WO2017008554A1 - 多联机系统及其电子膨胀阀控制方法 - Google Patents

多联机系统及其电子膨胀阀控制方法 Download PDF

Info

Publication number
WO2017008554A1
WO2017008554A1 PCT/CN2016/080242 CN2016080242W WO2017008554A1 WO 2017008554 A1 WO2017008554 A1 WO 2017008554A1 CN 2016080242 W CN2016080242 W CN 2016080242W WO 2017008554 A1 WO2017008554 A1 WO 2017008554A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
electronic expansion
opening degree
reaches
superheat
Prior art date
Application number
PCT/CN2016/080242
Other languages
English (en)
French (fr)
Inventor
罗彬�
杨坤
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP16823701.4A priority Critical patent/EP3324135A4/en
Priority to US15/501,101 priority patent/US10126029B2/en
Publication of WO2017008554A1 publication Critical patent/WO2017008554A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, in particular to an electronic expansion valve control method for a multi-line system and a multi-line system.
  • the heating load when the heating load is dominant, that is, when the air conditioning system is operated in the main heating mode, the high pressure gaseous refrigerant is condensed in the heating internal machine, respectively, in the cooling Evaporation in the machine and in the outdoor heat exchanger. If only the return superheat of the compressor is controlled at this time, it is easy to cause the refrigerant flow through the refrigerating internal machine to be insufficient, and the opening degree of the electronic expansion valve of the refrigerating internal machine is maximized, so that the outdoor unit misjudges the refrigerating load, resulting in a large load. Misoperation, which affects the rapid response capability and stability of the entire system, which in turn affects the user's thermal comfort experience and system energy efficiency.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. Accordingly, it is an object of the present invention to provide an electronic expansion valve control method for a multi-line system capable of rationally distributing the refrigerant flow rate of a refrigerating internal unit and an outdoor heat exchanger.
  • Another object of the present invention is to propose a multi-line system.
  • an embodiment of the present invention provides an electronic expansion valve control method for a multi-line system, the multi-line system including an outdoor unit, a plurality of indoor units, and a flow dividing device, wherein the flow dividing device includes a first change a heat exchanger, a second heat exchanger, and a first electronic expansion valve, and the first electronic expansion valve is connected to an outlet of the first heat exchange passage of the second heat exchanger and the second heat exchanger Between the inlets of the second heat exchange flow path, the method includes the steps of: obtaining the return superheat of the compressor when the multi-line system is operating in the main heating mode, and according to the return superheat of the compressor Controlling an opening degree of the first electronic expansion valve; a return air superheat degree of the compressor and a cooling in the plurality of indoor units The electronic expansion valve opening degree of the machine is judged; if the return superheat degree of the compressor is greater than the first preset superheat degree and the opening degree of the electronic expansion valve of any one of the ref
  • the return superheat of the compressor is first obtained, and the first is based on the return superheat of the compressor.
  • the opening degree of the electronic expansion valve is controlled, and then the return superheat of the compressor and the electronic expansion valve opening degree of the refrigerating internal machine in the plurality of indoor units are judged, and the return superheat of the compressor is greater than the first preset
  • the degree of superheat and the opening degree of the electronic expansion valve of any one of the refrigerating internal machines reaches the maximum opening degree
  • the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree is calculated to obtain the target intermediate pressure value, and the first electronic quantity is obtained according to the target intermediate pressure value.
  • the expansion valve performs medium pressure control to realize the reasonable distribution of the refrigerant flow rate of the refrigerating inner and outer heat exchangers, and to ensure that the outdoor unit is misjudged due to insufficient refrigerant flow of the refrigerating internal machine while ensuring no liquid return.
  • the situation thereby improving the refrigeration capacity of the refrigeration internal machine, and improving the stability of the system, thereby improving user comfort.
  • the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree is calculated to obtain the target medium pressure value, and specifically includes: calculating the heat exchange capacity of the refrigeration internal machine that reaches the maximum opening degree, and calculating the The inlet enthalpy of the maximum internal opening degree of the refrigerating machine, and the target outlet enthalpy of the refrigerating internal machine that has reached the maximum opening degree; the heat exchange capacity, the inlet enthalpy value and the target outlet of the refrigerating internal machine that reaches the maximum opening degree Calculating the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree, and calculating the piping pressure drop according to the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree and the diameter of the piping in the flow dividing device; The pre-valve pressure of the electronic expansion valve of each indoor unit in the indoor unit obtains a maximum pre-valve pressure value; and the maximum pre-vehi
  • the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree is calculated according to the following formula:
  • m s is the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree
  • ho is the target outlet enthalpy value
  • hi is the inlet enthalpy value
  • the return air superheat of the compressor is less than the second preset superheat degree and continues for the first preset time or any one Controlling the first electronic expansion valve to exit the intermediate pressure control when the electronic expansion valve opening degree of the refrigeration internal machine reaches a minimum opening degree and continues for the first predetermined time, wherein the second preset superheat degree is less than the The first preset superheat.
  • the first electricity is obtained according to a return air superheat degree of the compressor Before the opening degree of the sub-expansion valve is controlled, the first electronic expansion valve is controlled to maintain the initial opening degree for a second preset time.
  • another embodiment of the present invention provides a multi-line system, including: an outdoor unit; a plurality of indoor units; a flow dividing device, the first heat exchanger, the second heat exchanger, and the first An electronic expansion valve, and the first electronic expansion valve is connected between an outlet of the first heat exchange passage of the second heat exchanger and an inlet of the second heat exchange passage of the second heat exchanger; a control module, configured to acquire a return air superheat of the compressor when the multi-line system is operated in a main heating mode, and open the first electronic expansion valve according to a return air superheat of the compressor Controlling, and determining a degree of return superheat of the compressor and an opening degree of the electronic expansion valve of the refrigerating internal machine in the plurality of indoor units, wherein if the return superheat of the compressor is greater than the first Presetting the superheat degree and the opening degree of the electronic expansion valve of any one of the refrigerating internal machines reaches the maximum opening degree, and the control module calculates the
  • the control module acquires the return superheat of the compressor, and opens the first electronic expansion valve according to the return superheat of the compressor. Degree is controlled, and the degree of return superheat of the compressor and the electronic expansion valve opening degree of the refrigerating inner machine in the plurality of indoor units are judged, and when the return superheat degree of the compressor is greater than the first preset superheat degree and any one
  • the control module calculates the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree to obtain the target medium pressure value, and performs the first electronic expansion valve according to the target medium pressure value.
  • the medium-pressure control realizes the reasonable distribution of the refrigerant flow rate of the refrigerating internal machine and the outdoor heat exchanger, and ensures the situation that the outdoor machine is misjudged due to insufficient refrigerant flow of the refrigerating internal machine while ensuring no liquid return. Thereby, the refrigeration capacity of the refrigeration internal machine is improved, and the stability of the system is improved, thereby improving user comfort.
  • control module calculates the refrigerant medium flow rate of the refrigerating internal machine that reaches the maximum opening degree to obtain the target medium pressure value, wherein the control module calculates the reversing of the refrigerating internal machine that reaches the maximum opening degree.
  • the control module is based on the refrigerating internal machine that reaches the maximum opening degree Calculating the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree by the heat exchange capacity, the inlet enthalpy value, and the target outlet enthalpy, and according to the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree and the piping of the shunting device Diameter calculating a pipe pressure drop; the control module calculates a pre-valve pressure of an electronic expansion valve of each of the plurality of indoor units to obtain a maximum pre-valve pressure value; the control module sets the maximum pre-valve pressure value The target pressure drop is obtained by adding the pipe pressure drop.
  • the control module calculates the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree according to the following formula:
  • m s is the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree
  • ho is the target outlet enthalpy value
  • hi is the inlet enthalpy value
  • the control module controls the first electronic expansion valve to exit the intermediate pressure control, wherein the second preset The heat is less than the first preset superheat.
  • control module further controls the first electronic expansion valve to remain initially open before controlling the opening degree of the first electronic expansion valve according to the return air superheat of the compressor. Run the second preset time.
  • FIG. 1 is a flow chart of a method of controlling an electronic expansion valve of a multiple-line system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the structure of a multi-line system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a first electronic expansion valve adjustment process in accordance with one embodiment of the present invention.
  • FIG. 4 is a flow chart of a method of controlling an electronic expansion valve of a multiple-line system in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a multi-line system according to an embodiment of the present invention.
  • outdoor heat exchanger 1 four-way valve 2, compressor 3, external gas-liquid separator 4, four check valves 5, 6, 7, 8 and four solenoid valves 9, 10, 11, 12, gas-liquid separator 13, first heat exchanger 14, second electronic expansion valve 15, four check valves 16, 17, 18, 19, second heat exchanger 20, first electronic expansion valve 21, outdoor Machine 100 and flow dividing device 200.
  • the multi-line system comprises an outdoor unit, a plurality of indoor units and a flow dividing device
  • the flow dividing device comprises a first heat exchanger, a second heat exchanger and a first electronic expansion valve
  • the first electronic expansion valve is connected to the second heat exchange Between the outlet of the first heat exchange passage of the device and the inlet of the second heat exchange passage of the second heat exchanger.
  • the outdoor unit includes an outdoor heat exchanger 1, a four-way valve 2, a compressor 3, an external gas-liquid separator 4, and four check valves 5, 6, 7, 8, wherein the compressor 3 has an exhaust port and a return air port, the exhaust port of the compressor 3 is connected to one of the valve ports of the four-way valve 2, and the return port of the compressor 3 and the external gas-liquid separator 4 One end is connected.
  • the flow dividing device comprises a gas-liquid separator 13, a first heat exchanger 14, a second heat exchanger 20, a first electronic expansion valve 21, a second electronic expansion valve 15, four solenoid valves 9, 10, 11, 12 and four a one-way valve 16, 17, 18, 19, wherein the first heat exchanger 14 and the second heat exchanger 20 may be a plate heat exchanger, and the first electronic expansion valve 21 is connected to the second heat exchanger 20 Between the outlet of a heat exchange flow path and the inlet of the second heat exchange flow path of the second heat exchanger 20, the flow dividing device passes through four solenoid valves 9, 10, 11, 12 and four check valves 16, 17, 18, 19 are connected to a plurality of indoor units (not specifically shown in the drawings).
  • the high-temperature high-pressure gaseous refrigerant from the exhaust port of the compressor 3 enters the gas-liquid separator 13 through the four-way valve 2 and the check valve 6, passes through the solenoid valve 9 and the solenoid valve 11 entering the heating internal machine, the supercooled liquid refrigerant at the outlet of the heating internal machine enters the second heat exchanger 20 through the check valve 16 and the check valve 18, and exits from the first heat exchange flow path of the second heat exchanger 20.
  • a part of the refrigerant is sent to the refrigerating internal machine via the check valve 17 and the check valve 19, and the other part is throttled by the first electronic expansion valve 21 and then enters the outdoor heat exchanger 1 to evaporate.
  • the first electronic expansion valve 21 mainly controls the throttling process of the refrigerant entering the outdoor heat exchanger 1, and the opening degree thereof affects whether the return air of the compressor 3 carries liquid, and the opening degree of the first electronic expansion valve 21 affects the first
  • the pre-valve pressure of the electronic expansion valve 21 affects the flow rate of the refrigerant passing through the refrigerating internal machine.
  • the embodiment of the present invention proposes an electronic expansion valve control method for a multi-line system, which eliminates the problem of insufficient refrigerant flow in the refrigerating internal machine while ensuring no liquid return.
  • the electronic expansion valve control method of the multi-line system includes the following steps:
  • the opening degree of the first electronic expansion valve is controlled to increase. Large; when the return superheat of the compressor drops, the opening of the first electronic expansion valve is controlled to decrease.
  • the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree is calculated to obtain The target medium pressure value, and the medium voltage control of the first electronic expansion valve according to the target medium pressure value.
  • the first preset superheat degree may be calibrated according to actual conditions. For example, the first preset superheat degree may be 6 degrees.
  • the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree is calculated to obtain the target medium pressure value, and specifically includes: calculating the heat exchange capacity of the refrigeration internal machine that reaches the maximum opening degree, and calculating the maximum opening.
  • the inlet enthalpy of the refrigerating internal machine and the target outlet enthalpy of the refrigerating internal machine that achieves the maximum opening degree calculated according to the heat exchange capacity, inlet enthalpy value and target outlet enthalpy value of the refrigerating internal machine reaching the maximum opening degree
  • the pre-valve pressure is obtained to obtain the maximum pre-valve pressure value; the maximum pre-valve pressure value is added to the piping pressure drop to obtain the target intermediate pressure value.
  • the refrigerant flow rate of the refrigerating machine that reaches the maximum opening degree is calculated according to the following formula (1):
  • m s is the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree
  • ho is the target outlet enthalpy value
  • hi is the inlet enthalpy value
  • the pressure value and the temperature value of the medium pressure are respectively acquired by the first pressure sensor P1 and the first temperature sensor T1, and the low pressure is respectively obtained by the second pressure sensor P2 and the second temperature sensor T2.
  • Pressure value and temperature value, the KA value of the indoor heat exchanger of each indoor unit in a plurality of indoor units and the model of the electronic expansion valve are preset in each indoor unit, and various types of electronic expansion valves are preset in the outdoor unit.
  • Pressure-flow curve, and the diameter of the pipe is preset in the flow dividing device.
  • the refrigerant flow rate m s of the internal machine, and the piping pressure drop ⁇ P is calculated based on the calculated refrigerant flow rate m s and the diameter of the piping preset in the flow dividing device.
  • the pre-valve pressure Pins_i of the electronic expansion valve of each indoor unit of the plurality of indoor units is calculated according to the pressure-flow curve of the electronic expansion valve of each indoor unit of the plurality of indoor units and the current low-pressure pressure value, and the maximum is obtained.
  • the pre-valve pressure value Pins adds the obtained maximum pre-valve pressure value Pins to the pipe pressure drop ⁇ P to obtain the target intermediate pressure value Pms.
  • the adjustment process of the first electronic expansion valve includes the following steps:
  • S106 Calculate a target exit threshold ho of the refrigeration internal machine that reaches the maximum opening degree according to the current low pressure value and the target superheat degree.
  • the pipe pressure drop ⁇ P is calculated according to the pipe diameter.
  • the piping pressure drop ⁇ P can be calculated from the pipe resistance and the local resistance of the 40 m pipe according to the pipe diameter and the refrigerant flow rate m s of the refrigerating machine that reaches the maximum opening degree.
  • the first electronic expansion valve is controlled to exit the medium pressure control, wherein the second preset superheat degree is less than the first preset superheat degree, and the first preset superheat degree
  • the second preset superheat and the first preset time may be calibrated according to actual conditions.
  • the first preset superheat may be 6 degrees
  • the second preset superheat may be 4 degrees
  • the first preset time may be It is 1 min.
  • the first electronic expansion valve is in accordance with the return air superheat of the compressor Before the opening degree is controlled, the first electronic expansion valve is controlled to maintain the initial opening degree for a second preset time.
  • the second preset time may be calibrated according to actual conditions.
  • the second preset time may be 5 min.
  • the initial opening degree of the first electronic expansion valve may be 180 pp.
  • the initial opening of the first electronic expansion valve is 180 p and remains unchanged for 5 min.
  • the first electronic expansion valve is controlled to enter the return superheat control logic, that is, when the return superheat of the compressor rises, the opening of the first electronic expansion valve is controlled to increase;
  • the degree of superheat is lowered, the opening degree of the first electronic expansion valve is controlled to decrease.
  • the first electronic expansion valve is controlled to enter. Medium voltage control logic.
  • the target medium pressure value is obtained according to the step shown in FIG. 3, and the first electronic expansion valve is PI adjusted according to the target medium pressure value, and the adjustment coefficient such as 80 may be based on actual conditions.
  • the situation is calibrated.
  • the return superheat of the compressor is less than 4 degrees and lasts for 1 min or the opening of the electronic expansion valve of any one of the refrigerating internal machines reaches the minimum opening and lasts for 1 min, the first electronic expansion valve is controlled to exit the medium voltage control logic, and enters back. Gas superheat control logic.
  • the electronic expansion valve control process of the multi-line system includes the following steps:
  • the multi-line system operates in the main heating mode.
  • the initial opening degree of the electronic expansion valve of the refrigerating internal machine is 240p and is maintained for 3 minutes.
  • the first electronic expansion valve enters a return air superheat control.
  • step S206 Determine whether the maximum opening position of the opening degree of the refrigerating internal machine is on and whether the regenerative superheat degree of the compressor is greater than 6 degrees, and whether it lasts for 1 min. If yes, go to step S207; if no, go back to step S204.
  • the first electronic expansion valve enters the intermediate pressure control, and is adjusted once every 2 minutes according to the steps shown in FIG.
  • step S208 Determine whether the return air superheat of the compressor is less than 4 degrees or whether the opening degree of the refrigerating internal machine reaches a minimum opening degree and whether it lasts for 1 min. If yes, go to step S209; if no, go back to step S207.
  • the minimum target medium pressure value can be determined by directly calculating the refrigerant flow rate of the refrigerating internal machine, so that the first electronic expansion valve is subjected to medium voltage control, thereby achieving refrigeration.
  • Reasonable distribution of refrigerant flow between internal and outdoor heat exchangers to avoid refrigeration of the internal cooling machine Insufficient capacity causes the outdoor unit to make a wrong judgment on the system state and malfunction, thereby improving the cooling capacity of the refrigeration internal machine and improving the stability and energy saving of the system.
  • the return superheat of the compressor is first obtained, and according to the return air of the compressor.
  • the degree of superheat controls the opening degree of the first electronic expansion valve, and then judges the return superheat of the compressor and the opening degree of the electronic expansion valve of the refrigerating internal machine in the plurality of indoor units, and the return superheat of the compressor.
  • the opening degree of the electronic expansion valve of any one of the refrigerating internal machines reaches the maximum opening degree
  • the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree is calculated to obtain the target intermediate pressure value, and according to the target medium pressure
  • the value is controlled by the medium voltage of the first electronic expansion valve, thereby realizing the reasonable distribution of the refrigerant flow rate of the refrigerating inner and outer heat exchangers, and effectively avoiding the shortage of the refrigerant flow of the refrigerating internal machine
  • FIG. 5 is a schematic structural diagram of a multi-line system according to an embodiment of the present invention.
  • the multi-line system includes an outdoor unit 100, a plurality of indoor units (not specifically shown in the drawing), a flow dividing device 200, and a control module (not specifically shown in the drawings).
  • the flow dividing device 200 includes a first heat exchanger 15, a second heat exchanger 20 and a first electronic expansion valve 21, and the first electronic expansion valve 21 is connected to the first heat exchange flow path of the second heat exchanger 20.
  • the outlet is between the outlet of the second heat exchange passage of the second heat exchanger 20.
  • the control module is configured to obtain the return air superheat degree of the compressor 3 when the multi-line system is operated in the main heating mode, and control the opening degree of the first electronic expansion valve 21 according to the return air superheat degree of the compressor 3, and The return air superheat degree of the compressor 3 and the electronic expansion valve opening degree of the refrigerating inner machine in the plurality of indoor units are judged, wherein if the return air superheat degree of the compressor 3 is greater than the first preset superheat degree and any one of the refrigerating internal machines The electronic expansion valve opening degree reaches the maximum opening degree, and the control module calculates the target medium pressure value by calculating the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree, and performs medium pressure on the first electronic expansion valve 21 according to the target medium pressure value. control.
  • the first preset superheat may be 6 degrees.
  • the outdoor unit 100 includes an outdoor heat exchanger 1, a four-way valve 2, a compressor 3, an external air-liquid separator 4, and four check valves 5, 6. 7,8, wherein the compressor 3 has an exhaust port and a return air port, the exhaust port of the compressor 3 is connected to one of the valve ports of the four-way valve 2, and the air return port of the compressor 3 and the external machine gas-liquid separator One end of 4 is connected.
  • the flow dividing device 200 includes a gas-liquid separator 13, a first heat exchanger 14, a second heat exchanger 20, a first electronic expansion valve 21, a second electronic expansion valve 15, four solenoid valves 9, 10, 11, 12 and Four check valves 16, 17, 18, 19, wherein the first heat exchanger 14 and the second heat exchanger 20 may be plate heat exchangers, and the first electronic expansion valve 21 is connected Between the outlet of the first heat exchange passage of the second heat exchanger 20 and the inlet of the second heat exchange passage of the second heat exchanger 20, the flow dividing device 200 passes through the four solenoid valves 9, 10, 11, 12 and The four check valves 16, 17, 18, 19 are connected to a plurality of indoor units.
  • the high-temperature high-pressure gaseous refrigerant from the exhaust port of the compressor 3 enters the gas-liquid separator 13 through the four-way valve 2 and the check valve 6, passes through the solenoid valve 9 and the solenoid valve 11 entering the heating internal machine, the supercooled liquid refrigerant at the outlet of the heating internal machine enters the second heat exchanger 20 through the check valve 16 and the check valve 18, and exits from the first heat exchange flow path of the second heat exchanger 20.
  • a part of the refrigerant is sent to the refrigerating internal machine via the check valve 17 and the check valve 19, and the other part is throttled by the first electronic expansion valve 21 and then enters the outdoor heat exchanger 1 to evaporate.
  • the first electronic expansion valve 21 mainly controls the throttling process of the refrigerant entering the outdoor heat exchanger 1, and the opening degree thereof affects whether the return air of the compressor 3 carries liquid, and the opening degree of the first electronic expansion valve 21 affects the first
  • the pre-valve pressure of the electronic expansion valve 21 affects the flow rate of the refrigerant passing through the refrigerating internal machine.
  • the embodiment of the present invention proposes a multi-line system that eliminates the problem of insufficient refrigerant flow in the refrigerating internal machine while ensuring no liquid return.
  • the control module calculates the heat medium capacity of the refrigeration internal machine that reaches the maximum opening degree by calculating the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree, wherein the control module calculates the heat exchange capacity of the refrigeration internal machine that reaches the maximum opening degree, and Calculating the inlet enthalpy of the refrigerating internal machine that reaches the maximum opening degree, and calculating the target outlet enthalpy of the refrigerating internal machine that reaches the maximum opening degree; the control module is based on the heat exchange capacity, the inlet enthalpy value of the refrigerating internal machine that reaches the maximum opening degree, and The target outlet enthalpy calculates the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree, and calculates the piping pressure drop according to the refrigerant flow rate of the refrigerating internal machine that reaches the maximum opening degree and the diameter of the piping in the flow dividing device 200; the control module calculates the heat medium capacity of the refrigeration internal machine
  • control module calculates the refrigerant flow rate of the refrigerating machine that reaches the maximum opening degree according to the above formula (1).
  • the pressure value and the temperature value of the medium pressure are respectively acquired by the first pressure sensor P1 and the first temperature sensor T1, and the low pressure is respectively obtained by the second pressure sensor P2 and the second temperature sensor T2.
  • Pressure value and temperature value, the KA value of the indoor heat exchanger of each indoor unit in the plurality of indoor units and the model of the electronic expansion valve are preset in each indoor unit, and various types of electronic expansion valves are preset in the outdoor unit 100
  • the pressure-flow curve, and the diameter of the piping is preset in the flow dividing device 200.
  • the control module When the return superheat of the compressor 3 is greater than the first preset superheat and the opening of the electronic expansion valve of any one of the refrigerating internal machines reaches the maximum opening degree, the control module firstly presets according to the refrigerating internal machine that reaches the maximum opening degree.
  • the KA value calculates the heat exchange capacity Q of the refrigerating machine that reaches the maximum opening degree. Specifically, as shown in FIG.
  • the KA value of the refrigerating machine that reaches the maximum opening degree and the return air temperature and humidity T0, RH are read (default) 60%), and calculate the return air wet bulb temperature Td, and calculate the evaporation temperature Te according to the low pressure value, and according to the read the maximum opening degree of the refrigeration internal machine KA value and the calculated return air wet bulb temperature Td and evaporation
  • control module calculates the inlet enthalpy hi of the refrigerating internal machine that reaches the maximum opening degree according to the pressure value and the temperature value of the current medium pressure, and calculates the target of the refrigerating internal machine that reaches the maximum opening degree according to the current low pressure value and the target superheat degree.
  • the exit devaluation ho, and the calculated inlet enthalpy hi, the target outlet enthalpy ho, and the heat exchange capacity Q are substituted into the above formula (1) to calculate the refrigerant flow rate m s of the refrigerating internal machine that reaches the maximum opening degree, and according to the calculation
  • the piping pressure drop ⁇ P is calculated from the refrigerant flow rate m s and the diameter of the piping preset in the flow dividing device 200.
  • the piping pressure drop ⁇ P can be calculated from the pipe resistance and the local resistance of the 40 m pipe according to the pipe diameter and the refrigerant flow rate m s of the refrigerating machine that reaches the maximum opening degree.
  • the difference between the Pm and the target intermediate pressure value Pms is PI-adjusted to the first electronic expansion valve 21, and the operation of the first electronic expansion valve 21 is 80*(Pm-Pms), and less than 1 is accumulated.
  • the control module controls the first electronic expansion valve 21 to exit the medium pressure control, wherein the second preset superheat degree is less than the first preset superheat degree,
  • the first preset superheat may be 6 degrees
  • the second preset superheat may be 4 degrees
  • the first preset time may be 1 min.
  • control module further controls the first electronic expansion valve 21 to maintain the initial opening degree to operate the second pre-control before controlling the opening degree of the first electronic expansion valve 21 according to the return air superheat degree of the compressor 3.
  • Set the time For example, the second preset time may be 5 minutes, and the initial opening of the first electronic expansion valve may be 180p.
  • the control module controls the initial opening degree of the first electronic expansion valve 21 to be 180 p and remains unchanged for 5 min.
  • the control module Controlling the first electronic expansion valve 21 to enter the return superheat control logic that is, when the return superheat of the compressor 3 rises, the control module controls the opening of the first electronic expansion valve 21 to increase; the return of the compressor 3
  • the control module controls the opening degree of the first electronic expansion valve 21 to decrease.
  • the control module controls the first The electronic expansion valve 21 enters the medium voltage control logic. After the first electronic expansion valve 21 enters the medium voltage control logic, the control module acquires the target medium pressure value according to the step shown in FIG. 3, and performs PI adjustment on the first electronic expansion valve 21 according to the target medium pressure value, and the adjustment coefficient thereof is as follows. 80 can be calibrated according to the actual situation.
  • the control module controls the first electronic expansion valve 21 to exit the intermediate pressure control.
  • Logic enters the return air superheat control logic.
  • the initial opening degree of the first electronic expansion valve 21 is 180 p and held for 5 min, and at the same time, the initial opening degree of the electronic expansion valve of the refrigerating internal machine It is 240p and is kept for 3min.
  • the first electronic expansion valve 21 enters the return air superheat control, and the refrigerating internal machine is in PI control.
  • the refrigerating internal machine has the maximum opening degree of the opening, and the regenerative superheat of the compressor 3 is greater than 6 degrees.
  • the first electronic expansion valve 21 enters the medium pressure control, and is adjusted once every 2 minutes according to the steps shown in FIG.
  • the return air superheat of the compressor 3 is less than 4 degrees or the opening degree of the refrigerating internal machine reaches the minimum opening degree and continues for 1 minute, the first electronic expansion valve 21 is withdrawn from the intermediate pressure control.
  • the minimum target medium pressure value can be determined by directly calculating the refrigerant flow rate of the refrigerating internal machine, so that the first electronic expansion valve is subjected to medium voltage control, thereby achieving refrigeration.
  • the reasonable distribution of the refrigerant flow between the internal machine and the outdoor heat exchanger avoids the insufficient cooling capacity of the refrigeration internal machine, which causes the outdoor unit to make a wrong judgment on the system state and malfunction, thereby improving the refrigeration capacity of the refrigeration internal machine and improving the system. Stability.
  • the control module acquires the return superheat of the compressor, and opens the first electronic expansion valve according to the return superheat of the compressor. Degree is controlled, and the degree of return superheat of the compressor and the electronic expansion valve opening degree of the refrigerating inner machine in the plurality of indoor units are judged, and when the return superheat degree of the compressor is greater than the first preset superheat degree and any one
  • the control module calculates the refrigerant flow rate of the refrigeration internal machine that reaches the maximum opening degree to obtain the target medium pressure value, and performs the first electronic expansion valve according to the target medium pressure value.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

提供了一种多联机系统及其电子膨胀阀控制方法,当多联机系统以主制热模式运行时,获取压缩机(3)的回气过热度,并根据压缩机(3)的回气过热度对第一电子膨胀阀(21)的开度进行控制;对压缩机(3)的回气过热度和多个室内机制冷内机的电子膨胀阀开度进行判断;如果压缩机(3)的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀(21)进行中压控制,该方法能够对制冷内机和室外换热器的冷媒流量进行合理分配,避免因制冷内机的冷媒流量不足而导致的系统不稳定的问题。

Description

多联机系统及其电子膨胀阀控制方法 技术领域
本发明涉及空调技术领域,特别涉及一种多联机系统的电子膨胀阀控制方法以及一种多联机系统。
背景技术
对于使用多联式系统的空气调节系统中,经常既有制冷负荷,又有制热负荷,即使在冬季也会有制冷需求。例如建筑中心的会议室,由于周围均为制热房间且房间温度较高,当会议室的人员突然增多时,温度很容易上升从而产生制冷负荷,但是,在这样的环境下有制冷需求的负荷房间通常较少,系统总体仍然为制热运转模式。
在这种制冷制热模式混合的空气调节系统中,当制热负荷占主要时,即空气调节系统以主制热模式运行时,高压气态冷媒在制热内机中冷凝后,分别在制冷内机和室外换热器中蒸发。如果此时仅针对压缩机的回气过热度进行控制,很容易造成通过制冷内机的冷媒流量不足,制冷内机的电子膨胀阀开度达到最大,使得室外机误判制冷负荷很大,产生误动作,从而影响整个系统的快速响应能力和稳定性,进而影响用户的热舒适性体验和系统的节能性。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种能够对制冷内机和室外换热器的冷媒流量进行合理分配的多联机系统的电子膨胀阀控制方法。
本发明的另一个目的在于提出一种多联机系统。
为达到上述目的,本发明一方面实施例提出了一种多联机系统的电子膨胀阀控制方法,所述多联机系统包括室外机、多个室内机和分流装置,所述分流装置包括第一换热器、第二换热器和第一电子膨胀阀,且所述第一电子膨胀阀连接在所述第二换热器的第一换热流路的出口与所述第二换热器的第二换热流路的入口之间,所述方法包括以下步骤:当所述多联机系统以主制热模式运行时,获取压缩机的回气过热度,并根据压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制;对所述压缩机的回气过热度和所述多个室内机中制冷内 机的电子膨胀阀开度进行判断;如果所述压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据所述目标中压值对所述第一电子膨胀阀进行中压控制。
根据本发明实施例的多联机系统的电子膨胀阀控制方法,当多联机系统以主制热模式运行时,首先获取压缩机的回气过热度,并根据压缩机的回气过热度对第一电子膨胀阀的开度进行控制,然后对压缩机的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断,并在压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀进行中压控制,从而实现对制冷内机和室外换热器的冷媒流量的合理分配,在保证不回液的同时,有效避免因制冷内机的冷媒流量不足导致室外机误判而动作的情形,从而提高制冷内机的制冷能力,并提高系统的稳定性,进而提高用户的舒适性。
根据本发明的一个实施例,所述通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,具体包括:计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;根据所述达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算所述达到最大开度的制冷内机的冷媒流量,并根据所述达到最大开度的制冷内机的冷媒流量和所述分流装置中配管的直径计算配管压降;计算所述多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;将所述最大阀前压力值与所述配管压降相加以获得所述目标中压值。
其中,根据以下公式计算所述达到最大开度的制冷内机的冷媒流量:
ms=Q/(ho-hi)
其中,ms为所述达到最大开度的制冷内机的冷媒流量,ho为所述目标出口焓值,hi为所述入口焓值。
根据本发明的一个实施例,在对所述第一电子膨胀阀进行中压控制后,如果所述压缩机的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续所述第一预设时间,则控制所述第一电子膨胀阀退出中压控制,其中,所述第二预设过热度小于所述第一预设过热度。
根据本发明的一个实施例,在根据所述压缩机的回气过热度对所述第一电 子膨胀阀的开度进行控制之前,控制所述第一电子膨胀阀保持初始开度运行第二预设时间。
为达到上述目的,本发明另一方面实施例提出了一种多联机系统,包括:室外机;多个室内机;分流装置,所述包括第一换热器、第二换热器和第一电子膨胀阀,且所述第一电子膨胀阀连接在所述第二换热器的第一换热流路的出口与所述第二换热器的第二换热流路的入口之间;控制模块,所述控制模块用于在所述多联机系统以主制热模式运行时获取压缩机的回气过热度,并根据压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制,以及对所述压缩机的回气过热度和所述多个室内机中制冷内机的电子膨胀阀开度进行判断,其中,如果所述压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,所述控制模块则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据所述目标中压值对所述第一电子膨胀阀进行中压控制。
根据本发明实施例的多联机系统,在多联机系统以主制热模式运行时,控制模块获取压缩机的回气过热度,并根据压缩机的回气过热度对第一电子膨胀阀的开度进行控制,以及对压缩机的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断,并且当压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,控制模块通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀进行中压控制,从而实现对制冷内机和室外换热器的冷媒流量的合理分配,在保证不回液的同时,有效避免因制冷内机的冷媒流量不足导致室外机误判而动作的情形,从而提高制冷内机的制冷能力,并提高系统的稳定性,进而提高用户的舒适性。
根据本发明的一个实施例,所述控制模块通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值时,其中,所述控制模块计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;所述控制模块根据所述达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算所述达到最大开度的制冷内机的冷媒流量,并根据所述达到最大开度的制冷内机的冷媒流量和所述分流装置中配管的直径计算配管压降;所述控制模块计算所述多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;所述控制模块将所述最大阀前压力值与所述配管压降相加以获得所述目标中压值。
其中,所述控制模块根据以下公式计算所述达到最大开度的制冷内机的冷媒流量:
ms=Q/(ho-hi)
其中,ms为所述达到最大开度的制冷内机的冷媒流量,ho为所述目标出口焓值,hi为所述入口焓值。
根据本发明的一个实施例,在对所述第一电子膨胀阀进行中压控制后,如果所述压缩机的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续所述第一预设时间,所述控制模块则控制所述第一电子膨胀阀退出中压控制,其中,所述第二预设过热度小于所述第一预设过热度。
根据本发明的一个实施例,在根据所述压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制之前,所述控制模块还控制所述第一电子膨胀阀保持初始开度运行第二预设时间。
附图说明
图1是根据本发明实施例的多联机系统的电子膨胀阀控制方法的流程图。
图2是根据本发明一个实施例的多联机系统的结构示意图。
图3是根据本发明一个实施例的第一电子膨胀阀调节过程的流程图。
图4是根据本发明一个实施例的多联机系统的电子膨胀阀控制方法的流程图。
图5是根据本发明一个实施例的多联机系统的结构示意图。
附图标记:室外换热器1、四通阀2、压缩机3、外机气液分离器4、四个单向阀5、6、7、8,四个电磁阀9、10、11、12,气液分离器13、第一换热器14、第二电子膨胀阀15、四个单向阀16、17、18、19,第二换热器20、第一电子膨胀阀21、室外机100和分流装置200。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的多联机系统的电子膨胀阀控 制方法以及多联机系统。
图1是根据本发明实施例的多联机系统的电子膨胀阀控制方法的流程图。其中,多联机系统包括室外机、多个室内机和分流装置,分流装置包括第一换热器、第二换热器和第一电子膨胀阀,且第一电子膨胀阀连接在第二换热器的第一换热流路的出口与第二换热器的第二换热流路的入口之间。
具体地,如图2所示,在多联机系统中,室外机包括室外换热器1、四通阀2、压缩机3、外机气液分离器4以及四个单向阀5、6、7、8,其中,压缩机3具有排气口和回气口,压缩机3的排气口与四通阀2的其中一个阀口相连,压缩机3的回气口与外机气液分离器4的一端相连。分流装置包括气液分离器13、第一换热器14、第二换热器20、第一电子膨胀阀21、第二电子膨胀阀15、四个电磁阀9、10、11、12和四个单向阀16、17、18、19,其中,第一换热器14和第二换热器20可以为板式换热器,第一电子膨胀阀21连接在第二换热器20的第一换热流路的出口与第二换热器20的第二换热流路的入口之间,分流装置通过四个电磁阀9、10、11、12和四个单向阀16、17、18、19与多个室内机(图中未具体示出)相连。
当多联机系统以主制热模式运行时,从压缩机3的排气口出来的高温高压气态冷媒通过四通阀2和单向阀6进入气液分离器13,经过电磁阀9和电磁阀11进入制热内机,制热内机出口的过冷液态冷媒经过单向阀16和单向阀18进入第二换热器20,从第二换热器20的第一换热流路出来的冷媒一部分经单向阀17和单向阀19送往制冷内机,另一部分经第一电子膨胀阀21节流后进入室外换热器1蒸发。此时,第一电子膨胀阀21主要控制进入室外换热器1冷媒的节流过程,其开度影响压缩机3的回气是否带液,同时第一电子膨胀阀21的开度影响第一电子膨胀阀21的阀前压力,从而影响通过制冷内机的冷媒流量。如果此时仅针对压缩机3的回气过热度对第一电子膨胀阀21进行控制,很容易造成通过制冷内机的冷媒流量不足,制冷内机的电子膨胀阀的开度达到最大,使得室外机误判制冷负荷很大,产生误动作,从而影响整个系统的快速响应能力和稳定性。因此,本发明的实施例提出了一种多联机系统的电子膨胀阀控制方法,在保证不回液的同时,消除制冷内机中冷媒流量不足的问题。
如图1所示,该多联机系统的电子膨胀阀控制方法包括以下步骤:
S1,当多联机系统以主制热模式运行时,获取压缩机的回气过热度,并根据压缩机的回气过热度对第一电子膨胀阀的开度进行控制。
具体而言,当压缩机的回气过热度上升时,控制第一电子膨胀阀的开度增 大;当压缩机的回气过热度下降时,控制第一电子膨胀阀的开度减小。
S2,对压缩机的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断。
S3,如果压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀进行中压控制。其中,第一预设过热度可以根据实际情况进行标定,例如,第一预设过热度可以为6度。
根据本发明的一个实施例,通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,具体包括:计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;根据达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算达到最大开度的制冷内机的冷媒流量,并根据达到最大开度的制冷内机的冷媒流量和分流装置中配管的直径计算配管压降;计算多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;将最大阀前压力值与配管压降相加以获得目标中压值。
根据本发明的一个实施例,根据下述公式(1)计算达到最大开度的制冷内机的冷媒流量:
ms=Q/(ho-hi)    (1)
其中,ms为达到最大开度的制冷内机的冷媒流量,ho为目标出口焓值,hi为入口焓值。
具体而言,如图2所示,通过第一压力传感器P1和第一温度传感器T1分别获取中压的压力值和温度值,并通过第二压力传感器P2和第二温度传感器T2分别获取低压的压力值和温度值,多个室内机中各个室内机的室内换热器的KA值和电子膨胀阀的型号预置在各个室内机中,室外机中预置有多种型号的电子膨胀阀的压力-流量曲线,并且分流装置中预置有配管的直径。
当压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,首先根据达到最大开度的制冷内机中预置的KA值计算达到最大开度的制冷内机的换热能力Q,然后根据当前中压的压力值和温度值计算达到最大开度的制冷内机的入口焓值hi,并根据当前低压的压力值和目标过热度计算达到最大开度的制冷内机的目标出口焓值ho,以及将计算的入口焓值hi、目标出口焓值ho和换热能力Q代入上述公式(1)计算出达到最大开度的 制冷内机的冷媒流量ms,并根据计算的冷媒流量ms和分流装置中预置的配管的直径计算出配管压降ΔP。最后根据多个室内机中每个室内机的电子膨胀阀的压力-流量曲线和当前低压的压力值计算出多个室内机中每个室内机的电子膨胀阀的阀前压力Pins_i,并获取最大阀前压力值Pins,将获取的最大阀前压力值Pins与配管压降ΔP相加以获得目标中压值Pms。
进一步地,如图3所示,第一电子膨胀阀的调节过程包括以下步骤:
S101,读取达到最大开度的制冷内机的KA值和回风温湿度T0、RH(默认为60%)。
S102,计算回风湿球温度Td。
S103,根据低压的压力值计算蒸发温度Te。
S104,计算达到最大开度的制冷内机的换热能力Q=KA*(Td-Te)。
S105,根据当前中压的压力值和温度值计算达到最大开度的制冷内机的入口焓值hi。
S106,根据当前低压的压力值和目标过热度计算达到最大开度的制冷内机的目标出口焓值ho。
S107,计算达到最大开度的制冷内机的冷媒流量ms=Q/(ho-hi)。
S108,根据每个室内机的电子膨胀阀的压力-流量曲线计算对应电子膨胀阀的阀前压力Pins_i。
S109,获取多个室内机中电子膨胀阀的阀前压力最大值Pins。
S110,根据配管直径计算配管压降ΔP。例如,根据配管直径和达到最大开度的制冷内机的冷媒流量ms可以计算出如40m配管的沿程阻力和局部阻力,从而计算出配管压降ΔP。
S111,计算目标中压值Pms=ΔP+Pins。
S112,根据当前中压的压力值Pm和目标中压值Pms的差值对第一电子膨胀阀进行PI调节,第一电子膨胀阀的动作=80*(Pm-Pms),小于1则累积。
根据本发明的一个实施例,在第一电子膨胀阀进行中压控制后,如果压缩机的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续第一预设时间,则控制第一电子膨胀阀退出中压控制,其中,第二预设过热度小于第一预设过热度,第一预设过热度、第二预设过热度和第一预设时间可以根据实际情况进行标定,例如,第一预设过热度可以为6度,第二预设过热度可以为4度,第一预设时间可以为1min。
根据本发明的一个实施例,在根据压缩机的回气过热度对第一电子膨胀阀 的开度进行控制之前,控制第一电子膨胀阀保持初始开度运行第二预设时间。其中,第二预设时间可以根据实际情况进行标定,例如第二预设时间可以为5min,另外,第一电子膨胀阀的初始开度可以为180p。
具体地,当多联机系统以主制热模式运行时,第一电子膨胀阀的初始开度为180p,并保持5min不变。当时间达到5min时,控制第一电子膨胀阀进入回气过热度控制逻辑,即在压缩机的回气过热度上升时,控制第一电子膨胀阀的开度增大;在压缩机的回气过热度下降时,控制第一电子膨胀阀的开度减小。在根据压缩机的回气过热度控制过程中,如果任意一个制冷内机的电子膨胀阀的开度达到最大开度且压缩机的回气过热度大于6度,则控制第一电子膨胀阀进入中压控制逻辑。当第一电子膨胀阀进入中压控制逻辑后,根据图3所示的步骤获取目标中压值,并根据目标中压值对第一电子膨胀阀进行PI调节,其调节系数如80可以根据实际情况进行标定。当压缩机的回气过热度小于4度且持续1min或任意一个制冷内机的电子膨胀阀的开度达到最小开度且持续1min时,控制第一电子膨胀阀退出中压控制逻辑,进入回气过热度控制逻辑。
进一步地,如图4所示,多联机系统的电子膨胀阀控制过程包括以下步骤:
S201,多联机系统以主制热模式运行。
S202,第一电子膨胀阀的初始开度为180p且保持5min。
S203,制冷内机的电子膨胀阀的初始开度为240p且保持3min。
S204,第一电子膨胀阀进入回气过热度控制。
S205,制冷内机处于PI控制。
S206,判断制冷内机的开度最大标识位是否为on且压缩机的回气过热度是否大于6度,并且是否持续1min。如果是,执行步骤S207;如果否,返回步骤S204。
S207,第一电子膨胀阀进入中压控制,并且每2min按照图3所示步骤调节一次。
S208,判断压缩机的回气过热度是否小于4度或制冷内机的开度是否达到最小开度,并且是否持续1min。如果是,执行步骤S209;如果否,返回步骤S207。
S209,第一电子膨胀阀退出中压控制。
综上,当多联机系统以主制热模式运行时,能够通过对制冷内机的冷媒流量的直接计算,确定最小目标中压值,以对第一电子膨胀阀进行中压控制,从而实现制冷内机和室外换热器之间冷媒流量的合理分配,避免制冷内机的制冷 能力不足,导致室外机对系统状态做出错误判断而误动作,从而提高制冷内机的制冷能力,并提高系统的稳定性和节能性。
综上所述,根据本发明实施例的多联机系统的电子膨胀阀控制方法,当多联机系统以主制热模式运行时,首先获取压缩机的回气过热度,并根据压缩机的回气过热度对第一电子膨胀阀的开度进行控制,然后对压缩机的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断,并在压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀进行中压控制,从而实现对制冷内机和室外换热器的冷媒流量的合理分配,在保证不回液的同时,有效避免因制冷内机的冷媒流量不足导致室外机误判而动作的情形,从而提高制冷内机的制冷能力,并提高系统的稳定性,进而提高用户的舒适性。
图5是根据本发明一个实施例的多联机系统的结构示意图。如图5所示,该多联机系统包括:室外机100、多个室内机(图中未具体示出)、分流装置200和控制模块(图中未具体示出)。
其中,分流装置200包括第一换热器15、第二换热器20和第一电子膨胀阀21,且第一电子膨胀阀21连接在第二换热器20的第一换热流路的出口与第二换热器20的第二换热流路的入口之间。控制模块用于在多联机系统以主制热模式运行时获取压缩机3的回气过热度,并根据压缩机3的回气过热度对第一电子膨胀阀21的开度进行控制,以及对压缩机3的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断,其中,如果压缩机3的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,控制模块则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀21进行中压控制。其中,第一预设过热度可以为6度。
具体地,如图5所示,在多联机系统中,室外机100包括室外换热器1、四通阀2、压缩机3、外机气液分离器4以及四个单向阀5、6、7、8,其中,压缩机3具有排气口和回气口,压缩机3的排气口与四通阀2的其中一个阀口相连,压缩机3的回气口与外机气液分离器4的一端相连。分流装置200包括气液分离器13、第一换热器14、第二换热器20、第一电子膨胀阀21、第二电子膨胀阀15、四个电磁阀9、10、11、12和四个单向阀16、17、18、19,其中,第一换热器14和第二换热器20可以为板式换热器,第一电子膨胀阀21连接在 第二换热器20的第一换热流路的出口与第二换热器20的第二换热流路的入口之间,分流装置200通过四个电磁阀9、10、11、12和四个单向阀16、17、18、19与多个室内机相连。
当多联机系统以主制热模式运行时,从压缩机3的排气口出来的高温高压气态冷媒通过四通阀2和单向阀6进入气液分离器13,经过电磁阀9和电磁阀11进入制热内机,制热内机出口的过冷液态冷媒经过单向阀16和单向阀18进入第二换热器20,从第二换热器20的第一换热流路出来的冷媒一部分经单向阀17和单向阀19送往制冷内机,另一部分经第一电子膨胀阀21节流后进入室外换热器1蒸发。此时,第一电子膨胀阀21主要控制进入室外换热器1冷媒的节流过程,其开度影响压缩机3的回气是否带液,同时第一电子膨胀阀21的开度影响第一电子膨胀阀21的阀前压力,从而影响通过制冷内机的冷媒流量。如果此时仅针对压缩机3的回气过热度对第一电子膨胀阀21进行控制,很容易造成通过制冷内机的冷媒流量不足,制冷内机的电子膨胀阀的开度达到最大,使得室外机误判制冷负荷很大,产生误动作,从而影响整个系统的快速响应能力和稳定性。因此,本发明的实施例提出了一种多联机系统,在保证不回液的同时,消除制冷内机中冷媒流量不足的问题。
根据本发明的一个实施例,控制模块通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值时,其中,控制模块计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;控制模块根据达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算达到最大开度的制冷内机的冷媒流量,并根据达到最大开度的制冷内机的冷媒流量和分流装置200中配管的直径计算配管压降;控制模块计算多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;控制模块将最大阀前压力值与配管压降相加以获得目标中压值。
根据本发明的一个实施例,控制模块根据上述公式(1)计算达到最大开度的制冷内机的冷媒流量。
具体而言,如图5所示,通过第一压力传感器P1和第一温度传感器T1分别获取中压的压力值和温度值,并通过第二压力传感器P2和第二温度传感器T2分别获取低压的压力值和温度值,多个室内机中各个室内机的室内换热器的KA值和电子膨胀阀的型号预置在各个室内机中,室外机100中预置有多种型号的电子膨胀阀的压力-流量曲线,并且分流装置200中预置有配管的直径。
当压缩机3的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,控制模块首先根据达到最大开度的制冷内机中预置的KA值计算达到最大开度的制冷内机的换热能力Q,具体而言,如图3所示,读取达到最大开度的制冷内机的KA值和回风温湿度T0、RH(默认为60%),并计算回风湿球温度Td,以及根据低压的压力值计算蒸发温度Te,并根据读取的达到最大开度的制冷内机的KA值以及计算的回风湿球温度Td和蒸发温度Te计算达到最大开度的制冷内机的换热能力Q=KA*(Td-Te)。
然后控制模块根据当前中压的压力值和温度值计算达到最大开度的制冷内机的入口焓值hi,并根据当前低压的压力值和目标过热度计算达到最大开度的制冷内机的目标出口焓值ho,以及将计算的入口焓值hi、目标出口焓值ho和换热能力Q代入上述公式(1)计算出达到最大开度的制冷内机的冷媒流量ms,并根据计算的冷媒流量ms和分流装置200中预置的配管的直径计算出配管压降ΔP。例如,根据配管直径和达到最大开度的制冷内机的冷媒流量ms可以计算出如40m配管的沿程阻力和局部阻力,从而计算出配管压降ΔP。
最后控制模块根据多个室内机中每个室内机的电子膨胀阀的压力-流量曲线和当前低压的压力值计算出多个室内机中每个室内机的电子膨胀阀的阀前压力Pins_i,并获取最大阀前压力值Pins,将获取的最大阀前压力值Pins与配管压降ΔP相加以获得目标中压值Pms,即目标中压值Pms=ΔP+Pins,以及根据当前中压的压力值Pm和目标中压值Pms的差值对第一电子膨胀阀21进行PI调节,第一电子膨胀阀21的动作=80*(Pm-Pms),小于1则累积。
根据本发明的一个实施例,在对第一电子膨胀阀21进行中压控制后,如果压缩机3的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续第一预设时间,控制模块则控制第一电子膨胀阀21退出中压控制,其中,第二预设过热度小于第一预设过热度,例如,第一预设过热度可以为6度,第二预设过热度可以为4度,第一预设时间可以为1min。
根据本发明的一个实施例,在根据压缩机3的回气过热度对第一电子膨胀阀21的开度进行控制之前,控制模块还控制第一电子膨胀阀21保持初始开度运行第二预设时间。例如,第二预设时间可以为5min,第一电子膨胀阀的初始开度可以为180p。
具体地,当多联机系统以主制热模式运行时,控制模块控制第一电子膨胀阀21的初始开度为180p,并保持5min不变。当时间达到5min时,控制模块 控制第一电子膨胀阀21进入回气过热度控制逻辑,即在压缩机3的回气过热度上升时,控制模块控制第一电子膨胀阀21的开度增大;在压缩机3的回气过热度下降时,控制模块控制第一电子膨胀阀21的开度减小。在根据压缩机3的回气过热度控制过程中,如果任意一个制冷内机的电子膨胀阀的开度达到最大开度且压缩机3的回气过热度大于6度,则控制模块控制第一电子膨胀阀21进入中压控制逻辑。当第一电子膨胀阀21进入中压控制逻辑后,控制模块根据图3所示的步骤获取目标中压值,并根据目标中压值对第一电子膨胀阀21进行PI调节,其调节系数如80可以根据实际情况进行标定。当压缩机3的回气过热度小于4度且持续1min或任意一个制冷内机的电子膨胀阀的开度达到最小开度且持续1min时,控制模块控制第一电子膨胀阀21退出中压控制逻辑,进入回气过热度控制逻辑。
进一步地,如图4所示,当多联机系统以主制热模式运行时,第一电子膨胀阀21的初始开度为180p且保持5min,同时,制冷内机的电子膨胀阀的初始开度为240p且保持3min。当时间达到5min后,第一电子膨胀阀21进入回气过热度控制,制冷内机处于PI控制,当制冷内机的开度最大标识位为on且压缩机3的回气过热度大于6度,并且持续1min时,第一电子膨胀阀21进入中压控制,且每2min按照图3所示步骤调节一次。当压缩机3的回气过热度小于4度或制冷内机的开度达到最小开度,并且持续1min时,第一电子膨胀阀21退出中压控制。
综上,当多联机系统以主制热模式运行时,能够通过对制冷内机的冷媒流量的直接计算,确定最小目标中压值,以对第一电子膨胀阀进行中压控制,从而实现制冷内机和室外换热器之间冷媒流量的合理分配,避免制冷内机的制冷能力不足,导致室外机对系统状态做出错误判断而误动作,从而提高制冷内机的制冷能力,并提高系统的稳定性。
根据本发明实施例的多联机系统,在多联机系统以主制热模式运行时,控制模块获取压缩机的回气过热度,并根据压缩机的回气过热度对第一电子膨胀阀的开度进行控制,以及对压缩机的回气过热度和多个室内机中制冷内机的电子膨胀阀开度进行判断,并且当压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度时,控制模块通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据目标中压值对第一电子膨胀阀进行中压控制,从而实现对制冷内机和室外换热器的冷媒流量的合理分配,在保证不回液的同时,有效避免因制冷内机的冷媒流量不足导致室外机 误判而动作的情形,从而提高制冷内机的制冷能力,并提高系统的稳定性,进而提高用户的舒适性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多联机系统的电子膨胀阀控制方法,其特征在于,所述多联机系统包括室外机、多个室内机和分流装置,所述分流装置包括第一换热器、第二换热器和第一电子膨胀阀,且所述第一电子膨胀阀连接在所述第二换热器的第一换热流路的出口与所述第二换热器的第二换热流路的入口之间,所述方法包括以下步骤:
    当所述多联机系统以主制热模式运行时,获取压缩机的回气过热度,并根据压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制;
    对所述压缩机的回气过热度和所述多个室内机中制冷内机的电子膨胀阀开度进行判断;
    如果所述压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据所述目标中压值对所述第一电子膨胀阀进行中压控制。
  2. 根据权利要求1所述的多联机系统的电子膨胀阀控制方法,其特征在于,所述通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,具体包括:
    计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;
    根据所述达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算所述达到最大开度的制冷内机的冷媒流量,并根据所述达到最大开度的制冷内机的冷媒流量和所述分流装置中配管的直径计算配管压降;
    计算所述多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;
    将所述最大阀前压力值与所述配管压降相加以获得所述目标中压值。
  3. 根据权利要求2所述的多联机系统的电子膨胀阀控制方法,其特征在于,根据以下公式计算所述达到最大开度的制冷内机的冷媒流量:
    ms=Q/(ho-hi)
    其中,ms为所述达到最大开度的制冷内机的冷媒流量,ho为所述目标出口焓值,hi为所述入口焓值。
  4. 根据权利要求1所述的多联机系统的电子膨胀阀控制方法,其特征在于,在对所述第一电子膨胀阀进行中压控制后,如果所述压缩机的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续所述第一预设时间,则控制所述第一电子膨胀阀退出中压控制,其中,所述第二预设过热度小于所述第一预设过热度。
  5. 根据权利要求1所述的多联机系统的电子膨胀阀控制方法,其特征在于,在根据所述压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制之前,控制所述第一电子膨胀阀保持初始开度运行第二预设时间。
  6. 一种多联机系统,其特征在于,包括:
    室外机;
    多个室内机;
    分流装置,所述包括第一换热器、第二换热器和第一电子膨胀阀,且所述第一电子膨胀阀连接在所述第二换热器的第一换热流路的出口与所述第二换热器的第二换热流路的入口之间;
    控制模块,所述控制模块用于在所述多联机系统以主制热模式运行时获取压缩机的回气过热度,并根据压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制,以及对所述压缩机的回气过热度和所述多个室内机中制冷内机的电子膨胀阀开度进行判断,其中,
    如果所述压缩机的回气过热度大于第一预设过热度且任意一个制冷内机的电子膨胀阀开度达到最大开度,所述控制模块则通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值,并根据所述目标中压值对所述第一电子膨胀阀进行中压控制。
  7. 根据权利要求6所述的多联机系统,其特征在于,所述控制模块通过计算达到最大开度的制冷内机的冷媒流量以获取目标中压值时,其中,
    所述控制模块计算达到最大开度的制冷内机的换热能力,并计算达到最大开度的制冷内机的入口焓值,以及计算达到最大开度的制冷内机的目标出口焓值;
    所述控制模块根据所述达到最大开度的制冷内机的换热能力、入口焓值和目标出口焓值计算所述达到最大开度的制冷内机的冷媒流量,并根据所述达到最大开度的制冷内机的冷媒流量和所述分流装置中配管的直径计算配管压降;
    所述控制模块计算所述多个室内机中每个室内机的电子膨胀阀的阀前压力以获得最大阀前压力值;
    所述控制模块将所述最大阀前压力值与所述配管压降相加以获得所述目标中压值。
  8. 根据权利要求7所述的多联机系统,其特征在于,所述控制模块根据以下公式计算所述达到最大开度的制冷内机的冷媒流量:
    ms=Q/(ho-hi)
    其中,ms为所述达到最大开度的制冷内机的冷媒流量,ho为所述目标出口焓值,hi为所述入口焓值。
  9. 根据权利要求6所述的多联机系统,其特征在于,在对所述第一电子膨胀阀进行中压控制后,如果所述压缩机的回气过热度小于第二预设过热度且持续第一预设时间或任意一个制冷内机的电子膨胀阀开度达到最小开度且持续所述第一预设时间,所述控制模块则控制所述第一电子膨胀阀退出中压控制,其中,所述第二预设过热度小于所述第一预设过热度。
  10. 根据权利要求6所述的多联机系统,其特征在于,在根据所述压缩机的回气过热度对所述第一电子膨胀阀的开度进行控制之前,所述控制模块还控制所述第一电子膨胀阀保持初始开度运行第二预设时间。
PCT/CN2016/080242 2015-07-16 2016-04-26 多联机系统及其电子膨胀阀控制方法 WO2017008554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16823701.4A EP3324135A4 (en) 2015-07-16 2016-04-26 MULTISPLIT SYSTEM AND CONTROL METHOD FOR ELECTRONIC EXPANSION VALVE THEREOF
US15/501,101 US10126029B2 (en) 2015-07-16 2016-04-26 Variable refrigerant flow air conditioning system and method for controlling electronic expansion valve thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510419343.6 2015-07-16
CN201510419343.6A CN105066539B (zh) 2015-07-16 2015-07-16 多联机系统及其电子膨胀阀控制方法

Publications (1)

Publication Number Publication Date
WO2017008554A1 true WO2017008554A1 (zh) 2017-01-19

Family

ID=54495970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080242 WO2017008554A1 (zh) 2015-07-16 2016-04-26 多联机系统及其电子膨胀阀控制方法

Country Status (4)

Country Link
US (1) US10126029B2 (zh)
EP (1) EP3324135A4 (zh)
CN (1) CN105066539B (zh)
WO (1) WO2017008554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975959A (zh) * 2017-11-08 2018-05-01 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066539B (zh) * 2015-07-16 2018-07-10 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法
CN105571082B (zh) * 2016-02-22 2018-06-29 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105698268B (zh) * 2016-03-23 2018-06-29 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN105928064B (zh) * 2016-04-29 2018-11-20 广东美的暖通设备有限公司 多联机系统及其过冷回路的阀体控制方法
CN106016458B (zh) * 2016-05-31 2019-02-19 广东美的暖通设备有限公司 空调器及其模式切换控制方法
CN106152633B (zh) * 2016-06-28 2018-07-10 广东美的暖通设备有限公司 多联机系统及其控制方法
US11789415B2 (en) 2016-06-30 2023-10-17 Johnson Controls Tyco IP Holdings LLP Building HVAC system with multi-level model predictive control
US20180004171A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Hvac system using model predictive control with distributed low-level airside optimization and airside power consumption model
WO2018005760A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Variable refrigerant flow system with predictive control
JP6976976B2 (ja) * 2016-06-30 2021-12-08 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company マルチレベルモデル予測制御のシステムと方法
CN106642546B (zh) * 2016-11-30 2019-03-26 宁波奥克斯电气股份有限公司 制热时多联机外机电子膨胀阀的控制方法
US10816235B2 (en) 2017-04-27 2020-10-27 Johnson Controls Technology Company Building energy system with predictive control of battery and green energy resources
CN107062556A (zh) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 一种模块水机的冷媒流量控制方法
CN107940827B (zh) * 2017-11-10 2020-04-10 广东美的暖通设备有限公司 多联机系统及其冷媒分配控制方法和装置
CN108759008B (zh) * 2018-06-12 2020-09-04 广东美的暖通设备有限公司 空调的控制方法、装置及具有其的空调
CN112443947B (zh) * 2019-08-30 2021-11-26 青岛海尔空调电子有限公司 同时冷暖多联机空调系统的控制方法
CN111023433B (zh) * 2019-12-31 2021-10-22 宁波奥克斯电气股份有限公司 一种多联机欠冷媒控制方法、装置、存储介质及空调系统
CN111486579B (zh) * 2020-04-29 2021-11-05 广东美的暖通设备有限公司 多联机系统及其控制方法和装置
CN114061018B (zh) * 2020-07-30 2024-01-02 广东美的暖通设备有限公司 空调系统及其电子膨胀阀的检测方法、检测装置和控制器
CN111780305A (zh) * 2020-08-07 2020-10-16 山西得然环境科技有限公司 一种半导体空调控制系统及其制冷、制热控制方法
CN112364563A (zh) * 2020-11-11 2021-02-12 清华大学 一种多联机空调分户计量与计费方法及装置
CN114608848B (zh) * 2020-12-04 2024-03-08 广东美的暖通设备有限公司 多联机系统运行能力检测方法、装置、系统及存储介质
CN114608140B (zh) * 2020-12-08 2024-01-02 广东美的暖通设备有限公司 一种空调器的控制方法及装置、空调器、计算机存储介质
WO2023207050A1 (zh) * 2022-04-25 2023-11-02 青岛海信日立空调系统有限公司 空调系统及空调系统的控制方法
CN114909743B (zh) * 2022-05-31 2024-04-05 广东美的制冷设备有限公司 一种控制方法、装置、空调设备及存储介质
CN115164462B (zh) * 2022-06-01 2024-02-06 广东芬尼科技股份有限公司 电子膨胀阀的控制方法、装置、可读存储介质及热泵系统
CN115183398B (zh) * 2022-07-29 2023-10-20 青岛海尔空调电子有限公司 一种空调控制方法、装置、设备和介质
CN115523593B (zh) * 2022-08-19 2023-06-20 宁波奥克斯电气股份有限公司 电子膨胀阀的控制方法、装置及空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388422A (en) * 1991-01-10 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH08226721A (ja) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd 多室用空気調和機の運転制御装置
KR20010048763A (ko) * 1999-11-29 2001-06-15 윤종용 멀티형 공조기기 및 그 전동팽창밸브의 제어방법
CN1483974A (zh) * 2002-06-12 2004-03-24 Lg������ʽ���� 多单元空调器及其控制方法
CN1737443A (zh) * 2004-08-16 2006-02-22 三星电子株式会社 多托式空调系统及多托式空调系统的配管连结检查方法
CN104685304A (zh) * 2012-10-02 2015-06-03 三菱电机株式会社 空调装置
CN105066539A (zh) * 2015-07-16 2015-11-18 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142010A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
CN1842683A (zh) * 2004-08-06 2006-10-04 大金工业株式会社 冷冻装置
US7472557B2 (en) * 2004-12-27 2009-01-06 Carrier Corporation Automatic refrigerant charging apparatus
WO2010023894A1 (ja) * 2008-08-28 2010-03-04 ダイキン工業株式会社 空気調和装置
WO2010082325A1 (ja) * 2009-01-15 2010-07-22 三菱電機株式会社 空気調和装置
CN101907345A (zh) * 2010-07-27 2010-12-08 广东美的电器股份有限公司 变频空调的异音消除法
CN202792385U (zh) * 2012-08-30 2013-03-13 广东美的暖通设备有限公司 数码多联机空调系统
EP2896911B1 (en) * 2012-09-07 2019-08-07 Mitsubishi Electric Corporation Air conditioning apparatus
WO2015029223A1 (ja) * 2013-08-30 2015-03-05 三菱電機株式会社 空気調和装置
US10852041B2 (en) * 2013-09-07 2020-12-01 Trane International Inc. HVAC system with electronically controlled expansion valve
CN104748429B (zh) * 2015-03-31 2017-01-18 广东美的暖通设备有限公司 多联机系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388422A (en) * 1991-01-10 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH08226721A (ja) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd 多室用空気調和機の運転制御装置
KR20010048763A (ko) * 1999-11-29 2001-06-15 윤종용 멀티형 공조기기 및 그 전동팽창밸브의 제어방법
CN1483974A (zh) * 2002-06-12 2004-03-24 Lg������ʽ���� 多单元空调器及其控制方法
CN1737443A (zh) * 2004-08-16 2006-02-22 三星电子株式会社 多托式空调系统及多托式空调系统的配管连结检查方法
CN104685304A (zh) * 2012-10-02 2015-06-03 三菱电机株式会社 空调装置
CN105066539A (zh) * 2015-07-16 2015-11-18 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975959A (zh) * 2017-11-08 2018-05-01 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法
CN107975959B (zh) * 2017-11-08 2023-09-22 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法

Also Published As

Publication number Publication date
EP3324135A1 (en) 2018-05-23
US10126029B2 (en) 2018-11-13
EP3324135A4 (en) 2019-08-14
CN105066539A (zh) 2015-11-18
US20180180337A1 (en) 2018-06-28
CN105066539B (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2017008554A1 (zh) 多联机系统及其电子膨胀阀控制方法
JP5780280B2 (ja) 空調システム及びその制御方法
US20180017271A1 (en) Multi-online system
CN109458683B (zh) 干式辐射热泵与单元式分户空调一体机及其控制方法
CN104949210B (zh) 空调系统、空调器和空调系统的控制方法
JP2007333219A (ja) マルチ式空気調和システム
EP2891849A1 (en) Heat reclaim for a multifunction heat pump and a multifunction air conditioner
CN110762787B (zh) 一种多联机中央空调系统的除霜控制方法
JP2015068590A (ja) 空調システム及びその制御方法
CN112840164B (zh) 空调装置和管理装置
CN105318491B (zh) 空调器的控制方法及装置
JP2009139014A (ja) 空気調和装置およびその運転制御方法
WO2022068950A1 (zh) 房间温度调节装置
CN110131916A (zh) 热量逐级互补的空调、热水两联供的热泵系统及控制方法
EP4354048A1 (en) Heat pump system and control method therefor
WO2019144616A1 (zh) 一种热泵系统及其除霜控制方法
WO2019144618A1 (zh) 一种热泵系统及其控制方法
JP2014129912A (ja) 直膨コイルを使用した空気調和機
WO2021047158A1 (zh) 空调器及其控制方法
CN105190195A (zh) 空调机
US20180259207A1 (en) Air conditioner and method of controlling the same
JP7374633B2 (ja) 空気調和機及び空気調和システム
JP5602556B2 (ja) 空調機の室内機吹き出し温度制御方法
KR20100000437A (ko) 멀티형 공기조화기의 제어방법
JPWO2017046853A1 (ja) 空気調和装置および空気調和制御方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016823701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016823701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15501101

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE