而发生折射,进而实现光线的扩散,而且,因为长槽13的槽壁面在正视方向上呈渐扩状,且沿竖直方向延伸,所以光线会趋向于水平方向扩散。各长槽13构成设置在基层12上的凹槽,且同时构成散光结构,各长槽13的槽壁面构成散光结构的散光面,且本实施例2中散光面的各部分均在正视方向上渐扩。
本实施例2中,基层12中的各长槽13沿竖直方向延伸,所以光线在经过散光层3时趋向于水平方向进行扩散,则可以提高该投影屏幕在水平方向上的观看视角。在其他的一些实施例中,长槽13可以沿其他任意方向延伸,对应的,光线在经过散光层3时,可以趋向于某一设定方向扩散,该设定方向同时垂直于正视方向和长槽13的延伸方向,则可以提高该投影屏幕在该设定方向上的观看视角。
本申请所提供的投影屏幕的实施例3:
本申请的一些实施例中,至少一个扩散层包括第一扩散层和第二扩散层;第一扩散层的散光结构和第二扩散层的散光结构相接触,第一扩散层的散光结构和第二扩散层的散光结构围成空腔。设置两个扩散层能够提高该投影屏幕的扩散效果。
与实施例1的区别在于:如图6和图7所示,扩散层设有两层,分别为第一扩散层和第二扩散层,第一扩散层包括第一支撑层2和设于第一支撑层2上的一层散光层3,第二扩散层包括第二支撑层4和设于第二支撑层4上的一层散光层3,两散 光层3处于第一支撑层2和第二支撑层4之间,两散光层3之间通过OCA胶粘接固定。在两散光层3粘接固定后,两散光层3的各长条状凸起之间一起围成多个用于容纳空气的空腔。
需要说明的时,本实施例3中的两散光层3的长条状凸起的延伸方向相互垂直,具体为:设于第一支撑层2上的散光层3中各长条状凸起沿竖直方向延伸,设于第二支撑层4上的散光层3中各长条状凸起沿水平方向延伸。
光线在入射过程中经过设于第一支撑层2上的散光层3时,光线会从各长条状凸起进入对应位置处的空腔中,从而发生折射,进而实现光线的扩散,而且,长条状凸起具有一个弧面,该弧面在正视方向上呈渐缩状,且沿竖直方向延伸,所以光线会趋向于水平方向扩散。
光线在出射过程中经过设于第二支撑层4上的散光层3时,光线会从各长条状凸起进入对应位置处的空腔中,从而发生折射,进而实现光线的扩散,而且,长条状凸起具有一个弧面,该弧面在正视方向上呈渐扩状,且沿水平方向延伸,所以光线会趋向于竖直方向扩散。
需要注意的是,两散光层3之间的OCA胶仅用于两者之间的粘接,OCA胶不应过多充斥于各长条状凸起之间的空腔内。
设置两层扩散层可以在不同方向上实现光线的扩散,进而在不同方向上扩大该投影屏幕的观看视角,但是相对于通过扩散粒子无差别的沿各个方向扩散光线而言,该投影屏幕中扩散光线的程度仍然较低,所以该投影屏幕的清晰度较高。
上述各实施例中,第一支撑层和第二支撑层由柔性材料制成。在其他实施例中,第一支撑层和第二支撑层也可以由硬质材料制成,如MS,同样可以使用。
上述实施例1中,透光凸起为长度延伸方向平行于第一支撑层的长条状凸起。在其他实施例中,透光凸起也可以为其他形状的凸起,如可以为一个柱状结构,柱状结构的轴线垂直于第一支撑层,且长度方向沿垂直于第一支撑层的方向延伸,在柱状结构远离第一支撑层的一端具有一个弧面,该弧面在正视方向上渐缩或渐扩,且弧面为长条形弧面,其长度在平行于第一支撑层的方向上延伸,相邻的透光凸起与第二支撑层之间同样可以围成用于容纳空气的空腔,则同样可以实现光线的扩散,该透光凸起构成散光结构,该弧面构成散光面。
上述实施例1中,各长条状凸起为半圆柱状结构,各长条状凸起被垂直于其延伸方向的面截取的截面呈半圆形。在其他实施例中,各长条状凸起还可以为其他形状的结构,如图8所示,各长条状凸起7被垂直于其延伸方向的面截取的截面也可以呈三角形,对应的长条状凸起7为三棱柱状结构,长条状凸起7的一个侧面朝向第一支撑层2,与该侧面相对的棱朝向第二支撑层,则长条状凸起7整体沿正视方向渐缩,且相邻的长条状凸起7同样能够与第二支撑层一起围成用于容纳空气的空腔; 或者,如图9所示,各长条状凸起7被垂直于其延伸方向的面截取的截面呈梯形,定义梯形截面中相互平行的两条直线所在的面分别为第一侧面和第二侧面,且第一侧面的面积大于第二侧面的面积,第一侧面朝向第一支撑层2,第二侧面朝向第二支撑层,则长条状凸起7整体上沿正视方向渐缩,相邻的长条状凸起7同样能够与第二支撑层一起围成用于容纳空气的空腔。当然,在其他的一些实施例中,各长条状凸起被垂直于其延伸方向的面截取的截面的形状并不限于上述三种,还可以为其他的形状,只要满足上述截面沿正视方向具有轮廓渐缩段和/或轮廓渐扩段(上述截面为半圆形、三角形和梯形,均为对应截面沿正视方向仅具有轮廓渐缩段),且长条状凸起与支撑层能够围成空腔即可,如图10所示,该图显示的是一种设置在第一支撑层2上的长条状凸起7,该长条状凸起7被垂直于其延伸方向的面截取的截面就同时沿正视方向具有轮廓渐扩段10和轮廓渐缩段11,且相邻的长条状凸起7同样能够与第一支撑层2、第二支撑层一起围成用于容纳空气的空腔,同样可以使用。
上述实施例1中,各长条状凸起为相互平行的半圆柱状结构,半圆柱状结构呈直线状。在其他实施例中,长条状凸起也可以不是直线状的结构,如:长条状凸起可以为在平行于第一支撑层的面内的弯折结构或弯曲结构,同样可以使用。
上述实施例1中,各长条状凸起沿其排布方向连续布置。在其他实施例中,各长条状凸起也可以沿着其排布方向间隔布置,同样可以使用。
上述实施例1中,各长条状凸起为半圆柱状结构,长条状凸起在其延伸方向各处的、被垂直于其延伸方向的面截取的截面均相同。在其他实施例中,各长条状凸起也可以不是一种规则的结构,长条状凸起在其延伸方向各处的、被垂直于其延伸方向的面截取的截面可以不相同,同样可以使用。
上述实施例1中,散光层中的各长条状凸起均为半圆柱状结构,即散光层中的各长条状凸起的结构相同。在其他实施例中,散光层中的各长条状凸起也可以不完全相同,如可以同时包括半圆柱状结构、三棱柱状结构、四棱柱状结构等,还可以是形状相同但尺寸不同的结构,同样可以使用。
上述实施例2中,凹槽为长度方向平行于第一支撑层的长槽。在其他实施例中,长槽也可以为其他形状的凹槽,如可以整体为一个圆柱形槽,圆柱形槽的轴线垂直于第一支撑层,圆柱形槽靠近第一支撑层的一端具有一个异形段,该异形段的槽壁面为弧面,弧面沿正视方向渐扩,且弧面为长条形弧面,其长度在平行于第一支撑层的方向上延伸,则同样可以实现光线的扩散,异型段对应的部分构成散光结构,弧面构成散光面。
上述实施例2中,长槽为半圆形槽,各长槽被垂直于其延伸方向的面截取的模拟截面呈半圆形。在其他实施例中,各长槽还可以为其他形状的长槽,如:各长槽被垂直于其延伸方向的面截取的模拟截面也可以呈三角形,或者,各长槽被垂直于其延伸方向的面截取的模拟截面也可以呈梯形,均可以使用。当然,在其他的一些 实施例中,各长槽被垂直于其延伸方向的面截取的模拟截面的形状并不限于上述三种,还可以为其他的形状,只要满足上述模拟截面沿正视方向具有轮廓渐缩段和/或轮廓渐扩段即可(上述模拟截面为半圆形、三角形和梯形,均为模拟截面沿正视方向仅具有轮廓渐扩段),如图11所示,该图中显示的基层12上设置的长槽13被垂直于其延伸方向的面截取的模拟截面沿正视方向就同时具有轮廓渐扩段14和轮廓渐缩段15,同样可以使用。
上述实施例2中,各长槽为相互平行的直线形槽。在其他实施例中,长槽也可以不是直线形槽,如:长槽可以为弯折形槽或弯曲形槽,同样可以使用。
上述实施例2中,各长槽为半圆形槽,长槽在其延伸方向各处的、被垂直于其延伸方向的面截取的截面形状均相同。在其他实施例中,各长槽也可以不是一种规则的槽,长槽在其延伸方向各处的、被垂直于其延伸方向的面截取的截面形状可以不相同,同样可以使用。
上述实施例2中,基层上设置的各长槽结构相同。在其他实施例中,基层上设置的各长槽的结构也可以不完全相同,如可以同时包括截面形状呈半圆形、梯形、三角形等各种形状的长槽,基层上的各长槽还可以是结构相同但尺寸不同的槽,同样可以使用。
上述实施例3中,两层散光层的长条状凸起的延伸方向相互垂直。在其他实施例中,两层散光层的长条状凸起的延伸方向也可以不垂直,如:定义一个散光层中的一个长条状凸起的轴线在第一支撑层朝向第二支撑层的侧面上的投影为第一直线,定义另一个散光层的一个长条状凸起的轴线在第一支撑层朝向第二支撑层的侧面上的投影为第二直线,第一直线的延伸方向和第二直线的延伸方向夹有一个锐角,该锐角的取值可以在大于等于30°且小于90°范围内选择,同样可以使用。
上述实施例3中,两层散光层的结构与上述实施例1中的散光层的结构相同。在其他实施例中,两层散光层的结构也可以与上述实施例2中的散光层的结构相同,同样可以使用。
在本申请还提供了实施例4:
在本实施例中,公开了一种投影屏幕,包括层叠排布的扩散结构层、第一支撑、粘结层、第二支撑层、菲涅尔透镜层和反射层;其中,反射层中分布有暗色染料和反射材料。
本申请实施例同样具有上述实施例中提到的可提高投影画面亮度的效果。
以及,如图12所示,与前述实施例不同的是,扩散结构层1a位于投影屏幕的最外侧,其中,扩散结构层中含有扩散粒子,比如通过涂覆粒子PMMA粒子(粒子大小在2~15um直径数值,为多分散混合方式)形成扩散结构。扩散结构层的雾度值在90%~92%之间。
扩散结构层厚度在10~30um。
在本申请实施例中,扩散结构层1a位于投影屏幕的最外侧,并具有雾度表面,可以同时具有扩散影像光束以及减少环境光反射(与影像光束共同进入屏幕内部且能够进入人眼的部分),具有一定抗光性。
以及,在本申请实施例中,粘接层可以为UV胶层固化形成。以及,粘结层还可以掺杂由扩散粒子,这样可以进一步提高扩散效果。
以及,作为本申请实施例的一种变型,实施例4中的扩散结构层1a还可以采用如实施例1~3中所述的扩散层结构,也可以具有提高屏幕消散斑的效果。
本申请上述实施例既能够提升投影画面的亮度,同时还具有较好的消散斑的效果,尤其适用于三色激光投影应用中。
作为上述多个实施例的变型,比如在实施例1~3中,当对投影画面的消散斑要求无特别高要求时,散光结构还可以被层状的UV胶层替代,从而形成依次为雾度表面层、第一支撑层、UV胶层或粘接层、第二支撑层、菲涅尔透镜层、反射层的投影屏幕排布结构。
本申请还提供了一种投影系统,投影系统包括投影屏幕和投影机,该投影屏幕的结构与上述各实施例中的投影屏幕的结构相同,此处不再赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (18)

  1. 一种投影屏幕,其特征在于,包括:层叠排布的表面层、扩散层、菲涅尔透镜层和反射层;
    所述扩散层包括第一支撑层和设于所述第一支撑层上的多个散光结构;
    所述反射层中分布有暗色染料和反射材料。
  2. 根据权利要求1所述的投影屏幕,其特征在于,所述暗色染料为有机染料;和/或,所述反射层为不平整表面。
  3. 根据权利要求1所述的投影屏幕,其特征在于,所述散光结构为设置于所述第一支撑层上的凸起,或者,
    所述扩散层包括基层,所述散光结构为设置于所述基层远离所述第一支撑层一侧的凹槽。
  4. 根据权利要求1所述的投影屏幕,其特征在于,所述散光结构由UV胶制成。
  5. 根据权利要求2所述的投影屏幕,其特征在于,所述散光结构为条状;所述多个散光结构平行设置。
  6. 根据权利要求2所述的投影屏幕,其特征在于,在所述散光结构为凸起或凹槽的情况下,所述散光结构沿其长度延伸方向各处的截面形状和大小均相同。
  7. 根据权利要求2所述的投影屏幕,其特征在于,在所述散光结构为凸起或凹槽的情况下,所述散光结构的截面呈半圆形、梯形或三角形。
  8. 根据权利要求7所述的投影屏幕,其特征在于,所述半圆形的直径范围为20μm-300μm。
  9. 根据权利要求1所述的投影屏幕,其特征在于,所述扩散层还包括第二支撑层;所述第二支撑层位于所述菲涅尔透镜层靠近所述散光结构的一侧,且与所述菲涅尔透镜层相接触,所述散光结构的散光面与所述第二支撑层相接触,所述散光结构的散光面与所述第二支撑层围成空腔。
  10. 根据权利要求1所述的投影屏幕,其特征在于,所述散光结构中掺杂由扩散粒子。
  11. 根据权利要求1所述的投影屏幕,其特征在于,所述表面层的雾度为20%,和/或,所述表面层由柔性材料制成。
  12. 根据权利要求1所述的投影屏幕,其特征在于,所述至少一个扩散层包括第一扩散层和第二扩散层;所述第一扩散层的散光结构和所述第二扩散层的散光结构相接触,所述第一扩散层的散光结构和所述第二扩散层的散光结构围成空腔。
  13. 一种投影屏幕,其特征在于,包括层叠排布的扩散结构层、第一支撑、粘结层、第二支撑层、菲涅尔透镜层和反射层;其中,所述反射层中分布有暗色染料和反射材料。
  14. 根据权利要求13所述的投影屏幕,其特征在于,所述扩散结构层包括扩散粒子,所述扩散结构层的表面雾度为90%~92%。
  15. 根据权利要求13所述的投影屏幕,其特征在于,所述扩散结构层位于所述投影屏幕的最外侧,所述扩散结构层的厚度为10~30um。
  16. 根据权利要求13所述的投影屏幕,其特征在于,所述粘结层为UV胶层,和/或,所述暗色染料为有机材料。
  17. 根据权利要求1-16中任一项所述的投影屏幕,其特征在于,所述第一支撑层由柔性材料制成,和/或,
    所述第二支撑层由柔性材料制成。
  18. 一种投影系统,其特征在于,包括投影机和如权利要求1-17中任一项所述的投影屏幕。
PCT/CN2021/137843 2021-02-04 2021-12-14 一种投影屏幕及投影系统 WO2022166411A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180092951.4A CN116830033A (zh) 2021-02-04 2021-12-14 一种投影屏幕及投影系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110153856.2A CN114859646A (zh) 2021-02-04 2021-02-04 一种投影屏幕及投影系统
CN202110153856.2 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022166411A1 true WO2022166411A1 (zh) 2022-08-11

Family

ID=82622890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137843 WO2022166411A1 (zh) 2021-02-04 2021-12-14 一种投影屏幕及投影系统

Country Status (2)

Country Link
CN (2) CN114859646A (zh)
WO (1) WO2022166411A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050122301A (ko) * 2004-06-24 2005-12-29 (주)포스미디어 후면투사 스크린
CN206991014U (zh) * 2017-07-10 2018-02-09 成都恒坤光显材料科技有限公司 一种带有曲率的投影屏幕
CN108873592A (zh) * 2018-08-20 2018-11-23 张家港康得新光电材料有限公司 一种抗光幕布及其制备方法
CN111077722A (zh) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 投影屏幕及其加工方法
CN111427229A (zh) * 2018-12-20 2020-07-17 青岛海信激光显示股份有限公司 一种投影屏幕和投影系统
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法
CN112198751A (zh) * 2020-10-15 2021-01-08 成都菲斯特科技有限公司 一种投影屏幕及投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050122301A (ko) * 2004-06-24 2005-12-29 (주)포스미디어 후면투사 스크린
CN206991014U (zh) * 2017-07-10 2018-02-09 成都恒坤光显材料科技有限公司 一种带有曲率的投影屏幕
CN108873592A (zh) * 2018-08-20 2018-11-23 张家港康得新光电材料有限公司 一种抗光幕布及其制备方法
CN111077722A (zh) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 投影屏幕及其加工方法
CN111427229A (zh) * 2018-12-20 2020-07-17 青岛海信激光显示股份有限公司 一种投影屏幕和投影系统
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法
CN112198751A (zh) * 2020-10-15 2021-01-08 成都菲斯特科技有限公司 一种投影屏幕及投影系统

Also Published As

Publication number Publication date
CN116830033A (zh) 2023-09-29
CN114859646A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US7914192B2 (en) Enhanced light diffusing sheet
WO2022247430A1 (zh) 一种投影屏幕及投影系统
WO2022247429A1 (zh) 一种消散斑投影屏幕及投影系统
WO2022247417A1 (zh) 一种抗天花板反光投影屏幕及投影系统
CN111538204A (zh) 一种反射型投影屏幕及投影系统
JP2657536B2 (ja) 光拡散シート
US11635678B2 (en) Fresnel projection screen and projection system
TW200537922A (en) Light diffusing screen
CN113238450A (zh) 一种高增益投影屏幕及投影系统
CN113238451B (zh) 一种可卷曲投影屏幕及投影系统
US7811485B2 (en) Optical plate having three layers and method for manufacturing the same
WO2009004598A2 (en) Light source of varying thickness
WO2022166411A1 (zh) 一种投影屏幕及投影系统
TW201730585A (zh) 背光單元用光學片和背光單元
CN214670066U (zh) 一种抗天花板反光投影屏幕及投影系统
CN114545720A (zh) 一种高清晰度投影屏幕及投影系统
CN114545722A (zh) 一种可卷曲投影屏幕及投影系统
CN107238941A (zh) 一种无画面散斑的激光液晶显示器
JP2010204573A (ja) 反射スクリーン、映像表示システム
CN213399186U (zh) 一种可卷曲投影屏幕及投影系统
CN214670069U (zh) 一种高增益投影屏幕及投影系统
JP6277650B2 (ja) 導光板、面光源装置、映像源ユニット、及び液晶表示装置
CN214670067U (zh) 一种投影屏幕及投影系统
CN113671786A (zh) 一种广视角投影屏幕及投影系统
CN214670068U (zh) 一种消散斑投影屏幕及投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092951.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924404

Country of ref document: EP

Kind code of ref document: A1