WO2012108345A1 - ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 - Google Patents

ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 Download PDF

Info

Publication number
WO2012108345A1
WO2012108345A1 PCT/JP2012/052468 JP2012052468W WO2012108345A1 WO 2012108345 A1 WO2012108345 A1 WO 2012108345A1 JP 2012052468 W JP2012052468 W JP 2012052468W WO 2012108345 A1 WO2012108345 A1 WO 2012108345A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
less
composition
glass composition
Prior art date
Application number
PCT/JP2012/052468
Other languages
English (en)
French (fr)
Inventor
長嶋 達雄
近藤 裕己
学 西沢
小池 章夫
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2012800081648A priority Critical patent/CN103347832A/zh
Priority to JP2012556854A priority patent/JPWO2012108345A1/ja
Priority to KR1020137020971A priority patent/KR20140053832A/ko
Publication of WO2012108345A1 publication Critical patent/WO2012108345A1/ja
Priority to US13/960,461 priority patent/US20130324389A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a glass composition and a glass substrate comprising the glass composition. More specifically, for example, by evaporating a glass composition for a solar cell glass substrate in which a photoelectric conversion layer is formed between glass substrates or a heat medium heated by a heat collector by solar heat, and rotating a steam turbine.
  • the present invention relates to a glass composition for a vacuum glass tube type heat collector for solar thermal power generation and a glass composition for a glass substrate for a display panel used for various display panels.
  • the present invention typically includes a glass substrate and a cover glass, and a group 11-13 or 11-16 compound semiconductor having a chalcopyrite crystal structure or a cubic between the glass substrate and the cover glass.
  • Glass substrate for solar cell in particular, glass substrate for Cu-In-Ga-Se solar cell and CdTe solar cell, on which a photoelectric conversion layer mainly composed of a crystalline or hexagonal 12-12 group compound semiconductor is formed
  • the present invention relates to a glass substrate.
  • the present invention relates to a glass substrate for a display panel used for various display panels such as a liquid crystal display (LCD) panel, an organic EL display panel, a plasma display panel (PDP), specifically an oxide semiconductor such as IGZO or pentacene.
  • the present invention relates to a glass substrate for display using an organic semiconductor for a thin film transistor (TFT) (hereinafter also referred to as “glass substrate for TFT display panel”), particularly a glass substrate for an organic EL display panel.
  • TFT thin film transistor
  • 11-13 or 11-16 group compound semiconductors having a chalcopyrite crystal structure, or cubic or hexagonal group 12-16 group compound semiconductors have a large absorption for light in the visible to near-infrared wavelength range. Since it has a coefficient, it is expected as a material for a high-efficiency thin-film solar cell.
  • CIGS Cu (In, Ga) Se 2 system
  • CZTS Cu 2 ZnSnSe 4 system
  • soda lime glass is used as a substrate and solar cells are obtained because they are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors.
  • a glass material that can withstand a relatively high heat treatment temperature has been proposed (see Patent Document 1).
  • the glass composition in this case contains an alkali metal oxide in order to diffuse the alkali metal into the CIGS layer.
  • the glass tube for vacuum glass tube type heat collectors used by solar heat collection is known as a use of a glass composition (refer patent document 3).
  • non-alkali glass that does not contain an alkali metal oxide has been conventionally used for a glass substrate for a display panel. This is because when an alkali metal oxide is contained in the glass substrate, a thin film transistor (TFT) used by the alkali metal ion in the glass substrate to drive the display panel during the heat treatment performed in the display panel manufacturing process. This is because it may diffuse into the semiconductor film and cause deterioration of TFT characteristics.
  • TFT thin film transistor
  • alkali-free glass has properties such as extremely high viscosity and difficulty in melting, and is accompanied by technical difficulties in production. Due to recent technological advances, the use of an alkali glass substrate containing an alkali metal oxide as a glass substrate for a display panel has also been studied (see Patent Document 4).
  • the present invention relates to a glass composition having a high glass transition temperature, a predetermined average coefficient of thermal expansion, a low melting temperature in a well-balanced manner, and a glass substrate for solar cells comprising the glass composition, in particular, a glass substrate for CIGS solar cells and It aims at providing the glass substrate for CdTe solar cells, the glass substrate for display panels, specifically, for example, the glass substrate for TFT display panels, especially the glass substrate for organic EL display panels.
  • the present invention is as follows. (1) In molar percentage display based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1.8%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0-2% Na 2 O + K 2 O, A glass composition having a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s or lower.
  • the average coefficient of thermal expansion is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and the temperature at which the viscosity is 10 2 dPa ⁇ s is 1600 ° C. or lower. Glass composition.
  • a glass substrate for a solar cell comprising the glass composition according to any one of (1) to (3) above.
  • a CIGS solar cell glass substrate comprising the glass composition according to any one of (1) to (3) above.
  • a glass substrate for a CdTe solar cell comprising the glass composition according to any one of (1) to (3) above.
  • a glass substrate for a display panel comprising the glass composition according to any one of (1) to (3) above.
  • the glass composition of the present invention can have a high glass transition temperature, a predetermined average thermal expansion coefficient, and a low melting temperature in a well-balanced manner.
  • a glass substrate for a solar cell having high power generation efficiency a tube glass for a vacuum glass tube type heat collector having a high solar heat collection efficiency, and a glass substrate for a display panel having excellent long-term driving stability.
  • a glass substrate for a display panel having excellent long-term driving stability can be provided.
  • high productivity and high-quality glass substrates and tube glass can be obtained.
  • the disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2011-025148 filed on Feb. 8, 2011, the disclosure of which is incorporated herein by reference.
  • the glass composition of the present invention is expressed in terms of mole percentage based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1.8%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0-2% Na 2 O + K 2 O,
  • the glass composition has a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s at a temperature of 1600 ° C. or lower.
  • the glass transition temperature (T g ) of the glass composition of the present invention ensures the formation of the photoelectric conversion layer of the glass substrate for solar cells such as CIGS, CZTS, CdTe (due to glass thermal deformation during the film formation of the photoelectric conversion layer) (In order to prevent damage to the photoelectric conversion layer), to obtain the thermal shock resistance of the tube glass, and to reduce deformation and thermal shrinkage in the TFT manufacturing process of the glass substrate for display panel, the temperature is 680 ° C. or higher.
  • the glass transition temperature of the glass composition of the present invention is higher than the glass transition temperature of soda lime glass. Preferably it is 700 degreeC or more, More preferably, it is 710 degreeC or more.
  • the strain point (T sp ) is preferably 630 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 660 ° C. or higher.
  • the annealing point (T ap ) of the glass composition of the present invention is preferably 780 ° C. or lower. If it exceeds 780 ° C., when the formed glass sheet or tube glass is gradually cooled, the slow cooling start temperature becomes high and the time spent for slow cooling becomes long, which may result in a decrease in productivity and an increase in cost. More preferably, it is 750 degrees C or less, More preferably, it is 740 degrees C or less.
  • the average thermal expansion coefficient of the glass composition of the present invention at 50 to 350 ° C. is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C. If it is less than 50 ⁇ 10 ⁇ 7 / ° C. or more than 70 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion from the Mo electrode layer or the CdTe layer becomes too large when used for a glass substrate for solar cells, resulting in defects such as film peeling. It tends to occur. Moreover, when using the glass composition of this invention for the board
  • the glass composition of the present invention is used for a tube glass for a vacuum glass tube type heat collector, in order to match the thermal expansion coefficients of the tube glass and a tube sealing member such as a glass frit or a metal end plate
  • a tube sealing member such as a glass frit or a metal end plate
  • the glass composition of the present invention is used in a high-definition display panel such as a super high-definition television or a mobile device
  • it is preferably 65 ⁇ 10 ⁇ 7 / ° C. or less, in order to further improve dimensional stability.
  • it is 60 ⁇ 10 ⁇ 7 / ° C. or less.
  • the glass composition of the present invention has a temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is 1600 ° C. or less in consideration of the solubility and clarity of the glass.
  • T 2 is preferably 1580 ° C. or lower, and more preferably 1560 ° C. or lower.
  • the temperature at which the viscosity becomes 10 4 dPa ⁇ s (T 4 ) is preferably 1240 ° C. or less, more preferably 1220 ° C. or less, considering the moldability of plate glass or tube glass. The following is more preferable, and 1180 ° C. or lower is particularly preferable.
  • the relationship between the temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s and the devitrification temperature (T L ) is preferably T 4 ⁇ T L ⁇ ⁇ 70 ° C.
  • T 4 The -T L is lower than -70 ° C., tends to occur devitrification during glass sheet forming, there is a possibility that the molding of the glass sheet becomes difficult.
  • T 4 -T L is more preferably -50 ° C. or higher, more preferably -30 ° C. or more, more 0 °C or more, particularly preferably 10 ° C. or higher, most preferably 20 ° C. or higher.
  • the devitrification temperature refers to the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours.
  • the glass composition of the present invention preferably has a density of 2.9 g / cm 3 or less. When the density exceeds 2.9 g / cm 3 , the product mass becomes heavy, which is not preferable.
  • the density is more preferably 2.8 g / cm 3 or less, and even more preferably 2.7 g / cm 3 or less.
  • the average transmittance of the glass composition at a wavelength of 450 to 1100 nm is When it is, it is preferable that it is 86% or more in conversion of 1 mm thickness. More preferably, it is 90% or more, More preferably, it is 92% or more. Moreover, when using it for the glass substrate for display panels, the same average transmittance
  • the transmittance of the glass composition at a wavelength of 400 nm is preferably 85% or more in terms of 1 mm thickness when a glass substrate is used.
  • the power generation efficiency of the solar cell or solar heat collector may be reduced. If it is less than 85%, the glass may be solarized by sunlight when used for a long period of time, and the power generation efficiency may further decrease. If it is less than 85%, when the glass composition of the present invention is used for a glass substrate for a display panel, it is difficult to efficiently carry out UV curing in a sealing step in panel production. More preferably, it is 88% or more, More preferably, it is 90% or more.
  • the glass composition of the present invention has an alkali metal and alkaline earth metal element amount of 300 ng / cm 2 or less deposited on the glass surface after being held in a water vapor atmosphere at 120 ° C. and 0.2 MPa for 20 hours. And preferred.
  • it is more than 300 ng / cm 2 , the weather resistance tends to decrease when used as a glass substrate for a solar cell, a tube glass for a vacuum glass tube type heat collector, or a glass substrate for a display panel. More preferably, it is 200 ng / cm ⁇ 2 > or less, More preferably, it is 100 ng / cm ⁇ 2 > or less.
  • the glass composition of the present invention preferably has a photoelastic constant of 29 nm / MPa / cm or less. When it exceeds 29 nm / MPa / cm, when the glass composition of the present invention is used for a glass substrate for a display panel (particularly, a glass substrate for a liquid crystal display (LCD) panel), There is a possibility that the deterioration of display quality due to the generated birefringence becomes remarkable. More preferably, it is 28 nm / MPa / cm or less, More preferably, it is 27 nm / MPa / cm or less, More preferably, it is 26 nm / MPa / cm or less.
  • the glass composition of the present invention preferably has a Young's modulus of 79 GPa or more.
  • the glass composition is less than 79 GPa, when the glass composition of the present invention is used for a glass substrate for a display panel (particularly, a glass substrate for a liquid crystal display (LCD) panel), There is a possibility that the glass substrate of the panel may have a defect due to deflection or deformation of the glass due to its own weight or external stress. More preferably, it is 81 GPa or more, More preferably, it is 83 GPa or more, More preferably, it is 85 GPa or more.
  • SiO 2 A component that forms a glass skeleton. If it is less than 55 mol% (hereinafter simply referred to as “%”), the heat resistance, Young's modulus, and chemical durability of the glass may decrease, and the average thermal expansion coefficient may increase. is there. Preferably it is 57% or more, More preferably, it is 59% or more, More preferably, it is 62% or more. However, if it exceeds 70%, the photoelastic constant is increased, the high temperature viscosity of the glass is increased, and there is a concern that the solubility is deteriorated. Preferably it is 69% or less, More preferably, it is 68% or less, More preferably, it is 67% or less.
  • Al 2 O 3 Raises the glass transition temperature and improves the weather resistance, chemical durability, heat resistance and Young's modulus. If the content is less than 5%, the glass transition temperature may be lowered. Moreover, there exists a possibility that an average thermal expansion coefficient may increase. Preferably it is 5.5% or more. However, if it exceeds 10%, the high-temperature viscosity of the glass increases, and the solubility may deteriorate. Further, the devitrification temperature is increased, and the moldability may be deteriorated. Moreover, when it uses for the glass substrate for solar cells, there exists a possibility that electric power generation efficiency may fall. Preferably it is 9% or less, More preferably, it is 8% or less.
  • B 2 O 3 may be contained up to 0.5% in order to reduce the density, improve the solubility, or the like. If it exceeds 0.5%, the photoelastic constant increases, or boron ions diffuse into these layers when forming a CIGS layer or CdTe layer as a photoelectric conversion layer when used in a glass substrate for solar cells, and power generation efficiency There is a risk of lowering.
  • the amount of B 2 O 3 volatilized at the time of melting the glass may increase the equipment load. Preferably it is 0.3% or less, More preferably, it does not contain substantially.
  • substantially does not contain means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
  • MgO 3-15% is contained for improving chemical durability, Young's modulus and weather resistance, and for reducing the density. If it is less than 3%, chemical durability and weather resistance tend to be insufficient. It is preferably 5% or more, more preferably 6% or more. If it exceeds 15%, the tendency to devitrify the glass becomes strong. It is preferably 12% or less, and more preferably 10% or less.
  • CaO 3-15% is contained for decreasing the high temperature viscosity or increasing the average thermal expansion coefficient. If it is less than 3%, the high-temperature viscosity does not decrease sufficiently and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. It is preferably 5% or more, and more preferably 6% or more. On the other hand, if it exceeds 15%, the tendency to devitrify the glass becomes strong, and the chemical durability and weather resistance tend to decrease. The content is preferably 12% or less, and more preferably 10% or less.
  • SrO An essential component for decreasing the high temperature viscosity, increasing the average thermal expansion coefficient, decreasing the photoelastic constant, and the like. Its content is 2 to 10%. If the content is less than 2%, the high-temperature viscosity does not decrease sufficiently and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. The content is preferably 3% or more. Meanwhile, the tendency to the glass devitrification is increased when the content exceeds 10%, T g decreases, the chemical durability and tend to weather resistance is deteriorated, or density becomes heavy. The content is preferably 9% or less, and more preferably 8% or less.
  • BaO An essential component for decreasing the high temperature viscosity, increasing the average thermal expansion coefficient, decreasing the photoelastic constant, and the like. Its content is 1 to 10%. If the content is less than 1%, the high-temperature viscosity does not decrease sufficiently, the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. The content is preferably 2% or more. On the other hand, if the content exceeds 10%, Tg tends to decrease, chemical durability and weather resistance tend to deteriorate, or the density becomes heavy. The content is preferably 9% or less, and more preferably 7% or less.
  • ZrO 2 A component that increases chemical durability and weather resistance and increases T g , and may be contained up to 3%. If it exceeds 3%, the raw material cost is increased, the tendency to devitrify the glass becomes strong, or the density becomes heavy.
  • the content is preferably 1.5% or less, more preferably 1% or less. On the other hand, when it contains, 0.2% or more is preferable and 0.5% or more is more preferable.
  • TiO 2 raise the T g, is effective in improving chemical durability and weather resistance, transmittance decreases, because it may cause solarization, it may not substantially contained in the present invention preferable.
  • the total amount of MgO, CaO, SrO and BaO is 20 to 35%. If the total amount is less than 20%, the high-temperature viscosity does not sufficiently decrease, and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low.
  • the total amount is preferably 22% or more, more preferably 24% or more. Meanwhile, the tendency to devitrification of the glass when the total amount is too large is increased, T g decreases, there is a tendency for chemical durability and weather resistance is deteriorated, or density becomes heavy. Therefore, the total amount is 35% or less.
  • the total amount is preferably 32% or less, and more preferably 29% or less.
  • the alkali metal may diffuse into a transparent conductive oxide layer (hereinafter also referred to as “TCO layer”) or a CdTe layer, which will be described later, and power generation efficiency may be reduced.
  • TCO layer transparent conductive oxide layer
  • CdTe layer a transparent conductive oxide layer
  • alkali metal ions When used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
  • the content is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free. .
  • it contains 0.1% or more is preferable and 0.2% or more is more preferable.
  • K 2 O Up to 1% may be contained for improving solubility. If it exceeds 1%, the TGS , Young's modulus will be significantly reduced, or in the case of a CIGS layer doped with an alkali metal, it will be necessary to form an alkali metal diffusion barrier layer, which will increase the cost of manufacturing CIGS solar cells.
  • the alkali metal In the case of a CdTe solar cell, the alkali metal may diffuse into the TCO layer or the CdTe layer and the power generation efficiency may be reduced. Further, when used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
  • the content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and particularly preferably substantially free. On the other hand, when it contains, 0.1% or more is preferable and 0.2% or more is more preferable.
  • Na 2 O and K 2 O The total amount of Na 2 O and K 2 O is 2% or less. If the total amount exceeds 2%, Tg and Young's modulus may be significantly reduced. Moreover, when using for the glass substrate for CIGS solar cells which has the CIGS layer which doped an alkali metal, formation of an alkali metal diffusion barrier layer is needed. Further, when used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
  • the content is preferably 1.5% or less, more preferably 1% or less, further preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free. .
  • CeO 2 is effective as a glass refining agent. However, since it may cause raw material costs, transmittance, and solarization, it is preferably not substantially contained in the present invention.
  • La 2 O 3 raises the T g, is effective to lower the high temperature viscosity, density becomes heavier, such raw material cost, it is difficult to separate the CeO 2 contained in the raw material of La 2 O 3, etc. For this reason, it is preferable that the composition is not substantially contained in the present invention.
  • the glass composition of the present invention is expressed in terms of mole percentage based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0 to 1.5% Na 2 O + K 2 O, A glass composition having a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s is preferably 1600 ° C. or lower.
  • SO 3 , F, Cl, SnO 2 , and Fe 2 O 3 in the glass composition are each SO 3 : 0.5 part by mass with respect to 100 parts by mass of the raw material of the glass mother composition component.
  • F 1.5 parts by mass or less
  • Cl 3 parts by mass or less
  • SnO 2 0.30 parts by mass or less
  • Fe 2 O 3 0.30 parts by mass or less
  • these raw materials may be added to the mother composition raw material.
  • Fe 2 O 3 is preferably 0.03 parts by mass.
  • it is more preferably 0.02 parts by mass or less, further preferably 0.01 parts by mass or less, and particularly preferably 0.005 parts by mass or less.
  • the SnO 2 is preferably not more than 0.30 parts by mass, more preferably 0.25 parts by mass or less, even more preferably not more than 0.20 parts by mass. This is to ensure the transmittance.
  • Cl is not substantially contained. This is because when Cl is contained, reboil is generated at the contact surface between the molten glass and the sleeve, and bubbles may be mixed into the tube glass. Further, considering the environmental burden, it is preferred not to substantially contain As 2 O 3, Sb 2 O 3 as a fining agent.
  • Other components may be contained in an amount of not more than 1% and not more than 5% in total within a range not impairing the object of the present invention.
  • ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like.
  • TlO 2 , P 2 O 5 and the like may be contained.
  • the float method is preferably used when forming a large-area glass substrate, but it is preferable that ZnO is not substantially contained in consideration of stable float forming.
  • the glass composition of the present invention is preferably composed of SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O except for inevitable impurities.
  • the clarifiers SO 3 , F, Cl, SnO 2 , Fe 2 O 3 etc. are acceptable.
  • the glass composition of the present invention is suitable for a glass substrate for solar cells such as CIGS, CZTS, CdTe, or a cover glass for solar cells. It is also suitable as a tube glass for a vacuum glass tube type heat collector. Moreover, it is suitable also as a glass substrate for display panels.
  • the manufacturing method of the glass substrate of this invention is demonstrated.
  • molding process are implemented similarly to the time of manufacturing the conventional plate glass.
  • a float method and a fusion method are suitable.
  • a method for forming the glass sheet it is preferable to use a float method capable of easily and stably forming a glass substrate having a large area as the solar cell or the display becomes larger.
  • Process for producing a glass substrate of the present invention has a glass transition temperature of 680 ° C. or higher, the average thermal expansion coefficient of 50 ⁇ 10 -7 ⁇ 70 ⁇ 10 -7 / °C, temperature at which the viscosity becomes 10 2 dPa ⁇ s is 1600
  • the glass transition temperature is 680 ° C. or higher
  • the average thermal expansion coefficient is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C.
  • the temperature at which the viscosity is 10 2 dPa ⁇ s is 1600 ° C. or lower.
  • Raw materials are prepared so that the obtained glass substrate has the above composition, and the raw materials are continuously charged into a melting furnace and heated to 1450 to 1650 ° C. to obtain molten glass.
  • the molten glass is formed into a ribbon-like plate glass by applying, for example, a float process.
  • a float process After drawing the ribbon-shaped plate glass from the float forming furnace, it is gradually cooled to room temperature by a slow cooling means, and after cutting, a glass substrate is obtained.
  • the glass substrate for CIGS solar cells of the present invention is also suitable as a glass substrate for CIGS solar cells and a cover glass.
  • the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less. is there.
  • the method for applying the CIGS photoelectric conversion layer to the glass substrate is not particularly limited.
  • the heating temperature when forming the photoelectric conversion layer can be 500 to 700 ° C., preferably 600 to 700 ° C.
  • the cover glass and the like are not particularly limited, but the glass substrate for CIGS solar cell of the present invention is covered with the glass substrate and cover of CIGS solar cell.
  • the average coefficient of thermal expansion is the same, and therefore, thermal deformation or the like during solar cell assembly does not occur, which is preferable.
  • the CIGS solar cell in the present invention includes a glass substrate, a cover glass, and a CIGS layer disposed as a photoelectric conversion layer between the glass substrate and the cover glass, and at least the glass substrate and the cover glass. Either one is the glass substrate of the present invention.
  • an alkali metal compound containing Na is laminated on a glass substrate, a positive electrode such as Mo on the glass substrate, or a CIGS precursor. If an alkali metal compound containing Na is not laminated, sufficient alkali metal diffusion is not performed in the photoelectric conversion layer, and power generation efficiency may be reduced.
  • the alkali metal compound include NaF, NaCl, Na 2 S, Na 2 Se, KF, KCl, K 2 S, K 2 Se, and Mo composite oxide, but are not particularly limited. Two or more kinds of alkali metal compounds may be combined.
  • the laminating method is not particularly limited, and for example, any of sputtering, CVD, MOCVD, vapor deposition, and wet methods may be applied.
  • the method for forming the CIGS layer is not particularly limited. After forming a precursor containing a constituent element other than Se as a component, a so-called selenization method in which heat treatment is performed in an H 2 Se gas atmosphere may be used, or a vapor deposition method in which each constituent element is physically vapor-deposited, or CIGS powder is used. It is also possible to use a printing method in which the ink is adjusted and subjected to heat treatment after screen printing and sintered.
  • the glass substrate for CdTe solar cells of the present invention is also suitable as a glass substrate for CdTe solar cells and a cover glass (hereinafter also referred to as “back plate glass” in CdTd solar cells).
  • the thickness of the glass substrate is preferably 4 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less. is there.
  • the method for applying the CdTe photoelectric conversion layer to the glass substrate is not particularly limited.
  • the heating temperature when forming the photoelectric conversion layer can be set to 500 to 700 ° C., preferably 600 to 700 ° C.
  • the back plate glass or the like is not particularly limited, but the glass substrate for a CdTe solar cell of the present invention is used as the glass substrate of the CdTe solar cell.
  • the average thermal expansion coefficient is equivalent, so that thermal deformation or the like during assembly of the solar cell does not occur, which is preferable.
  • the CdTe solar cell in the present invention has a glass substrate, a back plate glass, and a CdTe photoelectric conversion layer disposed between the glass substrate and the back plate glass, and at least the glass substrate is the glass of the present invention. It is a substrate.
  • the structure of the CdTe solar cell of the present invention is not particularly limited, a light-transmitting lower electrode is formed on a glass substrate, and then a window layer and a CdTe layer are formed on the lower electrode. A structure in which the upper electrode is formed is preferable.
  • a transparent conductive oxide layer (hereinafter also referred to as “TCO layer”) made of a thin film such as ITO or SnO 2 is used.
  • TCO layer is also subjected to a high temperature process.
  • the alkali metal diffuses from the glass substrate into the TCO layer, the film quality of the TCO layer may deteriorate, or the alkali metal may diffuse into the CdTe layer, resulting in a decrease in power generation efficiency.
  • a diffusion barrier layer may be formed between the glass substrate and the TCO layer.
  • the diffusion barrier layer for example, a SiO 2 layer is preferable.
  • the laminating method is not particularly limited.
  • sputtering method CVD method, MOCVD method, molecular beam growth (MBE) method, vapor deposition method.
  • MBE molecular beam growth
  • vapor deposition method Any of a solution growth (CBD) method and a wet method may be applied.
  • the method for forming the CdTe layer is not particularly limited.
  • CdTe depositing CdTe on the window layer (the window layer is formed on the lower electrode formed on the glass substrate) by heating and sublimating the source of CdTe in an inert gas atmosphere
  • CSS Sublimation
  • vapor deposition method for physical vapor deposition of each constituent element printing method for adjusting ink using CdTe powder, heat treatment after screen printing and sintering, MOCVD method, MBE method,
  • an electrodeposition method may be used.
  • the glass substrate for a display panel of the present invention is also suitable as a glass substrate for an organic EL display panel, or an organic EL display panel glass substrate using an oxide semiconductor such as IGZO or an organic semiconductor such as pentacene as a TFT.
  • the thickness of the glass substrate is preferably 2 mm or less, more preferably 1.3 mm or less, still more preferably 0.8 mm or less, Especially preferably, it is 0.5 mm or less, Most preferably, it is 0.3 mm or less.
  • the method for forming TFTs on the glass substrate and the type of TFT to be formed are not particularly limited.
  • the glass substrate for a display panel of the present invention is different from a conventional commercially available non-alkali glass (for example, EAGLE XG manufactured by Corning, AN100 manufactured by Asahi Glass Co., Ltd.) matched to the thermal expansion coefficient of silicon TFT, Since the average thermal expansion coefficient is in the range of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., it is suitable for TFTs using oxide semiconductors such as IGZO and organic semiconductors such as pentacene. Further, it is suitable for a glass substrate of a display panel for a large television of 50 inches or more that uses a metal frame.
  • Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
  • Examples (Examples 1 to 22, 26 to 37) and comparative examples (Examples 23 to 25 and 38) of the glass composition of the present invention are shown.
  • the parentheses in Tables 1 to 4 are calculated values (by regression calculation).
  • the raw materials of each component were prepared so as to have the compositions shown in Tables 1 to 4, and dissolved by heating at a temperature of 1600 ° C. for 30 minutes using a platinum crucible. In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out, formed into a plate shape, and then cooled to obtain a glass plate.
  • the residual amount (mol%) of Fe 2 O 3 in the glass compositions of Examples 9, 17, and 20 was 0.04%, respectively, and the residual amount of Fe 2 O 3 in the glass compositions of Examples 18 and 36 was 0.00. 02%.
  • the residual amount of SO 3 in the glass compositions of Examples 9, 17, 18, 20, and 36 was 0.01 to 0.07%.
  • the residual amount of Cl in the glass compositions of Examples 9, 17, 18, and 20 was 0.70 to 1.00%, and the residual amount of Cl in the glass composition of Example 36 was 1.65%.
  • the residual amount of F in the glass compositions of Examples 9, 17, 18, and 20 was 0.30 to 0.60%, and the residual amount of F in the glass composition of Example 36 was 3.14%.
  • the residual amount of CeO 2 in the glass composition of Example 22 was 0.02%.
  • the residual amounts of Fe 2 O 3 , SO 3 , Cl, F, and CeO 2 in the glass composition were measured by measuring the glass lump cut out from the glass plate in powder form and evaluating with fluorescent X-rays.
  • the glass plate thus obtained has an average thermal expansion coefficient ⁇ (unit: ⁇ 10 ⁇ 7 / ° C.), a glass transition temperature T g (unit: ° C.), and a temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s ( (Unit: ° C), temperature at which viscosity becomes 10 4 dPa ⁇ s (T 4 ) (unit: ° C), devitrification temperature ( TL ) (unit: ° C), strain point T sp (unit: ° C), slow cooling Point T ap (unit: ° C.), transmittance V 400 (unit:%) at a wavelength of 400 nm, average transmittance V ave (unit:%), density d (unit: g / cm 3 ), Young's modulus E (unit: GPa), the amount of alkali metal and alkaline earth metal (unit: ng / cm 2 ) deposited on the glass substrate surface after holding under specific conditions as weather resistance
  • each physical property is the same value with a glass composition, a glass plate, and a glass substrate. By processing and polishing the obtained glass plate, a glass substrate can be obtained.
  • T g Glass transition temperature
  • TMA differential thermal dilatometer
  • Average coefficient of thermal expansion
  • Viscosity measured by using a rotational viscometer, and the temperature T 2 (solubility reference temperature) when the viscosity ⁇ is 10 2 dPa ⁇ s, when the viscosity ⁇ is 10 4 dPa ⁇ s Temperature T 4 (reference temperature for moldability) was measured.
  • Devitrification temperature (T L ) 5 g of glass lump cut out from the glass plate was placed on a platinum dish and kept in an electric furnace at a predetermined temperature for 17 hours. The maximum temperature at which crystals do not precipitate on the surface and inside of the glass lump after being held was defined as the devitrification temperature.
  • Density (d) About 20 g of glass lump containing no foam was measured by Archimedes method.
  • Young's modulus (E) A glass plate having a thickness of 4 to 10 mm and a size of about 4 cm ⁇ 4 cm was measured by an ultrasonic pulse method.
  • T sp Strain point
  • T ap annealing point
  • T ap measured according to JIS R3103-2.
  • the transmittance V 400 (unit:%) at 400 nm was read, and the average transmittance V ave (unit:%) at 450 to 1100 nm was calculated.
  • Alkali metal diffusibility (10) Alkali metal diffusibility (DNa 600 , DNa 650 ): Both sides of a glass plate having a thickness of 1 to 4 mm and a size of 5 cm ⁇ 5 cm are mirror-polished with cerium oxide and washed with calcium carbonate and a neutral detergent. A glass substrate was used. Thereafter, an alkali metal barrier layer of SiO 2 was formed to a thickness of about 40 nm only by sputtering the glass substrate obtained from the glass plate of Example 24.
  • a ZnO film (GZO film) doped with 5.7 wt% of Ga was formed on each glass substrate by sputtering under conditions of about 100 nm and a glass substrate temperature of about 100 ° C. Obtained.
  • the amount of Na 2 O in the GZO film was quantified by SIMS, and the value normalized with Zn was determined as alkali metal diffusivity (600 ° C.
  • the diffusibility of alkali metal at this time was defined as DNa 600 and that at 650 ° C. was defined as DNa 650 (unit: Na / Zn count).
  • surface is described with " ⁇ >”, since this has an alkali metal diffusion barrier layer between glass and a GZO film, This is to distinguish from other embodiments.
  • DNa 650 column of the glass is " ⁇ ->" is the a is will be deformed because low T g when heated to 650 ° C., in order that could not quantify by SIMS.
  • Photoelastic constant measured by a disk compression method (measurement wavelength: 546 nm).
  • the glass composition of Example (Examples 1 to 17 and 19 ⁇ 22, 26 ⁇ 37) has a glass transition temperature T g is as high as 680 ° C. or higher, the average thermal expansion coefficient ⁇ Is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and T 2 is 1600 ° C. or less. Therefore, a high glass transition temperature, a predetermined average coefficient of thermal expansion, and a low glass melting temperature can be achieved at the same time.
  • a glass substrate for solar cells with high power generation efficiency or solar heat collection can be obtained.
  • a tube glass for a vacuum glass tube type heat collector with high thermal efficiency can be provided. Further, when producing glass, high productivity and high quality glass can be obtained. Moreover, since the weather resistance is also good, long-term reliability can be expected.
  • the glass composition of Example 18 was also satisfied.
  • a CIGS layer does not peel from a glass substrate with a Mo electrode layer in a CIGS solar cell, and a CdTe layer from a glass substrate in a CdTe solar cell.
  • a solar cell without peeling specifically, when a glass substrate and a cover glass are heated and bonded so that a photoelectric conversion layer such as a CIGS layer or a CdTe layer is sandwiched between them.
  • the glass substrate is not easily deformed, and is superior in power generation efficiency.
  • Examples 9 and 11 to 22 have sufficiently high average transmittance at a wavelength of 450 to 1100 nm and transmittance at a wavelength of 400 nm, and are excellent in power generation efficiency.
  • the transmittances of the glass compositions of Examples 1 to 8, 10 and 26 to 37 were also high.
  • the results of the alkali metal diffusibility of the glass compositions of the examples show that even when the temperature is increased from 600 ° C. to 650 ° C., the value of the alkali metal diffusivity is small, and There was no change. From this, when the glass substrate obtained from the glass composition of an Example (Example 18, 26, 36, 37) is used for a CdTe solar cell, the alkali metal diffusion to a TCO layer or a photoelectric converting layer is considered to be slight. . Therefore, it is not necessary to form an alkali metal diffusion barrier layer, one process can be reduced from the battery manufacturing process, and a cost advantage can be expected. In addition, since there is no deterioration of the TCO layer due to alkali metal diffusion, the temperature at the time of CdTe film formation can be increased, and improvement in crystallinity of CdTe and improvement in power generation efficiency can be expected.
  • the alkali metal diffusion suppression is excellent in Na 2 O glass composition containing a large amount examples 18,26,36,37 of Na 2 O content of the other less than these EXAMPLE Similarly, it is presumed that the glass composition is excellent in alkali metal diffusion suppression. Since the glass substrate obtained from the glass composition of an Example is excellent in alkali-metal spreading
  • the glass composition of comparative example (Example 23), T 2 is inferior 1600 ° C. ultra next productivity. Moreover, since average thermal expansion coefficient (alpha) is too low, there exists a possibility of causing a layer peeling after forming a photoelectric converting layer. Since rich in B 2 O 3, load on the glass production equipment is increased. In the comparative example (Example 24), since the Tg is low, the glass substrate is easily deformed when the photoelectric conversion layer is formed. Moreover, since there is much elution amount of the element of an alkali metal and alkaline-earth metal in a weather resistance evaluation, there exists a possibility that a weather resistance may be inferior.
  • the alkali metal diffusibility tends to be larger than that of the example. This is because the alkali metal oxide content in the glass matrix composition component often, because of the low T g of the glass substrate is considered that due to the large mobility of the alkali metals in the glass under the influence of viscosity. Further, since Tg is low, it is difficult to increase the process temperature when forming the photoelectric conversion layer, and it is difficult to improve the power generation efficiency. Further, when used for a display panel, long-term reliability may be a problem.
  • the comparative examples contain 2.0 mol% and 2.9 mol% of Na 2 O, respectively, the value of alkali metal diffusivity is larger than that of the examples, and the alkali metal diffusibility due to temperature rise is further increased. Since an increase is also observed, the process temperature cannot be increased when forming the photoelectric conversion layer. Therefore, since improvement in power generation efficiency cannot be expected, or an alkali metal diffusion barrier layer needs to be formed, one process is increased from the battery manufacturing process, resulting in poor process superiority. Further, when used for a display panel, long-term reliability may be a problem.
  • the glass composition of the present invention is suitable as a glass substrate for solar cells such as CIGS, CZTS, CdTe. It is also effective as a tube glass for a vacuum glass tube type heat collector. Moreover, it is suitable as a glass substrate for display panels.
  • the glass composition of the present invention can have a high glass transition temperature, a predetermined average coefficient of thermal expansion, and a low melting temperature in a well-balanced manner.
  • the solar cell with high power generation efficiency can be obtained.
  • a glass substrate, a tube glass for a vacuum glass tube type heat collector with high solar heat collection efficiency, and a glass substrate for a display panel can be provided. Further, when producing glass, high productivity and high-quality glass substrates and tube glass can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、下記酸化物基準のモル百分率表示で、SiOを55~70%、Alを5~10%、Bを0~0.5%、MgOを3~15%、CaOを3~15%、SrOを2~10%、BaOを1~10%、ZrOを0~3%、NaOを0~1.8%、KOを0~1%、MgO+CaO+SrO+BaOを20~35%、NaO+KOを0~2%含有し、ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下のガラス組成物に関する。

Description

ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
 本発明は、ガラス組成物および該ガラス組成物からなるガラス基板に関する。より詳しくは、例えばガラス基板の間に光電変換層が形成されている太陽電池用ガラス基板用ガラス組成物や、太陽熱により集熱器で加熱された熱媒体を蒸発させ蒸気タービンを回転等させて太陽熱発電するための真空ガラス管型集熱器用のガラス組成物や、各種ディスプレイパネルに用いるディスプレイパネル用ガラス基板用ガラス組成物に関する。
 また本発明は、典型的にはガラス基板とカバーガラスとを有し、該ガラス基板とカバーガラスとの間に、カルコパイライト結晶構造を持つ11-13族若しくは11-16族化合物半導体、または立方晶系若しくは六方晶系の12-16族化合物半導体を主成分とした光電変換層が形成されている太陽電池用ガラス基板、特にはCu-In-Ga-Se太陽電池用ガラス基板やCdTe太陽電池用ガラス基板に関するものである。
 さらに本発明は、液晶ディスプレイ(LCD)パネル、有機ELディスプレイパネル、プラズマディスプレイパネル(PDP)等の各種ディスプレイパネルに用いるディスプレイパネル用ガラス基板、具体的に例えばIGZO等の酸化物半導体やペンタセン等の有機半導体を、薄膜トランジスタ(TFT)に用いるディスプレイ用のガラス基板(以下、「TFTディスプレイパネル用ガラス基板」ともいう)、特に有機ELディスプレイパネル用のガラス基板に関するものである。
 カルコパイライト結晶構造を持つ11-13族若しくは11-16族化合物半導体、または立方晶系若しくは六方晶系の12-16族化合物半導体は、可視から近赤外の波長範囲の光に対して大きな吸収係数を有しているために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se系(以下、「CIGS」と記述する)やCIGSのInやGa等を代替したCuZnSnSe系(以下、「CZTS」と記述する)やCdTeがあげられる。
 従来、CIGS薄膜太陽電池では、安価であることと平均熱膨張係数がCIGS化合物半導体のそれに近いことから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
 また、効率の良い太陽電池を得るため、比較的高温の熱処理温度に耐えうるガラス材料が提案されている(特許文献1参照)。
 この場合のガラス組成物は、CIGS層へアルカリ金属を拡散させるためにアルカリ金属酸化物を含有している。一方で、ガラス基板からCIGS層面内へのアルカリ金属の拡散のばらつき防止のために、アルカリ金属拡散バリア層を設けたガラス基板またはアルカリ金属酸化物不含の基板上にアルカリ金属をドーピングしたCIGS層を設けたCIGS太陽電池が提案されている(特許文献2参照)。
 なお、ガラス組成物の用途として、太陽熱集熱で用いられる真空ガラス管型集熱器用ガラス管が知られている(特許文献3参照)。
 一方、ディスプレイパネル用のガラス基板には、従来より、アルカリ金属酸化物を含有しない無アルカリガラスが用いられている。この理由は、ガラス基板中にアルカリ金属酸化物が含まれていると、ディスプレイパネルの製造工程で実施される熱処理中に、ガラス基板中のアルカリ金属イオンがディスプレイパネルの駆動に用いる薄膜トランジスタ(TFT)の半導体膜に拡散して、TFT特性の劣化を招くおそれがあるからである。
 しかしながら、無アルカリガラスは粘性が非常に高く、溶融が困難といった性質を有し、製造に技術的な困難性を伴う。近年の技術進歩により、ディスプレイパネル用のガラス基板として、アルカリ金属酸化物を含有するアルカリガラス基板を使用することも検討され始めている(特許文献4参照)。
日本国特開平11-135819号公報 日本国特開平8-222750号公報 日本国特公昭60-11301号公報 日本国特開2006-137631号公報
 しかし、特許文献1の実施例に開示されているように、アルカリ金属酸化物を十分含有する場合、ガラス転移点温度(T)の低下を招くという問題があった。
 一方で、特許文献2に示されるアルカリ金属酸化物不含基板として、無アルカリガラスを用いる場合、無アルカリガラスは通常アルカリ金属酸化物含有ガラスと比較してガラス溶解温度が約100℃以上高いために、ガラス溶解時や成形時の生産性低下や清澄性低下を招くという問題や、また例えばCIGS太陽電池用ガラス基板に用いた際にガラス基板の熱膨張係数が光電変換層としてのCIGS層のそれと異なるために、ガラス基板上のCIGS層の製膜中または製膜後に剥離を招くという問題がある。
 真空ガラス管型集熱器においては、管ガラスと、ガラスフリットや金属製端版等の管封止用部材と、の熱膨張係数を合わせることが求められ、また管ガラスの耐熱衝撃性も要求される。
 また、ディスプレイパネルでは、近年、薄型化、省エネルギー化のため、有機ELディスプレイの採用が検討されているが、有機ELは電流駆動となるため、従来のLCDに比べてTFTの長期駆動安定性が重要となる。特許文献4の実施例に開示されているように、アルカリ金属酸化物を十分含有する場合、ディスプレイデバイスの長期駆動安定性や、膜剥れ等の観点から懸念される場合がある。特に、大型有機ELテレビにおいては、駆動回路の電流電圧が高くなり、長期駆動安定性の問題が顕著になる。
 このように、ガラス組成物において、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有することは困難であった。
 本発明は、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有するガラス組成物、並びに該ガラス組成物からなる太陽電池用ガラス基板、特にはCIGS太陽電池用ガラス基板およびCdTe太陽電池用ガラス基板、ディスプレイパネル用ガラス基板、具体的に例えばTFTディスプレイパネル用ガラス基板、特に有機ELディスプレイパネル用ガラス基板を提供することを目的とする。
 本発明は、以下の通りである。
(1)下記酸化物基準のモル百分率表示で、
SiOを55~70%、
Alを5~10%、
を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrOを0~3%、
NaOを0~1.8%、
Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
NaO+KOを0~2%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下のガラス組成物。
(2)下記酸化物基準のモル百分率表示で、
SiOを55~70%、
Alを5~10%、
を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrOを0~3%、
NaOを0~1%、
Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
NaO+KOを0~1.5%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下の上記(1)に記載のガラス組成物。
(3)下記酸化物基準のモル百分率表示で、
SiOを59~67%、
Alを5~8%、
を0~0.3%、
MgOを6~10%、
CaOを6~10%、
SrOを3~9%、
BaOを2~7%、
ZrOを0~1%、
NaOを0~1%、
Oを0~1%、
MgO+CaO+SrO+BaOを24~29%、
NaO+KOを0~1.5%含有し、
ガラス転移点温度が700℃以上、平均熱膨張係数が50×10-7~60×10-7/℃、粘度が10dPa・sとなる温度が1580℃以下の上記(1)または(2)に記載のガラス組成物。
(4)上記(1)~(3)のいずれか一つに記載のガラス組成物からなる太陽電池用ガラス基板。
(5)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるCIGS太陽電池用ガラス基板。
(6)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるCdTe太陽電池用ガラス基板。
(7)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるディスプレイパネル用ガラス基板。
 本発明のガラス組成物は、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有することができる。本発明のガラス組成物を用いることで、発電効率の高い太陽電池用ガラス基板、太陽熱集熱効率の高い真空ガラス管型集熱器用管ガラス、および、長期駆動安定性に優れるディスプレイパネル用ガラス基板を提供することができる。さらにガラス生産時に、生産性が高く、また高品質のガラス基板や管ガラスを得ることができる。
 本願の開示は、2011年2月8日に出願された特願2011-025148号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
<本発明のガラス組成物>
 以下、本発明のガラス組成物について説明する。
 本発明のガラス組成物は、下記酸化物基準のモル百分率表示で、
SiOを55~70%、
Alを5~10%、
を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrOを0~3%、
NaOを0~1.8%、
Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
NaO+KOを0~2%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下のガラス組成物である。
 本発明のガラス組成物のガラス転移点温度(T)は、CIGS、CZTS、CdTe等の太陽電池用ガラス基板の光電変換層の形成を担保(光電変換層製膜の際のガラス熱変形による光電変換層破損防止)するため、管ガラスの耐熱衝撃性を得るため、またディスプレイパネル用ガラス基板のTFT製造プロセスにおける変形や熱収縮を低減させるため、680℃以上である。本発明のガラス組成物のガラス転移点温度はソーダライムガラスのガラス転移点温度より高い。好ましくは700℃以上、より好ましくは710℃以上である。
 同様の理由から歪点(Tsp)は630℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは660℃以上である。
 また、本発明のガラス組成物の徐冷点(Tap)は、780℃以下であると好ましい。780℃超では、成形後の板ガラスや管ガラスを徐冷する際に、徐冷開始温度が高くなり徐冷に費やす時間が長くなるため、生産性低下やコストアップとなるおそれがある。より好ましくは750℃以下、さらに好ましくは740℃以下である。
 本発明のガラス組成物の50~350℃における平均熱膨張係数は50×10-7~70×10-7/℃である。50×10-7/℃未満または70×10-7/℃超では、太陽電池用ガラス基板に用いる場合、Mo電極層やCdTe層との熱膨張差が大きくなりすぎ、膜剥がれ等の欠点が生じやすくなる。また、本発明のガラス組成物をディスプレイパネル用基板に用いる場合は、金属等の周辺パネル部材とのマッチングと、熱工程での寸法安定性の両立が困難になる傾向がある。
 本発明のガラス組成物を真空ガラス管型集熱器用の管ガラスに用いる場合は、管ガラスと、ガラスフリットや金属製端版等の管封止用部材と、の熱膨張係数を合わせるために、また、本発明のガラス組成物をスーパーハイビジョンテレビやモバイルデバイスのような高精細ディスプレイパネルに用いる場合は、より寸法安定性を改善するために、好ましくは65×10-7/℃以下、より好ましくは60×10-7/℃以下である。
 本発明のガラス組成物は、ガラスの溶解性や清澄性を考慮して、粘度が10dPa・sとなる温度(T)が1600℃以下である。Tは1580℃以下が好ましく、1560℃以下がより好ましい。
 また本発明のガラス組成物は、板ガラスや管ガラスの成形性を考慮すると、粘度が10dPa・sとなる温度(T)は1240℃以下が好ましく、1220℃以下がより好ましく、1200℃以下がさらに好ましく、1180℃以下が特に好ましい。
 また本発明のガラス組成物は、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT-T≧-70℃であると好ましい。T-Tが-70℃未満では、板ガラス成形時に失透が生じやすく、板ガラスの成形が困難になるおそれがある。T-Tがより好ましくは-50℃以上、さらに好ましくは-30℃以上、さらには0℃以上、特に好ましくは10℃以上、最も好ましくは20℃以上である。
 ここで、失透温度とは、ガラスを特定の温度で17時間保持するときに、ガラス表面および内部に結晶が生成しない最大温度を指す。
 本発明のガラス組成物は、密度が2.9g/cm以下が好ましい。密度が2.9g/cmを超えると、製品質量が重くなり好ましくない。密度はより好ましくは2.8g/cm以下、さらに好ましくは2.7g/cm以下である。
 本発明のガラス組成物をCdTe太陽電池用ガラス基板や真空ガラス管型集熱器用管ガラスに用いる場合、発電効率を考慮すると、波長450~1100nmにおけるガラス組成物の平均透過率は、ガラス基板としたとき1mm厚み換算で86%以上であると好ましい。より好ましくは90%以上、さらに好ましくは92%以上である。また、ディスプレイパネル用ガラス基板に用いる場合においても、高輝度化や色再現性の観点のため、同様の平均透過率が必要となる。
 波長400nmにおけるガラス組成物の透過率は、ガラス基板としたとき1mm厚み換算で85%以上であると好ましい。85%未満では、太陽電池や太陽熱集熱器の発電効率が低下するおそれがある。また85%未満では、長期間使用した際にガラスが太陽光によりソラリゼーションを起こし、さらに発電効率が低下するおそれがある。また85%未満では、本発明のガラス組成物をディスプレイパネル用ガラス基板に用いる場合、パネル作製でのシール工程でUV硬化が効率よく実施しにくくなる。より好ましくは88%以上、さらに好ましくは90%以上である。
 また本発明のガラス組成物は、120℃、0.2MPaの水蒸気雰囲気下に20時間保持後のガラス表面に析出しているアルカリ金属およびアルカリ土類金属元素量が、300ng/cm以下であると好ましい。300ng/cm超であると、太陽電池用ガラス基板や真空ガラス管型集熱器用管ガラスやディスプレイパネル用ガラス基板として用いる場合に耐候性が低下する傾向がある。より好ましくは200ng/cm以下、さらに好ましくは100ng/cm以下である。
 また本発明のガラス組成物は、光弾性定数が29nm/MPa/cm以下であると好ましい。29nm/MPa/cm超であると、本発明のガラス組成物をディスプレイパネル用ガラス基板(特に、液晶ディスプレイ(LCD)パネル用ガラス基板)に用いる場合、LCDパネルに発生した応力等によりガラス基板に生じた複屈折による表示品質の低下が顕著となるおそれがある。より好ましくは28nm/MPa/cm以下、さらに好ましくは27nm/MPa/cm以下、さらに好ましくは26nm/MPa/cm以下である。
 また本発明のガラス組成物は、ヤング率が79GPa以上であると好ましい。79GPa未満であると、本発明のガラス組成物をディスプレイパネル用ガラス基板(特に、液晶ディスプレイ(LCD)パネル用ガラス基板)に用いる場合、LCD製造工程中で用いるガラス基板や、製品となったLCDパネルのガラス基板に、自重や外部からの応力等によるガラスのたわみや変形による不具合が生じるおそれがある。より好ましくは81GPa以上、さらに好ましくは83GPa以上、さらに好ましくは85GPa以上である。
 本発明のガラス組成物において上記母組成に限定する理由は以下のとおりである。
 SiO:ガラスの骨格を形成する成分で、55モル%(以下単に%と記載する)未満ではガラスの耐熱性、ヤング率および化学的耐久性が低下し、平均熱膨張係数が増大するおそれがある。好ましくは57%以上であり、より好ましくは59%以上であり、さらに好ましくは62%以上である。
 しかし、70%超では光弾性定数が上昇し、ガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは69%以下であり、より好ましくは68%以下であり、さらに好ましくは67%以下である。
 Al:ガラス転移点温度を上げ、耐候性、化学的耐久性、耐熱性、ヤング率を向上する。その含有量が5%未満だとガラス転移点温度が低下するおそれがある。また平均熱膨張係数が増大するおそれがある。好ましくは5.5%以上である。
 しかし、10%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。また太陽電池用ガラス基板に用いた場合に発電効率が低下するおそれがある。好ましくは9%以下であり、より好ましくは8%以下である。
 Bは、密度を軽くする、溶解性を向上させる等のために0.5%まで含有してもよい。0.5%を超えると、光弾性定数が上昇したり、太陽電池用ガラス基板に用いた場合に光電変換層としてのCIGS層またはCdTe層形成時にこれらの層に硼素イオンが拡散し、発電効率の低下を招くおそれがある。またガラス溶解時にBの揮散量が多くなり、設備負荷が増すおそれがある。好ましくは0.3%以下、より好ましくは実質的に含有しない。
 なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
 MgO:化学的耐久性、ヤング率および耐候性を向上させる、密度を軽くする等のため3~15%含有する。3%未満では化学的耐久性および耐候性が十分に得られない傾向がある。5%以上であると好ましく、より好ましくは6%以上である。15%を超えるとガラスを失透させる傾向が強くなる。12%以下であると好ましく、10%以下であるとより好ましい。
 CaO:高温粘性を低下させる、または平均熱膨張係数を上げる等のため、3~15%含有する。3%未満では高温粘性が充分には低下せず、溶解性が悪化する、または平均熱膨張係数が低くなりすぎる傾向がある。5%以上であると好ましく、6%以上であるとより好ましい。一方、15%を超えるとガラスを失透させる傾向が強くなる、化学的耐久性および耐候性が低下する傾向がある。12%以下であると好ましく、含有量が10%以下であるとより好ましい。
 SrO:高温粘性を低下させる、または平均熱膨張係数を上げる、光弾性定数を低下させる等のため、必須の成分である。その含有量は、2~10%である。含有量が2%未満では高温粘性が充分には低下せず、溶解性が悪化する、または平均熱膨張係数が低くなりすぎる傾向がある。含有量が3%以上であると好ましい。一方、含有量が10%を超えるとガラスを失透させる傾向が強くなる、Tが低下する、化学的耐久性および耐候性が劣化する傾向があり、または密度が重くなる。含有量が9%以下であると好ましく、含有量が8%以下であるとより好ましい。
 BaO:高温粘性を低下させる、または平均熱膨張係数を上げる、光弾性定数を低下させる等のため、必須の成分である。その含有量は、1~10%である。含有量が1%未満では高温粘性が充分には低下せず、溶解性が悪化する、または平均熱膨張係数が低くなりすぎる傾向がある。含有量が2%以上であると好ましい。一方、含有量が10%を超えるとTgが低下する、化学的耐久性および耐候性が劣化する傾向があり、または密度が重くなる。含有量が9%以下であると好ましく、含有量が7%以下であるとより好ましい。
 ZrO:化学的耐久性および耐候性を高める、Tを上げる成分であり、3%まで含有してもよい。3%を超えると、原料コストがかかる、ガラスを失透させる傾向が強くなる、または密度が重くなる。好ましくは含有量が1.5%以下であり、より好ましくは1%以下である。一方、含有する場合には、0.2%以上が好ましく、0.5%以上がより好ましい。
 TiO:Tを上げ、化学的耐久性および耐候性を向上させるのに有効であるが、透過率が低下する、ソラリゼーションを引き起こすおそれがあるため、本発明においては実質的に含有しないことが好ましい。
 MgO、CaO、SrOおよびBaOの合量は、20~35%である。上記合量が20%未満では高温粘性が充分には低下せず、溶解性が悪化する、または平均熱膨張係数が低くなりすぎる傾向がある。上記合量が22%以上であると好ましく、より好ましくは24%以上である。一方、上記合量が多すぎるとガラスを失透させる傾向が強くなる、Tが低下する、化学的耐久性および耐候性が劣化する傾向があり、または密度が重くなる。そのため、上記合量は35%以下である。上記合量が32%以下が好ましく、29%以下であるとより好ましい。
 NaO:溶解性向上等のために1.8%まで含有してもよい。1.8%を超えると、著しくTg、ヤング率を低下させる傾向がある。また、アルカリ金属をドーピングするCIGS層を有するCIGS太陽電池用ガラス基板に用いる場合にはアルカリ金属拡散バリア層の形成が必要となり、CIGS太陽電池製造時のコストが増大するおそれがある。CdTe太陽電池用ガラス基板に用いる場合には、アルカリ金属が、後述する透明導電酸化物層(以下、「TCO層」ともいう)やCdTe層に拡散し発電効率が低下するおそれがある。ディスプレイパネル用ガラス基板に用いる場合には、アルカリ金属イオンがTFT層に拡散し、長期駆動安定性を損なうおそれがある。
 好ましくは含有量が1.0%以下であり、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下、特に好ましくは0.3%以下、最も好ましくは実質的に含有しない。一方、含有する場合には、0.1%以上が好ましく、0.2%以上がより好ましい。
 KO:溶解性向上等のために1%まで含有してもよい。1%を超えると、著しくT、ヤング率を低下させる、または、アルカリ金属をドーピングするCIGS層の場合にはアルカリ金属拡散バリア層の形成が必要となり、CIGS太陽電池製造時のコストが増大する、またはCdTe太陽電池の場合にはアルカリ金属がTCO層やCdTe層に拡散し発電効率が低下するおそれがある。またディスプレイパネル用ガラス基板に用いる場合には、アルカリ金属イオンがTFT層に拡散し、長期駆動安定性を損なうおそれがある。
 好ましくは含有量が0.7%以下であり、より好ましくは0.5%以下、さらに好ましくは0.3%以下、特に好ましくは実質的に含有しない。一方、含有する場合には、0.1%以上が好ましく、0.2%以上がより好ましい。
 NaOおよびKO:NaOとKOの合量は、2%以下である。上記合量が2%超では、著しくTg、ヤング率を低下させるおそれがある。また、アルカリ金属をドーピングするCIGS層を有するCIGS太陽電池用ガラス基板に用いる場合にはアルカリ金属拡散バリア層の形成が必要となる。またディスプレイパネル用ガラス基板に用いる場合には、アルカリ金属イオンがTFT層に拡散し、長期駆動安定性を損なうおそれがある。
 好ましくは含有量が1.5%以下であり、より好ましくは1%以下であり、さらに好ましくは0.5%以下であり、特に好ましくは0.3%以下、最も好ましくは実質的に含有しない。
 CeOは、ガラスの清澄剤として有効であるが、原料コストがかかる、透過率が低下する、ソラリゼーションを引き起こすおそれがあるため、本発明においては実質的に含有しないことが好ましい。
 Laは、Tを上げ、高温粘性を下げるのに有効であるが、密度が重くなる、原料コストがかかる、Laの原料に含まれるCeOを分離することが難しい等の理由から本発明においては実質的に含有しないことが好ましい。
 本発明のガラス組成物は、下記酸化物基準のモル百分率表示で、
SiOを55~70%、
Alを5~10%、
を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrOを0~3%、
NaOを0~1%、
Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
NaO+KOを0~1.5%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下のガラス組成物が好ましい。
 ガラスの清澄性を改善するため、ガラス組成物中にSO、F、Cl、SnO、Feをそれぞれガラス母組成成分の原料100質量部に対し、SO:0.5質量部以下、F:1.5質量部以下、Cl:3質量部以下、SnO:0.30質量部以下、Fe:0.30質量部以下、合量で3質量部以下含有するように、これらの原料を母組成原料に添加してもよい。
 ただし、CdTe太陽電池用ガラス基板や真空ガラス管型集熱器用管ガラス、UV硬化樹脂をパネルのシール工程で用いるディスプレイパネル用ガラス基板に用いる場合、Feは好ましくは0.03質量部以下、より好ましくは0.02質量部以下、さらに好ましくは0.01質量部以下、特に好ましくは0.005質量部以下である。
 またSnOは好ましくは0.30質量部以下、より好ましくは0.25質量部以下、さらに好ましくは0.20質量部以下である。透過率を確保するためである。
 管ガラス成形にダンナー法を用いる場合は、Clは実質的に含有しないことが好ましい。Clが含有されると、溶融ガラスとスリーブとの接触面でリボイルが発生して管ガラス中に泡が混入するおそれがあるからである。
 また、環境負荷を考慮すると、清澄剤としてAs、Sbを実質的に含有しないことが好ましい。
 本発明の目的を損なわない範囲でその他の成分を、それぞれ1%以下、合計で5%以下含有してもよい。たとえば、耐候性、溶解性、失透性、紫外線遮蔽、屈折率等の改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、TlO、P等を含有してもよい場合がある。
 大面積のガラス基板を成形する場合にフロート法が好ましく用いられるが、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。
 本発明のガラス組成物は、不可避的不純物を除き、SiO、Al、MgO、CaO、SrO、BaO、ZrO、NaO、KOからなることが好ましい。但し、上記清澄剤(SO、F、Cl、SnO、Fe等)は許容される。
<本発明のガラス組成物の用途>
 本発明のガラス組成物は、CIGS、CZTS、CdTe等の太陽電池用ガラス基板または太陽電池のカバーガラスに好適である。
 また、真空ガラス管型集熱器用管ガラスとしても好適である。
 また、ディスプレイパネル用ガラス基板としても好適である。
<本発明のガラス基板の製造方法>
 本発明のガラス基板の製造方法について説明する。
 本発明の太陽電池用ガラス基板を製造する場合、従来の板ガラスを製造する際と同様に、溶解・清澄工程および成形工程を実施する。成形方法としてフロート法およびフュージョン法(ダウンドロー法)が適している。
 板ガラスに成形する方法としては、太陽電池やディスプレイの大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。
 本発明のガラス基板の製造方法は、ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下で、酸化物基準のモル百分率表示でMgO+CaO+SrO+BaOを20~35%含有し、かつNaO+KOを0~2%含有するガラスの清澄方法であって、上記ガラス母組成成分の原料100質量部に対し、
 SOを0.1~0.5質量部、
 Clを0.2~3質量部、
 Fを0.05~1.5質量部、
 添加し溶解、清澄することが好ましい。
 上述のように、ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下というように、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有するためには、MgO+CaO+SrO+BaOを20~35%含有し、かつNaO+KOを0~2%添加すると好ましい。このようなガラスを短時間で清澄するためには、上記ガラス母組成成分の原料100質量部に対し、SOを0.1~0.5質量部、Clを0.2~3質量部、Fを0.05~1.5質量部添加し溶解、清澄することが好ましい。
 SOが0.1質量部未満、Clが0.2質量部未満、Fが0.05質量部未満だと、泡が膨らみにくく、短時間で清澄することが困難になる。SOが0.5質量部超、Clが3質量部超、Fが1.5質量部超だと、均質化のためのスターラーやフロートバスへの導入経路の途中でリボイルによって泡を発生させる可能性が増す。
 本発明のガラス基板の製造方法の好ましい態様について説明する。
 得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1450~1650℃に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状の板ガラスに成形する。
 次に、リボン状の板ガラスをフロート成形炉から引出した後に、徐冷手段によって室温状態まで徐冷し、切断後、ガラス基板を得る。
<本発明のCIGS太陽電池用ガラス基板>
 本発明のCIGS太陽電池用ガラス基板は、CIGS太陽電池用のガラス基板、またカバーガラスとしても好適である。
 本発明のCIGS太陽電池用ガラス基板を、CIGS太陽電池のガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板にCIGSの光電変換層を付与する方法は特に制限されない。本発明のCIGS太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500~700℃、好ましくは600~700℃とすることができる。
 本発明のCIGS太陽電池用ガラス基板を、CIGS太陽電池のガラス基板のみに使用する場合、カバーガラス等は特に制限されないが、本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のガラス基板およびカバーガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
<本発明におけるCIGS太陽電池>
 次に、本発明におけるCIGS太陽電池について説明する。
 本発明におけるCIGS太陽電池は、ガラス基板と、カバーガラスと、上記ガラス基板と上記カバーガラスとの間に、光電変換層として配置されるCIGS層と、を有し、ガラス基板とカバーガラスの少なくともどちらか一方が本発明のガラス基板である。
 ガラス基板上に、もしくはガラス基板上のMo等のプラス電極上に、もしくはCIGSのプリカーサー上のいずれかにNaを含むアルカリ金属化合物が積層されることが好ましい。Naを含むアルカリ金属化合物が積層されていないと光電変換層に十分なアルカリ金属の拡散が行われず、発電効率が低下するおそれがある。上記アルカリ金属化合物としては、例えばNaF、NaCl、NaS、NaSe、KF、KCl、KS、KSe、Mo複合酸化物等が挙げられるが、特に限定されるものではなく、また2種類以上のアルカリ金属化合物を組み合わせてもよい。
 上記アルカリ金属化合物を積層する場合、その積層方法は特に限定されるものではなく、例えばスパッタ法、CVD法、MOCVD法、蒸着法、湿式法いずれを適用してもよい。
 CIGS層の形成方法は特に限定されるものではない。Se以外の構成元素を含有成分としたプリカーサーを形成後、HSeガス雰囲気中で熱処理を行う、いわゆるセレン化法でもよいし、各構成元素を物理蒸着する蒸着法、または、CIGS粉末を用いてインクを調整し、スクリーン印刷後に熱処理を施して焼結させる印刷法でもよい。
<本発明のCdTe太陽電池用ガラス基板>
 本発明のCdTe太陽電池用ガラス基板は、CdTe太陽電池用のガラス基板、またカバーガラス(以下、CdTd太陽電池においては、「裏板ガラス」ともいう)としても好適である。
 本発明のCdTe太陽電池用ガラス基板を、CdTe太陽電池のガラス基板に適用する場合、ガラス基板の厚さは4mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板にCdTeの光電変換層を付与する方法は特に制限されない。本発明のCdTe太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500~700℃、好ましくは600~700℃とすることができる。
 本発明のCdTe太陽電池用ガラス基板を、CdTe太陽電池のガラス基板のみに使用する場合、裏板ガラス等は特に制限されないが、本発明のCdTe太陽電池用ガラス基板をCdTe太陽電池のガラス基板および裏板ガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
<本発明におけるCdTe太陽電池>
 次に、本発明におけるCdTe太陽電池について説明する。
 本発明におけるCdTe太陽電池は、ガラス基板と、裏板ガラスと、上記ガラス基板と上記裏板ガラスとの間に配置されるCdTeの光電変換層と、を有し、少なくともガラス基板が、本発明のガラス基板である。
 本発明のCdTe太陽電池の構造は、特に限定されるものではないが、ガラス基板上に、透光性の下部電極を形成し、次いで、この下部電極の上に窓層、CdTe層を形成後、上部電極を形成する構造が好ましい。
 透光性の下部電極には、例えばITOやSnO等の薄膜からなる透明導電酸化物層(以下、「TCO層」ともいう)を用いる。CdTe層を形成する際に、TCO層も高温プロセスにさらされる。このときに、TCO層にガラス基板からアルカリ金属が拡散すると、TCO層の膜質が劣化する、もしくはCdTe層にまでアルカリ金属が拡散し、発電効率が低下するおそれがある。
 特に他のガラス基板からの元素(たとえばアルカリ土類金属)の拡散を抑えたい場合、ガラス基板とTCO層との間に拡散バリア層を形成してもよい。拡散バリア層としては、例えばSiO層等が好ましい。
 上記下部電極、窓層、上部電極、拡散バリア層を積層する場合、その積層方法は特に限定されるものではなく、例えばスパッタ法、CVD法、MOCVD法、分子線成長(MBE)法、蒸着法、溶液成長(CBD)法、湿式法いずれを適用してもよい。
 また、CdTe層の形成方法は特に限定されるものではない。不活性ガス雰囲気中でCdTeのソースを加熱して昇華させ、上記窓層(窓層は、上記ガラス基板上に形成された下部電極の上の形成される)上にCdTeを堆積させる、いわゆる近接昇華(CSS)法でもよいし、各構成元素を物理蒸着する蒸着法、CdTe粉末を用いてインクを調整し、スクリーン印刷後に熱処理を施して焼結させる印刷法、その他、MOCVD法、MBE法、または電析法でもよい。
<本発明のディスプレイパネル用ガラス基板>
 本発明のディスプレイパネル用ガラス基板は、有機ELディスプレイパネル用ガラス基板、またIGZO等の酸化物半導体やペンタセン等の有機半導体をTFTに用いる有機ELディスプレイパネル用ガラス基板としても好適である。
 本発明のディスプレイパネル用ガラス基板を、ディスプレイパネルのガラス基板に適用する場合、ガラス基板の厚さは2mm以下とするのが好ましく、より好ましくは1.3mm以下、さらに好ましくは0.8mm以下、特に好ましくは0.5mm以下、最も好ましくは0.3mm以下である。またガラス基板にTFTを形成する方法や、形成するTFTの種類は特に制限されない。
 しかし、本発明のディスプレイパネル用ガラス基板は、シリコンTFTの熱膨張係数に合わせた従来の市販の無アルカリガラス(例えば、コーニング社製のEAGLE XG、旭硝子(株)製のAN100等)と異なり、平均熱膨張係数が50×10-7~70×10-7/℃の範囲となっていることから、IGZO等の酸化物半導体やペンタセン等の有機半導体を用いたTFTに好適である。また、金属フレームを用いるような50インチ以上の大型テレビ用のディスプレイパネルのガラス基板に好適である。
 以下、実施例および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定されない。
 本発明のガラス組成物の実施例(例1~22、26~37)および比較例(例23~25、38)を示す。なお表1~4中のかっこは、計算値(回帰計算による)である。
 表1~4で表示した組成になるように各成分の原料を調合し、白金坩堝を用いて1600℃の温度で30分加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却し、ガラス板を得た。
 なお、上記調合の際に、ガラス母組成成分の原料100質量部に対し、Feを例18、25~38にそれぞれ0.05質量部、例23、24にそれぞれ0.06質量部、0.08質量部、例1~17、19~22にそれぞれ0.1質量部添加した。また、SOを例1~22、24~36にそれぞれ0.3質量部、例23に0.36質量部添加した。Clを例1~22、25~38にそれぞれ0.5質量部、例23に1質量部添加した。Fを例1~22、25~35、37、38にそれぞれ0.15質量部、例23に0.14質量部、例36に1.2質量部添加した。CeOを例22に0.05質量部添加した。
 例9、17、20のガラス組成物中のFeの残存量(モル%)はそれぞれ0.04%、例18、36のガラス組成物中のFeの残存量は0.02%であった。また例9、17、18、20、36のガラス組成物中のSOの残存量は0.01~0.07%であった。また例9、17、18、20のガラス組成物中のClの残存量は0.70~1.00%、例36のガラス組成物中のClの残存量は1.65%であった。また例9、17、18、20のガラス組成物中のFの残存量は0.30~0.60%、例36のガラス組成物中のFの残存量は3.14%であった。また例22のガラス組成物中のCeOの残存量は0.02%であった。
 なお、ガラス組成物中のFe、SO、Cl、F、CeOの残存量は、ガラス板から切り出したガラスの塊を粉末状にして蛍光X線で評価し、測定した。
 こうして得られたガラス板の平均熱膨張係数α(単位:×10-7/℃)、ガラス転移点温度T(単位:℃)、粘度が10dPa・sとなる温度(T)(単位:℃)、粘度が10dPa・sとなる温度(T)(単位:℃)、失透温度(T)(単位:℃)、歪点Tsp(単位:℃)、徐冷点Tap(単位:℃)、波長400nmにおける透過率V400(単位:%)、平均透過率Vave(単位:%)、密度d(単位:g/cm)、ヤング率E(単位:GPa)、耐候性として特定条件下保持後のガラス基板表面に析出しているアルカリ金属およびアルカリ土類金属量(単位:ng/cm)、アルカリ金属拡散性として、TCO層を製膜後に特定条件下保持したTCO層付ガラスにおける、ガラス基板からTCO層中に拡散したアルカリ金属量(単位:Na/Zn Count)、および、光弾性定数(単位:nm/MPa/cm)を測定し、表1~4に示した。以下に各物性の測定方法を示す。
 なお、実施例では、ガラス板やガラス基板について測定している物性もあるが、各物性は、ガラス組成物とガラス板とガラス基板とで同じ値である。得られたガラス板を加工、研磨を施すことで、ガラス基板とすることができる。
(1)ガラス転移点温度(T):Tは示差熱膨張計(TMA)を用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
(2)50~350℃の平均熱膨張係数(α):示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(3)粘度:回転粘度計を用いて測定し、粘度ηが10dPa・sとなるときの温度T(溶解性の基準温度)と、粘度ηが10dPa・sとなるときの温度T(成形性の基準温度)を測定した。
(4)失透温度(T):ガラス板から切り出したガラス塊5gを白金皿に置き、所定温度で17時間電気炉中で保持した。保持した後のガラス塊表面および内部に結晶が析出しない温度の最大値を失透温度とした。
(5)密度(d):泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(6)ヤング率(E):厚さが4~10mm、大きさが約4cm×4cmのガラス板について、超音波パルス法により測定した。
(7)歪点(Tsp)、徐冷点(Tap):JIS R3103-2に従って測定した。
(8)透過率(V400、平均透過率Vave):厚さ1mm、大きさ4cm×4cmのガラス板の両面を酸化セリウムで鏡面研磨したサンプル(ガラス基板)を作製し、波長300~2000nmの透過率を測定し、400nmにおける透過率V400(単位:%)を読み取り、また450~1100nmにおける平均透過率Vave(単位:%)を算出した。
(9)耐候性試験:厚さ1~2mm、大きさ4cm×4cmのガラス板の両面を酸化セリウムで鏡面研磨し、炭酸カルシウムおよび中性洗剤を用いて洗浄した後、ガラス基板を得た。得られたガラス基板を高度加速寿命試験装置(エスペック(株)製、商品名;不飽和型プレッシャークッカーEHS-411M)に入れて120℃、0.2MPaの水蒸気雰囲気に20時間静置した。洗浄済みチャック付ポリ袋に試験後のガラス基板と超純水20mlを入れ超音波洗浄機で10分間表面析出物を溶解し、ICP分光法でアルカリ金属およびアルカリ土類金属の元素の溶出物を定量(溶出質量/試料表面積)した(単位:ng/cm)。
(10)アルカリ金属拡散性(DNa600、DNa650):厚さ1~4mm、大きさ5cm×5cmのガラス板の両面を酸化セリウムで鏡面研磨し、炭酸カルシウムおよび中性洗剤を用いて洗浄し、ガラス基板とした。その後、例24のガラス板から得られたガラス基板のみスパッタにより、SiOのアルカリ金属バリア層を約40nm形成した。
 それぞれのガラス基板に、TCO層に相当する膜として、Gaを5.7wt%ドープしたZnO膜(GZO膜)を約100nm、ガラス基板温度約100℃の条件でスパッタにより製膜し、各サンプルを得た。
 これらのサンプルをN雰囲気下で600℃、650℃にそれぞれ30分保持後、GZO膜中のNaO量をSIMSにて定量し、Znで規格化した値をアルカリ金属拡散性(600℃の時のアルカリ金属拡散性をDNa600、650℃の時をDNa650)と定義した(単位:Na/Zn count)。
 なお、表中例24のガラス基板サンプルにおけるアルカリ金属拡散性DNa600は「<>」で表記しているが、これはガラスとGZO膜の間にアルカリ金属拡散バリア層が存在しているため、他の実施例と区別するためである。さらに、上記ガラスのDNa650欄が「<->」であるのは、650℃に加熱するとTが低いため変形してしまい、SIMSによる定量ができなかったためである。
(11)光弾性定数:円盤圧縮法(測定波長546nm)にて測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4より明らかなように、実施例(例1~17、19~22、26~37)のガラス組成物は、ガラス転移点温度Tが680℃以上と高く、平均熱膨張係数αが50×10-7~70×10-7/℃であり、Tが1600℃以下である。したがって高いガラス転移点温度、所定の平均熱膨張係数、低いガラス溶解温度を両立させることができるため、本発明のガラス組成物を用いることで、発電効率の高い太陽電池用ガラス基板や、太陽熱集熱効率の高い真空ガラス管型集熱器用管ガラスを提供できる。さらにガラス生産時に、生産性が高く、また高品質のガラスを得ることができる。また耐候性も良好のため、長期信頼性も期待できる。
 なお、例18のガラス組成物についても、それぞれ満たしていた。
 実施例のガラス組成物から得られるガラス基板を太陽電池に用いた場合、CIGS太陽電池ではCIGS層がMo電極層付ガラス基板から剥離することがなく、またCdTe太陽電池ではCdTe層がガラス基板から剥離することなく、さらに太陽電池を組立てる際(具体的にはガラス基板とカバーガラスとをこれらの間に、CIGS層やCdTe層等の光電変換層が挟持されるように加熱してはりあわせる際)にもガラス基板が変形しにくく、発電効率により優れる。特に例9、11~22は、波長450~1100nmにおける平均透過率および波長400nmの透過率が充分高く、発電効率に優れる。
 なお、例1~8、10、26~37のガラス組成物についても、透過率は高かった。
 実施例(例18、26、36、37)のガラス組成物のアルカリ金属拡散性の結果をみると、温度を600℃から650℃に上げた場合にもアルカリ金属拡散性の値は小さく、かつ変化が見られなかった。このことから、実施例(例18、26、36、37)のガラス組成物から得られるガラス基板をCdTe太陽電池に用いた場合、TCO層や光電変換層へのアルカリ金属拡散は軽微と考えられる。そのため、アルカリ金属拡散バリア層を形成する必要がなく、電池作製工程から1つ工程を減らすことができ、コスト優位性が期待できる。また、アルカリ金属拡散によるTCO層劣化がないことから、CdTe製膜時の温度を上げることができ、CdTeの結晶性向上および発電効率の向上が期待できる。
 なお、NaOの含有量が多い例18、26、36、37のガラス組成物においてアルカリ金属拡散抑制性が優れていることから、NaOの含有量がこれら例より少ないその他の実施例のガラス組成物においても同様に、アルカリ金属拡散抑制性に優れていることが推測される。
 実施例のガラス組成物から得られるガラス基板はアルカリ金属拡散抑制性に優れることから、有機ELディスプレイ等のディスプレイパネルに用いる場合、長期信頼性の向上が期待できる。
 一方、比較例(例23)のガラス組成物は、Tが1600℃超となり生産性が劣る。また平均熱膨張係数αが低すぎるため、光電変換層を形成後に層剥離を起こすおそれがある。またBを多く含むため、ガラス生産設備への負荷が大きくなる。
 また比較例(例24)は、Tが低いため光電変換層の形成時にガラス基板が変形しやすい。また、耐候性評価におけるアルカリ金属およびアルカリ土類金属の元素の溶出量が多いため、耐候性が劣るおそれがある。アルカリ金属拡散バリア層を形成した後に光電変換層を形成したとしても、実施例と比較してアルカリ金属拡散性が大きな値を示す傾向がある。これは、ガラス母組成成分中にアルカリ金属酸化物量が多く、ガラス基板のTが低いので、粘性の影響でガラス中のアルカリ金属の移動度が大きいためと考えられる。またTが低いため光電変換層を形成する際にプロセス温度をあげることが難しくなり、発電効率の向上が得られにくい。また、ディスプレイパネルに用いる場合、長期信頼性が問題となる可能性がある。
 比較例(例38および例25)は、NaOをそれぞれ2.0mol%、2.9mol%含むため、アルカリ金属拡散性の値が実施例よりも大きく、さらに温度上昇によるアルカリ金属拡散性の増加も認められることから、光電変換層を形成する際にプロセス温度をあげることができない。そのため、発電効率の向上が期待できない、もしくはアルカリ金属拡散バリア層を形成する必要があるため、電池作製工程から1つ工程が増え、プロセス優位性に劣る。また、ディスプレイパネルに用いる場合、長期信頼性が問題となる可能性がある。
 本発明のガラス組成物は、CIGS、CZTS、CdTe等の太陽電池用ガラス基板として好適である。また、真空ガラス管型集熱器用管ガラスとしても有効である。また、ディスプレイパネル用ガラス基板として好適である。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年2月8日出願の日本特許出願2011-025148に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のガラス組成物は、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有することができ、本発明のガラス組成物を用いることで、発電効率の高い太陽電池用ガラス基板や、太陽熱集熱効率の高い真空ガラス管型集熱器用管ガラス、ディスプレイパネル用ガラス基板を提供することができる。さらにガラス生産時に、生産性が高く、また高品質のガラス基板や管ガラスを得ることができる。

Claims (7)

  1.  下記酸化物基準のモル百分率表示で、
    SiOを55~70%、
    Alを5~10%、
    を0~0.5%、
    MgOを3~15%、
    CaOを3~15%、
    SrOを2~10%、
    BaOを1~10%、
    ZrOを0~3%、
    NaOを0~1.8%、
    Oを0~1%、
    MgO+CaO+SrO+BaOを20~35%、
    NaO+KOを0~2%含有し、
    ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下のガラス組成物。
  2.  下記酸化物基準のモル百分率表示で、
    SiOを55~70%、
    Alを5~10%、
    を0~0.5%、
    MgOを3~15%、
    CaOを3~15%、
    SrOを2~10%、
    BaOを1~10%、
    ZrOを0~3%、
    NaOを0~1%、
    Oを0~1%、
    MgO+CaO+SrO+BaOを20~35%、
    NaO+KOを0~1.5%含有し、
    ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が10dPa・sとなる温度が1600℃以下の請求項1に記載のガラス組成物。
  3.  下記酸化物基準のモル百分率表示で、
    SiOを59~67%、
    Alを5~8%、
    を0~0.3%、
    MgOを6~10%、
    CaOを6~10%、
    SrOを3~9%、
    BaOを2~7%、
    ZrOを0~1%、
    NaOを0~1%、
    Oを0~1%、
    MgO+CaO+SrO+BaOを24~29%、
    NaO+KOを0~1.5%含有し、
    ガラス転移点温度が700℃以上、平均熱膨張係数が50×10-7~60×10-7/℃、粘度が10dPa・sとなる温度が1580℃以下の請求項1または2に記載のガラス組成物。
  4.  請求項1~3のいずれか一項に記載のガラス組成物からなる太陽電池用ガラス基板。
  5.  請求項1~3のいずれか一項に記載のガラス組成物からなるCIGS太陽電池用ガラス基板。
  6.  請求項1~3のいずれか一項に記載のガラス組成物からなるCdTe太陽電池用ガラス基板。
  7.  請求項1~3のいずれか一項に記載のガラス組成物からなるディスプレイパネル用ガラス基板。
PCT/JP2012/052468 2011-02-08 2012-02-03 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 WO2012108345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800081648A CN103347832A (zh) 2011-02-08 2012-02-03 玻璃组合物及使用玻璃组合物的太阳能电池用玻璃基板、以及显示面板用玻璃基板
JP2012556854A JPWO2012108345A1 (ja) 2011-02-08 2012-02-03 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
KR1020137020971A KR20140053832A (ko) 2011-02-08 2012-02-03 유리 조성물 및 유리 조성물을 사용한 태양 전지용 유리 기판, 및 디스플레이 패널용 유리 기판
US13/960,461 US20130324389A1 (en) 2011-02-08 2013-08-06 Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025148 2011-02-08
JP2011-025148 2011-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/960,461 Continuation US20130324389A1 (en) 2011-02-08 2013-08-06 Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel

Publications (1)

Publication Number Publication Date
WO2012108345A1 true WO2012108345A1 (ja) 2012-08-16

Family

ID=46638561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052468 WO2012108345A1 (ja) 2011-02-08 2012-02-03 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板

Country Status (6)

Country Link
US (1) US20130324389A1 (ja)
JP (1) JPWO2012108345A1 (ja)
KR (1) KR20140053832A (ja)
CN (1) CN103347832A (ja)
TW (1) TW201233656A (ja)
WO (1) WO2012108345A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板
WO2017002808A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
WO2017002807A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JP2017048084A (ja) * 2015-09-02 2017-03-09 日本電気硝子株式会社 低光弾性ガラス板
JP2017529307A (ja) * 2014-09-22 2017-10-05 ジュシ グループ カンパニー リミテッド ガラス繊維組成物及びガラス繊維、並びに複合材料
JPWO2018038059A1 (ja) * 2016-08-23 2019-06-20 Agc株式会社 無アルカリガラス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140076392A1 (en) * 2012-09-18 2014-03-20 Tsmc Solar Ltd. Solar cell
CN104326662B (zh) * 2013-12-31 2017-07-04 东旭集团有限公司 一种不含硼的无碱铝硅酸盐玻璃
JP6578774B2 (ja) * 2014-07-18 2019-09-25 Agc株式会社 無アルカリガラス
KR20240023683A (ko) * 2015-10-02 2024-02-22 에이지씨 가부시키가이샤 유리 기판, 적층 기판 및 적층체
KR20220129672A (ko) * 2016-07-19 2022-09-23 세키스이가가쿠 고교가부시키가이샤 조광 적층체 및 조광 적층체용 수지 스페이서
WO2018116731A1 (ja) * 2016-12-19 2018-06-28 日本電気硝子株式会社 ガラス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248428A (ja) * 1988-08-09 1990-02-19 Ishizuka Glass Co Ltd セラミック基板用のグレーズ組成物
JPH0375237A (ja) * 1989-08-17 1991-03-29 Ishizuka Glass Co Ltd セラミック基板用グレーズ組成物
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631195A (en) * 1994-09-14 1997-05-20 Asahi Glass Company Ltd. Glass composition and substrate for plasma display
JPH1143347A (ja) * 1997-07-23 1999-02-16 Asahi Glass Co Ltd 基板用のガラス組成物
US6313052B1 (en) * 1998-02-27 2001-11-06 Asahi Glass Company Ltd. Glass for a substrate
US20060244291A1 (en) * 2005-04-29 2006-11-02 Buell Motorcycle Company Movable tailrack for a motorcycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248428A (ja) * 1988-08-09 1990-02-19 Ishizuka Glass Co Ltd セラミック基板用のグレーズ組成物
JPH0375237A (ja) * 1989-08-17 1991-03-29 Ishizuka Glass Co Ltd セラミック基板用グレーズ組成物
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529307A (ja) * 2014-09-22 2017-10-05 ジュシ グループ カンパニー リミテッド ガラス繊維組成物及びガラス繊維、並びに複合材料
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板
WO2017002808A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
WO2017002807A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JPWO2017002808A1 (ja) * 2015-06-30 2018-04-12 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JPWO2017002807A1 (ja) * 2015-06-30 2018-04-26 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
US10927034B2 (en) 2015-06-30 2021-02-23 Avanstrate Inc. Glass substrate for display and method for producing same
US11069716B2 (en) 2015-06-30 2021-07-20 Avanstrate Inc. Glass substrate for display and method for producing same
JP2017048084A (ja) * 2015-09-02 2017-03-09 日本電気硝子株式会社 低光弾性ガラス板
JPWO2018038059A1 (ja) * 2016-08-23 2019-06-20 Agc株式会社 無アルカリガラス

Also Published As

Publication number Publication date
KR20140053832A (ko) 2014-05-08
US20130324389A1 (en) 2013-12-05
CN103347832A (zh) 2013-10-09
TW201233656A (en) 2012-08-16
JPWO2012108345A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2012108345A1 (ja) ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
EP2119681B1 (en) Glass substrate for solar battery
JP6191138B2 (ja) ガラス
US8921245B2 (en) Glass substrate and method for manufacturing same
JP5733811B2 (ja) 太陽電池用ガラス基板の製造方法
WO2011018883A1 (ja) ガラス基板
US20110265863A1 (en) Solar cell
JP5610563B2 (ja) 太陽電池用ガラス基板
WO2010050591A1 (ja) 太陽電池
TWI543952B (zh) 薄膜太陽電池用玻璃板
JP5704500B2 (ja) ガラス板の製造方法
JPWO2013133273A1 (ja) Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池
US20150325725A1 (en) Glass substrate for solar cell
WO2013047246A1 (ja) CdTe太陽電池用ガラス基板およびそれを用いた太陽電池
WO2015076208A1 (ja) ガラス板
JP6128128B2 (ja) 太陽電池用ガラス基板およびそれを用いた太陽電池
JP5831850B2 (ja) 太陽電池用ガラス基板
JP2012036037A (ja) 屋外用管ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137020971

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745200

Country of ref document: EP

Kind code of ref document: A1