JP4867638B2 - 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト - Google Patents

耐遅れ破壊特性および耐腐食性に優れた高強度ボルト Download PDF

Info

Publication number
JP4867638B2
JP4867638B2 JP2006344498A JP2006344498A JP4867638B2 JP 4867638 B2 JP4867638 B2 JP 4867638B2 JP 2006344498 A JP2006344498 A JP 2006344498A JP 2006344498 A JP2006344498 A JP 2006344498A JP 4867638 B2 JP4867638 B2 JP 4867638B2
Authority
JP
Japan
Prior art keywords
less
strength
delayed fracture
steel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006344498A
Other languages
English (en)
Other versions
JP2008156678A (ja
Inventor
慶一 丸田
伸隆 黒澤
和邦 長谷
秀途 木村
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006344498A priority Critical patent/JP4867638B2/ja
Publication of JP2008156678A publication Critical patent/JP2008156678A/ja
Application granted granted Critical
Publication of JP4867638B2 publication Critical patent/JP4867638B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,主に建築関係や自動車、産業機械用部品用の高強度ボルトに関するものであり、特に、現状高価な合金元素が用いられている耐遅れ破壊特性に優れたボルトとして好適に利用できる、強度と耐遅れ破壊特性および耐腐食性とを兼ね備えたボルトに関する。
近年、自動車や建築分野においても鋼材の高強度化が一段と進み、あらゆる部材における高強度化が指向されてきている。一例としてボルト分野においては、引っ張り強度1000MPaを越える領域においても1200MPa級、1500MPa級と、より高強度の鋼が要求されている。ところで、このように高強度化が進む場合に最も懸念されるのが、遅れ破壊である。
遅れ破壊は引っ張り強度が1200MPa以上の鋼材で生じやすく、特にボルトではこの点を勘案して、JISB1186、JISB1051において、上限強度をF10T、F12Tに規定している。これらの鋼にはSCM等が主に用いられている。
更に高強度で遅れ破壊にも優れる材料としては、マルエージング鋼がまず知られている。ただしNi含有量が15〜20質量%と高く、低合金鋼と比較して圧倒的に高価であり、強度レベルも2000MPaを越えるような超高強度であるため、一般的に使用される強度1200〜1600MPa程度の高強度部材製造用の素材鋼としては用いられない。
そこで、低合金鋼以上の特性で1200〜1600MPa程度の高強度鋼として、マルエージング鋼よりも少ないNi量で低合金鋼以上の耐遅れ破壊特性を狙った鋼が開発されている(例えば、特許文献1、特許文献2参照。)。
また、上記強度範囲での高強度ボルトを対象とした技術も公表されている。焼戻しマルテンサイト中に多数の微細析出物分散によって特性を得ようとするものや、多数のTi炭窒化物を分散させるようなものが知られている(例えば、特許文献3、特許文献4参照。)。
また、耐遅れ破壊特性を向上させる技術として、化学成分を調整した鋼の棒線材に熱間圧延する際の加熱条件、圧延温度条件、焼戻し条件を調整することで、鋼組織をオーステナイト粒度番号で10番以上に微細化した焼戻しマルテンサイト組織とし、耐遅れ破壊特性に優れたPC棒線を得る技術が知られている(例えば、特許文献5参照。)。
特開2000−8137号公報 特開2000−144245号公報 特開2003−321743号公報 特開第3426495号公報 特開平6−336648号公報
しかし、特許文献1、特許文献2等に記載されている鋼も、少ないとはいえNiが数質量%含有されるものであり、通常の高強度鋼として大量に使用するには、やはりコスト高となる欠点がある。
また、特許文献3、特許文献4参照に記載の鋼は、多数の析出物が必要となり、それらを生み出すためにはある程度の合金成分が必要となる。それらは前述のNiのように高価ではなくとも、CやTi、Nの増量であり、このために成形性(冷間鍛造性)を損なうという問題が生じる。
さらに、特許文献5に記載の鋼は、PC鋼棒の製造を意図したものであるため、高強度ボルトの製造に適用しようとすると、ボルトに成形する際の冷間鍛造性に問題が生じる場合があり、そのまま適用することはできない。
したがって本発明の目的は、このような従来技術の課題を解決し、MoやCo、V等の高価な合金元素を多量に添加することによる製造コストの増加を抑制して、加工しやすく、しかも高強度で耐遅れ破壊特性および耐腐食性に優れる高強度ボルトを安価に提供することにある。
発明者らは、上記課題を解決すべく鋭意検討をかさねた結果、多量のNiやCoを含有しない成分系の場合であっても、C、Mo、B、Tiを適正範囲で添加し、焼入れ後の旧オーステナイト粒径を適正に微細化させて、その後、通常ボルト等の製造ではあまり使用されない100℃〜400℃の温度域で焼き戻しすることで、強度範囲がおよそ1200〜1800MPaで、高い加工性、高い耐遅れ破壊特性、および耐腐食性を発現させることができるという知見を得て、本発明を完成させた。
本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)、質量%で、C:0.15%超、0.30%以下、Si:1.0%以下、Mn:1.5%以下、Ti:0.1%以下、Mo:0.3%以上、0.5%以下、B:0.0005%以上、0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、焼入れ後に、100℃〜400℃で焼き戻し処理を施し、焼入後の平均旧オーステナイト粒径が10μm以下の鋼組織とすること特徴とする耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
(2)、鋼が、さらに、質量%で、Al:1.0%以下、Cr:2.5%以下、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下の中から選んだ1種または2種以上を含有することを特徴とする(1)に記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
(3)、鋼が、さらに、質量%で、W:0.1%以下、Nb:0.1%以下の中から選んだ1種または2種を含有することを特徴とする(1)または(2)に記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
(4)、焼入れを、高周波加熱を用いて行うことを特徴とする(1)ないし(3)のいずれかに記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
本発明によれば、高強度で耐遅れ破壊特性、耐腐食性、冷間鍛造性に優れたボルトを、高価な合金元素を多量に添加することなく、安価に製造することができる。
以下に,本発明の詳細を説明する。
まず、本発明における、鋼組成の限定理由について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。
C:0.15%超、0.30%以下とする。
Cは必要な強度を確保するために必須の元素であり、0.15%以下では所定の強度確保が難しい。一方で、0.30%を超えると強度が上がりすぎて、遅れ破壊特性が低下し、また、冷間鍛造性も低下するため、0.3%を上限とした。
Si:1.0%以下とする。
Siは脱酸剤として鋼の溶製時に作用するために、含有させることができる。但し、1.0%を超えると鋼の冷間鍛造性を著しく低下させるので、上限を1.0%とした。
Mn:1.5%以下とする。
Mnは、鋼の溶製時の脱酸剤としての作用を有しているので、含有させることができる。但し、1.5%を超えると鋼の冷間鍛造性を著しく低下させるので、上限を1.5%とした。
Mo:0.3%以上、0.5%以下とする。
Moは本発明において、特に重要な元素である。Moは延性を大きく損なうことなく強度を向上させる。また耐腐食性の維持のためにも必要な元素である。その効果を発現するには0.3%以上の添加が必須である。一方で、0.5%を超えて添加しても強度のそれ以上の向上にならず、コスト高となってしまう。また過剰に添加すると冷間鍛造性も低下する傾向にあるので、上限を0.5%とした。
B:0.0005%以上、0.01%以下とする。
Bは、粒界部に濃化して粒界強度向上に寄与する最も重要な元素である。遅れ破壊は主にオーステナイト粒界で発生するものであり、この粒界を強化することは耐遅れ破壊特性の向上に大きく寄与する。そのためには0.0005%以上の含有が必要である。しかし0.01%を超えて含有してもその効果は飽和するので、上記範囲に限定した。
Ti:0.1%以下とする。
Tiは、不可避的不純物として混入するNと結合することで、BがBNを形成してBの効果が消失することを防止する。この効果を得るためには0.005%以上含有することが好ましいが、0.1%を超えて添加してもTiNが大量に形成されて、強度や疲労強度の低下を招くため、上限を0.1%とする。
以上が、本発明における基本成分であるが、次に本発明の高強度ボルトの組織について説明する。
高強度ボルトの鋼組織の旧オーステナイト粒径を10μm以下とする。
本発明では旧オーステナイト粒径の調整が重要である。旧オーステナイト粒径を微細化することで、粒界に析出し遅れ破壊特性を低下させる膜状炭化物の析出を抑制し、粒界強度を向上させる。そのためには粒径は10μm以下であることが必要である。なおより好ましくは、粒径を7μm以下とする。粒径が7μm以下であれば、一層耐遅れ破壊特性を向上させる効果がある。
本発明では、以下に示すAl、Cr、Cu、Ni、Vの中から選んだ1種又は2種以上を含有してもよい。
Al:1.0%以下とする。
Alは脱酸に有効な元素である。また焼入れ時のオーステナイト粒成長を抑制することによって、強度の維持に有効な元素である。しかしながら含有量が1.0%を超えて含有させてもその効果は飽和し、コスト上昇を招く不利が生じるだけでなく、冷間鍛造性も低下する。よってAlを添加する場合は、1.0%以下とする。
Cr:2.5%以下とする。
Crは焼入れ性の向上に有効であり、硬化深さを確保する上で有用である。しかし過度に含有すると、炭化物安定効果によって残留炭化物の生成を助長し、強度の低下をまねく。従ってCr含有はできる限り低減することが望ましいが、2.5%までは許容できる。なお、焼入れ性を向上させる作用を発現させるためには、0.2%以上含有させることが好ましい。
Cu:1.0%以下とする。
Cuは焼入れ性の向上に有効であり、またフェライト中に固溶して強度を向上させる。しかし1.0%を超えて含有すると熱延等の熱間加工時に割れが発生する。そこでCuを添加する場合は、1.0%以下とする。なお、焼入れ性や強度を向上させる作用を発現させるためには、0.2%以上含有させることが好ましい。
Ni:2.0%以下とする。
Niは焼入れ性を向上させるのに有効であり、また炭化物の生成を抑制するため、膜状炭化物の粒界への生成を抑制し粒界強度を上げることで強度、遅れ破壊特性の向上に寄与する。ただしNiは非常に高価な元素であり、2.0%を超えて添加すると鋼材コストが著しく上昇する。そこでNiを添加する場合は、2.0%以下とする。なお、焼入れ性や強度、遅れ破壊特性を向上させる作用を発現させるためには、0.5%以上含有させることが好ましい。
V:0.5%以下とする。
Vは、鋼中でCと結合し強化元素としての作用が期待される。また焼き戻し軟化抵抗性を向上させる効果もあり、強度向上に寄与する。しかし0.5%を超えて含有してもその効果は飽和するため、Vを添加する場合は、0.5%以下とする。なお、強度を向上させる作用を発現させるためには、0.1%以上含有させることが好ましい。
さらに、本発明では以下に示すW、Nbのうちから選んだ1種または2種を含有することができる。
W:0.1%以下とする。
Wは安定した炭化物を形成し、強化元素として有効である。一方で、0.1%を超えて添加すると冷間鍛造性を低下させるので、Wを添加する場合は0.1%以下とする。
Nb:0.1%以下とする。
Nbは焼入れ性向上効果のほかに、析出強化元素として強度や靭性の向上に寄与する。この効果を発現させるためには0.005%以上含有させることが好ましい。しかし0.1%を超えて含有しても、その効果は飽和するので、Nbを添加する場合は0.1%以下とする。
以上説明した元素以外の残部はFeおよび不可避的不純物である。主な不可避的不純物としては、S、P、N、Oが挙げられる。これら元素は、S:0.05%以下、P:0.05%以下、N:0.01%以下、O:0.01%以下であれば許容できる。
次に、本発明の高強度ボルトの製造方法を説明する。本発明の高強度ボルトは、上記の成分組成を有する鋼を用い、所定の形状とした素材を、焼入れ焼戻しを行なって製造する。
上述の成分を含む鋼は、転炉による溶製で製造されたものでも、真空溶製により製造されたものでも使用できる。鋼塊または連鋳スラブは加熱されて熱間圧延され、酸洗してスケール除去された後に冷間圧延や冷間鍛造が施されボルト形状に整えられる。そして、所定の強度を付与するために焼入れ焼戻しが施されてマルテンサイト組織とされる。
焼入れ処理:高周波焼入れを行なうことが好ましい。
焼入れ処理においては、高周波加熱を用いることで、必要な温度域に到達後に、直ちに焼き入れることが可能であり、不必要な結晶粒の粗大化を避け微細な結晶粒組織を得ることができる。このためには高周波焼入れにおいて、昇温速度100℃/s以上で最高温度800℃〜1100℃に加熱し、到達後即焼き入れる方法が有効である。
焼き戻し温度:100℃〜400℃とする。
この条件が本発明では最も鍵となる部分である。すなわち、焼戻し温度100℃〜400℃は通常のボルト用鋼等では一般的に使用されない温度域である。しかし本発明の場合には、この温度域とすることで、不必要な炭化物が析出しない。焼戻し温度を本範囲より高くすると、炭化物が析出する。炭化物が析出すると、低pH(ほぼpH2以下)中では、炭化物とマトリックス間に局部電池が生成して、鋼自体の腐食による減量が大きくなる。そこで不必要に炭化物を析出させないために上記温度範囲とした。さらに含有しているBが拡散したり不必要な析出をしたりすることなく、粒界に濃化して粒界の強化にうまく寄与する。そして焼戻し温度が高くないことで、微細粒効果との重畳によって、一定以上の強度レベルおよび耐遅れ破壊特性を維持する。なお焼戻し温度は、100℃〜250℃であることが一層好ましい。
このように、粒界を強化する組成範囲、微細粒組織、焼戻し温度の3条件を、適正に組み合わせることで、高強度および耐遅れ破壊特性という相反する特性の両立が可能となるのである。
かくして得られたボルトは、安価に製造できるにもかかわらず、高強度および優れた耐遅れ破壊特性、耐腐食性、鍛造性を有し、高強度を必要とする自動車用高強度ボルトや建築用ボルトへの使用が可能である。
表1に示す記号1〜17の鋼を真空溶製にて製造した。これらの鋼を1100℃に加熱して熱間鍛造し、直径60mm(φ60mm)の丸棒とした。その後850℃で1時間ノルマ処理を行い素材とし、これに以下の熱処理を行い、引張試験および遅れ破壊の評価、組織観察、冷間鍛造性の評価を行なった。
Figure 0004867638
素材丸棒の1/4dの位置より、引張試験片(JIS5号)の形状を切り出した。この試験片を高周波加熱によって昇温速度400℃/sで1050℃に加熱した後即焼入れし、引き続いて同じく昇温速度400℃/sの高周波加熱で1050℃に加熱した後に即焼入れを行なう2段高周波焼入れを行なった。その後180℃で30分間の焼き戻しを行ない、引張試験に供した。引張強度1200MPa以上のものを、高強度として評価した。
遅れ破壊の評価は以下の手順で実施した。図1に示すような試験片を丸棒素材の1/4d位置より切り出した。焼入れ焼き戻し条件は引っ張り試験片と同様にして行なった。この試験片を用いて、定荷重型試験を行なうことで遅れ破壊特性を評価した。定荷重型試験は、酢酸を用いてpH1.5に調整した5質量%NaCl溶液に試験片を浸漬し、試験片にある一定の荷重をかけて、試験片が破断するまでの時間を測定して行なった。試験時間が200時間を超えた段階で試験片に破断のない場合は、試験を中断して破断なしと評価した。荷重を変えて試験をすることで、破段時間と荷重の関係を示す曲線が得られるので、破断の起きなくなる荷重から下限界応力を求めて、この値の大小にて遅れ破壊を評価した。下限界応力と引張強度との比である、下限界応力/引張強度が0.8以上のものを耐遅れ破壊特性が良好であると評価した。
旧オーステナイト粒径は、水:500gに対しピクリン酸:50gを溶解させたピクリン酸水溶液に、ドデシルベンゼンスルホン酸ナトリウム:11g、塩化第1鉄:1gおよびシュウ酸:1.5gを添加したものを腐食液として作用させ、腐食によって旧オーステナイト粒界を現出させた後、倍率1000倍にて観察撮影し、得られた画像から切断法にて求めた。
また冷間鍛造性の評価については、図2(a)に示すようなφ15mm、高さ22.5mmのタブレットの試験片1を棒材の1/4d位置より、圧延方向に一致するように切り出した。鍛造試験は種々の圧縮率で試験片10個(n=10)について圧縮を行い、割れの有無にて判断した。図2に示す矢印は、圧縮方向である。割れ2は、図2(b)に示すように発生した。各圧縮率での割れ発生率と圧縮率の関係をグラフにプロットし、試験片の50%(5個)が割れる圧縮率をもって、冷間鍛造性とした。この値が大きいほど鍛造性が良いことになり、冷間鍛造性70%以上を良好な冷間鍛造性を有するものとして評価した。
腐食性の評価は以下により行なった。φ60mm鍛伸材の1/4dの位置から、φ10×60mmの丸棒を切り出した。これを高周波焼き入れ焼戻しを行なったのち、丸棒の長さ中心から、φ10×30mmのタブレットを切り出し、表面をすべて三角記号の表面粗さで▽▽▽になるように研磨した。この試験片の質量を測定した後に、pHが1.5になるように酢酸でpH調整した5質量%NaCl水溶液中に浸漬した。200h浸漬後に引き上げて、クエン酸水素IIアンモニウム水溶液にて錆落しをした後、質量を測定した。浸漬前後の質量の減量(g)をもって腐食性評価値とした。腐食減量0.30g以下のものを優れた耐腐食性を有するものとして評価した。
旧オーステナイト粒径、引張強度、遅れ破壊(下限界応力)、冷間鍛造性、腐食性の測定結果を表1中に併せて示す。表1より、化学成分と組織が本発明の範囲内にある鋼は、強度が1200MPa以上で、遅れ破壊については「下限界応力/引張強度」が0.8以上となる高い耐遅れ破壊特性を示し、鍛造性、腐食性ともに優れていることが分かった。
本実施例においては、表1に示す記号3の成分を有する鋼について、組織の影響を調べる実験を行なった。実験方法は全て実施例1と同じである。ただし旧オーステナイト粒径の影響を調べるために、2段目の焼入れ温度である高周波加熱の温度を1050から、1100、1150℃に変化させて、記号18、19の鋼素材を製造した。測定結果を表2に示す。
Figure 0004867638
オーステナイト粒径が10μmより大きくなると、耐遅れ破壊特性を示す「下限界応力/引張強度」が顕著に低下することが分かった。
本実施例においては、基本成分以外の、他の成分の効果を調べる実験を行なった。表3に示す成分組成を有する鋼(記号20〜33)を真空溶製にて製造し、実施例1と同様にして引張試験および遅れ破壊の評価、組織観察、冷間鍛造性、腐食性の評価を行なった。結果を表3に併せて示す。
Figure 0004867638
Cr、Al、Wが過度に含有されると冷間鍛造性の低下を招き、またNi、V、Nbについてはその効果が飽和することが分かった。さらに、Cuを1.3%とした鋼記号25では、熱間鍛造後の丸棒に、一部割れの発生が認められた。
本実施例においては、表1に示す記号3の成分を有する鋼について、焼戻し温度の影響を調べる実験を行なった。実施例1と同様にして焼入れまでおこない、焼戻し温度を180℃としていたものを、75〜450℃で変化させて、記号34〜38の鋼素材を製造した。測定結果を表4に示す。
Figure 0004867638
焼戻し温度を100〜400℃の範囲とした場合に、高強度と、優れた耐遅れ破壊特性、冷間鍛造性、腐食性が得られることが分かった。
本実施例においては、実際にボルトを製造した際の耐遅れ破壊について評価した。表1に示す記号3(化学成分が本発明の範囲内)、10(Moが本発明の範囲外)の鋼について、実施例1と同じ要領で鍛造丸棒を製造し、鍛造丸棒の1/4d位置より所定の大きさの供試材を切断して、冷間鍛造および転造にてM22のボルトに成形加工し、高周波焼入れおよび180℃での焼き戻しを施した。各供試材よりボルトは30本作成し、鋼板(SS400)に最大荷重まで締め付け、3.5質量%食塩水の吹き付けと乾燥とを繰り返す、繰り返し試験を5ヶ月間実施した。その後に30本中の破断したボルト数で評価をおこなった。結果を表5に示す。
Figure 0004867638
本発明のボルトである記号3のボルトは、ほとんど破断しない良好な特性を示しているが、記号10の鋼を用いたボルトは、90%が破断した。
遅れ破壊特性評価試験の試験片の説明図 冷間鍛造性の評価試験の説明図。(a)試験開始前の試験片形状、(b)圧縮割れの発生した状態
符号の説明
1 試験片
2 割れ

Claims (4)

  1. 質量%で、C:0.15%超、0.30%以下、Si:1.0%以下、Mn:1.5%以下、Ti:0.1%以下、Mo:0.3%以上、0.5%以下、B:0.0005%以上、0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、焼入れ後に、100℃〜400℃で焼き戻し処理を施し、焼入後の平均旧オーステナイト粒径が10μm以下の鋼組織とすること特徴とする耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
  2. 鋼が、さらに、質量%で、Al:1.0%以下、Cr:2.5%以下、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下の中から選んだ1種または2種以上を含有することを特徴とする請求項1に記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
  3. 鋼が、さらに、質量%で、W:0.1%以下、Nb:0.1%以下の中から選んだ1種または2種を含有することを特徴とする請求項1または請求項2に記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
  4. 焼入れを、高周波加熱を用いて行うことを特徴とする請求項1ないし請求項3のいずれかに記載の耐遅れ破壊特性および耐腐食性に優れた高強度ボルト。
JP2006344498A 2006-12-21 2006-12-21 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト Expired - Fee Related JP4867638B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344498A JP4867638B2 (ja) 2006-12-21 2006-12-21 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344498A JP4867638B2 (ja) 2006-12-21 2006-12-21 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト

Publications (2)

Publication Number Publication Date
JP2008156678A JP2008156678A (ja) 2008-07-10
JP4867638B2 true JP4867638B2 (ja) 2012-02-01

Family

ID=39657922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344498A Expired - Fee Related JP4867638B2 (ja) 2006-12-21 2006-12-21 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト

Country Status (1)

Country Link
JP (1) JP4867638B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467026B2 (ja) * 2010-10-21 2014-04-09 新日鐵住金株式会社 Pc鋼材の遅れ破壊特性評価方法
JP6313928B2 (ja) * 2013-02-01 2018-04-18 高周波熱錬株式会社 鋼材の熱処理方法
CN107709594B (zh) 2015-06-29 2020-03-20 日本制铁株式会社 螺栓
KR102079312B1 (ko) 2015-12-04 2020-02-19 닛폰세이테츠 가부시키가이샤 고강도 볼트
CN114438396B (zh) * 2021-12-23 2023-03-14 常州东方特钢有限公司 一种耐严寒输电塔用高强度螺栓用圆钢生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421810B2 (ja) * 1973-11-15 1979-08-02
JPH1180903A (ja) * 1997-09-08 1999-03-26 Nkk Corp 遅れ破壊特性に優れた高強度鋼部材およびその製造方法
JP4043754B2 (ja) * 2001-10-25 2008-02-06 新日本製鐵株式会社 遅れ破壊特性に優れた高強度pc鋼棒
JP4196766B2 (ja) * 2003-08-08 2008-12-17 Jfeスチール株式会社 耐遅れ破壊特性および疲労特性に優れた鋼材およびその製造方法
JP5167616B2 (ja) * 2005-10-31 2013-03-21 Jfeスチール株式会社 耐遅れ破壊特性に優れた金属ボルト

Also Published As

Publication number Publication date
JP2008156678A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5167616B2 (ja) 耐遅れ破壊特性に優れた金属ボルト
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
JP4427010B2 (ja) 耐遅れ破壊特性に優れた高強度調質鋼およびその製造方法
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
JP4542624B2 (ja) 高強度厚鋼板およびその製造方法
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
WO2011078165A1 (ja) 高強度ばね用鋼
JP5913214B2 (ja) ボルト用鋼およびボルト、並びにそれらの製造方法
JP2010132945A (ja) 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
JP6190298B2 (ja) 耐遅れ破壊性に優れた高強度ボルト用鋼および高強度ボルト
JP6461672B2 (ja) 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
JP5353161B2 (ja) 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法
JP4867638B2 (ja) 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト
JP4773106B2 (ja) 強度−捻れ特性バランスに優れた鋼部品およびその製造方法と該鋼部品用鋼材
JP6798557B2 (ja)
JP6159209B2 (ja) 耐遅れ破壊性とボルト成形性に優れた高強度ボルト用鋼およびボルトの製造方法
JP5233307B2 (ja) 耐腐食性および冷間鍛造性に優れ環境から水素が入りにくい高強度鋼および金属ボルト
JP4430559B2 (ja) 耐遅れ破壊性に優れた高強度ボルト用鋼及び高強度ボルト
JP2007254765A (ja) 耐水素脆化特性および靭延性に優れた高強度構造用鋼とその製造方法
JP5136174B2 (ja) 耐候性、耐遅れ破壊特性に優れた高強度ボルト用鋼
JP2008274344A (ja) 耐遅れ破壊特性および疲労特性に優れた高強度鋼管
JP3343505B2 (ja) 冷間加工性と耐遅れ破壊性に優れた高強度ボルト用鋼およびその製法
JP2007031747A (ja) ばね用鋼線材およびその耐疲労性の判定方法
JP2006249458A (ja) 耐遅れ破壊特性に優れた高強度鋼およびその製造方法
JP2003027186A (ja) 高強度ボルト用鋼とボルトの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees