WO2017006845A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017006845A1
WO2017006845A1 PCT/JP2016/069581 JP2016069581W WO2017006845A1 WO 2017006845 A1 WO2017006845 A1 WO 2017006845A1 JP 2016069581 W JP2016069581 W JP 2016069581W WO 2017006845 A1 WO2017006845 A1 WO 2017006845A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
side circuit
circuit module
output
conversion device
Prior art date
Application number
PCT/JP2016/069581
Other languages
English (en)
French (fr)
Inventor
忠彦 千田
信太朗 田中
後藤 昭弘
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/740,457 priority Critical patent/US10326379B2/en
Priority to CN201680038717.2A priority patent/CN107852093B/zh
Priority to DE112016002549.1T priority patent/DE112016002549B4/de
Publication of WO2017006845A1 publication Critical patent/WO2017006845A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/184Components including terminals inserted in holes through the printed circuit board and connected to printed contacts on the walls of the holes or at the edges thereof or protruding over or into the holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0021Side-by-side or stacked arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10545Related components mounted on both sides of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a DC-DC converter, and more particularly to a DC-DC converter used in an electric vehicle and a plug-in hybrid vehicle.
  • An electric vehicle or a plug-in hybrid vehicle includes an inverter device for driving a motor with a high-voltage storage battery for driving power, and a low-voltage storage battery for operating auxiliary equipment such as a vehicle light and a radio.
  • Such a vehicle is equipped with a DC-DC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery (see, for example, Patent Document 1). ).
  • the casing of the DC-DC converter is provided with a cooling water passage in the converter casing in order to cool internal heat generating components, and is supplied with cooling water such as long life coolant.
  • the output current required for the DC-DC converter for vehicles reaches 200A.
  • the amount of heat generated by the transformer secondary winding and the secondary circuit is particularly large, and it is difficult to reduce the size and cost for these temperature rise countermeasures. Therefore, for example, a configuration of a parallel type DC-DC converter that disperses the amount of heat generated by modularizing secondary circuits, arranging them in parallel, and sharing the output current as shown in Patent Document 2 is adopted. There is a case.
  • the main object of the present invention is to provide a small-sized and low-cost power converter that suppresses current imbalance of a plurality of secondary circuit modules provided in parallel.
  • the present invention is a power conversion device that steps down and outputs an input voltage, and includes an input side circuit module having a switching element, and an output side circuit module having a transformer and a rectifying element, and the output side circuit A plurality of modules are provided with substantially the same structure, and the plurality of output side circuit modules are electrically connected to the input side circuit modules.
  • Fig. 5 shows the general main circuit configuration of a DC-DC converter.
  • the DC-DC converter device has high voltage side terminals 103 a and 103 b and a low voltage side terminal 112.
  • the high-voltage primary circuit 101 has a circuit configuration in which four MOSFETs 105a to 105d are H-bridge connected and a smoothing capacitor 104 is connected to the input side.
  • the primary winding of the transformer 107 is connected to the output line.
  • a center tap type transformer in which the intermediate point of the secondary winding is drawn to the outside of the winding is adopted as the transformer 107, and a choke coil 108 and a capacitor 110 are added to a rectifier circuit using diodes 109a, b or MOSFET as a low voltage side circuit.
  • the structure which connected the smoothing circuit which consists of is taken.
  • the output current required for DC-DC converters for vehicles reaches 200A. For this reason, the amount of heat generated by the transformer secondary winding and the secondary circuit is particularly large, and it is difficult to reduce the size and cost for these temperature rise countermeasures. Therefore, there is a conventional technique that adopts a configuration of a parallel DC-DC converter in which the secondary circuit is modularized, arranged in parallel, and the output current is shared to distribute the heat generation amount.
  • the first is an increase in the temperature of the transformer.
  • the amount of heat generated by the transformer itself does not change just by placing the secondary side circuit modules in parallel. Therefore, measures such as increasing the winding diameter to reduce copper loss or increasing the cross-sectional area of the core to reduce iron loss are required, leading to an increase in transformer size and cost.
  • the second problem is that if there is an inductance difference in the wiring connecting the transformer and each secondary circuit module, the current is not equally distributed to each secondary circuit module. If the inductance of each wiring connecting the transformer and each secondary circuit module can be perfectly aligned, this problem will not occur. However, the actual design is based on the magnetic interference of each wiring and the layout restrictions inside the housing. Is often difficult. If there is current imbalance in each secondary circuit module, it is necessary to take extra thermal design margin for the components used in the secondary circuit module, leading to increased component size and cost. End up. Therefore, in the conventional parallel type configuration, it is difficult to reduce the size and cost of the DCDC converter.
  • FIG. 1 is a diagram showing a circuit configuration of a DC-DC converter in the present embodiment.
  • the high-voltage primary circuit 101 has a circuit configuration in which four MOSFETs 105a to 105d are H-bridge connected and a smoothing capacitor 104 is connected to the input side.
  • Primary windings of a plurality of transformers 201-204 are connected in parallel to the output line of the primary side circuit 101.
  • Transformers 202-204 are not shown in the figure, but mean transformers having the same shape as the transformer 201. These transformers are each provided with a core around which windings are wound, and there is no magnetic coupling between the transformers. Therefore, each of these transformers has a degree of freedom to be arranged at different positions.
  • the volume of the transformer in the conventional transformer single system is represented by V, and the calorific value is represented by Q. Further, assuming that the transformer is a cube, the length of one side is L (1), and the cross-sectional area of the transformer facing the converter housing is S (1). It is assumed that the converter housing is provided with a water channel through which cooling water flows.
  • R tw (1) be the thermal resistance from the transformer to the cooling water.
  • the thermal resistance R tw (1) from the transformer center to the cooling water is proportional to the transformer height L (1), inversely proportional to the cross-sectional area S (1), and the thermal conductivity of the transformer is A. Is represented by the following formula (1).
  • the increase in the number of transformers in parallel can suppress an increase in the temperature of the transformer, so that heat-dissipating members such as potting resin, heat-dissipating sheet and thermal grease can be reduced, and the cost can be reduced.
  • heat-dissipating members such as potting resin, heat-dissipating sheet and thermal grease
  • the cost can be reduced.
  • a small design such as changing the number of turns of the transformer and the winding diameter becomes possible.
  • a general-purpose small transformer or a small core can be used, so that the cost can be further reduced.
  • FIG. 2 shows a circuit configuration in which a transformer and a low-voltage secondary circuit are arranged in parallel.
  • the high voltage primary side circuit 101 having the circuit configuration shown in FIG. 2 has the same configuration as the high voltage side circuit 101 shown in FIG.
  • output side circuit blocks 301 to 304 are connected in parallel to the output line of the primary side circuit 101.
  • the circuit blocks 302 to 304 are not shown in the figure, but are composed of the same components as the circuit block 301.
  • the output side circuit block 301 includes a transformer 311, rectifier diodes 312a and 312b, a choke coil 313, and a smoothing capacitor 314.
  • the input side and output side of each of the output side circuit blocks 301 to 304 are connected in parallel with other circuit blocks.
  • the degree of freedom in designing the wiring between the elements constituting the secondary circuit and the transformer is improved.
  • the inductance difference can be easily eliminated.
  • the current imbalance of each secondary circuit can be eliminated, which contributes to downsizing and cost reduction of the DC-DC converter.
  • FIG. 3 is an example of a module mounting structure for realizing the circuit block 301 shown in FIG.
  • FIG. 3A is an external perspective view of the module 401
  • FIG. 3B is an exploded perspective view of the module 401.
  • the transformer 411 and the choke coil 413 which are magnetic components, are housed in a case of a module case 416 for the purpose of component support and heat dissipation.
  • potting resin or the like may be filled inside the case in order to further improve the heat dissipation of the transformer 411 and the choke coil 413.
  • the rectifier diodes 412a and 412b are attached to the side wall surface of the module case 416. Although not shown in the drawing, a radiating sheet or the like may be sandwiched between the rectifier diodes 412a and 412b and the side wall surface of the module case 416 for both insulation and heat dissipation.
  • connection terminal portions of the transformer 411, the choke coil 413, and the rectifier diodes 412a and 412b are electrically connected to the circuit board 415 provided on the module case 416 by soldering.
  • a small and surface-mountable object such as a capacitor 414 is surface-mounted on the circuit board 415.
  • the wiring inductance variation between the transformer and the rectifier diode In order to suppress the current imbalance between the circuit blocks, it is necessary to design the wiring inductance variation between the transformer and the rectifier diode to be on the order of several nH or less.
  • this wiring pattern may be similarly applied to each circuit block. That is, if the mounting structure of the module 401 is commonly used in each circuit block, the wiring pattern is automatically shared, so that current imbalance hardly occurs.
  • FIG. 4 shows an example of a mounting structure when a DC-DC converter is configured using a plurality of modules 401 described in FIG.
  • Modules 501 to 504 adopt a mounting structure similar to that of module 401 in FIG.
  • Each module is electrically connected to the primary circuit module 505, and constitutes the circuit shown in FIG.
  • the module case of each module is attached to a DC-DC converter casing 506 formed with a cooling water channel by screwing or the like to ensure cooling performance.
  • the wiring connecting the modules 501 to 504 and the primary circuit module 505 is likely to have variations in wiring inductance due to the wiring length difference.
  • the turns ratio N1 / N2 between the primary winding N1 and the secondary winding N2 of the transformer is large, the wiring inductance variation on the primary side is not a problem. This is because when the turn ratio N1 / N2 is large, the transformer leakage inductance is larger than the wiring inductance on the primary side of the transformer, and the influence of the wiring is reduced.
  • the turn ratio N1 / N2 is usually about 10
  • the transformer primary side leakage inductance is about several uH.
  • the wiring inductance is on the order of several tens of nH, which is sufficiently smaller than the primary side leakage inductance of the transformer. Therefore, it can be said that the DC-DC converter of the present invention has a configuration suitable for automobiles.
  • connection wiring between the transformer and the rectifier diode is formed in substantially the same shape for each module. Not only the connection wiring between the transformer and the rectifier diode, but also the connection wiring connecting the rectifier diode and the capacitor element and the connection wiring connecting the rectifier diode and the choke coil are formed in substantially the same shape between the modules. Yes.
  • substantially the same shape in the present embodiment means a shape formed so as to be the same shape in terms of design, and includes dimensional tolerance and manufacturing The difference in shape due to variation is not intended. That is, it is the intent of the present invention that the variation in wiring inductance caused by the component layout and the like can be easily aligned between modules, and the wiring inductance between modules is made completely the same. Until is not considered.
  • Choke coil (coil element) 314 Capacitor (capacitor element) 401... Module (output side circuit module) 411 ... Transformers 412a, 412b ... Rectifier diode (rectifier element) 413 ... Choke coil (coil element) 414: Capacitor (capacitor element) 415 ... Circuit board 416 ... Module case 501, 502, 503, 504 ... Module (output side circuit module) 505 ... High voltage primary circuit 506 ... Case

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本発明の目的は、並列に複数設けられた2次側回路モジュールの電流アンバランスを抑制し、小型・低コストな電力変換装置を提供することである。 本発明の電力変換装置は、入力された電圧を降圧して出力するDC-DCコンバータであって、スイッチング素子105を有する入力側回路101と、トランス311と整流素子312を有する出力側回路モジュール301~312と、を備え、前記出力側回路モジュールは、複数個設けられ、複数の前記出力側回路モジュールは、前記入力側回路と電気的に接続される。

Description

電力変換装置
 本発明は、DC-DCコンバータに関し、特に電気自動車やプラグインハイブリッド車に用いられるDC-DCコンバータに関する。
 電気自動車やプラグインハイブリッド車は、動力駆動用の高電圧蓄電池でモータ駆動するためのインバータ装置と、車両のライトやラジオなどの補機を作動させるための低電圧蓄電池と、を備えている。このような車両には、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDC-DCコンバータ装置が搭載されている(例えば、特許文献1を参照)。このDC-DCコンバータの筐体には、内部の発熱部品を冷却するためにコンバータ筐体には冷却水路が設けており、ロングライフクーラントなどの冷却水が供給される。
 ところで、車両用のDC-DCコンバータに求められる出力電流は200Aにも達する。そのため、特にトランス2次側巻線および2次側回路の発熱量は大きく、これらの温度上昇対策のために小型低コストが難しい。そこで、例えば特許文献2に示されるような、2次側回路をモジュール化し、それを並列に並べ、出力電流を分担させることで、発熱量を分散させる並列型DC-DCコンバータの構成を採用する場合がある。
特開2005-143215号公報 特開2001-223491号公報
 上述した特許文献2に示す構成においては、単に2次側の回路モジュールを並列にしたのみであって、トランス自体の発熱量を低減することはできない。また、2次側回路モジュールのそれぞれからトランスまでの配線インダクタンスに差が生じるため、電流を均等に分担することができない。したがって、2次側回路モジュール内部に用いられる部品の熱設計マージンを余分に取る必要が生じ、部品の大型化や高コスト化を招くおそれがある。
 そこで本発明は、並列に複数設けられた2次側回路モジュールの電流アンバランスを抑制し、小型・低コストな電力変換装置を提供することを主な目的とする。
 本発明は、入力された電圧を降圧して出力する電力変換装置であって、スイッチング素子を有する入力側回路モジュールと、トランスと整流素子を有する出力側回路モジュールと、を備え、前記出力側回路モジュールは、各々が略等しい構造で複数個設けられ、複数の前記出力側回路モジュールは、前記入力側回路モジュールと電気的に接続されることを特徴とする。
 本発明によれば、電力変換装置の小型化、低コスト化を達成することができる。
本発明のDC-DCコンバータの回路構成を示す図である。 本発明のDC-DCコンバータの回路構成を示す図である。 本発明のDC-DCコンバータに用いるモジュールの外観斜視図 本発明のDC-DCコンバータに用いるモジュールの鳥瞰図 本発明のDC-DCコンバータの実装構成を示す図である。 従来のDC-DCコンバータの回路構成を示す図である。
 以下、図面を参照して、本発明に係る電力変換装置の実施の形態について説明する。以下では、高電圧の直流電圧を交流電圧に変換する高電圧一次側回路と、交流高電圧を交流低電圧に変換するトランスと、低電圧交流電圧を直流電圧に変換する低電圧二次側回路と、を備えるDC-DCコンバータ装置についての実施の形態を説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
 DC-DCコンバータ装置の一般的な主回路構成を図5に示す。DC-DCコンバータ装置は、高電圧側端子103a及び103b、さらに低電圧側端子112を有する。高電圧一次側回路101として、4つのMOSFET105aないしMOSFET105dをHブリッジ接続し、その入力側に平滑コンデンサ104を接続した回路構成をとっている。その出力線にはトランス107の1次巻線が接続される。トランス107として2次側巻線の中間点を巻線外側に引き出したセンタタップ型トランスを採用し、低電圧側回路としてダイオード109a、bあるいはMOSFETを用いた整流回路に、チョークコイル108とコンデンサ110からなる平滑回路を接続した構成をとる。
 車両用のDC-DCコンバータに求められる出力電流は200Aにも達する。そのため、特にトランス2次側巻線および2次側回路の発熱量は大きく、これらの温度上昇対策のために小型低コストが難しい。そこで、2次側回路をモジュール化し、それを並列に並べ、出力電流を分担させることで、発熱量を分散させる並列型DC-DCコンバータの構成を採用する従来技術がある。
 しかしながら、この構成には以下の2つの課題がある。1つ目は、トランスの温度上昇である。2次側の回路モジュールを並列にしただけでは、トランス自体の発熱量は変わらない。したがって、銅損を減らすために巻線径を大きくする、あるいは鉄損を減らすためにコアの断面積を大きくするなどの対応が必要となり、トランスの大型化とコスト上昇をまねく。
 また、2つめの課題は、トランスと各2次側回路モジュールを接続する配線にインダクタンス差があると、各2次側回路モジュールに均等に電流が分担されないことである。トランスと各2次側回路モジュールを接続する各配線のインダクタンスを完全にそろえることができれば、このような問題は生じないが、実際は各配線の磁気干渉や筐体内部のレイアウトの制約などによって、設計が困難な場合が多い。各2次側回路モジュールに電流アンバランスがある場合には、2次側回路モジュール内部に用いられている部品の熱設計マージンを余分にとる必要があり、部品の大型化やコストアップにつながってしまう。したがって、従来の並列型構成では、DCDCコンバータの小型低コストは困難である。
 図1は、本実施形態におけるDC-DCコンバータの回路構成を示す図である。高電圧一次側回路101として、4つのMOSFET105aないしMOSFET105dをHブリッジ接続し、その入力側に平滑コンデンサ104を接続した回路構成をとっている。一次側回路101の出力線には複数のトランス201-204の1次巻線が並列に接続される。トランス202-204は図中では表記を省略しているが、トランス201と同形状のトランスを意味している。これらのトランスは巻線が巻回されたコアがそれぞれ設けられており、トランス間での磁気的な結合はない。したがって、これらのトランスはそれぞれ別の位置に分割して配置する自由度がある。また、同じトランスを複数接続しているので、それぞれのトランスに電流は分流し、二次側へ受け渡す電力は分担される。同様に、巻線抵抗による銅損やコアの鉄損といった損失も、それぞれのトランスへ分担させることが可能となる。
 トランスを複数並列に用いることによる温度上昇抑制の原理と、それにより小型低コストが可能となる理由を以下で説明する。
 従来のトランス単一方式でのトランスの体積をV、発熱量をQで表わす。また、トランスを立方体と仮定し、一辺の長さをL(1)、コンバータ筐体と面するトランスの断面積をS(1)とする。コンバータ筐体には冷却水が流れる水路が設けられているとする。トランスから冷却水までの熱抵抗をRt-w(1)とする。トランス中心部から冷却水までの熱抵抗Rt-w(1)は、トランスの高さL(1)に比例し、断面積S(1)に反比例し、トランスの熱伝導率をAとすると、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 一方、多並列方式において、トランス並列数をNとした場合の一個あたりのトランス体積がV/Nと仮定すると、トランスの一辺の長さL(N)は以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 また、筐体と面するトランスの断面積S(N)は式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 トランスの熱伝導率Aがトランス体積に関わらず一定の場合、N並列化された場合のトランスから冷却水までの熱抵抗Rt-w(N)は以下の式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 したがって、発熱量Q/Nと上記の式から水路からトランス中心部までの温度上昇ΔT(N)は、以下の式(5)で表されるため、並列数(N)を増加させることで温度上昇を抑制できることが分かる。
Figure JPOXMLDOC01-appb-M000005
 上記のようにトランス並列数の増加によってトランスの温度上昇が抑制できるので、ポッティング樹脂や放熱シート、サーマルグリスなどの放熱部材を削減でき、コストを下げることができる。また各トランスには熱的に余裕が生まれるために、トランスの巻数や巻線径を変更するなどの小型設計が可能となる。また場合によっては、汎用の小型トランスや小型コアを活用することができるのでさらにコストを下げることができる。
 続いて図2に、トランスと低電圧二次側回路を多並列とした回路構成を示す。図2に示す回路構成の高電圧一次側回路101は、図1に示す高電圧側回路101と同様の構成である。図2に示す実施形態においては、一次側回路101の出力線に、出力側回路ブロック301乃至304が並列に接続されている。ここでは回路ブロック302~304は図中では表記を省略しているが、回路ブロック301と同じ部品で構成されている。
 出力側回路ブロック301は、トランス311、整流ダイオード312a、312b、チョークコイル313、平滑コンデンサ314から構成されている。出力側回路ブロック301~304のそれぞれの入力側と出力側は、他の回路ブロックと並列に接続されている。
 従来の並列型DCDCコンバータの構成、例えば、トランスは単一であって二次側回路のみが並列して接続されている構成では、それぞれの二次側回路との間で電流のアンバランスを解消するためには、トランスから二次側回路における整流素子までの配線インダクタンスを合わせる必要がある。しかし、配置レイアウトの制約で配線長を揃えることが困難な場合が多く、また他の配線との磁場干渉によって、インダクタンスを完全に等しく設計するのは困難である。
 一方、図2の実施形態に示すDC-DCコンバータは、トランスを二次側回路ごとに設けることで、二次側回路を構成する素子とトランスの間の配線の設計自由度が向上し、配線インダクタンス差を容易に解消することができる。これにより、各二次側回路の電流アンバランスを解消でき、DC-DCコンバータの小型化、低コスト化に寄与する。
 図3は、図2に示した回路ブロック301を実現するためのモジュール実装構造の一例である。図3(a)は、モジュール401の外観斜視図であり、図3(b)は、モジュール401の分解斜視図である。
 回路ブロック301を構成する部品の内、磁性部品であるトランス411とチョークコイル413は、部品支持と放熱を目的としたモジュールケース416のケース内部へ収納されている。図中には記載していないが、トランス411とチョークコイル413の放熱性をより高めるために、ポッティング樹脂などをケース内部充填しても良い。
 整流ダイオード412a、412bは、モジュールケース416の側壁面に取り付けられている。図中には記載していないが、整流ダイオード412a、412bとモジュールケース416の側壁面との間には、絶縁と放熱を兼ねて放熱シートなどを挟んでも良い。
 トランス411、チョークコイル413および整流ダイオード412a、412bの各接続端子部は、モジュールケース416の上部に設けられた回路基板415とはんだで接続することで、電気的な接続を確保する。また、回路ブロック301を構成する部品のなかで、小型かつ面実装可能な物、例えばコンデンサ414は回路基板415上に面実装する。上記のように各部品を配置し、回路基板415に設けられた配線パターンによって部品間を電気的に接続することで、回路ブロック301の回路構成を実現できる。
 図2に示した回路ブロック301~304を実現する実装構造として、上記のモジュール401の実装構造を全ての回路ブロックに適用すれば、各モジュール間の電流アンバランスはほとんど発生しない。
 各回路ブロック間の電流アンバランスを抑制するには、トランスと整流ダイオード間の配線インダクタンスのばらつきを数nHオーダー以下となるように設計する必要がある。モジュール401ではトランスと整流ダイオード間の接続は、回路基板415上の配線パターンによって形成しているので、この配線パターンを各回路ブロックに同様に適用すればよい。すなわち、各回路ブロックでモジュール401の実装構造を共通に使用すれば、自動的に配線パターンも共通となるので、電流アンバランスはほとんど発生しない。
 上記のように各モジュール間で電流アンバランスが解消できれば、電流アンバランスを見込んだ熱設計のマージンは不要となる。したがって、モジュールに使用する部品として、より小型の部品を使用することが可能となる。
 図4は、図3で説明したモジュール401を複数個用いて、DC-DCコンバータを構成した場合の実装構造の例を示す。モジュール501-504は、図3におけるモジュール401と同様の実装構造を採用したものである。
 各モジュールは、1次側回路モジュール505と電気的に接続されており、図2に示した回路を構成している。各モジュールのモジュールケースは冷却水路が形成されたDC-DCコンバータ筐体506に、ネジ止め等によって取り付けられており、冷却性能を確保している。
 図4に示した構造では、各モジュール501~504と1次側回路モジュール505とを接続する配線に、配線長の差に起因する配線インダクタンスのばらつきが発生しやすい。しかし、トランスの一次巻線N1と二次側巻線N2との巻数比N1/N2が大きい場合には、この1次側の配線インダクタンスばらつきはあまり問題とならない。これは巻数比N1/N2が大きい場合には、トランスの1次側では、トランス漏れインダクタンスの方が配線インダクタンスより大きく、配線の影響が小さくなるためである。自動車用のDC-DCコンバータの場合には、巻数比N1/N2は通常10程度であり、トランス1次側漏れインダクタンスは数uH程度である。これに対して配線インダクタンスは数十nHといったオーダーであり、トランスの1次側漏れインダクタンスより十分小さい。したがって、本発明のDC-DCコンバータは自動車用に適した構成であると言える。
 また、上述したモジュール501~504は、同様の構造で設計がされているため、各部品の形状や寸法は略等しい。上述したように、トランスと整流ダイオード間の接続配線は、各モジュールのそれぞれについて略等しい形状で形成されている。また、トランスと整流ダイオード間の接続配線に限らず、整流ダイオードとコンデンサ素子を接続する接続配線や、整流ダイオードとチョークコイルを接続する接続配線についても、各モジュール間で略等しい形状で形成されている。
 なお、本実施例において「略等しい形状」として説明しているのは、設計思想上で同一の形状となるようにして形成された形状を意味しているのであって、寸法公差や製造上のバラつきによる形状の差異は意図しないものである。すなわち、部品の配置レイアウト等に起因して生じる配線インダクタンスのばらつきをモジュール間で容易に揃えることができるように構成する点が本発明の意図であり、モジュール間の配線インダクタンスを完全同一にすることまでは考慮していない。
101…高圧一次側回路
102…低圧二次側回路
103a、103b…高圧側入力端子部
104…平滑コンデンサ
105a、105b、105c、105d… MOSFET
107…トランス
108…チョークコイル
109a、109b…整流ダイオード
110…平滑コンデンサ
112…低圧側出力端子部
201、202、203、204…トランス
301…回路ブロック
311…トランス
312a、312b…整流ダイオード(整流素子)
313…チョークコイル(コイル素子)
314…コンデンサ(コンデンサ素子)
401…モジュール(出力側回路モジュール)
411…トランス
412a、412b…整流ダイオード(整流素子)
413…チョークコイル(コイル素子)
414…コンデンサ(コンデンサ素子)
415…回路基板
416…モジュールケース
501、502、503、504…モジュール(出力側回路モジュール)
505…高圧一次側回路
506…筐体

Claims (9)

  1.  入力された電圧を降圧して出力する電力変換装置であって、
     スイッチング素子を有する入力側回路と、
     トランスと整流素子を有する出力側回路モジュールと、を備え、
     前記出力側回路モジュールは、複数個設けられ、
     複数の前記出力側回路モジュールは、前記入力側回路と電気的に接続される電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記出力側回路モジュールは、第1の出力側回路モジュールと、第2の出力側回路モジュールと、を有し、
     前記第1の出力側回路モジュールは、第1のトランスと、第1の整流素子と、前記第1のトランスと前記第1の整流素子とを接続する第1の接続配線と、を有し、
     前記第2の出力側回路モジュールは、第2のトランスと、第2の整流素子と、前記第2のトランスと前記第2の整流素子とを接続する第2の接続配線と、を有し、
     前記第1の接続配線は、前記第2の接続配線と略等しい形状で形成される電力変換装置。
  3.  請求項2に記載の電力変換装置であって、
     前記第1の出力回路モジュールは、前記第1の接続配線が実装された第1の回路基板を有し、
     前記第2の出力回路モジュールは、前記第2の接続配線が実装された第2の回路基板を有し、
     前記第1のトランス及び前記第1の整流素子は前記第1の回路基板に接続され、
     前記第2のトランス及び前記第2の整流素子は前記第2の回路基板に接続される電力変換装置。
  4.  請求項1乃至3のいずれかに記載の電力変換装置であって、
     前記出力側回路モジュールは、第1の出力側回路モジュールと、第2の出力側回路モジュールと、を有し、
     前記第1の出力側回路モジュールは、第1のトランスと、第1の整流素子と、第1のコンデンサ素子と、前記第1の整流素子と前記第1のコンデンサ素子とを接続する第3の接続配線と、を有し、
     前記第2の出力側回路モジュールは、第2のトランスと、第2の整流素子と、第2のコンデンサ素子と、前記第2の整流素子と前記第2のコンデンサ素子とを接続する第4の接続配線と、を有し、
     前記第3の接続配線は、前記第4の接続配線と略等しい形状で形成される電力変換装置。
  5.  請求項1乃至4のいずれかに記載の電力変換装置であって、
     前記出力側回路モジュールは、第1の出力側回路モジュールと、第2の出力側回路モジュールと、を有し、
     前記第1の出力側回路モジュールは、第1のトランスと、第1の整流素子と、第1のコイル素子と、前記第1の整流素子と前記第1のコイル素子とを接続する第5の接続配線と、を有し、
     前記第2の出力側回路モジュールは、第2のトランスと、第2の整流素子と、第2のコイル素子と、前記第2の整流素子と前記第2のコイル素子とを接続する第6の接続配線と、を有し、
     前記第5の接続配線は、前記第6の接続配線と略等しい形状で形成される電力変換装置。
  6.  請求項2乃至5のいずれかに記載の電力変換装置であって、
     前記第1の出力側回路モジュールは、前記第1のトランスを収納する第1の金属ケース部を有し、
     前記第2の出力側回路モジュールは、前記第2のトランスを収納する第2の金属ケース部を有する電力変換装置。
  7.  請求項6に記載の電力変換装置であって、
     前記第1の整流素子は、前記第1の金属ケース部の側壁面上に配置され、
     前記第2の整流素子は、前記第2の金属ケース部の側壁面上に配置される電力変換装置。
  8.  請求項5又は7のいずれかに記載の電力変換装置であって、
     前記第1の金属ケース部及び前記第2の金属ケース部には、樹脂が充填される電力変換装置。
  9.  請求項1乃至8のいずれかに記載の電力変換装置であって、
     前記トランスは、前記入力側回路に接続される一次側巻線と、前記整流素子に接続される二次側巻線と、を有し、
     前記一次側巻線の巻数は、前記二次側巻線の巻数よりも大きい電力変換装置。
PCT/JP2016/069581 2015-07-03 2016-07-01 電力変換装置 WO2017006845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/740,457 US10326379B2 (en) 2015-07-03 2016-07-01 Power conversion device
CN201680038717.2A CN107852093B (zh) 2015-07-03 2016-07-01 电力转换装置
DE112016002549.1T DE112016002549B4 (de) 2015-07-03 2016-07-01 Leistungsumwandlungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-134035 2015-07-03
JP2015134035A JP6438858B2 (ja) 2015-07-03 2015-07-03 電力変換装置

Publications (1)

Publication Number Publication Date
WO2017006845A1 true WO2017006845A1 (ja) 2017-01-12

Family

ID=57685249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069581 WO2017006845A1 (ja) 2015-07-03 2016-07-01 電力変換装置

Country Status (5)

Country Link
US (1) US10326379B2 (ja)
JP (1) JP6438858B2 (ja)
CN (1) CN107852093B (ja)
DE (1) DE112016002549B4 (ja)
WO (1) WO2017006845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023024493A (ja) * 2019-05-27 2023-02-16 三菱電機株式会社 電力変換装置および電力変換装置の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461659B2 (en) 2017-10-10 2019-10-29 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and power converting device
JP6955988B2 (ja) * 2017-12-11 2021-10-27 株式会社日立製作所 電力変換器ユニット、および電力変換装置
DE102018220415A1 (de) * 2018-11-28 2020-05-28 Zf Friedrichshafen Ag Transformator, Gleichspannungswandler und elektrischer Kraftwagen
US20240088793A1 (en) * 2021-01-07 2024-03-14 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus capable of controlling power conversion circuits to operate selectively
JP7477012B2 (ja) 2022-04-22 2024-05-01 富士電機株式会社 直流直流コンバータ装置
CN115118124B (zh) * 2022-06-08 2024-06-18 北京交通大学 一种交直流供电变换器功率模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214228A (ja) * 1998-01-22 1999-08-06 Nemic Lambda Kk 電源装置の主トランスおよびその製造方法
JP2001286139A (ja) * 2000-03-31 2001-10-12 Densei Lambda Kk 電源装置とその表示作成方法
JP2004222486A (ja) * 2002-12-27 2004-08-05 Murata Mfg Co Ltd スイッチング電源モジュール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959085A (ja) * 1982-09-28 1984-04-04 Toshiba Electric Equip Corp 電源装置
JPS62196071A (ja) * 1986-02-24 1987-08-29 Fanuc Ltd パワ−デバイス駆動用電源
JPS6477474A (en) 1987-09-16 1989-03-23 Toshiba Electric Equip Molded transformer
JP3349781B2 (ja) * 1993-08-30 2002-11-25 富士通株式会社 スイッチングレギュレータ電源装置
JP2001223491A (ja) 2000-02-09 2001-08-17 Densei Lambda Kk 電源装置
JP2002075757A (ja) * 2000-06-14 2002-03-15 Denso Corp 変圧装置およびそれを用いた高電圧発生装置ならびに放電灯装置
KR100387382B1 (ko) 2000-09-25 2003-06-19 박준호 고효율의 스위칭모드 전원공급기
JP4162523B2 (ja) * 2002-06-03 2008-10-08 シャープ株式会社 インバータ
JP4418208B2 (ja) 2003-11-06 2010-02-17 ニチコン株式会社 Dc−dcコンバータ装置
US7295448B2 (en) 2004-06-04 2007-11-13 Siemens Vdo Automotive Corporation Interleaved power converter
JP4485337B2 (ja) 2004-12-08 2010-06-23 株式会社日立製作所 電流検出回路、電源制御回路、電源装置、電源システム、および電子装置
CN101873739B (zh) * 2009-04-27 2014-07-30 台达电子工业股份有限公司 多组直流负载的电流平衡供电电路
JP2011072076A (ja) * 2009-09-24 2011-04-07 Sanken Electric Co Ltd 直流変換装置
CN201966808U (zh) * 2011-03-01 2011-09-07 山东沃森电源设备有限公司 一种三档电压输出的变频电源
CN202713162U (zh) * 2012-05-04 2013-01-30 河南科技大学东海硅产业节能技术研究院 一种低压大电流直流电源
JP6158051B2 (ja) 2013-11-29 2017-07-05 日立オートモティブシステムズ株式会社 電力変換装置
CN104038070B (zh) * 2014-04-15 2017-04-19 浙江大学 变压器原边串联llc加输出并联buck两级变换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214228A (ja) * 1998-01-22 1999-08-06 Nemic Lambda Kk 電源装置の主トランスおよびその製造方法
JP2001286139A (ja) * 2000-03-31 2001-10-12 Densei Lambda Kk 電源装置とその表示作成方法
JP2004222486A (ja) * 2002-12-27 2004-08-05 Murata Mfg Co Ltd スイッチング電源モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023024493A (ja) * 2019-05-27 2023-02-16 三菱電機株式会社 電力変換装置および電力変換装置の製造方法
JP7345621B2 (ja) 2019-05-27 2023-09-15 三菱電機株式会社 電力変換装置および電力変換装置の製造方法

Also Published As

Publication number Publication date
DE112016002549B4 (de) 2024-02-08
DE112016002549T5 (de) 2018-03-01
US20180191263A1 (en) 2018-07-05
JP6438858B2 (ja) 2018-12-19
JP2017017911A (ja) 2017-01-19
CN107852093B (zh) 2020-09-15
CN107852093A (zh) 2018-03-27
US10326379B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
JP6438858B2 (ja) 電力変換装置
JP6104347B1 (ja) 電力変換装置
US9814154B2 (en) Power converter
US9935558B2 (en) DC-DC converter apparatus including single drive circuit board arranged at predetermined interval from metal base
JP6758264B2 (ja) リアクトル冷却構造
US20140169042A1 (en) Power supply device
JP6158051B2 (ja) 電力変換装置
CN113329587B (zh) 电力转换装置
CN106575566B (zh) 电抗器和使用它的dc-dc转换器
JP2017037946A (ja) 電力変換装置
JP5342623B2 (ja) スイッチング電源装置
JP2011182502A (ja) スイッチング電源
JP6111891B2 (ja) 電力供給装置
JP2013188010A (ja) 絶縁型スイッチング電源装置
JP2016144238A (ja) 電力変換装置
JP5461232B2 (ja) トランス及びスイッチング電源
JP7134305B1 (ja) 電力変換装置
JP5462663B2 (ja) トランス及びスイッチング電源
JP2011181573A (ja) トランス及びスイッチング電源
JP6164148B2 (ja) 電源装置
JP5785363B2 (ja) トランス及びスイッチング電源
JP5705263B2 (ja) スイッチング電源装置
CN116110681A (zh) 变压器、功率转换装置、变压器产品组以及变压器的制造方法
JP2017135819A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002549

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821314

Country of ref document: EP

Kind code of ref document: A1