WO2018147010A1 - 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー - Google Patents

新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー Download PDF

Info

Publication number
WO2018147010A1
WO2018147010A1 PCT/JP2018/001041 JP2018001041W WO2018147010A1 WO 2018147010 A1 WO2018147010 A1 WO 2018147010A1 JP 2018001041 W JP2018001041 W JP 2018001041W WO 2018147010 A1 WO2018147010 A1 WO 2018147010A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mesogen
silicon compound
thermoplastic elastomer
formula
Prior art date
Application number
PCT/JP2018/001041
Other languages
English (en)
French (fr)
Inventor
晃 打它
林 久美子
知樹 秋葉
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2018566808A priority Critical patent/JP6791273B2/ja
Priority to US16/476,368 priority patent/US11142612B2/en
Priority to EP18751680.2A priority patent/EP3581607B1/en
Publication of WO2018147010A1 publication Critical patent/WO2018147010A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • C08G77/52Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a novel mesogen / silicon compound (co) polymer and a thermoplastic elastomer comprising the mesogen / silicon compound (co) polymer.
  • silicone resins such as dimethyl silicone rubber, which is mainly composed of polydimethylsiloxane (PDMS), have excellent properties such as heat resistance, electrical insulation, weather resistance, flexibility, gas permeability, and chemical resistance. Used for industrial applications.
  • PDMS polydimethylsiloxane
  • rubber physical properties rubber elasticity
  • rubber cured products that are not thermally reversible are usually obtained by curing PDMS by carrying out three-dimensional chemical crosslinking with a crosslinking agent or the like. It has been necessary to make an elastomer as a material, and a silicone polymer itself has rubber elasticity and at the same time, exhibits a thermoplastic material.
  • a polymer having a rigid skeleton in the main chain such as polytetramethyl-p-sylphenylenesiloxane (PTMPS) is a crystalline polymer having better heat resistance and mechanical strength than PDMS and having thermoplasticity.
  • PTMPS polytetramethyl-p-sylphenylenesiloxane
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-253774.
  • PTMPS has high crystallinity, and it has been difficult to obtain a thermoplastic elastomer having rubber properties.
  • the present invention has been made in view of the above circumstances, has a silicone (polysiloxane) skeleton in the main chain, has transparency and rubber physical properties (rubber elasticity), and is thermally reversibly (repeated). It is an object of the present invention to obtain a novel mesogen / silicon compound (co) polymer having a thermoplasticity capable of forming a thermoplastic elastomer comprising the mesogen / silicon compound (co) polymer.
  • the present inventors have obtained a mesogenic silicon compound (co-polymer) having a number average molecular weight of 1,000 to 500,000 represented by the following general formula (1).
  • the polymer exhibits the properties of a thermoplastic elastomer that has transparency and rubber physical properties (rubber elasticity) and that can be thermally reversibly (repetitively) molded, and can solve the above-mentioned problems. It came to make.
  • a polymer with such physical properties (mesogen / silicon compound (co) polymer)
  • it has the advantages of silicone rubber and the productivity of thermoplastic resin, enabling a wide range of applications. It is considered to be.
  • the present invention provides the following novel mesogen / silicon compound (co) polymer and a thermoplastic elastomer comprising the mesogen / silicon compound (co) polymer.
  • R 1 is a monovalent hydrocarbon group independently containing an aliphatic unsaturated bond having 1 to 8 carbon atoms
  • a thermoplastic elastomer comprising the mesogen-silicon compound (co) polymer as described above and capable of being repeatedly molded at a melting point of 50 to 250 ° C.
  • the mesogen-silicon compound (co) polymer of the present invention and the thermoplastic elastomer comprising the mesogen-silicon compound (co) polymer are excellent in transparency, exhibit good rubber properties within the service temperature, and are repeatedly thermoplastic. Since it has excellent moldability, it can be suitably used for potting materials and various sealing materials.
  • the mesogen / silicon compound (co) polymer of the present invention is a mesogen / silicon compound (co) polymer represented by the following general formula (1) and having a number average molecular weight of 1,000 to 500,000.
  • the thermoplastic elastomer of the invention includes a thermoplastic elastomer composed of the mesogen-silicon compound (co) polymer and capable of being repeatedly molded at a melting point of 50 to 250 ° C. [In the formula, Ar represents the following formula: It is a mesogenic group selected from the structure shown by these.
  • R 1 is a monovalent hydrocarbon group independently containing an aliphatic unsaturated bond having 1 to 8 carbon atoms
  • R 1 is independently a monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 6 carbon atoms, and not containing an aliphatic unsaturated bond.
  • Aryl groups such as phenyl group, tolyl group and xylyl group, and the like, preferably methyl group.
  • A represents a positive number of 0.5 to 1, preferably 0.7 to 1, more preferably 0.8 to 1, and b is 0 to 0.5, preferably 0 to 0.3, more preferably.
  • a + b 1.
  • the arrangement of the repeating unit represented by a and the repeating unit represented by b is random.
  • the silarylene / silalkylenesiloxane unit [—Si (R 1 ) 2 —Ar—Si (R 1 ) 2 —C 2 in the main chain H 4 —Si (R 1 ) 2 —Ar—Si (R 1 ) 2 —C 2 H 4 —Si (R 1 ) 2 —Ar—Si (R 1 ) 2 —O—]
  • a ′) is an integer of about 5 to 1,000, preferably about 10 to 800, more preferably about 30 to 500, and is a silarylene siloxane unit [—Si (R 1 ) 2 — in the main chain.
  • Ar—Si (R 1 ) 2 —O—] repeat number or degree of polymerization (referred to as b ′) is an integer of about 0 to 100, preferably 0 to 80, more preferably about 0 to 50,
  • the total number of repeating units of the entire main chain or the degree of polymerization (referred to as a ′ + b ′) is 10 to 1, 000, preferably 20 to 800, more preferably an integer of about 30 to 500.
  • the mesogen / silicon compound (co) polymer of the present invention has a polystyrene-equivalent number average molecular weight of 1,000 to 500,000, preferably 2,000 to 400, measured by gel permeation chromatography using tetrahydrofuran as a developing solvent.
  • (Co) polymers having a molecular weight of 3,000, more preferably 3,000 to 300,000. If the number average molecular weight is too small, the resin may be brittle and difficult to handle. If it is too large, the viscosity at the time of melting may increase and the moldability may be poor.
  • the polystyrene-equivalent number average molecular weight (Mn) (or number average polymerization degree (Nn)
  • weight average molecular weight (Mw) (or weight average polymerization degree (Nw))
  • polydispersity ie, weight
  • the average molecular weight (Mw) / number average molecular weight (Mn)) are columns manufactured by Tosoh Corporation: TSKgel Super H2500 (1) and TSKgel Super HM-N (1), Solvent: Tetrahydrofuran, flow rate: 0.6 mL / min, detector: RI (40 ° C.), column temperature 40 ° C., injection volume 50 ⁇ L, sample concentration 0.3% by mass (hereinafter the same).
  • the melting point of the mesogen / silicon compound (co) polymer of the present invention is preferably 50 to 250 ° C., more preferably 80 to 200 ° C.
  • the melting point can be determined from the peak top of the melting endothermic peak measured by differential scanning calorimetry (DSC) (DSC830, manufactured by METTLER TOLEDO) (hereinafter the same).
  • the mesogen / silicon compound (co) polymer represented by the above general formula (1) of the present invention can be produced by the following method. That is, for example, as shown in Synthesis Example 3 to be described later, first, as a structural unit represented by the repeating number [a] in the general formula (1), for example, diorganohydrogensilyl at both ends of a mesogenic group represented by Ar.
  • the following formula having a group (Wherein R 1 and Ar are the same as above)
  • the bifunctional Si-vinyl monomer represented by the formula (1) is a bifunctional SiH monomer at least twice the mole of the bifunctional Si-vinyl monomer (that is, a silicon atom-bonded vinyl group in the bifunctional Si-vinyl monomer).
  • the platinum group metal catalyst in such an amount that the molar ratio of SiH groups (hydrosilyl groups) in the bifunctional SiH monomer is 2 times mol or more, the same shall apply hereinafter), preferably an excess molar ratio of about 4 to 8 times mol.
  • a catalyst such as, and if necessary, an organic solvent, for example, at 40 to 100 ° C., particularly 60 to 90 ° C. for 6 to 48 hours, particularly 8 to 24 hours, the hydrosilylation addition reaction is performed.
  • Example 1 as the structural unit represented by the repeating number [a] in the general formula (1), for example, the both ends are diorganohydroxysilyl groups (—Si (R 1 ) 2 ( The monomer [a2] blocked with OH)) is subjected to polycondensation in the presence of a basic catalyst, for example, at 150 to 300 ° C., particularly at 180 to 250 ° C. for 4 to 10 hours, particularly 6 to 8 hours.
  • a basic catalyst for example, at 150 to 300 ° C., particularly at 180 to 250 ° C. for 4 to 10 hours, particularly 6 to 8 hours.
  • a structural unit represented by the repeating number [a] in the general formula (1) for example, a monomer [a2 in which both ends are blocked with a diorganohydroxysilyl group]
  • a structural unit represented by the repeating number [b] in the general formula (1) for example, a diorganohydroxysilyl group at both ends of a mesogen group represented by Ar as shown in Synthesis Examples 1 and 2 described later.
  • the present invention will be described with reference to synthesis examples, examples, usage examples and comparative examples, but the present invention is not limited thereto.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and the polydispersity (PDI weight average molecular weight (Mw) / number average molecular weight (Mn)) Co., Ltd.
  • Example 1 In a 500 mL separable flask equipped with a synthesis stirrer for polymer 1, 250 g (0.37 mol) of monomer 2 synthesized in Synthesis Example 4 and 1,1,3,3-tetramethylguanidine di-2-ethylhexanoate 10 g (4% by mass) was added, reacted at 180 ° C. for 1 hour, and further reacted at 230 ° C. and 200 Pa for 6 hours.
  • Example 3 200 g (0.3 mol) of monomer 2 synthesized in Synthesis Example 4 and 4,4′-bis (hydroxydimethylsilyl) obtained in Synthesis Example 2 were added to a 500 mL separable flask equipped with a polymer 3 synthesis stirrer. After charging 22.7 g (0.075 mol) of biphenyl and 8.9 g (4% by mass) of 1,1,3,3-tetramethylguanidine di-2-ethylhexanoate, the mixture was reacted at 200 ° C. for 1 hour. Further, the reaction was carried out at 250 ° C. and 200 Pa for 6 hours.
  • Example 4 Synthesis of polymer 4 (terminal silylation of polymer 1) A 500 mL separable flask equipped with a stirrer was charged with 10 g of the polymer 1 synthesized in Example 1 and 200 mL of tetrahydrofuran, stirred for 30 minutes at 50 ° C. and dissolved, and then 0.1 g (0. 83 mmol), 0.13 g (0.83 mmol) of hexamethyldisilazane was added, and the mixture was further stirred at 50 ° C. for 1 hour. Next, by removing the excess solvent and silylating agent under reduced pressure at 80 ° C.
  • n is a number having a number average molecular weight in the above range.
  • both-end alkenyl group-containing silicone oil (vinyl dimethylsiloxy group-blocked dimethylpolysiloxane) having a viscosity of 1,000 mPa ⁇ s and 4 hydrogen atoms (SiH groups) bonded directly to silicon atoms in one molecule 1.
  • organohydrogenpolysiloxane (the molar ratio of SiH groups to terminal alkenyl groups is 1: 1) is charged into a planetary mixer and mixed for 30 minutes at room temperature. .05 g was added and further mixed for 5 minutes to obtain an addition-curable silicone composition 1.
  • the various physical properties were evaluated using the molded sheets of the above usage examples 1 to 3 and comparative usage examples 1 and 2. Further, the melting points of the polymers 1 to 3 obtained in Examples 1 to 3 and Comparative Example 1 and the cured product sheet 5 (silicone sheet) obtained in Polymer 5 and Comparative Use Example 2 were measured. These results are shown in Table 1 below.
  • various physical properties were measured using an automatic hardness tester and a tensile tester. The conditions for measuring physical properties are in accordance with JIS K 6249.
  • the sheets 1 to 4 molded in the above use examples 1 to 3 and the comparative use example 1 and the cured sheet 5 molded in the comparative use example 2 are each cut into pieces of about 10 mm ⁇ 10 mm.
  • the subdivided sheets obtained by cutting each piece into approximately 10 mm ⁇ 10 mm were collected and press-molded again at 150 ° C. for 10 minutes to re-create a 100 mm ⁇ 100 mm ⁇ 2 mm sheet. After that, DSC measurement was carried out. If the melting point at this time was within the range of ⁇ 10 ° C. of the melting point at the time of polymer synthesis (melting point measured above), it was rated as “good”. Moreover, the external appearance of the initial molded sheet before this fragmentation was measured visually. These results are shown in Table 1 below.
  • the sheets 1 to 3 molded from the polymers 1 to 3 are transparent, the hardness is in the range of Type A, and the elongation is 100% or more. Therefore, it can be seen that the rubber elastic body (elastomer) has properties. Furthermore, since it has a melting point of 100 ° C. or higher and repeated moldability, it was shown that a thermoplastic elastomer was obtained. On the other hand, in Comparative Use Example 1, the sheet 4 molded from the polymer 5 has a hardness in the range of Shore D, and the elongation rate is less than 100%, so that it is not a rubber elastic body but a tough general thermoplastic resin. Has close physical properties.
  • the cured product sheet 5 obtained by curing the addition curable silicone composition 1 exhibits physical properties of an addition curable silicone rubber elastic body (elastomer). Since it is (cured), it does not have a melting point (that is, does not exhibit thermoplasticity). From the above, it is shown that the polymer (mesogen / silicon compound (co) polymer) of the present invention is a thermoplastic elastomer having a silicone skeleton, and heat dissipation materials and various sealing materials in which conventional silicone rubber is used. Therefore, it is possible to improve productivity by making use of thermoplasticity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

下式(1)で表され、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体からなる熱可塑性エラストマーは、透明性及びゴム物性(ゴム弾性)を有すると共に、熱的に可逆的に(繰り返し)成型が可能であることから、ポッティング材料や各種シール材へ好適に用いることができる。式(1) [Arは下式(2) で示される構造から選ばれるメソゲン基。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中における全繰り返し単位の合計に対するそれぞれの繰り返し単位数の比率を表し、a+b=1。)。R1は炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基、R2は水素原子、-Si(CH3)3、-Si(CH3)2(OH)、-Si(CH3)2(CH=CH2)又は-Si(CH3)2(CH2-CH=CH2)。]

Description

新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
 本発明は、新規なメソゲン・ケイ素化合物(共)重合体及び該メソゲン・ケイ素化合物(共)重合体からなる熱可塑性エラストマーに関する。
 ポリジメチルシロキサン(PDMS)を主成分とするジメチルシリコーンゴム等のいわゆるシリコーン樹脂は、耐熱性、電気絶縁性、耐候性、柔軟性、気体透過性、耐薬品性など優れた性質を持ち、様々な工業用途に使用されている。しかし、シリコーン樹脂にゴム物性(ゴム弾性)を発現させるためには、通常、架橋剤等により三次元的な化学架橋を実施してPDMSを硬化させることによって熱的に可逆性のないゴム硬化物としてエラストマー化する必要があり、シリコーンポリマー自体がゴム弾性を有すると同時に熱可塑性を示す材料はこれまで知られていなかった。
 一般に、ポリテトラメチル-p-シルフェニレンシロキサン(PTMPS)のような主鎖に剛直な骨格を有するポリマーは、PDMSよりも耐熱性や機械的強度に優れ、熱可塑性を持つ結晶性高分子であることが知られている(特許文献1:特開2010-253774号公報)。しかし、PTMPSは結晶性が高く、ゴム物性を有する熱可塑性エラストマーを得ることは困難であった。
特開2010-253774号公報
 本発明は、上記事情に鑑みなされたもので、主鎖中にシリコーン(ポリシロキサン)骨格を有し、透明性及びゴム物性(ゴム弾性)を有すると共に、熱的に可逆的に(繰り返し)成型が可能な熱可塑性を有する新規なメソゲン・ケイ素化合物(共)重合体及び該メソゲン・ケイ素化合物(共)重合体からなる熱可塑性エラストマーを得ることを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、後述する一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体が、透明性及びゴム物性(ゴム弾性)を有すると共に、熱的に可逆的に(繰り返し)成型が可能な熱可塑性エラストマーの性質を示し、前述の課題を解決できることを見出し、本発明をなすに至った。
 このような物性を示すポリマー(メソゲン・ケイ素化合物(共)重合体)を得ることにより、シリコーンゴムの優位性と、熱可塑性樹脂の生産性とを併せ持つことから、幅広い用途での応用が可能になると考えられる。
 従って、本発明は、下記の新規なメソゲン・ケイ素化合物(共)重合体及び該メソゲン・ケイ素化合物(共)重合体からなる熱可塑性エラストマーを提供する。
〔1〕
 下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体。
Figure JPOXMLDOC01-appb-C000003
[式中、Arは下記式
Figure JPOXMLDOC01-appb-C000004
で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中における全繰り返し単位の合計に対するそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。]
〔2〕
 〔1〕記載のメソゲン・ケイ素化合物(共)重合体からなる、融点が50~250℃で繰り返し成型可能な熱可塑性エラストマー。
 本発明のメソゲン・ケイ素化合物(共)重合体及び該メソゲン・ケイ素化合物(共)重合体からなる熱可塑性エラストマーは、透明性に優れ、耐用温度内で良好なゴム物性を示し、繰り返しの熱可塑性を示し、成型性に優れることから、ポッティング材料や各種シール材へ好適に用いることができる。
 本発明のメソゲン・ケイ素化合物(共)重合体は、下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体であり、本発明の熱可塑性エラストマーは、該メソゲン・ケイ素化合物(共)重合体からなる、融点が50~250℃で繰り返し成型可能な熱可塑性エラストマーを含むものである。
Figure JPOXMLDOC01-appb-C000005
[式中、Arは下記式
Figure JPOXMLDOC01-appb-C000006
で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中における全繰り返し単位の合計に対するそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。]
 上記式(1)中、R1は独立に炭素原子数1~8、特に炭素原子数1~6の、脂肪族不飽和結合を含まない1価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基等が挙げられ、好ましくはメチル基である。
 また、aは0.5~1、好ましくは0.7~1、より好ましくは0.8~1の正数を示し、bは0~0.5、好ましくは0~0.3、より好ましくは0~0.2の数(0又は正数)を示す(ただし、a、bはそれぞれ、分子中における全繰り返し単位の合計に対するそれぞれの繰り返し単位数の比率(モル比)を表すものであり、a+b=1である。)
 なお、本発明のメソゲン・ケイ素化合物(共)重合体において、aで示される繰り返し単位とbで示される繰り返し単位の配列はランダムである。
 また、一般式(1)のメソゲン・ケイ素化合物(共)重合体において、主鎖中のシルアリーレン・シルアルキレンシロキサン単位[-Si(R12-Ar-Si(R12-C24-Si(R12-Ar-Si(R12-C24-Si(R12-Ar-Si(R12-O-]の繰り返し数又は重合度(これをa’とする)は、5~1,000、好ましくは10~800、より好ましくは30~500程度の整数であり、主鎖中のシルアリーレンシロキサン単位[-Si(R12-Ar-Si(R12-O-]の繰り返し数又は重合度(これをb’とする)は、0~100、好ましくは0~80、より好ましくは0~50程度の整数であり、主鎖全体の繰り返し単位数の合計又は重合度(これをa’+b’とする)は、10~1,000、好ましくは20~800、より好ましくは30~500程度の整数である。
 本発明のメソゲン・ケイ素化合物(共)重合体は、テトラヒドロフランを展開溶媒としてゲルパーミエーションクロマトグラフィにて測定したポリスチレン換算の数平均分子量が1,000~500,000、好ましくは2,000~400,000、更に好ましくは3,000~300,000である(共)重合体である。数平均分子量が小さすぎると樹脂が脆く、取扱いに難が出ることがあり、大きすぎると溶融時の粘度が上昇し、成型性に劣る可能性がある。
 なお、上記ポリスチレン換算の数平均分子量(Mn)(又は数平均重合度(Nn))、及び重量平均分子量(Mw)(又は重量平均重合度(Nw))並びに多分散度(PDI、即ち、重量平均分子量(Mw)/数平均分子量(Mn))は、ゲルパーミエーションクロマトグラフィ分析において、東ソー(株)製のカラム:TSKgel Super H2500(1本)及びTSKgel Super HM-N(1本)、溶媒:テトラヒドロフラン、流量:0.6mL/min、検出器:RI(40℃)、カラム温度40℃、注入量50μL、サンプル濃度0.3質量%の条件にて測定することができる(以下、同じ)。
 また、本発明のメソゲン・ケイ素化合物(共)重合体の融点は、50~250℃、特に80~200℃であることが好ましい。なお、融点は、示差走査熱量分析(DSC)によって測定される融解吸熱ピークのピークトップから求めることができる(DSC830 メトラートレド製)(以下、同じ)。
 なお、本発明の上記一般式(1)で表されるメソゲン・ケイ素化合物(共)重合体は、下記のような方法によって製造することができる。即ち、例えば後述する合成例3に示すように、まず、一般式(1)において繰り返し数[a]で示される構造単位として、例えば、Arで示されるメソゲン基の両末端にジオルガノハイドロジェンシリル基を有する下記式
Figure JPOXMLDOC01-appb-C000007
(式中、R1、Arは上記と同じ。)
で示される2官能性SiHモノマーと、Arで示されるメソゲン基の両末端にビニルジオルガノシリル基を有する下記式
Figure JPOXMLDOC01-appb-C000008
(式中、R1、Arは上記と同じ。)
で示される2官能性Si-ビニルモノマーとを、2官能性SiHモノマーを2官能性Si-ビニルモノマーに対して2倍モル以上(即ち、2官能性Si-ビニルモノマー中のケイ素原子結合ビニル基に対する2官能性SiHモノマー中のSiH基(ヒドロシリル基)のモル比が2倍モル以上、以下、同様。)、好ましくは4~8倍モル程度の過剰モル比となる量で、白金族金属触媒等の触媒及び必要により有機溶剤の存在下、例えば、40~100℃、特に60~90℃にて6~48時間、特に8~24時間等の条件でヒドロシリル化付加反応させることによって、下記式[I]
Figure JPOXMLDOC01-appb-C000009
(式中、R1、Arは上記と同じ。)
で示される両末端がジオルガノハイドロジェンシリル基(-Si(R12(H))で封鎖されたモノマー[a1]を製造した後、後述する合成例4に示すように、該モノマー[a1]の分子鎖両末端のSiH基をパラジウム等の触媒、イオン交換水及び有機溶剤等の溶媒存在下、例えば、30~60℃、特に40~50℃にて3~8時間、特に4~6時間等の条件で酸化反応させることによって、下記式[II]
Figure JPOXMLDOC01-appb-C000010
(式中、R1、Arは上記と同じ。)
で示される両末端がジオルガノヒドロキシシリル基(-Si(R12(OH))で封鎖されたモノマー[a2]を製造する。
 更に、後述する実施例1に示すように、一般式(1)において繰り返し数[a]で示される構造単位として、例えば、上記両末端がジオルガノヒドロキシシリル基(-Si(R12(OH))で封鎖されたモノマー[a2]を塩基性触媒の存在下、例えば、150~300℃、特に180~250℃で4~10時間、特に6~8時間等の条件で縮重合することによって、分子鎖両末端がジオルガノヒドロキシシリル基(-Si(R12(OH))で封鎖され、主鎖が繰り返し数[a]で示される構造単位だけからなるホモポリマー(即ち、一般式(1)においてa=1、b=0、R2=H)を製造することができ、更に必要に応じて、後述する実施例4に示すように、分子鎖両末端のヒドロキシ基(R2=H)を、従来公知の常法に従ってシリル化剤によってシリル変性(R2=-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2))することによって、例えば、両末端が-Si(CH33、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)等のトリオルガノシリル基等のシリル基で封鎖され、主鎖が繰り返し数[a]で示される構造単位だけからなるホモポリマーを製造することができる。
 また、後述する実施例2、3に示すように、一般式(1)において繰り返し数[a]で示される構造単位として、例えば、上記両末端がジオルガノヒドロキシシリル基で封鎖されたモノマー[a2]と、一般式(1)において繰り返し数[b]で示される構造単位として、例えば、後述する合成例1、2に示すような、Arで示されるメソゲン基の両末端にジオルガノヒドロキシシリル基(-Si(R12(OH))を有する下記式
Figure JPOXMLDOC01-appb-C000011
(式中、R1、Arは上記と同じ。)
で示される2官能性SiOHモノマーとを、モノマー[a2]と2官能性SiOHモノマーとが、具体的には9:1~6:4、特に9:1~7:3となるような所定の配合モル比で、塩基性触媒の存在下、例えば、150~300℃、特に180~250℃で4~10時間、特に6~8時間等の条件で縮重合反応させることによって、分子鎖両末端がジオルガノヒドロキシシリル基(-Si(R12(OH))で封鎖され、主鎖が繰り返し数[a]で示される構造単位と繰り返し数[b]で示される構造単位のランダムな配列からなるコポリマー(即ち、一般式(1)においてa>0、b>0、a+b=1、R2=H)を製造することができ、更に必要に応じて、分子鎖両末端のヒドロキシ基(R2=H)を、従来公知の常法に従ってシリル化剤によってシリル変性(R2=-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2))することによって、例えば、両末端が-Si(CH33、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)等のトリオルガノシリル基等のシリル基で封鎖され、主鎖が繰り返し数[a]で示される構造単位と繰り返し数[b]で示される構造単位のランダムな配列からなるコポリマーを製造することができる。
 以下、合成例、実施例、使用例及び比較例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、以下において、数平均分子量(Mn)、重量平均分子量(Mw)及び多分散度(PDI=重量平均分子量(Mw)/数平均分子量(Mn))は、ゲルパーミエーションクロマトグラフィ分析において、東ソー(株)製のカラム:TSKgel Super H2500(1本)及びTSKgel Super HM-N(1本)、溶媒:テトラヒドロフラン、流量:0.6mL/min、検出器:RI(40℃)、カラム温度40℃、注入量50μL、サンプル濃度0.3質量%の条件にて測定した標準ポリスチレン換算値から算出したものである。また、粘度は25℃において回転粘度計により測定したものである。
 初めに、本発明に用いるメソゲン・ケイ素化合物(共)重合体の原料となるモノマーの合成例を示す。これらのモノマーは既知の手法によって合成される。
  [合成例1]
1,4-ビス(ヒドロキシジメチルシリル)ベンゼンの合成
 還流管と1Lの滴下ロートを備えた5Lセパラブルフラスコに、テトラヒドロフラン500mL、メチルエチルケトン2,500mL、5質量%パラジウム担持カーボン7.8g、イオン交換水172.8gを仕込み、50℃まで昇温した。次に、滴下ロートに、1,4-ビス(ジメチルシリル)ベンゼン757.6g(3.9モル)(商品名 シルフェニレンC、信越化学工業(株)製)を仕込み、4時間かけて滴下を行った。滴下終了後、5時間熟成させ、触媒を濾過にて除去したのち、濾液を濃縮し、白色固体を得た。次に、ヘキサン3L、テトラヒドロフラン500mLの混合溶媒を用いて再結晶精製を行い、1,4-ビス(ヒドロキシジメチルシリル)ベンゼン596.9g(2.6モル)を得た(収率68%)。1H-NMR(400MHz,CDCl3)δ7.61(s,4H),1.95(brs,2H),0.41(s,12H)
  [合成例2]
4,4’-ビス(ヒドロキシジメチルシリル)ビフェニルの合成
 還流管を備えた3Lナスフラスコに、マグネシウム48g、乾燥テトラヒドロフラン1L、数滴の1,2-ジブロモエタンを加え、窒素雰囲気下で加熱還流させた。次に、4,4’-ジブロモビフェニル250g(0.8モル)を加え、1時間加熱還流し、グリニヤール試薬を調製した。これをジメチルクロロシラン170g(1.76モル)とテトラヒドロフラン200mLが仕込まれた3L四つ口フラスコに、氷浴下で1時間かけて移送滴下した。滴下終了後一晩室温で反応させ、桐山ロートで残渣を除いたのち140-150℃/1mmHgで蒸留精製し、4,4’-ビス(ジメチルシリル)ビフェニルを得た。
 これを原料とし、上記1,4-ビス(ヒドロキシジメチルシリル)ベンゼンの合成法と同様にして4,4’-ビス(ヒドロキシジメチルシリル)ビフェニル130g(0.43モル)を得た(収率47%)。1H-NMR(400MHz,CDCl3)δ7.68(d,4H),7.60(d,4H),1.76(brs,2H),0.45(s,12H)
  [合成例3]
モノマー1の合成
 還流管と500mLの滴下ロートを備えた3Lセパラブルフラスコに、トルエン500mL、0.5質量%カールステット触媒トルエン溶液を1g、1,4-ビス(ジメチルシリル)ベンゼンを1,165g(6モル)(商品名 シルフェニレンC、信越化学工業(株)製)仕込み、80℃まで昇温した。次に、滴下ロートに、1,4-ビス(ビニルジメチルシリル)ベンゼン246.5g(1モル)(信越化学工業(株)製)を仕込み、5時間かけて滴下を行った。滴下終了後、24時間熟成させた後、室温まで放冷した。続いて活性炭を20g添加し、3時間撹拌して残存触媒を吸着させたのち、活性炭を濾過にて除去した。溶媒及び未反応の1,4-ビス(ジメチルシリル)ベンゼンを除去するため、180℃、200Paで4時間減圧留去したのち、放冷し、下記式(2)で表される、モノマー1を587g(収率93%)得た。1H-NMR(400MHz,CDCl3)δ7.56(m,12H),3.21(s,2H),1.04(t,8H),0.43(s,36H)
Figure JPOXMLDOC01-appb-C000012
  [合成例4]
モノマー2の合成
 還流管と1Lの滴下ロートを備えた5Lセパラブルフラスコに、テトラヒドロフラン3,000mL、5質量%パラジウム担持カーボン5g、イオン交換水150gを仕込み、50℃まで昇温した。次に、合成例3で得られたモノマー1を587g、粉体の状態で30回に分けて添加した。すべて添加したのち、5時間熟成させ、触媒を濾過にて除去した。濾液を濃縮し、白色固体を得たのち、これをテトラヒドロフラン500mLに溶解させ3Lのメタノール中に滴下することで再沈殿精製を行い、下記式(3)で表される、モノマー2を478g得た(収率81%)。1H-NMR(400MHz,CDCl3)δ7.56(m,12H),1.92(brs,2H),1.04(t,8H),0.43(s,36H)
Figure JPOXMLDOC01-appb-C000013
 次に、本発明のメソゲン・ケイ素化合物(共)重合体(熱可塑性エラストマー)の合成例を示す。
  [実施例1]
ポリマー1の合成
 撹拌装置を備えた500mLセパラブルフラスコに、合成例4で合成したモノマー2を250g(0.37モル)、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを10g(4質量%)仕込み、180℃で1時間反応させた後、更に230℃、200Paで6時間反応させた。反応終了後、室温まで放冷し、ポリマーをテトラヒドロフラン500mLに溶解させた後、3Lのメタノール中に滴下することで、下記式(4)で表される、白色固体のメソゲン・ケイ素化合物(共)重合体を190g得た(収率77%)。数平均分子量(Mn)=40,000、多分散度(PDI;Mw/Mn)=1.8、融点(mp)=105℃であった。このメソゲン・ケイ素化合物重合体(熱可塑性エラストマー)をポリマー1とする。
Figure JPOXMLDOC01-appb-C000014
(式中、nは数平均分子量が上記範囲となる数である。)
  [実施例2]
ポリマー2の合成
 撹拌装置を備えた500mLセパラブルフラスコに、合成例4で合成したモノマー2を200g(0.3モル)、合成例1で得られた1,4-ビス(ヒドロキシジメチルシリル)ベンゼンを7.5g(0.033モル)、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを8.3g(4質量%)仕込み、180℃で1時間反応させた後、更に230℃、200Paで6時間反応させた。反応終了後、室温まで放冷し、ポリマーをテトラヒドロフラン500mLに溶解させた後、3Lのメタノール中に滴下することで、下記平均分子式(5)で表される、白色固体のメソゲン・ケイ素化合物(共)重合体を167g得た(収率80%)。数平均分子量(Mn)=52,000、多分散度(PDI;Mw/Mn)=2.1、融点(mp)=115℃であった。このメソゲン・ケイ素化合物共重合体(熱可塑性エラストマー)をポリマー2とする。
Figure JPOXMLDOC01-appb-C000015
  [実施例3]
ポリマー3の合成
 撹拌装置を備えた500mLセパラブルフラスコに、合成例4で合成したモノマー2を200g(0.3モル)、合成例2で得られた4,4’-ビス(ヒドロキシジメチルシリル)ビフェニルを22.7g(0.075モル)、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを8.9g(4質量%)仕込み、200℃で1時間反応させた後、更に250℃、200Paで6時間反応させた。反応終了後、室温まで放冷し、ポリマーをテトラヒドロフラン500mLに溶解させた後、3Lのメタノール中に滴下することで、下記平均分子式(6)で表される、白色固体のメソゲン・ケイ素化合物(共)重合体を181g得た(収率81%)。数平均分子量(Mn)=36,000、多分散度(PDI;Mw/Mn)=2.4、融点(mp)=142℃であった。このメソゲン・ケイ素化合物共重合体(熱可塑性エラストマー)をポリマー3とする。
Figure JPOXMLDOC01-appb-C000016
  [実施例4]
ポリマー4の合成(ポリマー1の末端シリル化)
 撹拌装置を備えた500mLセパラブルフラスコに、実施例1で合成したポリマー1を10g、テトラヒドロフラン200mLを仕込み、50℃で30分撹拌し、溶解させた後、ビニルジメチルクロロシランを0.1g(0.83ミリモル)、ヘキサメチルジシラザンを0.13g(0.83ミリモル)添加し、50℃で更に1時間撹拌させた。次に、80℃、1,000Paで過剰の溶媒とシリル化剤を減圧留去して除去することで、下記式(7)で表される、白色固体のメソゲン・ケイ素化合物(共)重合体を9.8g得た(収率98%)。数平均分子量(Mn)=41,000、多分散度(PDI;Mw/Mn)=1.8、融点(mp)=101℃であった。このメソゲン・ケイ素化合物重合体(熱可塑性エラストマー)をポリマー4とする。
Figure JPOXMLDOC01-appb-I000017
(式中、nは数平均分子量が上記範囲となる数である。)
  [比較例1]
ポリマー5の合成
 ディーンスタークトラップを取り付けた1Lナスフラスコに、合成例1で得られた1,4-ビス(ヒドロキシジメチルシリル)ベンゼンを100g、ベンゼンを800mL、ジ-2-エチルヘキサン酸1,1,3,3-テトラメチルグアニジンを4g加え、24時間加熱還流した。その後、3Lのメタノールに溶液を滴下し、再沈殿精製することで、下記式(8)で表される、白色粉末のPTMPS(ポリテトラメチル-p-シルフェニレンシロキサン)を88g得た(収率90%)。数平均分子量(Mn)=80,000、多分散度(PDI;Mw/Mn)=1.7、融点(mp)=125℃であった。このPTMPSをポリマー5とする。
Figure JPOXMLDOC01-appb-C000018
(式中、nは数平均分子量が上記範囲となる数である。)
  [使用例1]
 前述のポリマー1を40g計量し、150℃で溶融させ、100mm×100mm×2mmの金型に流し込み、150℃、10分間プレス成型し、放冷することでポリマー1のシート1を得た。
  [使用例2]
 前述のポリマー2を40g計量し、150℃で溶融させ、100mm×100mm×2mmの金型に流し込み、150℃、10分間プレス成型し、放冷することでポリマー2のシート2を得た。
  [使用例3]
 前述のポリマー3を40g計量し、150℃で溶融させ、100mm×100mm×2mmの金型に流し込み、150℃、10分間プレス成型し、放冷することでポリマー3のシート3を得た。
  [比較使用例1]
 前述のポリマー5を40g計量し、150℃で溶融させ、100mm×100mm×2mmの金型に流し込み、150℃、10分間プレス成型し、放冷することでポリマー5のシート4を得た。
  [比較使用例2]
 粘度1,000mPa・sの両末端アルケニル基含有シリコーンオイル(両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン)を48g、ケイ素原子に直接結合した水素原子(SiH基)を1分子中に4個含有するオルガノハイドロジェンポリシロキサンを1.96g(末端アルケニル基に対するSiH基のモル比率が1:1)をプラネタリーミキサーに仕込み、室温で30分混合し、0.5質量%カールステット触媒トルエン溶液を0.05g添加し、更に5分混合して付加硬化型シリコーン組成物1を得た。これを、100mm×100mm×2mmの金型に流し込み、150℃、10分間プレス成型することで付加硬化型シリコーン組成物1の硬化物シート5(シリコーンシート)を得た。
 上記使用例1~3及び比較使用例1、2の各成型シートを用いて、各種物性(硬さ、引張り強度、伸び)を評価した。また、上記実施例1~3及び比較例1で得られたポリマー1~3とポリマー5及び比較使用例2で得られた硬化物シート5(シリコーンシート)の融点を測定した。これらの結果を下記表1に示す。ここで、各種物性に関しては、自動硬度計と引張り試験機を用いて測定を行った。なお、物性測定の条件はJIS K 6249に準拠する。
 また、繰り返し成型性については、上記使用例1~3及び比較使用例1で成型したシート1~4、比較使用例2で成型した硬化物シート5を、それぞれ、一片を約10mm×10mmに切断して細分化したシートを作製した後、これら一片が約10mm×10mmに切断した細分化シート同士を集めてもう一度150℃、10分間プレス成型することで100mm×100mm×2mmのシートを再度作製したのち、DSC測定を実施し、この時の融点がポリマー合成時の融点(上記で測定した融点)の±10℃の範囲にあれば○、それ以外であれば×とした。また、この細分化する前の初期の成型シートの外観を目視にて測定した。これらの結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000019
 上記の結果より、使用例1~3については、ポリマー1~3から成型したシート1~3は透明性を有しており、硬さがタイプAの範囲で、伸び率も100%以上を有していることから、ゴム弾性体(エラストマー)の性質を有していることがわかる。更に100℃以上の融点と繰り返し成型性を有することから、熱可塑性エラストマーが得られたことが示された。
 一方、比較使用例1では、ポリマー5から成型したシート4は硬さがショアDの範囲で、伸び率も100%未満と低いことから、ゴム弾性体ではなく、強直な一般の熱可塑性樹脂に近い物性を有する。また、比較使用例2では、付加硬化型シリコーン組成物1を硬化してなる硬化物シート5は、付加硬化系シリコーンゴム弾性体(エラストマー)の物性を示すものであるが、架橋反応によってゴム化(硬化)していることから、融点を持たない(即ち、熱可塑性を示さない)。
 以上のことより、本発明のポリマー(メソゲン・ケイ素化合物(共)重合体)は、シリコーン骨格を有する熱可塑性エラストマーであることが示され、従来のシリコーンゴムが使用される放熱材料や各種シール材へ好適に利用でき、熱可塑性を生かした生産性の向上を達成できる。

Claims (2)

  1.  下記一般式(1)で表される、数平均分子量が1,000~500,000のメソゲン・ケイ素化合物(共)重合体。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Arは下記式
    Figure JPOXMLDOC01-appb-C000002
    で示される構造から選ばれるメソゲン基である。aは0.5~1の正数を示し、bは0~0.5の数を示す(ただし、a、bはそれぞれ、分子中における全繰り返し単位の合計に対するそれぞれの繰り返し単位数の比率を表すものであり、a+b=1である。)。R1は独立に炭素原子数1~8の脂肪族不飽和結合を含まない1価炭化水素基であり、R2は独立に水素原子、-Si(CH33、-Si(CH32(OH)、-Si(CH32(CH=CH2)又は-Si(CH32(CH2-CH=CH2)である。]
  2.  請求項1記載のメソゲン・ケイ素化合物(共)重合体からなる、融点が50~250℃で繰り返し成型可能な熱可塑性エラストマー。
PCT/JP2018/001041 2017-02-07 2018-01-16 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー WO2018147010A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566808A JP6791273B2 (ja) 2017-02-07 2018-01-16 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
US16/476,368 US11142612B2 (en) 2017-02-07 2018-01-16 Mesogen-silicon compound (co)polymer and thermoplastic elastomer
EP18751680.2A EP3581607B1 (en) 2017-02-07 2018-01-16 Novel mesogen-silicon compound (co)polymer and thermoplastic elastomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020033 2017-02-07
JP2017-020033 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147010A1 true WO2018147010A1 (ja) 2018-08-16

Family

ID=63108204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001041 WO2018147010A1 (ja) 2017-02-07 2018-01-16 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー

Country Status (4)

Country Link
US (1) US11142612B2 (ja)
EP (1) EP3581607B1 (ja)
JP (1) JP6791273B2 (ja)
WO (1) WO2018147010A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230768A (ja) * 1987-03-20 1988-09-27 Mitsubishi Electric Corp シリコ−ン導電性樹脂
JP2010253774A (ja) 2009-04-23 2010-11-11 Gunma Univ ポリテトラメチル−p−シルフェニレンシロキサンの延伸フィルムの製造法
WO2017002489A1 (ja) * 2015-06-30 2017-01-05 信越化学工業株式会社 放熱材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072016A (en) * 1997-12-29 2000-06-06 Dow Corning Toray Silicone Co., Ltd. Silphenylene polymer and composition containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230768A (ja) * 1987-03-20 1988-09-27 Mitsubishi Electric Corp シリコ−ン導電性樹脂
JP2010253774A (ja) 2009-04-23 2010-11-11 Gunma Univ ポリテトラメチル−p−シルフェニレンシロキサンの延伸フィルムの製造法
WO2017002489A1 (ja) * 2015-06-30 2017-01-05 信越化学工業株式会社 放熱材料

Also Published As

Publication number Publication date
EP3581607B1 (en) 2022-04-20
JP6791273B2 (ja) 2020-11-25
US20190352466A1 (en) 2019-11-21
US11142612B2 (en) 2021-10-12
EP3581607A4 (en) 2020-12-09
EP3581607A1 (en) 2019-12-18
JPWO2018147010A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
EP3665210B1 (en) Method for preparing a graft copolymer with a polyolefin backbone and polyorganosiloxane pendant groups
JP5201063B2 (ja) 付加硬化型シリコーン組成物及びその硬化物
JP6699663B2 (ja) 熱可塑性放熱材料
JP5545862B2 (ja) イソシアヌル環含有末端ビニルポリシロキサン
JP2010265374A (ja) イソシアヌル環含有末端ハイドロジェンポリシロキサン
JP5828964B2 (ja) 新規なポリオルガノシロキサン、これを含むポリカーボネート樹脂組成物及び改質ポリカーボネート樹脂
JP4816951B2 (ja) シリコーン組成物及びその硬化物
JP2012121950A (ja) 硬化性シリコーン組成物及びシリコーン樹脂硬化物
JP2010265372A (ja) 両末端モノメチルアリルイソシアヌル環封鎖オルガノポリシロキサン
JP6493268B2 (ja) 主鎖にアリーレン基を有するオルガノポリシロキサンの製造方法
JP6791273B2 (ja) 新規メソゲン・ケイ素化合物(共)重合体及び熱可塑性エラストマー
JP2835529B2 (ja) シリコーンゴム組成物
JPH04311765A (ja) 硬化性オルガノポリシロキサン組成物
WO2018088485A1 (ja) 共変性シリコーン
JP7336509B2 (ja) 架橋性オルガノシロキサン組成物
JP2000264970A (ja) ポリアルキレンオキシに置換された反応性シロキサン化合物及びその製造方法
JP7203196B2 (ja) 架橋性オルガノシロキサン組成物
CA2040497A1 (en) Charge-dissipating silicone rubber compositions
JP2015127401A (ja) 熱硬化性樹脂組成物および樹脂封止型半導体装置
JP2015187258A (ja) 熱硬化性樹脂組成物および樹脂封止型半導体装置
Matloka Synthesis and characterization of latent reactive oligo (oxyethylene)/carbosilane and carbosiloxane/carbosilane copolymers via acyclic diene metathesis polymerization (ADMET) for thermoset materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751680

Country of ref document: EP

Effective date: 20190909