WO2017002495A1 - チップ型セラミック電子部品 - Google Patents

チップ型セラミック電子部品 Download PDF

Info

Publication number
WO2017002495A1
WO2017002495A1 PCT/JP2016/065707 JP2016065707W WO2017002495A1 WO 2017002495 A1 WO2017002495 A1 WO 2017002495A1 JP 2016065707 W JP2016065707 W JP 2016065707W WO 2017002495 A1 WO2017002495 A1 WO 2017002495A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
chip
plating film
type ceramic
ceramic electronic
Prior art date
Application number
PCT/JP2016/065707
Other languages
English (en)
French (fr)
Inventor
信儀 藤川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017526222A priority Critical patent/JPWO2017002495A1/ja
Publication of WO2017002495A1 publication Critical patent/WO2017002495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • This disclosure relates to a chip-type ceramic electronic component.
  • FIG. 11 is a schematic cross-sectional view showing a conventional chip-type ceramic electronic component.
  • a multilayer capacitor is cited as an example of a conventional chip-type ceramic electronic component.
  • a plurality of internal electrodes 103 are arranged inside a rectangular parallelepiped electronic component main body 101 having a dielectric ceramic as a base so as to overlap in a thickness direction with a ceramic layer 105 interposed therebetween.
  • the internal electrodes 103 are alternately drawn in the stacking direction on the opposing end surfaces 101a of the electronic component main body 101.
  • a terminal electrode 109 is provided at the end of the electronic component main body 101.
  • the terminal electrode 109 includes a base electrode 109a and a plating film 109b formed on the surface thereof.
  • the end portion of the electronic component main body 101 is indicated by reference numeral 108 in FIG. 11, and refers to a portion including the end surface 101a and the side surface 101b that is a surface substantially perpendicular to the end surface 101a.
  • the thickness of the base electrode 109a or the plating film 109b formed on the surface thereof may be increased. Yes (see, for example, Patent Document 1).
  • a chip-type ceramic electronic component of the present disclosure includes an electronic component main body made of a rectangular parallelepiped ceramic having a pair of opposed end surfaces and four side surfaces, and a terminal electrode that covers the end surface of the electronic component main body and a side surface near the end surface.
  • the terminal electrode has a joint portion joined to the side surface of the electronic component main body and a non-joint portion separated from the side surface.
  • FIG. 2 is a schematic cross-sectional view showing a terminal electrode in which a plating film is provided on the surface of a base electrode, in a state where the plating film covers the end of the base electrode on the side surface.
  • (A) shows the other aspect of the chip-type ceramic electronic component of the present disclosure, and is a schematic cross-sectional view showing a case where the electronic component main body has an internal electrode, and (b) is a circled portion in (a). It is an enlarged view.
  • (A) is a schematic cross-sectional view showing a state in which a chip-type ceramic electronic component has a plurality of internal electrodes inside the electronic component main body, and a plating film is formed on the surface of the base electrode. ) Is an enlarged view of the circled portion of (a).
  • (A) shows the other aspect of the chip-type ceramic electronic component shown in FIG.
  • FIG. 6 shows the other aspect of the chip-type ceramic electronic component shown in FIG. 7, and is a schematic cross-sectional view showing a case where the plating film has two layers, and (b) is a circled portion of (a).
  • FIG. It is a cross-sectional schematic diagram which shows the state which the solder adhered to the surface of the nickel plating film. It is process drawing which shows the manufacturing method of the chip-type ceramic electronic component of this embodiment. It is a cross-sectional schematic diagram showing the conventional chip-type ceramic electronic component.
  • FIG. 1A is a schematic cross-sectional view showing an embodiment of a chip-type ceramic electronic component of the present disclosure
  • FIG. 1B is an enlarged view of a circled portion in FIG.
  • the chip-type ceramic electronic component of this embodiment has a rectangular parallelepiped electronic component main body 1 having a pair of opposed end faces 1a and four side faces 1b.
  • the opposite end surface 1a of the electronic component main body 1 and the portion reaching the side surface 1b substantially perpendicular to the end surface 1a may be referred to as the end portion 2 hereinafter.
  • the electronic component body 1 has a terminal electrode 3 at the end 2.
  • the part which covers the end surface 1a of the electronic component main body 1 among the terminal electrodes 3 is defined as the end surface covering portion 3a.
  • the side surface 1b of the electronic component body 1 and the side surface 1b are extended toward the end surface covering portion 3a, and a portion adjacent to the outside of the end surface covering portion 3a is defined as a side surface covering portion 3b.
  • the electronic component body 1 is made of insulating ceramic as a base material.
  • the terminal electrode 3 has the non-joining part 3c separated from the side surface 1b of the electronic component main body 1 in the end part 3bb of the side surface covering part 3b among the end surface covering part 3a and the side surface covering part 3b.
  • the state in which the terminal electrode 3 has the non-joining portion 3c is, for example, that a gap 3e having a width of 0.2 ⁇ m or more is provided between the side surface 1b of the electronic component body 1 and the side surface covering portion 3b of the terminal electrode 3.
  • a portion other than the non-joining portion 3c in the side surface covering portion 3b of the terminal electrode 3 is defined as a joining portion 3d.
  • the terminal electrode 3 since the non-joining portion 3c is provided in the terminal electrode 3, the terminal electrode 3 can be connected to the electronic component main body 1 even when the terminal electrode 3 is thermally expanded or contracted. Stress can be reduced. Thereby, it can suppress that a crack generate
  • the end portion 3bb of the terminal electrode 3 has the non-joining portion 3c.
  • the non-connecting portion 3c is more easily deformed than the joining portion 3d by the amount that is not adhered to the side surface 1b of the electronic component body 1. For this reason, in the chip-type ceramic electronic component of the present embodiment, the binding force of the terminal electrode 3 on the electronic component main body 1 is reduced. As a result, in the chip-type ceramic electronic component of the present embodiment, the stress generated when the electronic component body 1 and the terminal electrode 3 are thermally expanded or contracted is reduced, and cracks are not easily generated in the electronic component body 1.
  • the entire terminal electrode 3 is in a state of being bonded over the entire end surface 1a and side surface 1b of the electronic component main body 1. Therefore, when the terminal electrode 3 is formed on the end 2 of the electronic component main body 1, as shown in FIG. 11, when the terminal electrode 3 hides the side surface 1 b of the electronic component main body 1 (in other words, the edge ) Is likely to crack.
  • the entire terminal electrode 3 facing the side surface 1b of the electronic component main body 1 is bonded to the electronic component main body 1, and the terminal electrode 3 has a so-called non-joined portion 3c. Not done.
  • the conventional chip-type ceramic electronic component still has a large restraining force on the side surface 1b of the electronic component main body 1 by the terminal electrode 3. For this reason, a crack is likely to occur in the electronic component body 1.
  • the chip-type ceramic electronic component of the present embodiment has the non-joining portion 3c at the end portion 3bb of the terminal electrode 3, it exhibits high thermal shock resistance.
  • the non-joining portion 3c exists at the end 3be of the terminal electrode 3 on the side surface 1b of the electronic component main body 1, as shown in FIG. Is good.
  • the terminal 3be of the terminal electrode 3 may be in a state where it looks like it is turned from the side surface 1b of the electronic component main body 1.
  • the state in which the terminal 3be of the terminal electrode 3 appears to be turned up from the side surface 1b of the electronic component main body 1 is that the distance d away from the side surface 1b of the electronic component main body 1 of the non-joined portion 3c is the terminal 3be from the joint portion 3d side. It is a state that gradually increases toward the side.
  • the non-joining part 3c is preferably thinner than the joining part 3d. That is, it is preferable to have a relationship of t 0 > t 1 where the thickness of the bonding portion 3d is t 0 and the thickness of the non-bonding portion 3c is t 1 .
  • the thickness t 1 of the non-joining portion 3 c is the thickness at the center in the direction (longitudinal direction) along the side surface 1 b of the non-joining portion 3 c.
  • the thickness t 1 of the non-joining portion 3 c is a range indicated by the width of t 1 in FIG.
  • the non-joining portion 3c has the shape and size relationship as described above, the Young's modulus in the non-joining portion 3c is smaller than that on the joining portion 3d side. For this reason, the restraining force with respect to the electronic component main body 1 of the terminal electrode 3 can be made smaller.
  • the non-joining part 3c is preferably present on the four side surfaces 1b of the electronic component main body 1. At this time, if the gap 3e formed by the non-joining portion 3c is connected on the four side surfaces 1b of the electronic component main body 1, there is a possibility that any side surface 1b of the electronic component main body 1 will crack. Can be lowered.
  • the size of each non-joining portion 3c (the length L in the direction of the opposing end face 1a in the cross section shown in FIG. 1) is preferably 1 to 5 ⁇ m. Further, the total length from the end 3be of the side surface covering portion 3b of the non-joining portion 3c is preferably 5 to 30 ⁇ m. At this time, the size (volume) of the chip-type ceramic electronic component is preferably 0.002 to 2 mm 3 .
  • FIG. 2 is an enlarged schematic view of the terminal electrode 3 in which the shape of the non-joining portion 3c is different from that in FIG.
  • FIG. 3 is an enlarged schematic view of the terminal electrode 3 in which a plurality of non-joining portions 3c are present.
  • the chip-type ceramic electronic component is not limited to the shape of the non-joining portion 3c shown in FIG. 1, and may have the shape shown in FIGS.
  • the width of the gap 3e is a portion of the terminal electrode 3 that is located closer to the connecting portion 3d on the end face 1a side than the end 3be of the terminal electrode 3. It is better that it is wider.
  • the portion where the distance d between the non-joining portion 3 c and the side surface 1 b enters the connection portion 3 d side is larger than the end 3 be side.
  • the chip-type ceramic electronic component shown in FIG. 3 has a plurality of non-joining portions 3c in the longitudinal direction (opposite end surface 1a direction) in the side surface covering portion 3b.
  • the binding force from the terminal electrode 3 to the electronic component body 1 can be further reduced.
  • FIG. 4 shows the terminal electrode 3 in which the plating film 5 is provided on the surface 4a of the base electrode 4, and is a schematic diagram showing that the plating film 5 covers the end 3be of the base electrode 4 on the side surface 1b. .
  • FIG. 4 shows an example of the shape of the non-joining portion 3c of the terminal electrode 3 shown in FIG. In this case, the shape of the non-joining portion 3c can be similarly applied to the shapes shown in FIGS.
  • the plating film 5 When the plating film 5 is formed on the surface 4 a of the base electrode 4, thermal expansion (thermal contraction) due to the plating film 5 is added in addition to thermal expansion (thermal contraction) due to the base electrode 4. In this case, the electronic component body 1 receives a higher restraining force from the terminal electrode 3. That is, when the chip-type ceramic electronic component having the plating film 5 on the surface 4a of the base electrode 4 is heated by, for example, solder reflow, the plating film 5 is not formed on the surface 4a of the base electrode 4 In comparison with this, a greater stress is applied between the electronic component body 1 and the terminal electrode 3.
  • the plating film 5 covers up to the end 4 e of the base electrode 4 on the side surface 1 b of the electronic component main body 1.
  • the thermal expansion coefficient of the terminal electrode 3 increases, and the difference from the thermal expansion coefficient of the electronic component body 1 increases.
  • the side surface covering portion 3b has a greater tendency to thermally expand or contract in the direction of the end surface 1a of the electronic component body 1.
  • the terminal 3be of the side surface covering portion 3b is opened, and this portion is used as the non-joining portion 3c, so that the restraining force on the electronic component main body 1 by the base electrode 4 and the plating film 5 is reduced. be able to.
  • the plating film 5 is formed on the surface 4 a of the base electrode 4, the occurrence of cracks in the electronic component body 1 can be suppressed.
  • a chip-type ceramic electronic component having a good moisture resistance load life can be obtained.
  • FIG. 5A shows another embodiment of the chip-type ceramic electronic component of the present disclosure, and a cross-sectional schematic diagram showing a case where the electronic component main body 1 has a plurality of internal electrodes 7, and FIG. It is an enlarged view of (circle) part in a).
  • FIGS. 5 (a) and 5 (b) when the metal internal electrode 7 is present in the ceramics constituting the electronic component main body 1, the electronic component main body 1 has a thermal expansion as compared to the case where the internal electrode 7 is not provided. The amount increases. This is because the metal constituting the internal electrode 7 has a larger amount of thermal expansion than the ceramic constituting the electronic component body 1. Such a phenomenon is likely to occur when the chip-type ceramic electronic component is heated by solder reflow or the like.
  • terminal electrode 3 since the terminal electrode 3 receives a force in a direction away from the end surface 1a of the electronic component body 1 as shown by arrows in FIGS. Higher stress is likely to be generated at the interface (side surface 1b) with the side surface covering portion 3b of the electrode 3 than when the electronic component body 1 has a structure without the internal electrode 7 (FIG. 1).
  • the chip-type ceramic electronic component having the internal electrode 7 in the electronic component body 1 is more likely to be cracked in the portion where the terminal electrode 3 is covered. In this case, cracks are particularly likely to occur near the end 3be of the side surface covering portion 3b.
  • FIG. 6A is a cross-sectional view showing a state in which a chip-type ceramic electronic component has a plurality of internal electrodes 7 inside the electronic component main body 1 and a plating film 5 is formed on the surface 4 a of the base electrode 4.
  • (b) is an enlarged view of the circled portion of (a). Also in this case, as in the case of the embodiment shown in FIG. 4, it is preferable that the opened state is maintained so that the end 3be of the side surface covering portion 3b constituting the terminal electrode 3 becomes the non-joined portion 3c. .
  • the restraining force to the electronic component main body 1 by the terminal electrode 3 is reduced, and the stress generated between the terminal electrode 3 and the electronic component main body 1 can be reduced.
  • the occurrence of cracks on the side surface 1b of the electronic component body 1 can be suppressed.
  • FIG. 7A shows another embodiment of the chip-type ceramic electronic component shown in FIG. 6, and is a schematic cross-sectional view showing a state in which the plating film 5 is formed so as to cover the end 4 e of the base electrode 4. Yes, (b) is an enlarged view of the circled portion of (a).
  • the plating film 5 is also formed on the surface 4b side of the electronic component main body 1 on the side surface 1b side of the non-connecting portion 3c constituting the terminal electrode 3. May be. Even in such a structure, when the side surface 1b of the electronic component body 1 and the surface 4b of the base electrode 4 are open, the chip type shown in FIGS.
  • FIG. 8A shows another embodiment of the chip-type ceramic electronic component shown in FIG. 7, and is a schematic cross-sectional view showing a case where the plating film 5 has two layers
  • FIG. FIG. FIG. 9 is a schematic cross-sectional view showing a state where the solder 6 is attached to the surface of the nickel plating film 5a.
  • the plating film 5b formed on the surface of the plating film 5a does not go around so as to cover the plating film 5a on the opened side, but may remain in the vicinity of the terminal 3e of the non-connection end 3c.
  • the plating film 5b of the outermost layer can leave a gap 3e between the side surface 1b of the electronic component body 1 and the non-connecting end 3c, the plating film 5b is the terminal 3e of the non-connecting end 3c.
  • the electronic component main body 1 may have a shape protruding toward the side surface 1b.
  • the outermost tin plating film 5b may be formed in a state in which a part of the nickel plating film 5a is exposed as shown in FIG. 8B.
  • the nickel plating film 5a is preferably thinner than the tin plating film 5b because the nickel plating film 5a is easily oxidized.
  • the terminal electrode 3 can maintain solder wettability. Further, chip standing (Manhattan phenomenon) during reflow can be suppressed.
  • the thickness of each of the nickel plating film 5a and the tin plating film 5b is preferably 1 to 10 ⁇ m. .
  • the total thickness of the nickel plating film 5a and the tin plating film 5b is preferably 20 ⁇ m or less.
  • the total thickness of the nickel plating film 5a and the tin plating film 5b is 20 ⁇ m or less, it is possible to increase the volume of the electronic component body 1 serving as a functional portion within the standard dimensions of the chip-type ceramic electronic component. . As a result, it is possible to obtain a chip-type ceramic electronic component that exhibits a high function even in a small size.
  • the plating film 5b wraps around the terminal 3e of the non-connecting end 3c and is formed on the gap 3e side of the non-connecting end 3c.
  • the shape tends to cover the entire surface of the film 5a. In such a case, a crack may occur on the side surface 1b of the electronic component main body 1 during solder reflow.
  • the current density is about 1.1 to 2 times higher than the current density of the plating conditions described above, and the time is shortened accordingly. It is good to form.
  • the electronic component body 1 constituting the chip-type ceramic electronic component at least one selected from the group of ceramic materials exhibiting insulating properties, dielectric properties, piezoelectric properties, magnetic properties, and the like is suitable.
  • At least one selected from the group of noble metals, base metals, transition metals, aluminum and other rare metals can be applied.
  • a metal material selected from the group of base metals such as copper and nickel, noble metals such as gold, silver, platinum and palladium, and low melting point metals such as tin and lead is applied.
  • an electronic component body 1 prepared by sintering a ceramic material is prepared.
  • an organic resin 9 is partially coated on the side surface 1 b of the electronic component body 1 and at a location near the end 3 be of the side surface covering portion 3 b of the terminal electrode 3.
  • a conductive paste to be the base electrode 4 is applied to the end 2 of the electronic component body 1 including the portion where the organic resin 9 is applied, and baked at a predetermined temperature condition.
  • the organic resin 9 is partially applied to the end 2 of the electronic component main body 1, the organic resin 9 scatters when the conductive paste is baked. Thereby, the base electrode 4 has the non-joining part 3c which is not adhere
  • the size, ratio, frequency, and the like of the non-bonded portion 3c in the base electrode 3 are adjusted by changing the viscosity of the organic resin 9 to be applied, the thickness and area to be applied, and the like.
  • the plating film 5 is necessary on the surface of the base electrode 4 formed on the end 2 of the electronic component body 1, a method such as barrel plating is performed after the base electrode 4 is formed on the end 2 of the electronic component body 1.
  • the plating film 5 is formed using When the plating film 5 has a shape covering the end 3be of the base electrode 4 on the side surface 1b, the current density and time for plating are adjusted.
  • an alumina resistor and a barium titanate multilayer capacitor were prepared and evaluated.
  • the size of the electronic component main body was set to 0.6 mm ⁇ 0.3 mm ⁇ 0.3 mm (0.054 mm 3 ).
  • the number of laminated dielectric layers was 300.
  • an organic resin ethyl cellulose
  • a conductive paste serving as a base electrode was applied and baked under a predetermined temperature condition.
  • the sample which does not have a non-joining part was produced by the method which does not apply
  • a sample in which a plating film was formed on the surface of the base electrode was also produced.
  • the conductive paste for the base electrode a conductive paste mainly composed of copper was used.
  • a conductive paste mainly composed of silver and palladium was used for the base electrode for the resistor.
  • the thickness of the base electrode was adjusted to an average thickness of 10 ⁇ m after baking.
  • a plating film as shown in Table 1, a nickel plating film was formed on the base electrode side, and a tin plating film was formed on the surface thereof.
  • Sample No. As for 1, 6, 10 and 11, all of the plating films were coated in the state shown in FIG. In other words, a gap was left between the side surface of the electronic component main body and the non-connection end. In this case, the nickel plating film was formed so as to cover the non-connection portion.
  • the tin plating film had a shape protruding slightly from the end of the non-connection end to the side of the electronic component main body by about 1 ⁇ m.
  • the proportion of non-joined parts was determined.
  • the length from the end surface of the electronic component body to the end of the side surface covering portion of the terminal electrode is defined as 100.
  • the proportion of the length in the same direction was determined for the joint.
  • the generation ratio of cracks generated on the side surface side of the terminal electrode formed at the end of the electronic component main body was evaluated.
  • the crack was confirmed by observing a sample whose cross section was polished with a stereomicroscope.
  • the manufactured chip-type ceramic electronic component was subjected to a moisture load test.
  • the test conditions were temperature: 125 ° C., humidity: 85% RH, voltage: 2 VDC (10% rated power in the case of resistors), and short-circuited after 72 hours and 144 hours (in the case of resistors, the increase in resistance value was 2).
  • the ratio of the number of digits) was determined.
  • Sample No. in Table 1 6 is one in which the terminal electrode does not have a non-joined portion (structure of FIG. 11).
  • Reference numeral 1 denotes a structure having no internal electrode in the structure of FIG.
  • the fabricated chip type ceramic electronic component was mounted on a printed circuit board, and the chip standing failure after reflow was evaluated.
  • a case where one terminal electrode of the chip-type ceramic electronic component was separated from the printed circuit board after reflow was regarded as defective.
  • An FR-4 board (copper wiring) on which 100 chip-type ceramic electronic components can be mounted is prepared as a printed board, and tin-silver-copper solder (melting point: about 210 ° C.) is used as a joining member. used.
  • the reflow temperature was set to 250 ° C.
  • the samples (sample Nos. 2 to 5 and 7 to 12) in which the terminal electrodes of the chip-type ceramic electronic component have non-joining portions are samples (non-joining portions in the terminal electrodes)
  • the generation ratio of cracks and the generation ratio of defects in the wet load test were both low.
  • the sample (sample Nos. 11 and 12) in which the two-layer plating film is formed on the terminal electrode the sample (sample No. 12) in which the thickness of the nickel plating film is larger than the thickness of the tin plating film Compared with the sample (sample No. 11) in which the thickness of the tin plating film was larger than the thickness of the nickel plating film, the number of chip standing defects of the chip-type ceramic chip component after reflow was small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

対向する一対の端面1aおよび4つの側面1bを有する直方体状のセラミックスよりなる電子部品本体1と、該電子部品本体1の端面1aおよび端面1a近傍の側面1bを覆う端子電極3とを備えており、該端子電極3は、電子部品本体1の側面1bに接合した接合部3cと、側面1bから離れた非接合部3cとを有する。

Description

チップ型セラミック電子部品
 本開示は、チップ型セラミック電子部品に関する。
 図11は、従来のチップ型セラミック電子部品を表す断面模式図である。この場合、従来のチップ型セラミック電子部品の一例として積層コンデンサを挙げている。
 積層コンデンサ100では、誘電体セラミックスを母体とする直方体状の電子部品本体101の内部に複数の内部電極103がセラミック層105を介して厚み方向に重なるように配置されている。内部電極103は電子部品本体101の対向する端面101aに積層方向に交互に引き出されている。また、この電子部品本体101の端部には端子電極109が設けられている。端子電極109は下地電極109aとその表面に形成されためっき膜109bとからなる。これにより積層コンデンサ100は、プリント回路基板に実装する際の半田付けが容易になる。
 ここで、電子部品本体101の端部とは、図11において符号108として示しており、端面101aおよびこの端面101aに略直角な面である側面101bを含む部位のことを言う。
 このようなチップ型セラミック電子部品については、近年、携帯電話に代表されるモバイル電子機器の普及、拡大に伴ってますます利用分野が拡大している。
 チップ型セラミック電子部品は、小型化、薄型化の進展とともに、耐湿信頼性を確保することがますます重要になっている。このため、チップ型セラミック電子部品では、電子部品本体101の端面101a付近からの水分の浸入を抑えるために、例えば、下地電極109aやその表面に形成されるめっき膜109bの厚みを厚くする場合がある(例えば、特許文献1を参照)。
特開2015-43448号公報
 本開示のチップ型セラミック電子部品は、対向する一対の端面および4つの側面を有する直方体状のセラミックスよりなる電子部品本体と、該電子部品本体の前記端面および該端面近傍の側面を覆う端子電極とを備えており、該端子電極は、前記電子部品本体の前記側面に接合した接合部と、前記側面から離れた非接合部とを有するものである。
(a)は、本開示のチップ型セラミック電子部品の一実施形態を示す断面模式図であり、(b)は、(a)における○部の拡大図である。 非接合部の形状が図1とは異なる端子電極の拡大模式図である。 非接合部のさらに他の形状を示すものであり、非接合部が複数存在している構造を示す拡大模式図である。 下地電極の表面にめっき膜が設けられた端子電極を示すものであり、めっき膜が側面における下地電極の末端を覆っている状態の断面模式図である。 (a)は、本開示のチップ型セラミック電子部品の他の態様を示すものであり、電子部品本体が内部電極を有する場合を示す断面模式図、(b)は、(a)における○部の拡大図である。 (a)は、チップ型セラミック電子部品が電子部品本体の内部に複数の内部電極を有し、さらに、下地電極の表面にめっき膜が形成されている状態を示す断面模式図であり、(b)は、(a)の○部の拡大図である。 (a)は、図6に示すチップ型セラミック電子部品の他の態様を示すものであり、めっき膜が下地電極の末端を覆うように形成された状態を示す断面模式図であり、(b)は、(a)の○部の拡大図である。 (a)は、図7に示すチップ型セラミック電子部品の他の態様を示すものであり、めっき膜が2層の場合を示す断面模式図であり、(b)は、(a)の○部の拡大図である。 ニッケルめっき膜の表面に半田が付着した状態を示す断面模式図である。 本実施形態のチップ型セラミック電子部品の製造方法を示す工程図である。 従来のチップ型セラミック電子部品を表す断面模式図である。
 図1(a)は、本開示のチップ型セラミック電子部品の一実施形態を示す断面模式図であり、(b)は、(a)における○部の拡大図である。
 本実施形態のチップ型セラミック電子部品は、対向する一対の端面1aおよび4つの側面1bを有する直方体状の電子部品本体1を有している。ここでは、電子部品本体1の対向する端面1aおよびその端面1aに略直角な側面1bに至る部位を、以下、端部2という場合がある。
 電子部品本体1は端部2に端子電極3を有している。この場合、端子電極3のうち、電子部品本体1の端面1aを覆う部位を端面被覆部3aとする。また、電子部品本体1の側面1bおよび該側面1bを端面被覆部3aの方に延長して、その端面被覆部3aの外側に隣接する部位を側面被覆部3bとする。
 電子部品本体1は絶縁性のセラミックスを母体とする。端子電極3は端面被覆部3aおよび側面被覆部3bの中で、側面被覆部3bの端部3bbに、電子部品本体1の側面1bから離れた非接合部3cを有している。
 ここで、端子電極3が非接合部3cを有する状態というのは、例えば、電子部品本体1の側面1bと端子電極3の側面被覆部3bとの間に0.2μm以上の幅の空隙3eが見られるものを言う。この場合、端子電極3の側面被覆部3bのうち、非接合部3c以外の部位を接合部3dとする。
 本実施形態のチップ型セラミック電子部品によれば、端子電極3に非接合部3cが設けられていることから、端子電極3が熱膨張または熱収縮したときにも電子部品本体1との間の応力を軽減させることができる。これによりチップ型セラミック電子部品の側面1bにクラックが発生するのを抑えることができる。その結果、チップ型セラミック電子部品の耐湿負荷信頼性を高めることができる。
 本実施形態のチップ型セラミック電子部品の場合、上記のように、端子電極3の端部3bbに非接合部3cを有している。この非接続部3cは電子部品本体1の側面1bに接着していない分だけ接合部3dよりも変形しやすい。このため本実施形態のチップ型セラミック電子部品では、端子電極3の電子部品本体1に対する拘束力が低くなる。その結果、本実施形態のチップ型セラミック電子部品は、電子部品本体1および端子電極3が熱膨張または熱収縮した際に発生する応力が小さくなり、電子部品本体1にクラックが発生し難くなる。
 これに対し、従来のチップ型セラミック電子部品は、端子電極3の全体が電子部品本体1の端面1aおよび側面1bの全域にわたって接着した状態にある。このため、電子部品本体1の端部2に端子電極3が形成されている場合、図11に示しているように、電子部品本体1の側面1bが隠れる端子電極3の際(言い換えれば、縁)の付近にクラックが発生しやすい。
 つまり、従来のチップ型セラミック電子部品では、電子部品本体1の側面1bに面している端子電極3の全体が電子部品本体1に接着しており、端子電極3がいわゆる非接合部3cを有していない。このため、従来のチップ型セラミック電子部品は、端子電極3による電子部品本体1の側面1bへの拘束力が依然として大きい。このため電子部品本体1にクラックが発生しやすい。
 このように、本実施形態のチップ型セラミック電子部品は、端子電極3の端部3bbに非接合部3cを有しているため、高い耐熱衝撃性を示すものとなる。
 また、本実施形態のチップ型セラミック電子部品では、非接合部3cは、図1(b)に示しているように、電子部品本体1の側面1bにおける端子電極3の末端3beに存在しているのが良い。この場合、端子電極3の末端3beは、電子部品本体1の側面1bからめくれたように見える状態であっても良い。端子電極3の末端3beが電子部品本体1の側面1bからめくれたように見える状態というのは、非接合部3cの電子部品本体1の側面1bから離れた間隔dが接合部3d側から末端3be側にかけて次第に大きくなっている状態のことである。
 この場合、非接合部3cは接合部3dよりも厚みが薄くなっているのが良い。つまり、接合部3dの厚みをt、非接合部3cの厚みをtとしたときに、t>tの関係を有するのが良い。ここで、非接合部3cの厚みtとは、非接合部3cの側面1bに沿った方向(長手方向)における中央の厚みである。具体的には、非接合部3cの厚みtは、図1bにおいて、t1の幅で示している範囲である。
 非接合部3cが上記のような形状およびサイズの関係であると、非接合部3cにおけるヤング率が接合部3d側よりも小さくなる。このため、端子電極3の電子部品本体1に対する拘束力をより小さくすることができる。
 この場合、非接合部3cは、電子部品本体1の4つの側面1b上に存在しているのが良い。このとき、非接合部3cによって形成される空隙3eが、電子部品本体1の4つの側面1b上でつながった状態であると、電子部品本体1のどの側面1bにおいてもクラックが発生する可能性を低くすることができる。
 一方、非接合部3cが、電子部品本体1の4つの側面1bに不連続に形成されている場合には、チップ型セラミック電子部品の内部に水分などの湿気が浸入し難いため、耐湿性を維持できる。この場合、各非接合部3cの大きさ(図1に示す断面における対向する端面1aの方向の長さL)としては1~5μmであるのが良い。さらに、非接合部3cの側面被覆部3bの末端3beからのトータルの長さとしては5~30μmであるの良い。このとき、チップ型セラミック電子部品のサイズ(体積)としては、0.002~2mmであるのが良い。
 図2は、非接合部3cの形状が図1とは異なる端子電極3の拡大模式図である。図3は、非接合部3cが複数存在している端子電極3の拡大模式図である。チップ型セラミック電子部品としては、図1に示した非接合部3cの形状に限らず、図2および図3に示す形状であっても良い。
 図2に示しているように、チップ型セラミック電子部品の他の態様としては、空隙3eの幅が端子電極3の末端3beよりも末端3beから端面1a側の接続部3d側に入った部位の方が広くなっているのが良い。言い換えると、図2に示したチップ型セラミック電子部品は、非接合部3cと側面1bとの間隔dが末端3be側よりも接続部3d側に入った部位の方が大きいものである。
 図3に示したチップ型セラミック電子部品は、非接合部3cが側面被覆部3b内の長手方向(対向する端面1a方向)に複数存在するというものである。
 これらの場合には、電子部品本体1に対する端子電極3からの拘束力をより小さくすることができる。
 図4は、下地電極4の表面4aにめっき膜5が設けられた端子電極3を示すものであり、めっき膜5が側面1bにおける下地電極4の末端3beを覆っていること示す模式図である。図4には、図1に示した端子電極3の非接合部3cの形状の例として示している。この場合、非接合部3cの形状は、図2および図3に示した形状についても同様に適用できる。
 下地電極4の表面4aにめっき膜5が形成されると、下地電極4による熱膨張(熱収縮)に加えて、めっき膜5による熱膨張(熱収縮)が加わる。この場合、電子部品本体1は端子電極3からさらに高い拘束力を受けるようになる。つまり、下地電極4の表面4aにめっき膜5を有するチップ型セラミック電子部品が、例えば、半田リフローなどにより加熱された際には、下地電極4の表面4aにめっき膜5が形成されていない場合に比較して、電子部品本体1と端子電極3との間により大きな応力がはたらくことになる。
 これに対して、図4に示したチップ型セラミック電子部品では、下地電極4の表面4aにめっき膜5が形成されても、依然として、端子電極3を構成する側面被覆部3bの末端3beが開口した状態となっていることから、端子電極3の電子部品本体1に対する拘束力を小さくすることができる。この場合、めっき膜5が電子部品本体1の側面1bにおける下地電極4の末端4eまで覆っているのが良い。めっき膜5が下地電極4の末端4eを覆っていると、端子電極3の熱膨張係数が大きくなり、電子部品本体1の熱膨張係数との差が大きくなる。その結果、側面被覆部3bは、電子部品本体1の端面1aの方向に熱膨張または熱収縮する傾向がより強くなる。このような場合に、側面被覆部3bの末端3beを開口した状態とし、この部分を非接合部3cとすることで、下地電極4およびめっき膜5による電子部品本体1への拘束力を小さくすることができる。こうして、下地電極4の表面4aにめっき膜5が形成された構造であっても電子部品本体1にクラックが発生するのを抑えることができる。その結果、耐湿負荷寿命の良いチップ型セラミック電子部品を得ることができる。
 図5(a)は、本開示のチップ型セラミック電子部品の他の態様を示すものであり、電子部品本体1が複数の内部電極7を有する場合を示す断面模式図、(b)は、(a)における○部の拡大図である。図5(a)(b)に示すように、電子部品本体1を構成するセラミックス中に金属製の内部電極7が存在すると、電子部品本体1は内部電極7を有しない場合に比べて熱膨張量が大きくなる。これは電子部品本体1を構成しているセラミックスに比較して、内部電極7を構成している金属の方が、熱膨張量が大きいためである。このような現象は、チップ型セラミック電子部品が半田リフローなどにより加熱される場合に起きやすい。この場合、端子電極3は、図5(a)(b)に矢印で示しているように、電子部品本体1の端面1aから離れようとする方向の力を受けるため、電子部品本体1と端子電極3の側面被覆部3bとの界面(側面1b)には、電子部品本体1が内部電極7を有しない構造(図1)のときよりも高い応力が発生しやすくなる。
 このため、電子部品本体1中に内部電極7を有するチップ型セラミック電子部品は、端子電極3の覆われた部分に、よりクラックが発生しやすい状態となる。この場合、クラックは特に側面被覆部3bの末端3be付近に発生しやすい。
 これに対し、図5(b)に示すように、端子電極3を構成する側面被覆部3bの末端3beが非接合部3cとなるように開口した状態であると、端子電極3による電子部品本体1へ拘束力が小さくなり、これらの間に発生する応力を小さくすることができる。こうして電子部品本体1の側面1bにクラックが発生するのを抑えることができる。
 図6(a)は、チップ型セラミック電子部品が電子部品本体1の内部に複数の内部電極7を有し、さらに、下地電極4の表面4aにめっき膜5が形成されている状態を示す断面模式図であり、(b)は、(a)の○部の拡大図である。この場合も、図4に示した態様の場合と同様に、端子電極3を構成する側面被覆部3bの末端3beが非接合部3cとなるように、開口した状態が維持されているのが良い。この態様のチップ型セラミック電子部品においても、端子電極3による電子部品本体1への拘束力が小さくなり、端子電極3と電子部品本体1との間に発生する応力を小さくすることができる。こうして電子部品本体1の側面1bにクラックが発生するのを抑えることができる。
 図7(a)は、図6に示すチップ型セラミック電子部品の他の態様を示すものであり、めっき膜5が下地電極4の末端4eを覆うように形成された状態を示す断面模式図であり、(b)は、(a)の○部の拡大図である。図7(b)に示すように、チップ型セラミック電子部品としては、端子電極3を構成している非接続部3cの電子部品本体1の側面1b側の表面4b側にもめっき膜5が形成されていても良い。このような構造においても、電子部品本体1の側面1bと下地電極4の当該表面4bとの間が開口した状態となっている場合には、図6(a)(b)に示したチップ型セラミック電子部品と同様に、電子部品本体1の端子電極3に覆われた側面1bにクラックが発生するのを抑えることができる。なお、図7(a)(b)に示すチップ型セラミック電子部品の場合には、めっき膜5が電子部品本体1と下地電極4との間の隙間に入り込んでいるため耐湿負荷寿命をさらに高めることができる。
 図8(a)は、図7に示すチップ型セラミック電子部品の他の態様を示すものであり、めっき膜5が2層の場合を示す断面模式図であり、(b)は、(a)の○部の拡大図である。図9は、ニッケルめっき膜5aの表面に半田6が付着した状態を示す断面模式図である。下地電極4の表面4aにめっき膜5が2層形成されている場合には、下地電極4側に形成されためっき膜5aが非接合部3cを覆っていれば良い。つまり、めっき膜5aの表面に形成されためっき膜5bは、開口した側のめっき膜5aを覆うように回り込むのではなく、非接続端3cの末端3e付近に止まる状態が良い。この場合、最表層のめっき膜5bは、電子部品本体1の側面1bと非接続端3cとの間に空隙3eを残すことのできる状態であれば、めっき膜5bは非接続端3cの末端3eから電子部品本体1の側面1b側へ突き出た形状を有していても良い。
 このとき、最表層の錫のめっき膜5bは、図8(b)に示しているように、ニッケルのめっき膜5aの一部が露出する状態で形成されていても良い。
 つまり、錫のめっき膜5bが非接続端3cの末端3e付近に止まり、ニッケルのめっき膜5aを覆っていない状態となっている場合には、図9に示すように、リフロー時に付着させる半田6が非接続端3cの末端3e付近に止まりやすくなる。このため、下地電極4の表面4aにめっき膜5が2層形成されている場合にも、図7(a)(b)に示したチップ型電子部品と同等の特性(クラック発生率、耐湿負荷寿命)を維持することができる。この場合、ニッケルのめっき膜5aが酸化しやすいという点から、ニッケルのめっき膜5aの厚みは錫のめっき膜5bの厚みよりも薄い方が良い。
 これに対し、ニッケルのめっき膜5aの厚みが錫のめっき膜5bの厚みよりも厚い場合には、高温高湿の保存下においても、錫のめっき膜5bおよびニッケルのめっき膜5aの酸化が抑えられ、これにより端子電極3が半田のヌレ性を維持することができる。また、リフロー時のチップ立ち(マンハッタン現象)を抑えることができる。
 このように、下地電極4の表面4aにめっき膜5が2層形成されている場合、ニッケルのめっき膜5aおよび錫のめっき膜5bのそれぞれの厚みは、いずれも1~10μmであるのが良い。また、ニッケルのめっき膜5aおよび錫のめっき膜5bの厚みの合計厚みは20μm以下が良い。ニッケルのめっき膜5aおよび錫のめっき膜5bの合計厚みが20μm以下であると、チップ型セラミック電子部品の規格寸法内において、機能部となる電子部品本体1の体積を大きくすることが可能になる。これにより小型でも高い機能を発現するチップ型セラミック電子部品を得ることができる。
 なお、めっきを行う場合、電流密度を低くして、時間をかけて行う条件では、めっき膜5bが、非接続端3cの末端3eを回り込み、非接続端3cの空隙3e側に形成されためっき膜5aの表面の全面を覆う形状になりやすい。このような場合には、半田リフロー時に電子部品本体1の側面1bにクラックが発生する場合がある。
 そのため、本実施形態のチップ型セラミック電子部品を作製する場合には、上記しためっき条件の電流密度よりも電流密度を1.1~2倍程度高くして、その分時間を短くする条件にて形成するのが良い。
 チップ型セラミック電子部品を構成する電子部品本体1としては、絶縁性、誘電性、圧電性および磁気特性等を示すセラミック材料の群から選ばれる少なくとも一つが好適なものとなる。
 下地電極4および内部電極7の材料としては、貴金属、卑金属、遷移金属、アルミニウムおよびその他の稀少金属の群から選ばれる少なくとも1種を適用することができる。
 めっき膜5の材料としては、銅、ニッケルなどの卑金属、金、銀、白金、パラジウムなどの貴金属、錫、鉛などの低融点金属などの群から選ばれる金属材料が適用される。
 次に、本実施形態のチップ型セラミック電子部品の製造方法について、図10を用いて説明する。
 まず、図10(a)に示すように、セラミック材料を焼結させて作製した電子部品本体1を用意する。
 次に、図10(b)に示すように、電子部品本体1の側面1b上、端子電極3の側面被覆部3bの末端3be付近となる箇所に有機樹脂9を部分的に塗布する。この後に、図10(c)に示すように、有機樹脂9を塗布した部位を含む電子部品本体1の端部2に下地電極4となる導電性ペーストを塗布し、所定の温度条件にて焼付け処理を行う。
 電子部品本体1の端部2に有機樹脂9を部分的に塗布しておくと、導電性ペーストを焼き付けする際に有機樹脂9が飛散する。これにより、下地電極4は、電子部品本体1の側面1bに接着していない非接合部3cを有するものとなる。
 下地電極3における非接合部3cのサイズ、割合、頻度等は塗布する有機樹脂9の粘度、塗布する厚みや面積などを変化させることによって調整する。
 電子部品本体1の端部2に形成した下地電極4の表面にめっき膜5が必要な場合には、電子部品本体1の端部2に下地電極4を形成した後に、バレルめっき法などの方法を用いてめっき膜5を形成する。めっき膜5が側面1bにおける下地電極4の末端3beを覆っている形状にする場合には、めっきを行う際の電流密度と時間とを調整する。
 なお、電子部品本体1として、内部電極7を有するものを形成する場合には、セラミックグリーンシート上に内部電極パターンを形成したパターンシートを作製し、これを複数層積層する工法を用いる。
 本発明による効果を評価する試料としてアルミナ製の抵抗体およびチタン酸バリウム製の積層コンデンサ(内部電極有り)を作製し、評価した。
 まず、電子部品本体のサイズは0.6mm×0.3mm×0.3mm(0.054mm)とした。積層コンデンサは誘電体層の積層数を300層とした。
 次に、電子部品本体の側面上、端子電極の側面被覆部の末端付近に有機樹脂(エチルセルロース)を部分的に塗布し、この後に、有機樹脂を塗布した部位を含む電子部品本体の端部に下地電極となる導電性ペーストを塗布し、所定の温度条件にて焼付け処理を行った。なお、非接合部を有しない試料は、有機樹脂を塗布しない方法により作製した。また、下地電極の表面にめっき膜を形成した試料も作製した。下地電極用の導電性ペーストとしては、銅を主成分とする導電性ペーストを用いた。抵抗体用の下地電極には銀・パラジウムを主成分とする導電性ペーストを用いた。下地電極の厚みは焼き付け後に平均厚みが10μmとなるようにした。めっき膜としては、表1に示すように、下地電極側にニッケルのめっき膜を形成し、その表面に錫のめっき膜を形成した。試料No.1、6、10および11については、めっき膜がいずれも図8(b)に示した状態で被覆されていた。つまり、電子部品本体の側面と非接続端との間に空隙を残した状態であった。この場合、ニッケルのめっき膜は非接続部を覆うように形成されていた。一方、錫のめっき膜は非接続端の末端から電子部品本体の側面側へわずかに1μmほど突き出た形状を有していた。
 作製したチップ型セラミック電子部品について、非接合部の割合を求めた。その方法としては、チップ型セラミック電子部品の断面を図1(a)に示すように露出させた後、電子部品本体の端面から端子電極の側面被覆部の末端までの長さを100として、非接合部について同じ方向の長さの割合を求めた。断面研磨したチップ型セラミック電子部品の上面側および下面側の両方に非接合部が存在していた場合には、各面から求めた割合の平均値を求めた。
 作製した試料の評価としては、まず、電子部品本体の端部に形成した端子電極の側面側に発生したクラックの発生割合を評価した。クラックの確認は、断面研磨した試料を実体顕微鏡観察することにより行った。
 作製したチップ型セラミック電子部品について湿中負荷試験を行った。試験条件は、温度:125℃、湿度:85%RH、電圧:2VDC(抵抗体の場合は10%定格パワー)とし、72時間および144時間後に短絡(抵抗体の場合は抵抗値の上昇が2桁以上)した個数の割合を求めた。表1の試料No.6は、端子電極が非接合部を有しないもの(図11の構造)であり、試料No.1は、図11の構造で内部電極を有しない構造である。
 また、作製したチップ型セラミック電子部品をプリント回路基板に実装し、リフロー後のチップ立ち不良を評価した。この場合、リフロー後にチップ型セラミック電子部品の一方の端子電極がプリント回路基板から離れている状態が見られたものを不良とした。プリント基板としては、チップ型セラミック電子部品が100個実装できるFR-4基板(銅配線)を用意し、また、接合部材としては、錫―銀―銅系の半田(融点:約210℃)を使用した。リフロー温度は250℃に設定した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、チップ型セラミック電子部品の端子電極が非接合部を有する試料(試料No.2~5、7~12)は、端子電極に非接合部を有しない試料(試料No.1、6)に比較して、クラックの発生割合および湿中負荷試験での不良の発生割合がともに低かった。この中で、下地電極の表面にめっき膜を設けた試料(試料No.5、10~12)においても、クラックの発生割合および湿中負荷試験での不良の発生割合を低くできることがわかった。
 さらに、端子電極に2層のめっき膜を形成した試料(試料No.11、12)の中で、ニッケルのめっき膜の厚みを錫のめっき膜の厚みよりも厚くした試料(試料No.12)は、錫のめっき膜の厚みをニッケルのめっき膜の厚みよりも厚くした試料(試料No.11)に比べて、リフロー後のチップ型セラミックチップ部品のチップ立ちの不良数が少なかった。
1・・・電子部品本体
1a・・(電子部品本体の)端面
1b・・(電子部品本体の)側面
2・・・端部
3・・・端子電極
3a・・端面被覆部
3b・・側面被覆部
3bb・(側面被覆部の)端部
3be・(側面被覆部の)末端
3c・・非接合部
3d・・接合部
3e・・空隙
4・・・下地電極
5・・・めっき膜
6・・・半田
7・・・内部電極
9・・・有機樹脂

Claims (11)

  1.  対向する一対の端面および4つの側面を有する直方体状のセラミックスよりなる電子部品本体と、該電子部品本体の前記端面および該端面近傍の側面を覆う端子電極とを備えており、該端子電極は、前記電子部品本体の前記側面に接合した接合部と、前記側面から離れた非接合部とを有することを特徴とするチップ型セラミック電子部品。
  2.  前記非接合部は、前記端子電極の末端に存在することを特徴とする請求項1に記載のチップ型セラミック電子部品。
  3.  前記非接合部は、前記接合部よりも厚みが薄いことを特徴とする請求項1または2に記載のチップ型セラミック電子部品。
  4.  前記非接合部と前記側面との間隔は、前記末端よりも前記端面側が広いことを特徴とする請求項2または3に記載のチップ型セラミック電子部品。
  5.  前記非接合部は、前記側面における前記端子電極の末端から前記端面に向けて所定間隔をおいて複数存在していることを特徴とする請求項1乃至3のうちいずれかに記載のチップ型セラミック電子部品。
  6.  前記端子電極は、下地電極の表面にめっき膜を設けて構成されており、該めっき膜は、前記下地電極の末端を覆っていることを特徴とする請求項1乃至5のうちいずれかに記載のチップ型セラミック電子部品。
  7.  前記めっき膜が前記非接合部を覆っていることを特徴とする請求項6に記載のチップ型セラミック電子部品。
  8.  前記めっき膜がニッケルのめっき膜であることを特徴とする請求項6または7に記載のチップ型セラミック電子部品。
  9.  前記めっき膜が、前記下地電極側に形成された前記ニッケルのめっきと、該ニッケルのめっき膜の表面に形成された錫のめっき膜との積層膜であることを特徴とする請求項6乃至8のうちいずれかに記載のチップ型セラミック電子部品。
  10.  前記ニッケルのめっき膜は、厚みが前記錫のめっき膜の厚みよりも厚いことを特徴とする請求項9に記載のチップ型セラミック電子部品。
  11.  前記電子部品本体が、前記端面に露出する内部電極を有していることを特徴とする請求項1乃至10のうちいずれかに記載のチップ型セラミック電子部品。
PCT/JP2016/065707 2015-06-29 2016-05-27 チップ型セラミック電子部品 WO2017002495A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526222A JPWO2017002495A1 (ja) 2015-06-29 2016-05-27 チップ型セラミック電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-130007 2015-06-29
JP2015130007 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017002495A1 true WO2017002495A1 (ja) 2017-01-05

Family

ID=57608281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065707 WO2017002495A1 (ja) 2015-06-29 2016-05-27 チップ型セラミック電子部品

Country Status (2)

Country Link
JP (1) JPWO2017002495A1 (ja)
WO (1) WO2017002495A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163193A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 セラミック電子部品
CN115036137A (zh) * 2021-03-04 2022-09-09 株式会社村田制作所 层叠陶瓷电子部件
WO2022196501A1 (ja) * 2021-03-16 2022-09-22 パナソニックIpマネジメント株式会社 積層セラミック部品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274614A (ja) * 1986-05-23 1987-11-28 ティーディーケイ株式会社 磁器の電極構造
JP2001015371A (ja) * 1999-06-29 2001-01-19 Murata Mfg Co Ltd チップ型セラミック電子部品及びその製造方法
JP2010109238A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd セラミック電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274614A (ja) * 1986-05-23 1987-11-28 ティーディーケイ株式会社 磁器の電極構造
JP2001015371A (ja) * 1999-06-29 2001-01-19 Murata Mfg Co Ltd チップ型セラミック電子部品及びその製造方法
JP2010109238A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd セラミック電子部品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163193A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 セラミック電子部品
CN115036137A (zh) * 2021-03-04 2022-09-09 株式会社村田制作所 层叠陶瓷电子部件
WO2022196501A1 (ja) * 2021-03-16 2022-09-22 パナソニックIpマネジメント株式会社 積層セラミック部品

Also Published As

Publication number Publication date
JPWO2017002495A1 (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
US7466538B2 (en) Multilayer ceramic electronic device
JP5206440B2 (ja) セラミック電子部品
JP5777179B2 (ja) 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
TWI552181B (zh) 多層陶瓷電容器及具有該多層陶瓷電容器的板件
KR101823174B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
US9218910B2 (en) Multilayer ceramic capacitor, manufacturing method of the same, and circuit board with multilayer ceramic capacitor mounted thereon
KR101079382B1 (ko) 적층 세라믹 커패시터 및 그 제조방법
JP2015050452A (ja) 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
KR20010015337A (ko) 전자 다층 세라믹 부품
JP2015023271A (ja) 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
JP6376604B2 (ja) 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
JP6937176B2 (ja) 電子部品、電子装置、及び電子部品の製造方法
JP3535998B2 (ja) 積層セラミック電子部品
JP2004259991A (ja) 積層セラミック部品
KR20200042860A (ko) 적층 세라믹 전자부품
JP5960816B2 (ja) 積層セラミックコンデンサ
US20170092423A1 (en) Electronic component
WO2017002495A1 (ja) チップ型セラミック電子部品
JP2022067931A (ja) 電子部品
JPH10144561A (ja) 端子電極ペーストおよび積層セラミックコンデンサ
JP2001015371A (ja) チップ型セラミック電子部品及びその製造方法
US20230170145A1 (en) Ceramic electronic component
JP2016072487A (ja) 積層セラミックコンデンサ
JP2004179531A (ja) 積層セラミック電子部品及びその製造方法
KR102018311B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817604

Country of ref document: EP

Kind code of ref document: A1