WO2012108345A1 - ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 - Google Patents
ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 Download PDFInfo
- Publication number
- WO2012108345A1 WO2012108345A1 PCT/JP2012/052468 JP2012052468W WO2012108345A1 WO 2012108345 A1 WO2012108345 A1 WO 2012108345A1 JP 2012052468 W JP2012052468 W JP 2012052468W WO 2012108345 A1 WO2012108345 A1 WO 2012108345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- glass substrate
- less
- composition
- glass composition
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 342
- 239000000203 mixture Substances 0.000 title claims abstract description 96
- 239000000758 substrate Substances 0.000 title claims description 159
- 230000009477 glass transition Effects 0.000 claims abstract description 26
- 229910004613 CdTe Inorganic materials 0.000 claims description 45
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 229910052783 alkali metal Inorganic materials 0.000 description 43
- 150000001340 alkali metals Chemical class 0.000 description 43
- 238000000034 method Methods 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 19
- 238000010248 power generation Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000002834 transmittance Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 230000007774 longterm Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 239000006059 cover glass Substances 0.000 description 10
- 238000004031 devitrification Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000005357 flat glass Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- 150000001339 alkali metal compounds Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000006124 Pilkington process Methods 0.000 description 4
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- -1 and the like Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052951 chalcopyrite Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 241001244373 Carex spissa Species 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a glass composition and a glass substrate comprising the glass composition. More specifically, for example, by evaporating a glass composition for a solar cell glass substrate in which a photoelectric conversion layer is formed between glass substrates or a heat medium heated by a heat collector by solar heat, and rotating a steam turbine.
- the present invention relates to a glass composition for a vacuum glass tube type heat collector for solar thermal power generation and a glass composition for a glass substrate for a display panel used for various display panels.
- the present invention typically includes a glass substrate and a cover glass, and a group 11-13 or 11-16 compound semiconductor having a chalcopyrite crystal structure or a cubic between the glass substrate and the cover glass.
- Glass substrate for solar cell in particular, glass substrate for Cu-In-Ga-Se solar cell and CdTe solar cell, on which a photoelectric conversion layer mainly composed of a crystalline or hexagonal 12-12 group compound semiconductor is formed
- the present invention relates to a glass substrate.
- the present invention relates to a glass substrate for a display panel used for various display panels such as a liquid crystal display (LCD) panel, an organic EL display panel, a plasma display panel (PDP), specifically an oxide semiconductor such as IGZO or pentacene.
- the present invention relates to a glass substrate for display using an organic semiconductor for a thin film transistor (TFT) (hereinafter also referred to as “glass substrate for TFT display panel”), particularly a glass substrate for an organic EL display panel.
- TFT thin film transistor
- 11-13 or 11-16 group compound semiconductors having a chalcopyrite crystal structure, or cubic or hexagonal group 12-16 group compound semiconductors have a large absorption for light in the visible to near-infrared wavelength range. Since it has a coefficient, it is expected as a material for a high-efficiency thin-film solar cell.
- CIGS Cu (In, Ga) Se 2 system
- CZTS Cu 2 ZnSnSe 4 system
- soda lime glass is used as a substrate and solar cells are obtained because they are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors.
- a glass material that can withstand a relatively high heat treatment temperature has been proposed (see Patent Document 1).
- the glass composition in this case contains an alkali metal oxide in order to diffuse the alkali metal into the CIGS layer.
- the glass tube for vacuum glass tube type heat collectors used by solar heat collection is known as a use of a glass composition (refer patent document 3).
- non-alkali glass that does not contain an alkali metal oxide has been conventionally used for a glass substrate for a display panel. This is because when an alkali metal oxide is contained in the glass substrate, a thin film transistor (TFT) used by the alkali metal ion in the glass substrate to drive the display panel during the heat treatment performed in the display panel manufacturing process. This is because it may diffuse into the semiconductor film and cause deterioration of TFT characteristics.
- TFT thin film transistor
- alkali-free glass has properties such as extremely high viscosity and difficulty in melting, and is accompanied by technical difficulties in production. Due to recent technological advances, the use of an alkali glass substrate containing an alkali metal oxide as a glass substrate for a display panel has also been studied (see Patent Document 4).
- the present invention relates to a glass composition having a high glass transition temperature, a predetermined average coefficient of thermal expansion, a low melting temperature in a well-balanced manner, and a glass substrate for solar cells comprising the glass composition, in particular, a glass substrate for CIGS solar cells and It aims at providing the glass substrate for CdTe solar cells, the glass substrate for display panels, specifically, for example, the glass substrate for TFT display panels, especially the glass substrate for organic EL display panels.
- the present invention is as follows. (1) In molar percentage display based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1.8%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0-2% Na 2 O + K 2 O, A glass composition having a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s or lower.
- the average coefficient of thermal expansion is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and the temperature at which the viscosity is 10 2 dPa ⁇ s is 1600 ° C. or lower. Glass composition.
- a glass substrate for a solar cell comprising the glass composition according to any one of (1) to (3) above.
- a CIGS solar cell glass substrate comprising the glass composition according to any one of (1) to (3) above.
- a glass substrate for a CdTe solar cell comprising the glass composition according to any one of (1) to (3) above.
- a glass substrate for a display panel comprising the glass composition according to any one of (1) to (3) above.
- the glass composition of the present invention can have a high glass transition temperature, a predetermined average thermal expansion coefficient, and a low melting temperature in a well-balanced manner.
- a glass substrate for a solar cell having high power generation efficiency a tube glass for a vacuum glass tube type heat collector having a high solar heat collection efficiency, and a glass substrate for a display panel having excellent long-term driving stability.
- a glass substrate for a display panel having excellent long-term driving stability can be provided.
- high productivity and high-quality glass substrates and tube glass can be obtained.
- the disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2011-025148 filed on Feb. 8, 2011, the disclosure of which is incorporated herein by reference.
- the glass composition of the present invention is expressed in terms of mole percentage based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1.8%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0-2% Na 2 O + K 2 O,
- the glass composition has a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s at a temperature of 1600 ° C. or lower.
- the glass transition temperature (T g ) of the glass composition of the present invention ensures the formation of the photoelectric conversion layer of the glass substrate for solar cells such as CIGS, CZTS, CdTe (due to glass thermal deformation during the film formation of the photoelectric conversion layer) (In order to prevent damage to the photoelectric conversion layer), to obtain the thermal shock resistance of the tube glass, and to reduce deformation and thermal shrinkage in the TFT manufacturing process of the glass substrate for display panel, the temperature is 680 ° C. or higher.
- the glass transition temperature of the glass composition of the present invention is higher than the glass transition temperature of soda lime glass. Preferably it is 700 degreeC or more, More preferably, it is 710 degreeC or more.
- the strain point (T sp ) is preferably 630 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 660 ° C. or higher.
- the annealing point (T ap ) of the glass composition of the present invention is preferably 780 ° C. or lower. If it exceeds 780 ° C., when the formed glass sheet or tube glass is gradually cooled, the slow cooling start temperature becomes high and the time spent for slow cooling becomes long, which may result in a decrease in productivity and an increase in cost. More preferably, it is 750 degrees C or less, More preferably, it is 740 degrees C or less.
- the average thermal expansion coefficient of the glass composition of the present invention at 50 to 350 ° C. is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C. If it is less than 50 ⁇ 10 ⁇ 7 / ° C. or more than 70 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion from the Mo electrode layer or the CdTe layer becomes too large when used for a glass substrate for solar cells, resulting in defects such as film peeling. It tends to occur. Moreover, when using the glass composition of this invention for the board
- the glass composition of the present invention is used for a tube glass for a vacuum glass tube type heat collector, in order to match the thermal expansion coefficients of the tube glass and a tube sealing member such as a glass frit or a metal end plate
- a tube sealing member such as a glass frit or a metal end plate
- the glass composition of the present invention is used in a high-definition display panel such as a super high-definition television or a mobile device
- it is preferably 65 ⁇ 10 ⁇ 7 / ° C. or less, in order to further improve dimensional stability.
- it is 60 ⁇ 10 ⁇ 7 / ° C. or less.
- the glass composition of the present invention has a temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is 1600 ° C. or less in consideration of the solubility and clarity of the glass.
- T 2 is preferably 1580 ° C. or lower, and more preferably 1560 ° C. or lower.
- the temperature at which the viscosity becomes 10 4 dPa ⁇ s (T 4 ) is preferably 1240 ° C. or less, more preferably 1220 ° C. or less, considering the moldability of plate glass or tube glass. The following is more preferable, and 1180 ° C. or lower is particularly preferable.
- the relationship between the temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s and the devitrification temperature (T L ) is preferably T 4 ⁇ T L ⁇ ⁇ 70 ° C.
- T 4 The -T L is lower than -70 ° C., tends to occur devitrification during glass sheet forming, there is a possibility that the molding of the glass sheet becomes difficult.
- T 4 -T L is more preferably -50 ° C. or higher, more preferably -30 ° C. or more, more 0 °C or more, particularly preferably 10 ° C. or higher, most preferably 20 ° C. or higher.
- the devitrification temperature refers to the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours.
- the glass composition of the present invention preferably has a density of 2.9 g / cm 3 or less. When the density exceeds 2.9 g / cm 3 , the product mass becomes heavy, which is not preferable.
- the density is more preferably 2.8 g / cm 3 or less, and even more preferably 2.7 g / cm 3 or less.
- the average transmittance of the glass composition at a wavelength of 450 to 1100 nm is When it is, it is preferable that it is 86% or more in conversion of 1 mm thickness. More preferably, it is 90% or more, More preferably, it is 92% or more. Moreover, when using it for the glass substrate for display panels, the same average transmittance
- the transmittance of the glass composition at a wavelength of 400 nm is preferably 85% or more in terms of 1 mm thickness when a glass substrate is used.
- the power generation efficiency of the solar cell or solar heat collector may be reduced. If it is less than 85%, the glass may be solarized by sunlight when used for a long period of time, and the power generation efficiency may further decrease. If it is less than 85%, when the glass composition of the present invention is used for a glass substrate for a display panel, it is difficult to efficiently carry out UV curing in a sealing step in panel production. More preferably, it is 88% or more, More preferably, it is 90% or more.
- the glass composition of the present invention has an alkali metal and alkaline earth metal element amount of 300 ng / cm 2 or less deposited on the glass surface after being held in a water vapor atmosphere at 120 ° C. and 0.2 MPa for 20 hours. And preferred.
- it is more than 300 ng / cm 2 , the weather resistance tends to decrease when used as a glass substrate for a solar cell, a tube glass for a vacuum glass tube type heat collector, or a glass substrate for a display panel. More preferably, it is 200 ng / cm ⁇ 2 > or less, More preferably, it is 100 ng / cm ⁇ 2 > or less.
- the glass composition of the present invention preferably has a photoelastic constant of 29 nm / MPa / cm or less. When it exceeds 29 nm / MPa / cm, when the glass composition of the present invention is used for a glass substrate for a display panel (particularly, a glass substrate for a liquid crystal display (LCD) panel), There is a possibility that the deterioration of display quality due to the generated birefringence becomes remarkable. More preferably, it is 28 nm / MPa / cm or less, More preferably, it is 27 nm / MPa / cm or less, More preferably, it is 26 nm / MPa / cm or less.
- the glass composition of the present invention preferably has a Young's modulus of 79 GPa or more.
- the glass composition is less than 79 GPa, when the glass composition of the present invention is used for a glass substrate for a display panel (particularly, a glass substrate for a liquid crystal display (LCD) panel), There is a possibility that the glass substrate of the panel may have a defect due to deflection or deformation of the glass due to its own weight or external stress. More preferably, it is 81 GPa or more, More preferably, it is 83 GPa or more, More preferably, it is 85 GPa or more.
- SiO 2 A component that forms a glass skeleton. If it is less than 55 mol% (hereinafter simply referred to as “%”), the heat resistance, Young's modulus, and chemical durability of the glass may decrease, and the average thermal expansion coefficient may increase. is there. Preferably it is 57% or more, More preferably, it is 59% or more, More preferably, it is 62% or more. However, if it exceeds 70%, the photoelastic constant is increased, the high temperature viscosity of the glass is increased, and there is a concern that the solubility is deteriorated. Preferably it is 69% or less, More preferably, it is 68% or less, More preferably, it is 67% or less.
- Al 2 O 3 Raises the glass transition temperature and improves the weather resistance, chemical durability, heat resistance and Young's modulus. If the content is less than 5%, the glass transition temperature may be lowered. Moreover, there exists a possibility that an average thermal expansion coefficient may increase. Preferably it is 5.5% or more. However, if it exceeds 10%, the high-temperature viscosity of the glass increases, and the solubility may deteriorate. Further, the devitrification temperature is increased, and the moldability may be deteriorated. Moreover, when it uses for the glass substrate for solar cells, there exists a possibility that electric power generation efficiency may fall. Preferably it is 9% or less, More preferably, it is 8% or less.
- B 2 O 3 may be contained up to 0.5% in order to reduce the density, improve the solubility, or the like. If it exceeds 0.5%, the photoelastic constant increases, or boron ions diffuse into these layers when forming a CIGS layer or CdTe layer as a photoelectric conversion layer when used in a glass substrate for solar cells, and power generation efficiency There is a risk of lowering.
- the amount of B 2 O 3 volatilized at the time of melting the glass may increase the equipment load. Preferably it is 0.3% or less, More preferably, it does not contain substantially.
- substantially does not contain means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
- MgO 3-15% is contained for improving chemical durability, Young's modulus and weather resistance, and for reducing the density. If it is less than 3%, chemical durability and weather resistance tend to be insufficient. It is preferably 5% or more, more preferably 6% or more. If it exceeds 15%, the tendency to devitrify the glass becomes strong. It is preferably 12% or less, and more preferably 10% or less.
- CaO 3-15% is contained for decreasing the high temperature viscosity or increasing the average thermal expansion coefficient. If it is less than 3%, the high-temperature viscosity does not decrease sufficiently and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. It is preferably 5% or more, and more preferably 6% or more. On the other hand, if it exceeds 15%, the tendency to devitrify the glass becomes strong, and the chemical durability and weather resistance tend to decrease. The content is preferably 12% or less, and more preferably 10% or less.
- SrO An essential component for decreasing the high temperature viscosity, increasing the average thermal expansion coefficient, decreasing the photoelastic constant, and the like. Its content is 2 to 10%. If the content is less than 2%, the high-temperature viscosity does not decrease sufficiently and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. The content is preferably 3% or more. Meanwhile, the tendency to the glass devitrification is increased when the content exceeds 10%, T g decreases, the chemical durability and tend to weather resistance is deteriorated, or density becomes heavy. The content is preferably 9% or less, and more preferably 8% or less.
- BaO An essential component for decreasing the high temperature viscosity, increasing the average thermal expansion coefficient, decreasing the photoelastic constant, and the like. Its content is 1 to 10%. If the content is less than 1%, the high-temperature viscosity does not decrease sufficiently, the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low. The content is preferably 2% or more. On the other hand, if the content exceeds 10%, Tg tends to decrease, chemical durability and weather resistance tend to deteriorate, or the density becomes heavy. The content is preferably 9% or less, and more preferably 7% or less.
- ZrO 2 A component that increases chemical durability and weather resistance and increases T g , and may be contained up to 3%. If it exceeds 3%, the raw material cost is increased, the tendency to devitrify the glass becomes strong, or the density becomes heavy.
- the content is preferably 1.5% or less, more preferably 1% or less. On the other hand, when it contains, 0.2% or more is preferable and 0.5% or more is more preferable.
- TiO 2 raise the T g, is effective in improving chemical durability and weather resistance, transmittance decreases, because it may cause solarization, it may not substantially contained in the present invention preferable.
- the total amount of MgO, CaO, SrO and BaO is 20 to 35%. If the total amount is less than 20%, the high-temperature viscosity does not sufficiently decrease, and the solubility tends to deteriorate, or the average thermal expansion coefficient tends to be too low.
- the total amount is preferably 22% or more, more preferably 24% or more. Meanwhile, the tendency to devitrification of the glass when the total amount is too large is increased, T g decreases, there is a tendency for chemical durability and weather resistance is deteriorated, or density becomes heavy. Therefore, the total amount is 35% or less.
- the total amount is preferably 32% or less, and more preferably 29% or less.
- the alkali metal may diffuse into a transparent conductive oxide layer (hereinafter also referred to as “TCO layer”) or a CdTe layer, which will be described later, and power generation efficiency may be reduced.
- TCO layer transparent conductive oxide layer
- CdTe layer a transparent conductive oxide layer
- alkali metal ions When used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
- the content is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free. .
- it contains 0.1% or more is preferable and 0.2% or more is more preferable.
- K 2 O Up to 1% may be contained for improving solubility. If it exceeds 1%, the TGS , Young's modulus will be significantly reduced, or in the case of a CIGS layer doped with an alkali metal, it will be necessary to form an alkali metal diffusion barrier layer, which will increase the cost of manufacturing CIGS solar cells.
- the alkali metal In the case of a CdTe solar cell, the alkali metal may diffuse into the TCO layer or the CdTe layer and the power generation efficiency may be reduced. Further, when used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
- the content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and particularly preferably substantially free. On the other hand, when it contains, 0.1% or more is preferable and 0.2% or more is more preferable.
- Na 2 O and K 2 O The total amount of Na 2 O and K 2 O is 2% or less. If the total amount exceeds 2%, Tg and Young's modulus may be significantly reduced. Moreover, when using for the glass substrate for CIGS solar cells which has the CIGS layer which doped an alkali metal, formation of an alkali metal diffusion barrier layer is needed. Further, when used for a glass substrate for a display panel, alkali metal ions may diffuse into the TFT layer and impair long-term driving stability.
- the content is preferably 1.5% or less, more preferably 1% or less, further preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free. .
- CeO 2 is effective as a glass refining agent. However, since it may cause raw material costs, transmittance, and solarization, it is preferably not substantially contained in the present invention.
- La 2 O 3 raises the T g, is effective to lower the high temperature viscosity, density becomes heavier, such raw material cost, it is difficult to separate the CeO 2 contained in the raw material of La 2 O 3, etc. For this reason, it is preferable that the composition is not substantially contained in the present invention.
- the glass composition of the present invention is expressed in terms of mole percentage based on the following oxides: SiO 2 55-70%, 5-10% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 3-15% MgO, 3-15% CaO, 2-10% SrO, 1-10% BaO, 0 to 3% of ZrO 2 Na 2 O 0-1%, 0 to 1% of K 2 O, MgO + CaO + SrO + BaO 20-35%, Containing 0 to 1.5% Na 2 O + K 2 O, A glass composition having a glass transition temperature of 680 ° C. or higher, an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and a viscosity of 10 2 dPa ⁇ s is preferably 1600 ° C. or lower.
- SO 3 , F, Cl, SnO 2 , and Fe 2 O 3 in the glass composition are each SO 3 : 0.5 part by mass with respect to 100 parts by mass of the raw material of the glass mother composition component.
- F 1.5 parts by mass or less
- Cl 3 parts by mass or less
- SnO 2 0.30 parts by mass or less
- Fe 2 O 3 0.30 parts by mass or less
- these raw materials may be added to the mother composition raw material.
- Fe 2 O 3 is preferably 0.03 parts by mass.
- it is more preferably 0.02 parts by mass or less, further preferably 0.01 parts by mass or less, and particularly preferably 0.005 parts by mass or less.
- the SnO 2 is preferably not more than 0.30 parts by mass, more preferably 0.25 parts by mass or less, even more preferably not more than 0.20 parts by mass. This is to ensure the transmittance.
- Cl is not substantially contained. This is because when Cl is contained, reboil is generated at the contact surface between the molten glass and the sleeve, and bubbles may be mixed into the tube glass. Further, considering the environmental burden, it is preferred not to substantially contain As 2 O 3, Sb 2 O 3 as a fining agent.
- Other components may be contained in an amount of not more than 1% and not more than 5% in total within a range not impairing the object of the present invention.
- ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like.
- TlO 2 , P 2 O 5 and the like may be contained.
- the float method is preferably used when forming a large-area glass substrate, but it is preferable that ZnO is not substantially contained in consideration of stable float forming.
- the glass composition of the present invention is preferably composed of SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O except for inevitable impurities.
- the clarifiers SO 3 , F, Cl, SnO 2 , Fe 2 O 3 etc. are acceptable.
- the glass composition of the present invention is suitable for a glass substrate for solar cells such as CIGS, CZTS, CdTe, or a cover glass for solar cells. It is also suitable as a tube glass for a vacuum glass tube type heat collector. Moreover, it is suitable also as a glass substrate for display panels.
- the manufacturing method of the glass substrate of this invention is demonstrated.
- molding process are implemented similarly to the time of manufacturing the conventional plate glass.
- a float method and a fusion method are suitable.
- a method for forming the glass sheet it is preferable to use a float method capable of easily and stably forming a glass substrate having a large area as the solar cell or the display becomes larger.
- Process for producing a glass substrate of the present invention has a glass transition temperature of 680 ° C. or higher, the average thermal expansion coefficient of 50 ⁇ 10 -7 ⁇ 70 ⁇ 10 -7 / °C, temperature at which the viscosity becomes 10 2 dPa ⁇ s is 1600
- the glass transition temperature is 680 ° C. or higher
- the average thermal expansion coefficient is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C.
- the temperature at which the viscosity is 10 2 dPa ⁇ s is 1600 ° C. or lower.
- Raw materials are prepared so that the obtained glass substrate has the above composition, and the raw materials are continuously charged into a melting furnace and heated to 1450 to 1650 ° C. to obtain molten glass.
- the molten glass is formed into a ribbon-like plate glass by applying, for example, a float process.
- a float process After drawing the ribbon-shaped plate glass from the float forming furnace, it is gradually cooled to room temperature by a slow cooling means, and after cutting, a glass substrate is obtained.
- the glass substrate for CIGS solar cells of the present invention is also suitable as a glass substrate for CIGS solar cells and a cover glass.
- the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less. is there.
- the method for applying the CIGS photoelectric conversion layer to the glass substrate is not particularly limited.
- the heating temperature when forming the photoelectric conversion layer can be 500 to 700 ° C., preferably 600 to 700 ° C.
- the cover glass and the like are not particularly limited, but the glass substrate for CIGS solar cell of the present invention is covered with the glass substrate and cover of CIGS solar cell.
- the average coefficient of thermal expansion is the same, and therefore, thermal deformation or the like during solar cell assembly does not occur, which is preferable.
- the CIGS solar cell in the present invention includes a glass substrate, a cover glass, and a CIGS layer disposed as a photoelectric conversion layer between the glass substrate and the cover glass, and at least the glass substrate and the cover glass. Either one is the glass substrate of the present invention.
- an alkali metal compound containing Na is laminated on a glass substrate, a positive electrode such as Mo on the glass substrate, or a CIGS precursor. If an alkali metal compound containing Na is not laminated, sufficient alkali metal diffusion is not performed in the photoelectric conversion layer, and power generation efficiency may be reduced.
- the alkali metal compound include NaF, NaCl, Na 2 S, Na 2 Se, KF, KCl, K 2 S, K 2 Se, and Mo composite oxide, but are not particularly limited. Two or more kinds of alkali metal compounds may be combined.
- the laminating method is not particularly limited, and for example, any of sputtering, CVD, MOCVD, vapor deposition, and wet methods may be applied.
- the method for forming the CIGS layer is not particularly limited. After forming a precursor containing a constituent element other than Se as a component, a so-called selenization method in which heat treatment is performed in an H 2 Se gas atmosphere may be used, or a vapor deposition method in which each constituent element is physically vapor-deposited, or CIGS powder is used. It is also possible to use a printing method in which the ink is adjusted and subjected to heat treatment after screen printing and sintered.
- the glass substrate for CdTe solar cells of the present invention is also suitable as a glass substrate for CdTe solar cells and a cover glass (hereinafter also referred to as “back plate glass” in CdTd solar cells).
- the thickness of the glass substrate is preferably 4 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less. is there.
- the method for applying the CdTe photoelectric conversion layer to the glass substrate is not particularly limited.
- the heating temperature when forming the photoelectric conversion layer can be set to 500 to 700 ° C., preferably 600 to 700 ° C.
- the back plate glass or the like is not particularly limited, but the glass substrate for a CdTe solar cell of the present invention is used as the glass substrate of the CdTe solar cell.
- the average thermal expansion coefficient is equivalent, so that thermal deformation or the like during assembly of the solar cell does not occur, which is preferable.
- the CdTe solar cell in the present invention has a glass substrate, a back plate glass, and a CdTe photoelectric conversion layer disposed between the glass substrate and the back plate glass, and at least the glass substrate is the glass of the present invention. It is a substrate.
- the structure of the CdTe solar cell of the present invention is not particularly limited, a light-transmitting lower electrode is formed on a glass substrate, and then a window layer and a CdTe layer are formed on the lower electrode. A structure in which the upper electrode is formed is preferable.
- a transparent conductive oxide layer (hereinafter also referred to as “TCO layer”) made of a thin film such as ITO or SnO 2 is used.
- TCO layer is also subjected to a high temperature process.
- the alkali metal diffuses from the glass substrate into the TCO layer, the film quality of the TCO layer may deteriorate, or the alkali metal may diffuse into the CdTe layer, resulting in a decrease in power generation efficiency.
- a diffusion barrier layer may be formed between the glass substrate and the TCO layer.
- the diffusion barrier layer for example, a SiO 2 layer is preferable.
- the laminating method is not particularly limited.
- sputtering method CVD method, MOCVD method, molecular beam growth (MBE) method, vapor deposition method.
- MBE molecular beam growth
- vapor deposition method Any of a solution growth (CBD) method and a wet method may be applied.
- the method for forming the CdTe layer is not particularly limited.
- CdTe depositing CdTe on the window layer (the window layer is formed on the lower electrode formed on the glass substrate) by heating and sublimating the source of CdTe in an inert gas atmosphere
- CSS Sublimation
- vapor deposition method for physical vapor deposition of each constituent element printing method for adjusting ink using CdTe powder, heat treatment after screen printing and sintering, MOCVD method, MBE method,
- an electrodeposition method may be used.
- the glass substrate for a display panel of the present invention is also suitable as a glass substrate for an organic EL display panel, or an organic EL display panel glass substrate using an oxide semiconductor such as IGZO or an organic semiconductor such as pentacene as a TFT.
- the thickness of the glass substrate is preferably 2 mm or less, more preferably 1.3 mm or less, still more preferably 0.8 mm or less, Especially preferably, it is 0.5 mm or less, Most preferably, it is 0.3 mm or less.
- the method for forming TFTs on the glass substrate and the type of TFT to be formed are not particularly limited.
- the glass substrate for a display panel of the present invention is different from a conventional commercially available non-alkali glass (for example, EAGLE XG manufactured by Corning, AN100 manufactured by Asahi Glass Co., Ltd.) matched to the thermal expansion coefficient of silicon TFT, Since the average thermal expansion coefficient is in the range of 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., it is suitable for TFTs using oxide semiconductors such as IGZO and organic semiconductors such as pentacene. Further, it is suitable for a glass substrate of a display panel for a large television of 50 inches or more that uses a metal frame.
- Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
- Examples (Examples 1 to 22, 26 to 37) and comparative examples (Examples 23 to 25 and 38) of the glass composition of the present invention are shown.
- the parentheses in Tables 1 to 4 are calculated values (by regression calculation).
- the raw materials of each component were prepared so as to have the compositions shown in Tables 1 to 4, and dissolved by heating at a temperature of 1600 ° C. for 30 minutes using a platinum crucible. In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out, formed into a plate shape, and then cooled to obtain a glass plate.
- the residual amount (mol%) of Fe 2 O 3 in the glass compositions of Examples 9, 17, and 20 was 0.04%, respectively, and the residual amount of Fe 2 O 3 in the glass compositions of Examples 18 and 36 was 0.00. 02%.
- the residual amount of SO 3 in the glass compositions of Examples 9, 17, 18, 20, and 36 was 0.01 to 0.07%.
- the residual amount of Cl in the glass compositions of Examples 9, 17, 18, and 20 was 0.70 to 1.00%, and the residual amount of Cl in the glass composition of Example 36 was 1.65%.
- the residual amount of F in the glass compositions of Examples 9, 17, 18, and 20 was 0.30 to 0.60%, and the residual amount of F in the glass composition of Example 36 was 3.14%.
- the residual amount of CeO 2 in the glass composition of Example 22 was 0.02%.
- the residual amounts of Fe 2 O 3 , SO 3 , Cl, F, and CeO 2 in the glass composition were measured by measuring the glass lump cut out from the glass plate in powder form and evaluating with fluorescent X-rays.
- the glass plate thus obtained has an average thermal expansion coefficient ⁇ (unit: ⁇ 10 ⁇ 7 / ° C.), a glass transition temperature T g (unit: ° C.), and a temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s ( (Unit: ° C), temperature at which viscosity becomes 10 4 dPa ⁇ s (T 4 ) (unit: ° C), devitrification temperature ( TL ) (unit: ° C), strain point T sp (unit: ° C), slow cooling Point T ap (unit: ° C.), transmittance V 400 (unit:%) at a wavelength of 400 nm, average transmittance V ave (unit:%), density d (unit: g / cm 3 ), Young's modulus E (unit: GPa), the amount of alkali metal and alkaline earth metal (unit: ng / cm 2 ) deposited on the glass substrate surface after holding under specific conditions as weather resistance
- each physical property is the same value with a glass composition, a glass plate, and a glass substrate. By processing and polishing the obtained glass plate, a glass substrate can be obtained.
- T g Glass transition temperature
- TMA differential thermal dilatometer
- ⁇ Average coefficient of thermal expansion
- Viscosity measured by using a rotational viscometer, and the temperature T 2 (solubility reference temperature) when the viscosity ⁇ is 10 2 dPa ⁇ s, when the viscosity ⁇ is 10 4 dPa ⁇ s Temperature T 4 (reference temperature for moldability) was measured.
- Devitrification temperature (T L ) 5 g of glass lump cut out from the glass plate was placed on a platinum dish and kept in an electric furnace at a predetermined temperature for 17 hours. The maximum temperature at which crystals do not precipitate on the surface and inside of the glass lump after being held was defined as the devitrification temperature.
- Density (d) About 20 g of glass lump containing no foam was measured by Archimedes method.
- Young's modulus (E) A glass plate having a thickness of 4 to 10 mm and a size of about 4 cm ⁇ 4 cm was measured by an ultrasonic pulse method.
- T sp Strain point
- T ap annealing point
- T ap measured according to JIS R3103-2.
- the transmittance V 400 (unit:%) at 400 nm was read, and the average transmittance V ave (unit:%) at 450 to 1100 nm was calculated.
- Alkali metal diffusibility (10) Alkali metal diffusibility (DNa 600 , DNa 650 ): Both sides of a glass plate having a thickness of 1 to 4 mm and a size of 5 cm ⁇ 5 cm are mirror-polished with cerium oxide and washed with calcium carbonate and a neutral detergent. A glass substrate was used. Thereafter, an alkali metal barrier layer of SiO 2 was formed to a thickness of about 40 nm only by sputtering the glass substrate obtained from the glass plate of Example 24.
- a ZnO film (GZO film) doped with 5.7 wt% of Ga was formed on each glass substrate by sputtering under conditions of about 100 nm and a glass substrate temperature of about 100 ° C. Obtained.
- the amount of Na 2 O in the GZO film was quantified by SIMS, and the value normalized with Zn was determined as alkali metal diffusivity (600 ° C.
- the diffusibility of alkali metal at this time was defined as DNa 600 and that at 650 ° C. was defined as DNa 650 (unit: Na / Zn count).
- surface is described with " ⁇ >”, since this has an alkali metal diffusion barrier layer between glass and a GZO film, This is to distinguish from other embodiments.
- DNa 650 column of the glass is " ⁇ ->" is the a is will be deformed because low T g when heated to 650 ° C., in order that could not quantify by SIMS.
- Photoelastic constant measured by a disk compression method (measurement wavelength: 546 nm).
- the glass composition of Example (Examples 1 to 17 and 19 ⁇ 22, 26 ⁇ 37) has a glass transition temperature T g is as high as 680 ° C. or higher, the average thermal expansion coefficient ⁇ Is 50 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / ° C., and T 2 is 1600 ° C. or less. Therefore, a high glass transition temperature, a predetermined average coefficient of thermal expansion, and a low glass melting temperature can be achieved at the same time.
- a glass substrate for solar cells with high power generation efficiency or solar heat collection can be obtained.
- a tube glass for a vacuum glass tube type heat collector with high thermal efficiency can be provided. Further, when producing glass, high productivity and high quality glass can be obtained. Moreover, since the weather resistance is also good, long-term reliability can be expected.
- the glass composition of Example 18 was also satisfied.
- a CIGS layer does not peel from a glass substrate with a Mo electrode layer in a CIGS solar cell, and a CdTe layer from a glass substrate in a CdTe solar cell.
- a solar cell without peeling specifically, when a glass substrate and a cover glass are heated and bonded so that a photoelectric conversion layer such as a CIGS layer or a CdTe layer is sandwiched between them.
- the glass substrate is not easily deformed, and is superior in power generation efficiency.
- Examples 9 and 11 to 22 have sufficiently high average transmittance at a wavelength of 450 to 1100 nm and transmittance at a wavelength of 400 nm, and are excellent in power generation efficiency.
- the transmittances of the glass compositions of Examples 1 to 8, 10 and 26 to 37 were also high.
- the results of the alkali metal diffusibility of the glass compositions of the examples show that even when the temperature is increased from 600 ° C. to 650 ° C., the value of the alkali metal diffusivity is small, and There was no change. From this, when the glass substrate obtained from the glass composition of an Example (Example 18, 26, 36, 37) is used for a CdTe solar cell, the alkali metal diffusion to a TCO layer or a photoelectric converting layer is considered to be slight. . Therefore, it is not necessary to form an alkali metal diffusion barrier layer, one process can be reduced from the battery manufacturing process, and a cost advantage can be expected. In addition, since there is no deterioration of the TCO layer due to alkali metal diffusion, the temperature at the time of CdTe film formation can be increased, and improvement in crystallinity of CdTe and improvement in power generation efficiency can be expected.
- the alkali metal diffusion suppression is excellent in Na 2 O glass composition containing a large amount examples 18,26,36,37 of Na 2 O content of the other less than these EXAMPLE Similarly, it is presumed that the glass composition is excellent in alkali metal diffusion suppression. Since the glass substrate obtained from the glass composition of an Example is excellent in alkali-metal spreading
- the glass composition of comparative example (Example 23), T 2 is inferior 1600 ° C. ultra next productivity. Moreover, since average thermal expansion coefficient (alpha) is too low, there exists a possibility of causing a layer peeling after forming a photoelectric converting layer. Since rich in B 2 O 3, load on the glass production equipment is increased. In the comparative example (Example 24), since the Tg is low, the glass substrate is easily deformed when the photoelectric conversion layer is formed. Moreover, since there is much elution amount of the element of an alkali metal and alkaline-earth metal in a weather resistance evaluation, there exists a possibility that a weather resistance may be inferior.
- the alkali metal diffusibility tends to be larger than that of the example. This is because the alkali metal oxide content in the glass matrix composition component often, because of the low T g of the glass substrate is considered that due to the large mobility of the alkali metals in the glass under the influence of viscosity. Further, since Tg is low, it is difficult to increase the process temperature when forming the photoelectric conversion layer, and it is difficult to improve the power generation efficiency. Further, when used for a display panel, long-term reliability may be a problem.
- the comparative examples contain 2.0 mol% and 2.9 mol% of Na 2 O, respectively, the value of alkali metal diffusivity is larger than that of the examples, and the alkali metal diffusibility due to temperature rise is further increased. Since an increase is also observed, the process temperature cannot be increased when forming the photoelectric conversion layer. Therefore, since improvement in power generation efficiency cannot be expected, or an alkali metal diffusion barrier layer needs to be formed, one process is increased from the battery manufacturing process, resulting in poor process superiority. Further, when used for a display panel, long-term reliability may be a problem.
- the glass composition of the present invention is suitable as a glass substrate for solar cells such as CIGS, CZTS, CdTe. It is also effective as a tube glass for a vacuum glass tube type heat collector. Moreover, it is suitable as a glass substrate for display panels.
- the glass composition of the present invention can have a high glass transition temperature, a predetermined average coefficient of thermal expansion, and a low melting temperature in a well-balanced manner.
- the solar cell with high power generation efficiency can be obtained.
- a glass substrate, a tube glass for a vacuum glass tube type heat collector with high solar heat collection efficiency, and a glass substrate for a display panel can be provided. Further, when producing glass, high productivity and high-quality glass substrates and tube glass can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
また、効率の良い太陽電池を得るため、比較的高温の熱処理温度に耐えうるガラス材料が提案されている(特許文献1参照)。
この場合のガラス組成物は、CIGS層へアルカリ金属を拡散させるためにアルカリ金属酸化物を含有している。一方で、ガラス基板からCIGS層面内へのアルカリ金属の拡散のばらつき防止のために、アルカリ金属拡散バリア層を設けたガラス基板またはアルカリ金属酸化物不含の基板上にアルカリ金属をドーピングしたCIGS層を設けたCIGS太陽電池が提案されている(特許文献2参照)。
一方、ディスプレイパネル用のガラス基板には、従来より、アルカリ金属酸化物を含有しない無アルカリガラスが用いられている。この理由は、ガラス基板中にアルカリ金属酸化物が含まれていると、ディスプレイパネルの製造工程で実施される熱処理中に、ガラス基板中のアルカリ金属イオンがディスプレイパネルの駆動に用いる薄膜トランジスタ(TFT)の半導体膜に拡散して、TFT特性の劣化を招くおそれがあるからである。
しかしながら、無アルカリガラスは粘性が非常に高く、溶融が困難といった性質を有し、製造に技術的な困難性を伴う。近年の技術進歩により、ディスプレイパネル用のガラス基板として、アルカリ金属酸化物を含有するアルカリガラス基板を使用することも検討され始めている(特許文献4参照)。
一方で、特許文献2に示されるアルカリ金属酸化物不含基板として、無アルカリガラスを用いる場合、無アルカリガラスは通常アルカリ金属酸化物含有ガラスと比較してガラス溶解温度が約100℃以上高いために、ガラス溶解時や成形時の生産性低下や清澄性低下を招くという問題や、また例えばCIGS太陽電池用ガラス基板に用いた際にガラス基板の熱膨張係数が光電変換層としてのCIGS層のそれと異なるために、ガラス基板上のCIGS層の製膜中または製膜後に剥離を招くという問題がある。
また、ディスプレイパネルでは、近年、薄型化、省エネルギー化のため、有機ELディスプレイの採用が検討されているが、有機ELは電流駆動となるため、従来のLCDに比べてTFTの長期駆動安定性が重要となる。特許文献4の実施例に開示されているように、アルカリ金属酸化物を十分含有する場合、ディスプレイデバイスの長期駆動安定性や、膜剥れ等の観点から懸念される場合がある。特に、大型有機ELテレビにおいては、駆動回路の電流電圧が高くなり、長期駆動安定性の問題が顕著になる。
このように、ガラス組成物において、高いガラス転移点温度、所定の平均熱膨張係数、低い溶解温度をバランスよく有することは困難であった。
(1)下記酸化物基準のモル百分率表示で、
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1.8%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~2%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下のガラス組成物。
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~1.5%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下の上記(1)に記載のガラス組成物。
SiO2を59~67%、
Al2O3を5~8%、
B2O3を0~0.3%、
MgOを6~10%、
CaOを6~10%、
SrOを3~9%、
BaOを2~7%、
ZrO2を0~1%、
Na2Oを0~1%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを24~29%、
Na2O+K2Oを0~1.5%含有し、
ガラス転移点温度が700℃以上、平均熱膨張係数が50×10-7~60×10-7/℃、粘度が102dPa・sとなる温度が1580℃以下の上記(1)または(2)に記載のガラス組成物。
(5)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるCIGS太陽電池用ガラス基板。
(6)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるCdTe太陽電池用ガラス基板。
(7)上記(1)~(3)のいずれか一つに記載のガラス組成物からなるディスプレイパネル用ガラス基板。
本願の開示は、2011年2月8日に出願された特願2011-025148号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
以下、本発明のガラス組成物について説明する。
本発明のガラス組成物は、下記酸化物基準のモル百分率表示で、
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1.8%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~2%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下のガラス組成物である。
同様の理由から歪点(Tsp)は630℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは660℃以上である。
本発明のガラス組成物を真空ガラス管型集熱器用の管ガラスに用いる場合は、管ガラスと、ガラスフリットや金属製端版等の管封止用部材と、の熱膨張係数を合わせるために、また、本発明のガラス組成物をスーパーハイビジョンテレビやモバイルデバイスのような高精細ディスプレイパネルに用いる場合は、より寸法安定性を改善するために、好ましくは65×10-7/℃以下、より好ましくは60×10-7/℃以下である。
ここで、失透温度とは、ガラスを特定の温度で17時間保持するときに、ガラス表面および内部に結晶が生成しない最大温度を指す。
波長400nmにおけるガラス組成物の透過率は、ガラス基板としたとき1mm厚み換算で85%以上であると好ましい。85%未満では、太陽電池や太陽熱集熱器の発電効率が低下するおそれがある。また85%未満では、長期間使用した際にガラスが太陽光によりソラリゼーションを起こし、さらに発電効率が低下するおそれがある。また85%未満では、本発明のガラス組成物をディスプレイパネル用ガラス基板に用いる場合、パネル作製でのシール工程でUV硬化が効率よく実施しにくくなる。より好ましくは88%以上、さらに好ましくは90%以上である。
SiO2:ガラスの骨格を形成する成分で、55モル%(以下単に%と記載する)未満ではガラスの耐熱性、ヤング率および化学的耐久性が低下し、平均熱膨張係数が増大するおそれがある。好ましくは57%以上であり、より好ましくは59%以上であり、さらに好ましくは62%以上である。
しかし、70%超では光弾性定数が上昇し、ガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは69%以下であり、より好ましくは68%以下であり、さらに好ましくは67%以下である。
しかし、10%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。また太陽電池用ガラス基板に用いた場合に発電効率が低下するおそれがある。好ましくは9%以下であり、より好ましくは8%以下である。
なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
好ましくは含有量が1.0%以下であり、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下、特に好ましくは0.3%以下、最も好ましくは実質的に含有しない。一方、含有する場合には、0.1%以上が好ましく、0.2%以上がより好ましい。
好ましくは含有量が0.7%以下であり、より好ましくは0.5%以下、さらに好ましくは0.3%以下、特に好ましくは実質的に含有しない。一方、含有する場合には、0.1%以上が好ましく、0.2%以上がより好ましい。
好ましくは含有量が1.5%以下であり、より好ましくは1%以下であり、さらに好ましくは0.5%以下であり、特に好ましくは0.3%以下、最も好ましくは実質的に含有しない。
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~1.5%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下のガラス組成物が好ましい。
ただし、CdTe太陽電池用ガラス基板や真空ガラス管型集熱器用管ガラス、UV硬化樹脂をパネルのシール工程で用いるディスプレイパネル用ガラス基板に用いる場合、Fe2O3は好ましくは0.03質量部以下、より好ましくは0.02質量部以下、さらに好ましくは0.01質量部以下、特に好ましくは0.005質量部以下である。
またSnO2は好ましくは0.30質量部以下、より好ましくは0.25質量部以下、さらに好ましくは0.20質量部以下である。透過率を確保するためである。
また、環境負荷を考慮すると、清澄剤としてAs2O3、Sb2O3を実質的に含有しないことが好ましい。
大面積のガラス基板を成形する場合にフロート法が好ましく用いられるが、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。
本発明のガラス組成物は、CIGS、CZTS、CdTe等の太陽電池用ガラス基板または太陽電池のカバーガラスに好適である。
また、真空ガラス管型集熱器用管ガラスとしても好適である。
また、ディスプレイパネル用ガラス基板としても好適である。
本発明のガラス基板の製造方法について説明する。
本発明の太陽電池用ガラス基板を製造する場合、従来の板ガラスを製造する際と同様に、溶解・清澄工程および成形工程を実施する。成形方法としてフロート法およびフュージョン法(ダウンドロー法)が適している。
板ガラスに成形する方法としては、太陽電池やディスプレイの大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。
SO3を0.1~0.5質量部、
Clを0.2~3質量部、
Fを0.05~1.5質量部、
添加し溶解、清澄することが好ましい。
SO3が0.1質量部未満、Clが0.2質量部未満、Fが0.05質量部未満だと、泡が膨らみにくく、短時間で清澄することが困難になる。SO3が0.5質量部超、Clが3質量部超、Fが1.5質量部超だと、均質化のためのスターラーやフロートバスへの導入経路の途中でリボイルによって泡を発生させる可能性が増す。
得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1450~1650℃に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状の板ガラスに成形する。
次に、リボン状の板ガラスをフロート成形炉から引出した後に、徐冷手段によって室温状態まで徐冷し、切断後、ガラス基板を得る。
本発明のCIGS太陽電池用ガラス基板は、CIGS太陽電池用のガラス基板、またカバーガラスとしても好適である。
本発明のCIGS太陽電池用ガラス基板を、CIGS太陽電池のガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板にCIGSの光電変換層を付与する方法は特に制限されない。本発明のCIGS太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500~700℃、好ましくは600~700℃とすることができる。
本発明のCIGS太陽電池用ガラス基板を、CIGS太陽電池のガラス基板のみに使用する場合、カバーガラス等は特に制限されないが、本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のガラス基板およびカバーガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
次に、本発明におけるCIGS太陽電池について説明する。
本発明におけるCIGS太陽電池は、ガラス基板と、カバーガラスと、上記ガラス基板と上記カバーガラスとの間に、光電変換層として配置されるCIGS層と、を有し、ガラス基板とカバーガラスの少なくともどちらか一方が本発明のガラス基板である。
上記アルカリ金属化合物を積層する場合、その積層方法は特に限定されるものではなく、例えばスパッタ法、CVD法、MOCVD法、蒸着法、湿式法いずれを適用してもよい。
CIGS層の形成方法は特に限定されるものではない。Se以外の構成元素を含有成分としたプリカーサーを形成後、H2Seガス雰囲気中で熱処理を行う、いわゆるセレン化法でもよいし、各構成元素を物理蒸着する蒸着法、または、CIGS粉末を用いてインクを調整し、スクリーン印刷後に熱処理を施して焼結させる印刷法でもよい。
本発明のCdTe太陽電池用ガラス基板は、CdTe太陽電池用のガラス基板、またカバーガラス(以下、CdTd太陽電池においては、「裏板ガラス」ともいう)としても好適である。
本発明のCdTe太陽電池用ガラス基板を、CdTe太陽電池のガラス基板に適用する場合、ガラス基板の厚さは4mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板にCdTeの光電変換層を付与する方法は特に制限されない。本発明のCdTe太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500~700℃、好ましくは600~700℃とすることができる。
本発明のCdTe太陽電池用ガラス基板を、CdTe太陽電池のガラス基板のみに使用する場合、裏板ガラス等は特に制限されないが、本発明のCdTe太陽電池用ガラス基板をCdTe太陽電池のガラス基板および裏板ガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
次に、本発明におけるCdTe太陽電池について説明する。
本発明におけるCdTe太陽電池は、ガラス基板と、裏板ガラスと、上記ガラス基板と上記裏板ガラスとの間に配置されるCdTeの光電変換層と、を有し、少なくともガラス基板が、本発明のガラス基板である。
本発明のCdTe太陽電池の構造は、特に限定されるものではないが、ガラス基板上に、透光性の下部電極を形成し、次いで、この下部電極の上に窓層、CdTe層を形成後、上部電極を形成する構造が好ましい。
透光性の下部電極には、例えばITOやSnO2等の薄膜からなる透明導電酸化物層(以下、「TCO層」ともいう)を用いる。CdTe層を形成する際に、TCO層も高温プロセスにさらされる。このときに、TCO層にガラス基板からアルカリ金属が拡散すると、TCO層の膜質が劣化する、もしくはCdTe層にまでアルカリ金属が拡散し、発電効率が低下するおそれがある。
特に他のガラス基板からの元素(たとえばアルカリ土類金属)の拡散を抑えたい場合、ガラス基板とTCO層との間に拡散バリア層を形成してもよい。拡散バリア層としては、例えばSiO2層等が好ましい。
また、CdTe層の形成方法は特に限定されるものではない。不活性ガス雰囲気中でCdTeのソースを加熱して昇華させ、上記窓層(窓層は、上記ガラス基板上に形成された下部電極の上の形成される)上にCdTeを堆積させる、いわゆる近接昇華(CSS)法でもよいし、各構成元素を物理蒸着する蒸着法、CdTe粉末を用いてインクを調整し、スクリーン印刷後に熱処理を施して焼結させる印刷法、その他、MOCVD法、MBE法、または電析法でもよい。
本発明のディスプレイパネル用ガラス基板は、有機ELディスプレイパネル用ガラス基板、またIGZO等の酸化物半導体やペンタセン等の有機半導体をTFTに用いる有機ELディスプレイパネル用ガラス基板としても好適である。
本発明のディスプレイパネル用ガラス基板を、ディスプレイパネルのガラス基板に適用する場合、ガラス基板の厚さは2mm以下とするのが好ましく、より好ましくは1.3mm以下、さらに好ましくは0.8mm以下、特に好ましくは0.5mm以下、最も好ましくは0.3mm以下である。またガラス基板にTFTを形成する方法や、形成するTFTの種類は特に制限されない。
しかし、本発明のディスプレイパネル用ガラス基板は、シリコンTFTの熱膨張係数に合わせた従来の市販の無アルカリガラス(例えば、コーニング社製のEAGLE XG、旭硝子(株)製のAN100等)と異なり、平均熱膨張係数が50×10-7~70×10-7/℃の範囲となっていることから、IGZO等の酸化物半導体やペンタセン等の有機半導体を用いたTFTに好適である。また、金属フレームを用いるような50インチ以上の大型テレビ用のディスプレイパネルのガラス基板に好適である。
本発明のガラス組成物の実施例(例1~22、26~37)および比較例(例23~25、38)を示す。なお表1~4中のかっこは、計算値(回帰計算による)である。
表1~4で表示した組成になるように各成分の原料を調合し、白金坩堝を用いて1600℃の温度で30分加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却し、ガラス板を得た。
なお、ガラス組成物中のFe2O3、SO3、Cl、F、CeO2の残存量は、ガラス板から切り出したガラスの塊を粉末状にして蛍光X線で評価し、測定した。
なお、実施例では、ガラス板やガラス基板について測定している物性もあるが、各物性は、ガラス組成物とガラス板とガラス基板とで同じ値である。得られたガラス板を加工、研磨を施すことで、ガラス基板とすることができる。
(2)50~350℃の平均熱膨張係数(α):示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(5)密度(d):泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(8)透過率(V400、平均透過率Vave):厚さ1mm、大きさ4cm×4cmのガラス板の両面を酸化セリウムで鏡面研磨したサンプル(ガラス基板)を作製し、波長300~2000nmの透過率を測定し、400nmにおける透過率V400(単位:%)を読み取り、また450~1100nmにおける平均透過率Vave(単位:%)を算出した。
それぞれのガラス基板に、TCO層に相当する膜として、Gaを5.7wt%ドープしたZnO膜(GZO膜)を約100nm、ガラス基板温度約100℃の条件でスパッタにより製膜し、各サンプルを得た。
これらのサンプルをN2雰囲気下で600℃、650℃にそれぞれ30分保持後、GZO膜中のNa2O量をSIMSにて定量し、Znで規格化した値をアルカリ金属拡散性(600℃の時のアルカリ金属拡散性をDNa600、650℃の時をDNa650)と定義した(単位:Na/Zn count)。
なお、例18のガラス組成物についても、それぞれ満たしていた。
なお、例1~8、10、26~37のガラス組成物についても、透過率は高かった。
実施例のガラス組成物から得られるガラス基板はアルカリ金属拡散抑制性に優れることから、有機ELディスプレイ等のディスプレイパネルに用いる場合、長期信頼性の向上が期待できる。
また比較例(例24)は、Tgが低いため光電変換層の形成時にガラス基板が変形しやすい。また、耐候性評価におけるアルカリ金属およびアルカリ土類金属の元素の溶出量が多いため、耐候性が劣るおそれがある。アルカリ金属拡散バリア層を形成した後に光電変換層を形成したとしても、実施例と比較してアルカリ金属拡散性が大きな値を示す傾向がある。これは、ガラス母組成成分中にアルカリ金属酸化物量が多く、ガラス基板のTgが低いので、粘性の影響でガラス中のアルカリ金属の移動度が大きいためと考えられる。またTgが低いため光電変換層を形成する際にプロセス温度をあげることが難しくなり、発電効率の向上が得られにくい。また、ディスプレイパネルに用いる場合、長期信頼性が問題となる可能性がある。
本出願は、2011年2月8日出願の日本特許出願2011-025148に基づくものであり、その内容はここに参照として取り込まれる。
Claims (7)
- 下記酸化物基準のモル百分率表示で、
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1.8%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~2%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下のガラス組成物。 - 下記酸化物基準のモル百分率表示で、
SiO2を55~70%、
Al2O3を5~10%、
B2O3を0~0.5%、
MgOを3~15%、
CaOを3~15%、
SrOを2~10%、
BaOを1~10%、
ZrO2を0~3%、
Na2Oを0~1%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを20~35%、
Na2O+K2Oを0~1.5%含有し、
ガラス転移点温度が680℃以上、平均熱膨張係数が50×10-7~70×10-7/℃、粘度が102dPa・sとなる温度が1600℃以下の請求項1に記載のガラス組成物。 - 下記酸化物基準のモル百分率表示で、
SiO2を59~67%、
Al2O3を5~8%、
B2O3を0~0.3%、
MgOを6~10%、
CaOを6~10%、
SrOを3~9%、
BaOを2~7%、
ZrO2を0~1%、
Na2Oを0~1%、
K2Oを0~1%、
MgO+CaO+SrO+BaOを24~29%、
Na2O+K2Oを0~1.5%含有し、
ガラス転移点温度が700℃以上、平均熱膨張係数が50×10-7~60×10-7/℃、粘度が102dPa・sとなる温度が1580℃以下の請求項1または2に記載のガラス組成物。 - 請求項1~3のいずれか一項に記載のガラス組成物からなる太陽電池用ガラス基板。
- 請求項1~3のいずれか一項に記載のガラス組成物からなるCIGS太陽電池用ガラス基板。
- 請求項1~3のいずれか一項に記載のガラス組成物からなるCdTe太陽電池用ガラス基板。
- 請求項1~3のいずれか一項に記載のガラス組成物からなるディスプレイパネル用ガラス基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800081648A CN103347832A (zh) | 2011-02-08 | 2012-02-03 | 玻璃组合物及使用玻璃组合物的太阳能电池用玻璃基板、以及显示面板用玻璃基板 |
JP2012556854A JPWO2012108345A1 (ja) | 2011-02-08 | 2012-02-03 | ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 |
KR1020137020971A KR20140053832A (ko) | 2011-02-08 | 2012-02-03 | 유리 조성물 및 유리 조성물을 사용한 태양 전지용 유리 기판, 및 디스플레이 패널용 유리 기판 |
US13/960,461 US20130324389A1 (en) | 2011-02-08 | 2013-08-06 | Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011025148 | 2011-02-08 | ||
JP2011-025148 | 2011-02-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/960,461 Continuation US20130324389A1 (en) | 2011-02-08 | 2013-08-06 | Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012108345A1 true WO2012108345A1 (ja) | 2012-08-16 |
Family
ID=46638561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052468 WO2012108345A1 (ja) | 2011-02-08 | 2012-02-03 | ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130324389A1 (ja) |
JP (1) | JPWO2012108345A1 (ja) |
KR (1) | KR20140053832A (ja) |
CN (1) | CN103347832A (ja) |
TW (1) | TW201233656A (ja) |
WO (1) | WO2012108345A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016147792A (ja) * | 2015-02-13 | 2016-08-18 | 旭硝子株式会社 | ガラス基板 |
WO2017002808A1 (ja) * | 2015-06-30 | 2017-01-05 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
WO2017002807A1 (ja) * | 2015-06-30 | 2017-01-05 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
JP2017048084A (ja) * | 2015-09-02 | 2017-03-09 | 日本電気硝子株式会社 | 低光弾性ガラス板 |
JP2017529307A (ja) * | 2014-09-22 | 2017-10-05 | ジュシ グループ カンパニー リミテッド | ガラス繊維組成物及びガラス繊維、並びに複合材料 |
JPWO2018038059A1 (ja) * | 2016-08-23 | 2019-06-20 | Agc株式会社 | 無アルカリガラス |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140076392A1 (en) * | 2012-09-18 | 2014-03-20 | Tsmc Solar Ltd. | Solar cell |
CN104326662B (zh) * | 2013-12-31 | 2017-07-04 | 东旭集团有限公司 | 一种不含硼的无碱铝硅酸盐玻璃 |
JP6578774B2 (ja) * | 2014-07-18 | 2019-09-25 | Agc株式会社 | 無アルカリガラス |
KR20240023683A (ko) * | 2015-10-02 | 2024-02-22 | 에이지씨 가부시키가이샤 | 유리 기판, 적층 기판 및 적층체 |
KR20220129672A (ko) * | 2016-07-19 | 2022-09-23 | 세키스이가가쿠 고교가부시키가이샤 | 조광 적층체 및 조광 적층체용 수지 스페이서 |
WO2018116731A1 (ja) * | 2016-12-19 | 2018-06-28 | 日本電気硝子株式会社 | ガラス |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0248428A (ja) * | 1988-08-09 | 1990-02-19 | Ishizuka Glass Co Ltd | セラミック基板用のグレーズ組成物 |
JPH0375237A (ja) * | 1989-08-17 | 1991-03-29 | Ishizuka Glass Co Ltd | セラミック基板用グレーズ組成物 |
JPH04175242A (ja) * | 1990-11-06 | 1992-06-23 | Asahi Glass Co Ltd | 無アルカリガラス |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631195A (en) * | 1994-09-14 | 1997-05-20 | Asahi Glass Company Ltd. | Glass composition and substrate for plasma display |
JPH1143347A (ja) * | 1997-07-23 | 1999-02-16 | Asahi Glass Co Ltd | 基板用のガラス組成物 |
US6313052B1 (en) * | 1998-02-27 | 2001-11-06 | Asahi Glass Company Ltd. | Glass for a substrate |
US20060244291A1 (en) * | 2005-04-29 | 2006-11-02 | Buell Motorcycle Company | Movable tailrack for a motorcycle |
-
2012
- 2012-02-03 WO PCT/JP2012/052468 patent/WO2012108345A1/ja active Application Filing
- 2012-02-03 JP JP2012556854A patent/JPWO2012108345A1/ja not_active Withdrawn
- 2012-02-03 KR KR1020137020971A patent/KR20140053832A/ko not_active Application Discontinuation
- 2012-02-03 CN CN2012800081648A patent/CN103347832A/zh active Pending
- 2012-02-08 TW TW101104083A patent/TW201233656A/zh unknown
-
2013
- 2013-08-06 US US13/960,461 patent/US20130324389A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0248428A (ja) * | 1988-08-09 | 1990-02-19 | Ishizuka Glass Co Ltd | セラミック基板用のグレーズ組成物 |
JPH0375237A (ja) * | 1989-08-17 | 1991-03-29 | Ishizuka Glass Co Ltd | セラミック基板用グレーズ組成物 |
JPH04175242A (ja) * | 1990-11-06 | 1992-06-23 | Asahi Glass Co Ltd | 無アルカリガラス |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017529307A (ja) * | 2014-09-22 | 2017-10-05 | ジュシ グループ カンパニー リミテッド | ガラス繊維組成物及びガラス繊維、並びに複合材料 |
JP2016147792A (ja) * | 2015-02-13 | 2016-08-18 | 旭硝子株式会社 | ガラス基板 |
WO2017002808A1 (ja) * | 2015-06-30 | 2017-01-05 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
WO2017002807A1 (ja) * | 2015-06-30 | 2017-01-05 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
JPWO2017002808A1 (ja) * | 2015-06-30 | 2018-04-12 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
JPWO2017002807A1 (ja) * | 2015-06-30 | 2018-04-26 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
US10927034B2 (en) | 2015-06-30 | 2021-02-23 | Avanstrate Inc. | Glass substrate for display and method for producing same |
US11069716B2 (en) | 2015-06-30 | 2021-07-20 | Avanstrate Inc. | Glass substrate for display and method for producing same |
JP2017048084A (ja) * | 2015-09-02 | 2017-03-09 | 日本電気硝子株式会社 | 低光弾性ガラス板 |
JPWO2018038059A1 (ja) * | 2016-08-23 | 2019-06-20 | Agc株式会社 | 無アルカリガラス |
Also Published As
Publication number | Publication date |
---|---|
KR20140053832A (ko) | 2014-05-08 |
US20130324389A1 (en) | 2013-12-05 |
CN103347832A (zh) | 2013-10-09 |
TW201233656A (en) | 2012-08-16 |
JPWO2012108345A1 (ja) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012108345A1 (ja) | ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板 | |
EP2119681B1 (en) | Glass substrate for solar battery | |
JP6191138B2 (ja) | ガラス | |
US8921245B2 (en) | Glass substrate and method for manufacturing same | |
JP5733811B2 (ja) | 太陽電池用ガラス基板の製造方法 | |
WO2011018883A1 (ja) | ガラス基板 | |
US20110265863A1 (en) | Solar cell | |
JP5610563B2 (ja) | 太陽電池用ガラス基板 | |
WO2010050591A1 (ja) | 太陽電池 | |
TWI543952B (zh) | 薄膜太陽電池用玻璃板 | |
JP5704500B2 (ja) | ガラス板の製造方法 | |
JPWO2013133273A1 (ja) | Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池 | |
US20150325725A1 (en) | Glass substrate for solar cell | |
WO2013047246A1 (ja) | CdTe太陽電池用ガラス基板およびそれを用いた太陽電池 | |
WO2015076208A1 (ja) | ガラス板 | |
JP6128128B2 (ja) | 太陽電池用ガラス基板およびそれを用いた太陽電池 | |
JP5831850B2 (ja) | 太陽電池用ガラス基板 | |
JP2012036037A (ja) | 屋外用管ガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12745200 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012556854 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137020971 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12745200 Country of ref document: EP Kind code of ref document: A1 |