WO2017002770A1 - ボルト - Google Patents
ボルト Download PDFInfo
- Publication number
- WO2017002770A1 WO2017002770A1 PCT/JP2016/069050 JP2016069050W WO2017002770A1 WO 2017002770 A1 WO2017002770 A1 WO 2017002770A1 JP 2016069050 W JP2016069050 W JP 2016069050W WO 2017002770 A1 WO2017002770 A1 WO 2017002770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bolt
- content
- less
- steel
- formula
- Prior art date
Links
- 239000012535 impurity Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 26
- 239000006104 solid solution Substances 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 25
- 239000002344 surface layer Substances 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 69
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 69
- 239000001257 hydrogen Substances 0.000 abstract description 69
- 239000011651 chromium Substances 0.000 description 96
- 229910000831 Steel Inorganic materials 0.000 description 74
- 239000010959 steel Substances 0.000 description 74
- 238000012360 testing method Methods 0.000 description 51
- 238000010438 heat treatment Methods 0.000 description 32
- 239000011572 manganese Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000010936 titanium Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 238000005491 wire drawing Methods 0.000 description 18
- 238000010791 quenching Methods 0.000 description 16
- 238000010273 cold forging Methods 0.000 description 15
- 230000000171 quenching effect Effects 0.000 description 15
- 239000010949 copper Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000010955 niobium Substances 0.000 description 14
- 238000005496 tempering Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 229910000734 martensite Inorganic materials 0.000 description 12
- 229910052750 molybdenum Inorganic materials 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 229910052804 chromium Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 229910001563 bainite Inorganic materials 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000005539 carbonized material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0093—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B35/00—Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
Definitions
- the present invention relates to a bolt, and more particularly to a high-strength bolt.
- alloy elements such as Mo and V in the steel may be reduced.
- the softening heat treatment can be omitted or simplified.
- Patent Document 1 the bolt disclosed in Japanese Patent Laid-Open No. 10-53834 (Patent Document 1) has a mass% of B: 0.0008 to 0.004%, C: 0.4% or less, Ti: 0.00. 0-25% to 0.06%, N: 0.006% or less.
- the relationship between the ferrite grain size FGc during hot rolling and the Ti compound excluding TiN satisfies [Ti compound amount excluding TiN / FGc 1/2 ] ⁇ 1000 ⁇ 3.
- the austenite grain size number is 5 or more.
- Patent Document 1 describes that the tensile strength exceeds 785 N / mm 2 .
- Patent Document 2 The bolt disclosed in JP-T-2009-521600 (Patent Document 2) is by weight%, carbon is 0.35 to 0.55%, silicon is 0.05 to 2.0%, and manganese is 0.1%. ⁇ 0.8%, boron 0.001 ⁇ 0.004%, chromium 0.3 ⁇ 1.5%, total oxygen (TO) 0.005% or less, phosphorus 0.015% or less, Sulfur contains 0.010% or less, vanadium 0.05-0.5%, niobium 0.05-0.5%, nickel 0.1-0.5%, molybdenum 0.1% It contains at least one selected from the group consisting of ⁇ 1.5% and titanium from 0.01 to 0.1%, with the balance being composed of Fe and impurities.
- This bolt has an internal structure composed of ferrite and tempered martensite, and the ferrite content in the internal structure is 3 to 10% in terms of area ratio. Patent Document 2 describes that this bolt achieves excellent delayed fracture resistance and high strength.
- the bolt proposed in Patent Document 2 is a composite structure steel of soft ferrite and tempered martensite having an area ratio of 3 to 10% as the internal structure of the bolt. Therefore, compared with the case of steel having a tempered martensite single phase structure, the bolt strength is likely to decrease. Therefore, in order to adjust to a desired strength level, a tempering treatment at a lower temperature is required as compared with tempered martensite single-phase steel. As a result, the hydrogen embrittlement resistance at the desired strength may be reduced. Furthermore, in the manufacturing process, adjustment of the ferrite structure such as re-quenching and tempering is required. Therefore, the manufacturing cost is increased.
- the high-strength bolt disclosed in Japanese Patent Application Laid-Open No. 2008-156678 is mass%, C: more than 0.15% and 0.30% or less, Si: 1.0% or less, Mn: 1.
- a tempering treatment is performed at 100 to 400 ° C. to obtain a steel structure having an average prior austenite grain size of 10 ⁇ m or less after quenching. It is described in Patent Document 3 that a high-strength bolt excellent in delayed fracture resistance and corrosion resistance with a bolt strength range of about 1200 to 1800 MPa can be obtained.
- the bolt of Patent Document 3 contains 0.3 to 0.5% of Mo, so that the hardenability becomes too high. Therefore, it is necessary to carry out a long softening heat treatment before wire drawing and cold forging. In this case, the hydrogen embrittlement resistance may be lowered.
- Patent Document 4 The steel for high-strength bolts disclosed in Japanese Patent Application Laid-Open No. 2012-162798 (Patent Document 4) is in mass%, C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03% or less (not including 0%), S: 0.03% or less (not including 0%), Ni: 0.05 to 1.0 %, Cr: 0.01 to 1.50%, Cu: 1.0% or less (including 0%), Al: 0.01 to 0.10%, Ti: 0.01 to 0.1%, B : 0.0003 to 0.0050% and N: 0.002 to 0.010%, respectively, and a total of one or more selected from the group consisting of Cu, Ni and Cr is 0.10 to 3.0% And the balance consists of iron and inevitable impurities.
- the ratio ([Si] / [C]) of the Si content [Si] and the C content [C] is 1.0 or more. According to Patent Document 4, it is possible to obtain a boron-added high-strength bolt excellent in delayed fracture resistance even at a high strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Cr and Mo. Is described.
- Patent Document 4 the Ni content is high. Therefore, the hardenability may become too high. Therefore, it is necessary to carry out a long softening heat treatment before wire drawing and cold forging. In this case, the hydrogen embrittlement resistance may be lowered.
- Patent Document 5 The steel for cold forging disclosed in Japanese Patent Laid-Open No. 11-92868 (Patent Document 5) is C: 0.10 to 0.40%, Si: 0.15% or less, and Mn: 0.005% by mass. 30 to 1.00%, Cr: 0.50 to 1.20%, B: 0.0003 to 0.0050%, Ti: 0.020 to 0.100%, P: 0.015% or less (Including 0%), S: 0.015% or less (including 0%), N: 0.0100% or less (including 0%), and the balance is made of Fe and inevitable impurities. Further, the total number of one or two kinds of particles of TiC and Ti (CN) having a diameter of 0.2 ⁇ m or less in the steel matrix is 20/100 ⁇ m 2 or more. Thus, Patent Document 5 describes that delayed fracture resistance can be improved by preventing coarsening of crystal grains.
- Patent Document 5 is not a technique specialized for bolts, and when bolts are manufactured, hydrogen embrittlement resistance may be low.
- An object of the present invention is to provide a bolt having high strength and excellent hydrogen embrittlement resistance.
- the bolt according to the embodiment of the present invention is, in mass%, C: 0.32 to 0.39%, Si: 0.15% or less, Mn: 0.40 to 0.65%, P: 0.020% or less. S: 0.020% or less, Cr: 0.85-1.25%, Al: 0.005-0.060%, Ti: 0.010-0.050%, B: 0.0010-0.
- N 0.0015 to 0.0080%, O: 0.0015% or less, Mo: 0 to 0.05%, V: 0 to 0.05%, and Cu: 0 to 0.50% Ni: 0 to 0.30% and Nb: 0 to 0.05%, the balance being Fe and impurities, and having a chemical composition satisfying the formulas (1) and (2), 1000 It has a tensile strength of ⁇ 1300 MPa and satisfies the formula (3).
- the bolt according to the embodiment of the present invention has high strength and excellent hydrogen embrittlement resistance.
- FIG. 1 is a diagram showing the relationship between the amount of critical diffusion hydrogen and Mn / Cr in a bolt.
- FIG. 2 is a side view of a test piece with an annular V-notch.
- FIG. 3 is a side view and a front view of the screw manufactured in the example.
- the present inventors do not contain a large amount of expensive alloy elements such as Mo and V, but use boron-containing steel containing C, Mn, Cr, B, etc., and the tensile strength of the bolt, hydrogen embrittlement resistance
- the investigation and investigation were conducted on the components and the structure that affect the structure. As a result, the present inventors obtained the following knowledge.
- fn1 10C + Si + 2Mn + Cr + 4Mo + 5V.
- C, Si, Mn, Cr, Mo and V are all elements that enhance the hardenability. Therefore, fn1 is an index of hardenability and cold workability.
- fn1 If fn1 is too low, sufficient hardenability cannot be obtained. On the other hand, if fn1 is too high, the hardenability becomes too high. In this case, when the bolt steel is rolled into a wire rod, bainite is generated and the strength and hardness are increased. Therefore, cold workability cannot be obtained unless a long-time softening heat treatment is performed a plurality of times before the next wire drawing step and the cold forging step. If fn1 satisfies the formula (1), sufficient cold workability can be obtained while omitting the softening heat treatment or performing the softening heat treatment for a long time while obtaining excellent hardenability.
- FIG. 1 is a diagram showing the relationship between the critical diffusion hydrogen amount and fn2.
- FIG. 1 was obtained by the following method.
- the electrolytic charging method was performed as follows. The test piece was immersed in an aqueous solution of ammonium thiocyanate. With the test piece immersed, hydrogen was taken into the test piece by generating an anode potential on the surface of the test piece. Thereafter, a galvanized film was formed on the surface of each test piece to prevent hydrogen in the test piece from leaking to the outside. Subsequently, a constant load test was performed in which a constant load was applied so that a tensile stress of a nominal stress of 1080 MPa was applied to the V-notch cross section of the test piece.
- test piece that was broken during the test and the test piece that was not broken were subjected to a temperature rising analysis method using a gas chromatograph apparatus to measure the amount of hydrogen in the test piece. After the measurement, the maximum hydrogen content of the test piece that did not break in each steel was defined as the critical diffusible hydrogen content Hc (ppm).
- ratio HR Hc / Href (A)
- the ratio HR is an index of hydrogen embrittlement resistance.
- FIG. 1 was created based on the obtained ratio HR and fn2 of each steel.
- the ratio HR increases significantly as fn2 decreases, that is, as the ratio of Mn content to Cr content decreases. And if fn2 will be 0.55 or less, ratio HR will become higher than 1.00 and the outstanding hydrogen embrittlement-proof characteristic will be acquired.
- the hydrogen embrittlement resistance is further influenced by the amount of solid solution Cr in the bolt. If the bolt satisfies the formula (3), the hydrogen embrittlement resistance is enhanced. [Solubility Cr] /Cr ⁇ 0.70 (3) Here, the solid solution Cr amount (mass%) in the bolt is substituted for [solid solution Cr] in the formula (3), and Cr content in the chemical composition of the bolt (that is, total Cr content) Amount and unit are mass%).
- the present inventors have found for the first time that solute Cr increases the strength of tempered martensite against hydrogen embrittlement.
- the steel material after hot working is not subjected to heat treatment for softening before wire drawing and cold forging, or even when heat treatment is performed,
- the holding time of 700 ° C. or higher is set to less than 40 minutes.
- carbonized_material containing Cr is suppressed.
- the bolt according to the present embodiment completed based on the above knowledge is, in mass%, C: 0.32 to 0.39%, Si: 0.15% or less, Mn: 0.40 to 0.65%, P : 0.020% or less, S: 0.020% or less, Cr: 0.85 to 1.25%, Al: 0.005 to 0.060%, Ti: 0.010 to 0.050%, B: 0.0010 to 0.0030%, N: 0.0015 to 0.0080%, O: 0.0015% or less, Mo: 0 to 0.05%, V: 0 to 0.05%, and Cu: A chemistry containing 0 to 0.50%, Ni: 0 to 0.30%, and Nb: 0 to 0.05%, the balance being Fe and impurities, satisfying the formulas (1) and (2) It has a composition, has a tensile strength of 1000 to 1300 MPa, and satisfies the formula (3).
- the chemical composition is Mo: 0.01-0.05%, V: 0.005-0.05%, Cu: 0.03-0.50%, and Ni: 0.03-0.30% You may contain 1 type, or 2 or more types selected from the group which consists of.
- the above chemical composition may contain Nb: 0.0015 to 0.05%.
- C 0.32 to 0.39% Carbon (C) increases the hardenability of the bolt and increases the tensile strength of the bolt after quenching and tempering to 1000 MPa or more. If the C content is less than 0.32%, the above effect cannot be obtained. On the other hand, if the C content is too high, the hardenability becomes too high. In this case, the strength of the steel for bolts after hot working becomes too high, and cold workability is lowered. Therefore, long-time softening heat treatment for the purpose of softening must be performed several times on the steel material before performing cold working such as wire drawing and cold forging, which increases the manufacturing cost. . In addition, when the softening heat treatment is performed, the hydrogen embrittlement resistance is deteriorated. Therefore, the C content is 0.32 to 0.39%. A preferable lower limit of the C content is 0.33%. The upper limit with preferable C content is 0.38%.
- Si 0.15% or less Silicon (Si) deoxidizes steel. Si further enhances the hardenability and increases the strength of the bolt. However, if the Si content exceeds 0.15%, the hardenability becomes too high, and the cold workability of the steel material decreases. Therefore, the Si content is 0.15% or less.
- the minimum with preferable Si content is 0.01%, More preferably, it is 0.02%, More preferably, it is 0.05%.
- the upper limit with preferable Si content is 0.12%, More preferably, it is 0.10%.
- Mn 0.40 to 0.65%
- Manganese (Mn) increases the hardenability and makes the tensile strength of the bolt 1000 MPa or more. If the Mn content is less than 0.40%, this effect cannot be obtained. On the other hand, if the Mn content exceeds 0.65%, the hardenability becomes too high, and the cold workability of the bolt steel material decreases. Therefore, the Mn content is 0.40 to 0.65%.
- the minimum with preferable Mn content is 0.45%.
- the upper limit with preferable Mn content is 0.60%, More preferably, it is 0.55%.
- Phosphorus (P) is an impurity. P segregates at the grain boundaries to lower the cold workability and lower the hydrogen embrittlement resistance of the bolt. Therefore, the P content is 0.020% or less. The upper limit with preferable P content is 0.015%. The P content is preferably as low as possible.
- S 0.020% or less Sulfur (S) is an impurity. S forms sulfides, lowering the cold workability and lowering the hydrogen embrittlement resistance of the bolt. Therefore, the S content is 0.020% or less.
- the upper limit with preferable S content is 0.010%, More preferably, it is 0.008%.
- the S content is preferably as low as possible.
- Chromium (Cr) increases the hardenability and makes the tensile strength of the bolt 1000 MPa or more. Further, Cr dissolves in the tempered martensite in the bolt to enhance the hydrogen embrittlement resistance of the bolt. If the Cr content is less than 0.85%, these effects cannot be obtained. On the other hand, if the Cr content exceeds 1.25%, the hardenability becomes too high, and the cold workability of the bolt steel material decreases. Therefore, the Cr content is 0.85 to 1.25%. A preferable lower limit of the Cr content is 0.90%. The upper limit of the Cr content is 1.20%.
- Al 0.005 to 0.060%
- Aluminum (Al) deoxidizes steel. If the Al content is less than 0.005%, this effect cannot be obtained. On the other hand, if the Al content exceeds 0.060%, coarse oxide inclusions are generated and cold workability is lowered. Therefore, the Al content is 0.005 to 0.060%.
- a preferable lower limit of the Al content is 0.010%.
- the upper limit with preferable Al content is 0.055%.
- the Al content means the total amount of Al contained in the steel material.
- Ti 0.010 to 0.050% Titanium (Ti) combines with N in the steel to form nitride (TiN). By the generation of TiN, the generation of BN is suppressed and the amount of dissolved B increases. As a result, the hardenability of the steel material is increased. Ti further combines with C to form carbides (TiC) to refine crystal grains. This increases the hydrogen embrittlement resistance of the bolt. If the Ti content is less than 0.010%, these effects cannot be obtained. On the other hand, if the Ti content exceeds 0.050%, a large amount of coarse TiN is generated. In this case, cold workability and hydrogen embrittlement resistance are reduced. Therefore, the Ti content is 0.010 to 0.050%. A preferred lower limit of the Ti content is 0.015%. The upper limit with preferable Ti content is 0.045%.
- B 0.0010 to 0.0030% Boron (B) increases the hardenability of the steel. B further suppresses the grain boundary segregation of P and enhances the hydrogen embrittlement resistance of the bolt. If the B content is less than 0.0010%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.0030%, the effect of improving hardenability is saturated. Furthermore, coarse BN is generated and cold workability is lowered. Therefore, the B content is 0.0010 to 0.0030%. A preferable lower limit of the B content is 0.0015%. The upper limit with preferable B content is 0.0025%.
- N 0.0015 to 0.0080% Nitrogen (N) combines with Ti in the steel to form nitrides and refines the crystal grains. If the N content is less than 0.0015%, this effect cannot be obtained. On the other hand, if the N content exceeds 0.0080%, the effect is saturated. Furthermore, N combines with B to form a nitride, reducing the amount of dissolved B. In this case, the hardenability of the steel is reduced. Therefore, the N content is 0.0015 to 0.0080%. The minimum with preferable N content is 0.0020%. The upper limit with preferable N content is 0.0070%.
- Oxygen (O) is an impurity. O forms an oxide and reduces cold workability. If the O content exceeds 0.0015%, a large amount of oxide is generated, and MnS is coarsened, so that cold workability is remarkably lowered. Therefore, the O content is 0.0015% or less. The upper limit with preferable O content is 0.0013%. The O content is preferably as low as possible.
- the balance of the chemical composition of the bolt according to this embodiment is composed of Fe and impurities.
- the impurities are those that are mixed from ore, scrap, or production environment as raw materials when the bolts are manufactured industrially, and are allowed within a range that does not adversely affect the present invention. Means.
- the above-described bolt may further contain one or more selected from the group consisting of Mo, V, Cu, and Ni instead of a part of Fe. All of these elements are optional elements and enhance the hardenability of the steel.
- Mo 0 to 0.05%
- Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo enhances hardenability. However, if the Mo content exceeds 0.05%, the hardenability becomes too high, and the cold workability of the bolt steel material decreases. Therefore, the Mo content is 0 to 0.05%.
- the minimum with preferable Mo content for acquiring the said effect more effectively is 0.01%, More preferably, it is 0.015%.
- the upper limit with preferable Mo content is 0.03%, More preferably, it is 0.025%.
- V 0 to 0.05%
- Vanadium (V) is an optional element and may not be contained. When contained, V increases the hardenability of the steel. V further forms carbides, nitrides or carbonitrides to refine crystal grains. However, if the V content exceeds 0.05%, carbides and the like are coarsened and cold workability is lowered. Therefore, the V content is 0 to 0.05%. The minimum with preferable V content for acquiring the said effect more effectively is 0.005%. The upper limit with preferable V content is 0.03%, More preferably, it is 0.02%.
- Cu 0 to 0.50% Copper (Cu) is an optional element and may not be contained. When contained, Cu increases the hardenability of the steel. However, if Cu content exceeds 0.50%, hardenability will become high too much and cold workability will fall. Therefore, the Cu content is 0 to 0.50%.
- the minimum with preferable Cu content for acquiring the said effect more effectively is 0.03%, More preferably, it is 0.05%.
- the upper limit with preferable Cu content is 0.30%, More preferably, it is 0.20%.
- Nickel (Ni) is an optional element and may not be contained. When contained, Ni increases the hardenability of the steel. Ni further increases the toughness of the steel material after quenching. However, if Ni content exceeds 0.30%, hardenability will become high too much and cold workability will fall. Therefore, the Ni content is 0 to 0.30%.
- the preferable lower limit of the Ni content for obtaining the above effect more effectively is 0.03%, and more preferably 0.05%.
- the upper limit with preferable Ni content is 0.20%, More preferably, it is 0.10%.
- the chemical composition of the bolt according to the present embodiment may further contain Nb instead of a part of Fe.
- Niobium is an optional element and may not be contained. When contained, Nb combines with C and N to form carbides, nitrides or carbonitrides and refines the crystal grains. Nb further enhances the hydrogen embrittlement resistance of the bolt. However, if the Nb content exceeds 0.05%, coarse carbides or the like are generated and the cold workability of the steel material is lowered. Therefore, the Nb content is 0 to 0.05%. The minimum with preferable Nb content for acquiring the said effect more effectively is 0.0015%. The upper limit with preferable Nb content is 0.04%, More preferably, it is 0.03%.
- Fn1 10C + Si + 2Mn + Cr + 4Mo + 5V is an index of hardenability. If fn1 is too low, sufficient hardenability cannot be obtained. On the other hand, if fn1 is too high, the hardenability is too high. In this case, when the bolt steel is rolled into a wire, bainite is generated, and the strength and hardness of the steel are increased. Therefore, cold workability cannot be obtained unless a long-time softening heat treatment is performed a plurality of times before the next wire drawing step and the cold forging step. When fn1 is 4.9 to 6.1, excellent hardenability can be obtained.
- a preferred lower limit of fn1 is 4.95.
- a preferable upper limit of fn1 is 6.0.
- the bolt according to the present embodiment further satisfies the formula (3).
- [Solubility Cr] /Cr ⁇ 0.70 (3) The solid solution Cr amount (mass%) in the bolt is substituted for [solid solution Cr] in the formula (3), and the Cr content (mass%) in the chemical composition of the bolt is substituted for Cr.
- Fn3 [Solubility Cr] / Cr indicates the ratio of the amount of solute Cr in the bolt to the Cr content in the chemical composition.
- fn3 is high, more Cr is dissolved. Therefore, the strength of tempered martensite against hydrogen embrittlement increases, and the hydrogen embrittlement resistance increases.
- the bolt ratio HR is higher than 1.00, and excellent hydrogen embrittlement resistance can be obtained.
- a preferred lower limit of fn3 is 0.75.
- the amount of solid solution Cr is measured by the following method. Take a specimen containing the central axis of the bolt. The test piece is electrolyzed in a 10% AA electrolyte solution. The 10% AA electrolyte is a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution. After electrolysis, the electrolyte solution is filtered using a filter having a pore size of 0.1 ⁇ m to collect the residue. The amount (% by mass) of Cr in the collected residue is analyzed using an inductively coupled plasma (ICP) mass spectrometer. The amount of Cr in the residue means the amount of Cr other than the amount of solid solution Cr (that is, the amount of Cr in Cr precipitates such as Cr carbonitride).
- ICP inductively coupled plasma
- the amount of solid solution Cr (mass%) is calculated
- Solid solution Cr content Cr content of the entire bolt-Cr content in the residue (B) Using the obtained solid solution Cr amount, fn3 is obtained.
- the surface layer from the surface of the bolt to a depth of 50 ⁇ m (if a coating such as a plating layer is formed on the surface of the bolt, the depth is 50 ⁇ m from the surface of the material (base metal) of the bolt itself from which the coating has been removed).
- the formula (4) is satisfied. Ps / Pc ⁇ 1.2 (4)
- the P content of the bolt surface layer is not excessively higher than the P content inside the bolt. Therefore, excessive P can be prevented from segregating at the grain boundary in the surface layer, and the hydrogen embrittlement resistance is further improved.
- the surface P content Ps is obtained by the following method.
- the P content (mass%) in the range (surface layer) from the surface to the depth of 50 ⁇ m is determined at any one location of the bolt. Specifically, P content is measured at a pitch of 1 ⁇ m from the surface of the bolt to a depth of 50 ⁇ m using an electron beam microanalyzer (EPMA) device. The average of the measured P concentration is defined as the P concentration Ps of the surface layer.
- Pc is the P content (% by mass) in the chemical composition of the bolt.
- a lubricating film (lubricant) that does not contain P may be applied during wire drawing.
- the lubricant film may be removed from the bolt surface before quenching, which will be described later.
- the matrix structure of the bolt of this embodiment is a tempered martensite single phase. That is, in the matrix structure, the area ratio of tempered martensite is 100%.
- a molten steel having the above chemical composition is produced.
- a slab is manufactured by a continuous casting method using molten steel.
- an ingot is manufactured by an ingot-making method using molten steel.
- the produced slab or ingot is rolled into a steel slab.
- a steel piece is hot-worked to obtain a steel material (wire) for bolts. Hot working is, for example, hot rolling.
- Bolt manufacturing process In the bolt manufacturing process, bolts are manufactured using steel materials for bolts.
- the bolt manufacturing process includes a wire drawing process, a cold forging process, and a quenching and tempering process. Hereinafter, each process will be described.
- the holding time of 700 ° C. or higher is set to less than 40 minutes for the steel material.
- it can suppress that the carbide
- a bolt manufactured by cold forging is quenched and tempered under known conditions to adjust the tensile strength of the bolt to 1000 to 1300 MPa.
- a lubricating coating containing P typified by a phosphate coating is used during the wire drawing step, the surface of the steel (steel wire) is preferably subjected to alkali cleaning before quenching as described above. Thereby, P on the surface is removed, and the bolt after tempering satisfies the formula (4).
- the bolt of the present invention is manufactured by the above manufacturing process.
- steel M had a chemical composition corresponding to SCM435 of JIS G4053 (2008).
- the steel wire of each test number was cold forged to produce the bolt shown in FIG.
- the shape of the bolt was a metric screw conforming to JIS B0205, and more specifically, a fine screw (pitch 1.25 mm) having a nominal diameter (M) of 12 mm.
- M nominal diameter
- Each numerical value in the figure indicates the dimension (mm) of the corresponding part.
- the critical diffusible hydrogen amount ratio HR was obtained using the formula (A) with reference to the critical diffusible hydrogen amount Href of the steel M having a chemical composition corresponding to SCM435.
- Solid Cr content measurement test A test piece including the central axis of the bolt of each test number was collected, and the amount of solid solution Cr (mass%) was determined by the above-described method. Using the obtained solid solution Cr amount, fn3 was obtained.
- the chemical composition of the bolts with test numbers 1 to 7 was appropriate. Further, fn1 satisfies the formula (1), fn2 satisfies the formula (2), and fn3 satisfies the formula (3). As a result, the bolts with these test numbers had a high limit of diffusible hydrogen content HR of more than 1.00 and excellent hydrogen embrittlement resistance despite the high tensile strength of 1000 to 1300 MPa. .
- the Cr content of test number 8 was too low. Therefore, the ratio HR was as low as 1.00 or less, and the hydrogen embrittlement resistance was low.
- test number 9 The Mn content of test number 9 was too high. Therefore, the cold workability of the bolt steel (wire) was low, and cracks were observed in the bolt after cold forging.
- fn1 was less than the lower limit of formula (1). Therefore, even if the tempering temperature was lowered to 435 ° C., the tensile strength was less than 1000 MPa.
- the bolt of test number 14 has a chemical composition corresponding to SCM435 in the JIS standard used for conventional bolts, and the amount of critical diffusion hydrogen is defined as the standard (Href) of the critical diffusion hydrogen amount ratio HR. did.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
4.9≦10C+Si+2Mn+Cr+4Mo+5V≦6.1 (1)
Mn/Cr≦0.55 (2)
[固溶Cr]/Cr≧0.70 (3)
ここで、式(1)~(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が不純物レベルの場合、式(1)及び式(2)の対応する元素記号には「0」が代入される。式(3)の[固溶Cr]には、ボルト中の固溶Cr量(質量%)が代入される。
ボルトの引張強度を1000~1300MPaの高強度にするためには、十分な焼入れ性が必要である。しかしながら、焼入れ性が高すぎれば、線材等の鋼材に対して伸線及び冷間鍛造等の冷間加工を実施する前に、鋼材の軟化を目的とした長時間の軟化熱処理を複数回実施しなければならない。この場合、Mo、V等の合金元素を多量に含有しなくても、製造コストが高くなる。したがって、長時間の軟化熱処理を実施しなくても冷間加工が可能であり、かつ、上記引張強度が得られる焼入れ性を有する鋼材が望ましい。
4.9≦10C+Si+2Mn+Cr+4Mo+5V≦6.1 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。Mo及びVに関しては、これらの元素が不純物レベルである場合、式(1)中の対応する元素記号には「0」が代入される。
[Mn/Crと耐水素脆化特性との関係について]
ボルトの引張強度が1000~1300MPaの高強度であっても、式(2)を満たせば、優れた耐水素脆化特性が得られる。
Mn/Cr≦0.55 (2)
ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。以降の説明において、fn2=Mn/Crと定義する。fn2は式(2)の左辺に相当する。以下、式(2)について説明する。
HR=Hc/Href (A)
耐水素脆化特性にはさらに、ボルト中の固溶Cr量が影響する。ボルトが式(3)を満たせば、耐水素脆化特性が高まる。
[固溶Cr]/Cr≧0.70 (3)
ここで、式(3)中の[固溶Cr]には、ボルト中の固溶Cr量(質量%)が代入され、Crには、ボルトの化学組成におけるCr含有量(つまり、全Cr含有量、単位は質量%)が代入される。
4.9≦10C+Si+2Mn+Cr+4Mo+5V≦6.1 (1)
Mn/Cr≦0.55 (2)
[固溶Cr]/Cr≧0.70 (3)
ここで、式(1)~(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が不純物レベルの場合、式(1)及び式(2)の対応する元素記号には「0」が代入される。式(3)の[固溶Cr]には、ボルト中の固溶Cr量(質量%)が代入される。
Ps/Pc≦1.2 (4)
本実施形態のボルトの化学組成は、次の元素を含有する。
炭素(C)は、ボルトの焼入れ性を高め、焼入れ及び焼戻し後のボルトの引張強度を1000MPa以上に高める。C含有量が0.32%未満であれば、上記効果が得られない。一方、C含有量が高すぎれば、焼入れ性が高くなりすぎる。この場合、熱間加工後のボルト用鋼材の強度が高くなりすぎ、冷間加工性が低下する。そのため、伸線、及び、冷間鍛造等の冷間加工を実施する前の鋼材に対して、軟化を目的とした長時間の軟化熱処理を複数回実施しなければならず、製造コストが高くなる。軟化熱処理を実施した場合さらに、耐水素脆化特性が低下する。したがって、C含有量は0.32~0.39%である。C含有量の好ましい下限は0.33%である。C含有量の好ましい上限は0.38%である。
シリコン(Si)は、鋼を脱酸する。Siはさらに、焼入れ性を高めてボルトの強度を高める。しかしながら、Si含有量が0.15%を超えれば、焼入れ性が高くなりすぎ、鋼材の冷間加工性が低下する。したがって、Si含有量は0.15%以下である。Si含有量の好ましい下限は0.01%であり、より好ましくは0.02%であり、さらに好ましくは0.05%である。Si含有量の好ましい上限は0.12%であり、さらに好ましくは0.10%である。
マンガン(Mn)は、焼入れ性を高めてボルトの引張強度を1000MPa以上とする。Mn含有量が0.40%未満であれば、この効果が得られない。一方、Mn含有量が0.65%を超えれば、焼入れ性が高くなりすぎ、ボルト用鋼材の冷間加工性が低下する。したがって、Mn含有量は0.40~0.65%である。Mn含有量の好ましい下限は0.45%である。Mn含有量の好ましい上限は0.60%であり、さらに好ましくは0.55%である。
燐(P)は不純物である。Pは、結晶粒界に偏析して冷間加工性を低下し、ボルトの耐水素脆化特性を低下する。したがって、P含有量は0.020%以下である。P含有量の好ましい上限は0.015%である。P含有量はなるべく低い方が好ましい。
硫黄(S)は不純物である。Sは硫化物を形成して冷間加工性を低下し、ボルトの耐水素脆化特性を低下する。したがって、S含有量は0.020%以下である。S含有量の好ましい上限は0.010%であり、さらに好ましくは0.008%である。S含有量はなるべく低い方が好ましい。
クロム(Cr)は、焼入れ性を高めてボルトの引張強度を1000MPa以上とする。Crはさらに、ボルト中の焼戻しマルテンサイトに固溶して、ボルトの耐水素脆化特性を高める。Cr含有量が0.85%未満であれば、これらの効果が得られない。一方、Cr含有量が1.25%を超えれば、焼入れ性が高くなりすぎ、ボルト用鋼材の冷間加工性が低下する。したがって、Cr含有量は0.85~1.25%である。Cr含有量の好ましい下限は0.90%である。Cr含有量の上限は1.20%である。
アルミニウム(Al)は鋼を脱酸する。Al含有量が0.005%未満であれば、この効果が得られない。一方、Al含有量が0.060%を超えれば、粗大な酸化物系介在物が生成して冷間加工性が低下する。したがって、Al含有量は0.005~0.060%である。Al含有量の好ましい下限は0.010%である。Al含有量の好ましい上限は0.055%である。本発明によるボルトの化学組成において、Al含有量は、鋼材中に含有する全Al量を意味する。
チタン(Ti)は鋼中のNと結合して窒化物(TiN)を形成する。TiNの生成により、BNの生成が抑制され、固溶B量が増える。その結果、鋼材の焼入れ性が高まる。Tiはさらに、Cと結合して炭化物(TiC)を形成して結晶粒を微細化する。これにより、ボルトの耐水素脆化特性が高まる。Ti含有量が0.010%未満であれば、これらの効果が得られない。一方、Ti含有量が0.050%を超えれば、粗大なTiNが多量に生成する。この場合、冷間加工性及び耐水素脆化特性が低下する。したがって、Ti含有量は0.010~0.050%である。Ti含有量の好ましい下限は0.015%である。Ti含有量の好ましい上限は0.045%である。
ボロン(B)は鋼の焼入れ性を高める。Bはさらに、Pの粒界偏析を抑制して、ボルトの耐水素脆化特性を高める。B含有量が0.0010%未満であれば、これらの効果が得られない。一方、B含有量が0.0030%を超えれば、焼入れ性向上の効果が飽和する。さらに、粗大なBNが生成して冷間加工性が低下する。したがって、B含有量は0.0010~0.0030%である。B含有量の好ましい下限は0.0015%である。B含有量の好ましい上限は0.0025%である。
窒素(N)は、鋼中のTiと結合して窒化物を生成し、結晶粒を微細化する。N含有量が0.0015%未満であれば、この効果が得られない。一方、N含有量が0.0080%を超えれば、その効果が飽和する。さらに、NがBと結合して窒化物を生成し、固溶B量を低下する。この場合、鋼の焼入れ性が低下する。したがって、N含有量は0.0015~0.0080%である。N含有量の好ましい下限は0.0020%である。N含有量の好ましい上限は0.0070%である。
酸素(O)は不純物である。Oは酸化物を形成して冷間加工性を低下する。O含有量が0.0015%を超えれば、酸化物が多量に生成するとともに、MnSが粗大化して、冷間加工性が顕著に低下する。したがって、O含有量は0.0015%以下である。O含有量の好ましい上限は0.0013%である。O含有量はなるべく低い方が好ましい。
上述のボルトはさらに、Feの一部に代えて、Mo、V、Cu及びNiからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼の焼入れ性を高める。
モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、Moは焼入れ性を高める。しかしながら、Mo含有量が0.05%を超えれば、焼入れ性が高くなりすぎて、ボルト用鋼材の冷間加工性が低下する。したがって、Mo含有量は0~0.05%である。上記効果をより有効に得るためのMo含有量の好ましい下限は0.01%であり、さらに好ましくは0.015%である。Mo含有量の好ましい上限は0.03%であり、さらに好ましくは0.025%である。
バナジウム(V)は任意元素であり、含有されなくてもよい。含有される場合、Vは鋼の焼入れ性を高める。Vはさらに、炭化物、窒化物又は炭窒化物を形成して結晶粒を微細化する。しかしながら、V含有量が0.05%を超えれば、炭化物等が粗大化して冷間加工性を低下する。したがって、V含有量は0~0.05%である。上記効果をより有効に得るためのV含有量の好ましい下限は0.005%である。V含有量の好ましい上限は0.03%であり、さらに好ましくは0.02%である。
銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、Cuは鋼の焼入れ性を高める。しかしながらCu含有量が0.50%を超えれば、焼入れ性が高くなりすぎて冷間加工性が低下する。したがって、Cu含有量は0~0.50%である。上記効果をより有効に得るためのCu含有量の好ましい下限は0.03%であり、さらに好ましくは0.05%である。Cu含有量の好ましい上限は0.30%であり、さらに好ましくは0.20%である。
ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、Niは鋼の焼入れ性を高める。Niはさらに、焼入れ後の鋼材の靭性を高める。しかしながら、Ni含有量が0.30%を超えれば、焼入れ性が高くなりすぎて冷間加工性が低下する。したがって、Ni含有量は0~0.30%である。上記効果をより有効に得るためのNi含有量の好ましい下限は0.03%であり、さらに好ましくは0.05%である。Ni含有量の好ましい上限は0.20%であり、さらに好ましくは0.10%である。
ニオブ(Nb)任意元素であり、含有されなくてもよい。含有される場合、NbはC及びNと結合して、炭化物、窒化物又は炭窒化物を形成し、結晶粒を微細化する。Nbはさらに、ボルトの耐水素脆化特性を高める。しかしながら、Nb含有量が0.05%を超えれば、粗大な炭化物等が生成して鋼材の冷間加工性が低下する。したがって、Nb含有量は0~0.05%である。上記効果をより有効に得るためのNb含有量の好ましい下限は0.0015%である。Nb含有量の好ましい上限は0.04%であり、さらに好ましくは0.03%である。
本発明によるボルトの化学組成はさらに、式(1)を満たす。
4.9≦10C+Si+2Mn+Cr+4Mo+5V≦6.1 (1)
式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が不純物レベルの場合、式(1)の対応する元素記号には「0」が代入される。
本発明によるボルトの化学組成はさらに、式(2)を満たす。
Mn/Cr≦0.55 (2)
ここで、式(2)の各元素記号には、対応する元素の含有量(質量%)が代入される。
本実施形態によるボルトはさらに、式(3)を満たす。
[固溶Cr]/Cr≧0.70 (3)
式(3)の[固溶Cr]には、ボルト中の固溶Cr量(質量%)が代入され、Crにはボルトの化学組成におけるCr含有量(質量%)が代入される。
固溶Cr量=ボルト全体のCr含有量-残渣中のCr量 (B)
得られた固溶Cr量を用いて、fn3を求める。
好ましくは、ボルトの表面から50μm深さ(ボルトの表面にめっき層等の被膜が形成されている場合は、被膜を除去したボルト自体の素材(地金)の表面から50μm深さ)までの表層におけるP含有量をPs(質量%)として、ボルトの中心軸でのP含有量をPc(質量%)としたとき、式(4)を満たす。
Ps/Pc≦1.2(4)
本実施形態のボルトのマトリクス組織は、焼戻しマルテンサイト単相である。つまり、マトリクス組織において、焼戻しマルテンサイトの面積率は100%である。
本発明によるボルトの製造方法の一例について説明する。初めに、周知の製造方法によりボルト用鋼材を製造する(素材製造工程)。その後、ボルト用鋼材を用いて、ボルトを製造する(ボルト製造工程)。以下、各工程について説明する。
上述の化学組成を有する溶鋼を製造する。溶鋼を用いて連続鋳造法により鋳片を製造する。又は、溶鋼を用いて造塊法によりインゴットを製造する。製造された鋳片又はインゴットを分塊圧延して鋼片にする。鋼片を熱間加工して、ボルト用鋼材(線材)とする。熱間加工はたとえば、熱間圧延である。
ボルト製造工程では、ボルト用鋼材を用いてボルトを製造する。ボルト製造工程は、伸線工程、冷間鍛造工程、及び、焼入れ及び焼戻し工程を含む。以下、それぞれの工程について説明する。
初めに、線材に対して伸線加工を実施して鋼線を製造する。伸線加工は、一次伸線のみであってもよいし、二次伸線等、複数回の伸線加工を実施してもよい。伸線時において、線材の表面に潤滑被膜を形成する。潤滑被膜はたとえば、リン酸塩被膜や非リン系の潤滑被膜である。
伸線後の鋼材を所定の長さに切断して、切断された鋼材に対して冷間鍛造を実施してボルトを製造する。
従前の高強度のボルトの製造方法では、強度が高すぎるボルト用鋼材(線材)の軟化を目的として、伸線加工前及び冷間鍛造前に、軟化熱処理を複数回実施している。しかしながら、本発明によるボルトでは、式(1)を満たすことにより、このような軟化熱処理を省略又は簡素化する。これにより、軟化熱処理の実施による製造コストの上昇を抑えることができ、さらに、ボルトの耐水素脆化特性を高めることができる。
冷間鍛造により製造されたボルトに対して、周知の条件で焼入れ及び焼戻しを実施して、ボルトの引張強度を1000~1300MPaに調整する。伸線工程時にリン酸塩被膜に代表されるPを含有する潤滑被膜を利用する場合、上述のとおり、好ましくは、焼入れを実施する前に、鋼材(鋼線)の表面をアルカリ洗浄する。これにより、表面のPが除去され、焼戻し後のボルトが式(4)を満たす。
JIS B1051(2000)に準拠して、室温(25℃)、大気中にて各試験番号のボルトの引張強度(MPa)を測定した。測定結果を表3に示す。
各試験番号のボルトに対して、電解チャージ法を用いて、種々の濃度の水素を導入した。電解チャージ法は次のとおり実施した。チオシアン酸アンモニウム水溶液中にボルトを浸漬した。ボルトを浸漬した状態で、ボルトの表面にアノード電位を発生させて水素をボルト内に取り込んだ。
各試験番号のボルトの中心軸を含む試験片を採取し、上述の方法により固溶Cr量(質量%)を求めた。求めた固溶Cr量を用いて、fn3を求めた。
各試験番号のボルトのねじ部において、任意のねじ底部を1箇所選定し、上述の方法により、表層のP含有量Ps(質量%)を求めた。求めたP含有量Psを用いて、fn4=Ps/Pcを求めた。ここで、Pcはボルトの化学組成におけるP含有量(表2中のP含有量)とした。
表3に試験結果を示す。
Claims (4)
- 質量%で、
C:0.32~0.39%、
Si:0.15%以下、
Mn:0.40~0.65%、
P:0.020%以下、
S:0.020%以下、
Cr:0.85~1.25%、
Al:0.005~0.060%、
Ti:0.010~0.050%、
B:0.0010~0.0030%、
N:0.0015~0.0080%、
O:0.0015%以下、
Mo:0~0.05%、
V:0~0.05%、
Cu:0~0.50%、
Ni:0~0.30%、及び、
Nb:0~0.05%を含有し、残部がFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有し、
1000~1300MPaの引張強度を有し、
式(3)を満たす、ボルト。
4.9≦10C+Si+2Mn+Cr+4Mo+5V≦6.1 (1)
Mn/Cr≦0.55 (2)
[固溶Cr]/Cr≧0.70 (3)
ここで、式(1)~(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が不純物レベルの場合、式(1)の対応する元素記号には「0」が代入される。式(3)の[固溶Cr]には、前記ボルト中の固溶Cr量(質量%)が代入される。 - 請求項1に記載のボルトであって、
Mo:0.01~0.05%、
V:0.005~0.05%、
Cu:0.03~0.50%、及び、
Ni:0.03~0.30%からなる群から選択される1種又は2種以上を含有する、ボルト。 - 請求項1又は請求項2に記載のボルトであって、
Nb:0.0015~0.05%を含有する、ボルト。 - 請求項1~請求項3のいずれか1項に記載のボルトであって、
前記ボルトの表面から50μm深さまでの表層におけるP含有量をPs(質量%)とし、前記ボルトの中心軸でのP含有量をPc(質量%)としたとき、式(4)を満たす、ボルト。
Ps/Pc≦1.2 (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/737,799 US10669604B2 (en) | 2015-06-29 | 2016-06-27 | Bolt |
EP16817878.8A EP3315626B1 (en) | 2015-06-29 | 2016-06-27 | Bolt |
KR1020187002273A KR102062733B1 (ko) | 2015-06-29 | 2016-06-27 | 볼트 |
CN201680037775.3A CN107709594B (zh) | 2015-06-29 | 2016-06-27 | 螺栓 |
JP2017526346A JP6427272B2 (ja) | 2015-06-29 | 2016-06-27 | ボルト |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-129784 | 2015-06-29 | ||
JP2015129784 | 2015-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002770A1 true WO2017002770A1 (ja) | 2017-01-05 |
Family
ID=57608684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069050 WO2017002770A1 (ja) | 2015-06-29 | 2016-06-27 | ボルト |
Country Status (6)
Country | Link |
---|---|
US (1) | US10669604B2 (ja) |
EP (1) | EP3315626B1 (ja) |
JP (1) | JP6427272B2 (ja) |
KR (1) | KR102062733B1 (ja) |
CN (1) | CN107709594B (ja) |
WO (1) | WO2017002770A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017094487A1 (ja) * | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | 高強度ボルト |
JP2018165401A (ja) * | 2017-03-28 | 2018-10-25 | Jfeスチール株式会社 | 強靭鋼 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114277231B (zh) * | 2021-11-19 | 2023-12-05 | 铃木加普腾钢丝(苏州)有限公司 | 电动尾门油淬火钢丝在线去氢工艺 |
CN114657468B (zh) * | 2022-03-23 | 2022-11-11 | 承德建龙特殊钢有限公司 | 一种风电紧固件用钢及其制备方法 |
CN116024499B (zh) * | 2022-12-28 | 2024-06-25 | 燕山大学 | 一种抗氢致延迟断裂的10.9级螺栓用钢及10.9级螺栓的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278672A (ja) * | 1994-04-12 | 1995-10-24 | Nippon Steel Corp | 耐遅れ破壊特性に優れた高強度ボルトの製造法 |
JPH08134586A (ja) * | 1994-11-05 | 1996-05-28 | Sanyo Special Steel Co Ltd | 構造用鋼 |
JP2007239100A (ja) * | 2006-02-09 | 2007-09-20 | Kobe Steel Ltd | クロムモリブデン鋼の代替鋼の成分設計方法 |
JP2012233244A (ja) * | 2011-05-09 | 2012-11-29 | Sumitomo Metal Ind Ltd | 鋼製ボルトおよびその製造方法 |
WO2015083599A1 (ja) * | 2013-12-02 | 2015-06-11 | 株式会社神戸製鋼所 | ボルト用鋼線およびボルト、並びにそれらの製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2779449B2 (ja) * | 1988-12-20 | 1998-07-23 | トーア・スチール株式会社 | 太径ボルトの製造方法 |
JP3507626B2 (ja) | 1996-08-06 | 2004-03-15 | 株式会社神戸製鋼所 | 高強度ボルト用鋼および高強度ボルト |
JP3490293B2 (ja) | 1997-07-23 | 2004-01-26 | 新日本製鐵株式会社 | 結晶粒粗大化防止特性と耐遅れ破壊特性に優れた冷間鍛造用鋼とその製造方法 |
JP4430559B2 (ja) * | 2005-02-09 | 2010-03-10 | 株式会社神戸製鋼所 | 耐遅れ破壊性に優れた高強度ボルト用鋼及び高強度ボルト |
JP4427012B2 (ja) * | 2005-07-22 | 2010-03-03 | 新日本製鐵株式会社 | 耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法 |
KR100723186B1 (ko) | 2005-12-26 | 2007-05-29 | 주식회사 포스코 | 지연파괴저항성이 우수한 고강도 볼트 및 그 제조기술 |
EP1975266B1 (en) * | 2005-12-28 | 2012-07-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Ultrahigh-strength steel sheet |
JP4867638B2 (ja) | 2006-12-21 | 2012-02-01 | Jfeスチール株式会社 | 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト |
JP5121282B2 (ja) * | 2007-04-03 | 2013-01-16 | 株式会社神戸製鋼所 | 高速冷間加工用鋼及びその製造方法、並びに高速冷間加工部品およびその製造方法 |
EP1975270A1 (en) * | 2007-03-31 | 2008-10-01 | Daido Tokushuko Kabushiki Kaisha | Austenitic free cutting stainless steel |
JP5334769B2 (ja) * | 2009-09-10 | 2013-11-06 | 独立行政法人物質・材料研究機構 | 高強度ボルト |
KR101445813B1 (ko) * | 2009-11-30 | 2014-10-01 | 신닛테츠스미킨 카부시키카이샤 | 내수소취화 특성이 우수한 인장 최대 강도가 900 MPa 이상인 고강도 강판 및 그 제조 방법 |
KR101366375B1 (ko) * | 2010-03-11 | 2014-02-24 | 신닛테츠스미킨 카부시키카이샤 | 내지연 파괴 특성이 우수한 고강도 강재와 고강도 볼트 및 그 제조 방법 |
JP5608145B2 (ja) | 2011-01-18 | 2014-10-15 | 株式会社神戸製鋼所 | 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト |
JP5674620B2 (ja) * | 2011-10-07 | 2015-02-25 | 株式会社神戸製鋼所 | ボルト用鋼線及びボルト、並びにその製造方法 |
WO2013105344A1 (ja) * | 2012-01-11 | 2013-07-18 | 株式会社神戸製鋼所 | ボルト用鋼、ボルトおよびボルトの製造方法 |
JP2015189952A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | 耐食性及び加工性に優れた潤滑皮膜を有する鋼線材 |
-
2016
- 2016-06-27 KR KR1020187002273A patent/KR102062733B1/ko active IP Right Grant
- 2016-06-27 WO PCT/JP2016/069050 patent/WO2017002770A1/ja active Application Filing
- 2016-06-27 EP EP16817878.8A patent/EP3315626B1/en active Active
- 2016-06-27 CN CN201680037775.3A patent/CN107709594B/zh active Active
- 2016-06-27 JP JP2017526346A patent/JP6427272B2/ja active Active
- 2016-06-27 US US15/737,799 patent/US10669604B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278672A (ja) * | 1994-04-12 | 1995-10-24 | Nippon Steel Corp | 耐遅れ破壊特性に優れた高強度ボルトの製造法 |
JPH08134586A (ja) * | 1994-11-05 | 1996-05-28 | Sanyo Special Steel Co Ltd | 構造用鋼 |
JP2007239100A (ja) * | 2006-02-09 | 2007-09-20 | Kobe Steel Ltd | クロムモリブデン鋼の代替鋼の成分設計方法 |
JP2012233244A (ja) * | 2011-05-09 | 2012-11-29 | Sumitomo Metal Ind Ltd | 鋼製ボルトおよびその製造方法 |
WO2015083599A1 (ja) * | 2013-12-02 | 2015-06-11 | 株式会社神戸製鋼所 | ボルト用鋼線およびボルト、並びにそれらの製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017094487A1 (ja) * | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | 高強度ボルト |
JPWO2017094487A1 (ja) * | 2015-12-04 | 2018-08-16 | 新日鐵住金株式会社 | 高強度ボルト |
JP2018165401A (ja) * | 2017-03-28 | 2018-10-25 | Jfeスチール株式会社 | 強靭鋼 |
JP2020020046A (ja) * | 2017-03-28 | 2020-02-06 | Jfeスチール株式会社 | 熱間圧延鋼材 |
JP7028227B2 (ja) | 2017-03-28 | 2022-03-02 | Jfeスチール株式会社 | 熱間圧延鋼材 |
Also Published As
Publication number | Publication date |
---|---|
KR102062733B1 (ko) | 2020-01-06 |
CN107709594B (zh) | 2020-03-20 |
EP3315626A4 (en) | 2018-12-26 |
KR20180019740A (ko) | 2018-02-26 |
CN107709594A (zh) | 2018-02-16 |
US20190003000A1 (en) | 2019-01-03 |
EP3315626A1 (en) | 2018-05-02 |
JP6427272B2 (ja) | 2018-11-21 |
EP3315626B1 (en) | 2020-12-23 |
JPWO2017002770A1 (ja) | 2018-04-26 |
US10669604B2 (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017002770A1 (ja) | ボルト | |
JP6610808B2 (ja) | 軟窒化用鋼および部品 | |
EP3026138A1 (en) | High-strength steel material for oil well use, and oil well pipe | |
US8312751B2 (en) | Method for producing high alloy pipe | |
KR20180082581A (ko) | 냉간 단조 조질품용 압연 봉선 | |
JP5260460B2 (ja) | 肌焼鋼部品およびその製造方法 | |
JPWO2018016505A1 (ja) | 高周波焼入れ用鋼 | |
JPWO2017115842A1 (ja) | 肌焼鋼、浸炭部品および肌焼鋼の製造方法 | |
JP6679935B2 (ja) | 冷間加工部品用鋼 | |
JP6601284B2 (ja) | 高強度ボルト | |
JP4337712B2 (ja) | マルテンサイト系ステンレス鋼 | |
JPWO2020138450A1 (ja) | 浸炭窒化軸受部品の素材となる鋼材 | |
JP6477917B2 (ja) | 高強度ボルト | |
JP7155644B2 (ja) | ボルト | |
JP5286220B2 (ja) | 機械構造用鋼およびその製造方法 | |
CN107429359B (zh) | 热轧棒线材、部件及热轧棒线材的制造方法 | |
JP7273295B2 (ja) | ボルト用鋼、ボルト、及びボルトの製造方法 | |
JP6601140B2 (ja) | 高強度ボルト及び高強度ボルト用鋼 | |
JP7368723B2 (ja) | 浸炭鋼部品用鋼材 | |
JP2017066521A (ja) | 機械構造用部品 | |
JP2023050636A (ja) | 非調質鋼および窒化部品 | |
JP2021165430A (ja) | 高強度ボルト用鋼の製造方法 | |
JP2021105205A (ja) | 浸炭鋼部品用鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817878 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526346 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187002273 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016817878 Country of ref document: EP |