WO2017002808A1 - ディスプレイ用ガラス基板およびその製造方法 - Google Patents

ディスプレイ用ガラス基板およびその製造方法 Download PDF

Info

Publication number
WO2017002808A1
WO2017002808A1 PCT/JP2016/069145 JP2016069145W WO2017002808A1 WO 2017002808 A1 WO2017002808 A1 WO 2017002808A1 JP 2016069145 W JP2016069145 W JP 2016069145W WO 2017002808 A1 WO2017002808 A1 WO 2017002808A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
display
strain point
sio
Prior art date
Application number
PCT/JP2016/069145
Other languages
English (en)
French (fr)
Inventor
学 市川
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201680037857.8A priority Critical patent/CN107735376A/zh
Priority to US15/740,906 priority patent/US11069716B2/en
Priority to KR1020187002478A priority patent/KR102295451B1/ko
Priority to JP2017526371A priority patent/JP6692812B2/ja
Priority to CN201810967486.4A priority patent/CN109133615B/zh
Publication of WO2017002808A1 publication Critical patent/WO2017002808A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate for display and a method for producing the same.
  • the present invention relates to a glass substrate for a low-temperature polysilicon thin film transistor (hereinafter referred to as LTPS-TFT (Low-Temperature-Polycrystalline-Silicon Thin-Film-Transistor)) display.
  • the present invention also relates to a glass substrate for an oxide semiconductor thin film transistor (hereinafter referred to as OS-TFT (Oxide-Semiconductor Thin-Film-Transistor)) display.
  • OS-TFT Oxide-Semiconductor Thin-Film-Transistor
  • the present invention relates to a glass substrate for display, wherein the display is a liquid crystal display.
  • the said display is related with the glass substrate for a display which is an organic electroluminescent display. Furthermore, the present invention relates to a glass substrate for flat panel display, wherein the display is a flat panel display.
  • LTPS thin film transistors
  • the relatively high temperature is 400 to 600 ° C. Heat treatment at a high temperature is necessary.
  • higher definition has been required for displays of small portable devices. Therefore, there is a problem of thermal shrinkage of the glass substrate that occurs during display panel manufacturing, which causes pixel pitch shift. Similarly, in the glass substrate on which the OS-TFT is formed, the suppression of thermal shrinkage is also a problem.
  • the thermal contraction rate of the glass substrate can be generally reduced by increasing the glass strain point, increasing the glass transition point (hereinafter referred to as Tg), or decreasing the slow cooling rate.
  • Tg glass transition point
  • Patent Document 1 a technique for increasing the strain point of glass in order to reduce the thermal shrinkage rate is disclosed.
  • Patent Document 2 a technique for reducing thermal shrinkage by adjusting the ratio of the gradient of the average density curve and the average linear expansion coefficient in the temperature region from the annealing point to the vicinity of the strain point.
  • Patent Document 3 a technique for increasing Tg in order to reduce the thermal shrinkage rate.
  • Patent Document 4 a technique for setting the strain point of glass to 725 ° C. or higher is also disclosed (Patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-6649
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-315354
  • Patent Document 3 Japanese Patent Laid-Open No. 2011-126728
  • Patent Document 4 Japanese Patent Laid-Open No. 2012-106919 The entire description of 1-4 is hereby specifically incorporated by reference.
  • the strain point of the glass disclosed in Patent Document 2 is 682 to 699 ° C., it is necessary to make the slow cooling rate extremely slow in order to obtain a gradient of the average density curve so as to sufficiently reduce the heat shrinkage. There was a problem that productivity was lowered. Furthermore, since the glass disclosed in Patent Document 2 has a devitrification temperature of 1287 ° C. or higher, devitrification is likely to occur. Further, the above-described problem becomes particularly remarkable when molding is performed using the downdraw method.
  • the display glass substrate is required to achieve both improvement in productivity due to increase in etching rate and reduction in heat shrinkage rate.
  • the glass substrate described in Patent Document 4 has a problem that the etching rate is not considered although the strain point is high.
  • an object of the present invention is to provide a glass substrate that satisfies a high strain point while keeping the devitrification temperature low, and a manufacturing method thereof.
  • an object of the present invention is to provide a display glass substrate suitable for a display using LTPS-TFT or OS-TFT and a method for producing the same.
  • the present invention is as follows. [1] Containing SiO 2 , Al 2 O 3 , In mass% display, B 2 O 3 0% or more and less than 3%, BaO is 5-14%, Substantially free of Sb 2 O 3 A glass substrate for display, made of glass, having a devitrification temperature of 1235 ° C or lower and a strain point of 720 ° C or higher.
  • a glass substrate for display made of glass, having a devitrification temperature of 1260 ° C or lower and a strain point of 720 ° C or higher. [3] The glass substrate is held at a temperature of 500 ° C.
  • thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the manufacturing method of the glass substrate for a display which manufactures the glass substrate of any one of these.
  • the glass substrate of the present invention it is possible to manufacture a glass substrate that satisfies a high strain point while keeping the devitrification temperature low.
  • a display glass substrate capable of reducing thermal shrinkage during display manufacturing particularly a display glass substrate suitable for a flat panel display using LTPS-TFT or OS-TFT is provided with high productivity. Can do.
  • the glass composition is expressed in mass%, and the content in% means mass%.
  • the ratio of the component which comprises a glass composition is displayed by mass ratio.
  • Glass substrate for display of the present invention (first aspect), Containing SiO 2 , Al 2 O 3 , In mass% display, B 2 O 3 is 0% or more and less than 3%, BaO is 5-14%, Substantially free of Sb 2 O 3
  • the glass is made of glass having a devitrification temperature of 1235 ° C or lower and a strain point of 720 ° C or higher.
  • the glass substrate for display of the present invention (second embodiment) Containing SiO 2 , Al 2 O 3 , In mass% display, B 2 O 3 is 0% or more and less than 3%, MgO is 1.8% or more, BaO is 5-14%, Substantially free of Sb 2 O 3 (SiO 2 + MgO + CaO)-(Al 2 O 3 + SrO + BaO) is less than 42%,
  • the glass is made of glass having a devitrification temperature of 1260 ° C or lower and a strain point of 720 ° C or higher.
  • the glass constituting the glass substrate for display of the present invention contains SiO 2 and Al 2 O 3 .
  • SiO 2 is a skeletal component of glass and is therefore an essential component. When the content decreases, the strain point tends to decrease and the thermal expansion coefficient tends to increase. If the SiO 2 content is too small, it is difficult to reduce the density of the glass substrate. On the other hand, if the SiO 2 content is too large, the specific resistance of the molten glass increases, the melting temperature tends to be extremely high, and melting tends to be difficult. Further, the SiO 2 content is too large, the etching rate becomes slow. From such a viewpoint, the content of SiO 2 can be adjusted as appropriate.
  • the SiO 2 content of the glass is preferably in the range of 45 to 80%, for example.
  • the content of SiO 2 is more preferably in the range of 50 to 75% or 50 to 70%, still more preferably 52 to 68%, and still more preferably 55 to 65%.
  • Al 2 O 3 is an essential component that increases the strain point. If the Al 2 O 3 content is too small, the strain point is lowered. Furthermore, if the Al 2 O 3 content is too small, the Young's modulus and acid etching rate tend to decrease. On the other hand, the Al 2 O 3 content is too large, the devitrification temperature of the glass rises, since the devitrification resistance is decreased, there is a tendency that moldability is deteriorated. From such a viewpoint, it can adjust suitably.
  • the content of Al 2 O 3 in the glass is, for example, in the range of 10 to 35%.
  • the content of Al 2 O 3 is preferably in the range of 13 to 30%, more preferably 15 to 25%, more preferably 15 to 23%, and further preferably 16 to 22%.
  • B 2 O 3 is a component that lowers the high temperature viscosity of the glass and improves the meltability. That is, since the viscosity in the vicinity of the melting temperature is lowered, the meltability is improved. It is also a component that lowers the devitrification temperature.
  • the content of B 2 O 3 is small, meltability and devitrification resistance tends to be lowered.
  • the strain point and the Young's modulus is reduced.
  • devitrification is likely to occur due to volatilization of B 2 O 3 during glass forming. In particular, a glass having a high strain point tends to have a high molding temperature. Therefore, the volatilization is promoted, and the generation of devitrification becomes a significant problem.
  • the B 2 O 3 content is 0% or more and less than 3%.
  • the B 2 O 3 content is preferably 0 to 2.8%, more preferably 0 to 2.6%, further preferably 0.1 to 2.4%, more preferably 0.3 to 2.2%, and still more preferably 0.5 to 2.0. % Range.
  • MgO is a component that improves meltability, and is an essential component in the second aspect of the present invention. Moreover, since it is a component which is hard to increase a density in alkaline-earth metal, when the content is increased relatively, it will become easy to achieve a low density. By containing, the specific resistance and melting temperature of the molten glass can be reduced. However, if the content of MgO is too large, the devitrification temperature of the glass rises abruptly, so that it tends to devitrify particularly in the molding process. From such a viewpoint, in the second embodiment of the present invention, the MgO content is 1.8 to 15%, preferably 1.8 to 13%, more preferably 1.9 to 10%, and still more preferably 1.9 to 7%. It is a range. Alternatively, in the first embodiment of the present invention, the MgO content is preferably 0 to 15%, more preferably 0 to 13%, and further preferably 0 to 10%.
  • CaO is not essential, but when it is contained, it is an effective component for improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Moreover, since it is a component which is hard to increase a density in alkaline-earth metal oxide, when the content is increased relatively, it will become easy to aim at a density reduction. When there is too little content, there exists a tendency for the raise of the specific resistance of molten glass, and a devitrification resistance fall to arise. If the CaO content is too large, the coefficient of thermal expansion increases and the density tends to increase. From such a viewpoint, the CaO content is preferably in the range of 0 to 20%, more preferably 0 to 15%, and still more preferably 0 to 10%.
  • SrO is a component that can lower the devitrification temperature of glass. Although SrO is not essential, when it is contained, devitrification resistance and meltability are improved. However, if the SrO content is too high, the density will increase. From such a viewpoint, the SrO content is 0 to 15%, preferably 0 to 10%, more preferably 0 to 7%, still more preferably 0 to 5%, and still more preferably 0 to 3%. Range.
  • BaO is an essential component that can effectively lower the devitrification temperature of glass and the specific resistance of molten glass.
  • the BaO content is in the range of 5 to 14% because of the environmental load and the tendency of the thermal expansion coefficient to increase.
  • the BaO content is preferably 6 to 13.5%, more preferably 7 to 13%, still more preferably 8 to 12%, and still more preferably 8.5 to 12%.
  • MgO, CaO, SrO and BaO are components that lower the specific resistance and melting temperature of the molten glass and improve the meltability. If the MgO + CaO + SrO + BaO (hereinafter referred to as RO), which is the total content of MgO, CaO, SrO and BaO, is too small, the meltability deteriorates. When there is too much RO, a strain point and a Young's modulus will fall, and a density and a thermal expansion coefficient will rise. From such a viewpoint, RO is preferably in the range of 5 to 35%, more preferably 9 to 30%, still more preferably 10 to 27%, and still more preferably 12 to 25%.
  • RO is preferably in the range of 5 to 35%, more preferably 9 to 30%, still more preferably 10 to 27%, and still more preferably 12 to 25%.
  • Li 2 O and Na 2 O are components that may increase the thermal expansion coefficient of glass and damage the substrate during heat treatment. It is also a component that lowers the strain point. On the other hand, since the specific resistance of the molten glass can be reduced, it is possible to suppress the erosion of the melting tank by the inclusion. From the above viewpoint, the content of Li 2 O is preferably 0 to 0.5%, more preferably not substantially contained. The content of Na 2 O is preferably 0 to 0.5%, more preferably 0 to 0.2%. Incidentally, Na 2 O, since compared with Li 2 O is a difficult component to lower the strain point is preferably Na 2 O> Li 2 O. Note that it is preferable that Li 2 O and Na 2 O are not substantially contained from the viewpoint of preventing elution from the glass substrate and deteriorating the TFT characteristics.
  • K 2 O is a component that increases the basicity of the glass and promotes clarity. Moreover, it is a component which reduces the specific resistance of molten glass. When it is contained, the specific resistance of the molten glass is lowered, so that it is possible to prevent a current from flowing through the refractory constituting the melting tank and to suppress the erosion of the melting tank. In addition, when the refractory constituting the melting tank contains zirconia, the melting tank can be prevented from being eroded and the zirconia can be prevented from being eluted from the melting tank to the molten glass, so devitrification caused by zirconia can also be suppressed. .
  • the K 2 O content is preferably in the range of 0 to 0.8%, more preferably 0.01 to 0.6%, and still more preferably 0.1 to 0.5%.
  • Li 2 O, Na 2 O, and K 2 O are components that increase the basicity of the glass, facilitate oxidation of the fining agent, and exhibit fining properties. Moreover, it is a component which reduces the viscosity in melting temperature and improves meltability. Moreover, it is also a component which reduces the specific resistance of molten glass. When Li 2 O, Na 2 O and K 2 O are contained, the specific resistance of the molten glass decreases, and the clarity and meltability are improved. In particular, it is possible to prevent the current from flowing excessively through the refractory constituting the melting tank and to suppress the erosion of the melting tank.
  • the total content of Li 2 O, Na 2 O and K 2 O (hereinafter referred to as R 2 O) is preferably 1.0% or less, more preferably 0.01 to 1.0%, still more preferably 0.01 to 0.8. %, Even more preferably 0.1 to 0.5%.
  • ZrO 2 and TiO 2 are components that improve the strain point of glass.
  • the amount of ZrO 2 and the amount of TiO 2 are too large, the devitrification temperature is remarkably increased, so that the devitrification resistance tends to be lowered.
  • ZrO 2 has a high melting point and is hardly melted, it causes a problem that a part of the raw material is deposited on the bottom of the melting tank. When these unmelted components are mixed into the glass substrate, the quality of the glass is deteriorated as inclusions.
  • TiO 2 is a component that colors glass, and thus is not preferable for a display substrate. From such a viewpoint, in the glass substrate of the present embodiment, the contents of ZrO 2 and TiO 2 are each preferably 0 to 10%, more preferably 0 to 5%, and substantially not contained. More preferably.
  • the ZnO is a component that improves meltability. However, it is not an essential component. When the ZnO content is too high, the devitrification temperature is increased, the strain point is decreased, and the density tends to increase. From such a viewpoint, the ZnO content is preferably in the range of 0 to 5%, more preferably 0 to 2%, and even more preferably not contained.
  • the glass substrate of this embodiment can contain a fining agent.
  • the fining agent is not particularly limited as long as it has a low environmental impact and excellent glass fining properties.
  • it is selected from the group of Sn, Fe, Ce, Tb, Mo, and W metal oxides. At least one selected from the above.
  • the glass substrate of the present embodiment does not substantially contain Sb 2 O 3 . By substantially not including Sb 2 O 3 , the environmental load can be reduced.
  • SnO 2 is suitable. If the content of the fining agent is too small, the foam quality is deteriorated, and if it is too large, devitrification and coloring may be caused.
  • the content of the fining agent depends on the type of fining agent and the composition of the glass.
  • the total amount of SnO 2 and Fe 2 O 3 is preferably 0.05 to 0.50%, and more preferably 0.05 to 0.40%.
  • SnO 2 is a refining agent that can achieve a refining effect even at 1600 ° C or higher, and glass substrates for flat panel displays that can contain only a small amount of Li 2 O, Na 2 O and K 2 O (for example, Li 2 O, Na 2 O And a few fining agents that can be used for the production of 0.01 to 0.8% of the total amount of K 2 O.
  • SnO 2 is a component that easily causes devitrification, and is a component that promotes the generation of devitrification of other components. Therefore, it is not preferable to add a large amount from the viewpoint of suppressing devitrification.
  • glass with a high strain point (for example, a glass with a strain point of 720 ° C. or higher) tends to have a higher devitrification temperature than glass with a low strain point (for example, a glass with a strain point less than 720 ° C.). Therefore, in order to suppress devitrification, the temperature of the molten glass in the forming process may have to be higher than that of a glass having a low strain point.
  • the molded object used by the overflow downdraw method is comprised including the refractory containing a zirconia from a viewpoint of creep resistance and heat resistance.
  • a glass having a high strain point (for example, a glass having a strain point of 720 ° C. or higher) has a higher melting temperature than a glass having a low strain point (for example, a glass having a strain point of less than 720 ° C.). It tends to be high.
  • the melting tank which performs a melting process is comprised including the high zirconia refractory containing a zirconia from a viewpoint of erosion resistance. From the viewpoint of energy efficiency, it is preferable to melt the glass raw material by electric melting or a combination of electric melting and other heating means.
  • the SnO 2 content is, for example, preferably 0.01 or more and 0.8% or less, preferably 0.02 to 0.6%, more preferably 0.05 to 0.50%, and still more preferably 0.05 to 0.40%. is there.
  • Fe 2 O 3 is a component that lowers the specific resistance of the molten glass in addition to having a function as a fining agent. In high-viscosity and hardly meltable glass, it is preferably contained in order to reduce the specific resistance of the molten glass. However, if the Fe 2 O 3 content is too high, the glass is colored and the transmittance is lowered. Therefore, the Fe 2 O 3 content is in the range of 0 to 0.1%, preferably 0 to 0.08%, more preferably 0.001 to 0.06%, still more preferably 0.001 to 0.05%, and still more preferably 0.001 to 0.04%. It is.
  • the fining agent is preferably used in combination of SnO 2 and Fe 2 O 3 .
  • SnO 2 and Fe 2 O 3 it is not preferable to contain a large amount of SnO 2 from the viewpoint of suppressing devitrification.
  • it is required to contain a clarifier at a predetermined value or more. Therefore, by combination of SnO 2 and Fe 2 O 3, without much as the content of SnO 2 devitrification occurs, obtain sufficient refining effect, it is possible to manufacture a glass substrate with little bubbles.
  • the total amount of SnO 2 and Fe 2 O 3 is preferably in the range of 0.05 to 0.50%, more preferably 0.05 to 0.45%, and still more preferably 0.05 to 0.40%.
  • the range is preferably 0.6 to 1.0, and more preferably 0.7 to 0.98.
  • the glass substrate of the present embodiment preferably contains substantially no As 2 O 3 because of environmental load problems.
  • the glass substrate of the present embodiment does not substantially contain Sb 2 O 3 due to environmental load problems.
  • the glass substrate of this embodiment preferably contains substantially no PbO and F for environmental reasons.
  • substantially does not contain means that a material that is a raw material of these components is not used in the glass raw material, and a component contained as an impurity in the glass raw material of another component, It does not exclude the mixing of components that elute from the manufacturing apparatus such as the melting tank and the molded body into the glass.
  • SiO 2 — (1/4 ⁇ Al 2 O 3 ) is preferably 40% to 65%, more preferably 45% to 60%, and still more preferably 50% to 55%.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO) is mainly an index of strain point and devitrification resistance. If the value is too small, the strain point decreases. On the other hand, when the value is too large, meltability and devitrification resistance are lowered. Therefore, the mass ratio (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO) is preferably 1 to 8, more preferably 2 to 7, further preferably 2.5 to 6.5, and more preferably 3 to 6 Range.
  • B 2 O 3 + RO + ZnO is a predominantly soluble indicator. If the value is too small, the solubility decreases. On the other hand, if the value is too large, the strain point decreases and the thermal expansion coefficient increases. From such a viewpoint, B 2 O 3 + RO + ZnO is preferably in the range of 5 to 35%, more preferably 9 to 30%, still more preferably 12 to 28%, and still more preferably 15 to 25%. Range.
  • SiO 2 + Al 2 O 3 is the total amount of the content of the content and Al 2 O 3 of SiO 2 is too small, there is a tendency that the strain point is lowered, while when too large, the devitrification resistance deteriorates Tend to. Therefore, SiO 2 + Al 2 O 3 is preferably 70 to 90%, preferably 73 to 88%, more preferably 75 to 85%, and further preferably 77 to 83%.
  • the mass ratio B 2 O 3 / (SiO 2 + Al 2 O 3 ) is mainly an indicator of solubility, devitrification resistance, and strain point. If B 2 O 3 / (SiO 2 + Al 2 O 3 ) is too large, the strain point decreases. On the other hand, if B 2 O 3 / (SiO 2 + Al 2 O 3 ) is too small, the solubility and devitrification resistance tend to deteriorate.
  • B 2 O 3 / (SiO 2 + Al 2 O 3 ) is preferably in the range of 0 to 0.050, more preferably 0 to 0.045, still more preferably 0.001 to 0.040, and still more preferably 0.005 to 0.035.
  • the mass ratio SiO 2 / Al 2 O 3 is preferably 1.5 to 4.5, more preferably 2.0 to 4.0, and still more preferably 2.5 to 3.7.
  • the etching rate depends more remarkably on SiO 2 / Al 2 O 3 .
  • SiO 2 + Al 2 O 3 is 70 to 90% and SiO 2 / Al 2 O 3 is 1.5 to 4.5.
  • SiO 2 + Al 2 O 3 is the 73 to 88%, and it is preferable SiO 2 / Al 2 O 3 is in the range of 2.0-4.0.
  • B 2 O 3 and RO are both components that improve solubility.
  • B 2 O 3 has the effect of improving devitrification resistance, but if it is too much, the strain point is lowered.
  • RO has the effect of reducing the specific resistance of the glass, but if it is too much, the devitrification resistance is lowered.
  • the mass ratio B 2 O 3 / RO is preferably in the range of 0 to 0.5, more preferably 0 to 0.4, still more preferably 0.01 to 0.3, even more. Preferably, it is in the range of 0.02 to 0.2.
  • the mass ratio BaO / RO is preferably in the range of 0 to 0.9, preferably 0.1 to 0.85, more preferably 0.2 to 0.8.
  • the mass ratio (3 ⁇ BaO) / (MgO + CaO + SrO) is preferably 5.0 or less, preferably 0.5 to 5, more preferably 1 to 5.
  • the mass ratio CaO / RO is preferably 0 to 0.8, more preferably 0.1 to 0.7, still more preferably 0.15 to 0.6, and still more preferably, in order to effectively reduce the devitrification temperature without increasing the density too much. It is in the range of 0.2 to 0.5.
  • the mass ratio (MgO / (RO + ZnO)) is preferably in the range of 0.01 to 0.8, preferably 0.02 to 0.6, and 0.03 to 0.4.
  • the mass ratio (MgO / (CaO + SrO)) is 0.6 or less, preferably 0.36 or more, and preferably 0.4 or more.
  • Mass ratio (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO + (10 ⁇ R 2 O)) is mainly a strain point and the melting of the indicator. If the value is too small, the strain point decreases. Therefore, the mass ratio (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO + (10 ⁇ R 2 O)) is 1.0 or more, preferably 2.0 or more. On the other hand, when the value is too large, meltability and devitrification resistance are lowered. Therefore, the mass ratio (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO + (10 ⁇ R 2 O)) is preferably in the range of 1.0 to 10, more preferably 2.0 to 7. (SiO 2 + Al 2 O 3 ) / (B 2 O 3 + RO + (10 ⁇ R 2 O)) is preferably 2.5 to 5.
  • RE 2 O 3 is the total amount of rare earth metal oxides, which include Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Sm Examples include 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 As mentioned. RE 2 O 3 is a component that increases the density and the thermal expansion coefficient. Moreover, it is a component with high cost. Therefore, RE 2 O 3 is 0 or more and less than 1.0% (including 0), more preferably in the range of 0 to 0.5% (including 0), and it is particularly preferable that it is not substantially contained.
  • Y 2 O 3 and La 2 O are not substantially contained.
  • the glass substrate has a devitrification temperature of 1260 ° C. or lower.
  • the devitrification temperature of the glass substrate is 1235 ° C. or lower, preferably 1230 ° C. or lower, more preferably 1225 ° C. or lower, further preferably 1220 ° C. or lower, and more preferably 1210 ° C. or lower. .
  • the lower the devitrification temperature the easier it is to form the glass plate by the overflow downdraw method.
  • the step of polishing the surface of the glass substrate can be omitted, so that the surface quality of the glass substrate can be improved.
  • the production cost can be reduced. If the devitrification temperature is too high, devitrification is likely to occur, so that application to the overflow downdraw method tends to be difficult.
  • the glass substrate of the present embodiment has an average coefficient of thermal expansion (100-300 ° C.) at 100 ° C. to 300 ° C. of 50.0 ⁇ 10 ⁇ 7 ° C.- 1 or less, and 28.0 to 50.0 ⁇ 10 ⁇ 7 ° C. ⁇ 1 . More preferably, 33.0 to 47.0 ⁇ 10 ⁇ 7 ° C. ⁇ 1 , further preferably 33.0 to 46.0 ⁇ 10 ⁇ 7 ° C. ⁇ 1 , more preferably 35.0 to 44.0 ⁇ 10 ⁇ 7 ° C. ⁇ 1 , even more preferably in the range of 38.0 ⁇ 43.0 ⁇ 10 -7 °C -1 .
  • the thermal expansion coefficient When the thermal expansion coefficient is large, the thermal shock and the thermal contraction rate tend to increase in the heat treatment process. Further, if the thermal expansion coefficient is large, it is difficult to reduce the thermal shrinkage rate. Note that, regardless of whether the thermal expansion coefficient is large or small, it is difficult to match the thermal expansion coefficient with the peripheral material such as metal or thin film formed on the glass substrate, and the peripheral member may be peeled off.
  • the glass substrate of this embodiment has a strain point of 720 ° C. or higher, preferably 725 ° C. or higher, more preferably 730 ° C. or higher, and further preferably 735 ° C. or higher.
  • the glass substrate of this embodiment preferably has a heat shrinkage rate of 15 ppm or less. If the thermal contraction rate becomes too large, a large pitch shift of pixels is caused, and a high-definition display cannot be realized.
  • the strain point of the glass substrate is preferably set to 720 ° C. or higher or 730 ° C. or higher. In order to reduce the heat shrinkage rate to 0 ppm, it is required to make the slow cooling process extremely long, or to perform heat shrinkage reduction treatment (offline slow cooling) after the slow cooling and cutting process. Will drop and costs will rise.
  • the heat shrinkage rate is preferably, for example, 0.1 ppm to 15 ppm, or 0.5 ppm to 15 ppm, more preferably 1 ppm to 15 ppm, still more preferably 1 ppm to 13 ppm, and even more preferably 2 ppm to 10ppm.
  • the thermal shrinkage rate is represented by the following formula after a glass substrate is held at a temperature of 500 ° C. for 30 minutes and then subjected to a heat treatment for cooling to room temperature.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the amount of shrinkage of the glass before and after the heat treatment is “the length of the glass before the heat treatment ⁇ the length of the glass after the heat treatment”.
  • the glass substrate of the present embodiment has a density of preferably 3.0 g / cm 3 or less, more preferably 2.8 g / cm 3 or less, and further preferably 2.65 g / cm, from the viewpoints of reducing the weight of the glass substrate and the display. 3 or less. If the density becomes too high, it is difficult to reduce the weight of the glass substrate, and it is difficult to reduce the weight of the display.
  • the glass substrate of the present embodiment has a Tg of preferably 770 ° C. or higher, more preferably 775 ° C. or higher, and further preferably 780 ° C. or higher.
  • Tg glass transition point
  • the glass substrate of the present embodiment for example, more components such as SiO 2 and Al 2 O 3 , or B 2 O 3 , RO, R It is appropriate to reduce the 2 O component.
  • the glass of the present embodiment has a temperature at which the viscosity is 10 2.5 [dPa ⁇ s] (hereinafter referred to as a melting temperature), preferably 1680 ° C. or less, more preferably in the range of 1500 to 1680 ° C., and still more preferably It is in the range of 1520 to 1660 ° C, more preferably 1540 to 1640 ° C. Glass having a low melting temperature tends to have a low strain point. In order to increase the strain point, it is necessary to increase the melting temperature to some extent. However, when the melting temperature is high, the load on the melting tank increases. Moreover, since energy is used in large quantities, cost also becomes high.
  • the molten glass when producing the glass substrate of the present embodiment has a specific resistance (at 1550 ° C.) of preferably 30 to 700 ⁇ ⁇ cm, more preferably 30 to 400 ⁇ ⁇ cm, still more preferably 30 to 300 ⁇ ⁇ cm, and more The range is preferably 50 to 300 ⁇ ⁇ cm. If the specific resistance becomes too small, the current value necessary for melting becomes excessive, and there may be restrictions on the equipment. In addition, there is a tendency that the consumption of the electrode increases. If the specific resistance of the molten glass becomes too large, the current may flow not to the glass but to the heat-resistant brick forming the melting tank, and the melting tank may be melted.
  • the specific resistance of the molten glass can be adjusted to the above range mainly by controlling the contents of RO, R 2 O, and Fe 2 O 3 .
  • the glass constituting the glass substrate of the present embodiment preferably has an etching rate of 50 ⁇ m / h or more.
  • Productivity improves as the etching rate increases.
  • the etching rate affects the productivity.
  • the productivity at the time of manufacturing the display is improved, but the devitrification resistance of the glass is lowered.
  • the thermal shrinkage tends to increase.
  • the etching rate is preferably 60 to 140 ⁇ m / h, more preferably 70 to 120 ⁇ m / h, still more preferably greater than 75 and 120 ⁇ m / h or less, more preferably 77 to 120 ⁇ m / h.
  • SiO 2 + MgO + CaO ⁇ (Al 2 O 3 + SrO + BaO), SiO 2 ⁇ (1/4 ⁇ Al 2 O 3 ), or SiO 2 / Al 2 O 3 The value of can be reduced.
  • the etching rate is defined as measured under the following conditions.
  • the etching rate ( ⁇ m / h) in this specification is a unit time when the glass substrate is immersed in an etching solution at 40 ° C. adjusted to have an HF concentration of 1 mol / kg and an HCl concentration of 5 mol / kg for 1 hour. It is the thickness reduction amount ( ⁇ m) of one surface of the glass substrate per (1 hour).
  • the glass substrate of the present embodiment can have a thickness of, for example, 0.1 to 1.1 mm ⁇ or 0.3 to 1.1 mm. However, it is not intended to limit to this range.
  • the plate thickness may be in the range of 0.3 to 0.7 mm, 0.3 to 0.5 mm, for example. If the glass plate is too thin, the strength of the glass substrate itself is reduced. For example, damage during flat panel display manufacturing is likely to occur. If the plate thickness is too thick, it is not preferable for a display that is required to be thin. In addition, since the weight of the glass substrate becomes heavy, it is difficult to reduce the weight of the flat panel display. Furthermore, when the glass substrate is etched after the TFT is formed, the amount of the etching process increases, which increases cost and time.
  • the glass substrate of this embodiment is used, for example, in the manufacture of a flat panel display in which the glass substrate surface is etched after the array and color filters are bonded together.
  • the glass substrate of the present embodiment is suitable for a display glass substrate (however, a CRT (CRT) display is excluded).
  • the glass substrate of the present embodiment is suitable for a glass substrate for flat panel display on which LTPS-TFT or OS-TFT is formed.
  • it is suitable for a glass substrate for liquid crystal display and a glass substrate for organic EL display.
  • it is suitable for a glass substrate for LTPS-TFT liquid crystal display and a glass substrate for LTPS-TFT organic EL display.
  • the present embodiment includes a flat panel display in which LTPS-TFT or OS-TFT is formed on the surface of a glass substrate.
  • the glass substrate is the glass substrate of the present embodiment.
  • the flat panel display of this embodiment can be, for example, a liquid crystal display or an organic EL display.
  • the method for producing a glass substrate for display according to this embodiment includes a melting step of melting a glass raw material prepared to a predetermined composition, for example, using at least direct current heating, and a flat plate of molten glass melted in the melting step.
  • the slow cooling step is preferably a step of controlling the cooling conditions of the flat glass so as to reduce the thermal shrinkage rate of the flat glass.
  • the glass raw material prepared to have a predetermined composition is melted using, for example, direct current heating and / or combustion heating.
  • the glass raw material can be appropriately selected from known materials. From the viewpoint of energy efficiency, in the melting step, it is preferable to melt the glass raw material using at least direct current heating.
  • the melting tank which performs a melting process is comprised including a high zirconia refractory.
  • the said predetermined composition can be suitably adjusted, for example in the range with which content mentioned above regarding each component of glass is satisfy
  • the molten glass melted in the melting step is formed into flat glass.
  • the down-draw method particularly the overflow down-draw method is suitable as a method for forming the flat glass, and a glass ribbon is formed as the flat glass.
  • a float method, a redraw method, a rollout method, etc. can be applied.
  • the downdraw method compared to the case where other molding methods such as the float method are used, the main surface of the obtained glass substrate is formed with a free surface that is non-contact except for the atmosphere. Since it has high smoothness and does not require a polishing step on the surface of the glass substrate after molding, the manufacturing cost can be reduced and the productivity can also be improved.
  • both main surfaces of the glass substrate molded using the downdraw method have a uniform composition, etching is performed uniformly regardless of the front and back of the molding process. Can do.
  • the heat shrinkage rate of the glass substrate can be controlled by appropriately adjusting the conditions during slow cooling. In particular, it is preferable to control the cooling conditions of the flat glass so as to reduce the thermal shrinkage of the flat glass. As described above, the thermal shrinkage rate of the glass substrate is 15 ppm or less, preferably 13 ppm or less, more preferably 1 to 13 ppm. In order to manufacture a glass substrate having such a thermal shrinkage rate, for example, when using the downdraw method, the cooling rate of the glass ribbon as a flat glass is changed from Tg (Tg-100 ° C). In this temperature range, it is preferable to carry out slow cooling so as to be 30 to 300 ° C./min.
  • the cooling rate is too high, the heat shrinkage rate cannot be reduced sufficiently.
  • productivity is lowered and a problem arises that the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • a preferable range of the cooling rate is 30 to 300 ° C./min, 50 to 200 ° C./min is more preferable, and 60 to 120 ° C./min is more preferable.
  • the thermal shrinkage rate can also be reduced by separately cooling it offline, but in this case, in addition to the equipment for performing the slow cooling step, separately Equipment that performs slow cooling offline is required.
  • the cooling rate of a glass ribbon shall show the cooling rate of the center part of the width direction of a glass ribbon.
  • strain point Measurement was performed using a beam bending measuring apparatus (manufactured by Tokyo Kogyo Co., Ltd.), and the strain point was determined by calculation according to the beam bending method (ASTM C-598).
  • the glass was crushed, and glass particles that passed through a 2380 ⁇ m sieve and remained on the 1000 ⁇ m sieve were placed in a platinum boat.
  • This platinum boat was kept in an electric furnace having a temperature gradient of 1050 to 1380 ° C. for 5 hours, and then removed from the furnace, and devitrification generated in the glass was observed with a 50 ⁇ optical microscope.
  • the maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • the thermal shrinkage rate was determined by the marking line method for glass having a size of 90 mm to 200 mm ⁇ 15 to 30 mm ⁇ 0.3 to 1 mm.
  • an air circulation furnace N120 / 85HA manufactured by Nabertherm
  • Thermal contraction rate (ppm) ⁇ Shrinkage amount of glass in heat treatment / Distance between marking lines of glass before heat treatment ⁇ ⁇ 10 6
  • the density of the glass was measured by the Archimedes method.
  • the etching rate ( ⁇ m / h) is the value when glass (12.5 mm x 20 mm x 0.7 mm) is immersed in an etching solution (200 mL) adjusted to HF concentration 1 mol / kg and HCl concentration 5 mol / kg for 1 hour.
  • the thickness reduction amount ( ⁇ m) was measured, and the thickness reduction amount ( ⁇ m) of one surface of the glass substrate per unit time (1 hour) was calculated.
  • Glasses of Examples 1 to 63 were produced according to the following procedure so as to have the glass composition shown in Table 1.
  • the strain point, devitrification temperature, Tg, average thermal expansion coefficient ( ⁇ ) in the range of 100 to 300 ° C., thermal contraction rate, density, and etching rate were determined.
  • Examples 1 to 63 had a devitrification temperature of 1260 ° C. or lower and a strain point of 720 ° C. or higher (Example of the glass substrate according to claim 2). .
  • Examples 1 to 6, 9, 15 to 18, 21, 25, 29 to 31, 34 to 45, 47 to 57, 59 to 60 have a devitrification temperature of 1235 ° C. or lower and a strain point.
  • the temperature was 720 ° C. or higher (Example of the glass substrate according to claim 1).
  • the same result was obtained also when the glass raw material was melted using direct current heating and a glass substrate was produced by the overflow down draw method. Therefore, by using these glasses, a glass substrate that can be used for a display to which LTPS-TFT is applied can be manufactured by an overflow down draw method.
  • These glass substrates are also suitable as glass substrates for OS-TFT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Liquid Crystal (AREA)

Abstract

失透温度を低く抑えつつ高歪点を満足するガラス基板およびこの製造方法を提供する。 ディスプレイ用ガラス基板。SiO2、Al2O3を含有し、質量%表示で、B2O3が0%以上、3%未満であり、BaOが5~14%であり、Sb2O3を実質的に含有せず、失透温度が1235℃以下であり、かつ歪点が720℃以上である、ガラスからなる。あるいは、SiO2、Al2O3を含有し、質量%表示で、B2O3が0%以上、3%未満であり、MgOが1.8%以上であり、BaOが5~14%であり、Sb2O3を実質的に含有せず、(SiO2+MgO+CaO)-(Al2O3+SrO+BaO)が42%未満であり、失透温度が1260℃以下であり、かつ歪点が720℃以上である、ガラスからなる。ディスプレイ用ガラス基板の製造方法。所定の組成に調合したガラス原料を少なくとも直接通電加熱を用いて熔解する熔解工程、前記熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する成形工程、前記平板状ガラスを徐冷する工程であって、前記平板状ガラスの熱収縮率を低減するように前記平板状ガラスの冷却条件を制御する徐冷工程を含む。

Description

ディスプレイ用ガラス基板およびその製造方法
 本発明は、ディスプレイ用ガラス基板およびその製造方法に関する。特に、本発明は低温ポリシリコン薄膜トランジスタ(以下、LTPS-TFT(Low-Temperature-Polycrystalline-Silicon Thin-Film-Transistor)と記載する)ディスプレイ用ガラス基板に関する。また、本発明は酸化物半導体薄膜トランジスタ(以下、OS-TFT(Oxide-Semiconductor Thin-Film-Transistor)と記載する)ディスプレイ用ガラス基板に関する。さらに詳細には、本発明は、前記ディスプレイが液晶ディスプレイであるディスプレイ用ガラス基板に関する。または前記ディスプレイが、有機ELディスプレイであるディスプレイ用ガラス基板に関する。さらに、前記ディスプイがフラットパネルディスプレイであるフラットパネルディスプレイ用ガラス基板に関する。
関連出願の相互参照
 本出願は、2015年6月30日出願の日本特願2015-131780号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 携帯機器などに搭載されたディスプレイは、消費電力を低減できるなどの理由から、薄膜トランジスタ(TFT)の製造にLTPSを適用することが望まれるが、LTPS-TFTの製造において400~600℃という比較的高温での熱処理が必要である。一方、小型携帯機器のディスプレイには、近年ますます高精細化が求められている。そのため、画素のピッチズレを引き起こす、ディスプレイパネル製造時に生じるガラス基板の熱収縮が問題となっている。また、OS-TFTが形成されるガラス基板においても、同様に熱収縮の抑制が課題となっている。
 ガラス基板の熱収縮率は、一般に、ガラスの歪点を高くすること、ガラス転移点(以下、Tg)を高くすること、あるいは徐冷速度を遅くすることで低減可能である。このような背景から、熱収縮率を低減させるためにガラスの歪点を高くする技術が開示されている(特許文献1)。また、徐冷点から歪点付近までの温度領域における平均密度曲線の勾配と平均線膨張係数との比を調整して熱収縮を低減する技術が開示されている(特許文献2)。また、熱収縮率を低減させるためにTgを高くする技術が開示されている(特許文献3)。さらに、近年益々ディスプレイパネルの高精細化が求められるため、特許文献3の技術では、不十分な熱収縮率の低減となってきた。このために、ガラスの歪点を725℃以上にする技術も開示されている(特許文献4)。
  特許文献1:日本特開2010-6649号公報
  特許文献2:日本特開2004-315354号公報
  特許文献3:日本特開2011-126728号公報
  特許文献4:日本特開2012-106919号公報
特許文献1~4の全記載は、ここに特に開示として援用される。
 近年、益々高精細化が求められるため、熱収縮率をさらに小さくすることが求められている。熱収縮率をさらに小さくするためにガラス基板の歪点を高くする場合、ガラス中のSiO2やAl2O3の含有量を多くする必要があるが、その結果、熔融ガラスの比抵抗が上昇する傾向がある。近年、効率的にガラスを溶解槽において熔解させるために直接通電加熱が用いられることがある。直接通電加熱を用いる場合、熔融ガラスの比抵抗が上昇すると、熔融ガラスではなく、熔解槽を構成する耐火物に電流が流れてしまい、その結果熔解槽が熔損してしまうという問題が生じる虞があることが明らかになった。しかしながら、上記特許文献1に記載の発明においては、熔融ガラスの比抵抗について何ら考慮されていない。そのため、特許文献1に記載のガラスを直接通電加熱による熔融を経て製造しようとする場合、上記熔解槽熔損の問題が発生することが強く懸念される。さらに、近年益々高精細化が求められ、さらにガラスの歪点を高くすることが求められていることから、上記問題はより顕著となる。
 また、上記特許文献2に開示されたガラスの歪点が682~699℃であるため、熱収縮を十分に小さくするような平均密度曲線の勾配とするには、徐冷速度を極めて遅くする必要があり、生産性が低下するという問題があった。さらに、特許文献2に開示されたガラスは失透温度が1287℃以上であるため、失透が生じやすいという問題もあった。また、上述した問題はダウンドロー法を用いて成形を行う場合に、特に顕著となる。
 さらに、ガラス基板を用いるディスプレイの製造では生産性を向上させることが求められ、例えば、薄膜トランジスタが形成されたガラス基板を薄板化する工程の生産性の向上も求められている。ガラス基板を薄板化する工程の生産性は、ガラス基板のエッチングにかかる時間に大きく依存する。そのため、ディスプレイガラス基板には、エッチングレートの上昇による生産性の向上と熱収縮率の低減とを両立することが求められている。しかし、上記特許文献4に記載のガラス基板については、歪点は高いものの、エッチングレートについて配慮されていないという問題があった。
 そこで本発明は、失透温度を低く抑えつつ高歪点を満足するガラス基板と、この製造方法を提供することを目的とする。特に、本発明は、LTPS-TFTあるいはOS-TFTを用いたディスプレイに適したディスプレイ用ガラス基板およびその製造方法を提供することを目的とする。
 本発明は以下の通りである。
[1]
 SiO2、Al2O3を含有し、
 質量%表示で、
 B2O3が0%以上、3%未満であり、
 BaOが5~14%であり、
 Sb2O3を実質的に含有せず、
 失透温度が1235℃以下であり、かつ
 歪点が720℃以上である、ガラスからなる、ディスプレイ用ガラス基板。
[2]
 SiO2、Al2O3を含有し、
 質量%表示で、
 B2O3が0%以上、3%未満であり、
 MgOが1.8%以上であり、
 BaOが5~14%であり、
 Sb2O3を実質的に含有せず、
 (SiO2+MgO+CaO)-(Al2O3+SrO+BaO)が42%未満であり、
 失透温度が1260℃以下であり、かつ
 歪点が720℃以上である、ガラスからなる、ディスプレイ用ガラス基板。
[3]
 前記ガラス基板は500℃の温度で30分間保持し、その後、常温まで放冷した場合の下記式で示される熱収縮率が15ppm以下である、[1]~[2]のいずれか1項に記載のガラス基板。
 熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
[4]
 前記ガラス基板は、エッチングレートが75μm/hより大きい、[1]~[3]のいずれか1項に記載のガラス基板。
[5]
 低温ポリシリコンまたは酸化物半導体を用いて形成された薄膜トランジスタがガラス基板表面に形成されたフラットパネルディスプレイ用ガラス基板である、[1]~[4]のいずれかに記載のガラス基板。
[6]
 所定の組成に調合したガラス原料を少なくとも直接通電加熱を用いて熔解する熔解工程と、
 前記熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する成形工程と、
 前記平板状ガラスを徐冷する工程であって、前記平板状ガラスの熱収縮率を低減するように前記平板状ガラスの冷却条件を制御する徐冷工程と、を含む[1]~[5]のいずれか1項に記載のガラス基板を製造するディスプレイ用ガラス基板の製造方法。
 上述の本発明のガラス基板によれば、失透温度を低く抑えつつ高歪点を満足するガラス基板を製造することが可能となる。これにより、ディスプレイ製造時の熱収縮を低減することができるディスプレイ用ガラス基板、特に、LTPS-TFT又はOS-TFTを用いたフラットパネルディスプレイに適したディスプレイ用ガラス基板を高い生産性で提供することができる。
 本願明細書において、ガラスの組成は特に断らない限り、含有量は質量%で表示し、含有量を%で表示しているものは質量%を意味する。ガラス組成を構成する成分の比は質量比で表示する。
 本発明のディスプレイ用ガラス基板(第一の態様)は、
 SiO2、Al2O3を含有し、
 質量%表示で、
 B2O3が0%以上、3%未満であり、
 BaOが5~14%であり、
 Sb2O3を実質的に含有せず、
 失透温度が1235℃以下であり、かつ
 歪点が720℃以上である、ガラスからなる。
 本発明のディスプレイ用ガラス基板(第二の態様)は、
 SiO2、Al2O3を含有し、
 質量%表示で、
 B2O3が0%以上、3%未満であり、
 MgOが1.8%以上であり、
 BaOが5~14%であり、
 Sb2O3を実質的に含有せず、
 (SiO2+MgO+CaO)-(Al2O3+SrO+BaO)が42%未満であり、
 失透温度が1260℃以下であり、かつ
 歪点が720℃以上である、ガラスからなる。
 以下、本実施形態のディスプレイ用ガラス基板の実施形態について説明する。尚、特に断らない限り、以下の説明は、本発明の第一の態様及び第二の態様に共通である。
 本発明のディスプレイ用ガラス基板を構成するガラスは、SiO2及びAl2O3を含有する。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、歪点が低下し、熱膨張係数が増加する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化するのが難しくなる。一方、SiO2含有量が多すぎると、熔融ガラスの比抵抗が上昇し、熔融温度が著しく高くなり熔解が困難になる傾向がある。さらに、SiO2含有量が多すぎると、エッチングレートが遅くなる。このような観点から、SiO2の含有量は、適宜調整することができる。ガラスのSiO2含有量は、例えば、45~80%の範囲であることが好ましい。SiO2の含有量は、より好ましくは50~75%あるいは50~70%、より一層好ましくは52~68%、さらにより一層好ましくは55~65%の範囲である。
 Al2O3は、歪点を高くする必須成分である。Al2O3含有量が少なすぎると、歪点が低下する。さらに、Al2O3含有量が少なすぎると、ヤング率及び酸によるエッチングレートも低下する傾向がある。一方、Al2O3含有量が多すぎると、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、適宜調整することができる。ガラスのAl2O3の含有量は、例えば、10~35%の範囲である。Al2O3の含有量は、好ましくは13~30%、より好ましくは15~25%、より好ましくは15~23%、さらに好ましくは16~22%の範囲である。
 B2O3は、ガラスの高温粘性を低下させ、熔融性を改善する成分である。即ち、熔融温度近傍での粘性を低下させるので、熔解性を改善する。また、失透温度を低下させる成分でもある。B2O3含有量が少ないと、熔解性及び耐失透性が低下する傾向がある。B2O3含有量が多すぎると、歪点及びヤング率が低下する。また、ガラス成形時のB2O3の揮発により、失透が生じやすくなる。特に、歪点が高いガラスは、成型温度が高くなる傾向にあるため、上記揮発が促進され、失透の生成が顕著な問題となる。また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、0%以上、3%未満である。B2O3含有量は、好ましくは0~2.8%であり、より好ましくは0~2.6%であり、さらに好ましくは0.1~2.4%、一層好ましくは0.3~2.2%、より一層好ましくは0.5~2.0%の範囲である。
 MgOは、熔解性を向上させる成分であり、本発明の第二の態様では、必須成分である。また、アルカリ土類金属の中では密度を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。含有させることで、熔融ガラスの比抵抗及び熔融温度を低下できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、特に成形工程で失透しやすくなる。このような観点から、本発明の第二の態様では、MgO含有量は、1.8~15%であり、好ましくは1.8~13%、より好ましくは1.9~10%、さらに好ましくは1.9~7%の範囲である。あるいは、本発明の第一の態様では、MgO含有量は、0~15%であることが好ましく、より好ましくは0~13%、さらに好ましくは0~10%の範囲である。
 CaOは、必須ではないが、含有させると、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。また、アルカリ土類金属酸化物の中では密度を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。含有量が少な過ぎると、熔融ガラスの比抵抗の上昇及び耐失透性低下が生じる傾向がある。CaO含有量が多すぎると、熱膨張係数が増加し、密度が上昇する傾向がある。このような観点から、CaO含有量は、好ましくは0~20%、より好ましくは0~15%、さらに好ましくは0~10%の範囲である。
 SrOは、ガラスの失透温度を下げることができる成分である。SrOは、必須ではないが、含有させると、耐失透性および熔解性が向上する。しかし、SrO含有量が多すぎると、密度が上昇してしまう。このような観点から、SrO含有量は、0~15%であり、好ましくは0~10%であり、より好ましくは0~7%、さらに好ましくは0~5%、一層好ましくは0~3%の範囲である。
 BaOは、ガラスの失透温度および熔融ガラスの比抵抗を効果的に下げることができる必須成分である。BaOを含有させると、耐失透性および熔解性が向上する。しかし、BaOの含有量が多すぎると、密度が上昇してしまう。また、環境負荷の観点、および熱膨張係数が増大する傾向があることから、BaO含有量は、5~14%の範囲である。BaO含有量は、好ましくは6~13.5%、より好ましくは7~13%であり、さらに好ましくは8~12%であり、一層好ましくは8.5~12%の範囲である。
 MgO、CaO、SrO及びBaOは、熔融ガラスの比抵抗及び熔融温度を低下させ、熔解性を向上させる成分である。MgO、CaO、SrO及びBaOの含有量の合量であるMgO+CaO+SrO+BaO(以下、ROと示す)が少なすぎると、熔解性が悪化する。ROが多すぎると、歪点およびヤング率が低下し、密度及び熱膨張係数が上昇する。このような観点から、ROは、好ましくは5~35%の範囲であり、より好ましくは9~30%、さらに好ましくは10~27%、一層好ましくは12~25%の範囲である。
 Li2O及びNa2Oは、ガラスの熱膨張係数を大きくして熱処理時に基板を破損したりするおそれのある成分である。また、歪点を低下させる成分でもある。一方、熔融ガラスの比抵抗を低下させることができるので、含有させることで熔解槽が侵食されることを抑制できる。以上の観点からLi2Oの含有量は、0~0.5%であることが好ましく、より好ましくは実質的に含有させない。Na2Oの含有量は、0~0.5%であることが好ましく、より好ましくは0~0.2%である。なお、Na2Oは、Li2Oと比較して歪点を低下させにくい成分であることから、Na2O>Li2Oであることが好ましい。なお、ガラス基板から溶出してTFT特性を劣化させることを防止するという観点からは、Li2O及びNa2Oは、実質的に含有させないことが好ましい。
 K2Oは、ガラスの塩基性度を高め、清澄性を促進させる成分である。また、熔融ガラスの比抵抗を低下させる成分である。含有させると、熔融ガラスの比抵抗が低下するため、熔解槽を構成する耐火物に電流が流れてしまうことを防止でき、熔解槽が侵食されることを抑制できる。また、熔解槽を構成する耐火物がジルコニアを含有する場合、熔解槽が侵食されて、熔解槽から熔融ガラスへジルコニアが溶出してしまうことを抑制できるため、ジルコニアに起因する失透も抑制できる。また、熔解温度近傍におけるガラス粘性を低下させるので、熔解性と清澄性が向上する。一方、K2O含有量が多すぎると、熱膨張係数増大及び歪点低下の傾向がある。このような観点から、K2O含有量は、好ましくは0~0.8%、より好ましくは0.01~0.6%、さらに好ましくは0.1~0.5%の範囲である。
 Li2O、Na2O及びK2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、熔融温度における粘性を低下させ、熔解性を向上させる成分である。また、熔融ガラスの比抵抗を低下させる成分でもある。Li2O、Na2O及びK2Oは、含有させると、熔融ガラスの比抵抗が低下し、清澄性および熔解性が向上する。特に、熔解槽を構成する耐火物に電流が過度に流れてしまうことを防止でき、熔解槽が侵食されることを抑制できる。また、熔解槽がジルコニアを含有する場合、熔解槽からガラスへのジルコニアの溶出を抑制できるため、ジルコニアに起因する失透も抑制できる。また、熔解ガラスの粘性を低下させるので、熔解性と清澄性が向上する。しかし、Li2O、Na2O及びK2Oの含有量の合量が多すぎると、ガラス基板から溶出してTFT特性を劣化させるおそれがある。また、歪点が低下し、熱膨張係数が増大する傾向がある。Li2O、Na2O及びK2Oの含有量の合量(以下、R2Oと示す)は、好ましくは1.0%以下であり、さらに好ましくは0.01~1.0%、一層好ましくは0.01~0.8%、より一層好ましくは0.1~0.5%である。
 ZrO2およびTiO2は、ガラスの歪点を向上させる成分である。しかし、ZrO2量およびTiO2量が多くなりすぎると、失透温度が著しく上昇するため、耐失透性が低下する傾向がある。特に、ZrO2は融点が高く難熔なため、原料の一部が熔解槽の底部に堆積するといった問題を引き起こす。これらの未熔解の成分がガラス素地に混入するとインクルージョンとしてガラスの品質悪化を引き起こす。また、TiO2は、ガラスを着色させる成分なので、ディスプレイ用基板には好ましくない。このような観点から、本実施形態のガラス基板では、ZrO2およびTiO2の含有量は、それぞれ、0~10%が好ましく、より好ましくは0~5%の範囲であり、実質的に含有しないことがさらに好ましい。
 ZnOは、熔解性を向上させる成分である。但し、必須成分ではない。ZnO含有量が多くなりすぎると、失透温度が上昇し、歪点が低下し、密度が上昇する傾向がある。このような観点から、ZnO含有量は、好ましくは0~5%、より好ましくは0~2%の範囲であり、実質的に含有しないことがさらに好ましい。
 本実施形態のガラス基板は清澄剤を含むことができる。清澄剤としては、環境への負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、Sn、Fe、Ce、Tb、Mo、およびWの金属酸化物の群から選ばれる少なくとも1種を挙げることができる。本実施形態のガラス基板はSb2O3を実質的に含まない。Sb2O3を実質的に含まないことで、環境負荷を低減することができる。清澄剤としては、SnO2が好適である。清澄剤の含有量は、少なすぎると泡品質が悪化し、多くなりすぎると失透や着色などの原因となる場合がある。清澄剤の含有量は、清澄剤の種類やガラスの組成にもよる。例えば、SnO2、及びFe2O3の合量は、0.05~0.50%であることが好ましく、0.05~0.40%であることがより好ましい。
 SnO2は1600℃以上でも清澄効果が得られる清澄剤であり、Li2O、Na2O及びK2Oを微量にしか含有できないフラットパネルディスプレイ用ガラス基板(例えば、Li2O、Na2O及びK2Oの合量が0.01~0.8%)の製造に使用できる数少ない清澄剤である。しかし、SnO2は自ら失透を生じやすい成分であるとともに、他の成分の失透の生成を促進する成分のため、失透を抑制する観点からは、多量に添加することは好ましくない。
 また、歪点が高いガラス(例えば、歪点が720℃以上のガラス)は、歪点が低いガラス(例えば、歪点が720℃未満のガラス)と比較して失透温度が高くなりやすい傾向にあるため、失透を抑制するために、成形工程における熔融ガラスの温度を歪点が低いガラスと比較して高くしなくてはならない場合がある。ここで、オーバーフローダウンドロー法で用いられる成形体は、耐クリープ性・耐熱性という観点から、ジルコニアを含有する耐火物を含んで構成されることが好ましい。成形方法としてオーバーフローダウンドローを採用する場合、成形工程における熔融ガラスの温度を高くしようとするほど、成形体の温度も上昇させる必要がある。しかし、成形体の温度が高くなると、成形体からジルコニアが溶出し、当該ジルコニアの失透が生じやすくなるという問題がある。また、特にSnO2を多く含有するガラスでは、このジルコニアに起因するSnO2の失透、SnO2に起因するジルコニアの失透が生じやすい傾向にある。
 さらに、歪点が高いガラス(例えば、歪点が720℃以上のガラス)は、歪点が低いガラス(例えば、歪点が720℃未満のガラス)と比較して、ガラス原料を熔解する温度も高くなりやすい傾向にある。ここで、熔解工程を行う熔解槽は、耐侵食性の観点から、ジルコニアを含有する高ジルコニア系耐火物を含んで構成されることが好ましい。また、エネルギー効率の観点から、電気熔融あるいは電気熔融と他の加熱手段の組み合わせで、ガラス原料を熔解することが好ましい。しかし、本実施形態に記載されたような高歪点であり、かつLi2O、Na2O及びK2Oを微量にしか含有できないガラスを熔解する場合、熔融ガラスの比抵抗が大きいため、高ジルコニア系耐火物に電流が流れてしまい、熔融ガラス中にジルコニアが溶出してしまうという問題が生じやすくなる。ジルコニアが溶出してしまうと、上述したジルコニアの失透およびSnO2の失透が生じやすい傾向にある。
 つまり、ジルコニア及びSnO2の失透を抑制するという観点からも、本実施形態のガラス基板においては、SnO2は0.8%を超えて含有させることは好ましくない。このような観点から、SnO2含有量は、例えば、0.01以上0.8%以下であることが好ましく、0.02~0.6%が好ましく、より好ましくは0.05~0.50%、さらに好ましくは0.05~0.40%の範囲である。
 Fe2O3は、清澄剤としての働きを有する以外に、熔融ガラスの比抵抗を低下させる成分である。高温粘性が高く、難熔解性のガラスにおいては、熔融ガラスの比抵抗を低下させるために含有させることが好ましい。しかし、Fe2O3含有量が多くなりすぎると、ガラスが着色し、透過率が低下する。そのためFe2O3含有量は、0~0.1%の範囲であり、好ましくは0~0.08%、より好ましくは0.001~0.06%、さらに好ましくは0.001~0.05%、一層好ましくは0.001~0.04%の範囲である。
 本実施形態において清澄剤は、SnO2とFe2O3を組合せて用いることが好ましい。失透抑制の観点からは、SnO2を多く含有させることは好ましくないことは上述の通りである。しかし、清澄効果を十分に得るためには清澄剤を所定値以上含有させることが求められる。そこで、SnO2とFe2O3を併用することで、SnO2の含有量を失透が生じるほど多くせずに、十分な清澄効果を得、泡の少ないガラス基板を製造することができる。SnO2とFe2O3の合量は、好ましくは0.05~0.50%の範囲であり、より好ましくは0.05~0.45%、さらに好ましくは0.05~0.40%の範囲である。
 SnO2とFe2O3の合量に対するSnO2の含有量の質量比(SnO2/(SnO2+Fe2O3))は、大きすぎると失透が生じやすくなり、小さすぎると十分な清澄効果を得られなくなり、ガラスが着色してしまう場合がある。そのため、好ましくは0.6~1.0の範囲であり、より好ましくは0.7~0.98の範囲である。
 本実施形態のガラス基板は、環境負荷の問題から、As2O3は実質的に含有しないことが好ましい。本実施形態のガラス基板は、環境負荷の問題から、Sb2O3は、実質的に含有しない。
 本実施形態のガラス基板は、環境上の理由からPbO及びFは実質的に含有しないことが好ましい。
 なお、本明細書において、「実質的に含有せず」とは、前記ガラス原料にこれら成分の原料となる物質を用いないことを意味し、他の成分のガラス原料に不純物として含まれる成分、熔解槽、成形体等の製造装置からガラスへ溶出する成分の混入を排除するものではない。
 SiO2の含有量とAl2O3の1/4の含有量との差SiO2-(1/4×Al2O3)は、値が大きすぎると、エッチングレートが低下するおそれがある。このような観点から、SiO2-(1/4×Al2O3)は、65以下である。一方、SiO2-(1/4×Al2O3)は、値が小さすぎると耐失透性が低下するおそれがある。このような観点から、SiO2-(1/4×Al2O3)は、好ましくは40%~65%、さらに好ましくは45%~60%、一層好ましくは50%~55%である。
 SiO2、MgO及びCaOの合量とAl2O3、SrO、BaOとの差である(SiO2+MgO+CaO)-(Al2O3+SrO+BaO)は、エッチングレートの指標となり、値が大きすぎるとエッチングレートが低下する。一方、値が小さすぎると、耐失透性が低下する。このような観点から、(SiO2+MgO+CaO)-(Al2O3+SrO+BaO)は、好ましくは42%未満であり、より好ましくは41%以下、さらに好ましくは25~41%、一層好ましくは30~40%の範囲である。
 質量比 (SiO2+Al2O3)/(B2O3+RO)は、主に歪点と耐失透性の指標となる。値が小さすぎると、歪点が低下する。一方、値が大きすぎると、熔解性および耐失透性が低下する。そのため、質量比(SiO2+Al2O3)/(B2O3+RO) は、好ましくは1~8、より好ましくは2~7、さらに好ましくは2.5~6.5、一層好ましくは3~6の範囲である。
 B2O3+RO+ZnOは、主に溶解性の指標となる。値が小さすぎると、溶解性が低下する。一方、値が大きすぎると、歪点が低下し、熱膨張係数が増加する。このような観点から、B2O3+RO+ZnOは、好ましくは5~35%の範囲であり、より好ましくは9~30%、さらに好ましくは12~28%、一層好ましくは15~25%の範囲である。
 SiO2の含有量とAl2O3の含有量との合量であるSiO2+Al2O3は少なすぎると、歪点が低下する傾向があり、多すぎると、耐失透性が悪化する傾向がある。そのためSiO2+Al2O3は、70~90%であることが好ましく、好ましくは73~88%、より好ましくは75~85%、さらに好ましくは77~83%の範囲である。
 質量比B2O3 / (SiO2+Al2O3)は、主に溶解性、耐失透性、歪点の指標となる。B2O3 / (SiO2+Al2O3)が大きすぎると、歪点が低下する。一方、B2O3 / (SiO2+Al2O3)が小さすぎると、溶解性及び耐失透性が悪化する傾向がある。B2O3 / (SiO2+Al2O3)は、好ましくは0~0.050、より好ましくは0~0.045、さらに好ましくは0.001~0.040、一層好ましくは0.005~0.035の範囲である。
 質量比SiO2/Al2O3は、値が大きすぎると、エッチングレートが低下するおそれがあり、値が小さすぎると耐失透性の低下するおそれがある。このような観点から、質量比SiO2/Al2O3は、1.5~4.5であることが好ましく、より好ましくは2.0~4.0、さらに好ましくは2.5~3.7の範囲である。なお、SiO2+Al2O3の値が近似している組成を有するガラスでは、エッチングレートはSiO2/Al2O3に、より顕著に依存する。高歪点、耐失透性、エッチングレートを両立させるという観点からは、SiO2+Al2O3が70~90%であり、かつ、SiO2/Al2O3が1.5~4.5であることが好ましく、より好ましくは、SiO2+Al2O3が73~88%であり、かつ、SiO2/Al2O3が2.0~4.0の範囲であることが好ましい。
 B2O3及びROは、ともに溶解性を良化させる成分である。B2O3には耐失透性を良化させる効果があるが、多すぎると歪点が低下する。一方、ROはガラスの比抵抗を低下させる効果があるが、多すぎると耐失透性が低下する。溶解性と耐失透性を両立させる観点からは、質量比B2O3/ROは、0~0.5の範囲にあることが好ましく、より好ましくは0~0.4、さらに好ましくは0.01~0.3、一層好ましくは0.02~0.2の範囲である。
 質量比BaO/ROは、値が小さすぎても、大きすぎても、失透温度が上昇する。また、BaO/ROの値が大きくなると、ヤング率が下がり、さらには、密度が上昇し、比抵抗も上昇する。そのため、質量比BaO/ROは、好ましくは0~0.9、好ましくは0.1~0.85、より好ましくは0.2~0.8の範囲である。
 質量比(3×BaO)/(MgO+CaO+SrO)は、値が小さすぎても、大きすぎても、失透温度が上昇する。一方、 (3×BaO)/(MgO+CaO+SrO)の値が大きくなると、ヤング率が下がり、さらには、密度が上昇し、比抵抗も上昇する。そのため、質量比(3×BaO)/(MgO+CaO+SrO)は、好ましくは5.0以下、好ましくは0.5~5、より好ましくは1~5の範囲である。
 質量比CaO/ROは、密度を増大させすぎずに、効果的に失透温度を低下させるために、好ましくは0~0.8、より好ましくは0.1~0.7、さらに好ましくは0.15~0.6、一層好ましくは0.2~0.5の範囲である。
 質量比(MgO/(RO+ZnO))は、値が小さいと失透温度は低くなり、ヤング率が下がる傾向がある。さらに、密度が上昇し、比抵抗も上昇する。一方、値が大きいと、失透温度が上昇し、ヤング率が下がる。そのため、質量比(MgO/(RO+ZnO))は、好ましくは0.01~0.8、好ましくは0.02~0.6、0.03~0.4の範囲である。
 質量比SrO/CaOは、値が小さいと失透温度は低くなり、ヤング率が下がる傾向がある。さらに、密度が上昇し、比抵抗も上昇する。一方、値が大きいと、失透温度が上昇し、ヤング率が下がる。そのため、質量比(MgO/(CaO+SrO))は、0.6以下であり、好ましくは0.36以上、好ましくは0.4以上である。
 質量比(SiO2+Al2O3)/(B2O3+RO+(10×R2O))は、主に歪点と熔解性の指標となる。値が小さすぎると、歪点が低下する。そのため、質量比(SiO2+Al2O3)/(B2O3+ RO+(10×R2O))は、1.0以上であり、好ましくは2.0以上の範囲である。一方、値が大きすぎると、熔解性および耐失透性が低下する。そのため、質量比(SiO2+Al2O3)/(B2O3+ RO+(10×R2O))は、好ましくは1.0~10、より好ましくは2.0~7の範囲である。(SiO2+Al2O3)/(B2O3+ RO+(10×R2O))は、2.5~5であることが好ましい。
 RE2O3とは、希土類金属酸化物の合量であり、希土類金属酸化物としては、Sc2O3、Y2O3、La2O3、Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3が例として挙げられる。RE2O3は、密度及び熱膨張係数を増加させる成分である。また、コストも高い成分である。そのため、RE2O3は、0以上1.0%未満(0を含む)であり、より好ましくは0~0.5%(0を含む)の範囲であり、実質的に含有しないことが特に好ましい。
 密度及び熱膨張係数の増加を防ぎ、かつコストを低減させるという観点からは、Y2O3及びLa2Oは、実質的に含有しないことが好ましい。
 本発明の第二の態様では、ガラス基板は失透温度が、1260℃以下である。好ましくは1250℃以下、より好ましくは1240℃以下、さらに好ましくは1230℃以下、一層好ましくは1220℃以下である。一方、本発明の第一の態様では、ガラス基板の失透温度は1235℃以下、好ましくは1230℃以下、より好ましくは1225℃以下、さらに好ましくは1220℃以下、一層好ましくは1210℃以下である。失透温度が低いほど、オーバーフローダウンドロー法でガラス板の成形がしやすくなる。オーバーフローダウンドロー法を適用することで、ガラス基板表面を研磨する工程を省略することができるので、ガラス基板の表面品質を向上できる。また、生産コストも低減することができる。失透温度が高すぎると、失透が生じやすいのでオーバーフローダウンドロー法への適用が難しくなる傾向がある。
 本実施形態のガラス基板は、100℃~300℃における平均熱膨張係数(100-300℃)が、50.0×10-7-1以下であり、28.0~50.0×10-7-1であることが好ましく、より好ましくは33.0~47.0×10-7-1、さらに好ましくは33.0~46.0×10-7-1、一層好ましくは35.0~44.0×10-7-1、より一層好ましくは38.0~43.0×10-7-1の範囲である。熱膨張係数が大きいと、熱処理工程において、熱衝撃や熱収縮率が増大する傾向がある。また、熱膨張係数が大きいと、熱収縮率を低減することが困難となる。なお、熱膨張係数が大きくても小さくても、ガラス基板上に形成される金属、薄膜などの周辺材料と熱膨張係数との整合がとりにくくなり、周辺部材が剥離してしまう虞がある。
 一般にガラス基板は歪点が低いと、ディスプレイ製造時の熱処理工程において熱収縮が生じやすくなる。本実施形態のガラス基板は、歪点が、720℃以上、好ましくは725℃以上であり、より好ましくは730℃以上であり、さらに好ましくは735℃以上である。
 本実施形態のガラス基板は熱収縮率が、15ppm以下であることが好ましい。熱収縮率が大きくなり過ぎると、画素の大きなピッチズレを引き起こし、高精細なディスプレイを実現できなくなる。熱収縮率を所定範囲に制御するためには、ガラス基板の歪点を720℃以上あるいは730℃以上とすることが好ましい。なお、熱収縮率を0ppmにしようとすると、徐冷工程を極めて長くすることや、徐冷、切断工程後に熱収縮低減処理(オフライン徐冷)を施すことが求められるが、この場合、生産性が低下し、コストが高騰してしまう。生産性およびコストを鑑みると、熱収縮率は、例えば、0.1ppm~15ppm、あるいは0.5ppm~15ppmであることが好ましく、より好ましくは1ppm~15ppm、さらに好ましくは1ppm~13ppm、一層好ましくは2ppm~10ppmである。
 尚、熱収縮率は、ガラス基板を500℃の温度で30分間保持し、その後、常温まで放冷する熱処理を施された後の下記式で示される。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 このとき、「熱処理前後のガラスの収縮量」とは、「熱処理前のガラスの長さ-熱処理後のガラスの長さ」である。
 本実施形態のガラス基板は密度が、ガラス基板の軽量化及びディスプレイの軽量化という観点から、好ましくは3.0g/cm3以下、より好ましくは2.8g/cm3以下、さらに好ましくは2.65g/cm3以下である。密度が高くなり過ぎると、ガラス基板の軽量化が困難となり、ディスプレイの軽量化も図り難くなる。
 ガラスの転移点(以下、Tgと記載)が低くなると、ディスプレイ製造の熱処理工程において熱収縮が生じやすくなる傾向がある。本実施形態のガラス基板はTgが、好ましくは770℃以上、より好ましくは775℃以上、さらに好ましくは780℃以上である。ガラス基板のTgを上記範囲にするには、本実施形態のガラス基板の組成の範囲において、例えば、SiO2及びAl2O3等の成分を多めにする、あるいはB2O3、RO、R2Oの成分を少なくすることが適当である。
 本実施形態のガラスは粘度が102.5[dPa・s]を示す温度(以下、熔融温度と記す。)が、好ましくは1680℃以下であり、より好ましくは1500~1680℃の範囲、さらに好ましくは1520~1660℃、一層好ましくは1540~1640℃の範囲である。熔融温度が低いガラスは、歪点が低くなりやすい。歪点を高くするには、熔融温度もある程度高くする必要がある。但し、熔融温度が高いと、熔解槽への負荷が大きくなる。また、エネルギーを大量に使用するため、コストも高くなる。また、ガラス熔解に電気熔解を適用する場合、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が破損してしまうことがある。ガラスの熔融温度を上記範囲にするには、本実施形態のガラス基板の組成の範囲において、粘度を低下させる、例えば、B2O3、RO等の成分を上述した範囲で含有することが適当である。
 本実施形態のガラス基板を製造する際の熔融ガラスは比抵抗(1550℃における)が、好ましくは30~700Ω・cm、より好ましくは30~400Ω・cm、さらに好ましくは30~300Ω・cm、一層好ましくは50~300Ω・cmの範囲である。比抵抗が小さくなりすぎると、熔解に必要な電流値が過大になり、設備上の制約がでる場合がある。また、電極の消耗が多くなる傾向もある。熔融ガラスの比抵抗が大きくなりすぎると、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が熔損してしまう場合もある。熔融ガラスの比抵抗は、主に、RO、R2O、Fe2O3の含有量をコントロールすることで、上記範囲に調整できる。
 本実施形態のガラス基板を構成するガラスは、エッチングレートが50μm/h以上であることが好ましい。エッチングレートが速くなると、生産性が向上する。特に、TFT側とカラーフィルタ側のガラス基板を張り合わせた後にガラス基板のエッチングを行い、軽量化を図る場合には、エッチングレートが生産性を左右する。しかし、エッチングレートが高くなりすぎるとディスプレイ製造時の生産性は向上するものの、ガラスの耐失透性が低下してしまう。また、熱収縮率も増大しやすくなる。エッチングレートは好ましくは60~140μm/h 、より好ましくは70~120μm/h、さらに好ましくは75より大きく120μm/h以下、一層好ましくは77~120μm/hである。ガラスのエッチングレートを高めるためには、SiO2+MgO+CaO - (Al2O3+SrO+BaO)、SiO2-(1/4×Al2O3)、あるいはSiO2/Al2O3の値を小さくすればよい。本実施形態においては、上記エッチングレートは以下の条件で測定したものと定義する。本明細書におけるエッチングレート(μm/h)とは、ガラス基板を、HF濃度1mol/kg、HCl濃度5mol/kgとなるように調整した40℃のエッチング液に1時間浸漬した場合の、単位時間(1時間)当たりのガラス基板の一方の表面の厚み減少量(μm)である。
 本実施形態のガラス基板は板厚が、例えば、0.1~1.1mm 、あるいは0.3~1.1mmの範囲であることができる。但し、この範囲に限定する意図ではない。板厚は、例えば、0.3~0.7mm、0.3~0.5mmの範囲であることもできる。ガラス板の厚さが薄すぎると、ガラス基板自体の強度が低下する。例えば、フラットパネルディスプレイ製造時の破損が生じやすくなる。板厚が厚すぎると、薄型化が求められるディスプレイには好ましくない。また、ガラス基板の重量が重くなるため、フラットパネルディスプレイの軽量化が図りがたくなる。さらに、TFT形成後にガラス基板のエッチング処理を行う場合には、エッチング処理量が多くなり、コストと時間がかかってしまう。
 本実施形態のガラス基板は、例えば、アレイ・カラーフィルタ張り合わせ後にガラス基板表面をエッチング処理するフラットパネルディスプレイの製造に用いられる。本実施形態のガラス基板は、ディスプレイ用ガラス基板に好適である(ただし、CRT(ブラウン管)ディスプレイは除く)。特に本実施形態のガラス基板は、LTPS-TFTまたはOS-TFTが形成されるフラットパネルディスプレイ用ガラス基板に好適である。具体的には、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板に好適である。特に、LTPS-TFT液晶ディスプレイ用ガラス基板、LTPS-TFT有機ELディスプレイ用ガラス基板に好適である。中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。
<フラットパネルディスプレイ>
 本実施形態は、LTPS-TFTまたはOS-TFTをガラス基板表面に形成したフラットパネルディスプレイを包含し、このフラットパネルディスプレイはガラス基板が上記本実施形態のガラス基板である。本実施形態のフラットパネルディスプレイは、例えば、液晶ディスプレイまたは有機ELディスプレイであることかできる。
<ガラス基板の製造方法>
 本実施形態のディスプレイ用ガラス基板の製造方法は、所定の組成に調合したガラス原料を、例えば、少なくとも直接通電加熱を用いて、熔解する熔解工程と、前記熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する成形工程と、前記平板状ガラスを徐冷する徐冷工程と、を有する。
 特に、前記徐冷工程は、前記平板状ガラスの熱収縮率を低減するように前記平板状ガラスの冷却条件を制御する工程であることが好ましい。
[熔解工程]
 熔解工程においては、所定の組成を有するように調合したガラス原料を、例えば、直接通電加熱及び/又は燃焼加熱を用いて熔解する。ガラス原料は、公知の材料から適宜選択できる。エネルギー効率の観点から、熔解工程では、ガラス原料を、少なくとも直接通電加熱を用いて熔解することが好ましい。また、熔解工程を行う熔解槽は、高ジルコニア系耐火物を含んで構成されることが好ましい。上記所定の組成は、例えば、ガラスの各成分に関して上述した含有量を満たす範囲で適宜調整できる。
[成形工程]
 成形工程では、熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する。平板状ガラスへの成形方法は、例えば、ダウンドロー法、特にオーバーフローダウンドロー法が好適であり、平板状ガラスとしてガラスリボンが成形される。その他、フロート法、リドロー法、ロールアウト法などを適用できる。ダウンドロー法を採用することにより、フロート法など他の成形方法を用いた場合に比べ、得られたガラス基板の主表面が雰囲気以外とは非接触である自由表面で形成されるために、極めて高い平滑性を有しており、成形後のガラス基板表面の研磨工程が不要となるために、製造コストを低減することができ、さらに生産性も向上させることができる。さらに、ダウンドロー法を使用して成形したガラス基板の両主表面は均一な組成を有しているために、エッチング処理を行った際に、成型時の表裏に関係なく均一にエッチングを行うことができる。
[徐冷工程]
 徐冷時の条件を適宜調整することでガラス基板の熱収縮率をコントロールすることができる。特に、前記平板状ガラスの熱収縮率を低減するように前記平板状ガラスの冷却条件を制御することが好ましい。ガラス基板の熱収縮率は上述のように、15ppm以下であり、好ましくは13ppm以下、より好ましくは1~13ppmである。このような数値の熱収縮率を持つガラス基板を製造するためには、例えば、ダウンドロー法を使用する場合は、平板状ガラスとしてのガラスリボンの冷却速度を、Tgから(Tg-100℃)の温度範囲内において、30~300℃/分とするように徐冷を行うことが好ましい。冷却速度が速すぎると、熱収縮率を十分低減することができない。一方、冷却速度が遅すぎると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまうという問題が生じる。冷却速度の好ましい範囲は、30~300℃/分であり、50~200℃/分がより好ましく、60~120℃/分がさらに好ましい。冷却速度を30~300℃/分とすることで、本実施形態のガラス基板をより確実に製造することができる。なお、徐冷工程の下流で平板状ガラスを切断した後に、別途オフラインで徐冷を行うことでも熱収縮率は低下させることができるが、この場合、徐冷工程を行う設備の他に、別途オフラインで徐冷を行う設備が必要となる。そのため、上述したように、オフライン徐冷を省略することができるように、徐冷工程において熱収縮率を低減できるように制御したほうが、生産性及びコストの観点からも好ましい。なお、本明細書では、ガラスリボンの冷却速度とは、ガラスリボンの幅方向中央部の冷却速度を示すものとする。
 以下、本実施形態を実施例に基づいてさらに詳細に説明する。但し、本実施形態は実施例に限定されるものではない。下記に示す実施例、比較例では、以下説明する物性を計測した。
(歪点)
 ビーム曲げ測定装置(東京工業株式会社製)を用いて測定を行い、ビーム曲げ法(ASTM C-598)に従い、計算により歪点を求めた。
 (失透温度)
 ガラスを粉砕し、2380μmのふるいを通過し、1000μmのふるい上に留まったガラス粒を白金ボートに入れた。この白金ボートを、1050~1380℃の温度勾配をもった電気炉内に5時間保持し、その後、炉から取り出して、ガラス内部に発生した失透を50倍の光学顕微鏡にて観察した。失透が観察された最高温度を、失透温度とした。
 (100~300℃の範囲における平均熱膨張係数αおよびTgの測定方法)
 示差熱膨張計(Thermo Plus2  TMA8310)を用いて測定した。この時の昇温速度は5℃/分とした。測定結果を元に100~300℃の温度範囲における平均熱膨張係数およびTgを求めた。
(熱収縮率)
 熱収縮率は、90mm~200mm×15~30mm×0.3~1mmの大きさのガラスについて、ケガキ線法で求めた。熱収縮測定の熱処理としては、エアサーキュレーション炉(Nabertherm製N120/85HA)を用いて、500℃の温度で30分間保持し、室温まで放冷した。
熱収縮率(ppm)={熱処理でのガラスの収縮量/熱処理前のガラスのケガキ線間距離}×106
 なお、ガラス原料を白金ルツボで熔解した後に鉄板上に流し出し、冷却固化して得たガラスの熱収縮を測定する場合は、0.5mmの厚さとなるように切断・研削・研磨を施し、電気炉を用いて、Tg+15℃の温度で30分間保持した後、降温速度150~250℃/分の速度で炉外へ取り出したガラスを用いた。
(密度)
 ガラスの密度は、アルキメデス法によって測定した。
(エッチングレート)
 エッチングレート(μm/h)は、ガラス(12.5mmx20mmx0.7mm)を、HF濃度1mol/kg、HCl濃度5mol/kgとなるように調整した40℃のエッチング液(200mL)に1時間浸漬した場合の厚み減少量(μm)を測定し、単位時間(1時間)当たりのガラス基板の一方の表面の厚み減少量(μm)を算出することで求めた。
 以下、実施例の組成と評価について説明する。
 表1に示すガラス組成になるように、実施例1~63のガラスを以下の手順に従って作製した。得られたガラスについて、歪点、失透温度、Tg、100~300℃の範囲における平均熱膨張係数(α)、熱収縮率、密度、エッチングレートを求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1に示すガラス組成となるように、各成分の原料を調合して熔解、清澄、成形を行った。
 上記のように得られたガラスのうち実施例1~63は、失透温度が1260℃以下であり、かつ歪点が720℃以上であった(請求項2に記載のガラス基板の実施例)。その内、実施例1~6、9、15~18、21、25、29~31、34~45、47~57、59~60は、失透温度が1235℃以下であり、かつ歪点が720℃以上であった(請求項1に記載のガラス基板の実施例)。また、直接通電加熱を用いてガラス原料を熔解し、オーバーフローダウンドロー法でガラス基板を製造した場合にも、同様の結果が得られた。したがって、これらのガラスを用いることで、オーバーフローダウンドロー法により、LTPS-TFTが適用されるディスプレイに用いることが可能な、ガラス基板を製造することができる。また、これらのガラス基板は、OS-TFT用ガラス基板としても適したものである。

Claims (6)

  1.  SiO2、Al2O3を含有し、
     質量%表示で、
     B2O3が0%以上、3%未満であり、
     BaOが5~14%であり、
     Sb2O3を実質的に含有せず、
     失透温度が1235℃以下であり、かつ
     歪点が720℃以上である、ガラスからなる、ディスプレイ用ガラス基板。
  2.  SiO2、Al2O3を含有し、
     質量%表示で、
     B2O3が0%以上、3%未満であり、
     MgOが1.8%以上であり、
     BaOが5~14%であり、
     Sb2O3を実質的に含有せず、
     (SiO2+MgO+CaO)-(Al2O3+SrO+BaO)が42%未満であり、
     失透温度が1260℃以下であり、かつ
     歪点が720℃以上である、ガラスからなる、ディスプレイ用ガラス基板。
  3.  前記ガラス基板は500℃の温度で30分間保持し、その後、常温まで放冷した場合の下記式で示される熱収縮率が15ppm以下である、請求項1~2のいずれか1項に記載のガラス基板。
     熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
  4.  前記ガラス基板は、エッチングレートが75μm/hより大きい、請求項1~3のいずれか1項に記載のガラス基板。
  5.  低温ポリシリコンまたは酸化物半導体を用いて形成された薄膜トランジスタがガラス基板表面に形成されたフラットパネルディスプレイ用ガラス基板である、請求項1~4のいずれかに記載のガラス基板。
  6.  所定の組成に調合したガラス原料を少なくとも直接通電加熱を用いて熔解する熔解工程と、
     前記熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する成形工程と、
     前記平板状ガラスを徐冷する工程であって、前記平板状ガラスの熱収縮率を低減するように前記平板状ガラスの冷却条件を制御する徐冷工程と、を含む請求項1~5のいずれか1項に記載のガラス基板を製造するディスプレイ用ガラス基板の製造方法。
PCT/JP2016/069145 2015-06-30 2016-06-28 ディスプレイ用ガラス基板およびその製造方法 WO2017002808A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680037857.8A CN107735376A (zh) 2015-06-30 2016-06-28 显示器用玻璃基板及其制造方法
US15/740,906 US11069716B2 (en) 2015-06-30 2016-06-28 Glass substrate for display and method for producing same
KR1020187002478A KR102295451B1 (ko) 2015-06-30 2016-06-28 디스플레이용 유리 기판 및 그 제조 방법
JP2017526371A JP6692812B2 (ja) 2015-06-30 2016-06-28 ディスプレイ用ガラス基板およびその製造方法
CN201810967486.4A CN109133615B (zh) 2015-06-30 2016-06-28 显示器用玻璃基板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-131780 2015-06-30
JP2015131780 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002808A1 true WO2017002808A1 (ja) 2017-01-05

Family

ID=57609393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069145 WO2017002808A1 (ja) 2015-06-30 2016-06-28 ディスプレイ用ガラス基板およびその製造方法

Country Status (6)

Country Link
US (1) US11069716B2 (ja)
JP (1) JP6692812B2 (ja)
KR (1) KR102295451B1 (ja)
CN (2) CN109133615B (ja)
TW (1) TWI687382B (ja)
WO (1) WO2017002808A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131429A (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラス
JPWO2018123675A1 (ja) * 2016-12-28 2019-10-31 日本電気硝子株式会社 ガラス
KR20200016964A (ko) * 2017-06-30 2020-02-17 퉁수 테크놀로지 그룹 컴퍼니 리미티드 알루미노보로실리케이트 유리 및 그 제조방법 및 그 적용
JP2022009065A (ja) * 2017-03-22 2022-01-14 日本電気硝子株式会社 ガラス板及びその製造方法
WO2023084979A1 (ja) * 2021-11-10 2023-05-19 日本電気硝子株式会社 無アルカリガラス板
JP7478340B2 (ja) 2018-10-17 2024-05-07 日本電気硝子株式会社 無アルカリガラス板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709257A (zh) * 2015-06-30 2018-02-16 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
CN110357420B (zh) * 2019-07-23 2022-03-04 中国洛阳浮法玻璃集团有限责任公司 一种低热收缩率电子基板玻璃的制备方法
JPWO2021261446A1 (ja) * 2020-06-25 2021-12-30
CN112557435A (zh) * 2020-12-08 2021-03-26 河北光兴半导体技术有限公司 玻璃热收缩率测定系统、方法、存储介质和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス
JP2009525942A (ja) * 2006-02-10 2009-07-16 コーニング インコーポレイテッド 熱および化学安定性が高いガラス組成物ならびにその製造方法
WO2012063643A1 (ja) * 2010-11-08 2012-05-18 日本電気硝子株式会社 無アルカリガラス
WO2012108345A1 (ja) * 2011-02-08 2012-08-16 旭硝子株式会社 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
JP2012184146A (ja) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd 無アルカリガラス
JP2015071523A (ja) * 2012-12-28 2015-04-16 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JP2015512849A (ja) * 2012-02-28 2015-04-30 コーニング インコーポレイテッド 高歪点アルミノシリケートガラス

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315354A (ja) 2003-03-31 2004-11-11 Asahi Glass Co Ltd 無アルカリガラス
US7727917B2 (en) * 2003-10-24 2010-06-01 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
CN101522584B (zh) * 2006-10-10 2012-12-05 日本电气硝子株式会社 钢化玻璃基板
JP5483821B2 (ja) * 2007-02-27 2014-05-07 AvanStrate株式会社 表示装置用ガラス基板および表示装置
JP5435394B2 (ja) * 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
JP5467490B2 (ja) * 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP5573157B2 (ja) * 2007-10-25 2014-08-20 旭硝子株式会社 基板用ガラス組成物および板ガラスの製造方法
US8187715B2 (en) * 2008-05-13 2012-05-29 Corning Incorporated Rare-earth-containing glass material and substrate and device comprising such substrate
JP5333984B2 (ja) 2008-06-27 2013-11-06 日本電気硝子株式会社 無アルカリガラス
JP5622069B2 (ja) * 2009-01-21 2014-11-12 日本電気硝子株式会社 強化ガラス、強化用ガラス及び強化ガラスの製造方法
JP5537144B2 (ja) 2009-12-16 2014-07-02 AvanStrate株式会社 ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板
JP5874316B2 (ja) 2010-10-27 2016-03-02 日本電気硝子株式会社 無アルカリガラス
JP5172045B2 (ja) * 2011-07-01 2013-03-27 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
IN2014DN07444A (ja) 2012-02-29 2015-04-24 Corning Inc
CN104125935A (zh) * 2012-06-08 2014-10-29 日本电气硝子株式会社 强化玻璃、强化玻璃板以及强化用玻璃
JP6037117B2 (ja) * 2012-12-14 2016-11-30 日本電気硝子株式会社 ガラス及びガラス基板
JP2017007870A (ja) 2013-11-13 2017-01-12 旭硝子株式会社 板ガラスの製造方法
CN107406303A (zh) * 2015-06-02 2017-11-28 日本电气硝子株式会社 玻璃
CN107709257A (zh) * 2015-06-30 2018-02-16 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス
JP2009525942A (ja) * 2006-02-10 2009-07-16 コーニング インコーポレイテッド 熱および化学安定性が高いガラス組成物ならびにその製造方法
WO2012063643A1 (ja) * 2010-11-08 2012-05-18 日本電気硝子株式会社 無アルカリガラス
WO2012108345A1 (ja) * 2011-02-08 2012-08-16 旭硝子株式会社 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
JP2012184146A (ja) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd 無アルカリガラス
JP2015512849A (ja) * 2012-02-28 2015-04-30 コーニング インコーポレイテッド 高歪点アルミノシリケートガラス
JP2015071523A (ja) * 2012-12-28 2015-04-16 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018123675A1 (ja) * 2016-12-28 2019-10-31 日本電気硝子株式会社 ガラス
JP7121345B2 (ja) 2016-12-28 2022-08-18 日本電気硝子株式会社 ガラス
JP2022009065A (ja) * 2017-03-22 2022-01-14 日本電気硝子株式会社 ガラス板及びその製造方法
US11753329B2 (en) 2017-03-22 2023-09-12 Nippon Electric Glass Co., Ltd. Glass plate and method for manufacturing same
JP7382014B2 (ja) 2017-03-22 2023-11-16 日本電気硝子株式会社 ガラス板及びその製造方法
KR20200016964A (ko) * 2017-06-30 2020-02-17 퉁수 테크놀로지 그룹 컴퍼니 리미티드 알루미노보로실리케이트 유리 및 그 제조방법 및 그 적용
KR102292470B1 (ko) 2017-06-30 2021-08-23 퉁수 테크놀로지 그룹 컴퍼니 리미티드 알루미노보로실리케이트 유리 및 그 제조방법 및 그 적용
JP2019131429A (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラス
JP7418947B2 (ja) 2018-01-31 2024-01-22 日本電気硝子株式会社 ガラス
JP7478340B2 (ja) 2018-10-17 2024-05-07 日本電気硝子株式会社 無アルカリガラス板
WO2023084979A1 (ja) * 2021-11-10 2023-05-19 日本電気硝子株式会社 無アルカリガラス板

Also Published As

Publication number Publication date
CN109133615A (zh) 2019-01-04
CN109133615B (zh) 2022-05-10
TWI687382B (zh) 2020-03-11
US11069716B2 (en) 2021-07-20
CN107735376A (zh) 2018-02-23
KR20180022872A (ko) 2018-03-06
KR102295451B1 (ko) 2021-08-27
JP6692812B2 (ja) 2020-05-13
JPWO2017002808A1 (ja) 2018-04-12
TW201706223A (zh) 2017-02-16
US20180190675A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6375277B2 (ja) ディスプレイ用ガラス基板およびその製造方法
JP6692812B2 (ja) ディスプレイ用ガラス基板およびその製造方法
JP6105539B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
KR101351112B1 (ko) 플랫 패널 디스플레이용 유리 기판 및 그 제조 방법
JP2017071548A (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6867946B2 (ja) ディスプレイ用ガラス基板およびその製造方法
JP6587969B2 (ja) 磁気記録媒体用ガラス基板およびその製造方法
JP5753895B2 (ja) フラットパネルディスプレイ用ガラス基板
JP7140582B2 (ja) ディスプレイ用ガラス基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002478

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16817916

Country of ref document: EP

Kind code of ref document: A1