WO2017002489A1 - 放熱材料 - Google Patents

放熱材料 Download PDF

Info

Publication number
WO2017002489A1
WO2017002489A1 PCT/JP2016/065414 JP2016065414W WO2017002489A1 WO 2017002489 A1 WO2017002489 A1 WO 2017002489A1 JP 2016065414 W JP2016065414 W JP 2016065414W WO 2017002489 A1 WO2017002489 A1 WO 2017002489A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesogen
silicon compound
polymer
group
heat dissipation
Prior art date
Application number
PCT/JP2016/065414
Other languages
English (en)
French (fr)
Inventor
晃 打它
正行 池野
展明 松本
幸平 増田
隆文 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP16817598.2A priority Critical patent/EP3318593B1/en
Priority to JP2017526220A priority patent/JP6699663B2/ja
Priority to US15/579,509 priority patent/US10590322B2/en
Publication of WO2017002489A1 publication Critical patent/WO2017002489A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • C08G77/52Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a heat dissipating material comprising a highly heat conductive mesogen / silicon compound (co) polymer, and a heat dissipating material comprising a composition containing the (co) polymer.
  • silicone resins such as dimethyl silicone rubber, which is mainly composed of polydimethylsiloxane (PDMS), have excellent properties such as heat resistance, electrical insulation, weather resistance, flexibility, gas permeability, and chemical resistance. Used for industrial applications. Because of these characteristics, silicone resin is used as a heat dissipation material for electric and electronic members (Patent Document 1: JP-A-2015-71662). However, since the silicone resin has poor thermal conductivity and low strength, it has been necessary to carry out high filler filling and chemical crosslinking treatment.
  • PDMS polydimethylsiloxane
  • PTMPS polytetramethyl-p-sylphenylenesiloxane
  • the present invention has been made in view of the above circumstances, and for example, from a highly heat-conductive mesogen-silicon compound (co) polymer that can be suitably used as a heat dissipation material or a resin material for semiconductor devices and electronic components. It is an object of the present invention to provide a heat dissipating material and a heat dissipating material comprising a composition containing the (co) polymer.
  • the present inventors have obtained a mesogenic silicon compound (co-polymer) having a number average molecular weight of 1,000 to 500,000 represented by the composition formula (1) described later.
  • the polymer was found to have excellent thermal conductivity, further thermoplasticity and excellent moldability, and the mesogen-silicon compound (co) polymer and the composition containing the same were used as heat dissipation materials, particularly semiconductors. It has been found that it can be suitably used as a resin material for devices and electronic components, and has led to the present invention.
  • the present invention provides a heat dissipating material comprising the following highly heat conductive mesogen / silicon compound (co) polymer and a heat dissipating material comprising a composition containing the (co) polymer.
  • a heat dissipation material comprising a mesogen-silicon compound (co) polymer represented by the following general formula (1) and having a number average molecular weight of 1,000 to 500,000.
  • R 1 is a monovalent hydrocarbon group independently containing an aliphatic unsaturated bond having 1 to 8 carbon atoms
  • the heat conductive filler is 100 to 1,500 masses per 100 mass parts of the mesogen / silicon compound (co) polymer represented by the following general formula (1) and having a number average molecular weight of 1,000 to 500,000.
  • a heat dissipation material comprising a part-containing mesogen / silicon compound (co) polymer composition.
  • Ar represents the following formula: It is a mesogenic group selected from the structure shown by these.
  • a represents a positive number from 0.5 to 1
  • R 1 is a monovalent hydrocarbon group independently containing an aliphatic unsaturated bond having 1 to 8 carbon atoms
  • the mesogen / silicon compound (co) polymer composition melts in the temperature range of the melting point ⁇ 50 ° C. of the mesogen / silicon compound (co) polymer represented by the general formula (1) and has fluidity.
  • the heat dissipation material according to [2] or [3], wherein the thermal conductivity of the mesogen / silicon compound (co) polymer composition is 1 W / m ⁇ K or more.
  • the heat dissipating material of the present invention is excellent in thermal conductivity, exhibits excellent thermoplasticity, and is excellent in moldability. Therefore, it can be suitably used as a heat dissipating material, particularly a resin material for semiconductor devices and electronic components.
  • the heat dissipation material of the present invention contains a mesogen / silicon compound (co) polymer represented by the following general formula (1) and having a number average molecular weight of 1,000 to 500,000.
  • R 1 is a monovalent hydrocarbon group independently containing an aliphatic unsaturated bond having 1 to 8 carbon atoms
  • R 1 is independently a monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 6 carbon atoms, and not containing an aliphatic unsaturated bond.
  • A represents a positive number of 0.5 to 1, preferably 0.7 to 1, more preferably 0.8 to 1, and b is 0 to 0.5, preferably 0 to 0.3, more preferably.
  • Represents a number of 0 to 0.2 (0 or positive number) (where a and b represent the ratio (molar ratio) of the number of repeating units in the molecule, respectively, and a + b 1. .
  • the number of repeating silarylenesiloxane units [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 O—] in the main chain Alternatively, the degree of polymerization (referred to as a ′) is an integer of about 50 to 1,000, preferably about 50 to 800, more preferably about 80 to 600, and the disiloxane unit [—Si (R 1 ) 2 O—Si (R 1 ) 2 O—] is an integer of about 0 to 1,000, preferably 10 to 800, more preferably about 20 to 200.
  • the total number of repeating units in the entire main chain or the degree of polymerization (referred to as a ′ + b ′) is 50 to 2,000, preferably 100 to 1,600, more preferably about 200 to 1,200. Is an integer.
  • a silarylene siloxane unit [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 O—] and a disiloxane unit [ The arrangement of —Si (R 1 ) 2 O—Si (R 1 ) 2 O—] is random.
  • the mesogen / silicon compound (co) polymer used in the heat dissipation material of the present invention has a polystyrene-equivalent number average molecular weight of 1,000 to 500,000, preferably 2 as measured by gel permeation chromatography using tetrahydrofuran as a developing solvent.
  • (Co) polymers having a molecular weight of 3,000 to 400,000, more preferably 3,000 to 300,000. If the weight average molecular weight is too small, the resin is fragile and handling may be difficult. If it is too large, the viscosity at the time of melting will increase, making it difficult to fill the filler.
  • the number average molecular weight in terms of polystyrene was determined by gel permeation chromatography analysis using columns manufactured by Tosoh Corporation: TSKgel Super H2500 (1) and TSKgel Super HM-N (1), solvent: tetrahydrofuran, flow rate: 0. Measurement can be performed under the conditions of 6 mL / min, detector: RI (40 ° C.), column temperature 40 ° C., injection amount 50 ⁇ L, sample concentration 0.3% by mass (hereinafter the same).
  • the mesogen / silicon compound (co) polymer used in the heat dissipation material of the present invention preferably has a thermal conductivity of 0.2 W / m ⁇ K or more, preferably 0.2 to 1.0 W / m ⁇ K. More preferred is 0.25 to 1.0 W / m ⁇ K.
  • the thermal conductivity can be measured by a hot disk method (TPA-501, manufactured by Kyoto Electronics Industry) using two 6 mm thick sheets (at 12 mm thickness) (hereinafter the same).
  • the melting point of the mesogen / silicon compound (co) polymer used in the heat dissipation material of the present invention is preferably 50 to 250 ° C., particularly preferably 80 to 230 ° C.
  • the melting point can be determined from the peak top of the melting endothermic peak measured by differential scanning calorimetry (DSC) (DSC830, manufactured by METTLER TOLEDO) (hereinafter the same).
  • disiloxane compounds blocked with hydroxy-containing diorganosiloxy groups such as hydroxydimethylsiloxy groups (eg hexaorganodisiloxane or 1,3-dihydroxytetraorganodisiloxane)
  • hydroxy-containing diorganosiloxy groups such as hydroxydimethylsiloxy groups (eg hexaorganodisiloxane or 1,3-dihydroxytetraorganodisiloxane)
  • existing terminal silyl-modified silicone oils such as linear diorganopolysiloxanes such as linear dimethylpolysiloxanes with a degree of polymerization of 3 or more
  • equilibration reaction breaking / re-breaking of siloxane bonds
  • Ar, R 1 is the same as Ar, R 1 of formula (1).
  • c represents a positive number from 0.5 to 1
  • c indicating the ratio of the number of repeating units of silarylenesiloxane units [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 O—] in the molecule is 0.5 to 1 , Preferably a positive number of about 0.7 to 1, more preferably about 0.8 to 1, of the disiloxane unit [—Si (R 1 ) 2 O—Si (R 1 ) 2 O—] in the molecule.
  • D representing the ratio of the number of repeating units is a number of about 0 to 0.5, preferably 0 to 0.3, more preferably about 0 to 0.2.
  • c + d 1.
  • the number of repeating silarylene siloxane units [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 O—] in the main chain Alternatively, the degree of polymerization (referred to as c ′) is an integer of about 50 to 1,000, preferably about 50 to 800, more preferably about 80 to 600, and the disiloxane unit [—Si (R 1 ) 2 O—Si (R 1 ) 2 O—] is an integer of about 0 to 1,000, preferably 10 to 800, more preferably about 20 to 200.
  • the total number of repeating units in the entire main chain or the degree of polymerization (referred to as c ′ + d ′) is 50 to 2,000, preferably 100 to 1,600, more preferably about 200 to 1,200. Is an integer.
  • silarylene siloxane units [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 O—] and disiloxane units [—Si (R 1 ) 2 O—
  • the arrangement of Si (R 1 ) 2 O—] is random.
  • the organopolysiloxane compound having both ends of the molecular chain represented by the formula (2) blocked with silanol groups and having an arylene group in the main chain is a polystyrene-equivalent number average measured by gel permeation chromatography using tetrahydrofuran as a developing solvent.
  • the molecular weight is preferably 1,000 to 500,000, more preferably 2,000 to 400,000, and still more preferably 3,000 to 300,000.
  • the organopolysiloxane compound having both ends of the molecular chain represented by the formula (2) blocked with silanol groups and having an arylene group in the main chain is a mesogenic silicon compound represented by the formula (1) of the present invention ( If it is within the range of a (co) polymer, this can be used as it is as a mesogen / silicon compound (co) polymer represented by the formula (1).
  • Organopolysiloxane compounds having both ends of the molecular chain represented by the general formula (2) blocked with silanol groups and having an arylene group in the main chain are, for example, 1,4-bis (hydroxydimethylsilyl) benzene and 4,4 A compound having a silarylene structure, such as bis (hydroxydimethylsilyl) biphenyl, and a terminal hydroxyl group-containing organosiloxane, such as 1,1,3,3-tetramethyl-1,3-dihydroxydisiloxane, 1: 1, preferably a polycondensation catalyst such as di-2-ethylhexanoic acid 1,1,3,3-tetramethylguanidine at a ratio of about 1: 0 to 1: 0.4 (molar ratio) and if necessary It can be obtained by reacting at 60 to 250 ° C., particularly 80 to 130 ° C. for 4 to 48 hours, particularly 8 to 32 hours in the presence of an organic solvent.
  • the molecular chain both ends triorganosiloxy group or the molecular chain both ends to be reacted with an organopolysiloxane compound having both ends of the molecular chain represented by the general formula (2) blocked with silanol groups and having an arylene group in the main chain.
  • organopolysiloxane compound having both ends of the molecular chain represented by the general formula (2) blocked with silanol groups and having an arylene group in the main chain examples include, for example, vinyldimethylsiloxy group (—OSi (CH 3 ) 2 (CH ⁇ CH 2 )) allyl at both ends of the molecular chain.
  • Alkenyl group-containing siloxy groups such as dimethylsiloxy group (—OSi (CH 3 ) 2 (CH 2 —CH ⁇ CH 2 )), triorganosiloxy groups such as trimethylsiloxy group (—OSi (CH 3 ) 3 ), hydroxy dimethylsiloxy group (-OSi (CH 3) 2 ( OH)) such as hydroxyl group-containing diorgano siloxy groups of blocked, such as It was disiloxane compound or a straight-chain dimethylpolysiloxane existing terminal silyl-modified silicone oil (polymerization degree of 3 or more straight-chain diorganopolysiloxane) such as can be used.
  • the organic group bonded to the silicon atom in the diorganosiloxane unit has 1 carbon atom. It is preferable that the monovalent hydrocarbon group does not contain an aliphatic unsaturated bond of ⁇ 8, and examples thereof are the same as those exemplified for R 1 in the general formula (1) described above. Preferably there is.
  • the degree of polymerization of the triorganosiloxy group-blocked linear diorganosiloxy group-blocked linear diorganopolysiloxane is not particularly limited as long as it is 3 or more, but usually 10 to 2,000, particularly 50 to 1 It is preferably about 1,000, especially about 100 to 500.
  • both-end triorganosiloxy group-blocked or hydroxydiorganosiloxy-group-blocked disiloxane compound or linear diorganopolysiloxane can be used alone or with a degree of polymerization. Two or more different types may be used.
  • the organopolysiloxane compound having both ends of the molecular chain represented by the general formula (2) blocked with a silanol group and having an arylene group in the main chain and the triorganosiloxy group blocked with hydroxydioxy The mixing ratio of the organosiloxy group-blocked disiloxane compound or linear diorganopolysiloxane is about 1: 0.5 to 1:10, particularly about 1: 2 to 1: 7.5 by mass ratio. Is preferred.
  • the amount of silanol group-blocked organopolysiloxane having an arylene group that is relatively expensive when the molecular chain both ends triorganosiloxy group-blocked or hydroxydiorganosiloxy group-blocked disiloxane compound or linear diorganopolysiloxane is too small.
  • the production cost may increase, and if it is too large, the amount of arylene group introduced into the main chain will decrease, and the desired thermal conductivity and mechanical properties of the reaction product represented by the general formula (1) will be described. Properties such as strength and thermoplasticity may be inferior.
  • the acidic catalyst for promoting the equilibration reaction is not particularly limited as long as it is a strong acid, but sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, etc. can be preferably used, and the amount used is small and the post-treatment is easy. Particularly preferred is trifluoromethanesulfonic acid.
  • the addition amount of the acidic catalyst is such that the both ends of the molecular chain represented by the general formula (2) are blocked with silanol groups and an arylene group in the main chain, and a disiloxane compound or both ends of the molecular chain.
  • the range is preferably from 100 to 10,000 ppm, particularly preferably from 500 to 3,000 ppm, based on the total mass of the triorganosiloxy-blocked or hydroxydiorganosiloxy-blocked linear diorganopolysiloxane.
  • the equilibration reaction is not particularly limited, but is usually performed under heating at about 80 to 150 ° C., particularly about 100 to 130 ° C., usually for about 0.5 to 6 hours, particularly about 1 to 4 hours. Can do. At this time, it is optional to add a solvent as necessary.
  • the solvent include aromatic nonpolar solvents such as benzene, toluene, and xylene.
  • R 2 is —Si (CH 3 ) by an equilibration reaction with a linear diorganopolysiloxane blocked with a hydroxydiorganosiloxy group.
  • a mesogen / silicon compound (co) polymer composition in which a thermally conductive filler is contained in the mesogen / silicon compound (co) polymer can also be used.
  • a general heat conductive filler is used.
  • aluminum oxide, magnesium oxide, aluminum hydroxide, boron nitride, carbon, and silanes and silazanes are used.
  • a fine powdery inorganic filler surface-treated with low-polymerization degree polysiloxanes or the like, or metal powders such as aluminum, copper, iron, gold and silver can be used.
  • aluminum oxide and aluminum are particularly desirable from the viewpoints of economy and thermal conductivity.
  • the content of the heat conductive filler is preferably 100 to 1,500 parts by mass, more preferably 250 to 1,000 parts by mass with respect to 100 parts by mass of the mesogen / silicon compound (co) polymer. If the blending amount is too small, the desired thermal conductivity may not be obtained, and if it is too large, the physical properties of the resin may decrease.
  • a mesogen / silicon compound (co) polymer and a heat conductive filler are charged into a planetary mixer and mixed for about 30 minutes above the melting point of the mesogen / silicon compound (co) polymer. By doing so, the target composition is obtained.
  • the mesogen / silicon compound (co) polymer composition melts in the temperature range of the melting point ⁇ 50 ° C., particularly the melting point ⁇ 30 ° C., with respect to the melting point of the mesogen / silicon compound (co) polymer described above, It is preferable that it has fluidity. Further, the thermal conductivity of the mesogen / silicon compound (co) polymer composition is preferably 1 W / m ⁇ K or more, more preferably 1 to 10 W / m ⁇ K, and more preferably 1.5 to 10 W / m ⁇ K. More preferably it is.
  • the heat dissipating material of the present invention can be suitably used particularly as a resin material for semiconductor devices and electronic parts.
  • Example 1 In a 1 L eggplant flask equipped with a Dean-Stark trap, 100 g of 1,4-bis (hydroxydimethylsilyl) benzene obtained in Synthesis Example 1, 800 mL of benzene, 1,1,3,3 di-2-ethylhexanoic acid -Add 4 g of tetramethylguanidine and heat to reflux for 24 hours. Thereafter, the solution was dropped into 3 L of methanol and purified by reprecipitation, whereby 88 g of white powdered PTMPS (mesogen / silicon compound polymer) represented by the following chemical formula (2) was obtained.
  • PTMPS meogen / silicon compound polymer
  • n is a number having a number average molecular weight in the above range.
  • Example 2 Into a 1 L eggplant flask equipped with a Dean-Stark trap, 100 g of 4,4-bis (hydroxydimethylsilyl) biphenyl obtained in Synthesis Example 2, 800 mL of benzene, and 1,1,3,3 di-2-ethylhexanoic acid -Add 4 g of tetramethylguanidine and heat to reflux for 24 hours. Thereafter, the solution was dropped into 3 L of methanol and purified by reprecipitation, whereby 76 g of a white powdery resin (mesogen / silicon compound polymer) represented by the following chemical formula (3) was obtained.
  • a white powdery resin (mesogen / silicon compound polymer) represented by the following chemical formula (3) was obtained.
  • Example 4 In a 1 L eggplant flask equipped with a Dean-Stark trap, 106.9 g of 4,4-bis (hydroxydimethylsilyl) biphenyl obtained in Synthesis Example 2 and 1,1,3,3-tetramethyl-1,3-dihydroxy were obtained. 14.67 g of disiloxane, 800 mL of benzene, and 4 g of 1,1,3,3-tetramethylguanidine di-2-ethylhexanoate were added, and the mixture was heated to reflux for 24 hours.
  • Example 5 50 g of the above polymer 1 and 185 g of spherical alumina (DAW-0745 manufactured by Denki Kagaku Kogyo) were charged into a planetary mixer, heated and mixed at 180 ° C., poured into a 60 mm ⁇ 60 mm ⁇ 6 mm mold, and press molded at 150 ° C. for 10 minutes. Thus, composition 1 was obtained.
  • the thermal conductivity was 1.58 W / m ⁇ K.
  • Example 6 50 g of the above polymer 2 and 185 g of spherical alumina (DAW-0745, manufactured by Denki Kagaku Kogyo) are charged into a planetary mixer, heated and mixed at 220 ° C., poured into a 60 mm ⁇ 60 mm ⁇ 6 mm mold, and press molded at 220 ° C. for 10 minutes. Thus, composition 2 was obtained.
  • the thermal conductivity was 2.14 W / m ⁇ K.
  • Example 7 50 g of the above-mentioned polymer 3 and 185 g of spherical alumina (DAW-0745, manufactured by Denki Kagaku Kogyo) are charged into a planetary mixer, heated and mixed at 180 ° C., poured into a 60 mm ⁇ 60 mm ⁇ 6 mm mold, and press molded at 150 ° C. for 10 minutes. Thus, composition 3 was obtained.
  • the thermal conductivity was 1.28 W / m ⁇ K.
  • Example 8 50 g of the above polymer 4 and 185 g of spherical alumina (DAW-0745 manufactured by Denki Kagaku Kogyo) were charged into a planetary mixer, heated and mixed at 180 ° C., poured into a 60 mm ⁇ 60 mm ⁇ 6 mm mold, and press molded at 150 ° C. for 10 minutes. Thus, composition 4 was obtained.
  • the thermal conductivity was 1.61 W / m ⁇ K.
  • the heat conductivity of the heat dissipating material (Examples 1 to 4) comprising the mesogen / silicon compound (co) polymer according to the present invention is 0.35 to 0.20 W / m ⁇ K, which is the conventional heat dissipating property. It can be seen that it is superior to the dimethyl silicone resin (literature value 0.18 W / m ⁇ K) generally used as a material and has excellent mechanical properties. Further, the heat dissipating material (Examples 5 to 8) comprising the composition containing the mesogen / silicon compound (co) polymer (resin) and the heat conductive filler (filler) according to the present invention has thermoplasticity.
  • thermo conductivity of the heat dissipation material (Examples 5 to 8) comprising a composition containing a resin and a filler dramatically improves as the thermal conductivity of the resin increases.
  • the thermal conductivity after addition of the filler is greatly improved as compared with the combination of a normal dimethyl silicone resin and a filler.
  • the heat dissipating material comprising the mesogen / silicon compound (co) polymer of the present invention and the heat dissipating material comprising the composition containing the (co) polymer and a thermally conductive filler are suitable as the heat dissipating material.
  • it can be suitably used as a heat-dissipating resin material for semiconductor devices and electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体からなる放熱材料。 (Arは下記式 で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。) 本発明の放熱材料は、熱伝導性に優れ、更に良好な熱可塑性を示し、成型性に優れることから、放熱材料、特に半導体装置及び電子部品のための樹脂材料として好適に用いることができる。

Description

放熱材料
 本発明は、高熱伝導性のメソゲン・ケイ素化合物(共)重合体からなる放熱材料、及び該(共)重合体を含有する組成物からなる放熱材料に関する。
 ポリジメチルシロキサン(PDMS)を主成分とするジメチルシリコーンゴム等のいわゆるシリコーン樹脂は、耐熱性、電気絶縁性、耐候性、柔軟性、気体透過性、耐薬品性など優れた性質を持ち、様々な工業用途に使用されている。これらの特性から、シリコーン樹脂は、電気電子部材の放熱材として使用されている(特許文献1:特開2015-71662号公報)。しかし、シリコーン樹脂は、熱伝導性に乏しく、強度も低いため、フィラーの高充填化や、化学架橋処理を実施する必要があった。
 一般に、ポリテトラメチル-p-シルフェニレンシロキサン(PTMPS)は、PDMSよりも耐熱性や機械的強度に優れ、熱可塑性を持つ結晶性高分子であることが知られている(特許文献2:特開2010-253774号公報)。従って、PTMPSのようなメソゲン・ケイ素化合物(共)重合体においていわゆるシリコーン樹脂以上の耐熱性とその結晶性由来の高熱伝導性により放熱材への応用が期待されるが、実際にそれらを放熱材として用いた例はなかった。
特開2015-71662号公報 特開2010-253774号公報
 本発明は、上記事情に鑑みなされたもので、例えば放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に使用することができる高熱伝導性のメソゲン・ケイ素化合物(共)重合体からなる放熱材料、及び該(共)重合体を含有する組成物からなる放熱材料を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、後述する組成式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体が、熱伝導性に優れ、更に熱可塑性を持ち、成型性に優れることを発見し、該メソゲン・ケイ素化合物(共)重合体及びそれを含有する組成物が、放熱材料、特に半導体装置及び電子部品のための樹脂材料として好適に使用し得ることを見出し、本発明をなすに至った。
 従って、本発明は、下記の高熱伝導性のメソゲン・ケイ素化合物(共)重合体からなる放熱材料、及び該(共)重合体を含有する組成物からなる放熱材料を提供する。
〔1〕
 下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体からなる放熱材料。
Figure JPOXMLDOC01-appb-C000005
(式中、Arは下記式
Figure JPOXMLDOC01-appb-C000006
で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。)
〔2〕
 下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体100質量部に対して熱伝導性充填剤が100~1,500質量部含有されたメソゲン・ケイ素化合物(共)重合体組成物からなる放熱材料。
Figure JPOXMLDOC01-appb-C000007
(式中、Arは下記式
Figure JPOXMLDOC01-appb-C000008
で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。)
〔3〕
 メソゲン・ケイ素化合物(共)重合体組成物が、前記一般式(1)で表されるメソゲン・ケイ素化合物(共)重合体の融点±50℃の温度範囲で溶融し、流動性を持つものであることを特徴とする〔2〕記載の放熱材料。
〔4〕
 メソゲン・ケイ素化合物(共)重合体組成物の熱伝導率が、1W/m・K以上であることを特徴とする〔2〕又は〔3〕記載の放熱材料。
〔5〕
 メソゲン・ケイ素化合物(共)重合体単体での熱伝導率が0.2W/m・K以上である〔1〕~〔4〕のいずれかに記載の放熱材料。
 本発明の放熱材料は、熱伝導性に優れ、更に良好な熱可塑性を示し、成型性に優れることから、放熱材料、特に半導体装置及び電子部品のための樹脂材料として好適に用いることができる。
 本発明の放熱材料は、下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体を含むものである。
Figure JPOXMLDOC01-appb-C000009
(式中、Arは下記式
Figure JPOXMLDOC01-appb-C000010
で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。)
 上記式(1)中、R1は独立に炭素原子数1~8、特に炭素原子数1~6の、脂肪族不飽和結合を含まない1価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基等が挙げられ、好ましくはメチル基である。
 また、aは0.5~1、好ましくは0.7~1、より好ましくは0.8~1の正数を示し、bは0~0.5、好ましくは0~0.3、より好ましくは0~0.2の数(0又は正数)を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率(モル比)を表すものであり、a+b=1である。)。
 また、一般式(1)のメソゲン・ケイ素化合物(共)重合体において、主鎖中のシルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12O-]の繰り返し数又は重合度(これをa’とする)は、50~1,000、好ましくは50~800、より好ましくは80~600程度の整数であり、主鎖中のジシロキサン単位[-Si(R12O-Si(R12O-]の繰り返し数又は重合度(これをb’とする)は、0~1,000、好ましくは10~800、より好ましくは20~200程度の整数であり、主鎖全体の繰り返し単位数の合計又は重合度(これをa’+b’とする)は、50~2,000、好ましくは100~1,600、より好ましくは200~1,200程度の整数である。
 ここで、一般式(1)のメソゲン・ケイ素化合物(共)重合体中において、シルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12O-]とジシロキサン単位[-Si(R12O-Si(R12O-]の配列はランダムである。
 本発明の放熱材料に用いられるメソゲン・ケイ素化合物(共)重合体は、テトラヒドロフランを展開溶媒としてゲルパーミエーションクロマトグラフィにて測定したポリスチレン換算の数平均分子量が1,000~500,000、好ましくは2,000~400,000、更に好ましくは3,000~300,000である(共)重合体である。重量平均分子量が小さすぎると樹脂が脆く、取扱いに難が出ることがあり、大きすぎると溶融時の粘度が上昇し、フィラーの充填が困難になる。
 なお、上記ポリスチレン換算の数平均分子量は、ゲルパーミエーションクロマトグラフィ分析において、東ソー株式会社製のカラム:TSKgel Super H2500(1本)及びTSKgel Super HM-N(1本)、溶媒:テトラヒドロフラン、流量:0.6mL/min、検出器:RI(40℃)、カラム温度40℃、注入量50μL、サンプル濃度0.3質量%の条件にて測定することができる(以下、同じ)。
 本発明の放熱材料に用いられるメソゲン・ケイ素化合物(共)重合体は、熱伝導率が0.2W/m・K以上であることが好ましく、0.2~1.0W/m・Kであることがより好ましく、0.25~1.0W/m・Kであることが更に好ましい。なお、熱伝導率は、6mm厚のシートを2枚用いて(12mm厚にて)ホットディスク法(TPA-501 京都電子工業製)によって測定することができる(以下、同じ)。
 また、本発明の放熱材料に用いられるメソゲン・ケイ素化合物(共)重合体の融点は、50~250℃、特に80~230℃であることが好ましい。なお、融点は、示差走査熱量分析(DSC)によって測定される融解吸熱ピークのピークトップから求めることができる(DSC830 メトラートレド製)(以下、同じ)。
 本発明の一般式(1)で表されるメソゲン・ケイ素化合物(共)重合体において、R2が水素原子であるもの(分子鎖両末端がシラノール基で封鎖されたもの)は、公知の方法により製造することができる。また、R2が、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)及び-Si(CH32(CH2-CH=CH2)であるもの(分子鎖両末端がシロキシ基で封鎖されたもの)の製造方法としては、公知の方法で製造される下記一般式(2)で表される分子鎖両末端がケイ素原子に結合した水酸基(シラノール基)で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物を出発原料として、これを分子鎖両末端トリオルガノシロキシ基又は分子鎖両末端ヒドロキシジオルガノシロキシ基で封鎖されたジシロキサン化合物又は直鎖状ジオルガノポリシロキサン(例えば、分子鎖両末端がビニルジメチルシロキシ基、アリルジメチルシロキシ基などのアルケニル基含有ジオルガノシロキシ基やトリメチルシロキシ基等のトリオルガノシロキシ基、ヒドロキシジメチルシロキシ基などのヒドロキシ基含有ジオルガノシロキシ基で封鎖されたジシロキサン化合物(例えば、ヘキサオルガノジシロキサン又は1,3-ジヒドロキシテトラオルガノジシロキサン)や重合度3以上の直鎖状ジメチルポリシロキサンなどの直鎖状ジオルガノポリシロキサン等の既存の末端シリル変性シリコーンオイルなど)と混合し、酸性触媒下で平衡化反応(シロキサン結合の開裂/再結合化反応)することにより得ることができる。
Figure JPOXMLDOC01-appb-C000011
[式中、Ar、R1は式(1)のAr、R1と同じである。cは0.5~1の正数を示し、dは0~0.5の数を示す(ただし、c、dはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、c+d=1である。)。]
 一般式(2)において、分子中のシルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12O-]の繰り返し単位数の比率を示すcは、0.5~1、好ましくは0.7~1、より好ましくは0.8~1程度の正数であり、分子中のジシロキサン単位[-Si(R12O-Si(R12O-]の繰り返し単位数の比率を示すdは、0~0.5、好ましくは0~0.3、より好ましくは0~0.2程度の数である。ただし、c+d=1である。
 また、一般式(2)のメソゲン・ケイ素化合物(共)重合体において、主鎖中のシルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12O-]の繰り返し数又は重合度(これをc’とする)は、50~1,000、好ましくは50~800、より好ましくは80~600程度の整数であり、主鎖中のジシロキサン単位[-Si(R12O-Si(R12O-]の繰り返し数又は重合度(これをd’とする)は、0~1,000、好ましくは10~800、より好ましくは20~200程度の整数であり、主鎖全体の繰り返し単位数の合計又は重合度(これをc’+d’とする)は、50~2,000、好ましくは100~1,600、より好ましくは200~1,200程度の整数である。
 なお、一般式(2)の化合物中において、シルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12O-]とジシロキサン単位[-Si(R12O-Si(R12O-]の配列はランダムである。
 式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物は、テトラヒドロフランを展開溶媒としてゲルパーミエーションクロマトグラフィにて測定したポリスチレン換算の数平均分子量が好ましくは1,000~500,000、より好ましくは2,000~400,000、更に好ましくは3,000~300,000である。
 なお、式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物が、本発明の式(1)で表されるメソゲン・ケイ素化合物(共)重合体の範囲内であれば、これをそのまま式(1)で表されるメソゲン・ケイ素化合物(共)重合体として用いることができる。
 一般式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物は、例えば、1,4-ビス(ヒドロキシジメチルシリル)ベンゼンや4,4-ビス(ヒドロキシジメチルシリル)ビフェニル等のシルアリーレン構造を有する化合物と、1,1,3,3-テトラメチル-1,3-ジヒドロキシジシロキサン等の末端水酸基含有オルガノシロキサンとを、1:0~1:1、好ましくは1:0~1:0.4(モル比)程度の割合で、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジン等の重縮合触媒及び必要により有機溶媒の存在下、60~250℃、特に80~130℃にて4~48時間、特に8~32時間反応させることにより得ることができる。
 また、上記一般式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物と反応させる分子鎖両末端トリオルガノシロキシ基又は分子鎖両末端ヒドロキシジオルガノシロキシ基で封鎖されたジシロキサン化合物又は直鎖状ジオルガノポリシロキサンとしては、例えば、分子鎖両末端がビニルジメチルシロキシ基(-OSi(CH32(CH=CH2))アリルジメチルシロキシ基(-OSi(CH32(CH2-CH=CH2))等のアルケニル基含有シロキシ基や、トリメチルシロキシ基(-OSi(CH33)等のトリオルガノシロキシ基、ヒドロキシジメチルシロキシ基(-OSi(CH32(OH))等のヒドロキシ基含有ジオルガノシロキシ基などで封鎖されたジシロキサン化合物や直鎖状ジメチルポリシロキサンなどの既存の末端シリル変性シリコーンオイル(重合度3以上の直鎖状ジオルガノポリシロキサン)などを用いることができる。
 分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖のジシロキサン化合物又は直鎖状ジオルガノポリシロキサンにおいて、ジオルガノシロキサン単位中のケイ素原子に結合する有機基としては、炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であることが好ましく、上述した一般式(1)のR1で例示したものと同様のものを挙げることができ、中でもメチル基であることが好ましい。
 分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖の直鎖状ジオルガノポリシロキサンの重合度は3以上であれば特に限定されないが、通常、10~2,000、特に50~1,000、とりわけ100~500程度であることが好ましい。
 上記の分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖のジシロキサン化合物又は直鎖状ジオルガノポリシロキサン(末端シリル変性シリコーンオイル)は、1種単独で用いても、重合度の異なる2種以上を用いてもよい。
 平衡化反応において、上記一般式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物と分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖のジシロキサン化合物又は直鎖状ジオルガノポリシロキサンとの混合割合は、質量比で1:0.5~1:10、特には1:2~1:7.5程度であることが好ましい。分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖のジシロキサン化合物又は直鎖状ジオルガノポリシロキサンが少なすぎると比較的高価なアリーレン基を有するシラノール基封鎖オルガノポリシロキサンの使用量が増大し、製造コストが増加する場合があり、多すぎると主鎖中のアリーレン基導入量が低下し、目的とする上記一般式(1)で表される反応生成物の熱伝導性、機械的強度、熱可塑性などの特性が劣る場合がある。
 平衡化反応を促進するための酸性触媒としては、強酸であれば特に種類を問わないが、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸などが好適に使用でき、使用量の少なさや後処理の容易さから特にトリフルオロメタンスルホン酸が好ましい。
 また、酸性触媒の添加量は、一般式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物と、ジシロキサン化合物又は分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖の直鎖状ジオルガノポリシロキサンとの合計質量に対して100~10,000ppmの範囲が望ましく、特に500~3,000ppmが望ましい。
 平衡化反応は、特に制限されないが、通常、80~150℃、特には100~130℃程度の加熱下で、通常、0.5~6時間、特には1~4時間程度の条件で行うことができる。この際、必要に応じて溶媒を添加することは任意である。溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族系非極性溶媒などが挙げられる。
 このような一般式(2)で表される分子鎖両末端がシラノール基で封鎖され主鎖中にアリーレン基を有するオルガノポリシロキサン化合物と、ジシロキサン化合物又は分子鎖両末端トリオルガノシロキシ基封鎖又はヒドロキシジオルガノシロキシ基封鎖の直鎖状ジオルガノポリシロキサンとの平衡化反応により、上記一般式(1)で表されるメソゲン・ケイ素化合物(共)重合体において、R2が-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)であるものを、容易に、かつ定量的に高収率で製造することができる。
 本発明の放熱材料は、上記メソゲン・ケイ素化合物(共)重合体に熱伝導性充填剤が含有されたメソゲン・ケイ素化合物(共)重合体組成物を用いることもできる。
 上記組成物に用いられる熱伝導性充填剤については汎用の熱伝導性充填剤が用いられるが、例えば、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、窒化ホウ素、カーボン、及びこれらをシラン類、シラザン類、低重合度ポリシロキサン類等で表面処理した微粉末状の無機質充填剤やアルミニウム、銅、鉄、金、銀などの金属粉を使用することができる。更に経済性や熱伝導率の観点から酸化アルミニウムやアルミニウムが特に望ましい。
 熱伝導性充填剤の含有量は、上記メソゲン・ケイ素化合物(共)重合体100質量部に対して100~1,500質量部が好ましく、250~1,000質量部がより好ましい。配合量が少なすぎると目的の熱伝導率が得られない場合があり、多すぎると樹脂の物性が低下する場合がある。
 熱伝導性充填剤の充填方法としてはメソゲン・ケイ素化合物(共)重合体と熱伝導性充填剤をプラネタリーミキサーに仕込み、該メソゲン・ケイ素化合物(共)重合体の融点以上で30分程度混合することで目的組成物が得られる。
 メソゲン・ケイ素化合物(共)重合体組成物は、上述したメソゲン・ケイ素化合物(共)重合体の融点に対して、該融点±50℃、特には該融点±30℃の温度範囲で溶融し、流動性を持つものであることが好ましい。
 更に、メソゲン・ケイ素化合物(共)重合体組成物の熱伝導率は、1W/m・K以上、特に1~10W/m・Kであることが好ましく、1.5~10W/m・Kであることが更に好ましい。
 本発明の放熱材料は、特に半導体装置及び電子部品のための樹脂材料として好適に用いることができる。
 以下、合成例、実施例及び比較例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。
 初めに本発明に用いるメソゲン・ケイ素化合物(共)重合体の原料となるモノマーの合成例を示す。これらのモノマーは既知の手法によって合成される。
  [合成例1]
1,4-ビス(ヒドロキシジメチルシリル)ベンゼンの合成
 還流管と1Lの滴下ロートを備えた5Lセパラブルフラスコに、テトラヒドロフラン500mL、メチルエチルケトン2,500mL、5質量%パラジウム担持カーボン7.8g、イオン交換水172.8gを仕込み、50℃まで昇温した。次に、滴下ロートに、1,4-ビス(ジメチルシリル)ベンゼン757.6g(商品名 シルフェニレンC、信越化学工業製)を仕込み、4時間かけて滴下を行った。滴下終了後、5時間熟成させ、触媒を濾過にて除去したのち、濾液を濃縮し、白色固体を得た。次に、ヘキサン3L、テトラヒドロフラン500mLの混合溶媒を用いて再結晶精製を行い、1,4-ビス(ヒドロキシジメチルシリル)ベンゼン596.9gを得た(収率68%)。1H-NMR(400MHz,CDCl3)δ7.61(s,4H),1.95(brs,2H),0.41(s,12H)
  [合成例2]
4,4-ビス(ヒドロキシジメチルシリル)ビフェニルの合成
 還流管を備えた3Lナスフラスコに、マグネシウム48g、乾燥テトラヒドロフラン1L、数滴の1,2-ジブロモエタンを加え、窒素雰囲気下で加熱還流させた。次に、4,4’-ジブロモビフェニル250gを加え、1時間加熱還流し、グリニヤール試薬を調製した。これをジメチルクロロシラン170gとテトラヒドロフラン200mLが仕込まれた3L四つ口フラスコに、氷浴下で1時間かけて移送滴下した。滴下終了後一晩室温で反応させ、桐山ロートで残渣を除いたのち140-150℃/1mmHgで蒸留精製し、4,4-ビス(ジメチルシリル)ビフェニルを得た。
 これを原料とし、上記1,4-ビス(ヒドロキシジメチルシリル)ベンゼンの合成法と同様にして4,4-ビス(ヒドロキシジメチルシリル)ビフェニル130gを得た(収率47%)。1H-NMR(400MHz,CDCl3)δ7.68(d,4H),7.60(d,4H),1.76(brs,2H),0.45(s,12H)
  [実施例1]
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例1で得られた1,4-ビス(ヒドロキシジメチルシリル)ベンゼンを100g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記化学式(2)で表される、白色粉末のPTMPS(メソゲン・ケイ素化合物重合体)を88g得た。収率90%、数平均分子量(Mn)=80,000、多分散度(PDI)=1.7、熱伝導率=0.25W/m・K、融点(mp)=125℃であった。このポリマーをポリマー1とする。
Figure JPOXMLDOC01-appb-C000012
(式中、nは数平均分子量が上記範囲となる数である。)
  [実施例2]
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例2で得られた4,4-ビス(ヒドロキシジメチルシリル)ビフェニルを100g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記化学式(3)で表される、白色粉末の樹脂(メソゲン・ケイ素化合物重合体)を76g得た。収率79%、Mn=5,000、PDI=1.8、熱伝導率=0.35W/m・K、mp=210℃であった。このポリマーをポリマー2とする。
Figure JPOXMLDOC01-appb-C000013
(式中、nは数平均分子量が上記範囲となる数である。)
  [実施例3]
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例1で得られた1,4-ビス(ヒドロキシジメチルシリル)ベンゼンを80g、1,1,3,3-テトラメチル-1,3-ジヒドロキシジシロキサンを14.67g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記化学式(4)で表される、白色粉末の樹脂(メソゲン・ケイ素化合物共重合体)を82g得た。収率87%、Mn=160,000、PDI=2.0、熱伝導率=0.20W/m・K、mp=90℃であった。このポリマーをポリマー3とする。
Figure JPOXMLDOC01-appb-C000014
  [実施例4]
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例2で得られた4,4-ビス(ヒドロキシジメチルシリル)ビフェニルを106.9g、1,1,3,3-テトラメチル-1,3-ジヒドロキシジシロキサンを14.67g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記化学式(5)で表される、白色粉末の樹脂(メソゲン・ケイ素化合物共重合体)を100g得た。収率85%、Mn=24,000、PDI=2.2、熱伝導率=0.26W/m・K、mp=140℃であった。このポリマーをポリマー4とする。
Figure JPOXMLDOC01-appb-C000015
  [実施例5]
 前述のポリマー1 50gと球状アルミナ(DAW-0745 電気化学工業製)185gをプラネタリーミキサーに仕込み、180℃で加熱混合し、60mm×60mm×6mmの金型に流し込み、150℃、10分間プレス成型することで組成物1を得た。熱伝導率は1.58W/m・Kであった。
  [実施例6]
 前述のポリマー2 50gと球状アルミナ(DAW-0745 電気化学工業製)185gをプラネタリーミキサーに仕込み、220℃で加熱混合し、60mm×60mm×6mmの金型に流し込み、220℃、10分間プレス成型することで組成物2を得た。熱伝導率は2.14W/m・Kであった。
  [実施例7]
 前述のポリマー3 50gと球状アルミナ(DAW-0745 電気化学工業製)185gをプラネタリーミキサーに仕込み、180℃で加熱混合し、60mm×60mm×6mmの金型に流し込み、150℃、10分間プレス成型することで組成物3を得た。熱伝導率は1.28W/m・Kであった。
  [実施例8]
 前述のポリマー4 50gと球状アルミナ(DAW-0745 電気化学工業製)185gをプラネタリーミキサーに仕込み、180℃で加熱混合し、60mm×60mm×6mmの金型に流し込み、150℃、10分間プレス成型することで組成物4を得た。熱伝導率は1.61W/m・Kであった。
  [比較例1]
 粘度1,000mPa・sの両末端アルケニル基封鎖ジメチルシリコーンオイルを48g、ケイ素原子に直接結合した水素原子を4つ含むオルガノハイドロジェンポリシロキサンを1.96g(末端アルケニル基とSi-H基のモル比率が1:1)、球状アルミナ(DAW-0745 電気化学工業製)185gをプラネタリーミキサーに仕込み、室温で30分混合し、0.5質量%カールステット触媒トルエン溶液を0.05g添加し、更に5分混合した。これを、60mm×60mm×6mmの金型に流し込み、150℃、10分間プレス成型することで硬化物5を得た。熱伝導率は1.08W/m・Kであった。
  [比較例2]
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例1で得られた1,4-ビス(ヒドロキシジメチルシリル)ベンゼンを20g、1,1,3,3-テトラメチル-1,3-ジヒドロキシジシロキサンを80g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記化学式(6)で表される、高粘度の透明液体を68g得た。収率75%、Mn=240,000、PDI=2.5であった。この液体を-30℃まで冷却したが、固体とはならず、熱伝導率は測定できなかった。
Figure JPOXMLDOC01-appb-C000016
 上記実施例1~8及び比較例1で得られたポリマー1~4、組成物1~4及び硬化物5を用いて、各種物性(硬さ、引張り強度、伸び)を評価した。また、組成物1~4及び硬化物5の融点を測定した。これらの結果を下記表1に示す。なお、各種物性に関しては、150℃、10分間プレス成型することで100mm×100mm×2mmのシートを作製し、自動硬度計と引張り試験機を用いて測定を行った。なお、物性測定の条件はJIS K 6249に準拠する。
Figure JPOXMLDOC01-appb-T000017
 これらの結果から、本発明に係るメソゲン・ケイ素化合物(共)重合体からなる放熱材料(実施例1~4)の熱伝導率は0.35~0.20W/m・Kと、従来の放熱材料として一般的に使用されているジメチルシリコーン樹脂(文献値0.18W/m・K)よりも優れており、機械的物性も優れていることがわかる。更に、本発明に係るメソゲン・ケイ素化合物(共)重合体(樹脂)及び熱伝導性充填剤(充填剤)を含有する組成物からなる放熱材料(実施例5~8)は熱可塑性を持つことから、化学架橋が必要なジメチルシリコーンゴム(比較例1)と比較して、成型性に優れる。樹脂と充填剤を含有する組成物からなる放熱材料(実施例5~8)の熱伝導率は、樹脂の熱伝導率が大きくなると飛躍的に向上することが知られており、本発明の樹脂においても、充填剤添加後の熱伝導率が通常のジメチルシリコーン樹脂と充填剤との組合せに比較して大幅に向上している。これらのことから、本発明のメソゲン・ケイ素化合物(共)重合体からなる放熱材料及び該(共)重合体と熱伝導性充填剤を含有する組成物からなる放熱材料は、放熱材料として好適であり、特には半導体装置及び電子部品のための放熱用の樹脂材料として好適に用いることができる。

Claims (5)

  1.  下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体からなる放熱材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは下記式
    Figure JPOXMLDOC01-appb-C000002
    で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。)
  2.  下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体100質量部に対して熱伝導性充填剤が100~1,500質量部含有されたメソゲン・ケイ素化合物(共)重合体組成物からなる放熱材料。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arは下記式
    Figure JPOXMLDOC01-appb-C000004
    で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中におけるそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。)
  3.  メソゲン・ケイ素化合物(共)重合体組成物が、前記一般式(1)で表されるメソゲン・ケイ素化合物(共)重合体の融点±50℃の温度範囲で溶融し、流動性を持つものであることを特徴とする請求項2記載の放熱材料。
  4.  メソゲン・ケイ素化合物(共)重合体組成物の熱伝導率が、1W/m・K以上であることを特徴とする請求項2又は3記載の放熱材料。
  5.  メソゲン・ケイ素化合物(共)重合体単体での熱伝導率が0.2W/m・K以上である請求項1~4のいずれか1項に記載の放熱材料。
PCT/JP2016/065414 2015-06-30 2016-05-25 放熱材料 WO2017002489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16817598.2A EP3318593B1 (en) 2015-06-30 2016-05-25 Heat dissipation material
JP2017526220A JP6699663B2 (ja) 2015-06-30 2016-05-25 熱可塑性放熱材料
US15/579,509 US10590322B2 (en) 2015-06-30 2016-05-25 Heat dissipation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130903 2015-06-30
JP2015-130903 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002489A1 true WO2017002489A1 (ja) 2017-01-05

Family

ID=57608262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065414 WO2017002489A1 (ja) 2015-06-30 2016-05-25 放熱材料

Country Status (4)

Country Link
US (1) US10590322B2 (ja)
EP (1) EP3318593B1 (ja)
JP (1) JP6699663B2 (ja)
WO (1) WO2017002489A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147010A1 (ja) * 2017-02-07 2018-08-16 信越化学工業株式会社 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
WO2019182860A1 (en) * 2018-03-22 2019-09-26 Momentive Performance Materials Inc. Silicone polymer and composition comprising the same
US10968351B2 (en) 2018-03-22 2021-04-06 Momentive Performance Materials Inc. Thermal conducting silicone polymer composition
JP7475578B2 (ja) 2020-07-01 2024-04-30 信越化学工業株式会社 1,3-ジヒドロキシ-1,1,3,3-テトラ-tert-ブトキシジシロキサンの製造方法
US11970020B2 (en) 2010-03-05 2024-04-30 Unilin Bv Method for manufacturing a floor board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687799B (zh) * 2018-11-09 2020-03-11 緯創資通股份有限公司 散熱模組與包含其之顯示裝置及其組裝方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230768A (ja) * 1987-03-20 1988-09-27 Mitsubishi Electric Corp シリコ−ン導電性樹脂
JP2012049567A (ja) * 2010-06-08 2012-03-08 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
JP2014080522A (ja) * 2012-10-17 2014-05-08 Shin Etsu Chem Co Ltd 熱伝導性樹脂組成物
JP2015078296A (ja) * 2013-10-16 2015-04-23 信越化学工業株式会社 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
JP2015160862A (ja) * 2014-02-26 2015-09-07 信越化学工業株式会社 樹脂組成物、メソゲン基含有硬化物及びその製造方法
WO2016024516A1 (ja) * 2014-08-11 2016-02-18 株式会社アイ.エス.テイ エラストマーの熱伝導性改質剤、熱伝導性改質液晶性エラストマー、液晶性高分子およびその前駆体の使用方法、エラストマーの熱伝導性改質方法、ならびに発熱体および被加熱体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959403A (en) * 1975-03-31 1976-05-25 General Electric Company Process for making silarylenesilanediol, silarylenesiloxanediol and silarylenesiloxane-polydiorganosiloxane block copolymers
US5035927A (en) 1990-06-26 1991-07-30 Eastman Kodak Company Toner fusing device and method of using the same
JP5376510B2 (ja) 2009-04-23 2013-12-25 国立大学法人群馬大学 ポリテトラメチル−p−シルフェニレンシロキサンの延伸フィルムの製造法
JP6075261B2 (ja) 2013-10-02 2017-02-08 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230768A (ja) * 1987-03-20 1988-09-27 Mitsubishi Electric Corp シリコ−ン導電性樹脂
JP2012049567A (ja) * 2010-06-08 2012-03-08 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
JP2014080522A (ja) * 2012-10-17 2014-05-08 Shin Etsu Chem Co Ltd 熱伝導性樹脂組成物
JP2015078296A (ja) * 2013-10-16 2015-04-23 信越化学工業株式会社 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
JP2015160862A (ja) * 2014-02-26 2015-09-07 信越化学工業株式会社 樹脂組成物、メソゲン基含有硬化物及びその製造方法
WO2016024516A1 (ja) * 2014-08-11 2016-02-18 株式会社アイ.エス.テイ エラストマーの熱伝導性改質剤、熱伝導性改質液晶性エラストマー、液晶性高分子およびその前駆体の使用方法、エラストマーの熱伝導性改質方法、ならびに発熱体および被加熱体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970020B2 (en) 2010-03-05 2024-04-30 Unilin Bv Method for manufacturing a floor board
WO2018147010A1 (ja) * 2017-02-07 2018-08-16 信越化学工業株式会社 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
JPWO2018147010A1 (ja) * 2017-02-07 2019-11-07 信越化学工業株式会社 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
US11142612B2 (en) 2017-02-07 2021-10-12 Shin-Etsu Chemical Co., Ltd. Mesogen-silicon compound (co)polymer and thermoplastic elastomer
WO2019182860A1 (en) * 2018-03-22 2019-09-26 Momentive Performance Materials Inc. Silicone polymer and composition comprising the same
CN112189027A (zh) * 2018-03-22 2021-01-05 莫门蒂夫性能材料股份有限公司 硅酮聚合物及包含其的组合物
US10941251B2 (en) 2018-03-22 2021-03-09 Momentive Performance Materials Inc. Silicone polymer and composition comprising the same
US10968351B2 (en) 2018-03-22 2021-04-06 Momentive Performance Materials Inc. Thermal conducting silicone polymer composition
JP2021518464A (ja) * 2018-03-22 2021-08-02 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. 熱伝導性シリコーンポリマー組成物
JP7475578B2 (ja) 2020-07-01 2024-04-30 信越化学工業株式会社 1,3-ジヒドロキシ-1,1,3,3-テトラ-tert-ブトキシジシロキサンの製造方法

Also Published As

Publication number Publication date
EP3318593A4 (en) 2019-02-13
US10590322B2 (en) 2020-03-17
US20180163113A1 (en) 2018-06-14
EP3318593B1 (en) 2020-05-06
JP6699663B2 (ja) 2020-05-27
JPWO2017002489A1 (ja) 2018-03-29
EP3318593A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6699663B2 (ja) 熱可塑性放熱材料
TWI766937B (zh) 熱傳導性聚有機矽氧烷組成物
TWI447175B (zh) 加成硬化型聚矽氧組成物及其硬化產物
US8124715B2 (en) Isocyanuric ring-containing polysiloxane having vinyl groups at the terminals
JP5345908B2 (ja) オルガノポリシルメチレン及びオルガノポリシルメチレン組成物
JP6024839B2 (ja) オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
JP2010265374A (ja) イソシアヌル環含有末端ハイドロジェンポリシロキサン
KR20170129248A (ko) 유기폴리실록산, 이의 제조 방법, 및 경화성 실리콘 조성물
JP6493268B2 (ja) 主鎖にアリーレン基を有するオルガノポリシロキサンの製造方法
EP3986968A1 (en) Thermal conductive silicone composition
JPWO2019240124A1 (ja) 成形用ポリオルガノシロキサン組成物、光学用部材、および成形方法
JP2835529B2 (ja) シリコーンゴム組成物
JP7336509B2 (ja) 架橋性オルガノシロキサン組成物
EP4121484A1 (en) Thermal conductive silicone composition
JP6791273B2 (ja) 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
JP2015127401A (ja) 熱硬化性樹脂組成物および樹脂封止型半導体装置
JP2017122161A (ja) 付加硬化型熱可塑性シリコーン組成物及び熱可塑性シリコーン硬化物
JP5605925B2 (ja) オルガノポリシルメチレン及びオルガノポリシルメチレン組成物
JP2015187258A (ja) 熱硬化性樹脂組成物および樹脂封止型半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526220

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817598

Country of ref document: EP